1-5 METHODS OF ANALYSIS

As we have indicated, the basic laws that are used to analyze problems in fluid
mechanics are the same ones used in thermodynamics and basic mechanics. The first
step in solving a problem is to define the system that you are attempting to analyze. In
basic mechanics, extensive use was made of the free-body diagram. In thermodynamics
closed or open systems were considered. In this text we use the terms system and
control volume. The importance of defining the system or control volume before
applying the basic equations in the analysis of a problem cannot be overemphasized. At
this point we review the definitions of systems and control volumes.

1-5.1 System and Contrcl Volume -

A system is defined as a fixed, identifiable quantity of mass; the system boundaries
separate the system from the surroundings. The boundaries of the system may be fixed
or movable; however, there 1s no mass transfer across the system boundaries.

In the familiar piston-cylinder assembly from thermodynamics, Fig. 1.2, the gas in
the cylinder is the system. If a high-temperature source is brought in contact with the
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thus moves. Heat and work may cross the bound:nrlf_-s. of t e ), mass transfer across the
matter within the system boundarics remains fixed. There is ne ‘
system boundarics.

Example 1.1 aturc of 27 C
- Y- ’ o’ i cm rd‘ur

A piston-cylinder device contains 0.95 kg of oxygen '"'_""”} _dld‘ tm Czi“am pressurc

and a pressure of 150 k Pa. Heat is added to the gas and it expan (;d ring the process.

to a tempcerature of 627 C. Determine the amount of heat added during

EXAMPLE PROBLEM 1.1
GIVEN: Piston-cylinder containing O;,m =095 kg
h=21C T,=627C

il

7= constant = 150 kPa (ubs)

FIND: o, .,.
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SOLUTION:
We are dealing with a system, m = 0.95 kg.

Basic equation: First law for the system, Qy, + Wy, = E, — E,

Assumptions: E = U, since the system is stationary
Ideal gas with constant specific heats

Under the above assumptions,
E;—E =U, - U, = mu, - ) =me(T, — T,)
The work done during the process is moving boundary work
¥2
Wi, = -J pdY = p(v, — v,
¥

For an jdeal £as, p¥ = mRT. Hence W, = mR(1, — T,). Then from the first law equation

Qiz=E,—E, - Wiz =me(T, - ) + WR(T. -~ 1))
Qiz=m(Ty - T))(c, + R)

Qiz=me)(,~T)) (R=c, - Ce
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In mechanics courses you made extensive use of the free-body diugr,
approach). This was logical beciause you wete deating with an c;miy id L-“d!" “ystem
body. However in lnd mechanics, we normally are concerned with m:l:‘m“mc e
through devices such as COMPIESSOTLS, wurbines, pipelines, nozzles, and \(\“\“ of Mud
cases itis difficult to focus attention on a fined identifiable quantity of n{.\: n|' In thei
more convenient, for analysis, o focus attention on i volume in s'p;ncc l}\r(; |-;,\ ol
the fluid lows. Therefore, we use the control volume approach. VEX Bk
A control volume is an arbitrary volume in space through which fluid flow |
gcomctric boundary of the control volume is called the control surface. The c; e
qurface may be real or imaginary: it may be at rest or in motion. Figure 1.3 shon\:'s“|
possiblc control surface for analysis of flow through a pipe. Here the inside surface 01[
the pipe. a real physical boundary. comprises part of the control surface. However. the
vertical portions of the control surface are imaginary. There is 1o cm'u'\;......-...‘.
physical surface; these imaginary boundaries are sclected arbitrarily for accountiag
purp Isss. Since the location of the control surface has a direct effect on the ;\ccoumm}
procedure in applying the basic laws, it 1s extremely important that the control sutface

be clearly defined before beginning any analysis.

1-5.2 Ditterential versus Integral Approach

The basic laws that we apply in our study of fluid mechanics can be formulated interms
of infinitesimal or finite systems and control volumes. As you might suspect. the
cquations will look different in cach case. Both approaches arc important in the study
~ of fluid mechanics and both will be developed in the course of our work.

In the first casc the resulting equations are differential cquations. Solution Qf the
differential equations of motion provides a means of determining the detailed (point®)
point) behavior of the flow. : ire?
~ Frequently,in the problems under study, the information sought does not r¢d o

~ detailed knowledge of the flow. We often are ‘nterested 10 tns gross behavie?
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| integr: ation of the basic

device: in such cases itis more appropriate to use the integral I'olrmul.m(_ xl)] s cu.\icr
. B . N . 5 .. ] . ) = = .S. U\ . .
laws. The integral formulation, using finite 5)’.\lesd()r Lon.trold\ nlu\i?;.h . ;mmulu;i(,n
analytically. Since mechanics : nd thermodynamics dea -

to treat analytically. Since mechanics a O e e A0
of the basic laws in terms of finite systems, these formulations are the basis for ing
the control volume equations in Chapter 4.

1-5.2 Methods of Description

. : ; ave made extensive use of the
Mechanics deals almost exclusively with systems; you have made extensive use

basic equations applied 10 a fixed. identifiable quantity of mass. In attempting m.
analyze thermodynamic devices, you often found it necessary 1o use a con!m! \'()Iu‘m.(.‘
(open system) analysis,. Clearly. the type of analysis depends on the problcm. W hcrc.l! I3
casy to keep track of identifiable clements of mass (c.g. in particle mechanics), we utilize
a method of description that follows the particle. This sometimes is referred to as the
Lagrangian method of description,

Consider, for example, the application of Newton's second law 1o a particle of fixed
mass, m. Mathematically, we can write Newton's second law for a system of mass, m, as

. dv %
!"=m&=m——-=m-—~7 (1.2)
2 d di®
InEq. 1.2.¥ Fisthe sum of allexternal forces acting on the system. s the acccleration
of the center of mass of the system. V is the velocity of the center of mass of the system,

and F is the position vector of the center of mass of the system rclative to a fixed
coordinate system.

Example 1.2

_ GIVEN ~ Ball,m =02 kg, released from rest at Yo =500m

3 Axr resistance, f = kv?, where k = 2 x 107* N . sec?/m?
Units: f(N), v(m/sec)

mg
: bb 5 7 YO =———
7 3"°‘;{he ball is governed by the equation f

i——-"d

dv
Zﬂ:ma,:m-ﬁ
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Since v = (), SE=m g = mt i
1 u'_\ dt d»\
Y_ Fo=f —mg=he? - my = m i
l l!_l =
b Separating variables and Integrating,
ﬁ. - n d
| [
| 1. Jo hvd = my
e . ;
Y=y = [;‘k In(hi? — mcn] = :" In A g
| | 2 Jo 2 - my
Taking anulogarithms, we obtin
. 2h
ks = mg = —my ('[ wtr o]

Solving for ¢ gives

] 21 12 ¥
"= [J\ 'n(i(] — l’{ T ""}) l “
Substituting numerical values with v = 0 yiclds '
e OZkg 98' m Iﬂ2 N'SCCJ 222210 4 12 lé
= x - x T ———— X —— | — ‘{.‘. _.7"2“ (- Smn} ° ;
sccC 2 x 107 * N.see? kg-m & fi"
&
v = 78.7 m/sec 28
: i
At terminal speed, g, = 0 and z F,=0=ki? —myg fl
1/2 o) :?-ii
Then o, 5= [-r_n_(_]jl _ [0... kg y 981 m . m? § N . sec2 112
k sec? 2x 107*N-.sec?” kgem
s 78.
v, = 99.0 m/sec and = -—ii-z = 79.5°% bl
v, 990 e v,

<

This problem is included as a reminder of the method of description used in
particle mechanics.

We may consider a fluid to be composed of a very large number of particles whose
motion must be described; keeping track of the motion of each fluid particle separately
would become a horrendous bookkeeping problem. Consequently, a particle de-
scription becories unmanageable. Often we find it convenient to usc a different type of
description. Particularly with control volume analyses, it is convenient to use the field,
or Eulerian, method of description, which focuscs attention on the properties of a flow
at a given point in space as a function of time. In the Eulerian method of description,
the properties of a flow field are described as functions of space coordinates and time.
We shall see in Chapter 2 that this method of description is a logical outgrowth of the

assumption that fluids may be treated as continuous media.




10 1lwmooucno~

1-6 DIMENSIONS AND UNITS

Engincering Problems are solved 10 answer specific questions. It goes without saying
that the answe

o F must include units, (] makes a difference whether a Pch_d"‘m‘L,lL.
required is 1 meter or | foot!) Consequently. it s appropriate to present a brief review

Ofd' 1 . 1 . . a~ o e sipi= ' H i T
. nensions and units, Wesay “review because the topic is familiar from your carlic

- -8, .
Tl T

'Wc refer 10 physicgl quantities such gy length, time, mass, and lemperaturc as
dimensions, |n terms of a particular System of dimensions all measurable quanit.cs
dinto two ErOUPs — primary quantitics and secondary quantitics. We
e group of dimensions from which all others can be formed as primary
quantities. Primary quantitiesare those for which we set up arbitrary scales of measure;
sccun.dary Quantities are those quantities whose dimensions arc expressible in terms of
the dimensions of the primary quantities.

Units are the arbitrary names (and magnitudes) assigned to the primary dimensions
adopted as standards for measurement. For example, the primary dimension of length
may be measured in unis of ‘meters, feet, yards, or miles, These units of length

are related 1o cach other through unit conversion factors (1 mile = 5280 feet =
1609 meters).

1-6.1 Systems of Dimensions

Any valid cquation that relates physical quantitics must be dimensionally homoge-

neous; each term in the equation must have the same dimensions, We recognize that

Newton's second law (F ma) relates the four dimensions, F, M. L, and 1. Thus force

and mass cannot both be selected as primary dimensions without introducing a

constant of proportionality that has dimensions (and units).

ngth and time are primary dimensions in all dimensional systems in common use.
In some systems, mass is taken as a primary dimension. In others, force is selected as a
Erlmary_diiﬁension; a third system chooses both force and mass as primary dimensions,
' e ha ve three basic systems of dimensions, corresponding to the different ways of
ing the primary dimensions.

Fc 'fgé[l"] length [L], time [¢], temperature [T].
* .3% [F], mass [M], length [L], time [1], temperature [T].

cma, force [F] is a secondary dimension and the constant of Proportionality in
ewton's second law is dimensionless. In system b, mass [ M Jisasecondary dimension,

RN the'onstant of proportionality in Newton’s second law is dimensionless.
e Both force [F] and mass [M] have been selected as primary dimensiong,
¥ onstant of proportionality, g, in Newton’s second law (written
& dimensionless. The dimensions of g. must in fact be [ML/F t2] for
‘be dimensionally homogencous. The numerical value of the cq
ity depends on the units of measure chosen for each of the p

nstant
rimary

- U= no ! Vs 3
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Newton's second law we s¢¢ that (to three significant figures)

[ Ibm » 32.2 ft/sec?
1 Ibf & ———————
g,

or
g, = 32.2 4t - Ibm/Ibf « sec?

The constant of proportionality, g,. has both dimensions and units. The dimensions
arose because we sclected both force and mass as primary dimensions: the units
(and the numerical valuc) are a consequence of our choices for the standards of
measurement.

Since a force of 1 1bf accelerates 1 1bm at 32.2 ft/sec?, it would accelerate 32.2 Ibm at

/ 2 < alen 1o « Jere P /

1 ft/sec?. A slug also is accelerated at 1 ft/sec? by a force of 1 Ibf. Therefore,

I'slug = 32.2 Ibm



