FUNDAMENTAL CONCEPTS

In Chapter | we indicated that our study of fluid mechanics will build on carllf:r studics
in mechanics and thermodynamics. To develop a unified approach, we review some
familiar topics ang introduce some new concepts and definitions. The purposc of this
chapter is 10 develop these fundamcnital concepts.

2-1 FLUID AS A CONTINUUM

In our definition of 4 fluid, no mention was made of the molccular structure qf ﬂui.ds.
All fluids arc composed of molecules in constant motion. However, in most cngincering
applications we are interested in the average or macroscopic cffects of many molecules.
Itis these macroscopic cffects that we can pereeive and measure, We thus treat a fluid as
an infinitely divisible substance, a continuum, and do not concern ourselves with the
behavior of individua) molccules,

However, it breaks down whenever the mean free path of the molecules (approximately
10°7 mm for gas molecules that show ideal behavior at STP)! becomes the same order
of magnitude as the smallest significant characteristic dimension of the problem. In
problems such as rareficd gas flow (c.g. as encountered in flights into the upper reaches
of the atmosphere), we must abandon the concept of a continuum in favor of the
. microscopic and statistica points of view.
As a consequence of the continuum assumption, cach fluid property is assumed 1o
“rhgzyp‘.-q;dcﬁnitﬂc value at ecach point in space. Thus fluid properties such as density,

tcmpcraturc, velocity, and so on, are considered to be contiay

atg.jbe'conccpt of a property at a point, consider the manner i which we
aensity at a point, A region of fluid is shown in Fig. 2.1. We are interested
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by the fluid and/or heat transfer to the fluid. Thus the

complete representation of
density (the field representation) is given by

p = plx, y,z,1) (2.2)

Since density is a scalar quantity, requiring only the specification of a magnitude for a
complete description, the field represented by Eq. 2.2 is a scalar field.

2-2 VELOCITY FIELD

In the previous section we saw that the co

of the density field, Other fluid properties are described by fields. .
To deal with fluids jn motion, we shall necessarily be concerned with the description

of a velocity field. Refer again to Fig. 2.1a. Define the fluid velocity at point C as the

instantancous velocity of the center of gravity of the volume, 6V, instantaneously

surrounding point C. Define 3 Jluid particle as the small mass of fluid of fixed identity
of volume, §V’, Thus w ' '

i ' aneous velocity of
the fluid particle which, at a given instant, is passing through point C. The velocity at
any point in the flow fiel

disdcfined similarly. Ata given instant the velocity field, V,isa
function of the Space coordinates x, y, z

- The velocity atany pointin the flow ficld might
vary from one instant to another. Thus the complete representation of velocity (the
velocity field) is given by <

ntinuum assumption led directly to the notion

V=V, Y.z, 1) (2.3)

poncnts. Denoting

The velocity vector, V,can be writte

nintermsof its three scalar com
the components in the X, y,and = d

ircciions by u, v, and w, then
V = 1:f+ L‘j + wlz (2.4)
»Z,and ¢,

flow is termed

In general, each of the components u, v,
If propertics at each point in a flow fic
steady. Stated mathematically, the defin

and w will be a function of X,y
Id do not change with time, the
ition of steady flow is

where n represents any fluid property. For steady flow,

Ay T 0T po=p(x,
ot

and

—=al)  or Vo= P(x, o)

Thus, in steady flow, any property may vary from point to point in the ficld, but all
Propertics remain constant with time at cach point. )
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2-2.1 _ One-, Two-, and Three-Dimensional Flows

A flow is cl.'.lssiﬁcd as one-, lwo-, or three-dimensional depending on the number of
space_coordmatcs required to specify the velocity ficld.? Equation 2.3 indicates thatrt}(l)
velocity field may be a function of three space coordinates and timc. Such a flow field ié
termed three-dimensional (it is also unsteady) because the velocity 'at any point in !hz
flow field depends on the three coordinates required to locate the point inpspacc

Not all flow ﬁeld.s arc three-dimensional. Consider, for example, the stcady'ﬂow
tITrough a long straight pipc f constant cross section. Far from th:: entrance to the
pipe the velocity distribution may be described by ~

[

This profile is shown in Fig. 2.2, where cylindrical coordinates r, 8, and x are used to
locate any point in the flow field. The velocity field is a function of r only; it is
independent of the coordinates x and 6. Thus this is a one-dimensional flow.

An example of a two-dimensional flow is illustrated in Fig 2.3; the velocity
distribution is depicted for a flow between diverging straight walls that are imagined to
be infinite in extent (in the z direction). Since the channel is considered to be infinite in
the z direction, the velocity field will be identical in all planes perpendicular to the z axis.
Consequently, the velocity field is a function only of the space coordinates x and y; the

flow field is classified as two-dimensional.

|
____f__;__'_'ﬁ____.__ | )ﬁ
F— timax —

Fig. 2.2 Example of one-dimensional flow.

~ 111/

;;c to classify a flow as onc-, two-, or (hrcc-dimcnsiunal Qn the basis of th: rll:mhcl;';){
ordin é:sﬁéqmrm to specify all flud properties In this text, c_luss‘lﬁcuuun of Now ficlds wi
u b#é of space coordinates required to specifly the velocity field only
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UCCCSSIVE | is the path or trajectory traced out by a moving fluid particle. To make 5
A r.'”h“:‘i.l;lc we might identify a fluid particle at a given instant, e.g by the use of
P-‘lh"?:i“‘&n (ake a long exposure photograph of its subsequent motion. The Jine
dyc‘:.c-‘!l out by the particle 1s a pathline. |
lr-‘o the other hand, we might choosc 10 focus our attention on a fixed location i
c:and identify. again by the use of dye, all fluid parti.clcs Pas*.ing Ih}’ough thispeint.
:\flcr a short period of time we would have a number of ldcntlﬁabl; ﬂul_d particlesin the
flow, all of which had. at some time, passed through one fixed location in space. Theline
joining these fluid particles is defined as a streakline. o
Streamlines are lines drawn in the flow ficld so that at agiven instant t-hcy are tangent
10 the direction of flow at every point in the flow field. Since the streamlines are tangen;

‘Mocily vector at every point in the flow field, there can be no tlow across a

nstants.

streamline. o ' ‘
In steady flow, the velocity at cach point in the flow field remains constant with time

and. consequently, the strcamlines do_not vary frqm one msmnu() the next. This
implies thata particle located on a given streamline will remain on the same streamline.
Funhcrmorc,conscculivc particles passing through a fixed pointin space will be on the
same streamline and, subsequently, will remain on this streamline. Thus in a steady
flow, pathlines, streaklines, and streamlines are identical lines in the flow field.

The shape of the streamlines may vary from instant to instant if the flow is unsteady.
In the case of unstcady flow, pathlines, streaklines, and streamlines do not coincide,

Example 2.1 . i A
A velocity field is given by V = axi = ayj. the units of velocity are m ‘sec: x and y ar

given in meters; @ = 0.1 sec” .

(1) Determine the equation for the streamline passing through the point(x,. ¥o.0) = (2.8,0)
(b) Determine the velocity of a particle at the point (2,8,0).

(c) If the particle passing through the point (X, ¥o.0)is marked at ime t, = 0. deteemine ta
location of the particle at tme 1 = 20 sec.

(d) What is the veloaty of the particle at t = 20 sec?

(¢ Show that the equation of the particle path (the pathline) is the same as the equation of th
streamline.

. EXAMPLE PROBLEM 2.1 .

e P

e —
=

%ﬁl GWH‘ Velocity field, V = axi — ayj: x and y in meters, a = 0.1 se¢ '

(a)  Equation of cireami i doo o5 point 1 R 0),
(b)  Velocuty of particle at point (2,8,0).

(€) Position at ( = 20 sec of particle located at (2,8,0)at 1 = 0.
(‘c:') Velocity of particle at position found in (c).

Equation of pathline of particle located at (2,8,0) at ¢ = 0.
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SOLUTION

{al  Streamlines are lines drawn in the flow
10 the direction of

H
i

beld such thae, as Apveninstant, they are tangera .
flow ay every point

Consequently,
dy’ ' —ay oy
s b el L A, -—
d‘t, Siteamine u ax X
Scparating variables and integrating, we obtain
dy dx I I ‘
—= -] or ny=—-lnx+
y x ! i
This can be written as Xy =¢.

FO‘Y the streamline

pPassing through the point (x4, y,,0)
value of 16 and the

. =(2,8,0) the constant, ¢. has a
equation of the streamline through t

he point (2,8.0) is

X} = xoj'o = l6 m:

ra—

(b) The velocity field is V = axi — ayj. At the point (2,8,0)

% na(xf—yf) =01 sec™ (2 - 8/ )m = 0.2/ ~ 0.8]m’s-cck

() A parucle moving in the flow field will have velocity given by

V=ax - a)f

Thus
dx dy
u, = J‘I- = gy and _r,=‘71 = —ay
Sceparating variables and Integrating (in cach equation) gives
(e d r r dv '
.f:'a.!z and J’ :_1—_-"_“4,
-~ t -0 o } ]
Then )
X ¥
In = al and In =~ = —-at
Yﬂ »"n
or
5 - ot
X = x,e” and ¥y = y,€
At t = 20) sec
5 4D fulty
x=2me? "% = |48 m and y=8me "= 108m

At = 20 sec, particlc s at (14 5, 1 0%, 0)m
(d) At the point (145, 1.0%,0)m

-

Voaaiad =y ) =01 sec Y148 — 10X )m = 1457 = 0108 m sec

SN

s the ; ; euations
{¢) To determine the equation of the pathline, we use the parametnic eq

N » -
{ = \',.C"“ and b
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and eliminate t. Solving for e” from both equations

SoXY=XoYe = 16 m?
Yy Xq E
the equation of the streamline thr

ough (xg, y5.0) anc the equation of
pathline traced out by the particle passing through (x,, }o,0) are the same
this steady flow.

in following a particle (Lagrangian method of description), both the coordin:
of the particle (x, y) and the

components of the particle velocity (u, =d
and v, = dy/dt) are functions of time,

Note: (i)

(i1)




