23 STRESS FIELD

Surlace {““l “f“'.\' forces are encountered in the study of continuum fluid mecha
Surface Jorces include all forces acting on the boundarics of a medium through d
mnl.tcl‘. Forces developed without physical contact, and distributed over the volun
the fwid, are termed body forces. Gravitational and electromagnetic forces
examples of body forces anising in a fluid,

The gravitational body {orce acting on an element of volume, d V, is given by pj
where poas the density (mass per unit volume) and ¢ 1s the local gravitat
acceleration. Thus the gravitational body force per unit volume is pg and
gravitational body force per unit mass s .

Stresses o medium result from forces acting on some portion of the medium.
concepl of stress provides a convenient means to describe the manner in which f
acthing on the boundanies of the medium are transmitted through the medium. S
force and arca are both vector quantitics, we might anticipate that the stress ficld
not be a vector field. We shall show that, in general, nine quantitics arc requirce
spectfy the state of stress in a fluid. (Stress is a tensor quantity of second order.)

In a Nowing fluid, consider a portion, ¢ 4, of the surface passing through the poir
The orientation of ¢ A4 is given by the unit vector. i, as shown in Fig. 2.5. The direc
of n1s normal to the surface.

The foree, oF. acting on 8.4 may be resolved into two components, one normal
the other tangential to the arca. A normal stress 6, and a shear stress t, are then del

Fig. 2.5 The conceptof stress in a continuum.
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different.

For purposes of analysis we usually reference the area to some coordinate system. In
rectangular coordinates we might consider the stresses acting on planes whose outward
drawn normals are in the y, ¥sor z directions. Iny Fig. 2.6 we consider the stress on_lhg
clement, oA, , whose outward drawn normal is in the x direction. The force, 6F,
has been resolved into components along cach of the coordinate directions. Dividing

approaches zero, we define the three stress components shown in Fig. 2.6b:

oF

O = llm ‘l (28)
© d4.-00A,
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Ty = lim -
Y =0 0A,

We have used a double subscript notation to label the stresses. The first subscript (in
this case, x) indicates the planc on which the stress acts (in this case, g surface
perpendicular to the x axis). The second subscript indicates the direction in which the

stress acts.
Consideration of an arca element, 64, would lead to the definitions of the stresses,
Tyys Tyer ANd 7,.; use of arca element, dA., would similarly lead to the definitions of

Orzv Toyoand 7
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. OF
g, = |im —2 (2.6)
dn=00A,
and
. oF,
= lim — (2.7)
JA"—OO ‘SA"
The subscript, n, on the stress is included as a reminder that the stresses are :nsae?cnutC(l
witha particular surface 5 A4 through C, namely, the one having an outer normal in the A
direction through C. For any other surface through C the values of the stresses could be
i
Fig. 2.6 (a) Force components, and (b) stress components, on the element of area, vA, . l




StRige

7 |
l — ¥
L
- 7 Lo \
1'% Tax ' N |
L —t { i
‘| I e | 1
Tex_ = oy S
Ty ¢ : s
i i | Tya Ex
= X
A R e T Lo
e ” ‘
Y | ¢ Ax
S |
7 Ax
»

Fig. 2.7 Notaton for stress

An infinite number of planes can be passed through point C, resulting in
number of stresses associated with that point. Fortunately, the st
can be desenibed completely by spectiying the stresses
perpendicular planes through the point. The stress at
components

an infinite
ate of stress ar g pomt
acting on three mutually
A point s specified by the nine

- -
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where ¢ has been used to denote a normal stress
symbol, . The notation for designating

Referring to the infinitesim
planes(two x plane

and shear stresses are denoted by the
stress is shown in Fig 2.7,
al clement shown in Fi 2.7, we see that there are s
S, 1wo v planes.and two : planes) on which stresses may act. In order
to designate the plane of interest. we could use terms like front and b
bottom, or left and right. However, it is more logical to name the pl
t voordinate axes. The planes are named and denoted as positive
' to the dircction of the outward dr

ack, top and
anes in terms of the
OF negative according
. — 18 GTAWN normal to the plane, Thus the top plane, for
example. is a positive y piane and the back planc is a negative - plane,
Lasign convention, for the stress, A stress component is
considered positive when the direction of the stress component and the plane on which
| it acts are both positive or both negative. Thus t, = §{bf jp 2 TUPTESCIULS A wiw 17 07
S st plane in the POsItive v direction or a shear Stress ona negative y plane
. the negative direction. In Fig. 2.7 all stresses have been drawn as ‘;ositi\“e Stresses.
‘ -;F“‘“Pt_’ﬂcnls Are negative when the direction of the stress component and the
'5 ‘ Which it acts are of Opposite sign

Italso s nccessary to adop
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28 2/FUNDAMENTAL CONCEPTS

2-4 VISCOSITY

'] dcr lhc oy
y Un e yids may
We have defineg ation. Fluids

hear stress &

. inuousl
A fluid as a substance that deforms C(t:ljzl]t;dcfofm
shear stress. In the absence of a shear stress, there will be

. VR b | licd 5
broadly classified according 1o the relation between the app 0
rate of deformation,

Jates shown
Consider the

Fig. 28 The u
constany

. (wo infinite p a
behavior of  fluid clement between LiE e ,l,dcr the influence ‘ofby
pper plate moves at constant velocity, ‘w'hu (luid clement is gIven
applied force, OF,.The shear stress, 1,..applicd to the

y oF,  dF,
= hm == —
Tia 3, —0 ‘)"\' (IA,-
Where 5.4 is the arey of the Nuid ele
ot the fluid clement is de
deformation of the

. ime imcr\’u]
mentin contact with the plate. Dtl;r'?)ﬁ)"m'llhc R
formed from position AINOP 10 position M .
Muid is then given by

.

| . O0x dx
deformation rate = lim — =

M0 (Sf (”
- : « : rcadily
To calculate the shear stress, 1, ., it is desirable to express dx/dr in terms of
measurable quantitjes,

This can be done casily. The distance, 81, between the points M
and M’ is given by

o = du ol

or alternatively, for small angles,

ol = dy du
Equating these two expressions for 81 gives

ox  du
St dy

Taking the limit of both sides of the cquality, we obtain

dx  du
dr dy
I 6l l
. » e
- M M } I Force. § F,
1 i / Velocity, du
{ da \ ;
Fluid element " \ Fluid element
y at time, ¢ 1 oy : at time, ¢ + §¢
| |
! |
x Ve h Rt Fa A s ey 2SO ,,..r.',;f'/u'u.-'/}','i,u_...//.'-1. .u":.‘a'.‘,-‘,/,',,',,,,;r,-,,yﬂ—r"f;:z
N 0
\ - dx _1

: 'ﬁéfdimation of a lluid elament.
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h N h . ) N . N
]. b flud clement of | < Nowhensubjected 1o shear Ses T evpenienees -
of deformation (or vhear rare) enen by e hear it

proportional to rate of deformation
Newtonman s used to clasaly all Mg
to shear rate

VEImds o which shear stress i ety
| e termed Newtonian fluids he term non-
s ich shear stress i not diretly Propotiional

2-4.1 Newtonian Fluid

\ "0
! 1.“!‘ common Munds such as water, air, and pasohne are Newtoman under normal
condinons If the Nund of 1 e 28 s Newtonian then

c’ll
T 7!
JI

The shear stress acts ona plane normal 1o the vaas I one considers the deformation
of two different New toman N, sy pheennand water, one recopmzes that they will
deform at different rates under the action of the same apphed shear stress Glycerin
exhibits a much Larger restance 1o deformation than water, Thus we sy 1t s much
more viscous. The constant of proportonabity in Fq 29 the abvolute t'm dyvnamic)
viscosity, g Thusin terms of the coordinates of Fig 2 8 Newton's law of VISCONILY 18
given for onc-dimensional flow by

("l l)l

Ju
T, ™)l (2.1
tl\'

Note that since the dimensions of vare [F L4 ] and the dimensions of du/dy are [ 11 .
then y has dimensions [Fr L?]). Since the dimensions of foree, £, mass, A, lenath, L,
and time, r, are related by Newton's second law of motion, the dimensions of g can also
be expressed as [ M Lt]. In the Brinsh Gravitational system, the units of viscosity are
Ibf - sec, ft7 or slug, ft - sec. In the Absolute Metric system, the basic unit of viscosity is
called a poise (poise = g/cm - scc); in the ST system the units of viscosity are kg/m + sec
or Pa.scc (=N -see/m?). The calculation of viscous shear stress is illustrated in
Example Problem 2.2.

In fluid mechanics the ratio of absolute viscosity, g, to density, p, often arises. This
ratio is given the name Kinematic viscosity and is represented by the symbol, v, Since
density has dimensions [ M/L*]. the dimensions of v are [ L.2/1]. In the Absolute Metric
system of units, the unit for v is a stoke (stoke = cm?/scc).

Viscosity data for a number of common Newtonian fluids are given in Appendix A,
Note that for gases viscosity increases with temperature while for liquids, viscosity
decreases with increasing temperature.

In gases the resistance to deformation is primarily duc to the transfer of molecular
momentum. Molecules from regions of high bulk velocity collide with molecules
moving with lower bulk velocity, and vice versa. These collisions transport momentum
from one region of fluid to another. Since the random molecular motions increase with

increasing temperature, viscosity also increases with temperature.

For ii{lﬂdsj' where molecules are much anore closely packed, resistancg to
' 18 primarily controlled by cohesive forces among molecules. These

> . ——— .

i —"
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{ ¢ the viscosity of hguids
cohesive forces decrease with increasing temperature and hence the y

decreases with temperature.,

‘ Example 2.2 ,

An infinite plate is moved over a sccn.nd i i 1 (3 ot

plate on a layer of liquid as shuwn.‘ For

I 3 small gap width, d, we assume a lincar
velocity distribution in the liquid. The
liquid viscosity ic 0.65 centipoise and its
specific gravity is 0.88. Calculate;

d=03mm

» x
LTI et O e T o,

.’

; (1) The absolute viscosity of the liquid, in 1bf« sec, i 2

! (b)  The kinematic viscosity of the liquid, in m?/sec

f (€} The shear stress on the upper plate, in 1bf/fi2

f o (d) The shear stress on the lower plate, in Pa

fe) Indicate the dircction of cach shear stress calculated in parts (c) and (d)

/EXAMPLE PROBLEM 2.2

/
!
| ! V4 GIVEN: Lincar velocity profile in the liquid between infinite parallel plates as shown,
] v
- (I 1
a0
i H#=0.65cp (1 poise = | grem . see) T3 1 U = 0.3 nsec
’ ! el
,", i SG =0n3g d=93mm
) |
:- ! i' Ee2e2209 e s et
_ FIND: (a) 4in units of lbf-_scc/ft.z. . (b)  vin units of m?/sec,
i (© = On upper plate iR units of Ibf/ft2, (d) tonlower plate in uniys of Pa,
I i (¢) Direction of stress in parts (c) and (d), ,
SOLUTION;
! ; : du
Basic equatjon: Tye = — Definition; = #
dy p
0.65 cp poise
(a) §= x g lbm Slug 30.48 cm lbf O Secz
e T V! = \X\-—X —
100 cp ¢ 45368 " 32215m T Seprt
u
slug - fi (0.3048)2 1,2
bf . sec? fi2
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du

5 ) -Since u varies lincarly with
Yy « a

du Au_U—( U

(<) 'umu-r - r;-,upp" =M

! U-o0o v 0.3 m ; 1 1000 mm
dy Ay T dZ0 T3 sec ~ 03 mm - “m = 100sec™
U 136 v 10 gL 1OXK)
Yy —H = TETT X = = = 00136 [bi/fi2
| d fe? sec >0 1bit "‘"\r"r‘m
@ 1 - U 00136 Ibf 4448 N f? Pa.m?
ower = o= 2 o % —‘—;—.’-75‘ . ;‘_—l—-‘ = (
d fn? 1ol (0.3048) m2 * N OGS pa-—\“‘"_t'
Dircctj :
(c) trection of shear stress on, upper and lower plates
y
_ {T(l::lpppcr plulc.ls 4 negative y surface, o
,_T;; POSIUNE T acts in the negative x dircction,
7 {I::lli(:“'cr plulc‘is uhpo.sili\'c ¥ surface, so
" SIUVE T, acts in the positive x directj
2 A I ey X o

(e)

————

)

2-4.2 Non-Newtonian Fluids

Many common fluids cxhibit non-Newtonian behavior, Two familiar ex:
toothpaste and Lucitc® paint. The latter is very “thick™ when in the can,
“thin” when sheared by brushing. Toothpaste behaves as 3

the tube. However, it does not run out by itsclf when the
threshold or yield st

ress below which toothpaste behaves as a solid. Sirictly speaking,
our definition of a fluid is valid only for materials that hav

¢ zero yield stress, The term
- non-Newtonian is used to classify all fluids in which shear stress is not directly
proportional to deformation rate.

Such fluids commonly are classified as hav
- time-independent, time-dependent, or viscoelastic behavior,
- independent behavior are shown in the rheological diagram

Numerous empirical equations hav

umples are
but becomes
fluid™ when squeezed from
cap is removed. There is 4

ing
Four cxamples of time-
of Fig.29.

e been proposed to model the observed relations

DEH 17 WA}

_ [du) (2.11)
yx dy




32 2/FUNDAMENTAL CONCE P1S

Bingham
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Fig. 2.9 (a) Shear stress. 1. and (b) apparent viscosily. 1, s a function of deformation rate for one-
dimensional flow of various non-Newtonian fluids.
If Eq.2.111s rewritten in the form.
dul" ' du du 512
Tya = k|- — =] (.... ..)
: dy dy dy
then y = kldu/dy{" 1 js referred to as the apparent riscosity.
iscosity decreascs with increasing deformation ratc

ds. Most non-Newtonian fluids
colloidal suspensions, and
th increasing deformation
fstarch and

: Fluids in which the apparent v
' (n < 1) are called pseudoplastic (or shear thinning) flui

: fall into this group: examples include polymer solutions,

paper pulp in water. If the apparent viscosity increases wi
rate (n > 1)the fluid is termed dilatant (or shear thickening). Suspensions 0

of sand are examples of dilatant fluids.

A “fluid” that behaves as a solid until a minimum yield stress, Ty, is exceeded and
subsequently exhibits a linear relation between stress and rate of deformation is
referred to as an ideal or Bingham plastic. The shear stress model is then

L SRy

‘ 1., =T, +H du (2.13
]! yx y p dy ‘ | . )
! Clay suspensions, drilling muds, and toothpaste are examples of substances exhibiting

this behavior.
Most non-Newtonian fluids have apparent viscosities that are relatively high

compared to the viscosity of watcr.
The study of non-Newtonian fluids is
apparent viscosity may be time-dependent.

further complicated by the fact that the
7 Fluids that show a decrease in i with time

g e
O

ime-d

epggdenl fluids are illustrated in the film, Rheological Behavior of Fluids, H. Markovitz
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under a constant applied shear stress are called thixorropic: many paints arce
thixotropic. Fluids that show an increase in 5 with time are termed rheopectic. In
addition, some fluids after deformation partially return to their original shape when the
applied stress is released: such fluids are called riscoclastic.



