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CHAPTER 3

STRATIFIED AND SYSTEMATIC RANDOM SAMPLING

The previous chapter thoroughly explored one of the popular sampling designs known as simple random sampling. The simple random sampling provide strong basis for estimation of population characteristics when population units are relatively homogeneous with respect to characteristic under study. It is often be the case that the population units are heterogeneous with respect to characteristics under study or the population is naturally grouped. In both of these cases the simple random sampling does not provide proper basis for selection of the sample. Several other methods of sample selection are available that are useful in these sorts of situation. Two of the most popular methods namely Stratified and Systematic Random sampling are discussed in this chapter.

3.1 	THE STRATIFIED RANDOM SAMPLING

When the population units are heterogeneous with respect to characteristic under study then it is useful to first divide the population into homogeneous groups. These homogeneous groups are called stratum. Stratification in a technique widely employed in survey sampling. It is the process of dividing the population into different strata, selecting a random sample from each stratum, and estimating the characteristics by using the selected sample. Finally estimate for each stratum are aggregated to produce an estimate for the whole population parameter. This division reduces the variability of the estimator thereby achieving the higher precision. There are number of reasons for using this type of sampling procedure. These reasons are illustrated below:

(i) it may increase precision by decreasing the variation within the stratum, (ii) information may be needed for individual stratum, (iii) it is easy to control the execution of survey, (iv) simultaneous work can be started by independent teams, and (v) sometimes in the selection of sample, different selection procedures may be used in different stratum.

The following are typical examples of stratified populations:

i) A population of school students stratified by school class or by sex.
ii) A population of individual taxpayers stratified by province, by sex or by range of reported income.
iii) A population of households in a country, each region being a separate stratum.
iv) A population of retail establishments stratified by province by description (Grocer, butcher etc.) or by range of annual sales.

In stratification it is some time be the case that the stratification criteria are sharply defined (school class, sex, State), some stratification criteria admit some degree of subjective judgment (region, description of retail establishment) while a third group (age, range of reported income, range of annual sales) being quantitative in character, lead to arbitrary stratum boundaries. 
Stratified random sampling has a long standing in the history of survey sampling. From the period 1926 to 1935 three significant were published on advances in Stratified Sampling. Bowley (1926) presented a classical method of sample selection from each stratum that was proportional to the total number of units in that stratum yielding a representative sample. Neyman (1934) showed how to allocate a sample among the strata in order to minimize the variance for a fixed total sample size. In the 1940’s the problem of partitioning a population into a strata was dealt especially with a principle of equi-partition and was used by the Indian Statistical Institute [Mahalanobis, 1952] and U.S. Bureau of Census [Hansen, Hurwitz and Madow, 1953]. Hagood and Barnet (1945) advocated the use of principal component analysis as a technique for determining the strata boundaries. Some choices of boundaries are better than others from the point of view of achieving an efficient sample design. The boundaries corresponding to the most efficient sample design for a particular item of interest lead to optimum stratification.

3.2 	NOTATION

The following notation will be used in the context of Stratified random sampling.

If the N population units are divided into k strata then,


N = N1 + N2 + N3 + ---+ Nh + --- + Nk, where  is the number of population units in the hth stratum, similarly


n = n1 + n2 + n3 + ---+ nh + ----- + nk, where  in the number of sampling units in the hth stratum,


 = Population mean of the hth stratum, 

= sample mean of the hth stratum,


= Population mean = 



 = Sample mean =  


, 	




,  =  = Estimated population total.

The expectation and variance of the mean of stratified random sample are derived below:

3.3	EXPECTATION OF SAMPLE MEAN

The expectation is derived in the following theorem:

THEOREM (3.1)






In stratified random sampling without replacement the sample mean , is an unbiased estimator of population mean  i.e. , provided in each stratum  is unbiased for .

PROOF

Taking expectation of the sample mean of stratified sample, we have:



	 	as .


Similarly it can be proved that   

The variance of the sample mean of stratified random sample is derived under various allocation methods in the following section:

3.4. 	VARIANCE AND UNBIASED VARIANCE ESTIMATOR


In this section we will derive the variance of  using following allocation methods:

i) Arbitrary Allocation,
ii) Proportional Allocation, and
iii) Optimum Allocation.

These are derived in the following theorems.
3.4.1 Arbitrary Allocation

In this type of allocation the total sample is allocated arbitrarily among the strata; strictly speaking there is no assumption for the allocation of sample units among the strata. 

THEOREM (3.2)


The variance of sample mean, , for stratified random sampling for finite population sampling is 


										(3.4.1)

PROOF

We know that the mean for stratified random sampling design is:


	

Applying variance expression, we have:


													(3.4.2)

Since within each stratum the simple random sampling design has been used, so we have:

															(3.4.3)

Using (3.4.3) in (3.4.2) we get:


												(3.4.1)

The expression (3.4.1) may be written as:


									(3.4.4)


Writing; the expression (3.4.4) can also be written as: 


											(3.4.5)

For large value of N, above expression transformed to: 

															(3.4.6)

The variance of  (estimated total) may be written in a straight-forward manner as:

												(3.4.7)

For large N, we have:

										(3.4.8)


Two special cases are of particular interest. The first, is Proportional allocation were nh  Nh and the other is optimum allocation, where nh are chosen either to minimize the variance of  given a fixed sample size n for fixed cost or cost is minimized for a given variance. We first consider the case of proportional allocation.

3.4.2 Proportional Allocation

If sampling fraction in all the strata is same, then the allocation is termed as proportional allocation. The sample size for hth stratum in this case is given as:

											(3.4.9)


This allocation was originally proposed by Bowley (1926) and is often used in practice because of its simplicity. This allocation is very useful if there is considerable difference between strata averages,  and not much difference in the strata variance. In case  are almost equal this allocation is not much useful as it brings a slight reduction in the variance of sample mean. In this allocation estimates become simple as strata weights are not required. This allocation is highly useful when stratification is done on the basis of geographic characteristics. This allocation is often (not invariably) appropriate for samples of persons. It is inefficient in circumstances where the population units differ greatly in size or importance, as is the case with surveys of retail establishment. In such circumstances, it is preferable to use optimum allocation.


THEOREM (3.3)
If proportional allocation is used then the variance of mean of stratified random sample is:

													(3.4.10)

PROOF


Substituting the value of  for proportional allocation in (3.4.1) and on simplification


	

ignoring fpc, the expression (3.4.10) transformed to:


														(3.4.11)


The variance of estimated total  for proportional allocation may be obtained by multiplying the expressions (3.4.10) and (3.4.11) by N2.

3.4.3	Optimum Allocation 


In the principle of optimum allocation nh are chosen either to minimize  for a fixed sample size n for fixed cost or cost is minimized for given variance. In general the aim of optimum allocation is to allocate nh in such a way that minimum variance is achieved for a minimum cost. The maximum precision may be achieved when the sampling units within each stratum are directly proportional to the stratum standard deviation. The two aspect of optimum allocation are

(i) minimum variance for fixed cost
(ii) minimize cost for given variance
These aspects are discussed below:

(i) Minimum variance for fixed cost
The sample size for hth stratum to minimize variance for a fixed cost in stratified random sampling is derived in the following theorem.


THEOREM (3.4)


In stratified random sampling  will be minimum subject to the cost when nh is proportional to  i.e. 

	.

PROOF


The variance of sample mean  for stratified random sampling is 

									(3.4.3)
Let the simple cost function is:


	, 														(3.4.12)

where C = total cost, C0 = overhead cost, and Ch = cost per unit in the hth stratum.



The objective is to choose optimum value of nh, by minimizing, subject to given cost. For this we introduce Lagrange’s multiplier  i.e. 


 
Partially differentiating w.r.t. nh and equating to zero, we have:

	

or																(3.4.13)

Summing (3.4.13) over all strata we have:


												(3.4.14)


Eliminating  from (3.4.13) and (3.4.14) we get


															(3.4.15)

If the cost is constant for all the strata i.e. C1 = C2 = … = C then the cost function will be
	C = C0 + nC																	(3.4.16)
The optimum sample size for the hth stratum from (3.4.12) in this case is:


																	(3.4.17)
This is known as Neyman allocation after the name of Neyman (1934). Tchuprow (1923) gave the proof for optimum allocation which was discovered later. 


The expression for minimum variance of  may be obtained by substituting the value of nh from (3.4.15) in (3.4.1).


		(3.4.18)

Ignoring fpc (3.4.18) becomes


							(3.4.19)

If the cost is constant then (3.4.18) transformed to: 
	

								(3.4.20)

For large N, above expression becomes:

													(3.4.21)


Hence the variance of  is minimum when .

Stuart (1954) derived the same result by using Cauchy-Schwarz inequality as well.


(ii)	Minimum cost for the given variance



If the variance is fixed, the choice of nh proportional to  must also minimize the total cost. Let .

Now using (3.4.1) and (3.4.16) the value of sample size (n) for fixed variance is

										(3.4.22)
This is the minimum sample size for estimating the mean with fixed variance. A special case of (3.4.22) may be obtained when the cost is the constant for each stratum. In this case (3.4.22) reduces to

															(3.4.23)

The main difficulty in using optimum allocation is that it requires the knowledge of Sh, which is difficult to obtain or sometime not available. In order to remove this difficulty Sh may be obtained from some previous survey. The use of this allocation becomes more difficult if more than one character is to be estimated from a single survey and in such cases this method may lead to loss of precision as compared to proportional allocation. However, if the characters are correlated, a gain in precision on the estimates of more important characters may still be secured by using this allocation. Neyman’s allocation concentrates the sampling efforts into those strata containing more variable population on units and thereby ensures minimum variance for given sample size or equivalently minimum sample size for given variance. The gain from using minimum variance allocation is especially large when sampling is done from highly skewed population. An example of such population is the population of retail stores, for which we want to estimate the mean sale . It would then be efficient to stratify the stores into say 3 strata i.e. small, medium and large, stores by some measure of size and select a small fraction nS/NS of small stores, a large fraction nM/NM of medium stores and a still large fraction nL/NL of the large stores. Proportional allocation is identical to optimum allocation for fixed sample when each stratum is equally variable.


3.4.4 	Unbiased Variance Estimator




Since simple random sampling procedure is applied within each stratum, hence for each stratum . Then an unbiased estimators of (3.4.1), (3.4.10), (3.4.18) and (3.4.20) may be obtained replacing  by  in the respective expressions.

3.5	STANDARD ERROR AND CONFIDENCE LIMITS


The standard error may be obtained by taking the square root of the variance of  and the confidence limits for mean and estimated totals are


																	(3.5.1)

and 																(3.5.2)

3.6	RELATIVE PRECISION OF SIMPLE RANDOM 
SAMPLING AND STRATIFIED RANDOM SAMPLING WITH DIFFERENT ALLOCATIONS

In general the stratification brings a reduction in the variance of sample mean than simple random sampling. In this section comparisons have been made between different allocations and with simple random sampling.

3.6.1 Simple Random Sampling and Proportional Allocation

From (2.4.3) and (3.4.10)


	

			

Adding and subtracting  in the first term of the right hand side and simplifying, we get



			= 		(3.6.1)

			= 	

which need not necessarily be positive, it follows that

	
provided


										(3.6.2)

If Nh is large Nh – 1 ~ Nh and 1- n/N is taken as unity (ignoring f.p.c), then (3.6.1) is

									(3.6.3)

or									(3.6.4)

This difference is non negative, being proportional to the weighted variance of the  with weight Wh. Consequently, given this type of sampling and estimation, it is impossible to loose efficiently as a result of stratification and the greatest efficiency is achieved when the stratum means differ from each other as much as possible.



The difference in (3.6.4) is non negative, giving  Equality holds only when. Further

	,													(3.6.5)

which shows that the ratio of proportional allocation to random sampling does not depend on the size of sample.


3.6.2 Proportional and Optimum Allocations

Consider next the case of optimum allocation where the cost of sampling does not differ from stratum to stratum, and proportional allocation if term 1/Nh in all the strata is negligible then, from (3.4.1) and (3.4.2)


						(3.6.6)

	The expression in the braces is the weighted variance of the unit weights Wh. Thus this form of optimum allocation has two reductions in variance compared with simple random sampling, one term being proportional to the weighted variance of the stratum mean and the other proportional to the weighted variance of the stratum standard deviation. The weights in each case are the proportions of population units in the strata. We can write (3.6.6) as:-



	

			

														(3.6.7)


Quantity in (3.6.7) is always positive so 

3.6.3 Optimum Allocation and Simple Random Sampling

From (3.6.3) and (3.6.7) we have

	
																						(3.6.7)

Since the right hand side is the sum of two non-negative terms, hence


	

We conclude if f.p.c. is ignored then 


	 									(3.6.9)

3.6.4 Simple Random Sampling and Arbitrary Allocation



The difference in variance of  and  under arbitrary allocation is:


		(3.6.10)




which is also positive, hence if  is taken proportional to Wh as the first term of (3.6.10) reduces to zero. Also if nh is proportional to  then .


3.6.5 Loss in Precision due to Failure in Achieving an Optimum Allocation

Given n, the sample size for optimum allocation is

															(3.6.12)
The variance of sample mean under optimum allocation is 

									(3.4.20)
Suppose nh is the sample size used in hth stratum for arbitrary allocation then

												(3.4.3)
Increase in variance caused by imperfect allocation is:

						(3.6.13)
From (3.6.12), we have:

														(3.6.14)
Using (3.6.14) in the first term of (3.6.13), we get



Since , we then have



											(3.6.15)



Now		 =

Hence					(3.6.16)

Ignoring f.p.c. the relative increase in variance is


										(3.6.17)

If f.p.c. is not ignored then relative increase in variance is


										(3.6.18)

It is not easy to realize the fractional implication of this result by just looking at the formula. Some numerical results are required


	Let g = greater value of  found in any of the stratum 

Then the greater relative deviation from the optimum size is


	

If g = 0.02 then the proportional increase cannot exceed more than (.02)2 = 4%. This rough rule usually over estimate the true increase in relative variance because we substitute g for any relative deviation of the optimum sample size. To illustrate suppose we have 7 strata with  given below:


	Stratum
	

	

	

	


	1
	30
	19
	0.367
	4.033

	2
	46
	36
	0.217
	2.174

	3
	38
	34
	0.105
	0.421

	4
	31
	39
	0.258
	2.064

	5
	17
	24
	0.412
	2.882

	6
	13
	17
	0.308
	1.231

	7
	25
	31
	0.248
	1.44

	
	200
	200
	
	14.615




Since  is 0.412 in stratum 5, so the rough rule gives us that 
the proportional increase is about (.412)2 = 17% whereas actual increase is 
14.615/200 = 7.3%.

EXAMPLE 3.1

Population of 468 villages of Multan district was divided into 11 strata. The means, variances and standard deviations of each stratum are given below:

	Range
	

	

	Sh

	1 – 499
	261.59
	21960.25
	148.19

	500 – 972 
	707.18
	15996.98
	126.48

	973 – 1617 
	1312.97
	31163.40
	176.53

	1618 – 2310
	1565.74
	37217.60
	192.92

	2311 – 2899
	2598.32
	36297.48
	190.52

	3000 – 3680
	3305.4
	62846.85
	250.69

	3681 – 4278
	3962.07
	32945.03
	181.51

	4279 – 4959
	4682.83
	34680.49
	186.23

	4960 – 6094
	5498.53
	143691.2
	379.07

	6095 – 6769
	6773.41
	40006.63
	200.02

	6770 – 7951
	7289.17
	138856.5
	372.63





A sample of size 46 is drawn from 468. On the basis of above information Estimate the sample size for proportional and optimum allocations.  and .


SOLUTION



For proportional allocation  whereas for optimum allocation . The necessary calculations are given below:

	Wh
	nh(Prop)=nWh
	WhSh
	

	

	


	.15
	7
	22.23
	5
	3294.04
	729078.9

	.15
	7
	18.97
	4
	2399.55
	464149.1

	.16
	7
	28.24
	7
	4986.14
	212808.8

	.13
	6
	25.08
	6
	4838.29
	32566.3

	.09
	4
	17.15
	4
	3266.77
	1569.8

	.06
	3
	15.04
	4
	3770.81
	42214.1

	.06
	3
	10.89
	3
	1976.70
	134248.6

	.05
	2
	9.31
	2
	1734.02
	245661.3

	.06
	3
	22.74
	5
	8621.47
	551683.3

	.05
	2
	10.00
	2
	2000.33
	208866.6

	.04
	2
	14.91
	4
	5554.26
	930422.3

	
	
	

	
	42442.39
	4147269.2




Now	

		
If fpc is ignored then:


	, and 
The variance and standard error under proportional allocation is:


;
If fpc is ignored then:


	; 
The variance and standard error under optimum allocation are:


	


				 ;	.

If fpc is ignored


	;  
If fpc is ignored

	
			       = 922.66 + 90158.03 = 91080.69

EXAMPLE 3.2 

The smoking information given in the following table was obtained using a census questionnaire of the adult male population in a Australian City during 1966.
	Type of smoking
	stratum
	adult male 
population 
size
	Daily average 
No. of cigarette 
smoked
	Standard
division

	Daily rate in cigarette
	h
	Nh
	

	


	Light smoker < 10
	1
	28,900
	8.1
	8.63

	Medium smoker 
between (10-20)
	2
	38,300
	15.3
	16.30

	Heavy smoker > 20
	3
	52,800
	28.2
	30.04

	Total
	
	120,000
	

	23.88


In order to examine the current smoking habits of adult males in the city, a sample survey of size 800 is planned for 1968 using the information obtained in the 1966 census result.

Obtain the variance of the estimates of the total and average number of cigarettes smoked per day by using:
(i) Simple random sampling.
(ii) Stratified modern sampling with proportional allocation.
(iii) Stratified random sampling with optimum allocation.
Check the difference between the variances using the standard formulae. 
(Source New South Wales University).

SOLUTION

i)	Simple Random Sampling
	



		= = = 0.707698


 ii)	Proportional Allocation


	We have for proportional allocation: nh  = 

	Therefore n1 = 193, n2 = 255 and n3  = 353



	so	 = 

	h
	Nh
	Wh
	

	Sh
	NhSh
	WhSh
	


	1
	28900
	0.2408
	74.4769
	8.63
	249407.00
	2.078
	17.934

	2
	38300
	0.3192
	265.6900
	16.39
	624290.00
	5.203
	85.747

	3
	52800
	0.4400
	902.4016
	30.04
	1586112.00
	13.218
	397.657

	
	120000
	
	
	
	2459809.00
	20.499
	501.338




		=	0.62058

iii)	Optimum Allocation

	Under optimum allocation we have: nh  = 
	Therefore n1 = 193, n2 = 255 and n3 = 352

		 = 0.521081

EXAMPLE 3.3



If the cost function is  then find the optimum allocation of nh to minimize  for fixed cost (Cochran).

SOLUTION

Using the Lagrangian multiplier, the function to be optimize is:


	

Partially differentiating w.r.t. nh and equating to zero we have:


														(A)

Summing over nh, we have:


													(B)

Comparing (A) and (B), we have:


	


Hence nh is proportional to  

3.7 	STRATIFIED SAMPLING FOR PROPORTION.

Stratified Random Sampling can effectively be used for estimation of population proportion.

An unbiased estimator for population proportion in stratified random sampling is


													(3.7.1)

In order to find the variances etc. for proportion in stratified random sampling, the results of Chapter 2 may be used. For single stratum they are


			(3.7.2)

3.7.1 Variance and Unbiased Variance Estimator for Arbitrary Allocation

We can easily apply the results of (3.7.2) to Section (3.4) to find the variance and an unbiased variance estimator of proportion in stratified random sampling
The variance of pst for arbitrary allocation is


	

Analogically to Chapter 2, we have:


										(2.7.1)


Hence								(3.7.3)

If Nh – 1 ~ Nh and nh/Nh is ignored in (3.7.3) then


														(3.7.4)

The variance estimators of (3.7.3) and (3.7.4) are


										(3.7.5)

And													(3.7.6)

3.7.2 Variance of Proportional and Optimum Allocations

A population is divided into k strata each stratum have N1, N2, …. Nk population units. If f.p.c. is ignored then the variances of stratified random sampling for proportional and optimum allocations for overall proportion of population members possessing the particular characteristics are approximately 


		

and	.

Since		

Substituting this value is (3.4.10) we obtain

			
For large N; above expression becomes:

													(3.7.5)	


Similarly putting the value of  in (3.4.18) we get


	

																(3.7.6)

For large N, second term of the above expression is approximately zero. So the variance of proportion of stratified random sample is:

				(3.7.7)
If the cost is same for each unit then (3.7.7) is

												(3.7.8)
Variance estimators may be obtained by replacing PhQh with phqh in the respective expressions.

COROLLARY


Following expression may be proved in a straightforward manner by putting  in the respective expressions for variance comparison:

							(3.7.9)

and	(3.7.10)

EXAMPLE 3.6

Use the following information and compare Var(pst) when f.p.c. is ignored for proportional and optimum allocations for fixed sample size n when each stratum is of equal size.
	Stratum
	1
	2
	3
	4

	Ph
	0.1
	0.3
	0.6
	0.8


SOLUTION


Since	

And	

The relevant calculations are given below:

	Stratum
	Ph
	Qh
	PhQh
	


	1
	0.1
	0.9
	0.09
	0.300

	2
	0.3
	0.7
	0.21
	0.458

	3
	0.4
	0.4
	0.24
	0.490

	4
	0.8
	0.2
	0.16
	0.400

	
	0.70
	1.648



Since each stratum is of equal size, so we have:


	

	

The reduction in variance due to optimum allocation is


		

EXAMPLE 3.7

In a city area 2300 households was divided into 5 strata on the basis of their monthly income. Simple random sampling technique was applied to select a sample within each stratum and information was obtained about the renting house. Find the proportion of households living in rented houses; also find total number of houses in the population on rent and calculate.


	Stratum
(income)
	Nh
Number of 
households
	nh
Number of 
Households in sample
	Renting 
houses

	< 50
	1190
	50
	30

	50 – 100
	520
	38
	18

	100 – 200
	350
	30
	10

	200 – 400
	180
	40
	8

	400 and over
	60
	20
	4

	Total
	2300
	178
	70



SOLUTION

Proportion of the houses in each stratum in the sample is

	Stratum
	Ph
	Qh

	
	0.60
	0.40

	2
	0.47
	0.53

	3
	0.33
	0.67

	4
	0.20
	0.80

	5
	0.20
	0.80



Proportion of the rented household in the population is 


	

Total number of household on rent in the population is Npst  = 1122.

The variance of pst is:



		

so		= 9522

and		= 97.5807

3.8 	ESTIMATION OF GAIN IN PRECISION DUE TO STRATIFICATION





Sometimes in a survey it is useful or of interest to find out how stratification is effective as compared to simple random sampling. In comparing the precision of stratified sampling with simple random sampling it is assumed that the population values of mean  and variances  are known. In order to estimate the gain in precision due to stratification, an estimate of the variance of the estimates in case of simple random sampling is obtained from a sample and a comparison can be made with a situation in which no stratification is done. The main problem is to get an unbiased estimate of  based on given stratified sampling. The variance estimator of  given by J.N.K. Rao (1962) is:

					(3.8.1)
It can be easily shown that


							(3.8.2)

and	

or															(3.8.3)

The efficiency of the relative gain in precision due to stratification is obtained as


																(3.8.4)

EXAMPLE 3.8


The following data are derived from a stratified random sample of tyre dealers. The dealers were assigned to strata according to the number of new tyres held at the previous census. The sample mean  are the mean number of new tyres per dealer. Estimate the gain in precision due to stratification. (Source Cochran 1977).

	Stratum
	  Nh
	   Wh
	
  
	
    
	
  

	1.
	19850
	0.8032
	4.1
	34.8
	3000

	2
	3250
	0.1315
	13.0
	92.2
	600

	3
	1007
	0.0407
	25.0
	174.2
	340

	4
	606
	0.0245
	38.2
	320.4
	230

	Total
	24713
	
	
	
	4170



SOLUTION

The relative calculations are:

	
*
	

	

	


	154795.2
	1024228.20
	0.0074835
	27.9514

	156627.8
	848400.58
	0.0026572
	12.1243

	271553.8
	804278.46
	0.0008487
	7.0899

	408996.8
	1077617.70
	0.0008361
	7.8498

	Total:
	3754524.94
	0.0118256
	55.0154





	 = 


	 = 


	 =  (ignoring f.p.c)


and  = 
So the estimated gain in precision due to stratification (using 3.8.4) is

	= 110%

	= 0.0131931

so the estimated gain due to stratification with proportional allocation is

	 = 0.88225 ~ 88.2%

EXAMPLE 3.9


A finite population of size N with parameters  has two strata of size N1 and N2 where the first stratum has all zero values, so  then 

	 
SOLUTION

	
We know that

	

since  therefore

	 

			      

since N = N1 + N2 therefore	

	

3.9 	SYSTEMATIC SAMPLING

Systematic sampling is operationally more convenient than simple random sampling. This selection procedure is different from simple random sampling procedure in the context that in simple random sampling procedure, every unit is selected with the help of random numbers whereas in systematic sampling only the first unit is to be selected at random and the remaining units are automatically determined by the skip interval. The systematic sampling can be illustrated as under:
Suppose there are N units in the population numbered from 1 to N. If N/n = k, where n denotes the number of units in the sample and k (skip interval) is an integer, the population of N units is divided into n groups each containing k units. If rth (say) unit is selected at random from the first group of k units, then (k+r)th unit, (2k+r)th units are selected from the second and third group respectively and so on till the sample size of n units is selected. The random number chosen from the first group of k units is known as random start and k is termed as skip interval.

If there are N units in the population and N/n = [k] (an integer greater than k) then the systematic selection is explained as:
Table 3.1

	Group
	Sample Composition
	Probability
P(s)
	Sample
Mean

	1
	1, k+1,   2k+1,	…, (i-1)k+1, 	… 	(n-1)k+1
	1/k
	


	2
	2, k+2,   2k+2,	…,  (i-1)k+2,	… 	(n-1)k+2
	1/k
	


	‘
	‘		‘		‘		‘		‘
	‘
	‘

	‘
	‘		‘		‘		‘		‘
	‘
	‘

	‘
	‘		‘		‘		‘		‘
	‘
	‘

	r
	r, k+r,    2k+r, 	    (i-1)k+r,	…      (n-1)k+r
	1/k
	


	‘
	‘		‘		‘		‘		‘
	‘
	‘

	‘
	‘		‘		‘		‘		‘
	‘
	‘

	‘
	‘		‘		‘		‘		‘
	‘
	‘

	k
	k, 2k,       3k	,…	,ik		….	       Nk
	1/k
	




The probability of selecting the group is 1/k which is in fact the probability with which any member of the group is selected in the sample. It is commonly applied when population frame is not available or not possible.

Systematic selection is useful in survey of forest trees; in horticultural experiments it becomes most important. It is also very useful if some one is interested to measure satisfaction of patients in an outdoor ward of any hospital or to measure satisfaction of clients of any bank, as in these cases frame is not available. This procedure was employed in Indian population census during 1941, and was also used in households surveys in U.S.A. in 1960. Use of systematic sampling was considered by Hajek (1942), Finny (1948), Cochran (1946) and Yates (1948). Perhaps first time Madow and Madow (1944) developed the mathematical theory of this selection procedure.

It is usual to analyze results from systematic sample as though they are from a simple random sample of the same size. If the population from which the sample is selected is effectively in random order to begin with, this is a fair enough assumption. But if there is some structure running through the population list, it can be quite dangerous to use this assumption.

Suppose, first that there is some variable (say income) which intends to be high at the start of the list and low at the end. Then the systematic sampling procedure becomes artificial stratification. Every group of k units is a pseudo-stratum, from which one unit is selected. This virtual stratification ensures that the variance 
of the sample estimator is smaller, sometime much smaller, than that from a simple random sample of the same size. However, the value of s2 calculated from 


   					(2.5.6)
will be much of the same size as – in facts usually slightly larger than – the corresponding value from a random sample. The variance is therefore, over estimated. One way of reducing this over estimation is to modify the formula (Brewer 1969) of s2 so as to exclude from considerations all between units other than contiguous sample units i.e.

												(3.9.1)
The factor n disappears from the denominator because there are only (n – 1) comparisons instead of the n(n – 1) there previously.

The opposite effect occurs when there is a structure in the population list which has the same period as the skip interval k. As an example, a list of soldiers in which every 10th is a sergeant, subjected to a skip interval 20, will result in a sample which contains all sergeants or none. The true variance will be far higher than the simple random sampling variance, because the sample units are similar to each other. An estimate of the variance will be small. In this case, it would not help to use modified expression (3.9.1). There is no way of remedying the situation.

In summary, the following remarks are useful for systematic sampling procedure:

(i) Selection is simple, quicker and easier.
(ii) It involves less cost as compared to simple random sampling.
(iii) A complete and up to date frame is not strictly needed but the idea of the population is necessary.
(iv) Time spent on actual selection of sample is much less than simple random procedure.
(v) It often gives the advantages of stratification. 
(vi) The variance estimated is some what higher than of a simple random sample of the same size.
(vii) The estimate of variance is different if the arrangement of population units is changed.


3.10	EXPECTATION OF SAMPLE MEAN.

In this section we have derived the expectation of the mean of a systematic sample by considering two situations. The first situation that we have considered is that when N=nk. The expectation is derived in the following theorem.

THEOREM (3.5)




In a systematic sample of size n drawn from a finite population of N units, when N = nk, where k is an integer, the sample mean  is an unbiased estimator of population mean, i.e. 	

From table 3.1 it is clear that:

		,																(3.10.1)

and	,																(3.10.2)

then	.													         (3.10.3)

PROOF

If we consider all the k sample then,


																	(3.10.4)

as the probability of selection of the rth systematic sample is 1/k.
We know that

																		(3.10.2)

Substituting  in (3.10.4), we get

	


Hence  is an unbiased estimator of. 

When N/n is not an integer, the sample does not remain fixed as it depends on the random start. In these situations slight modifications are suggested to obtain unbiased estimates. These modifications are given below:

(i) 	Suppose we have a population of 7 units, say Y1, Y2, …, Y7, with k = 3. If the random start is the first number the sample units will be Y1, Y4, and Y7, but if the random starts are 2nd and 3rd units, the sample will be either Y2, Y5 or Y3, Y6 respectively with probability 1/3 in each case. An unbiased estimator may be obtained as
	

		
	
	In this situation since k = 3 and N = 7
	

		

(ii) 	Select a random start from 1 to N [instead of 1 to k] and take every kth unit both in backward and forward direction. If in the above population the random start from 1 to 7 is 4 then the sample is Y1, Y4, and Y7 with probability 3/7, if the random start is second or third unit the samples will be Y2, Y5 and Y3, Y6 respectively with probability 2/7 in each case. An unbiased estimator of population mean is 
	

		

This procedure was suggested by Cochran (1963). Estimated population total in systematic sampling is simply obtained by multiplying mean with N.

3.11 	VARIANCE AND VARIANCE ESTIMATOR 
OF SAMPLE MEAN

In this section we have derived the variance of systematic sample under the condition that sample size is a multiple of population size. The variance is derived in the following theorem:

THEOREM (3.6) 

In systematic sample of size n, selected from a population of N units, the variance of is

														(3.11.1)

or												(3.11.2)

where												(3.11.3)

PROOF 


Since there are k possible samples,  is the mean of rth systematic sample, therefore, 


	 

To prove (3.11.2) let us define S2 as,


	


Adding and subtracting  in the right hand side of above expression and on simplification, we have:

								(3.11.4)
Using (3.11.3), in (3.11.4) we have

										(3.15.5)
Using (3.15.1) in (3.15.5), we get


	



The total variance S2 may be divided in terms of variance between various systematic sample means, , and variance within a specific systematic sample,  From (3.11.4)

							(3.11.6)
From analysis of variance technique we can write (3.11.6) as 


																		(3.11.7)

Note that, the variance of the estimated total,  may be written in a straight forward way:

		

or										(3.11.8)

The two components of total variance play dominant role in deciding about the precision of a systematic sample as compared with the simple random sample. This is proved in the following theorem.

THEOREM (3.7) 

The systematic sample is more efficient than simple random sample if the variation within the systematic sample is more than the total variation.

PROOF:

We know that

																(2.4.1) 

and											(3.11.2)
Comparing (2.4.1) and (3.11.2) we get


	


if 																				(3.15.9)

The variance of sample mean of systematic sample may also be expressed in terms of intra-class correlation coefficient,  as under:


We know that	


Substituting the value of  in the above expression we get

	 	

				    

Or												(3.11.10)

where  is the correlation coefficient between pairs of units that are in the same systematic sample i.e.


	   			(3.11.11)

Since S2 is fixed, the value of  should be negative to reduce the variance. This is possible when the arrangement of units within each systematic sample are heterogeneous. So the variance of systematic samples does not only depends on S2 and n like simple random sampling but also depends on  which generally varies with the sample size and the arrangement of units. Since  is never less than zero,  cannot be less than –1(n-1), hence  must lies between –1/(n-1) and 1.

The relative precision of systematic sample and simple random sample in term of  is obtained below by using (3.11.10) and (2.4.1):

										(3.11.12)
It is clear that,

		

		

and	


If  = 1 then = (N-1)/ (k-1).


Further suppose  is the mean of the ith stratum i.e.

													(3.11.13)
The stratum mean square within ith stratum is

															(3.11.14)
The pooled mean square between units within stratum is


						      	    					(3.11.15)
as each of the n strata contribute K–1 degree of freedom. Then,

								           				(3.11.16)
Using (3.11.14)


																(3.11.17)

The variance of  may be written as:

	

		

		

		

		,										(3.11.18)

Where	

Comparing (3.11.17) and (3.11.18), we have


								 					(3.11.19)

We can immediately see that the relative efficiency of systematic sampling over stratified random sampling depends upon the value of w.


	

	

	

3.11.1 Variance Estimator




Since the systematic sampling procedure does not ensure the inclusion of each  pairs of units of the population at least in one of the samples, which is a necessary condition for an unbiased estimator, hence under systematic sampling procedure it is not possible to obtain an unbiased variance estimator from one sample. If, however, two or more systematic samples are drawn with different random start then combined variance estimator is possible. Following variance estimate of sample mean,  and estimated total  may be suggested:

									(3.11.20)

and							(3.11.21)
As we know that

	



Now there are n(n-1) terms in the summation  each of which has the same expectation, i.e. (yi – yj)2 has the expectation S2. When we pass from simple random sampling without replacement to systematic sampling only the expression  should be taken into account, and even they would over estimate the variability within a quasi-stratum (being th part of the population).

EXAMPLE 3.10 


Following data relating to the height of some plants in a forest with N = 24, 
= 75, 72, 62, 52, 52, 81, 50, 56, 57, 57, 71, 81, 57, 43, 70, 49, 44, 57, 48, 54, 49, 36, 37, 45, draw all possible samples as:

(i) k = 3 and n = 8		
(ii) k = 4 and n = 6
(iii) k = 5,


Find the mean and variance of  in each case also prove that sample mean is an unbiased estimator of population mean.

	

SOLUTION 

Case (i): k = 3 and n = 8 following are the possible samples.


	Sample
	Observations
	Total
	Mean

	1
	75
	52
	50
	57
	57
	49
	48
	36
	424
	53.0

	2
	72
	52
	56
	71
	43
	44
	54
	37
	429
	53.63

	3
	62
	81
	57
	81
	70
	57
	49
	45
	502
	62.75

	
	
	
	
	
	
	
	
	
	1355
	56.46




	

	

where as


	

Case (ii):	k = 4 and n = 6

	Sample
	Observations
	Total
	Mean

	1
	75
	52
	57
	57
	44
	49
	334
	55.67

	2
	72
	81
	57
	43
	57
	36
	346
	57.67

	3
	62
	50
	71
	70
	48
	37
	338
	56.33

	4.
	52
	56
	81
	49
	54
	45
	337
	56.17

	
	
	
	
	
	
	
	1355
	






Case (iii): k = 5 and n1 = n2 = n3 = n4 = 5 and n5 = 4

	Sample
	Observations
	Total
	Mean

	1
	75
	81
	71
	49
	49
	325
	65.0

	2
	72
	50
	81
	44
	36
	283
	56.6

	3
	62
	56
	57
	57
	37
	269
	53.8

	4
	52
	57
	43
	48
	45
	245
	49.0

	5
	52
	57
	70
	54
	-
	233
	58.25

	
	
	
	
	
	
	1355
	







. The variance of  may also be computed like cases (i) and (ii). If we find  like case 
(i) and (ii) it will be  = (65.0 + 56.6 + 53.8 + 49.0 + 58.25)/5 = 56.53 which is not equal to the population mean 56.46. The variance of systematic and simple random sampling may also be obtained using analysis of variance technique.

	Case (i)

	Source of Variance
	d.f
	S.S
	M.S.S

	Between samples
	2
	476.59
	238.29 = S2b

	Within samples
	21
	3275.17
	155.96 = S2w

	Total 
	23
	3751.76
	163.12 = S2




	

	

	

	Case (ii)

	Source of Variance
	d.f
	S.S
	M.S.S

	Between samples
	3
	13.13
	4.38 = S2b

	Within samples
	20
	3738.83
	186.94 = S2w

	Total 
	23
	3751.76
	163.12 = S2




	




In case (i)  and in case (ii) as  and this satisfies the Theorem (4.3).



Likewise the comparison of stratified sampling and systematic sampling depends on the properties of population. It is difficult to make a general rule for comparison. If the order of the population units is changed, different groups will be formed; as a result the variance will be changed i.e. if a population has 6 units 1, 2, 3, 4, 5, and 6 with n = 2 the  = 1.667 and different systematic samples will be (1, 4), (2,5) and (3, 6) the variance of systematic sampling is  = 0.667. If the arrangement is changed as 1, 4, 5, 2, 3, and 6 the possible systematic samples are (1, 2), (4, 3) and (5, 6). In this case the variance of systematic sampling becomes 2.667.

EXAMPLE 3.11 
Following is the population of 70 villages along with cultivated area (in acres). Select a sample of size 10 with systematic sampling method and estimate the total population and cultivated area of the villages. Find the standard error for the estimate.

SOLUTION

We have N = 70,  and n = 10

Since k = 7, we select a sample with a random start of 6, the villages in the sample are selected as 6 + 7, 6 + 2 x 7, …… The sample consists of the villages shown in Table 3.2. The population and cultivated area are given against each village in the table below:
Table 3.2

	S#
	No. 
Villages
	Population
	Cultivated
Area
	Population
(yi – yi+1)2
	Cultivated Area 
(yi – yi+1)2

	1. 
	6
	2282
	1110
	--
	--

	2. 
	13
	5201
	1840
	8520561
	532900

	3. 
	20
	1607
	1225
	12916836
	378225

	4. 
	27
	1567
	970
	1600
	65025

	5. 
	34
	773
	602
	630436
	135424

	6. 
	41
	828
	277
	3025
	105625

	7. 
	48
	547
	372
	78961
	9025

	8. 
	55
	726
	636
	32041
	69696

	9. 
	62
	1225
	634
	249001
	00004

	10. 
	69
	663
	422
	315844
	44944

	
	
	15419
	8088
	22748305
	1340868



	Estimated mean and total

	
	Population
	Cultivated Area

	

	15419
	8088

	

	15419
	808.8

	

	107933
	56616



Variance estimator and standard error of mean and total are:

	
	Population
	Cultivated Area

	

	
22748305
= 1263794.722
	
1340869
=74492.667

	

	
108325.262
	
6385.086

	

	530793783.8
	31286921.4

	

	329.128
	79.907

	

	23038.962
	5593.471



EXAMPLE 3.13

From a population given in Appendix 2 relating to population of 523 villages, four systematic samples of size 43 have been drawn and the data regarding these samples have been given. Calculate the average population of each village along with their standard errors and compare standard errors of these samples. 


Population mean 


	

	
	

	

	

	
SE

	Sample I
	3263.7
	239579.630
	489.470
	501.27

	Sample II
	3440.5
	341938.717
	584.750
	517.44

	Sample III
	3731.8
	430879.625
	656.414
	652.44

	Sample IV
	4286.5
	355611.591
	596.330
	584.81



Table 3.4

	
	Sample 1
	Sample 2
	Sample 3
	Sample 4

	
	yi
	

	yi
	

	yi
	

	yi
	


	1. 
	701
	961
	1071
	128164
	428
	94249
	793
	14500864

	2. 
	670
	5625
	713
	54184321
	121
	779689
	4601
	3345241

	3. 
	745
	30976
	8074
	54449641
	1004
	24098281
	2772
	5076009

	4. 
	921
	3912484
	695
	14417209
	5913
	5184
	5025
	2059225

	5. 
	2899
	2795584
	4492
	11675889
	5841
	4468996
	6460
	19838116

	6. 
	1227
	874225
	1075
	77193796
	7955
	24641296
	2006
	4739329

	7. 
	292
	4334724
	9861
	69172489
	2991
	6906384
	4183
	4853209

	8. 
	2374
	57395776
	1544
	902500
	363
	32844361
	6386
	9114361

	9. 
	9950
	55726225
	594
	163737616
	6094
	324108009
	9405
	68807025

	10. 
	2485
	63043600
	13390
	179024400
	24097
	553566784
	1110
	18740241

	11. 
	10425
	53743561
	10
	20675209
	569
	58936329
	5439
	2022084

	12. 
	3094
	60372900
	4557
	17935225
	8246
	49730704
	4017
	160782400

	13. 
	10864
	32970564
	322
	1238769
	1194
	15124321
	16697
	92833225

	14. 
	5122
	19686969
	1435
	1267876
	5083
	5822569
	7062
	34656769

	15. 
	685
	3069504
	309
	537289
	2670
	5331481
	1175
	1763584

	16. 
	2437
	5579044
	1042
	15523600
	361
	81432576
	2503
	9235521

	17. 
	75
	6120676
	4982
	28451556
	9385
	9916201
	5542
	844561

	18. 
	2549
	550564
	10316
	27667600
	6236
	32661225
	6461
	25090081

	19. 
	1807
	51984
	5056
	7414729
	521
	5080516
	1452
	9947716

	20. 
	1579
	1750329
	2333
	110889
	2775
	1784896
	4606
	10432900

	21. 
	256
	962361
	2000
	190969
	1439
	1153476
	1376
	5184

	22. 
	1237
	226576
	2437
	2073600
	2513
	60025
	1304
	656100

	23. 
	1713
	38912644
	3877
	13771521
	2758
	32205625
	494
	18913801

	24. 
	7951
	50665924
	166
	2712609
	8433
	47128225
	4843
	18147600

	25. 
	833
	27520516
	1813
	6724
	1568
	1142761
	583
	43322724

	26. 
	6079
	27227524
	1731
	137569441
	499
	1038361
	7165
	45927729

	27. 
	861
	339889
	13460
	172501956
	1518
	1177225
	388
	66912400

	28. 
	278
	80586529
	326
	31899904
	433
	14784025
	8568
	13111641

	29. 
	9255
	81396484
	5974
	15792676
	4278
	580644
	4947
	2965284

	30. 
	233
	20484676
	2000
	622521
	5040
	5597956
	3225
	6579225

	31. 
	4759
	12236004
	1211
	30891364
	2674
	1929321
	660
	31329

	32. 
	1261
	274576
	6769
	2085136
	4063
	15460624
	483
	175561

	33. 
	737
	1790244
	5325
	4713241
	131
	535824
	64
	286828096

	34. 
	2075
	31329
	3154
	422500
	863
	53275401
	17000
	190357209

	35. 
	1898
	96100
	3804
	1876900
	8162
	43811161
	3203
	126736

	36. 
	2208
	4743684
	2434
	1249924
	1543
	208849
	3559
	8714304

	37. 
	30
	91030681
	1316
	16386304
	2000
	1265625
	607
	1279161

	38. 
	9571
	7263025
	5364
	11992369
	875
	717409
	1738
	28224

	39. 
	6876
	19600
	1901
	75625
	1722
	73984
	1570
	33362176

	40. 
	6736
	912025
	2176
	13689
	1994
	6105841
	7346
	25341156

	41. 
	5781
	3617604
	2293
	13483584
	4465
	9840769
	2312
	21104836

	42. 
	7683
	43007364
	5965
	29041321
	1328
	80910025
	6906
	1896129

	43. 
	1125
	 
	576
	 
	10323
	 
	8283
	 

	
	140337
	865361634
	147943
	1235082645
	160469
	1556337207
	184319
	1284469066



3.11.2		Relative Efficiency of Systematic against Simple Random Sampling

The relative efficiency of systematic sampling as compared to simple random sampling in case of with and without replacement sampling is given as:


	

	

3.12	CIRCULAR SYSTEMATIC SAMPLING

It has been mentioned earlier that when N is not a multiple of n we get a biased estimator. We overcome this difficulty by adopting another scheme called CIRCULAR SYSTEMATIC SAMPLING. According to this technique we select a random start from 1 to N and therefore every kth unit is selected in a cyclical manner till required sample of size n is obtained. This procedure was suggested by Lahiri (1952). If r is a number selected at random from 1 to N, the sample consists of the units corresponding to the number:.
r + ik			if	r + ik  N
and	r + ik – N		if	r + ik > N

where i = 0, 1, 2, …., n – 1 and k being integer

It can be easily seen that probability of selection is equal for all units and is 1/N. The unbiasedness under circular systematic is shown below by an artificial example. Let N = 14, (1,2,3,…14) n = 5 and k = 3. All possible samples with different random starts are as:


	Random 
Start point 
	Possible Samples


	Sample Total


	Sample mean



	1. 
	1, 4, 7, 10, 13
	35
	7.0

	2. 
	2, 5, 8, 11, 14
	40
	8.0

	3. 
	3, 6, 9, 12, 1
	31
	6.2

	4. 
	4, 7, 10, 13, 2
	36
	7.2

	5. 
	5, 8, 11, 14, 3
	41
	8.2

	6. 
	6, 9, 12, 1, 4
	32
	6.4

	7. 
	7, 10, 13, 2, 5
	37
	5.4

	8. 
	8, 11, 14, 3, 6
	42
	8.4

	9. 
	9, 12, 1, 4, 7
	33
	6.6

	10. 
	10, 13, 2, 5, 8
	38
	7.6

	11. 
	11, 14, 3, 6, 9,
	43
	8.6

	12. 
	12, 1, 4, 7, 10
	34
	6.8

	13. 
	13, 2, 5, 8, 11
	39
	7.8

	14. 
	14, 3, 6, 9, 12
	44
	8.8






	 =	 105.0  = 


Hence under circular selection procedure  even when n is not a multiple of N.

EXERCISES

1. 
In a population with N = 6 and K = 2, the units Yhi are 2, 4, 6 in the first stratum and 8, 12, 16 in the second stratum. A sample of 4 units is to be taken as n1 = n2 = 2. Draw all possible samples and show that the sample mean is unbiased estimator of population mean. Find . Find nh under proportional and optimum allocation. Find the variance of sample mean for proportional and optimum allocations and compare with the variance of simple random sampling.
2. In a sample survey designed to estimate total number of cattle, the population of 2072 farms was divided into 5 strata by total average of the farms. A simple random sampling of farms was taken from each stratum and following information was recorded to estimate the total number of cattle in the population. Find the standard error of this estimate.	

	Stratum Size
	Number of 
Farms (Nh) 
	nh

	Total Number of 
Cattle (yhi)
	y2hi

	0 – 15
	635
	153
	619
	5579

	16 – 30
	570
	138
	1423
	24253

	31 – 50
	475
	115
	1758
	34082

	51 – 75
	303
	73
	1691
	51419

	76 – 100
	89
	21
	603
	18305


3. A simple random sample of 10 villages from each stratum is drawn from the population divided into 3 strata regarding density of population (high, medium, low) and total number of households in the sample area are given below. Estimate the total number of household in the population and find standard error of your estimate.

	Stratum
	Nh
	nh
	Number of Households

	High
	510
	10
	84, 96, 87, 102, 99, 98, 90, 85, 90, 95

	Medium
	632
	10
	50, 40, 56, 47, 50, 53, 40, 41, 43, 46

	Low
	840
	10
	17, 25, 7, 0, 15, 7, 3, 0, 5, 15



4. For a socio-economic survey, all the villages in the region were grouped into four strata on the basis of the altitude above sea level and population density. From each stratum, 10 villages were selected using simple random sampling technique. The data on the number of households in each of the samples villages are given below:

	Stratum
	Total number 
of villages
	Total number of households

	1
	1411
	43, 84, 98, 0, 10, 44, 0, 124, 13, 0

	2
	4705
	50, 147, 62, 87, 84, 158, 170, 104, 56, 160

	3
	2558
	228, 262, 110, 232, 139, 178, 334, 0, 63, 220

	4
	14997
	17, 34, 25, 34, 36, 0, 25, 7, 15, 31



i) Obtain estimate of the total and calculate the standard error of this estimator.
ii) Estimate the gain due to use of stratification as compared to un-stratified.
5. 
From the following population find nh under optimum and proportional allocation when n = 100. Also find the  when cost is given.
	Stratum
	Nh
	S2h
	

	Ch

	1
	300
	196
	60
	25

	2
	200
	81
	50
	36

	3
	500
	64
	30
	16

	4
	150
	36
	20
	9


6. 500 farms are divided into 4 strata as given below. The purpose is to estimate the total number of goats in 500 farms. A sample of 50 farms was selected taken with proportional allocation and number of goats in each farm and in each stratum are given. Estimate the total number of goats in that population and calculate the standard error of the total

	Stratum
	Nh
	nh
	Number of goats in each farm

	1
	40
	4
	76, 70, 75, 80

	2
	80
	8
	51, 45, 49, 45, 42, 50, 46, 43

	3
	15
	15
	30, 31, 35, 34, 33, 29, 25, 21, 31, 35, 37, 38, 39, 33, 35

	4
	230
	23
	10, 15, 18, 16, 17, 18, 10, 11, 8, 9, 10, 15, 9, 8, 13, 15, 16, 17, 12, 11, 9, 7, 8


7. Using the data given below, compare the efficiencies of following alternative allocation of a sample of 3000 factories for estimating the total output; 
(i) proportional allocation, (ii) allocation proportional to total output, 
(iii) optimum allocation.


	S.No.
	No. of Factories
	Output per factory
	Sh

	1
	18260
	100
	80

	2
	4315
	250
	200

	3
	2213
	500
	600

	4
	1057
	1760
	1900

	5
	567
	2250
	2500


8. 
Given the following information of 4 schools, estimate the proportion of students who visited the doctor at least once during the past year. Ph is known from the preliminary survey. Find .

	School
	Nh
	nh
	ph

	1
	2000
	100
	0.2

	2
	1600
	80
	0.3

	3
	1200
	60
	0.4

	4
	1200
	60
	0.3


9. 

The following information on literacy is available for an area. If a proportionate stratified sample is to be used in the near future for estimating of literate persons with the coefficient of 10%. Find the sample size needed. Compare the  and .

	Age Group
	Number of Persons
	Proportion Literate

	15 – 24
	25200
	0.5

	25 – 34
	19100
	0.3

	35 – 49
	36300
	0.1

	50 and over
	19400
	0.01


10. The number of Pepper standards for selected villages in each of the three strata are as follows:

	Stratum
	Total number 
of Villages
Nh
	Villages 
Selected nh
	Number of  Pepper standards 
in each of the selected village

	1
	441
	11
	41, 116, 19, 15, 144, 159, 212, 57, 28, 119, 76

	2
	405
	12
	39, 70, 38, 37, 161, 38, 27, 119, 36, 128, 30, 208

	3
	103
	7
	252, 385, 192, 296, 115, 159, 120



Estimate the total number of pepper standards also estimate the gain in precision due to stratification.
11. An investigator desires to take a stratified random sample with following assumption:

	Stratum
	Nh
	Sh
	Ch in (Rs.)

	1
	400
	10
	4

	2
	600
	20
	9



i) 
Estimate the values of n1/n and n2/n which minimize the total cost 
C = c1n1 + C2n2 for given value of .
ii) 
Estimate the total sample size required, under optimum allocation to make  where f.p.c. is ignored.
12. 2000 cultivators holding were stratified according to their sizes. The results are given as

	Stratum 
number
	Number of 
holdings Nh
	Mean are under wheat 
per-holding Yh
	Sh
per-holding

	1
	394
	5.4
	8.3

	2
	461
	16.3
	13.3

	3
	381
	24.3
	15.1

	4
	334
	34.5
	19.8

	5
	169
	42.1
	24.5

	6
	113
	50.1
	26.0

	7
	148
	63.8
	35.2


For a sample of 200 farms, compute the sample size in each stratum under proportional and optimum allocation. Calculate variance of estimated area under wheat form the sample and find relative precision as compared to simple random sampling.
13. 

If f.p.c. is ignored prove that	
		
If the variance is fixed then for minimum cost the sample size for optimum allocation is 	

	

Also find the sample size if the cost per unit is the same.
14. 


With two strata, a sampler would like to have n1 = n2, instead of using the values given by Neyman allocation. If ,  denote the variance given by the n1 = n2 and the Neyman allocation, respectively. Show that the fractional increase in variance is	

		

where r = n1/n2 given by Neyman allocation.

	[Hint:	Since n1 = n2 and there are two strata


			
	and

		

	then



		

	where r = W1S1/S2S2]

15. A sampler has two strata with relative sizes W1 and W2. He believes that 
S1 and S2 can be taken as equal. He would prefer to use proportional allocation but does not wish to incur a substantial increase in variance compared with optimum allocation. For a given cost C = C1n1 + C2n2, ignoring f.p.c. show that


		




	[ Hint	(i)		=	

								=	



	and 	n1 	=   ,    n2	=	 as all Ss are equal


	Cost 	=   ,  	=	 

	or		 					(1)


	(ii)		=	


			=	

	Hence		 							(2)

	From (1) and (2) we get required result]

16. Sample of 30 Mohallahs is drawn from a population of 210 Mohallas. The selection is systematic based on 1 in 7 Mohallah (k = 7). The following is the record of number of farm holdings of these Mohallahs. Estimate the total number of farm holdings in total Mohallahs. Under the assumption that the numbering is random find the variance of sample mean;

25, 30, 35, 37, 30, 40, 50, 35, 37, 40, 42, 45, 46, 40, 50, 38, 49, 45, 43, 35, 36, 39, 38, 25, 26, 40, 40, 51, 52, 46.
17. We have a natural population 1, 2, 3, 4, …, 50. Draw all possible samples (systematic) with k = 5. Find its mean and variance. Now from the above population draw a random sample of size 10, and find the mean and variance. Compare the variances of two selections and interpret the result.
18. We have a population of 5 units (1, 2, 3, 4, 5) and k = 2. If the random start is 1 then select the sample and if the random start is 2 also select the sample. Find, in each case, the unbiased estimator of population mean.
19. From the following population with N = 4. The size of the households is 5, 3, 3, 7, 4, 4, 6, 6, 4, 5, 3, 7, 7, 6, 4, 5, 6, 3, 5, 1, 3, 5, 6, 4, 4. Select a circular systematic sampling of size 5 households. Find the standard error under the assumption that the selection is random when

(i) the random start is 14.
(ii) random start is 12.

		Compare the variances of the two samples.
20. From the data given in Example 4.2,

(i) draw five circular systematic samples of size 7 each, from a rearranged frame.
(ii) from each of the five samples, estimate the total cultivated area in the tehsil.
(iii) obtain a single combined estimate from the five sample estimates. Also, calculate the standard error of this combined estimate.
21. Systematic sample of 29 plots has been selected from 290 plots. y-denotes the area (acres) under cultivation. Estimate the mean and variance

		
	y
	Plot
	y
	Plot
	y

	1. 
	0.0
	11. 
	2.8
	21. 
	2.3

	2. 
	0.9
	12. 
	2.6
	22. 
	2.9

	3. 
	0.0
	13. 
	3.3
	23. 
	2.1

	4. 
	0.0
	14. 
	2.5
	24. 
	6.3

	5. 
	0.3
	15. 
	3.4
	25. 
	8.2

	6. 
	0.1
	16. 
	2.8
	26. 
	5.4

	7. 
	0.5
	17. 
	4.1
	27. 
	6.5

	8. 
	3.1
	18. 
	4.9
	28. 
	6.6

	9. 
	2.8
	19. 
	6.0
	29. 
	4.1

	10. 
	2.7
	20. 
	5.4
	--
	--






22. 
Following data shows the volume of timber of (y) for each strip:

	
	(y)
	
	(y)
	
	(y)

	1. 
	762
	17. 
	471
	33. 
	165

	2. 
	651
	18. 
	426
	34. 
	224

	3. 
	461
	19. 
	448
	35. 
	192

	4. 
	521
	20. 
	402
	36. 
	161

	5. 
	653
	21. 
	372
	37. 
	104

	6. 
	544
	22. 
	372
	38. 
	94

	7. 
	542
	23. 
	411
	39. 
	102

	8. 
	59
	24. 
	323
	40. 
	115

	9. 
	533
	25. 
	381
	41. 
	110

	10. 
	517
	26. 
	430
	42. 
	109

	11. 
	520
	27. 
	434
	43. 
	83

	12. 
	539
	28. 
	321
	44. 
	36

	13. 
	509
	29. 
	543
	45. 
	61

	14. 
	449
	30. 
	607
	46. 
	92

	15. 
	492
	31. 
	416
	47. 
	75

	16. 
	498
	32. 
	326
	48. 
	64



(i) Examine the behaviour of the sampling variance of estimates of volume of timber based on systematic samples of sizes 4, 8 and 12.
(ii) Compare the efficiency of systematic sampling with those of simple random sampling without replacement for the sample sizes considered in (i).
(iii) Also study the efficiency of sampling the strips with probability proportional to the length of the strips with replacement.
23. Given below are data for 10 systematic samples of size 4 from the population of 40 units.

	Systematic Sample Numbers

	1
	2
	3
	4
	5
	6
	7
	8
	9
	10

	0
	1
	3
	4
	4
	5
	6
	7
	7
	9

	7
	8
	9
	10
	12
	13
	15
	6
	16
	17

	18
	18
	19
	20
	21
	20
	24
	13
	28
	29

	29
	30
	31
	31
	33
	32
	35
	37
	38
	63



Work out the relative efficiency of systematic sampling over simple random sampling.
24. Following data relating to area under guava crop in some district of Punjab. Draw a sample of size 5; (i) using simple random sampling method, (ii) using systematic sampling method; and compare the efficiency of these two methods.

	S.
No.
	Area under 
guava crop
	S.
No.
	Area under 
guava crop
	S.
No.
	Area under 
guava crop

	1. 
	166.15
	17. 
	10.34
	33. 
	3.90

	2. 
	24.72
	18. 
	95.16
	34. 
	15.31

	3. 
	100.77
	19. 
	22.40
	35. 
	1.44

	4. 
	87.14
	20. 
	10.97
	36. 
	14.88

	5. 
	116.28
	21. 
	39.07
	37. 
	23.01

	6. 
	60.22
	22. 
	13.70
	38. 
	3.44

	7. 
	13.59
	23. 
	26.64
	39. 
	14.32

	8. 
	41.70
	24. 
	1.40
	40. 
	24.39

	9. 
	10.52
	25. 
	12.57
	41. 
	9.88

	10. 
	13.85
	26. 
	2.00
	42. 
	17.66

	11. 
	12.92
	27. 
	6.72
	43. 
	3.26

	12. 
	10.73
	28. 
	20.75
	44. 
	6.89

	13. 
	38.64
	29. 
	51.65
	45. 
	0.84

	14. 
	15.92
	30. 
	16.42
	46. 
	13.02

	15. 
	9.09
	31. 
	3.90
	47. 
	32.85

	16. 
	155.51
	32. 
	2.44
	
	


25. Following table furnishes complete enumeration data on length (x) of strip and volume (y) of timber for each strip in 3 blocks of the Block Mountain Forest, California.

	Block No. I
	Block No. II
	Block No. III

	Strip No.
	x
	y
	Strip No.
	x
	y
	Strip No.
	x
	y

	1. 
	12
	762
	1. 
	9
	471
	1. 
	6
	165

	2. 
	12
	651
	2. 
	9
	426
	2. 
	6
	224

	3. 
	12
	461
	3. 
	9
	448
	3. 
	6
	192

	4. 
	12
	521
	4. 
	9
	402
	4. 
	6
	161

	5. 
	12
	653
	5. 
	9
	372
	5. 
	6
	104

	6. 
	12
	544
	6. 
	9
	372
	6. 
	5
	94

	7. 
	12
	542
	7. 
	9
	411
	7. 
	5
	102

	8. 
	12
	590
	8. 
	9
	323
	8. 
	5
	115

	9. 
	11
	533
	9. 
	9
	381
	9. 
	4
	110

	10. 
	11
	517
	10. 
	9
	430
	10. 
	4
	109

	11. 
	11
	520
	11. 
	9
	434
	11. 
	4
	83

	12. 
	11
	539
	12. 
	9
	324
	12. 
	4
	36

	13. 
	10
	509
	13. 
	9
	543
	13. 
	4
	61

	14. 
	10
	449
	14. 
	9
	607
	14. 
	4
	92

	15. 
	10
	492
	15. 
	8
	416
	15. 
	4
	75

	16. 
	10
	498
	16. 
	8
	326
	16. 
	4
	64


	Source:_________________________
(i) Examine the behaviour of the sampling variance of estimates of volume of timber based on systematic samples of sizes 2, 6 and 12.
(ii) Compare the efficiency of systematic sampling with those of simple random sampling with and without replacement for the sample sizes considered in (i).
(iii) Also study the efficiency of sampling the strips with probability proportional to the length of the strips with replacement.
26. A list of 108 villages in a Tehsil arranged in ascending order of geographical area (x) is given as together with village-wise area under winter paddy (y).

	No.
	x
	y
	No.
	x
	y
	No.
	x
	y

	1. 
	12
	7
	37. 
	264
	102
	73. 
	515
	272

	2. 
	106
	33
	38. 
	264
	102
	74. 
	541
	155

	3. 
	120
	87
	39. 
	266
	187
	75. 
	542
	292

	4. 
	120
	78
	40. 
	271
	23
	76. 
	543
	214

	5. 
	121
	56
	41. 
	273
	129
	77. 
	562
	275

	6. 
	121
	62
	42. 
	274
	51
	78. 
	570
	100

	7. 
	124
	58
	43. 
	280
	161
	79. 
	586
	418

	8. 
	128
	19
	44. 
	287
	179
	80. 
	601
	189

	9. 
	135
	64
	45. 
	292
	76
	81. 
	653
	129

	10. 
	137
	61
	46. 
	313
	137
	82. 
	658
	230

	11. 
	145
	74
	47. 
	320
	127
	83. 
	678
	396

	12. 
	147
	13
	48. 
	324
	104
	84. 
	681
	289

	13. 
	151
	81
	49. 
	327
	115
	85. 
	682
	166

	14. 
	153
	41
	50. 
	333
	106
	86. 
	691
	83

	15. 
	160
	58
	51. 
	349
	245
	87. 
	698
	232

	16. 
	166
	44
	52. 
	350
	117
	88. 
	710
	282

	17. 
	176
	65
	53. 
	364
	170
	89. 
	716
	191

	18. 
	178
	69
	54. 
	365
	210
	90. 
	716
	305

	19. 
	185
	29
	55. 
	370
	98
	91. 
	727
	303

	20. 
	206
	46
	56. 
	379
	270
	92. 
	730
	288

	21. 
	209
	93
	57. 
	389
	79
	93. 
	738
	286

	22. 
	216
	38
	58. 
	396
	99
	94. 
	805
	239

	23. 
	224
	87
	59. 
	397
	147
	95. 
	808
	242

	24. 
	229
	72
	60. 
	400
	187
	96. 
	864
	146

	25. 
	230
	127
	61. 
	404
	273
	97. 
	873
	445

	26. 
	236
	114
	62. 
	410
	118
	98. 
	897
	487

	27. 
	238
	88
	63. 
	418
	130
	99. 
	910
	354

	28. 
	240
	108
	64. 
	433
	158
	100. 
	924
	340

	29. 
	241
	94
	65. 
	446
	116
	101. 
	1034
	401

	30. 
	243
	116
	66. 
	453
	194
	102. 
	1117
	261

	31. 
	244
	58
	67. 
	460
	161
	103. 
	1156
	613

	32. 
	246
	47
	68. 
	462
	222
	104. 
	1196
	227

	33. 
	248
	69
	69. 
	467
	223
	105. 
	1323
	704

	34. 
	249
	44
	70. 
	501
	96
	106. 
	1419
	682

	35. 
	251
	56
	71. 
	503
	164
	107. 
	1473
	373

	36. 
	259
	160
	72. 
	514
	318
	108. 
	1496
	164


		(x and y in acres; 1 acre = 0.4047 hectare).

(i) Draw 4 circular systematic samples of 7 villages each with the following five independent random starts: 45, 3, 18, 62 and 37.
(ii) Making use of the 35 sample observations obtained in (i), estimate the relative efficiency of systematic samples as compared to that of simple random sampling without replacement for estimating the total area under peddy (Y) based on a sample of 7 villages.
(iii) Obtain a single combined estimate of Y based on all the 5 samples drawn in (i) and also estimate its use.


Table 3.2

	Sr.
No.
	Population
    (000)
	Cultivated 
Area (Acres)
	Sr.
No.
	Population
	Cultivated 
Area (Acres)

	1. 
	226
	678
	36. 
	904
	700

	2. 
	670
	663
	37. 
	773
	602

	3. 
	4505
	1290
	38. 
	1040
	532

	4. 
	1732
	1170
	39. 
	760
	438

	5. 
	2874
	1390
	40. 
	2084
	633

	6. 
	2282
	1110
	41. 
	828
	277

	7. 
	793
	760
	42. 
	4877
	1640

	8. 
	895
	730
	43. 
	911
	424

	9. 
	1157
	950
	44. 
	1205
	822

	10. 
	3201
	1700
	45. 
	1139
	555

	11. 
	1117
	909
	46. 
	4064
	347

	12. 
	1236
	1169
	47. 
	1114
	744

	13. 
	5201
	1840
	48. 
	547
	372

	14. 
	848
	660
	49. 
	1175
	644

	15. 
	1238
	1140
	50. 
	1159
	732

	16. 
	1917
	1360
	51. 
	441
	622

	17. 
	1800
	1509
	52. 
	555
	342

	18. 
	2335
	1810
	53. 
	827
	387

	19. 
	4396
	2240
	54. 
	2867
	322

	20. 
	1607
	1225
	55. 
	726
	636

	21. 
	2071
	1250
	56. 
	633
	410

	22. 
	2166
	1690
	57. 
	680
	427

	23. 
	7780
	3200
	58. 
	587
	496

	24. 
	2746
	1744
	59. 
	1901
	936

	25. 
	2549
	2400
	60. 
	2419
	1226

	26. 
	1007
	680
	61. 
	1258
	836

	27. 
	1567
	970
	62. 
	1225
	634

	28. 
	5271
	1850
	63. 
	1447
	978

	29. 
	659
	340
	64. 
	1314
	724

	30. 
	3209
	2450
	65. 
	1298
	422

	31. 
	2902
	1760
	66. 
	728
	493

	32. 
	2955
	2120
	67. 
	851
	396

	33. 
	1746
	1220
	68. 
	786
	732

	34. 
	1045
	860
	69. 
	663
	422

	35. 
	666
	620
	70. 
	740
	370
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