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A P P L I E D  P R O J E C T HOW FAST DOES A TANK DRAIN?

If water (or other liquid) drains from a tank, we expect that the flow will be greatest at first (when
the water depth is greatest) and will gradually decrease as the water level decreases. But we need 
a more precise mathematical description of how the flow decreases in order to answer the kinds 
of questions that engineers ask: How long does it take for a tank to drain completely? How much
water should a tank hold in order to guarantee a certain minimum water pressure for a sprinkler
system?

Let and be the height and volume of water in a tank at time . If water drains through a
hole with area at the bottom of the tank, then Torricelli’s Law says that

where is the acceleration due to gravity. So the rate at which water flows from the tank is propor-
tional to the square root of the water height.

1. (a) Suppose the tank is cylindrical with height 6 ft and radius 2 ft and the hole is circular
with radius 1 inch. If we take ft�s , show that satisfies the differential equation

(b) Solve this equation to find the height of the water at time , assuming the tank is full at 
time .

(c) How long will it take for the water to drain completely?

2. Because of the rotation and viscosity of the liquid, the theoretical model given by Equa-
tion 1 isn’t quite accurate. Instead, the model

is often used and the constant (which depends on the physical properties of the liquid) is
determined from data concerning the draining of the tank.
(a) Suppose that a hole is drilled in the side of a cylindrical bottle and the height of the

water (above the hole) decreases from 10 cm to 3 cm in 68 seconds. Use Equation 2 to
find an expression for . Evaluate for .

(b) Drill a 4-mm hole near the bottom of the cylindrical part of a two-liter plastic soft-drink
bottle. Attach a strip of masking tape marked in centimeters from 0 to 10, with 0 corre-
sponding to the top of the hole. With one finger over the hole, fill the bottle with water
to the 10-cm mark. Then take your finger off the hole and record the values of for

seconds. (You will probably find that it takes 68 seconds for
the level to decrease to .) Compare your data with the values of from
part (a). How well did the model predict the actual values?

3. In many parts of the world, the water for sprinkler systems in large hotels and hospitals is 
supplied by gravity from cylindrical tanks on or near the roofs of the buildings. Suppose 
such a tank has radius 10 ft and the diameter of the outlet is 2.5 inches. An engineer has to
guarantee that the water pressure will be at least 2160 for a period of 10 minutes.
(When a fire happens, the electrical system might fail and it could take up to 10 minutes for
the emergency generator and fire pump to be activated.) What height should the engineer
specify for the tank in order to make such a guarantee? (Use the fact that the water pressure
at a depth of feet is . See Section 8.3.)
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Problem 2(b) is best done as a classroom
demonstration or as a group project with three
students in each group: a timekeeper to call
out seconds, a bottle keeper to estimate the
height every 10 seconds, and a record keeper
to record these values.

© Richard Le Borne, Dept. Mathematics,
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628 CHAPTER 9 DIFFERENTIAL EQUATIONS

4. Not all water tanks are shaped like cylinders. Suppose a tank has cross-sectional area at
height . Then the volume of water up to height is and so the Funda mental
Theorem of Calculus gives . It follows that

and so Torricelli’s Law becomes

(a) Suppose the tank has the shape of a sphere with radius 2 m and is initially half full of
water. If the radius of the circular hole is 1 cm and we take m�s , show that 
satisfies the differential equation

(b) How long will it take for the water to drain completely?
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A P P L I E D  P R O J E C T WHICH IS FASTER, GOING UP OR COMING DOWN?

Suppose you throw a ball into the air. Do you think it takes longer to reach its maximum height 
or to fall back to earth from its maximum height? We will solve the problem in this project but,
before getting started, think about that situation and make a guess based on your physical 
intuition.

1. A ball with mass is projected vertically upward from the earth’s surface with a positive
initial velocity . We assume the forces acting on the ball are the force of gravity and a
retarding force of air resistance with direction opposite to the direction of motion and with
magnitude , where is a positive constant and is the velocity of the ball at time .
In both the ascent and the descent, the total force acting on the ball is . [During
ascent, is positive and the resistance acts downward; during descent, is negative and
the resistance acts upward.] So, by Newton’s Second Law, the equation of motion is

Solve this differential equation to show that the velocity is

2. Show that the height of the ball, until it hits the ground, is
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In modeling force due to air resistance, 
various functions have been used, depending
on the physical characteristics and speed of the
ball. Here we use a linear model, , but a
quadratic model ( on the way up and 
on the way down) is another possibility for
higher speeds (see Exercise 50 in Section 9.3).
For a golf ball, experiments have shown that a
good model is going up and 
coming down. But no matter which force func-
tion is used [where for 
and for ], the answer to the
question remains the same. See F. Brauer,
“What Goes Up Must Come Down, Eventually,”
Amer. Math. Monthly 108 (2001), pp. 437–440.
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; Graphing calculator or computer required
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SECTION 9.4 MODELS FOR POPULATION GROWTH 629

3. Let be the time that the ball takes to reach its maximum height. Show that

Find this time for a ball with mass 1 kg and initial velocity 20 m�s. Assume the air
resistance is of the speed.

; 4. Let be the time at which the ball falls back to earth. For the particular ball in Prob lem 3,
estimate by using a graph of the height function . Which is faster, going up or com-
ing down?

5. In general, it’s not easy to find because it’s impossible to solve the equation
explicitly. We can, however, use an indirect method to determine whether ascent or
descent is faster: we determine whether is positive or negative. Show that

where . Then show that and the function

is increasing for . Use this result to decide whether is positive or negative. 
What can you conclude? Is ascent or descent faster?
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In this section we investigate differential equations that are used to model population
growth: the law of natural growth, the logistic equation, and several others.

The Law of Natural Growth
One of the models for population growth that we considered in Section 9.1 was based 
on the assumption that the population grows at a rate proportional to the size of the 
population:

Is that a reasonable assumption? Suppose we have a population (of bacteria, for instance)
with size and at a certain time it is growing at a rate of bacteria per
hour. Now let’s take another 1000 bacteria of the same type and put them with the first pop-
ulation. Each half of the combined population was previously growing at a rate of 300 bac-
teria per hour. We would expect the total population of 2000 to increase at a rate of 
600 bacteria per hour initially (provided there’s enough room and nutrition). So if we double
the size, we double the growth rate. It seems reasonable that the growth rate should be pro-
portional to the size.

In general, if is the value of a quantity at time and if the rate of change of with
respect to is proportional to its size at any time, then
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9.4 Models for Population Growth
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630 CHAPTER 9 DIFFERENTIAL EQUATIONS

where is a constant. Equation 1 is sometimes called the law of natural growth. If is pos-
itive, then the population increases; if is negative, it decreases.

Because Equation 1 is a separable differential equation, we can solve it by the methods
of Section 9.3:

where A ( or 0) is an arbitrary constant. To see the significance of the constant A, 
we observe that

Therefore A is the initial value of the function.

The solution of the initial-value problem

is

Another way of writing Equation 1 is

which says that the relative growth rate (the growth rate divided by the population size)
is constant. Then says that a population with constant relative growth rate must grow
exponentially.

We can account for emigration (or “harvesting”) from a population by modifying Equa-
tion 1: If the rate of emigration is a constant , then the rate of change of the population 
is modeled by the differential equation

See Exercise 15 for the solution and consequences of Equation 3.

The Logistic Model
As we discussed in Section 9.1, a population often increases exponentially in its early 
stages but levels off eventually and approaches its carrying capacity because of limited
resources. If is the size of the population at time t, we assume that
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Examples and exercises on the use of are
given in Section 6.5.
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SECTION 9.4 MODELS FOR POPULATION GROWTH 631

This says that the growth rate is initially close to being proportional to size. In other words,
the relative growth rate is almost constant when the population is small. But we also want
to reflect the fact that the relative growth rate decreases as the population P increases and
becomes negative if P ever exceeds its carrying capacity , the maximum population that
the environment is capable of sustaining in the long run. The simplest expression for the 
relative growth rate that incorporates these assumptions is

Multiplying by P, we obtain the model for population growth known as the logistic differ-
ential equation:

Notice from Equation 4 that if P is small compared with , then is close to 0 and so
. However, if (the population approaches its carrying capacity), then

, so . We can deduce information about whether solutions increase or
decrease directly from Equation 4. If the population P lies between 0 and , then the right
side of the equation is positive, so and the population increases. But if the pop-
ulation exceeds the carrying capacity , then is negative, so
and the population decreases.

Let’s start our more detailed analysis of the logistic differential equation by looking at a
direction field.

Draw a direction field for the logistic equation with and carry-
ing capacity . What can you deduce about the solutions?

SOLUTION In this case the logistic differential equation is

A direction field for this equation is shown in Figure 1. We show only the first quadrant
because negative populations aren’t meaningful and we are interested only in what hap-
pens after .
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FIGURE 1
Direction field for the logistic

equation in Example 1
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632 CHAPTER 9 DIFFERENTIAL EQUATIONS

The logistic equation is autonomous ( depends only on P, not on t), so the
slopes are the same along any horizontal line. As expected, the slopes are positive for

and negative for .
The slopes are small when P is close to 0 or 1000 (the carrying capacity). Notice that

the solutions move away from the equilibrium solution and move toward the
equilibrium solution .

In Figure 2 we use the direction field to sketch solution curves with initial populations
, , and . Notice that solution curves that start below

are increasing and those that start above are decreasing. The slopes
are greatest when and therefore the solution curves that start below
have inflection points when . In fact we can prove that all solution curves that
start below have an inflection point when P is exactly 500. (See Exercise 11.)

The logistic equation is separable and so we can solve it explicitly using the method
of Section 9.3. Since

we have

To evaluate the integral on the left side, we write

Using partial fractions (see Section 7.4), we get
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FIGURE 2
Solution curves for the logistic

equation in Example 1
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SECTION 9.4 MODELS FOR POPULATION GROWTH 633

This enables us to rewrite Equation 5:

where . Solving Equation 6 for P, we get

so

We find the value of A by putting in Equation 6. If , then (the initial
population), so

Thus the solution to the logistic equation is

Using the expression for in Equation 7, we see that

which is to be expected.

Write the solution of the initial-value problem

and use it to find the population sizes and . At what time does the population
reach 900?

SOLUTION The differential equation is a logistic equation with , carrying 
capacity , and initial population . So Equation 7 gives the 
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population at time t as

Thus

So the population sizes when and 80 are

The population reaches 900 when

Solving this equation for t, we get

So the population reaches 900 when t is approximately 55. As a check on our work, we
graph the population curve in Figure 3 and observe where it intersects the line .
The cursor indicates that .

Comparison of the Natural Growth and Logistic Models
In the 1930s the biologist G. F. Gause conducted an experiment with the protozoan Para-
 mecium and used a logistic equation to model his data. The table gives his daily count of the
population of protozoa. He estimated the initial relative growth rate to be 0.7944 and the car-
rying capacity to be 64.

Find the exponential and logistic models for Gause’s data. Compare the 
predicted values with the observed values and comment on the fit.

SOLUTION Given the relative growth rate and the initial population
the exponential model is
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Compare the solution curve in Figure 3 with
the lowest solution curve we drew from the
direction field in Figure 2.

1000

0 80
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1+9e_0.08t

P=900

FIGURE 3

t (days) 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16

P (observed) 2 3 22 16 39 52 54 47 50 76 69 51 57 70 53 59 57
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SECTION 9.4 MODELS FOR POPULATION GROWTH 635

Gause used the same value of k for his logistic model. [This is reasonable because
is small compared with the carrying capacity ( ). The equation

shows that the value of k for the logistic model is very close to the value for the expo-
nential model.]

Then the solution of the logistic equation in Equation 7 gives

where

So

We use these equations to calculate the predicted values (rounded to the nearest integer)
and compare them in the following table.

We notice from the table and from the graph in Figure 4 that for the first three or four
days the exponential model gives results comparable to those of the more sophisticated
logistic model. For , however, the exponential model is hopelessly inaccurate, but
the logistic model fits the observations reasonably well.

Many countries that formerly experienced exponential growth are now finding that their
rates of population growth are declining and the logistic model provides a better model. 
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FIGURE 4
The exponential and logistic

models for the Paramecium data
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t (days) 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16

P (observed) 2 3 22 16 39 52 54 47 50 76 69 51 57 70 53 59 57

P (logistic model) 2 4 9 17 28 40 51 57 61 62 63 64 64 64 64 64 64

P (exponential model) 2 4 10 22 48 106 . . .
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636 CHAPTER 9 DIFFERENTIAL EQUATIONS

The table in the margin shows midyear values of , the population of Belgium, in thou-
sands, at time , from 1980 to 2000. Figure 5 shows these data points together with a shift-
ed logistic function obtained from a calculator with the ability to fit a logistic function to
these points by regression. We see that the logistic model provides a very good fit.

Other Models for Population Growth
The Law of Natural Growth and the logistic differential equation are not the only equa-
tions that have been proposed to model population growth. In Exercise 20 we look at the
Gompertz growth function and in Exercises 21 and 22 we investigate seasonal-growth 
models.

Two of the other models are modifications of the logistic model. The differential 
equation

has been used to model populations that are subject to harvesting of one sort or another.
(Think of a population of fish being caught at a constant rate.) This equation is explored 
in Exercises 17 and 18.

For some species there is a minimum population level m below which the species tends
to become extinct. (Adults may not be able to find suitable mates.) Such populations have
been modeled by the differential equation

where the extra factor, , takes into account the consequences of a sparse popula-
tion (see Exercise 19).
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FIGURE 5
Logistic model for

the population of Belgium
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SECTION 9.4 MODELS FOR POPULATION GROWTH 637

1. Suppose that a population develops according to the logistic
equation

where is measured in weeks.
(a) What is the carrying capacity? What is the value of ?
(b) A direction field for this equation is shown. Where are 

the slopes close to 0? Where are they largest? Which 
solutions are increasing? Which solutions are decreasing?

(c) Use the direction field to sketch solutions for initial pop-
ulations of 20, 40, 60, 80, 120, and 140. What do these
solutions have in common? How do they differ? Which
solutions have inflection points? At what population 
levels do they occur?

(d) What are the equilibrium solutions? How are the other
solutions related to these solutions?

; 2. Suppose that a population grows according to a logistic
model with carrying capacity 6000 and per year.
(a) Write the logistic differential equation for these data.
(b) Draw a direction field (either by hand or with a com puter

algebra system). What does it tell you about the solution
curves?

(c) Use the direction field to sketch the solution curves for 
initial populations of 1000, 2000, 4000, and 8000. What
can you say about the concavity of these curves? What is
the significance of the inflection points?

(d) Program a calculator or computer to use Euler’s method
with step size to estimate the population after
50 years if the initial population is 1000.

(e) If the initial population is 1000, write a formula for the
population after years. Use it to find the population after
50 years and compare with your estimate in part (d).

(f ) Graph the solution in part (e) and compare with the solu-
tion curve you sketched in part (c).

3. The Pacific halibut fishery has been modeled by the differen-
tial equation

dP

dt
� 0.05P � 0.0005P 2

t
k

0 t
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k � 0.0015

h � 1

t
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� ky�1 �
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M�

where is the biomass (the total mass of the members of 
the population) in kilograms at time (measured in years), 
the carrying capacity is estimated to be , and

per year.
(a) If , find the biomass a year later.
(b) How long will it take for the biomass to reach ?

4. Suppose a population satisfies

where is measured in years.
(a) What is the carrying capacity?
(b) What is ?
(c) When will the population reach 50% of the carrying

capacity?

5. Suppose a population grows according to a logistic model
with initial population 1000 and carrying capacity 10,000. If
the population grows to 2500 after one year, what will the
population be after another three years?

6. The table gives the number of yeast cells in a new labora tory
culture.

(a) Plot the data and use the plot to estimate the carrying
capacity for the yeast population.

(b) Use the data to estimate the initial relative growth rate.
(c) Find both an exponential model and a logistic model for

these data.
(d) Compare the predicted values with the observed values,

both in a table and with graphs. Comment on how well
your models fit the data.

(e) Use your logistic model to estimate the number of yeast
cells after 7 hours.

7. The population of the world was about 5.3 billion in 1990.
Birth rates in the 1990s ranged from 35 to 40 million per 
year and death rates ranged from 15 to 20 million per year.
Let’s assume that the carrying capacity for world population
is 100 billion.
(a) Write the logistic differential equation for these data.

(Because the initial population is small compared to the 

y�t�
t

M � 8 � 107 kg
k � 0.71

y�0� � 2 � 107 kg
4 � 107 kg

P�t�

dP

dt
� 0.4P � 0.001P 2 P�0� � 50

t

P��0�

9.4 Exercises

; Graphing calculator or computer required Computer algebra system required 1. Homework Hints available at stewartcalculus.comCAS

Time (hours) Yeast cells Time (hours) Yeast cells

0 18 10 509
2 39 12 597
4 80 14 640
6 171 16 664
8 336 18 672
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638 CHAPTER 9 DIFFERENTIAL EQUATIONS

carrying capacity, you can take to be an estimate of 
the initial relative growth rate.)

(b) Use the logistic model to estimate the world population 
in the year 2000 and compare with the actual population
of 6.1 billion.

(c) Use the logistic model to predict the world population in
the years 2100 and 2500.

(d) What are your predictions if the carrying capacity is 
50 billion?

8. (a) Make a guess as to the carrying capacity for the US 
population. Use it and the fact that the population was 
250 million in 1990 to formulate a logistic model for the
US population.

(b) Determine the value of in your model by using the 
fact that the population in 2000 was 275 million.

(c) Use your model to predict the US population in the years
2100 and 2200.

(d) Use your model to predict the year in which the US 
population will exceed 350 million.

9. One model for the spread of a rumor is that the rate of spread
is proportional to the product of the fraction of the popula-
 tion who have heard the rumor and the fraction who have not
heard the rumor.
(a) Write a differential equation that is satisfied by .
(b) Solve the differential equation.
(c) A small town has 1000 inhabitants. At 8 AM, 80 people

have heard a rumor. By noon half the town has heard it.
At what time will of the population have heard the
rumor?

10. Biologists stocked a lake with 400 fish and estimated the 
carrying capacity (the maximal population for the fish of that
species in that lake) to be 10,000. The number of fish tripled
in the first year.
(a) Assuming that the size of the fish population satisfies the

logistic equation, find an expression for the size of the
population after years.

(b) How long will it take for the population to increase 
to 5000?

11. (a) Show that if satisfies the logistic equation , then

(b) Deduce that a population grows fastest when it reaches
half its carrying capacity.

; 12. For a fixed value of (say ), the family of logistic
functions given by Equation 7 depends on the initial value 

and the proportionality constant . Graph several members
of this family. How does the graph change when varies?
How does it change when varies?

k

k

y

y

90%

t

P

d 2P

dt 2 � k 2P�1 �
P

M��1 �
2P

M �

M M � 10

P0 k
P0

k

4

; 13. The table gives the midyear population of Japan, in
thousands, from 1960 to 2005.

Use a graphing calculator to fit both an exponential function
and a logistic function to these data. Graph the data points
and both functions, and comment on the accuracy of the 
models. [Hint: Subtract 94,000 from each of the population
figures. Then, after obtaining a model from your calculator,
add 94,000 to get your final model. It might be helpful to
choose to correspond to 1960 or 1980.]

; 14. The table gives the midyear population of Spain, in thou-
sands, from 1955 to 2000.

Use a graphing calculator to fit both an exponential function
and a logistic function to these data. Graph the data points
and both functions, and comment on the accuracy of the 
models. [Hint: Subtract 29,000 from each of the population
figures. Then, after obtaining a model from your calculator,
add 29,000 to get your final model. It might be helpful to
choose to correspond to 1955 or 1975.]

15. Consider a population with constant relative birth
and death rates and , respectively, and a constant emi gra-
 tion rate , where , , and are positive constants. Assume
that . Then the rate of change of the population at time

is modeled by the differential equation

where 

(a) Find the solution of this equation that satisfies the initial
condition 

(b) What condition on will lead to an exponential expan-
sion of the population?

(c) What condition on will result in a constant popula tion? 
A population decline?

(d) In 1847, the population of Ireland was about 8 million
and the difference between the relative birth and death
rates was 1.6% of the population. Because of the potato
famine in the 1840s and 1850s, about 210,000 inhabi tants

t � 0

t � 0

P � P�t�
� �

m � � m
� 	 �

t

dP

dt
� kP � m k � � � �

P�0� � P0.
m

m

Year Population Year Population

1960 94,092 1985 120,754
1965 98,883 1990 123,537
1970 104,345 1995 125,341
1975 111,573 2000 126,700
1980 116,807 2005 127,417

Year Population Year Population

1955 29,319 1980 37,488
1960 30,641 1985 38,535
1965 32,085 1990 39,351
1970 33,876 1995 39,750
1975 35,564 2000 40,016
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SECTION 9.4 MODELS FOR POPULATION GROWTH 639

per year emigrated from Ireland. Was the population
expanding or declining at that time?

16. Let be a positive number. A differential equation of the
form

where is a positive constant, is called a doomsday equation
because the exponent in the expression is larger than
the exponent 1 for natural growth.
(a) Determine the solution that satisfies the initial condition

(b) Show that there is a finite time (doomsday) such
that .

(c) An especially prolific breed of rabbits has the growth
term . If 2 such rabbits breed initially and the war-
ren has 16 rabbits after three months, then when is
doomsday?

17. Let’s modify the logistic differential equation of Example 1
as follows:

(a) Suppose represents a fish population at time , 
where is measured in weeks. Explain the meaning of the
final term in the equation .

(b) Draw a direction field for this differential equation.
(c) What are the equilibrium solutions?
(d) Use the direction field to sketch several solution curves.

Describe what happens to the fish population for various
initial populations.

(e) Solve this differential equation explicitly, either by using
partial fractions or with a computer algebra system. Use
the initial populations 200 and 300. Graph the solutions
and compare with your sketches in part (d).

18. Consider the differential equation

as a model for a fish population, where is measured in
weeks and is a constant.
(a) Use a CAS to draw direction fields for various values 

of .
(b) From your direction fields in part (a), determine the 

values of for which there is at least one equilibrium 
sol ution. For what values of does the fish population
always die out?

(c) Use the differential equation to prove what you dis cov-
ered graphically in part (b).  

(d) What would you recommend for a limit to the weekly
catch of this fish population?

c

dy

dt
� ky 1�c

k
ky 1�c

y�0� � y0.
t � T

lim t l T � y�t� � 


My 1.01

dP

dt
� 0.08P�1 �

P

1000� � 15

tP�t�
t

��15�

CAS

CAS

dP

dt
� 0.08P�1 �

P

1000� � c

t
c

c

c
c

19. There is considerable evidence to support the theory that for
some species there is a minimum population such that the
species will become extinct if the size of the population falls
below . This condition can be incorporated into the logistic
equation by introducing the factor . Thus the mod-
ified logistic model is given by the differential equation

(a) Use the differential equation to show that any solution is
increasing if and decreasing if .

(b) For the case where , , and ,
draw a direction field and use it to sketch several solu-
tion curves. Describe what happens to the population for
various initial populations. What are the equilibrium 
solutions?

(c) Solve the differential equation explicitly, either by using
partial fractions or with a computer algebra system. Use
the initial population .

(d) Use the solution in part (c) to show that if , then
the species will become extinct. [Hint: Show that the
numerator in your expression for is 0 for some
value of .]

20. Another model for a growth function for a limited popu-
lation is given by the Gompertz function, which is a 
solution of the differential equation 

where is a constant and is the carrying capacity.
(a) Solve this differential equation.
(b) Compute .
(c) Graph the Gompertz growth function for ,

, and , and compare it with the logistic
function in Example 2. What are the similarities? What
are the differences?

(d) We know from Exercise 11 that the logistic function
grows fastest when . Use the Gompertz differ-
ential equation to show that the Gompertz function
grows fastest when .

21. In a seasonal-growth model, a periodic function of time is
introduced to account for seasonal variations in the rate of
growth. Such variations could, for example, be caused by 
seasonal changes in the availability of food.
(a) Find the solution of the seasonal-growth model

where , , and are positive constants.

; (b) By graphing the solution for several values of , , and 
, explain how the values of , , and affect the solu-

tion. What can you say about ?

dP

dt
� kP�1 �

P

M��1 �
m

P�
m � P � M 0 � P � m

k � 0.08 M � 1000 m � 200

P0

P0 � m

P�t�
t

dP

dt
� c ln�M

P �P

c M

lim t l 
 P�t�
M � 1000

P0 � 100 c � 0.05

P � M�2

P � M�e

dP

dt
� kP cos�rt � �� P�0� � P0

k r �

�1 � m�P�

m

m

rk
�rk�

lim t l 
 P�t�
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640 CHAPTER 9 DIFFERENTIAL EQUATIONS

22. Suppose we alter the differential equation in Exercise 21 as 
follows:

(a) Solve this differential equation with the help of a table of
integrals or a CAS.

; (b) Graph the solution for several values of , , and . How
do the values of , , and affect the solution? What can
you say about in this case?

dP

dt
� kP cos2�rt � �� P�0� � P0

�rk
�rk

lim t l 
 P�t�

23. Graphs of logistic functions (Figures 2 and 3) look suspi-
ciously similar to the graph of the hyperbolic tangent
function (Figure 3 in Section 6.7). Explain the similarity by
showing that the logistic function given by Equation 7 can be
written as 

where .  Thus the logistic function is really just
a shifted hyperbolic tangent.

P�t� � 1
2 M [1 � tanh(1

2 k� t � c�)]

c � �ln A��k

A first-order linear differential equation is one that can be put into the form

where and are continuous functions on a given interval. This type of equation occurs
frequently in various sciences, as we will see.

An example of a linear equation is because, for , it can be written
in the form

Notice that this differential equation is not separable because it’s impossible to factor the
expression for as a function of x times a function of y. But we can still solve the equa-
tion by noticing, by the Product Rule, that

and so we can rewrite the equation as

If we now integrate both sides of this equation, we get

or    

If we had been given the differential equation in the form of Equation 2, we would have
had to take the preliminary step of multiplying each side of the equation by x.

It turns out that every first-order linear differential equation can be solved in a similar
fashion by multiplying both sides of Equation 1 by a suitable function called an 
integrating factor. We try to find so that the left side of Equation 1, when multiplied by

, becomes the derivative of the product :

If we can find such a function , then Equation 1 becomes

dy

dx
� P�x�y � Q�x�

P Q

xy� � y � 2x x � 0

y� �
1

x
y � 2

y�

xy� � y � �xy��

�xy�� � 2x

xy � x 2 � C y � x �
C

x

I�x�
I

I�x� I�x�y

I�x�(y� � P�x�y) � (I�x�y)�

I

1

2

3

(I�x�y)� � I�x� Q�x�

9.5 Linear Equations
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SECTION 9.5 LINEAR EQUATIONS 641

Integrating both sides, we would have

so the solution would be

To find such an , we expand Equation 3 and cancel terms:

This is a separable differential equation for , which we solve as follows:

where . We are looking for a particular integrating factor, not the most general
one, so we take and use

Thus a formula for the general solution to Equation 1 is provided by Equation 4, where
is given by Equation 5. Instead of memorizing this formula, however, we just remember
the form of the integrating factor.

To solve the linear differential equation , multiply both sides by
the integrating factor and integrate both sides.

Solve the differential equation .

SOLUTION The given equation is linear since it has the form of Equation 1 with
and . An integrating factor is

Multiplying both sides of the differential equation by , we get

or

I�x�y � y I�x� Q�x� dx � C

y�x� �
1

I�x� 	y I�x� Q�x� dx � C

I

I�x�y� � I�x� P�x�y � (I�x�y)� � I��x�y � I�x�y�

I�x� P�x� � I��x�

I

y
dI

I
� y P�x� dx

ln � I � � y P�x� dx

I � Ae x P�x� dx

A � eC

A � 1

I�x� � e x P�x� dx

I

y� � P�x�y � Q�x�
I�x� � e x P�x� dx

dy

dx
� 3x 2 y � 6x 2

P�x� � 3x 2 Q�x� � 6x 2

I�x� � e x 3x 2 dx � ex3

ex3

ex3 dy

dx
� 3x 2ex3

y � 6x 2ex3

d

dx
�e x3

y� � 6x 2ex3

4

5

v EXAMPLE 1
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642 CHAPTER 9 DIFFERENTIAL EQUATIONS

Integrating both sides, we have

Find the solution of the initial-value problem

SOLUTION We must first divide both sides by the coefficient of to put the differential
equation into standard form:

The integrating factor is

Multiplication of Equation 6 by gives

Then

and so

Since , we have

Therefore the solution to the initial-value problem is

Solve .

SOLUTION The given equation is in the standard form for a linear equation. Multiplying
by the integrating factor

we get

or

Therefore

ex3

y � y 6x 2ex3

dx � 2ex3

� C

y � 2 � Ce�x3

x 2y� � xy � 1 x 	 0 y�1� � 2

y�

y� �
1

x
y �

1

x 2 x 	 0

I�x� � e x �1�x� dx � e ln x � x

x

xy� � y �
1

x
or �xy�� �

1

x

xy � y
1

x
dx � ln x � C

y �
ln x � C

x

y�1� � 2

2 �
ln 1 � C

1
� C

y �
ln x � 2

x

y� � 2xy � 1

e x 2x dx � ex2

ex2

y� � 2xe x2

y � ex2

(ex2

y)� � ex2

ex2

y � y ex2

dx � C

v EXAMPLE 2

6

EXAMPLE 3

The solution of the initial-value problem in 
Example 2 is shown in Figure 2.

FIGURE 2

(1, 2)

5

_5

0 4

FIGURE 1 

6

_3

_1.5 1.8

C=2

C=1

C=_2

C=_1

C=0

Figure 1 shows the graphs of several members of
the family of solutions in Example 1. Notice that
they all approach as .x l 
2
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SECTION 9.5 LINEAR EQUATIONS 643

Recall from Section 7.5 that can’t be expressed in terms of elementary functions.
Nonetheless, it’s a perfectly good function and we can leave the answer as 

Another way of writing the solution is

(Any number can be chosen for the lower limit of integration.)

Application to Electric Circuits
In Section 9.2 we considered the simple electric circuit shown in Figure 4: An electro -
motive force (usually a battery or generator) produces a voltage of volts (V) and a
current of amperes (A) at time . The circuit also contains a resistor with a resistance
of ohms ( ) and an inductor with an inductance of henries (H).

Ohm’s Law gives the drop in voltage due to the resistor as . The voltage drop due to
the inductor is . One of Kirchhoff’s laws says that the sum of the voltage drops is
equal to the supplied voltage . Thus we have

which is a first-order linear differential equation. The solution gives the current at time .

Suppose that in the simple circuit of Figure 4 the resistance is and
the inductance is 4 H. If a battery gives a constant voltage of 60 V and the switch is
closed when so the current starts with , find (a) , (b) the current after
1 s, and (c) the limiting value of the current.

SOLUTION
(a) If we put , , and in Equation 7, we obtain the initial-value
problem

or

Multiplying by the integrating factor , we get

x ex2

dx

y � e�x2

y ex2

dx � Ce�x2

y � e�x2

y
x

0
e t 2

dt � Ce�x2

E�t�
I�t� t

R � L
RI

L�dI�dt�
E�t�

L
dI

dt
� RI � E�t�

I t

12 �

t � 0 I�0� � 0 I�t�

L � 4 R � 12 E�t� � 60

4 
dI

dt
� 12I � 60 I�0� � 0

dI

dt
� 3I � 15 I�0� � 0

e x 3 dt � e 3t

e 3t dI

dt
� 3e 3tI � 15e 3t

d

dt
�e 3tI� � 15e 3t

e 3tI � y 15e 3t dt � 5e 3t � C

I�t� � 5 � Ce�3t

7

v EXAMPLE 4

Even though the solutions of the differential
equation in Example 3 are expressed in terms of
an integral, they can still be graphed by a com-
puter algebra system (Figure 3).

FIGURE 3

C=2

C=_2

2.5

_2.5

_2.5 2.5

FIGURE 4

R

E

switch

L

The differential equation in Exam ple 4 is both
linear and separable, so an alternative method is
to solve it as a separable equation (Example 4 in
Section 9.3). If we replace the battery by a gen-
erator, however, we get an equation that is lin-
ear but not sepa rable (Example 5).
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644 CHAPTER 9 DIFFERENTIAL EQUATIONS

Since , we have , so and

(b) After 1 second the current is

(c) The limiting value of the current is given by

Suppose that the resistance and inductance remain as in Example 4 
but, instead of the battery, we use a generator that produces a variable voltage of

volts. Find .

SOLUTION This time the differential equation becomes

The same integrating factor gives

Using Formula 98 in the Table of Integrals, we have

Since , we get

so

I�0� � 0 5 � C � 0 C � �5

I�t� � 5�1 � e�3t �

I�1� � 5�1 � e�3� � 4.75 A

lim
t l �

I�t� � lim
t l �

5�1 � e�3t � � 5 � 5 lim
t l �

e�3t � 5 � 0 � 5

E�t� � 60 sin 30t I�t�

4
dI

dt
� 12I � 60 sin 30t or

dI

dt
� 3I � 15 sin 30t

e 3t

d

dt
�e 3tI � � e 3t dI

dt
� 3e 3tI � 15e 3t sin 30t

e 3tI � y 15e 3t sin 30t dt � 15 
e 3t

909
 �3 sin 30t � 30 cos 30t� � C

I � 5
101 �sin 30t � 10 cos 30t� � Ce�3t

I�0� � 0

�
50
101 � C � 0

I�t� � 5
101 �sin 30t � 10 cos 30t� �

50
101 e�3t

EXAMPLE 5
FIGURE 5

6

0 2.5

y=5

Figure 5 shows how the current in Example 4
approaches its limiting value.

Figure 6 shows the graph of the current 
when the battery is replaced by a generator.

FIGURE 6

2

_2

2.50

; Graphing calculator or computer required 1. Homework Hints available at stewartcalculus.com

1–4 Determine whether the differential equation is linear.

1. 2.

3. 4.

5–14 Solve the differential equation.

5. 6.

7. 8.

9. 10.

x � y� � xy y� � xy 2 � sx

y� �
1

x
�

1

y
y sin x � x 2y� � x

y� � y � 1 y� � y � e x

y� � x � y 4x 3y � x 4y� � sin3x

xy� � y � sx y� � y � sin�e x�

11. 12.

13. ,  

14.

15–20 Solve the initial-value problem.

15. ,  

sin x
dy

dx
� �cos x�y � sin�x 2� x

dy

dx
� 4y � x 4e x

�1 � t�
du

dt
� u � 1 � t t � 0

t ln t
dr

dt
� r � te t

x 2y� � 2xy � ln x y�1� � 2

9.5 Exercises
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16. ,  

17. ,  ,  

18. ,  ,  

19. ,  

20. ,  

; 21–22 Solve the differential equation and use a graphing cal cula-
tor or computer to graph several members of the family of solu-
tions. How does the solution curve change as varies?

21. 22.

23. A Bernoulli differential equation (named after James
Bernoulli) is of the form

Observe that, if or , the Bernoulli equation is linear. 
For other values of , show that the substitution
transforms the Bernoulli equation into the linear equation

24–25 Use the method of Exercise 23 to solve the differential
equation.

24. 25.

26. Solve the second-order equation by 
making the substitution .

27. In the circuit shown in Figure 4, a battery supplies a constant
voltage of 40 V, the inductance is 2 H, the resistance is ,
and .
(a) Find .
(b) Find the current after s.

28. In the circuit shown in Figure 4, a generator supplies a volt-
age of volts, the inductance is H, the
resistance is , and A.
(a) Find .
(b) Find the current after s.

; (c) Use a graphing device to draw the graph of the current
function.

29. The figure shows a circuit containing an electromotive force, 
a capacitor with a capacitance of farads (F), and a resistor
with a resistance of ohms ( ). The voltage drop across the
capacitor is , where is the charge (in coulombs), so in 

t 3 dy

dt
� 3t 2y � cos t y��� � 0

t
du

dt
� t 2 � 3u u�2� � 4

2xy� � y � 6x x � 0 y�4� � 20

xy� � y � x 2 sin x y��� � 0

�x 2 � 1�
dy

dx
� 3x�y � 1� � 0 y�0� � 2

C

xy� � 2y � e x xy� � x 2 � 2y

t � 0

dy

dx
� P�x�y � Q�x�y n

n � 0 1
n u � y 1�n

du

dx
� �1 � n�P�x�u � �1 � n�Q�x�

xy� � y � �xy 2 y� �
2

x
y �

y 3

x 2

xy� � 2y� � 12x 2

u � y�

10 	
I�0� � 0

I�t�
0.1

E�t� � 40 sin 60t 1
20 	 I�0� � 1

I�t�
0.1

C
R 	

Q�C Q

this case Kirchhoff’s Law gives

But (see Example 3 in Section 2.7), so we have

Suppose the resistance is , the capacitance is F, a 
battery gives a constant voltage of 60 V, and the initial charge
is C. Find the charge and the current at time .

30. In the circuit of Exercise 29, , , 
, and . Find the charge and the 

current at time .

31. Let be the performance level of someone learning a skill 
as a function of the training time . The graph of is called a
learning curve. In Exercise 15 in Section 9.1 we proposed
the differential equation

as a reasonable model for learning, where is a positive con-
stant. Solve it as a linear differential equation and use your
solution to graph the learning curve.

32. Two new workers were hired for an assembly line. Jim pro-
cessed 25 units during the first hour and 45 units during the
second hour. Mark processed 35 units during the first hour
and 50 units the second hour. Using the model of Exercise 31
and assuming that , estimate the maximum number
of units per hour that each worker is capable of processing.

33. In Section 9.3 we looked at mixing problems in which the 
volume of fluid remained constant and saw that such prob-
lems give rise to separable equations. (See Example 6 in that
section.) If the rates of flow into and out of the system are
different, then the volume is not constant and the resulting
differential equation is linear but not separable.

A tank contains 100 L of water. A solution with a salt con-
centration of is added at a rate of . The 
solution is kept mixed and is drained from the tank at a rate 
of . If is the amount of salt (in kilograms) after 

minutes, show that satisfies the differential equation

Solve this equation and find the concentration after 
20 minutes.

34. A tank with a capacity of 400 L is full of a mixture of water
and chlorine with a concentration of 0.05 g of chlorine per 

RI �
Q

C
� E�t�

I � dQ�dt

R
dQ

dt
�

1

C
Q � E�t�

5 	 0.05

Q�0� � 0 t

C

E R

R � 2 	 C � 0.01 F
Q�0� � 0 E�t� � 10 sin 60t

t

P�t�
t P

dP

dt
� k�M � P�t��

k

P�0� � 0

0.4 kg�L 5 L�min

3 L�min y�t�
t y

dy

dt
� 2 �

3y

100 � 2t
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646 CHAPTER 9 DIFFERENTIAL EQUATIONS

liter. In order to reduce the concentration of chlorine, fresh
water is pumped into the tank at a rate of . The mixture is
kept stirred and is pumped out at a rate of . Find the
amount of chlorine in the tank as a function of time.

35. An object with mass is dropped from rest and we assume
that the air resistance is proportional to the speed of the object.
If is the distance dropped after seconds, then the speed is

and the acceleration is . If is the accelera-
tion due to gravity, then the downward force on the object is

, where is a positive constant, and Newton’s Second
Law gives

(a) Solve this as a linear equation to show that

(b) What is the limiting velocity?
(c) Find the distance the object has fallen after seconds.

36. If we ignore air resistance, we can conclude that heavier
objects fall no faster than lighter objects. But if we take air
resistance into account, our conclusion changes. Use the
expression for the velocity of a falling object in Exercise 35(a)
to find and show that heavier objects do fall faster than
lighter ones.

37. (a) Show that the substitution transforms the logistic
differential equation into the linear 
differential equation

4 L�s
10 L�s

m

s�t� t
v � s��t� a � v��t� t

mt � cv c

m
dv

dt
� mt � cv

v �
mt

c
�1 � e�ct�m �

t

dv�dm

z � 1�P
P� � kP�1 � P�M�

z� � kz �
k

M

(b) Solve the linear differential equation in part (a) and 
thus obtain an expression for . Compare with Equa-
tion 9.4.7.

38. To account for seasonal variation in the logistic differential
equation we could allow and to be functions of :

(a) Verify that the substitution transforms this
equation into the linear equation

(b) Write an expression for the solution of the linear equa-
tion in part (a) and use it to show that if the carrying
capacity is constant, then

Deduce that if , then .
[This will be true if with ,
which describes a positive intrinsic growth rate with a
periodic seasonal variation.]

(c) If is constant but varies, show that

and use l’Hospital’s Rule to deduce that if has a
limit as , then has the same limit.

P�t�

k M t

dP

dt
� k�t�P�1 �

P

M�t�	
z � 1�P

dz

dt
� k�t�z �

k�t�
M�t�

M

x
�

0 k�t� dt � � lim t l � P�t� � M
k�t� � k0 � a cos bt k0 � 0

k M

z�t� � e�kt
y

t

0

ke ks

M�s�
ds � Ce�kt

M�t�
tl� P�t�

P�t� �
M

1 � CMe �x k�t� dt

We have looked at a variety of models for the growth of a single species that lives alone in
an environment. In this section we consider more realistic models that take into account 
the interaction of two species in the same habitat. We will see that these models take the 
form of a pair of linked differential equations.

We first consider the situation in which one species, called the prey, has an ample food
supply and the second species, called the predators, feeds on the prey. Examples of prey 
and predators include rabbits and wolves in an isolated forest, food fish and sharks, aphids
and ladybugs, and bacteria and amoebas. Our model will have two dependent variables and
both are functions of time. We let be the number of prey (using R for rabbits) and
be the number of predators (with W for wolves) at time t.

In the absence of predators, the ample food supply would support exponential growth 
of the prey, that is,

In the absence of prey, we assume that the predator population would decline at a rate pro-

R�t� W�t�

dR

dt
� kR where k is a positive constant

9.6 Predator-Prey Systems
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SECTION 9.6 PREDATOR-PREY SYSTEMS 647

portional to itself, that is,

With both species present, however, we assume that the principal cause of death among the
prey is being eaten by a predator, and the birth and survival rates of the predators depend
on their available food supply, namely, the prey. We also assume that the two species
encounter each other at a rate that is proportional to both populations and is therefore pro-
portional to the product RW. (The more there are of either population, the more encoun-
ters there are likely to be.) A system of two differential equations that incorporates these
assumptions is as follows:

where k, r, a, and b are positive constants. Notice that the term �aRW decreases the nat-
ural growth rate of the prey and the term bRW increases the natural growth rate of the 
predators.

The equations in are known as the predator-prey equations, or the Lotka-Volterra
equations. A solution of this system of equations is a pair of functions and that
describe the populations of prey and predator as functions of time. Because the system is
coupled (R and W occur in both equations), we can’t solve one equation and then the other;
we have to solve them simultaneously. Unfortunately, it is usually impossible to find 
explicit formulas for R and W as functions of t. We can, however, use graphical methods 
to analyze the equations.

Suppose that populations of rabbits and wolves are described by the
Lotka-Volterra equations with , , , and . The
time is measured in months.
(a) Find the constant solutions (called the equilibrium solutions) and interpret
the answer.
(b) Use the system of differential equations to find an expression for .
(c) Draw a direction field for the resulting differential equation in the RW-plane. Then
use that direction field to sketch some solution curves.
(d) Suppose that, at some point in time, there are 1000 rabbits and 40 wolves. Draw the
corresponding solution curve and use it to describe the changes in both population levels.
(e) Use part (d) to make sketches of R and W as functions of t.

SOLUTION
(a) With the given values of k, a, r, and b, the Lotka-Volterra equations become

Both and will be constant if both derivatives are 0, that is,

1
dR

dt
� kR � aRW

dW

dt
� �rW � bRW

R�t� W�t�

k � 0.08 a � 0.001 r � 0.02 b � 0.00002
t

dW�dR

dR

dt
� 0.08R � 0.001RW

dW

dt
� �0.02W � 0.00002RW

v EXAMPLE 1

R W

R� � R�0.08 � 0.001W� � 0

W� � W��0.02 � 0.00002R� � 0

dW

dt
� �rW where r is a positive constant

1

1

W represents the predator.

R represents the prey.

The Lotka-Volterra equations were proposed 
as a model to explain the variations in the
shark and food-fish populations in the 
Adriatic Sea by the Italian mathematician 
Vito Volterra (1860–1940).
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648 CHAPTER 9 DIFFERENTIAL EQUATIONS

One solution is given by and . (This makes sense: If there are no rabbits or
wolves, the populations are certainly not going to increase.) The other constant solution is

So the equilibrium populations consist of 80 wolves and 1000 rabbits. This means that
1000 rabbits are just enough to support a constant wolf population of 80. There are nei-
ther too many wolves (which would result in fewer rabbits) nor too few wolves (which
would result in more rabbits).

(b) We use the Chain Rule to eliminate t:

so

(c) If we think of as a function of , we have the differential equation

We draw the direction field for this differential equation in Figure 1 and we use it to
sketch several solution curves in Figure 2. If we move along a solution curve, we
observe how the relationship between R and W changes as time passes. Notice that the
curves appear to be closed in the sense that if we travel along a curve, we always return
to the same point. Notice also that the point (1000, 80) is inside all the solution curves.
That point is called an equilibrium point because it corresponds to the equilibrium solu-
tion , .

When we represent solutions of a system of differential equations as in Figure 2, we
refer to the RW-plane as the phase plane, and we call the solution curves phase trajec-
tories. So a phase trajectory is a path traced out by solutions as time goes by. A
phase portrait consists of equilibrium points and typical phase trajectories, as shown in
Figure 2.

W � 0R � 0

R �
0.02

0.00002
� 1000W �

0.08

0.001
� 80

dW

dt
�

dW

dR

dR

dt

dW

dR
�

dW

dt

dR

dt

�
�0.02W � 0.00002RW

0.08R � 0.001RW

RW

dW

dR
�

�0.02W � 0.00002RW

0.08R � 0.001RW

W � 80R � 1000

0 R

W

1000

150

100

50

2000 3000

FIGURE 1 Direction field for the predator-prey system FIGURE 2 Phase portrait of the system
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SECTION 9.6 PREDATOR-PREY SYSTEMS 649

(d) Starting with 1000 rabbits and 40 wolves corresponds to drawing the solution curve
through the point . Figure 3 shows this phase trajectory with the direction
field removed. Starting at the point at time and letting t increase, do we move
clockwise or counterclockwise around the phase trajectory? If we put and

in the first differential equation, we get

Since , we conclude that is increasing at and so we move counter-
clockwise around the phase trajectory.

We see that at  there aren’t enough wolves to maintain a balance between the popu-
lations, so the rabbit population increases. That results in more wolves and eventually
there are so many wolves that the rabbits have a hard time avoiding them. So the number
of rabbits begins to decline (at , where we estimate that R reaches its maximum popu-
lation of about 2800). This means that at some later time the wolf population starts to
fall (at , where and ). But this benefits the rabbits, so their popula-
tion later starts to increase (at , where and ). As a consequence, the
wolf population eventually starts to increase as well. This happens when the populations
return to their initial values of and , and the entire cycle begins again.

(e) From the description in part (d) of how the rabbit and wolf populations rise and fall,
we can sketch the graphs of and . Suppose the points , , and in Figure 3
are reached at times , , and . Then we can sketch graphs of and as in Figure 4.

P0�1000, 40�
t � 0P0

R � 1000
W � 40

dR

dt
� 0.08�1000� � 0.001�1000��40� � 80 � 40 � 40

P0RdR�dt � 0

FIGURE 3
Phase trajectory through (1000, 40) 
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FIGURE 4 Graphs of the rabbit and wolf populations as functions of time
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In Module 9.6 you can change the 
coefficients in the Lotka-Volterra equations and
observe the resulting changes in the phase 
trajectory and graphs of the rabbit and wolf 
populations.

TEC

650 CHAPTER 9 DIFFERENTIAL EQUATIONS

To make the graphs easier to compare, we draw the graphs on the same axes but with
different scales for and , as in Figure 5. Notice that the rabbits reach their maximum
populations about a quarter of a cycle before the wolves.

An important part of the modeling process, as we discussed in Section 1.2, is to inter-
pret our mathematical conclusions as real-world predictions and to test the predictions
against real data. The Hudson’s Bay Company, which started trading in animal furs in
Canada in 1670, has kept records that date back to the 1840s. Figure 6 shows graphs of the
number of pelts of the snowshoe hare and its predator, the Canada lynx, traded by the com-
pany over a 90-year period. You can see that the coupled oscillations in the hare and lynx
populations predicted by the Lotka-Volterra model do actually occur and the period of 
these cycles is roughly 10 years.

Although the relatively simple Lotka-Volterra model has had some success in explain-
ing and predicting coupled populations, more sophisticated models have also been pro-
posed. One way to modify the Lotka-Volterra equations is to assume that, in the absence 
of predators, the prey grow according to a logistic model with carrying capacity M. Then the
Lotka-Volterra equations are replaced by the system of differential equations

This model is investigated in Exercises 11 and 12.

R W

FIGURE 5
Comparison of the rabbi

and wolf populations
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Relative abundance of hare and lynx
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SECTION 9.6 PREDATOR-PREY SYSTEMS 651

1. For each predator-prey system, determine which of the vari -
ables, or , represents the prey population and which rep-
resents the predator population. Is the growth of the prey
restricted just by the predators or by other factors as well? Do
the predators feed only on the prey or do they have additional
food sources? Explain.

(a)

(b)

2. Each system of differential equations is a model for two
species that either compete for the same resources or cooperate
for mutual benefit (flowering plants and insect pollinators, for
instance). Decide whether each system describes competition
or cooperation and explain why it is a reasonable model. (Ask
yourself what effect an increase in one species has on the
growth rate of the other.)

(a)

(b)

3. The system of differential equations

is a model for the populations of two species.
(a) Does the model describe cooperation, or competition, 

or a predator-prey relationship?
(b) Find the equilibrium solutions and explain their

significance.

4. Flies, frogs, and crocodiles coexist in an environment. To sur-
vive, frogs need to eat flies and crocodiles need to eat frogs. In

yx

dx

dt
� �0.05x � 0.0001xy

dy

dt
� 0.1y � 0.005xy

dx

dt
� 0.2x � 0.0002x 2 � 0.006xy

dy

dt
� �0.015y � 0.00008xy

dx

dt
� 0.12x � 0.0006x 2 � 0.00001xy

dy

dt
� 0.08x � 0.00004xy

dx

dt
� 0.15x � 0.0002x 2 � 0.0006xy

dy

dt
� 0.2y � 0.00008y 2 � 0.0002xy

dx

dt
� 0.5x � 0.004x 2 � 0.001xy

dy

dt
� 0.4y � 0.001y 2 � 0.002xy

the absence of frogs, the fly population will grow exponentially
and the crocodile population will decay exponentially. In the
absence of crocodiles and flies, the frog population will decay
exponentially. If , , and represent the populations
of these three species at time , write a system of differential
equations as a model for their evolution. If the constants in
your equation are all positive, explain why you have used plus
or minus signs.

5–6 A phase trajectory is shown for populations of rabbits and
foxes .
(a) Describe how each population changes as time goes by.
(b) Use your description to make a rough sketch of the graphs of R

and F as functions of time.

5.

6.

P�t� Q�t� R�t�
t

�R�
�F�

t=0
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80
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40

9.6 Exercises

Computer algebra system required 1. Homework Hints available at stewartcalculus.comCAS

Models have also been proposed to describe and predict population levels of two or more
species that compete for the same resources or cooperate for mutual benefit. Such models
are explored in Exercises 2–4.
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7–8 Graphs of populations of two species are shown. Use them to
sketch the corresponding phase trajectory.

7.

8.

9. In Example 1(b) we showed that the rabbit and wolf popula -
tions satisfy the differential equation

By solving this separable differential equation, show that

where is a constant.
It is impossible to solve this equation for as an explicit

function of (or vice versa). If you have a computer algebra
system that graphs implicitly defined curves, use this equation
and your CAS to draw the solution curve that passes through
the point and compare with Figure 3.

10. Populations of aphids and ladybugs are modeled by the 
equations

(a) Find the equilibrium solutions and explain their 
significance.

(b) Find an expression for .

species 1
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0 t

y
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dR
�

�0.02W � 0.00002RW

0.08R � 0.001RW

R0.02W 0.08

e 0.00002Re 0.001W � C

C
W

R

�1000, 40�

dA

dt
� 2A � 0.01AL

dL

dt
� �0.5L � 0.0001AL

dL�dA

(c) The direction field for the differential equation in part (b) is
shown. Use it to sketch a phase portrait. What do the phase
trajectories have in common?

(d) Suppose that at time there are 1000 aphids and
200 ladybugs. Draw the corresponding phase trajectory and
use it to describe how both populations change.

(e) Use part (d) to make rough sketches of the aphid and lady-
bug populations as functions of . How are the graphs
related to each other?

11. In Example 1 we used Lotka-Volterra equations to model popu-
lations of rabbits and wolves. Let’s modify those equations as
follows:

(a) According to these equations, what happens to the rabbit
population in the absence of wolves?

(b) Find all the equilibrium solutions and explain their 
significance.

(c) The figure shows the phase trajectory that starts at the point
. Describe what eventually happens to the rabbit

and wolf populations.

(d) Sketch graphs of the rabbit and wolf populations as
functions of time.
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CHAPTER 9 REVIEW 653

12. In Exercise 10 we modeled populations of aphids and lady-
bugs with a Lotka-Volterra system. Suppose we modify those
equations as follows:

(a) In the absence of ladybugs, what does the model predict
about the aphids?

dA

dt
� 2A�1 � 0.0001A� � 0.01AL

CAS

dL

dt
� �0.5L � 0.0001AL

(b) Find the equilibrium solutions.
(c) Find an expression for .
(d) Use a computer algebra system to draw a direction field

for the differential equation in part (c). Then use the
direction field to sketch a phase portrait. What do the
phase trajectories have in common?

(e) Suppose that at time there are 1000 aphids and
200 ladybugs. Draw the corresponding phase trajectory
and use it to describe how both populations change.

(f ) Use part (e) to make rough sketches of the aphid and 
ladybug populations as functions of . How are the
graphs related to each other?

dL�dA

t � 0

t

9 Review

1. (a) What is a differential equation?
(b) What is the order of a differential equation?
(c) What is an initial condition?

2. What can you say about the solutions of the equation
just by looking at the differential equation?

3. What is a direction field for the differential equation
?

4. Explain how Euler’s method works.

5. What is a separable differential equation? How do you solve it?

6. What is a first-order linear differential equation? How do you
solve it?

y� � x 2 � y 2

y� � F�x, y�

7. (a) Write a differential equation that expresses the law of natural
growth. What does it say in terms of relative growth rate?

(b) Under what circumstances is this an appropriate model for
population growth?

(c) What are the solutions of this equation?

8. (a) Write the logistic equation.
(b) Under what circumstances is this an appropriate model for

population growth?

9. (a) Write Lotka-Volterra equations to model populations of
food fish and sharks .

(b) What do these equations say about each population in the
absence of the other?

�F� �S�

Concept Check

Determine whether the statement is true or false. If it is true, explain why. 
If it is false, explain why or give an example that disproves the statement.

1. All solutions of the differential equation are
decreasing functions.

2. The function is a solution of the differential
equation .

3. The equation is separable.

4. The equation is separable.

y� � �1 � y 4

f �x� � �ln x��x
x 2 y� � xy � 1

y� � x � y

y� � 3y � 2x � 6xy � 1

5. The equation is linear.

6. The equation is linear.

7. If is the solution of the initial-value problem

then .

dy

dt
� 2y�1 �

y

5	 y�0� � 1

lim t l � y � 5

y� � xy � e y

y

e xy� � y

True-False Quiz
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; Graphing calculator or computer required

1. (a) A direction field for the differential equation
is shown. Sketch the graphs of the

solutions that satisfy the given initial conditions.
(i) (ii)

(iii) (iv)
(b) If the initial condition is , for what values of 

is finite? What are the equilibrium solutions?

2. (a) Sketch a direction field for the differential equation
. Then use it to sketch the four solutions that 

satisfy the initial conditions , , 
, and .

(b) Check your work in part (a) by solving the differential
equation explicitly. What type of curve is each solution
curve?

3. (a) A direction field for the differential equation 
is shown. Sketch the solution of the 

initial-value problem

Use your graph to estimate the value of .

y� � y�y � 2��y � 4�

y�0� � �0.3 y�0� � 1
y�0� � 3 y�0� � 4.3

y�0� � c
c lim t l � y�t�

0 x

y

1 2

2

4

6

y� � x�y
y�0� � 1 y�0� � �1

y�2� � 1 y��2� � 1

y� � x 2 � y 2

y� � x 2 � y 2 y�0� � 1

y�0.3�

0 x

y

1 2_1_2

1

2

_1

_2

3_3

3

_3

(b) Use Euler’s method with step size 0.1 to estimate ,
where is the solution of the initial-value problem in
part (a). Compare with your estimate from part (a).

(c) On what lines are the centers of the horizontal line
segments of the direction field in part (a) located? What
happens when a solution curve crosses these lines?

4. (a) Use Euler’s method with step size 0.2 to estimate ,
where is the solution of the initial-value problem

(b) Repeat part (a) with step size 0.1.
(c) Find the exact solution of the differential equation and

compare the value at 0.4 with the approximations in
parts (a) and (b).

5–8 Solve the differential equation.

5. 6.

7. 8.

9–11 Solve the initial-value problem.

9. ,  

10. ,  

11. ,  

; 12. Solve the initial-value problem , , and
graph the solution.

13–14 Find the orthogonal trajectories of the family of curves.

13. 14.

15. (a) Write the solution of the initial-value problem

and use it to find the population when .
(b) When does the population reach 1200?

16. (a) The population of the world was 5.28 billion in 1990 and
6.07 billion in 2000. Find an exponential model for these
data and use the model to predict the world population in
the year 2020.

(b) According to the model in part (a), when will the world
population exceed 10 billion?

(c) Use the data in part (a) to find a logistic model for the pop-
ulation. Assume a carrying capacity of 100 billion. Then

y�0.3�
y�x�

y�0.4�
y�x�

y� � 2xy 2 y�0� � 1

y� � xe�sin x � y cos x
dx

dt
� 1 � t � x � tx

2ye y2

y� � 2x � 3sx x 2y� � y � 2x 3e�1�x

dr

dt
� 2tr � r r�0� � 5

�1 � cos x�y� � �1 � e�y�sin x y�0� � 0

xy� � y � x ln x y�1� � 2

y� � 3x 2e y y�0� � 1

y � ke x y � e kx

dP

dt
� 0.1P�1 �

P

2000� P�0� � 100

t � 20

Exercises
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CHAPTER 9 REVIEW 655

use the logistic model to predict the population in 2020.
Compare with your prediction from the exponential model.

(d) According to the logistic model, when will the world popu-
lation exceed 10 billion? Compare with your prediction in
part (b).

17. The von Bertalanffy growth model is used to predict the length
of a fish over a period of time. If is the largest length

for a species, then the hypothesis is that the rate of growth in
length is proportional to , the length yet to be achieved.
(a) Formulate and solve a differential equation to find an

expression for .
(b) For the North Sea haddock it has been determined that

, cm, and the constant of propor tion-
ality is . What does the expression for become with
these data?

18. A tank contains 100 L of pure water. Brine that contains 
0.1 kg of salt per liter enters the tank at a rate of 10 L�min. 
The solution is kept thoroughly mixed and drains from the 
tank at the same rate. How much salt is in the tank after 
6 minutes?

19. One model for the spread of an epidemic is that the rate of
spread is jointly proportional to the number of infected 
people and the number of uninfected people. In an isolated
town of 5000 inhabitants, 160 people have a disease at the
beginning of the week and 1200 have it at the end of the week.
How long does it take for of the population to become
infected?

20. The Brentano-Stevens Law in psychology models the way that
a subject reacts to a stimulus. It states that if represents the
reaction to an amount of stimulus, then the relative rates of
increase are proportional:

where is a positive constant. Find as a function of .

21. The transport of a substance across a capillary wall in lung
physiology has been modeled by the differential equation

where is the hormone concentration in the bloodstream, is
time, is the maximum transport rate, is the volume of the
capillary, and is a positive constant that measures the affinity
between the hormones and the enzymes that assist the process.
Solve this differential equation to find a rela tionship between 

and .

22. Populations of birds and insects are modeled by the equations

(a) Which of the variables, or , represents the bird popula-
tion and which represents the insect population? Explain.

L�t� L�

L� � L

L�t�

L� � 53 cm L�0� � 10
0.2 L�t�

80%

R
S

1

R

dR

dt
�

k

S

dS

dt

SRk

dh

dt
� �

R

V � h

k � h�
th

VR
k

th

dx

dt
� 0.4x � 0.002xy

dy

dt
� �0.2y � 0.000008xy

yx

(b) Find the equilibrium solutions and explain their 
significance.

(c) Find an expression for .
(d) The direction field for the differential equation in part (c) is

shown. Use it to sketch the phase trajectory corresponding
to initial populations of 100 birds and 40,000 insects. Then
use the phase trajectory to describe how both populations
change.

(e) Use part (d) to make rough sketches of the bird and insect
populations as functions of time. How are these graphs
related to each other?

23. Suppose the model of Exercise 22 is replaced by the equations

(a) According to these equations, what happens to the insect
population in the absence of birds?

(b) Find the equilibrium solutions and explain their 
significance.

(c) The figure shows the phase trajectory that starts with
100 birds and 40,000 insects. Describe what eventually
happens to the bird and insect populations.

(d) Sketch graphs of the bird and insect populations as
functions of time.
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656 CHAPTER 9 DIFFERENTIAL EQUATIONS

24. Barbara weighs 60 kg and is on a diet of 1600 calories per day,
of which 850 are used automatically by basal metabolism. She
spends about 15 cal�kg�day times her weight doing exercise. If
1 kg of fat contains 10,000 cal and we assume that the storage
of calories in the form of fat is efficient, formulate a dif-
ferential equation and solve it to find her weight as a function
of time. Does her weight ultimately approach an equilibrium
weight?

25. When a flexible cable of uniform density is suspended between
two fixed points and hangs of its own weight, the shape

of the cable must satisfy a differential equation of the
form

100%

y � f �x�

d 2y

dx 2 � k�1 � � dy

dx�2 

where is a positive constant. Consider the cable shown in the
figure.
(a) Let in the differential equation. Solve the result-

ing first-order differential equation (in ), and then integrate
to find .

(b) Determine the length of the cable.

z � dy�dx
z

y

xb0

y

_b

(0, a)

(b, h)(_b, h)

k
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1. Find all functions such that is continuous and

2. A student forgot the Product Rule for differentiation and made the mistake of thinking 
that . However, he was lucky and got the correct answer. The function that he
used was and the domain of his problem was the interval . What was the
function ?

3. Let be a function with the property that , , and 
for all real numbers and . Show that for all and deduce that .

4. Find all functions that satisfy the equation

5. Find the curve such that , , , and the area under the graph
of from to is proportional to the power of .

6. A subtangent is a portion of the -axis that lies directly beneath the segment of a tangent line
from the point of contact to the -axis. Find the curves that pass through the point and
whose subtangents all have length .

7. A peach pie is taken out of the oven at 5:00 PM. At that time it is piping hot, . 
At 5:10 PM its temperature is ; at 5:20 PM it is . What is the temperature of the
room?

8. Snow began to fall during the morning of February 2 and continued steadily into the after-
noon. At noon a snowplow began removing snow from a road at a constant rate. The plow
traveled 6 km from noon to 1 PM but only 3 km from 1 PM to 2 PM. When did the snow begin
to fall? [Hints: To get started, let be the time measured in hours after noon; let be the
distance traveled by the plow at time ; then the speed of the plow is . Let be the
number of hours before noon that it began to snow. Find an expression for the height of the
snow at time . Then use the given information that the rate of removal (in ) is 
constant.]

9. A dog sees a rabbit running in a straight line across an open field and gives chase. In a rect-
angular coordinate system (as shown in the figure), assume:

(i) The rabbit is at the origin and the dog is at the point at the instant the dog first
sees the rabbit.

(ii) The rabbit runs up the -axis and the dog always runs straight for the rabbit.

(iii) The dog runs at the same speed as the rabbit.

(a) Show that the dog’s path is the graph of the function , where satisfies the dif-
ferential equation 

(b) Determine the solution of the equation in part (a) that satisfies the initial conditions
when . [Hint: Let in the differential equation and solve the

resulting first-order equation to find ; then integrate to find .]
(c) Does the dog ever catch the rabbit?

f f �
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t
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; Graphing calculator or computer required
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10. (a) Suppose that the dog in Problem 9 runs twice as fast as the rabbit. Find a differential
equation for the path of the dog. Then solve it to find the point where the dog catches the
rabbit.

(b) Suppose the dog runs half as fast as the rabbit. How close does the dog get to the rabbit?
What are their positions when they are closest?

11. A planning engineer for a new alum plant must present some estimates to his company
regarding the capacity of a silo designed to contain bauxite ore until it is processed into alum.
The ore resembles pink talcum powder and is poured from a conveyor at the top of the silo.
The silo is a cylinder 100 ft high with a radius of 200 ft. The conveyor carries ore at a rate of

and the ore maintains a conical shape whose radius is 1.5 times its height.
(a) If, at a certain time , the pile is 60 ft high, how long will it take for the pile to reach the

top of the silo?
(b) Management wants to know how much room will be left in the floor area of the silo when

the pile is 60 ft high. How fast is the floor area of the pile growing at that height?
(c) Suppose a loader starts removing the ore at the rate of when the height of

the pile reaches 90 ft. Suppose, also, that the pile continues to maintain its shape. How
long will it take for the pile to reach the top of the silo under these conditions?

12. Find the curve that passes through the point and has the property that if the tangent line
is drawn at any point on the curve, then the part of the tangent line that lies in the first
quadrant is bisected at .

13. Recall that the normal line to a curve at a point on the curve is the line that passes through
and is perpendicular to the tangent line at . Find the curve that passes through the point

and has the property that if the normal line is drawn at any point on the curve, then 
the -intercept of the normal line is always 6.

14. Find all curves with the property that if the normal line is drawn at any point on the curve,
then the part of the normal line between and the -axis is bisected by the -axis.

15. Find all curves with the property that if a line is drawn from the origin to any point on
the curve, and then a tangent is drawn to the curve at that point and extended to meet the 
-axis, the result is an isosceles triangle with equal sides meeting at .

16. (a) An outfielder fields a baseball 280 ft away from home plate and throws it directly to the
catcher with an initial velocity of 100 ft�s. Assume that the velocity of the ball after

seconds satisfies the differential equation because of air resistance. How
long does it take for the ball to reach home plate? (Ignore any vertical motion of the
ball.)

(b) The manager of the team wonders whether the ball will reach home plate sooner if it 
is relayed by an infielder. The shortstop can position himself directly between the out-
fielder and home plate, catch the ball thrown by the outfielder, turn, and throw the ball
to the catcher with an initial velocity of 105 ft�s. The manager clocks the relay time of
the shortstop (catching, turning, throwing) at half a second. How far from home plate
should the shortstop position himself to minimize the total time for the ball to reach
home plate? Should the manager encourage a direct throw or a relayed throw? What if
the shortstop can throw at 115 ft�s?

; (c) For what throwing velocity of the shortstop does a relayed throw take the same time 
as a direct throw?
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Parametric Equations and
Polar Coordinates10

So far we have described plane curves by giving as a function of or as a function 

of or by giving a relation between and that defines implicitly as a function of

. In this chapter we discuss two new methods for describing curves.

Some curves, such as the cycloid, are best handled when both and are given in terms of a third 

variable called a parameter . Other curves, such as the cardioid, have their most

convenient description when we use a new coordinate system, called the polar coordinate system.

y x �y � f �x�� x
y �x � t�y�� x y y x

� f �x, y� � 0�
x y

t �x � f �t�, y � t�t��

659

© Dean Ketelsen

The Hale-Bopp comet, with its blue ion tail and white dust tail, appeared in
the sky in March 1997. In Section 10.6 you will see how polar coordinates
provide a convenient equation for the path of this comet.
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660 CHAPTER 10 PARAMETRIC EQUATIONS AND POLAR COORDINATES

Imagine that a particle moves along the curve C shown in Figure 1. It is impossible to
describe C by an equation of the form because C fails the Vertical Line Test. But
the x- and y-coordinates of the particle are functions of time and so we can write
and . Such a pair of equations is often a convenient way of describing a curve and
gives rise to the following definition.

Suppose that and are both given as functions of a third variable (called a param -
eter) by the equations

(called parametric equations). Each value of determines a point , which we can 
plot in a coordinate plane. As varies, the point varies and traces out a
curve , which we call a parametric curve. The parameter t does not necessarily represent
time and, in fact, we could use a letter other than t for the parameter. But in many 
applications of parametric curves, t does denote time and therefore we can interpret

as the position of a particle at time t.

Sketch and identify the curve defined by the parametric equations

SOLUTION Each value of gives a point on the curve, as shown in the table. For instance,
if , then , and so the corresponding point is . In Figure 2 we plot
the points determined by several values of the parameter and we join them to pro-
duce a curve.

A particle whose position is given by the parametric equations moves along the curve
in the direction of the arrows as increases. Notice that the consecutive points marked
on the curve appear at equal time intervals but not at equal distances. That is because the
particle slows down and then speeds up as increases.

It appears from Figure 2 that the curve traced out by the particle may be a parab ola.
This can be confirmed by eliminating the parameter as follows. We obtain
from the second equation and substitute into the first equation. This gives

and so the curve represented by the given parametric equations is the parabola
.

y � f �x�
x � f �t�
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x y t
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10.1 Curves Defined by Parametric Equations
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This equation in and describes where the
particle has been, but it doesn’t tell us when
the particle was at a particular point. The para-
metric equations have an advantage––they tell
us when the particle was at a point. They also
indicate the direction of the motion.

yx
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SECTION 10.1 CURVES DEFINED BY PARAMETRIC EQUATIONS 661

No restriction was placed on the parameter in Example 1, so we assumed that t could
be any real number. But sometimes we restrict t to lie in a finite interval. For instance, the
parametric curve

shown in Figure 3 is the part of the parabola in Example 1 that starts at the point and
ends at the point . The arrowhead indicates the direction in which the curve is traced
as increases from 0 to 4.

In general, the curve with parametric equations

has initial point and terminal point .

What curve is represented by the following parametric equations?

SOLUTION If we plot points, it appears that the curve is a circle. We can confirm this
impression by eliminating Observe that

Thus the point moves on the unit circle . Notice that in this example
the parameter can be interpreted as the angle (in radians) shown in Figure 4. As
increases from 0 to , the point moves once around the circle in
the counterclockwise direction starting from the point .

What curve is represented by the given parametric equations?

SOLUTION Again we have

so the parametric equations again represent the unit circle . But as
increases from 0 to , the point starts at and moves twice
around the circle in the clockwise direction as indicated in Figure 5.

Examples 2 and 3 show that different sets of parametric equations can represent the same
curve. Thus we distinguish between a curve, which is a set of points, and a parametric curve,
in which the points are traced in a particular way.

Find parametric equations for the circle with center and radius .

SOLUTION If we take the equations of the unit circle in Example 2 and multiply the
expressions for and by , we get , . You can verify that these
equations represent a circle with radius and center the origin traced counterclockwise.
We now shift units in the -direction and units in the -direction and obtain para-

t

0 � t � 4y � t � 1x � t 2 � 2t

�0, 1�
�8, 5�

t

a � t � by � t�t�x � f �t�

� f �a�, t�a�� � f �b�, t�b��

EXAMPLE 2v

0 � t � 2�y � sin tx � cos t

t.

x 2 � y 2 � cos2t � sin2t � 1

x 2 � y 2 � 1�x, y�
tt
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0 � t � 2�y � cos 2tx � sin 2t
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metric equations of the circle (Figure 6) with center and radius :

Sketch the curve with parametric equations , .

SOLUTION Observe that and so the point moves on the parabola
. But note also that, since , we have , so the para-

metric equations represent only the part of the parabola for which . Since
is periodic, the point moves back and forth infinitely often

along the parabola from to . (See Figure 7.)

Graphing Devices
Most graphing calculators and computer graphing programs can be used to graph curves
defined by parametric equations. In fact, it’s instructive to watch a parametric curve being
drawn by a graphing calculator because the points are plotted in order as the corresponding
parameter values increase.
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FIGURE 7 
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Module 10.1A gives an ani  ma tion of the
relationship between motion along a parametric
curve , and motion along the
graphs of and as functions of . Clicking on
TRIG gives you the family of parametric curves

If you choose and click 
on animate, you will see how the graphs of

and relate to the circle in
Example 2. If you choose ,

, you will see graphs as in Figure 8. By
clicking on animate or moving the -slider to 
the right, you can see from the color coding how
motion along the graphs of and

corresponds to motion along the para-
metric curve, which is called a Lissajous figure.
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SECTION 10.1 CURVES DEFINED BY PARAMETRIC EQUATIONS 663

Use a graphing device to graph the curve .

SOLUTION If we let the parameter be , then we have the equations

Using these parametric equations to graph the curve, we obtain Figure 9. It would be
possible to solve the given equation for y as four functions of x and
graph them individually, but the parametric equations provide a much easier method.

In general, if we need to graph an equation of the form , we can use the para-
metric equations

Notice also that curves with equations (the ones we are most familiar with—graphs
of functions) can also be regarded as curves with parametric equations

Graphing devices are particularly useful for sketching complicated curves. For instance,
the curves shown in Figures 10, 11, and 12 would be virtually impossible to produce by hand.

One of the most important uses of parametric curves is in computer-aided design (CAD).
In the Laboratory Project after Section 10.2 we will investigate special parametric curves,
called Bézier curves, that are used extensively in manufacturing, especially in the auto-
motive industry. These curves are also employed in specifying the shapes of letters and
other symbols in laser printers.

The Cycloid

The curve traced out by a point on the circumference of a circle as the
circle rolls along a straight line is called a cycloid (see Figure 13). If the circle has 
radius and rolls along the -axis and if one position of is the origin, find parametric
equations for the cycloid.

x � y 4 � 3y 2EXAMPLE 6

t � y

y � tx � t 4 � 3t 2

�x � y 4 � 3y 2 �

x � t�y�

y � tx � t�t�

y � f �x�

y � f �t�x � t

1.5

_1.5

_1.5 1.5

1

_1

_2 2

1.8

_1.8

_1.8 1.8

FIGURE 11
x=sin t-sin 2.3t  

y=cos t

FIGURE 10
x=sin t+   

y=cos t+

1
2

cos 5t+1
4

sin 13t

1
2

sin 5t+1
4

cos 13t

FIGURE 12
x=sin t+   

y=cos t+

1
2

sin 5t+1
4

cos 2.3t

1
2

cos 5t+1
4

sin 2.3t

PEXAMPLE 7

Pxr

FIGURE 13 P

P
P

3

_3

_3 3

FIGURE 9

An animation in Module 10.1B shows
how the cycloid is formed as the circle moves.
TEC
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664 CHAPTER 10 PARAMETRIC EQUATIONS AND POLAR COORDINATES

SOLUTION We choose as parameter the angle of rotation of the circle when is
at the origin). Suppose the circle has rotated through radians. Because the circle has
been in contact with the line, we see from Figure 14 that the distance it has rolled from
the origin is

Therefore the center of the circle is . Let the coordinates of be . Then
from Figure 14 we see that

Therefore parametric equations of the cycloid are

One arch of the cycloid comes from one rotation of the circle and so is described by
. Although Equations 1 were derived from Figure 14, which illustrates the

case where , it can be seen that these equations are still valid for other
values of (see Exercise 39).

Although it is possible to eliminate the parameter from Equations 1, the resulting
Cartesian equation in and is very complicated and not as convenient to work with as
the parametric equations.

One of the first people to study the cycloid was Galileo, who proposed that bridges be
built in the shape of cycloids and who tried to find the area under one arch of a cycloid. Later
this curve arose in connection with the brachistochrone problem: Find the curve along
which a particle will slide in the shortest time (under the influence of gravity) from a point

to a lower point not directly beneath . The Swiss mathematician John Bernoulli, who
posed this problem in 1696, showed that among all possible curves that join to , as in
Figure 15, the particle will take the least time sliding from to if the curve is part of an
inverted arch of a cycloid.

The Dutch physicist Huygens had already shown that the cycloid is also the solution to
the tautochrone problem; that is, no matter where a particle is placed on an inverted
cycloid, it takes the same time to slide to the bottom (see Figure 16). Huygens proposed that
pendulum clocks (which he invented) should swing in cycloidal arcs because then the pen-
dulum would take the same time to make a complete oscillation whether it swings through
a wide or a small arc.

Families of Parametric Curves

Investigate the family of curves with parametric equations

What do these curves have in common? How does the shape change as increases?

SOLUTION We use a graphing device to produce the graphs for the cases , ,
, , , , , and shown in Figure 17. Notice that all of these curves (except

the case ) have two branches, and both branches approach the vertical asymptote
as approaches from the left or right.

� OT � � arc PT � r�

�x, y�PC�r�, r�

x � � OT � � � PQ � � r� � r sin � � r�� � sin ��

y � � TC � � � QC � � r � r cos � � r �1 � cos ��

� � �y � r �1 � cos ��x � r �� � sin ��1

0 � � � 2�
0 � � � ��2

�
�

yx

ABA
BA

BA

P

EXAMPLE 8v

y � a tan t � sin tx � a � cos t

a

P�� � 0�
�

�1a � �2
210.50�0.2�0.5

a � 0
axx � a

FIGURE 14

xO

y

T

C(r¨, r )
r ¨

x
y

r¨

P Q

FIGURE 15

A

B

cycloid

P

P
P

P

P 

FIGURE 16
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SECTION 10.1 CURVES DEFINED BY PARAMETRIC EQUATIONS 665

1–4 Sketch the curve by using the parametric equations to plot
points. Indicate with an arrow the direction in which the curve is
traced as increases.

1. ,  ,  

2. ,  ,  

3. ,  ,  

4. ,  ,  

5–10
(a) Sketch the curve by using the parametric equations to plot

points. Indicate with an arrow the direction in which the curve
is traced as t increases.

(b) Eliminate the parameter to find a Cartesian equation of the
curve.

5. ,  

6. ,  ,  

7. ,  ,  

8. ,  ,  

t

x � t 2 � t y � t 2 � t �2 � t � 2

x � t 2 y � t 3 � 4t �3 � t � 3

x � cos2t y � 1 � sin t 0 � t � ��2

x � e�t � t y � e t � t �2 � t � 2

x � 3 � 4t y � 2 � 3t

x � 1 � 2t y � 1
2t � 1 �2 � t � 4

x � 1 � t 2 y � t � 2 �2 � t � 2

�2 � t � 2y � t 3 � 1x � t � 1

9. ,  

10. ,  

11–18
(a) Eliminate the parameter to find a Cartesian equation of the

curve.
(b) Sketch the curve and indicate with an arrow the direction in

which the curve is traced as the parameter increases.

11. ,  ,  

12. ,  ,  

13. ,  ,  

14. ,  

15. ,  

16. ,  

17. ,  

18. ,  ,  

x � t 2 y � t 3

x � st y � 1 � t

x � sin 12� y � cos 12� �� � � � �

x � 1
2 cos � y � 2 sin � 0 � � � �

x � sin t y � csc t 0 � t � ��2

x � et � 1 y � e 2 t

x � e 2 t y � t � 1

y � st � 1y � st � 1

x � sinh t y � cosh t

x � tan2� y � sec � ���2 � � � ��2

10.1 Exercises

; Graphing calculator or computer required 1. Homework Hints available at stewartcalculus.com

When , both branches are smooth; but when reaches , the right branch
acquires a sharp point, called a cusp. For between and 0 the cusp turns into a loop,
which becomes larger as approaches 0. When , both branches come together and
form a circle (see Example 2). For between 0 and 1, the left branch has a loop, which
shrinks to become a cusp when . For , the branches become smooth again,
and as increases further, they become less curved. Notice that the curves with posi-
tive are reflections about the -axis of the corresponding curves with negative.

These curves are called conchoids of Nicomedes after the ancient Greek scholar
Nicomedes. He called them conchoids because the shape of their outer branches 
resembles that of a conch shell or mussel shell.

a=_2 a=_1 a=_0.5 a=_0.2

a=2a=1a=0.5a=0

a � �1 a �1
a �1

a a � 0
a

a � 1 a � 1
a a

y a

FIGURE 17 Members of the family
x=a+cos t, y=a tan t+sin t,
all graphed in the viewing rectangle
�_4, 4� by �_4, 4�
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666 CHAPTER 10 PARAMETRIC EQUATIONS AND POLAR COORDINATES

19–22 Describe the motion of a particle with position as 
varies in the given interval.

19. ,  ,  

20. ,  ,  

21. ,  ,  

22. ,  ,  

23. Suppose a curve is given by the parametric equations ,
, where the range of is and the range of is

. What can you say about the curve?

24. Match the graphs of the parametric equations and
in (a)–(d) with the parametric curves labeled I–IV.

Give reasons for your choices.

�x, y�
t

x � 3 � 2 cos t y � 1 � 2 sin t ��2 � t � 3��2

x � 2 sin t y � 4 � cos t 0 � t � 3��2

x � 5 sin t y � 2 cos t �� � t � 5�

x � sin t y � cos2t �2� � t � 2�

x � f �t�
y � t�t� f �1, 4� t

�2, 3�

x � f �t�
y � t�t�

t

x

2

1

1

t

y

1

1

y

x

2

2

(a) I

(b) II
x

t

2

1 t

2

1

y y

x

2

2

(c) III

t

2

2

yx

t

2

2

(d) IV

t

2

2

yx

t

2

2

y

x

2

2

1

y

x

1

2

25–27 Use the graphs of and to sketch the para-
metric curve , . Indicate with arrows the direction
in which the curve is traced as increases.

25.

26.

27.

28. Match the parametric equations with the graphs labeled I-VI.
Give reasons for your choices. (Do not use a graphing device.)
(a) ,  

(b) ,  

(c) ,  

(d) ,  

(e) ,  

(f ) ,  

y � t�t�x � f �t�
y � t�t�x � f �t�

t

t

x

_1

1 t

y

1

1

t

x

1

1 t

y

1

1

t

y

1

1t

x

1

1

y � t 2x � t 4 � t � 1

y � stx � t 2 � 2t

y � sin�t � sin 2t�x � sin 2t

y � sin 2tx � cos 5t

y � t 2 � cos 3tx � t � sin 4t

y �
cos 2t

4 � t 2x �
sin 2t

4 � t 2

x

y

x

y

x

y

x

y

x

y

x

y

I II III

IV V VI
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SECTION 10.1 CURVES DEFINED BY PARAMETRIC EQUATIONS 667

; 29. Graph the curve .

; 30. Graph the curves and and find
their points of intersection correct to one decimal place.

31. (a) Show that the parametric equations

where , describe the line segment that joins the
points and .

(b) Find parametric equations to represent the line segment
from to .

; 32. Use a graphing device and the result of Exercise 31(a) to
draw the triangle with vertices , , and .

33. Find parametric equations for the path of a particle that
moves along the circle in the manner
described.
(a) Once around clockwise, starting at 
(b) Three times around counterclockwise, starting at 
(c) Halfway around counterclockwise, starting at 

; 34. (a) Find parametric equations for the ellipse
. [Hint: Modify the equations of 

the circle in Example 2.]
(b) Use these parametric equations to graph the ellipse when

and b � 1, 2, 4, and 8.
(c) How does the shape of the ellipse change as b varies?

; 35–36 Use a graphing calculator or computer to reproduce the
picture.

35. 36.

37–38 Compare the curves represented by the parametric
equations. How do they differ?

37. (a) ,  (b) ,  
(c) ,  

38. (a) ,  (b) ,  
(c) ,  

39. Derive Equations 1 for the case .

40. Let be a point at a distance from the center of a circle of
radius . The curve traced out by as the circle rolls along a
straight line is called a trochoid. (Think of the motion of a
point on a spoke of a bicycle wheel.) The cycloid is the spe-
cial case of a trochoid with . Using the same parameter

as for the cycloid and, assuming the line is the -axis and 

x � y � 2 sin �y

x � y 3 � 4yy � x 3 � 4x

y � y1 � �y2 � y1�tx � x1 � �x 2 � x1�t

0 � t � 1
P2�x 2, y2 �P1�x1, y1�

�3, �1���2, 7�

C �1, 5�B �4, 2�A �1, 1�

x 2 � �y � 1�2 � 4

�2, 1�
�2, 1�

�0, 3�

x 2�a 2 � y 2�b 2 � 1

a � 3

0

y

x

2

3 8

4

0

2

y

x2

y � t 4x � t 6y � t 2x � t 3

y � e�2 tx � e�3 t

y � sec2tx � cos ty � t �2x � t
y � e�2 tx � e t

��2 � � � �

dP
Pr

d � r
x�

when is at one of its lowest points, show that para-
metric equations of the trochoid are

Sketch the trochoid for the cases and .

41. If and are fixed numbers, find parametric equations for
the curve that consists of all possible positions of the point
in the figure, using the angle as the parameter. Then elimi-
nate the param eter and identify the curve.

42. If and are fixed numbers, find parametric equations for
the curve that consists of all possible positions of the point
in the figure, using the angle as the parameter. The line
segment is tangent to the larger circle.

43. A curve, called a witch of Maria Agnesi, consists of all pos-
sible positions of the point in the figure. Show that para-
metric equations for this curve can be written as 

Sketch the curve.

P� � 0

y � r � d cos �x � r� � d sin �

d � rd � r

ba
P

�

O

y

x
¨

a
b P

ba
P

�
AB

O x

y

¨

a
b

A

B

P

P

y � 2a sin2�x � 2a cot �

O x

a

A P

y=2a

¨

y
C
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L A B O R AT O R Y  P R O J E C T ; RUNNING CIRCLES AROUND CIRCLES

In this project we investigate families of curves, called hypocycloids and epicycloids, that are
generated by the motion of a point on a circle that rolls inside or outside another circle.

1. A hypocycloid is a curve traced out by a fixed point P on a circle C of radius b as C rolls on the
inside of a circle with center O and radius a. Show that if the initial position of P is and
the parameter is chosen as in the figure, then parametric equations of the hypocycloid are

�a, 0�
�

y � �a � b� sin � � b sin�a � b

b
�	x � �a � b� cos � � b cos�a � b

b
�	

; Graphing calculator or computer required

668 CHAPTER 10 PARAMETRIC EQUATIONS AND POLAR COORDINATES

44. (a) Find parametric equations for the set of all points as
shown in the figure such that . (This curve
is called the cissoid of Diocles after the Greek scholar
Diocles, who introduced the cissoid as a graphical
method for constructing the edge of a cube whose volume
is twice that of a given cube.)

(b) Use the geometric description of the curve to draw a
rough sketch of the curve by hand. Check your work by
using the parametric equations to graph the curve.

; 45. Suppose that the position of one particle at time is given by

and the position of a second particle is given by

(a) Graph the paths of both particles. How many points of
intersection are there?

(b) Are any of these points of intersection collision points? 
In other words, are the particles ever at the same place at
the same time? If so, find the collision points.

(c) Describe what happens if the path of the second particle
is given by

46. If a projectile is fired with an initial velocity of meters per
second at an angle above the horizontal and air resistance
is assumed to be negligible, then its position after seconds 

P

� OP � � � AB �

xO

y

A

P
x=2a

B

a

t

0 � t � 2�y1 � 2 cos tx1 � 3 sin t

0 � t � 2�y2 � 1 � sin tx 2 � �3 � cos t

x 2 � 3 � cos t y2 � 1 � sin t 0 � t � 2�

v0

	
t

is given by the parametric equations

where is the acceleration due to gravity ( m�s ).
(a) If a gun is fired with and m�s, when 

will the bullet hit the ground? How far from the gun will
it hit the ground? What is the maximum height reached 
by the bullet?

; (b) Use a graphing device to check your answers to part (a).
Then graph the path of the projectile for several other 
values of the angle to see where it hits the ground.
Summarize your findings.

(c) Show that the path is parabolic by eliminating the 
parameter.

; 47. Investigate the family of curves defined by the parametric
equations , . How does the shape change 
as increases? Illustrate by graphing several members of the
family.

; 48. The swallowtail catastrophe curves are defined by the para-
metric equations , . Graph
several of these curves. What features do the curves have in
common? How do they change when increases?

; 49. Graph several members of the family of curves with
parametric equations , , where

. How does the shape change as increases? For what
values of does the curve have a loop?

; 50. Graph several members of the family of curves
, where is a positive

integer. What features do the curves have in common? What
happens as increases?

; 51. The curves with equations , are
called Lissajous figures. Investigate how these curves vary
when , , and vary. (Take to be a positive integer.)

; 52. Investigate the family of curves defined by the parametric
equations , , where . Start 
by letting be a positive integer and see what happens to the
shape as increases. Then explore some of the possibilities
that occur when is a fraction.

	 � 30
 v0 � 500

	

x � t 2 y � t 3 � ct
c

x � 2ct � 4t 3 y � �ct 2 � 3t 4

c

x � t � a cos t y � t � a sin t
a � 0 a

a

x � sin t � sin nt ny � cos t � cos nt

n

x � a sin nt y � b cos t

a b n n

x � cos t y � sin t � sin ct c � 0
c

c
c

29.8t

y � �v0 sin 	�t �
1
2 tt 2x � �v0 cos 	�t

xO

y

a

C

Pb
(a, 0)¨

A
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SECTION 10.2 CALCULUS WITH PARAMETRIC CURVES 669

2. Use a graphing device (or the interactive graphic in TEC Module 10.1B) to draw the graphs of
hypocycloids with a positive integer and . How does the value of affect the graph?
Show that if we take , then the parametric equations of the hypocycloid reduce to

This curve is called a hypocycloid of four cusps, or an astroid.

3. Now try b � 1 and , a fraction where n and d have no common factor. First let n � 1
and try to determine graphically the effect of the denominator d on the shape of the graph. Then
let n vary while keeping d constant. What happens when ?

4. What happens if and is irrational? Experiment with an irrational number like or
. Take larger and larger values for and speculate on what would happen if we were to

graph the hypocycloid for all real values of .

5. If the circle rolls on the outside of the fixed circle, the curve traced out by is called an
epicycloid. Find parametric equations for the epicycloid.

6. Investigate the possible shapes for epicycloids. Use methods similar to Problems 2–4.

x � 4 cos3� y � 4 sin3�

a � n�d

n � d � 1

b � 1 a s2
e � 2 �

�

C P

a b � 1
a � 4

a
Look at Module 10.1B to see how 

hypocycloids and epi cycloids are formed by 
the motion of rolling circles.

TEC

Having seen how to represent curves by parametric equations, we now apply the methods
of calculus to these parametric curves. In particular, we solve problems involving tangents,
area, arc length, and surface area.

Tangents
Suppose and are differentiable functions and we want to find the tangent line at a point
on the curve where is also a differentiable function of . Then the Chain Rule gives

If , we can solve for :

Equation 1 (which you can remember by thinking of canceling the ’s) enables us 
to find the slope of the tangent to a parametric curve without having to eliminate 
the parameter . We see from that the curve has a horizontal tangent when
(provided that ) and it has a vertical tangent when (provided that

). This information is useful for sketching parametric curves.
As we know from Chapter 4, it is also useful to consider . This can be found by

replacing y by dy�dx in Equation 1:

f t

y x

dy

dt
�

dy

dx
�

dx

dt

dx�dt � 0 dy�dx

1
dy

dx
�

dy

dt

dx

dt

if  
dx

dt
� 0

dt
dy�dx

t dy�dt � 0
dx�dt � 0 dx�dt � 0

dy�dt � 0

1

d 2y�dx 2

d 2y

dx 2 �
d

dx �dy

dx	 �

d

dt �dy

dx	
dx

dt

10.2 Calculus with Parametric Curves

If we think of the curve as being traced out by
a moving particle, then and are
the vertical and horizontal velocities of the par-
ticle and Formula 1 says that the slope of the
tangent is the ratio of these velocities. 

dx�dtdy�dt

| Note that
d 2y

dx2 �

d 2y

dt 2

d 2x

dt 2
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670 CHAPTER 10 PARAMETRIC EQUATIONS AND POLAR COORDINATES

A curve is defined by the parametric equations , 
(a) Show that has two tangents at the point (3, 0) and find their equations.
(b) Find the points on where the tangent is horizontal or vertical.
(c) Determine where the curve is concave upward or downward.
(d) Sketch the curve.

SOLUTION
(a) Notice that when or . Therefore the
point on arises from two values of the parameter, and . This
indicates that crosses itself at . Since

the slope of the tangent when is , so the equa-
tions of the tangents at are

(b) has a horizontal tangent when , that is, when and .
Since , this happens when , that is, . The corresponding
points on are and (1, 2). has a vertical tangent when , that is,

.  (Note that there.) The corresponding point on is (0, 0).

(c) To determine concavity we calculate the second derivative:

Thus the curve is concave upward when and concave downward when .

(d) Using the information from parts (b) and (c), we sketch in Figure 1.

(a) Find the tangent to the cycloid , at the point
where .  (See Example 7 in Section 10.1.)
(b) At what points is the tangent horizontal? When is it vertical?

SOLUTION
(a) The slope of the tangent line is

When , we have

and

C x � t 2 y � t 3 � 3t.
C

C

y � t 3 � 3t � t�t 2 � 3� � 0 t � 0 t � �s3
�3, 0� C t � s3 t � �s3

C �3, 0�

dy

dx
�

dy�dt

dx�dt
�

3t 2 � 3

2t
�

3

2
 �t �

1

t �
t � �s3 dy�dx � �6�(2s3 ) � �s3

�3, 0�

y � s3 �x � 3� and y � �s3 �x � 3�

C dy�dx � 0 dy�dt � 0 dx�dt � 0
dy�dt � 3t 2 � 3 t 2 � 1 t � �1

C �1, �2� C dx�dt � 2t � 0
t � 0 dy�dt � 0 C

d 2y

dx 2 �

d

dt �dy

dx�
dx

dt

�

3

2
 �1 �

1

t 2�
2t

�
3�t 2 � 1�

4t 3

t � 0 t � 0

C

x � r �� � sin �� y � r �1 � cos ��
� � ��3

dy

dx
�

dy�d�

dx�d�
�

r sin �

r �1 � cos ��
�

sin �

1 � cos �

EXAMPLE 1

v EXAMPLE 2

� � ��3

x � r��

3
� sin 

�

3 � � r��

3
�

s3

2 � y � r�1 � cos 
�

3 � �
r

2

dy

dx
�

sin���3�
1 � cos���3�

�
s3�2

1 �
1
2

� s3

0

y

x

(3, 0)

(1, _2)

(1, 2)

t=1

t=_1

y=œ„3(x-3)

y=_ œ„3(x-3)

FIGURE 1 
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SECTION 10.2 CALCULUS WITH PARAMETRIC CURVES 671

Therefore the slope of the tangent is and its equation is

The tangent is sketched in Figure 2.

(b) The tangent is horizontal when , which occurs when and
, that is, , an integer. The corresponding point on the

cycloid is .
When , both and are 0. It appears from the graph that there 

are vertical tangents at those points. We can verify this by using l’Hospital’s Rule as
follows:

A similar computation shows that as , so indeed there are verti-
cal tangents when , that is, when .

Areas
We know that the area under a curve from to is , where

. If the curve is traced out once by the parametric equations and ,
, then we can calculate an area formula by using the Sub stitution Rule for 

Definite Integrals as follows:

Find the area under one arch of the cycloid

(See Figure 3.)

SOLUTION One arch of the cycloid is given by . Using the Substitution Rule
with and , we have

s3

y �
r

2
� s3 �x �

r�

3
�

rs3

2 � or s3 x � y � r� �

s3
� 2�

FIGURE 2 0

y

x2πr 4πr

(πr, 2r)(_πr, 2r) (3πr, 2r) (5πr, 2r)

π
3¨=

dy�dx � 0 sin � � 0
1 � cos � � 0 � � �2n � 1�� n

��2n � 1��r, 2r�
� � 2n� dx�d� dy�d�

lim
� l2n��

dy

dx
� lim

� l2n��

sin �

1 � cos �
� lim

� l2n��

cos �

sin �
� 	

dy�dx l �	 � l 2n��

� � 2n� x � 2n�r

a b A � x
b
a F�x� dx

F�x� 
 0 x � f �t� y � t�t�
� � t � 

A � y
b

a
y dx � y



�
t�t� f ��t� dt �or y

�


t�t� f ��t� dt�

x � r�� � sin �� y � r�1 � cos ��

0 � � � 2�
y � r�1 � cos �� dx � r�1 � cos � � d�

A � y
2�r

0
y dx � y

2�

0
r�1 � cos �� r�1 � cos �� d�

� r 2
y

2�

0
�1 � cos ��2 d� � r 2

y
2�

0
�1 � 2 cos � � cos2�� d�

� r 2
y

2�

0
[1 � 2 cos � �

1
2 �1 � cos 2��] d�

� r 2[ 3
2 � � 2 sin � �

1
4 sin 2�]0

2�

v EXAMPLE 3

� r 2( 3
2 � 2�) � 3�r 2

y � F�x�

The limits of integration for are found 
as usual with the Substitution Rule. When

, is either or . When , is
the remaining value.

 tx � b�tx � a

t

The result of Example 3 says that the area
under one arch of the cycloid is three times the
area of the rolling circle that generates the
cycloid (see Example 7 in Section 10.1). Galileo
guessed this result but it was first proved by
the French mathematician Roberval and the
Italian mathematician Torricelli.

FIGURE 3 
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y
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Arc Length
We already know how to find the length of a curve given in the form ,

. Formula 8.1.3 says that if is continuous, then

Suppose that can also be described by the parametric equations and ,
, where . This means that is traversed once, from left to

right, as increases from to and , . Putting Formula 1 into Formula
2 and using the Substitution Rule, we obtain

Since , we have

Even if can’t be expressed in the form , Formula 3 is still valid but we obtain
it by polygonal approximations. We divide the parameter interval into n subintervals
of equal width . If , , , . . . , are the endpoints of these subintervals, then
and are the coordinates of points that lie on and the polygon with ver-
tices , , . . . , approximates . (See Figure 4.)

As in Section 8.1, we define the length of to be the limit of the lengths of these
approximating polygons as :

The Mean Value Theorem, when applied to on the interval , gives a number in
such that

If we let and , this equation becomes

Similarly, when applied to , the Mean Value Theorem gives a number in such
that

Therefore

and so

C y � F�x�
a � x � b F�

L � y
b

a
	1 � �dy

dx�2 

dx

C x � f �t� y � t�t�
� � t �  dx�dt � f ��t� � 0 C

t �  f ��� � a f �� � b

L � y
b

a
	1 � �dy

dx�2 

dx � y


�
	1 � �dy�dt

dx�dt�2 dx

dt
dt

dx�dt � 0

L � y


�
	�dx

dt �2

� �dy

dt �2 

dt

C y � F�x�

�, �

�t t0 t1 t2 tn xi � f �ti�
yi � t�ti� Pi�xi, yi� C
P0 P1 Pn C

L C
n l 	

L � lim
nl 	

�
n

i�1
 Pi�1Pi 

f 
ti�1, ti � ti*
�ti�1, ti�

f �ti� � f �ti�1� � f ��ti*��ti � ti�1�

�xi � xi � xi�1 �yi � yi � yi�1

�xi � f ��ti*� �t

2

3

ti** �ti�1, ti�

�yi � t��ti**� �t

 Pi�1Pi  � s��xi�2 � ��yi�2 � s
 f ��ti*��t�2 � 
t��ti
**��t�2 

� s
 f ��ti*��2 � 
t��ti
**��2 �t

t

L � lim
n l 	

�
n

i�1
s
 f ��ti*��2 � 
t��ti

**��2 �t4

L

0

y

x

P¸

P¡

P™ Pi _1

Pi

Pn

C

FIGURE 4 
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SECTION 10.2 CALCULUS WITH PARAMETRIC CURVES 673

The sum in resembles a Riemann sum for the function but it is not
exactly a Riemann sum because in general. Nevertheless, if and are contin-
uous, it can be shown that the limit in is the same as if and were equal, namely,

Thus, using Leibniz notation, we have the following result, which has the same form as For-
mula 3.

Theorem If a curve is described by the parametric equations ,
, , where and are continuous on and is traversed

exactly once as increases from to , then the length of is

Notice that the formula in Theorem 5 is consistent with the general formulas
and of Section 8.1.

If we use the representation of the unit circle given in Example 2 in Sec-
tion 10.1,

then and , so Theorem 5 gives

as expected. If, on the other hand, we use the representation given in Example 3 in Sec-
tion 10.1,

then , , and the integral in Theorem 5 gives

| Notice that the integral gives twice the arc length of the circle because as increases
from 0 to , the point traverses the circle twice. In general, when find-
ing the length of a curve from a parametric representation, we have to be careful to
ensure that is traversed only once as increases from to .

Find the length of one arch of the cycloid ,

SOLUTION From Example 3 we see that one arch is described by the parameter interval
. Since

s� f ��t��2 � �t��t��2 

ti* � ti** f � t�
ti* ti**

L � y
�

�
s� f ��t��2 � �t��t��2 dt

C x � f �t�
y � t�t� � � t � � f � t� ��, �� C

t � � C

L � y
�

�
��dx

dt �2

� �dy

dt �2 

dt

L � x ds
�ds�2 � �dx�2 � �dy�2

x � cos t y � sin t 0 � t � 2�

dx	dt � �sin t dy	dt � cos t

L � y
2�

0
��dx

dt �2

� �dy

dt �2 

dt � y
2�

0
ssin2t � cos2t dt � y

2�

0
 dt � 2�

x � sin 2t y � cos 2t 0 � t � 2�

dx	dt � 2 cos 2t dy	dt � �2 sin 2t

y
2�

0
��dx

dt �2

� �dy

dt �2 

dt � y
2�

0
s4 cos2 2t � 4 sin2 2t dt � y

2�

0
2 dt � 4�

t
2� �sin 2t, cos 2t�

C
C t � �

5

4

4

EXAMPLE 4

x � r �	 � sin 	�
y � r�1 � cos 	�.

0 � 	 � 2�

v EXAMPLE 5

dy

d	
� r sin 	and

dx

d	
� r�1 � cos 	�
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674 CHAPTER 10 PARAMETRIC EQUATIONS AND POLAR COORDINATES

we have

To evaluate this integral we use the identity with , which
gives . Since , we have and so

. Therefore

and so

Surface Area
In the same way as for arc length, we can adapt Formula 8.2.5 to obtain a formula for
surface area. If the curve given by the parametric equations , , ,
is rotated about the -axis, where , are continuous and , then the area of the
resulting surface is given by

The general symbolic formulas and (Formulas 8.2.7 and 8.2.8)
are still valid, but for parametric curves we use

Show that the surface area of a sphere of radius is .

SOLUTION The sphere is obtained by rotating the semicircle

about the -axis. Therefore, from Formula 6, we get

L � y
2�

0
	� dx

d��2

� � dy

d��2 

d�

� y
2�

0
sr 2�1 � 2 cos � � cos2� � sin2�� d�

sin2x � 1
2 �1 � cos 2x� � � 2x

1 � cos � � 2 sin2���2� 0 � � � 2� 0 � ��2 � �
sin���2� 
 0

s2�1 � cos �� � s4 sin2���2� � 2  sin���2�  � 2 sin���2�

L � 2r y
2�

0
sin���2� d� � 2r 
�2 cos���2�]0

2�

� 2r 
2 � 2� � 8r

� � t � y � t�t�x � f �t�
t�t� 
 0t�f �x

S � y


�
2�y	� dx

dt �2

� � dy

dt �2 

dt

S � x 2�x dsS � x 2�y ds

ds � 	�dx

dt �2

� �dy

dt �2 

dt

4�r 2r

0 � t � �y � r sin tx � r cos t

x

S � y
�

0
2�r sin t s��r sin t�2 � �r cos t�2 dt

� 2� y
�

0
r sin t � r dt� 2� y

�

0
r sin t sr 2�sin2t � cos2t� dt

� 2�r 2��cos t�]0

�

� 4�r 2� 2�r 2
y

�

0
sin t dt

6

EXAMPLE 6

� y
2�

0
sr 2�1 � cos ��2 � r 2 sin2� d�

� r y
2�

0
s2�1 � cos �� d�

The result of Example 5 says that the length of
one arch of a cycloid is eight times the radius of
the gener ating circle (see Figure 5). This was first
proved in 1658 by Sir Christopher Wren, who
later became the architect of St. Paul’s Cathedral
in London.

FIGURE 5
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1–2 Find .

1. ,  2. ,  

3–6 Find an equation of the tangent to the curve at the point 
corresponding to the given value of the parameter.

3. ,  ;  

4. ,  ;  

5. ,  ;  

6. ,  ;  

7–8 Find an equation of the tangent to the curve at the given
point by two methods: (a) without eliminating the parameter and
(b) by first eliminating the parameter.

7. ,  ;  

8. ,  ;  

; 9–10 Find an equation of the tangent(s) to the curve at the given
point. Then graph the curve and the tangent(s).

9. ,  ;  

10. ,  ;  

11–16 Find and . For which values of is the
curve concave upward?

11. ,  12. ,  

13. ,  14. ,  

15. ,  ,  

16. ,  ,  

17–20 Find the points on the curve where the tangent is horizon-
tal or vertical. If you have a graphing device, graph the curve to
check your work.

17. ,  

18. ,  

19. ,  

20. ,  

; 21. Use a graph to estimate the coordinates of the rightmost point
on the curve , . Then use calculus to find the
exact coordinates.

; 22. Use a graph to estimate the coordinates of the lowest point
and the leftmost point on the curve , .
Then find the exact coordinates.

dy�dx

x � t sin t y � t 2 � t x � 1�t y � st e�t

x � 1 � 4t � t 2 y � 2 � t 3 t � 1

x � t � t�1 y � 1 � t 2 t � 1

x � t cos t y � t sin t t � �

x � sin3� y � cos3� � � ��6

x � 1 � ln t y � t 2 � 2 �1, 3�

x � 1 � st y � et2

�2, e�

x � 6 sin t y � t 2 � t �0, 0�

x � cos t � cos 2t y � sin t � sin 2t ��1, 1�

dy�dx d 2 y�dx 2 t

x � t 2 � 1 y � t 2 � t x � t 3 � 1 y � t 2 � t

x � e t y � te� t x � t 2 � 1 y � e t � 1

x � 2 sin t y � 3 cos t 0 � t � 2�

x � cos 2 t y � cos t 0 � t � �

x � t 3 � 3t y � t 2 � 3

x � t 3 � 3t y � t 3 � 3t 2

x � cos � y � cos 3�

x � e sin � y � e cos �

x � t � t 6 y � e t

x � t 4 � 2t y � t � t 4

; 23–24 Graph the curve in a viewing rectangle that displays all
the important aspects of the curve.

23. ,  

24. ,  

25. Show that the curve , has two
tangents at and find their equations. Sketch the curve.

; 26. Graph the curve , to
discover where it crosses itself. Then find equations of both
tangents at that point.

27. (a) Find the slope of the tangent line to the trochoid
, in terms of . (See

Exercise 40 in Section 10.1.)
(b) Show that if , then the trochoid does not have a 

vertical tangent.

28. (a) Find the slope of the tangent to the astroid ,
in terms of . (Astroids are explored in the

Laboratory Project on page 668.)
(b) At what points is the tangent horizontal or vertical?
(c) At what points does the tangent have slope 1 or ?

29. At what points on the curve , does
the tangent line have slope ?

30. Find equations of the tangents to the curve ,
that pass through the point .

31. Use the parametric equations of an ellipse, ,
, , to find the area that it encloses.

32. Find the area enclosed by the curve , and
the .

33. Find the area enclosed by the and the curve 
, .

34. Find the area of the region enclosed by the astroid
, . (Astroids are explored in the Labo-

ratory Project on page 668.)

35. Find the area under one arch of the trochoid of Exercise 40 in
Section 10.1 for the case .

x � t 4 � 2t 3 � 2t 2 y � t 3 � t

x � t 4 � 4t 3 � 8t 2 y � 2t 2 � t

x � cos t y � sin t cos t
�0, 0�

x � cos t � 2 cos 2t y � sin t � 2 sin 2t

x � r� � d sin � y � r � d cos � �

d � r

x � a cos3�
y � a sin3� �

�1

x � 2t 3 y � 1 � 4t � t 2

1

x � 3t 2 � 1
y � 2t 3 � 1 �4, 3�

x � a cos �
y � b sin � 0 � � � 2�

x � t 2 � 2t y � st
y-axis

x-axis
x � 1 � e t y � t � t 2

x � a cos3� y � a sin3�

y

x0 a_a

_a

a

d � r

10.2 Exercises

; Graphing calculator or computer required Computer algebra system required 1. Homework Hints available at stewartcalculus.comCAS
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36. Let be the region enclosed by the loop of the curve in
Example 1.
(a) Find the area of .
(b) If is rotated about the -axis, find the volume of the

resulting solid.
(c) Find the centroid of .

37–40 Set up an integral that represents the length of the curve.
Then use your calculator to find the length correct to four
decimal places.

37. ,  ,  

38. ,  ,  

39. ,  ,  

40. ,  ,  

41–44 Find the exact length of the curve.

41. ,  ,  

42. ,  ,  

43. ,  ,  

44. ,  ,  

; 45–46 Graph the curve and find its length.

45. ,  ,  

46. ,  ,  

; 47. Graph the curve , and find its
length correct to four decimal places.

48. Find the length of the loop of the curve ,
.

49. Use Simpson’s Rule with to estimate the length of the
curve , , .

50. In Exercise 43 in Section 10.1 you were asked to derive the
parametric equations , for the
curve called the witch of Maria Agnesi. Use Simpson’s Rule
with to estimate the length of the arc of this curve
given by .

51–52 Find the distance traveled by a particle with position
as varies in the given time interval. Compare with the length of
the curve.

51. ,  ,  

52. ,  ,  

53. Show that the total length of the ellipse ,
, , is

�
� x

�

x � t � e�t y � t � e�t 0 � t � 2

x � t 2 � t y � t 4 1 � t � 4

x � t � 2 sin t y � 1 � 2 cos t 0 � t � 4�

x � t � st y � t � st 0 � t � 1

�

0 � t � 1y � 4 � 2t 3x � 1 � 3t 2

0 � t � 3y � 5 � 2tx � et � e�t

0 � t � 1y � t cos tx � t sin t

0 � t � �y � 3 sin t � sin 3tx � 3 cos t � cos 3t

0 � t � �y � e t sin tx � e t cos t

��4 � t � 3��4y � sin tx � cos t � ln(tan 12 t)

x � sin t � sin 1.5t y � cos t

x � 3t � t 3

y � 3t 2

n � 6
�6 � t � 6y � t � e tx � t � e t

y � 2a sin2�x � 2a cot �

n � 4
��4 � � � ��2

�x, y�
t

0 � t � 3�y � cos2tx � sin2t

0 � t � 4�y � cos tx � cos2t

x � a sin �
a � b � 0y � b cos �

L � 4a y
��2

0
s1 � e 2 sin2� d�

where is the eccentricity of the ellipse , where
.

54. Find the total length of the astroid , ,
where 

55. (a) Graph the epitrochoid with equations

What parameter interval gives the complete curve?
(b) Use your CAS to find the approximate length of this

curve.

56. A curve called Cornu’s spiral is defined by the parametric
equations

where and are the Fresnel functions that were intro duced
in Chapter 4.
(a) Graph this curve. What happens as and as 

?
(b) Find the length of Cornu’s spiral from the origin to the

point with parameter value .

57–60 Set up an integral that represents the area of the surface
obtained by rotating the given curve about the -axis. Then use
your calculator to find the surface area correct to four decimal
places.

57. ,  ,  

58. ,  ,  

59. ,  ,  

60. ,  ,  

61–63 Find the exact area of the surface obtained by rotating the
given curve about the -axis.

61. ,  ,  

62. ,  ,  

63. ,  ,  

; 64. Graph the curve

If this curve is rotated about the -axis, find the area of the
resulting surface. (Use your graph to help find the correct 
parameter interval.)

65–66 Find the surface area generated by rotating the given curve
about the -axis.

65. ,  ,  

(e � c�ae
c � sa 2 � b 2 )

y � a sin3�x � a cos3�
a � 0.

CAS

x � 11 cos t � 4 cos�11t�2�

y � 11 sin t � 4 sin�11t�2�

CAS

x � C�t� � y
t

0
cos��u 2�2� du

y � S�t� � y
t

0
sin��u 2�2� du

SC

t l 	
t l �	

t

x

0 � t � ��2y � t cos tx � t sin t

0 � t � ��2y � sin 2tx � sin t

0 � t � 1y � �t 2 � 1�e tx � 1 � te t

0 � t � 1y � t � t 4x � t 2 � t 3

x

0 � t � 1y � t 2x � t 3

0 � t � 1y � 3t 2x � 3t � t 3

0 � � � ��2y � a sin3�x � a cos3�

y � 2 sin � � sin 2�x � 2 cos � � cos 2�

x

y

0 � t � 5y � 2t 3x � 3t 2
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66. ,  ,  

67. If is continuous and for , show that the
parametric curve , , , can be put in
the form . [Hint: Show that exists.]

68. Use Formula 2 to derive Formula 7 from Formula 8.2.5 for the
case in which the curve can be represented in the form

, .

69. The curvature at a point of a curve is defined as

where is the angle of inclination of the tangent line at , 
as shown in the figure. Thus the curvature is the absolute value
of the rate of change of with respect to arc length. It can be
regarded as a measure of the rate of change of direction of the
curve at and will be studied in greater detail in Chapter 13.
(a) For a parametric curve , , derive the 

formula

where the dots indicate derivatives with respect to , so
. [Hint: Use and Formula 2 to

find . Then use the Chain Rule to find .]
(b) By regarding a curve as the parametric curve

, , with parameter , show that the formula
in part (a) becomes

0 � t � 1y � 4e t�2x � e t � t

a � t � bf ��t� � 0f �
a � t � by � t�t�x � f �t�
f �1y � F�x�

a � x � by � F�x�

P

� � � d�

ds �
P�

�

P
y � y�t�x � x�t�

� �  x�y�� � x��y� 

x� 2 � y� 2 �3�2

t
� � tan�1�dy�dx�x� � dx�dt

d��dsd��dt
y � f �x�

xy � f �x�x � x

� �  d 2 y�dx 2 

1 � �dy�dx�2 �3�2

0 x

y

P

˙

70. (a) Use the formula in Exercise 69(b) to find the curvature of
the parabola at the point .

(b) At what point does this parabola have maximum curvature?

71. Use the formula in Exercise 69(a) to find the curvature of the
cycloid , at the top of one of its
arches.

72. (a) Show that the curvature at each point of a straight line 
is .

(b) Show that the curvature at each point of a circle of 
radius is .

73. A string is wound around a circle and then unwound while
being held taut. The curve traced by the point at the end of
the string is called the involute of the circle. If the circle has
radius and center and the initial position of is , and
if the parameter is chosen as in the figure, show that
parametric equations of the involute are

74. A cow is tied to a silo with radius by a rope just long enough
to reach the opposite side of the silo. Find the area available for
grazing by the cow.

r O P �r, 0�
�

x � r �cos � � � sin �� y � r �sin � � � cos ��

xO

y

r

¨ P

T

r

�1, 1�y � x 2

y � 1 � cos �x � � � sin �

� � 0

� � 1�rr

P

L A B O R AT O R Y  P R O J E C T ; BÉZIER CURVES

Bézier curves are used in computer-aided design and are named after the French mathema-
tician Pierre Bézier (1910–1999), who worked in the automotive industry. A cubic Bézier curve 
is determined by four control points, and , and is 
defined by the parametric equations

P0�x0, y0 �, P1�x1, y1�, P2�x2, y2 �, P3�x3, y3 �

x � x0�1 � t�3 � 3x1t�1 � t�2 � 3x2t 2�1 � t� � x3t 3

y � y0�1 � t�3 � 3y1t�1 � t�2 � 3y2t 2�1 � t� � y3t 3

; Graphing calculator or computer required
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678 CHAPTER 10 PARAMETRIC EQUATIONS AND POLAR COORDINATES

where . Notice that when we have and when we have
, so the curve starts at and ends at .

1. Graph the Bézier curve with control points , , , and 
Then, on the same screen, graph the line segments , , and . (Exercise 31 in 
Section 10.1 shows how to do this.) Notice that the middle control points and don’t lie
on the curve; the curve starts at , heads toward and without reaching them, and ends 
at .

2. From the graph in Problem 1, it appears that the tangent at passes through and the 
tangent at passes through . Prove it.

3. Try to produce a Bézier curve with a loop by changing the second control point in 
Problem 1.

4. Some laser printers use Bézier curves to represent letters and other symbols. Experiment 
with control points until you find a Bézier curve that gives a reasonable representation of the 
letter C.

5. More complicated shapes can be represented by piecing together two or more Bézier curves.
Suppose the first Bézier curve has control points and the second one has con-
trol points . If we want these two pieces to join together smoothly, then the
tangents at should match and so the points , , and all have to lie on this common
tangent line. Using this principle, find control points for a pair of Bézier curves that repre-
sent the letter S.

0 � t � 1 t � 0 �x, y� � �x0, y0 � t � 1
P0 P3

P0�4, 1� P1�28, 48� P2�50, 42� P3�40, 5�.
P0P1 P1P2 P2P3

P1 P2

P0 P1 P2

P3

P0 P1

P3 P2

P0, P1, P2, P3

P3, P4, P5, P6

P3 P2 P3 P4

�x, y� � �x3, y3�

A coordinate system represents a point in the plane by an ordered pair of numbers called
coordinates. Usually we use Cartesian coordinates, which are directed distances from two
perpendicular axes. Here we describe a coordinate system introduced by Newton, called
the polar coordinate system, which is more convenient for many purposes.

We choose a point in the plane that is called the pole (or origin) and is labeled . Then
we draw a ray (half-line) starting at called the polar axis. This axis is usually drawn hor-
izontally to the right and corresponds to the positive -axis in Cartesian coordinates.

If is any other point in the plane, let be the distance from to and let be the angle
(usually measured in radians) between the polar axis and the line as in Figure 1. Then
the point is represented by the ordered pair and , are called polar coordinates
of . We use the convention that an angle is positive if measured in the counterclockwise
direction from the polar axis and negative in the clockwise direction. If , then
and we agree that represents the pole for any value of .

We extend the meaning of polar coordinates to the case in which is negative by
agreeing that, as in Figure 2, the points and lie on the same line through and
at the same distance from , but on opposite sides of . If , the point lies in
the same quadrant as ; if , it lies in the quadrant on the opposite side of the pole.
Notice that represents the same point as .

Plot the points whose polar coordinates are given.
(a) (b) (c) (d)

O
O

x
P r O P �

OP
P �r, �� r �

P
P � O r � 0

�0, �� �
�r, �� r

��r, �� �r, �� O

 r  O O r � 0 �r, ��
� r � 0

��r, �� �r, � � ��

EXAMPLE 1
��3, 3��4��2, �2��3��2, 3���1, 5��4�

10.3 Polar Coordinates

(_r, ¨)

O

¨

(r, ¨ )

¨+π
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¨

r

polar axis

P(r, ̈ )
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SECTION 10.3 POLAR COORDINATES 679

SOLUTION The points are plotted in Figure 3. In part (d) the point is located
three units from the pole in the fourth quadrant because the angle is in the second
quadrant and is negative.

In the Cartesian coordinate system every point has only one representation, but in the
polar coordinate system each point has many representations. For instance, the point

in Example 1(a) could be written as or or . (See
Figure 4.)

In fact, since a complete counterclockwise rotation is given by an angle 2 , the point rep-
resented by polar coordinates is also represented by

where is any integer.
The connection between polar and Cartesian coordinates can be seen from Figure 5, in

which the pole corresponds to the origin and the polar axis coincides with the positive 
-axis. If the point has Cartesian coordinates and polar coordinates , then, from

the figure, we have

and so

Although Equations 1 were deduced from Figure 5, which illustrates the case where
and , these equations are valid for all values of and (See the gen-

eral definition of and in Appendix D.)
Equations 1 allow us to find the Cartesian coordinates of a point when the polar coordi-

nates are known. To find and when and are known, we use the equations

r � �3

O

”_3,       ’3π
4

3π
4

(2, 3π) O

3π

”1,       ’
5π
4

5π
4

O

FIGURE 3 
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2π
3_

3��4

�1, 5��4� �1, �3��4� �1, 13��4� ��1, ��4�

O

13π
4

”1,        ’13π
4

O

_ 3π
4

”1, _      ’3π
4

O

”1,       ’5π
4
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4
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x P �x, y� �r, ��
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x

r
sin � �

y

r

1 x � r cos � y � r sin �

r � 0 0 � � � ��2 r �.
sin � cos �

r � x y

��3, 3��4�

O
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x

¨
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y
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680 CHAPTER 10 PARAMETRIC EQUATIONS AND POLAR COORDINATES

which can be deduced from Equations 1 or simply read from Figure 5.

Convert the point from polar to Cartesian coordinates.

SOLUTION Since and , Equations 1 give

Therefore the point is in Cartesian coordinates.

Represent the point with Cartesian coordinates in terms of polar
coordinates.

SOLUTION If we choose to be positive, then Equations 2 give

Since the point lies in the fourth quadrant, we can choose or
. Thus one possible answer is ; another is .

NOTE Equations 2 do not uniquely determine when and are given because, as
increases through the interval , each value of occurs twice. Therefore, in
converting from Cartesian to polar coordinates, it’s not good enough just to find and
that satisfy Equations 2. As in Example 3, we must choose so that the point lies in
the correct quadrant.

Polar Curves
The graph of a polar equation , or more generally , consists of all
points that have at least one polar representation whose coordinates satisfy the 
equation.

What curve is represented by the polar equation ?

SOLUTION The curve consists of all points with . Since represents the dis-
tance from the point to the pole, the curve represents the circle with center and
radius . In general, the equation represents a circle with center and radius .
(See Figure 6.)

�2, ��3�

r � 2 � � ��3

x � r cos � � 2 cos 
�

3
� 2 �

1

2
� 1

y � r sin � � 2 sin  
�

3
� 2 �

s3

2
� s3

(1, s3 )

�1, �1�

r

r � sx 2 � y 2 � s12 � ��1�2 � s2

tan � �
y

x
� �1

�1, �1� � � ���4
� � 7��4 (s2 , ���4) �s2 , 7��4�

� x y �
0 � � � 2� tan �

r �
� �r, ��

F�r, �� � 0
P �r, ��

r � 2

�r, �� r � 2 r
r � 2 O
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EXAMPLE 2
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SECTION 10.3 POLAR COORDINATES 681

Sketch the polar curve .

SOLUTION This curve consists of all points such that the polar angle is 1 radian. It
is the straight line that passes through and makes an angle of 1 radian with the polar
axis (see Figure 7). Notice that the points on the line with are in the first
quadrant, whereas those with are in the third quadrant.

(a) Sketch the curve with polar equation .
(b) Find a Cartesian equation for this curve.

SOLUTION
(a) In Figure 8 we find the values of for some convenient values of and plot the
corresponding points . Then we join these points to sketch the curve, which appears
to be a circle. We have used only values of between 0 and , since if we let increase
beyond , we obtain the same points again.

(b) To convert the given equation to a Cartesian equation we use Equations 1 and 2.
From we have , so the equation becomes ,
which gives

or    

Completing the square, we obtain

which is an equation of a circle with center and radius 1.

� � 1EXAMPLE 5

��r, ��
O

r � 0�r, 1�
r � 0

EXAMPLE 6
r � 2 cos �

�r
�r, ��

���
�

FIGURE 8
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graph of  r=2 cos ̈
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Figure 9 shows a geometrical illustration 
that the circle in Example 6 has the equation

. The angle is a right angle
(Why?) and so .r�2 � cos �

OPQr � 2 cos �
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682 CHAPTER 10 PARAMETRIC EQUATIONS AND POLAR COORDINATES

Sketch the curve .

SOLUTION Instead of plotting points as in Example 6, we first sketch the graph of
in Cartesian coordinates in Figure 10 by shifting the sine curve up one

unit. This enables us to read at a glance the values of that correspond to increasing
values of . For instance, we see that as increases from 0 to , (the distance from )
increases from 1 to 2, so we sketch the corresponding part of the polar curve in Figure
11(a). As increases from to , Figure 10 shows that decreases from 2 to 1, so 
we sketch the next part of the curve as in Figure 11(b). As increases from to , 

decreases from 1 to 0 as shown in part (c). Finally, as increases from to , 
increases from 0 to 1 as shown in part (d). If we let increase beyond or decrease

beyond 0, we would simply re trace our path. Putting together the parts of the curve 
from Figure 11(a)–(d), we sketch the complete curve in part (e). It is called a cardioid
because it’s shaped like a heart.

Sketch the curve .

SOLUTION As in Example 7, we first sketch , , in Cartesian coor-
dinates in Figure 12. As increases from 0 to , Figure 12 shows that decreases
from 1 to 0 and so we draw the corresponding portion of the polar curve in Figure 13
(indicated by !). As increases from to , goes from 0 to . This means that
the distance from increases from 0 to 1, but instead of being in the first quadrant this
portion of the polar curve (indicated by @) lies on the opposite side of the pole in the
third quadrant. The remainder of the curve is drawn in a similar fashion, with the arrows
and numbers indicating the order in which the portions are traced out. The resulting
curve has four loops and is called a four-leaved rose.

r � 1 � sin �
r

Or��2��

r���2�
3��2��

2�3��2�r
2��r

(a) (b) (c) (d) (e)

FIGURE 11 Stages in sketching the cardioid r=1+sin ¨
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Module 10.3 helps you see how 
polar curves are traced out by showing 
animations similar to Figures 10–13. 

TEC
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SECTION 10.3 POLAR COORDINATES 683

Symmetry
When we sketch polar curves it is sometimes helpful to take advantage of symmetry. The
following three rules are explained by Figure 14.

(a) If a polar equation is unchanged when is replaced by , the curve is sym metric
about the polar axis.

(b) If the equation is unchanged when is replaced by , or when is replaced by
, the curve is symmetric about the pole. (This means that the curve remains

unchanged if we rotate it through 180° about the origin.)

(c) If the equation is unchanged when is replaced by , the curve is sym metric
about the vertical line .

The curves sketched in Examples 6 and 8 are symmetric about the polar axis, since
. The curves in Examples 7 and 8 are symmetric about because

and . The four-leaved rose is also symmetric
about the pole. These symmetry properties could have been used in sketching the curves.
For instance, in Example 6 we need only have plotted points for and then
reflected about the polar axis to obtain the complete circle.

Tangents to Polar Curves
To find a tangent line to a polar curve , we regard as a parameter and write its
parametric equations as

Then, using the method for finding slopes of parametric curves (Equation 10.2.1) and the
Product Rule, we have

We locate horizontal tangents by finding the points where (provided that
). Likewise, we locate vertical tangents at the points where (pro-

vided that ).
Notice that if we are looking for tangent lines at the pole, then and Equation 3 sim-

plifies to
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684 CHAPTER 10 PARAMETRIC EQUATIONS AND POLAR COORDINATES

For instance, in Example 8 we found that when or . This
means that the lines and (or and ) are tangent lines to

at the origin.

(a) For the cardioid of Example 7, find the slope of the tangent line 
when .
(b) Find the points on the cardioid where the tangent line is horizontal or vertical.

SOLUTION Using Equation 3 with , we have

(a) The slope of the tangent at the point where is

(b) Observe that

Therefore there are horizontal tangents at the points , , and
vertical tangents at and . When , both and are
0, so we must be careful. Using l’Hospital’s Rule, we have

By symmetry,

Thus there is a vertical tangent line at the pole (see Figure 15).
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Tangent lines for r=1+sin ¨
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SECTION 10.3 POLAR COORDINATES 685

NOTE Instead of having to remember Equation 3, we could employ the method used to
derive it. For instance, in Example 9 we could have written

Then we have

which is equivalent to our previous expression.

Graphing Polar Curves with Graphing Devices
Although it’s useful to be able to sketch simple polar curves by hand, we need to use a
graphing calculator or computer when we are faced with a curve as complicated as the ones
shown in Figures 16 and 17.

Some graphing devices have commands that enable us to graph polar curves directly.
With other machines we need to convert to parametric equations first. In this case we take
the polar equation and write its parametric equations as

Some machines require that the parameter be called rather than .

Graph the curve .

SOLUTION Let’s assume that our graphing device doesn’t have a built-in polar graphing
command. In this case we need to work with the corresponding parametric equations,
which are

In any case we need to determine the domain for . So we ask ourselves: How many
complete rotations are required until the curve starts to repeat itself? If the answer 
is , then

and so we require that be an even multiple of . This will first occur when
. Therefore we will graph the entire curve if we specify that . 
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1
2 sin 2�

y � r sin � � �1 � sin �� sin � � sin � � sin2�

dy

dx
�

dy�d�

dx�d�
�

cos � � 2 sin � cos �

�sin � � cos 2�
�

cos � � sin 2�

�sin � � cos 2�

FIGURE 17
r=sin@(1.2¨)+cos#(6¨)

1.7

_1.7

_1.9 1.9

FIGURE 16
r=sin@(2.4¨)+cos$(2.4¨)

1

_1

_1 1

r � f ���

y � r sin � � f ��� sin �x � r cos � � f ��� cos �

�t

r � sin�8��5�EXAMPLE 10

y � r sin � � sin�8��5� sin �x � r cos � � sin�8��5� cos �

�

n

sin 
8�� � 2n��

5
� sin�8�

5
�

16n�

5 � � sin 
8�

5

�16n��5
0 � � � 10�n � 5
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; Graphing calculator or computer required 1. Homework Hints available at stewartcalculus.com

1–2 Plot the point whose polar coordinates are given. Then find
two other pairs of polar coordinates of this point, one with
and one with .

1. (a) (b) (c) 

2. (a) (b) (c) 

3–4 Plot the point whose polar coordinates are given. Then find the
Cartesian coordinates of the point.

3. (a) (b) (c) 

r � 0
r � 0

��1, ��2��1, �3��4��2, ��3�

�1, �1���3, ��6��1, 7��4�

��2, 3��4�(2, �2��3)�1, ��

4. (a) (b) (c) 

5–6 The Cartesian coordinates of a point are given.
(i) Find polar coordinates of the point, where 
and .
(ii) Find polar coordinates of the point, where 
and .

5. (a) (b)

6. (a) (b)

�r, �� r � 0
0 � � � 2�

�r, �� r � 0
0 � � � 2�

�2, �2� (�1, s3 )
(3s3 , 3) �1, �2�

�2, �7��6��1, 5��2�(�s2 , 5��4)

10.3 Exercises

Switching from to , we have the equations

and Figure 18 shows the resulting curve. Notice that this rose has 16 loops.

Investigate the family of polar curves given by . How
does the shape change as changes? (These curves are called limaçons, after a French
word for snail, because of the shape of the curves for certain values of .)

SOLUTION Figure 19 shows computer-drawn graphs for various values of . For
there is a loop that decreases in size as decreases. When the loop disappears and
the curve becomes the cardioid that we sketched in Example 7. For between and the
cardioid’s cusp is smoothed out and becomes a “dimple.” When de creases from to ,
the limaçon is shaped like an oval. This oval becomes more circular as , and when

the curve is just the circle .

The remaining parts of Figure 19 show that as becomes negative, the shapes change
in reverse order. In fact, these curves are reflections about the horizontal axis of the corre-
sponding curves with positive .

Limaçons arise in the study of planetary motion. In particular, the trajectory of Mars, as
viewed from the planet Earth, has been modeled by a limaçon with a loop, as in the parts
of Figure 19 with .

x � sin�8t�5� cos t y � sin�8t�5� sin t 0 � t � 10�

r � 1 � c sin �
c

c

c c � 1
c c � 1

c 1 1
2

c 1
2 0

c l 0
c � 0 r � 1

c

c

EXAMPLE 11v

t�

� c � � 1

1

_1

_1 1

FIGURE 18
r=sin(8¨/5)

c=2.5

FIGURE 19
Members of the family of
limaçons r=1+c sin ̈

c=0 c=_0.2 c=_0.5 c=_0.8 c=_1

c=_2

c=1.7 c=1 c=0.7 c=0.5 c=0.2

In Exercise 53 you are asked to prove analytically
what we have discovered from the graphs in 
Figure 19.
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SECTION 10.3 POLAR COORDINATES 687

7–12 Sketch the region in the plane consisting of points whose
polar coordinates satisfy the given conditions.

7.

8. ,  

9. ,  

10. ,  

11. ,  

12. ,  

13. Find the distance between the points with polar coordinates
and .

14. Find a formula for the distance between the points with polar
coordinates and .

15–20 Identify the curve by finding a Cartesian equation for the
curve.

15. 16.

17. 18.

19. 20.

21–26 Find a polar equation for the curve represented by the given
Cartesian equation.

21. 22.

23. 24.

25. 26.

27–28 For each of the described curves, decide if the curve would
be more easily given by a polar equation or a Cartesian equation.
Then write an equation for the curve.

27. (a) A line through the origin that makes an angle of with
the positive -axis

(b) A vertical line through the point 

28. (a) A circle with radius 5 and center 
(b) A circle centered at the origin with radius 4

29–46 Sketch the curve with the given polar equation by first
sketching the graph of as a function of in Cartesion coordinates.

29. 30.

31. 32.

33. , 34. ,

35. 36.

37. 38.

39. 40.

r 
 1

0 � r � 2 � � � � 3��2

r 
 0 ��4 � � � 3��4

1 � r � 3 ��6 � � � 5��6

2 � r � 3 5��3 � � � 7��3

r 
 1 � � � � 2�

�4, 2��3��2, ��3�

�r2, �2 ��r1, �1�

r � 4 sec �r 2 � 5

� � ��3r � 2 cos �

r 2 cos 2� � 1 r � tan � sec �

y � xy � 2

4y 2 � xy � 1 � 3x

x 2 � y 2 � 2cx xy � 4

��6
x

�3, 3�

�2, 3�

r � 1 � cos �r � �2 sin �

r �

r � 2�1 � cos ��

r � � � 
 0 r � ln � � 
 1

r � cos 5�r � 4 sin 3�

r � 3 cos 6�r � 2 cos 4�

r � 2 � sin �r � 1 � 2 sin �

r � 1 � 2 cos �

41. 42.

43. 44.

45. 46.

47–48 The figure shows a graph of as a function of in Cartesian
coordinates. Use it to sketch the corresponding polar curve.

47. 48.

49. Show that the polar curve (called a conchoid)
has the line as a vertical asymptote by showing that

. Use this fact to help sketch the conchoid.

50. Show that the curve (also a conchoid) has the
line as a horizontal asymptote by showing that

. Use this fact to help sketch the conchoid.

51. Show that the curve (called a cissoid of 
Diocles) has the line as a vertical asymptote. Show also
that the curve lies entirely within the vertical strip .
Use these facts to help sketch the cissoid.

52. Sketch the curve .

53. (a) In Example 11 the graphs suggest that the limaçon
has an inner loop when . Prove

that this is true, and find the values of that correspond to
the inner loop.

(b) From Figure 19 it appears that the limaçon loses its dimple
when . Prove this.

54. Match the polar equations with the graphs labeled I–VI. Give
reasons for your choices. (Don’t use a graphing device.)

(a) (b)
(c) (d)
(e) (f )

r � 2 � sin 3� r 2� � 1

r � 1 � 2 cos 2� r � 3 � 4 cos �

r �

¨

r

0 π 2π

2

_2
¨

r

0 π 2π

1

2

r � 4 � 2 sec �
x � 2

lim r l�	 x � 2

r � 2 � csc �
y � �1

lim r l�	 y � �1

r � sin � tan �
x � 1

0 � x � 1

�x 2 � y 2 �3 � 4x 2 y 2

r � 1 � c sin � � c � � 1
�

c � 1
2

r � s� ,  0 � � � 16� r � � 2,   0 � � � 16�

r � cos���3� r � 1 � 2 cos �
r � 2 � sin 3� r � 1 � 2 sin 3�

I II III

IV V VI

r 2 � cos 4�r 2 � 9 sin 2�
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55–60 Find the slope of the tangent line to the given polar curve
at the point specified by the value of .

55. ,  56. ,  

57. , 58. ,  

59. ,  60. ,  

61–64 Find the points on the given curve where the tangent line
is horizontal or vertical.

61. 62.

63. 64.

65. Show that the polar equation , where
, represents a circle, and find its center and radius.

66. Show that the curves and intersect at
right angles.

; 67–72 Use a graphing device to graph the polar curve. Choose
the parameter interval to make sure that you produce the entire
curve.

67. (nephroid of Freeth)

68. (hippopede)

69. (butterfly curve)

70. (valentine curve)

71. (PacMan curve)

72.

; 73. How are the graphs of and
related to the graph of ?

In general, how is the graph of related to the
graph of ?

�

� � ��3r � 2 � sin �� � ��6r � 2 sin �

r � 1�� � � � r � cos���3� � � �

r � cos 2� � � ��4 r � 1 � 2 cos� � � ��3

r � 3 cos � r � 1 � sin �

r � 1 � cos � r � e �

r � a sin � � b cos �
ab � 0

r � a cos �r � a sin �

r � 1 � 2 sin���2�

r � s1 � 0.8 sin 2�

r � e sin � � 2 cos�4��

r � � tan � �� cot � �

r � 1 � cos999�

r � sin2�4�� � cos�4��

r � 1 � sin�� � ��6�
r � 1 � sin �r � 1 � sin�� � ��3�

r � f �� � ��
r � f ���

; 74. Use a graph to estimate the -coordinate of the highest points
on the curve . Then use calculus to find the exact
value.

; 75. Investigate the family of curves with polar equations
, where is a real number. How does the

shape change as changes?

; 76. Investigate the family of polar curves

where is a positive integer. How does the shape change as
increases? What happens as becomes large? Explain the
shape for large by considering the graph of as a function
of in Cartesian coordinates.

77. Let be any point (except the origin) on the curve .
If is the angle between the tangent line at and the radial
line , show that

[Hint: Observe that in the figure.]

78. (a) Use Exercise 77 to show that the angle between the tan-
gent line and the radial line is at every point on
the curve .

; (b) Illustrate part (a) by graphing the curve and the tangent
lines at the points where and .

(c) Prove that any polar curve with the property that
the angle between the radial line and the tangent line is
a constant must be of the form , where and
are constants.

OP

tan  �
r

dr�d�

 � � � �

O

P

ÿ

¨ ˙

r=f(¨ )

 � ��4
r � e�

� � 0 ��2
r � f ���


r � Cek� C k

y
r � sin 2�

r � 1 � c cos � c
c

r � 1 � cosn�

n n
n

n r
�

r � f ���P
P

L A B O R AT O R Y  P R O J E C T ; FAMILIES OF POLAR CURVES

In this project you will discover the interesting and beautiful shapes that members of families of
polar curves can take. You will also see how the shape of the curve changes when you vary the
constants.

1. (a) Investigate the family of curves defined by the polar equations , where is a
positive integer. How is the number of loops related to ?

(b) What happens if the equation in part (a) is replaced by ?

2. A family of curves is given by the equations , where is a real number and 
is a positive integer. How does the graph change as increases? How does it change as

changes? Illustrate by graphing enough members of the family to support your conclusions.

r � sin n� n
n
r � � sin n� �

r � 1 � c sin n� c
n n c

; Graphing calculator or computer required
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SECTION 10.4 AREAS AND LENGTHS IN POLAR COORDINATES 689

3. A family of curves has polar equations

Investigate how the graph changes as the number changes. In particular, you should identify
the transitional values of for which the basic shape of the curve changes.

4. The astronomer Giovanni Cassini (1625–1712) studied the family of curves with polar 
equations

where and are positive real numbers. These curves are called the ovals of Cassini even
though they are oval shaped only for certain values of and . (Cassini thought that these
curves might represent planetary orbits better than Kepler’s ellipses.) Investigate the variety of
shapes that these curves may have. In particular, how are and related to each other when
the curve splits into two parts?

a
a

r 4 � 2c2r 2 cos 2� � c 4 � a 4 � 0 

a c
a c

a c

r �
1 � a cos �

1 � a cos �

In this section we develop the formula for the area of a region whose boundary is given by
a polar equation. We need to use the formula for the area of a sector of a circle:

where, as in Figure 1, is the radius and is the radian measure of the central angle. 
Formula 1 follows from the fact that the area of a sector is proportional to its central angle:

. (See also Exercise 35 in Section 7.3.)
Let be the region, illustrated in Figure 2, bounded by the polar curve 

and by the rays and , where is a positive continuous function and where
. We divide the interval into subintervals with endpoints , 

, , . . . , and equal width . The rays then divide into smaller regions 
with central angle . If we choose in the th subinterval , then 
the area of the th region is approximated by the area of the sector of a circle with cen-
tral angle and radius . (See Figure 3.)

Thus from Formula 1 we have

and so an approximation to the total area of is

It appears from Figure 3 that the approximation in improves as . But the sums
in are Riemann sums for the function , so

1 A � 1
2 r 2�

r �

A � ���2���r 2 � 1
2 r 2�

� r � f ���
� � a � � b f

0 � b � a � 2� 	a, b
 �0

�1 �2 �n �� � � �i � n
�� � �i � �i�1 �i* i 	�i�1, �i


�Ai i
�� f ��i*�

�Ai � 1
2 	 f ��i*�
2 ��

A �

2 A � �
n

i�1

1
2 	 f ��i*�
2 ��

n l 	

t��� � 1
2 	 f ���
2

lim
n l 	

�
n

i�1

1
2 	 f ��i*�
2 �� � y

b

a

1
2 	 f ���
2 d�

2
2

10.4 Areas and Lengths in Polar Coordinates

¨

r

FIGURE 1

FIGURE 2

O

¨=b

b
¨=a

r=f(¨)

a

�

O

¨=b

¨=a

¨=¨i-1

¨=¨i

Î¨

f(̈ i
*)

FIGURE 3
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690 CHAPTER 10 PARAMETRIC EQUATIONS AND POLAR COORDINATES

It therefore appears plausible (and can in fact be proved) that the formula for the area of
the polar region is

Formula 3 is often written as

with the understanding that . Note the similarity between Formulas 1 and 4.
When we apply Formula 3 or 4 it is helpful to think of the area as being swept out by a

rotating ray through that starts with angle and ends with angle .

Find the area enclosed by one loop of the four-leaved rose .

SOLUTION The curve was sketched in Example 8 in Section 10.3. Notice
from Figure 4 that the region enclosed by the right loop is swept out by a ray that rotates
from to . Therefore Formula 4 gives

Find the area of the region that lies inside the circle and out-
side the cardioid .

SOLUTION The cardioid (see Example 7 in Section 10.3) and the circle are sketched in
Figure 5 and the desired region is shaded. The values of and in Formula 4 are deter-
mined by finding the points of intersection of the two curves. They intersect when

, which gives , so , . The desired area can be
found by subtracting the area inside the cardioid between and from
the area inside the circle from to . Thus

Since the region is symmetric about the vertical axis , we can write

[because ]

A
�

3 A � y
b

a

1
2 � f ����2 d�

4 A � y
b

a

1
2 r 2 d�

r � f ���

O a b

r � cos 2�

r � cos 2�

� � ���4 � � ��4

A � y
��4

���4

1
2 r 2 d� � 1

2 y
��4

���4
cos2 2� d� � y

��4

0
cos2 2� d�

A � y
��4

0

1
2 �1 � cos 4�� d� � 1

2 [� �
1
4 sin 4�]0

��4
�

�

8

v EXAMPLE 1

r � 3 sin �
r � 1 � sin �

a b

3 sin � � 1 � sin � sin � � 1
2 � � ��6 5��6

� � ��6 � � 5��6
��6 5��6

A � 1
2 y

5��6

��6
�3 sin ��2 d� �

1
2 y

5��6

��6
�1 � sin ��2 d�

� � ��2

A � 2�1
2 y

��2

��6
9 sin2� d� �

1
2 y

��2

��6
�1 � 2 sin � � sin2�� d��

� y
��2

��6
�8 sin2� � 1 � 2 sin �� d�

� y
��2

��6
�3 � 4 cos 2� � 2 sin �� d� sin2� � 1

2 �1 � cos 2��

� 3� � 2 sin 2� � 2 cos �]��6

��2
� �

v EXAMPLE 2

r=cos 2¨ ¨=
π
4

¨=_
π
4

FIGURE 4

FIGURE 5

O

¨=
5π
6

¨=
π
6

r=3 sin ̈

r=1+sin ¨
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SECTION 10.4 AREAS AND LENGTHS IN POLAR COORDINATES 691

Example 2 illustrates the procedure for finding the area of the region bounded by two
polar curves. In general, let be a region, as illustrated in Figure 6, that is bounded by
curves with polar equations , , , and , where
and . The area of is found by subtracting the area inside
from the area inside , so using Formula 3 we have

| CAUTION The fact that a single point has many representations in polar coordinates
sometimes makes it difficult to find all the points of intersection of two polar curves. For
instance, it is obvious from Figure 5 that the circle and the cardioid have three points of
intersection; however, in Example 2 we solved the equations and
and found only two such points, and . The origin is also a point of inter-
section, but we can’t find it by solving the equations of the curves because the origin has 
no single representation in polar coordinates that satisfies both equations. Notice that, when
represented as or , the origin satisfies and so it lies on the circle;
when represented as , it satisfies and so it lies on the cardioid. 
Think of two points moving along the curves as the parameter value increases from 0 to

. On one curve the origin is reached at and ; on the other curve it is reached
at . The points don’t collide at the origin because they reach the origin at differ-
ent times, but the curves intersect there nonetheless.

Thus, to find all points of intersection of two polar curves, it is recommended that you
draw the graphs of both curves. It is especially convenient to use a graphing calculator or
computer to help with this task.

Find all points of intersection of the curves and .

SOLUTION If we solve the equations and , we get and, there-
fore, , , , . Thus the values of between and that satisfy
both equations are , , , . We have found four points of inter -
section: , , and .

However, you can see from Figure 7 that the curves have four other points of inter-
 section—namely, , , , and . These can be found using
symmetry or by noticing that another equation of the circle is and then solving
the equations and .

Arc Length
To find the length of a polar curve , , we regard as a parameter and
write the parametric equations of the curve as

Using the Product Rule and differentiating with respect to , we obtain

�
r � f ��� r � t��� � � a � � b f ��� � t��� � 0

0 � b � a � 2� A � r � t���
r � f ���

A � y
b

a

1
2 � f ����2 d� � y

b

a

1
2 �t����2 d�

� 1
2 y

b

a
(� f ����2 � �t����2) d�

r � 3 sin � r � 1 � sin �
( 3

2, ��6) (3
2, 5��6)

�0, 0� �0, �� r � 3 sin �
�0, 3��2� r � 1 � sin �

�
2� � � 0 � � �

� � 3��2

r � cos 2� r � 1
2

r � cos 2� r � 1
2 cos 2� � 1

2

2� � ��3 5��3 7��3 11��3 � 0 2�
� � ��6 5��6 7��6 11��6

(1
2, ��6) (1

2, 5��6), ( 1
2, 7��6) (1

2, 11��6)

(1
2, ��3) (1

2, 2��3) (1
2, 4��3) (1

2, 5��3)
r � �

1
2

r � cos 2� r � �
1
2

EXAMPLE 3

r � f ��� a � � � b �

x � r cos � � f ��� cos � y � r sin � � f ��� sin �

�

dx

d�
�

dr

d�
cos � � r sin �

dy

d�
�

dr

d�
sin � � r cos �

O

¨=b

¨=a

r=f(¨)

�

r=g(¨)

FIGURE 6

FIGURE 7

r=cos 2¨

1
2

r=
”   ,     ’

1
2

π
3

”   ,    ’
1
2

π
6
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692 CHAPTER 10 PARAMETRIC EQUATIONS AND POLAR COORDINATES

so, using , we have

Assuming that is continuous, we can use Theorem 10.2.5 to write the arc length as

Therefore the length of a curve with polar equation , , is

Find the length of the cardioid .

SOLUTION The cardioid is shown in Figure 8. (We sketched it in Example 7 in
Section 10.3.) Its full length is given by the parameter interval , so 
Formula 5 gives 

We could evaluate this integral by multiplying and dividing the integrand by
, or we could use a computer algebra system. In any event, we find that the

length of the cardioid is .

� � 	 dr

d�

2

sin2� � 2r
dr

d�
sin � cos � � r 2 cos2�

� 	 dr

d�

2

� r 2

f 	

L � y
b

a
�	 dx

d�
2

� 	 dy

d�
2 

d�

cos2� � sin2� � 1

	 dx

d�

2

� 	 dy

d�

2

� 	 dr

d�

2

cos2� � 2r
dr

d�
cos � sin � � r 2 sin2�

r � f ��� a � � � b

5 L � y
b

a
�r 2 � 	 dr

d�
2 

d�

r � 1 � sin �

0 � � � 2�

L � y
2�

0
�r 2 � 	 dr

d�
2 

d� � y
2�

0
s�1 � sin ��2 � cos2� d�

� y
2�

0
s2 � 2 sin � d�

s2 � 2 sin �
L � 8

v EXAMPLE 4

O

FIGURE 8
r=1+sin ¨

; Graphing calculator or computer required 1. Homework Hints available at stewartcalculus.com

1–4 Find the area of the region that is bounded by the given curve
and lies in the specified sector.

1. ,  

2. ,  

3. ,  ,  

4. ,  

r � e���4 ��2 � � � �

r � cos � 0 � � � ��6

r 2 � 9 sin 2� 0 � � � ��2

r � tan � ��6 � � � ��3

r � 0

5–8 Find the area of the shaded region.

5. 6.

r=œ„̈ r=1+cos ¨

10.4 Exercises
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SECTION 10.4 AREAS AND LENGTHS IN POLAR COORDINATES 693

7. 8.

9–12 Sketch the curve and find the area that it encloses.

9. 10.

11. 12.

; 13–16 Graph the curve and find the area that it encloses.

13. 14.

15. 16.

17–21 Find the area of the region enclosed by one loop of 
the curve.

17. 18.

19. 20.

21. (inner loop)

22. Find the area enclosed by the loop of the strophoid
.

23–28 Find the area of the region that lies inside the first curve
and outside the second curve.

23. ,  24. ,  

25. ,  

26. ,  

27. ,  

28. ,  

29–34 Find the area of the region that lies inside both curves.

29. ,  

30. ,  

31. ,  

32. ,  

33. ,  

34. ,  ,  , 

r=4+3 sin ¨ r=sin 2̈

r � 1 � sin �r � 2 sin �

r � 4 � 3 sin �r � 3 � 2 cos �

r � 3 � 2 cos 4�r � 2 � sin 4�

r � s1 � cos2�5�� r � 1 � 5 sin 6�

r 2 � sin 2�r � 4 cos 3�

r � sin 4� r � 2 sin 5�

r � 1 � 2 sin �

r � 2 cos � � sec �

r � 1r � 1 � sin �r � 1r � 2 cos �

r � 2 � sin �

r � 2r 2 � 8 cos 2�

r � 3 sin �

r � 1 � cos �r � 3 cos �

r � 2 � sin �r � 3 sin �

r � sin �r � s3 cos �

r � 1 � cos �r � 1 � cos �

r � cos 2�r � sin 2�

r � 3 � 2 sin �r � 3 � 2 cos �

r 2 � sin 2� r 2 � cos 2�

r � a sin � r � b cos � a 
 0 b 
 0

35. Find the area inside the larger loop and outside the smaller
loop of the limaçon .

36. Find the area between a large loop and the enclosed small
loop of the curve .

37–42 Find all points of intersection of the given curves.

37. ,  

38. ,  

39. ,  

40. ,  

41. ,  

42. ,  

; 43. The points of intersection of the cardioid and
the spiral loop , , can’t be found
exactly. Use a graphing device to find the approximate values
of at which they intersect. Then use these values to esti-
mate the area that lies inside both curves.

44. When recording live performances, sound engineers often use 
a microphone with a cardioid pickup pattern because it sup-
presses noise from the audience. Suppose the microphone is
placed 4 m from the front of the stage (as in the figure) and
the boundary of the optimal pickup region is given by the
cardioid , where is measured in meters and
the microphone is at the pole. The musicians want to know
the area they will have on stage within the optimal pickup
range of the microphone. Answer their question.

45–48 Find the exact length of the polar curve.

45. ,  

46. ,  

47. ,  

48.

; 49–50 Find the exact length of the curve. Use a graph to
determine the parameter interval.

49. 50.

r � 1 � 2 cos 3�

r � 1 � sin � r � 3 sin �

r � 1 � cos � r � 1 � sin �

r � 2 sin 2� r � 1

r � cos 3� r � sin 3�

r � sin � r � sin 2�

r 2 � sin 2� r 2 � cos 2�

r � 1 � sin �
r � 2� ���2 � � � ��2

�

r � 8 � 8 sin � r

stage

audience
microphone

12 m

4 m

r � 2 cos � 0 � � � �

r � 5� 0 � � � 2�

r � � 2 0 � � � 2�

r � 2�1 � cos ��

r � cos4���4� r � cos2���2�

r � 1
2 � cos �
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694 CHAPTER 10 PARAMETRIC EQUATIONS AND POLAR COORDINATES

51–54 Use a calculator to find the length of the curve correct to
four decimal places. If necessary, graph the curve to determine the
parameter interval.

51. One loop of the curve 

52. ,  

53.

54.

55. (a) Use Formula 10.2.6 to show that the area of the surface
generated by rotating the polar curve

r � cos 2�

��6 � � � ��3r � tan �

r � sin���4�

r � sin�6 sin ��

a � � � br � f ���

(where is continuous and ) about the
polar axis is

(b) Use the formula in part (a) to find the surface area
generated by rotating the lemniscate about the 
polar axis.

56. (a) Find a formula for the area of the surface generated by
rotating the polar curve , (where is
continuous and ), about the line .

(b) Find the surface area generated by rotating the lemniscate
about the line .

r 2 � cos 2�

f 	a � � � br � f ���
0 � a � b � � � � ��2

� � ��2r 2 � cos 2�

S � y
b

a
2�r sin ��r 2 � 	 dr

d�
2

d�

0 � a � b � �f 	

In this section we give geometric definitions of parabolas, ellipses, and hyperbolas and
derive their standard equations. They are called conic sections, or conics, because they
result from intersecting a cone with a plane as shown in Figure 1.

Parabolas
A parabola is the set of points in a plane that are equidistant from a fixed point (called
the focus) and a fixed line (called the directrix). This definition is illustrated by Figure 2.
Notice that the point halfway between the focus and the directrix lies on the parabola; it is
called the vertex. The line through the focus perpendicular to the directrix is called the axis
of the parabola.

In the 16th century Galileo showed that the path of a projectile that is shot into 
the air at an angle to the ground is a parabola. Since then, parabolic shapes have been 
used in designing automobile headlights, reflecting telescopes, and suspension bridges. (See
Problem 16 on page 196 for the reflection property of parabolas that makes them so useful.)

We obtain a particularly simple equation for a parabola if we place its vertex at the 
origin and its directrix parallel to the -axis as in Figure 3. If the focus is the point 

, then the directrix has the equation . If is any point on the parabola, 

FIGURE 1
Conics

ellipse hyperbolaparabola

F

xO
P�x, y�y � �p�0, p�

10.5 Conic Sections

axis

F
focus

parabola

vertex directrix

FIGURE 2
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SECTION 10.5 CONIC SECTIONS 695

then the distance from to the focus is

and the distance from to the directrix is . (Figure 3 illustrates the case where
.) The defining property of a parabola is that these distances are equal:

We get an equivalent equation by squaring and simplifying:

An equation of the parabola with focus and directrix is

If we write , then the standard equation of a parabola becomes .
It opens upward if and downward if [see Figure 4, parts (a) and (b)]. The
graph is symmetric with respect to the -axis because is unchanged when is replaced
by .

If we interchange and in , we obtain

which is an equation of the parabola with focus and directrix . (Inter changing
and amounts to reflecting about the diagonal line .) The parabola opens to the right

if and to the left if [see Figure 4, parts (c) and (d)]. In both cases the graph is
symmetric with respect to the -axis, which is the axis of the parabola.

Find the focus and directrix of the parabola and sketch 
the graph.

SOLUTION If we write the equation as and compare it with Equation 2, we see
that , so . Thus the focus is and the directrix is .
The sketch is shown in Figure 5.

P

� PF � � sx 2 � �y � p�2 

p 
 0
� y � p �P

sx 2 � �y � p�2 � � y � p �

x 2 � �y � p�2 � � y � p �2 � �y � p�2

x 2 � y 2 � 2py � p 2 � y 2 � 2py � p 2

x 2 � 4py

�0, p�1 y � �p

x 2 � 4py

y � ax 21a � 1��4p�
p � 0p 
 0

x1y
�x

FIGURE 4

0 x

y

( p, 0)

x=_p

(d) ¥=4px, p<0

0 x

y

( p, 0)

x=_p

(c) ¥=4px, p>0

0

x

y

(0, p)

y=_p

(b) ≈=4py, p<0

0 x

y

(0, p)

y=_p

(a) ≈=4py, p>0

1yx

y 2 � 4px2

x � �p�p, 0�
y � xyx

p � 0p 
 0
x

y 2 � 10x � 0EXAMPLE 1

y 2 � �10x
x � 5

2� p, 0� � (� 5
2, 0)p � �

5
24p � �10

FIGURE 3

x

y

O

F(0, p)

y=_p

P(x, y)

y

p

FIGURE 5

0 x

y

x=
5
2

¥+10x=0

”_   , 0’5
2
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696 CHAPTER 10 PARAMETRIC EQUATIONS AND POLAR COORDINATES

Ellipses
An ellipse is the set of points in a plane the sum of whose distances from two fixed points

and is a constant (see Figure 6). These two fixed points are called the foci (plural of
focus). One of Kepler’s laws is that the orbits of the planets in the solar system are ellipses
with the sun at one focus.

In order to obtain the simplest equation for an ellipse, we place the foci on the -axis at
the points and as in Figure 7 so that the origin is halfway between the foci. Let
the sum of the distances from a point on the ellipse to the foci be . Then is a
point on the ellipse when

that is,

or

Squaring both sides, we have

which simplifies to

We square again:

which becomes

From triangle in Figure 7 we see that , so and therefore 
. For convenience, let . Then the equation of the ellipse becomes

or, if both sides are divided by , 

Since , it follows that . The -intercepts are found by setting 
. Then , or , so . The corresponding points and

are called the vertices of the ellipse and the line segment joining the vertices 
is called the major axis. To find the -intercepts we set and obtain , so

. The line segment joining and is the minor axis. Equation 3 is
unchanged if is replaced by or is replaced by , so the ellipse is symmetric about
both axes. Notice that if the foci coincide, then , so and the ellipse becomes a
circle with radius .

We summarize this discussion as follows (see also Figure 8).

F2F1

FIGURE 6

F¡ F™

P

FIGURE 7

F¡(_c, 0) F™(c, 0)0 x

y

P(x, y)

x
�c, 0���c, 0�

P�x, y�2a 
 0

� PF1 � � � PF2 � � 2a

s�x � c�2 � y 2 � s�x � c�2 � y 2 � 2a

s�x � c�2 � y 2 � 2a � s�x � c�2 � y 2 

x 2 � 2cx � c 2 � y 2 � 4a 2 � 4as�x � c�2 � y 2 � x 2 � 2cx � c 2 � y 2

as�x � c�2 � y 2 � a 2 � cx

a 2�x 2 � 2cx � c 2 � y 2 � � a 4 � 2a 2cx � c 2x 2

�a 2 � c 2 �x 2 � a 2y 2 � a 2�a 2 � c 2 �

c � a2c � 2aF1F2P
b 2 � a 2 � c 2a 2 � c 2 
 0

a 2b 2b 2x 2 � a 2y 2 � a 2b 2

x 2

a 2 �
y 2

b 2 � 13

xb � ab 2 � a 2 � c 2 � a 2

�a, 0�x � �ax 2 � a 2x 2�a 2 � 1y � 0
��a, 0�

y
�0, b�y � �b

y 2 � b 2x � 0
�0, �b�

�yy�xx
a � bc � 0

r � a � b
+     =1,

FIGURE 8
≈

a@

¥

b@

(c, 0)0 x

y

ab

c

(0, b)

(_c, 0)

(0, _b)

(a, 0)

(_a, 0)
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SECTION 10.5 CONIC SECTIONS 697

The ellipse

has foci , where , and vertices .

If the foci of an ellipse are located on the -axis at , then we can find its equation
by interchanging and in . (See Figure 9.)

The ellipse

has foci , where , and vertices .

Sketch the graph of and locate the foci.

SOLUTION Divide both sides of the equation by 144:

The equation is now in the standard form for an ellipse, so we have , ,
, and . The -intercepts are and the -intercepts are . Also,

, so and the foci are . The graph is sketched in 
Figure 10.

Find an equation of the ellipse with foci and vertices .

SOLUTION Using the notation of , we have and . Then we obtain
, so an equation of the ellipse is

Another way of writing the equation is .

Like parabolas, ellipses have an interesting reflection property that has practical conse-
quences. If a source of light or sound is placed at one focus of a surface with elliptical 
cross-sections, then all the light or sound is reflected off the surface to the other focus (see
Exercise 65). This principle is used in lithotripsy, a treatment for kidney stones. A reflector
with elliptical cross-section is placed in such a way that the kidney stone is at one focus.
High-intensity sound waves generated at the other focus are reflected to the stone and
destroy it without damaging surrounding tissue. The patient is spared the trauma of surgery
and recovers within a few days.

Hyperbolas
A hyperbola is the set of all points in a plane the difference of whose distances from two
fixed points and (the foci) is a constant. This definition is illustrated in Figure 11.

Hyperbolas occur frequently as graphs of equations in chemistry, physics, biology, and
economics (Boyle’s Law, Ohm’s Law, supply and demand curves). A particularly signifi-

4

a � b 
 0
x 2

a 2 �
y 2

b 2 � 1

��a, 0�c 2 � a 2 � b 2��c, 0�

�0, �c�y
4yx

5

a � b 
 0
x 2

b 2 �
y 2

a 2 � 1

�0, �a�c 2 � a 2 � b 2�0, �c�

9x 2 � 16y 2 � 144EXAMPLE 2v

x 2

16
�

y 2

9
� 1

b 2 � 9a 2 � 16
�3y�4xb � 3a � 4

(�s7 , 0)c � s7c 2 � a 2 � b 2 � 7

�0, �3��0, �2�EXAMPLE 3v

a � 3c � 25
b 2 � a 2 � c 2 � 9 � 4 � 5

x 2

5
�

y 2

9
� 1

9x 2 � 5y 2 � 45

F2F1

0 x

y
(0, a)

(0, c)

(b, 0)

(0, _c)

(_b, 0)

(0, _a)

≈

b@

¥

a@
+     =1,  a˘b

FIGURE 9

0 x

y

(0, 3)

{œ„7, 0}

(4, 0)
(_4, 0)

(0, _3)

{_œ„7, 0}

FIGURE 10
9≈+16¥=144

FIGURE 11
P is on the hyperbola when
|PF¡|-|PF™ |=�2a.

F™(c, 0)F¡(_c, 0) 0 x

y
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698 CHAPTER 10 PARAMETRIC EQUATIONS AND POLAR COORDINATES

cant application of hyperbolas is found in the navigation systems developed in World Wars
I and II (see Exercise 51).

Notice that the definition of a hyperbola is similar to that of an ellipse; the only change
is that the sum of distances has become a difference of distances. In fact, the derivation of
the equation of a hyperbola is also similar to the one given earlier for an ellipse. It is left as
Exercise 52 to show that when the foci are on the -axis at and the difference of dis-
tances is , then the equation of the hyperbola is

where . Notice that the -intercepts are again and the points and
are the vertices of the hyperbola. But if we put in Equation 6 we get

, which is impossible, so there is no -intercept. The hyperbola is symmetric with
respect to both axes.

To analyze the hyperbola further, we look at Equation 6 and obtain

This shows that , so . Therefore we have or . This
means that the hyperbola consists of two parts, called its branches.

When we draw a hyperbola it is useful to first draw its asymptotes, which are the dashed
lines and shown in Figure 12. Both branches of the hyperbola
approach the asymptotes; that is, they come arbitrarily close to the asymptotes. [See Exer-
cise 73 in Section 4.5, where these lines are shown to be slant asymptotes.]

The hyperbola

has foci , where , vertices , and asymptotes
.

If the foci of a hyperbola are on the -axis, then by reversing the roles of and we
obtain the following information, which is illustrated in Figure 13.

The hyperbola

has foci , where , vertices , and asymptotes
.

Find the foci and asymptotes of the hyperbola and sketch
its graph.

��c, 0�x

� PF1 � � � PF2 � � �2a

x 2

a 2 �
y 2

b 2 � 16

�a, 0��axc 2 � a 2 � b 2

��a, 0�
y 2 � �b 2

x � 0
y

x 2

a 2 � 1 �
y 2

b 2 � 1

x � �ax � a� x � � sx 2 � ax 2 � a 2

y � �b�a�x y � ��b�a�x

7

x 2

a 2 �
y 2

b 2 � 1

��a, 0�c 2 � a 2 � b 2��c, 0�
y � ��b�a�x

yxy

8

y 2

a 2 �
x 2

b 2 � 1

�0, �a�c 2 � a 2 � b 2�0, �c�
y � ��a�b�x

9x 2 � 16y 2 � 144EXAMPLE 4

(a, 0)

FIGURE 12
¥
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a y=   x

b
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0 x
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a
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a
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FIGURE 14
9≈-16¥=144

0 x

y

(5, 0)(_5, 0)

(4, 0)(_4, 0)

y=_   x3
4

y=   x3
4

FIGURE 15
9≈-4¥-72x+8y+176=0

0 x

y

y-1=_   (x-4)
3
2

y-1=   (x-4)
3
2

(4, 4)

(4, _2)

(4, 1)

SOLUTION If we divide both sides of the equation by 144, it becomes

which is of the form given in with and . Since , the
foci are . The asymptotes are the lines and . The graph is shown
in Figure 14.

Find the foci and equation of the hyperbola with vertices and asymp-
tote .

SOLUTION From and the given information, we see that and . Thus
and . The foci are and

the equation of the hyperbola is

Shifted Conics
As discussed in Appendix C, we shift conics by taking the standard equations , , ,

, , and and replacing and by and .

Find an equation of the ellipse with foci , and vertices 
, . 

SOLUTION The major axis is the line segment that joins the vertices , 
and has length , so . The distance between the foci is , so . Thus

. Since the center of the ellipse is , we replace and in 
by and to obtain

as the equation of the ellipse.

Sketch the conic and find its foci.

SOLUTION We complete the squares as follows:

This is in the form except that and are replaced by and . Thus
, , and . The hyperbola is shifted four units to the right and one

unit upward. The foci are and and the vertices are and
. The asymptotes are . The hyperbola is sketched in

Figure 15.

a � 4 b � 3 c 2 � 16 � 9 � 25
��5, 0� y � 3

4 x y � �
3
4 x

x 2

16
�

y 2

9
� 1

�0, �1�
y � 2x

a � 1 a�b � 2
b � a�2 � 1

2 c 2 � a 2 � b 2 � 5
4 (0, �s5�2)

y 2 � 4x 2 � 1

EXAMPLE 5

7

8

x y x � h y � k
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1–8 Find the vertex, focus, and directrix of the parabola and sketch
its graph.

1. 2.

3. 4.

5. 6.

7. 8.

9–10 Find an equation of the parabola. Then find the focus and
directrix.

9. 10.

11–16 Find the vertices and foci of the ellipse and sketch 
its graph.

11. 12.

13. 14.

15.

16.

17–18 Find an equation of the ellipse. Then find its foci.

17. 18.

19–24 Find the vertices, foci, and asymptotes of the hyperbola and
sketch its graph.

19. 20.

21. 22.

x 2 � 6y 2y 2 � 5x

2x � �y 2 3x 2 � 8y � 0

�x � 2�2 � 8�y � 3� x � 1 � �y � 5�2

y 2 � 2y � 12x � 25 � 0 y � 12x � 2x 2 � 16

y

x

1

_2

y

x

1

20

x 2

2
�

y 2

4
� 1

x 2

36
�

y 2

8
� 1

x 2 � 9y 2 � 9 100x 2 � 36y 2 � 225

9x 2 � 18x � 4y 2 � 27

x 2 � 3y2 � 2x � 12y � 10 � 0

y

x

1

10

y

x

1

2

y 2

25
�

x 2

9
� 1

x 2

36
�

y 2

64
� 1

x 2 � y 2 � 100 y 2 � 16x 2 � 16

23.

24.

25–30 Identify the type of conic section whose equation is given
and find the vertices and foci.

25. 26.

27. 28.

29. 30.

31–48 Find an equation for the conic that satisfies the given 
conditions.

31. Parabola,  vertex ,  focus 

32. Parabola,  focus ,  directrix 

33. Parabola,  focus ,  directrix 

34. Parabola,  focus ,  vertex 

35. Parabola,  vertex ,  vertical axis,
passing through 

36. Parabola,  horizontal axis,  
passing through , , and 

37. Ellipse,  foci ,  vertices 

38. Ellipse,  foci ,  vertices 

39. Ellipse,  foci , ,  vertices , 

40. Ellipse,  foci , ,  vertex 

41. Ellipse,  center ,  vertex ,  focus  

42. Ellipse,  foci ,  passing through 

43. Hyperbola,  vertices ,  foci 

44. Hyperbola,  vertices ,  foci 

45. Hyperbola,  vertices , ,  
foci , 

46. Hyperbola,  vertices , ,  
foci , 

47. Hyperbola,  vertices ,  asymptotes 

48. Hyperbola,  foci , , 
asymptotes and 

x 2 � y � 1 x 2 � y 2 � 1

x 2 � 4y � 2y 2 y 2 � 8y � 6x � 16

y 2 � 2y � 4x 2 � 3 4x 2 � 4x � y 2 � 0

�0, 0� �1, 0�

�0, 0� y � 6

��4, 0� x � 2

�3, 6� �3, 2�

�2, 3�
�1, 5�

��1, 0� �1, �1� �3, 1�

��2, 0� ��5, 0�

�0, �5� �0, �13�

�0, 2� �0, 6� �0, 0� �0, 8�

�0, �1� �8, �1� �9, �1�

��1, 4� ��1, 0� ��1, 6�

��4, 0� ��4, 1.8�

��3, 0� ��5, 0�

�0, �2� �0, �5�

��3, �4� ��3, 6�
��3, �7� ��3, 9�

��1, 2� �7, 2�
��2, 2� �8, 2�

��3, 0� y � �2x

�2, 0� �2, 8�
y � 3 �

1
2 x y � 5 �

1
2 x

y2 � 4x 2 � 2y � 16x � 31

4x 2 � y2 � 24x � 4y � 28 � 0

10.5 Exercises

1. Homework Hints available at stewartcalculus.com
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SECTION 10.5 CONIC SECTIONS 701

49. The point in a lunar orbit nearest the surface of the moon is
called perilune and the point farthest from the surface is called
apolune. The Apollo 11 spacecraft was placed in an elliptical
lunar orbit with perilune altitude 110 km and apolune altitude
314 km (above the moon). Find an equation of this ellipse if
the radius of the moon is 1728 km and the center of the moon
is at one focus.

50. A cross-section of a parabolic reflector is shown in the figure.
The bulb is located at the focus and the opening at the focus 
is 10 cm.
(a) Find an equation of the parabola.
(b) Find the diameter of the opening , 11 cm from 

the vertex.

51. In the LORAN (LOng RAnge Navigation) radio navigation
system, two radio stations located at and transmit simul ta-
neous signals to a ship or an aircraft located at . The onboard
computer converts the time difference in receiving these signals
into a distance difference , and this, according to
the definition of a hyperbola, locates the ship or aircraft on one
branch of a hyperbola (see the figure). Suppose that station B is
located 400 mi due east of station A on a coastline. A ship
received the signal from B 1200 micro seconds (�s) before it
received the signal from A.
(a) Assuming that radio signals travel at a speed of 980 ft �s,

find an equation of the hyperbola on which the ship lies.
(b) If the ship is due north of , how far off the coastline is 

the ship?

52. Use the definition of a hyperbola to derive Equation 6 for a
hyperbola with foci and vertices .

53. Show that the function defined by the upper branch of the
hyperbola is concave upward.

� CD �

5 cm

5 cm

A

B

C

D

V
F

11 cm

BA
P

� PA � � � PB �

�

B

400 mi
transmitting stations

coastlineA B

P

��a, 0���c, 0�

y 2�a 2 � x 2�b 2 � 1

54. Find an equation for the ellipse with foci and
and major axis of length 4.

55. Determine the type of curve represented by the equation

in each of the following cases: (a) , (b) , 
and (c) .
(d) Show that all the curves in parts (a) and (b) have the same

foci, no matter what the value of is.

56. (a) Show that the equation of the tangent line to the parabola 
at the point can be written as

(b) What is the -intercept of this tangent line? Use this fact to
draw the tangent line.

57. Show that the tangent lines to the parabola drawn
from any point on the directrix are perpendicular.

58. Show that if an ellipse and a hyperbola have the same foci,
then their tangent lines at each point of intersection are 
perpendicular.

59. Use parametric equations and Simpson’s Rule with to
estimate the circumference of the ellipse .

60. The planet Pluto travels in an elliptical orbit around the sun 
(at one focus). The length of the major axis is km
and the length of the minor axis is km. Use Simp-
son’s Rule with to estimate the distance traveled by the
planet during one complete orbit around the sun.

61. Find the area of the region enclosed by the hyperbola
and the vertical line through a focus.

62. (a) If an ellipse is rotated about its major axis, find the volume
of the resulting solid.

(b) If it is rotated about its minor axis, find the resulting
volume.

63. Find the centroid of the region enclosed by the -axis and the
top half of the ellipse .

64. (a) Calculate the surface area of the ellipsoid that is generated
by rotating an ellipse about its major axis.

(b) What is the surface area if the ellipse is rotated about its
minor axis?

65. Let be a point on the ellipse with
foci and and let and be the angles between the lines 

x 2

k
�

y 2

k � 16
� 1

��1, �1��1, 1�

0 � k � 16k � 16
k � 0

k

�x0, y0�y 2 � 4px

y0y � 2p�x � x 0�

x

x 2 � 4py

n � 8
9x 2 � 4y 2 � 36

1.18 � 1010

1.14 � 1010

n � 10

x 2�a 2 � y 2�b 2 � 1

x
9x 2 � 4y 2 � 36

x 2�a 2 � y 2�b 2 � 1P�x1, y1�
	
F2F1
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In the preceding section we defined the parabola in terms of a focus and directrix, but we
defined the ellipse and hyperbola in terms of two foci. In this section we give a more uni-
fied treatment of all three types of conic sections in terms of a focus and directrix. Further-
 more, if we place the focus at the origin, then a conic section has a simple polar equation,
which provides a convenient description of the motion of planets, satellites, and comets.

Theorem Let be a fixed point (called the focus) and be a fixed line (called
the directrix) in a plane. Let be a fixed positive number (called the eccentricity).
The set of all points in the plane such that

(that is, the ratio of the distance from to the distance from is the constant ) 
is a conic section. The conic is

(a) 

(b) 

(c) 

PROOF Notice that if the eccentricity is , then and so the given condi-
tion simply becomes the definition of a parabola as given in Section 10.5.

F l
e

P

� PF �
� Pl � � e

F l e

an ellipse if e � 1

a parabola if e � 1

1

a hyperbola if e � 1

� PF � � � Pl �e � 1
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, and the ellipse as shown in the figure. Prove that
. This explains how whispering galleries and litho tripsy

work. Sound coming from one focus is reflected and passes
through the other focus. [Hint: Use the formula in Problem 15
on page 195 to show that .]

66. Let be a point on the hyperbola
with foci and and let and be the angles between 
the lines , and the hyperbola as shown in the figure.
Prove that . (This is the reflection property of the 

PF2PF1


 � 	

tan 
 � tan 	

F¡ F™0 x

y

∫

å

+    =1
≈

a@

¥

b@

P(⁄, ›)

x 2�a 2 � y 2�b 2 � 1P�x1, y1�
	
F2F1

PF2PF1


 � 	

hyperbola. It shows that light aimed at a focus of a hyper-
bolic mirror is reflected toward the other focus .)

0 x

y

å
∫

F™F¡

P

F™F¡

P

F2

F1

10.6 Conic Sections in Polar Coordinates
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SECTION 10.6 CONIC SECTIONS IN POLAR COORDINATES 703

Let us place the focus at the origin and the directrix parallel to the -axis and
units to the right. Thus the directrix has equation and is perpendicular to the

polar axis. If the point has polar coordinates , we see from Figure 1 that

Thus the condition , or , becomes

If we square both sides of this polar equation and convert to rectangular coordinates, 
we get

or

After completing the square, we have

If , we recognize Equation 3 as the equation of an ellipse. In fact, it is of the form

where

In Section 10.5 we found that the foci of an ellipse are at a distance from the center,
where

This shows that

and confirms that the focus as defined in Theorem 1 means the same as the focus defined
in Section 10.5. It also follows from Equations 4 and 5 that the eccentricity is given by

If , then and we see that Equation 3 represents a hyperbola. Just as we
did before, we could rewrite Equation 3 in the form

and see that

yF
x � dd

�r, ��P

� Pl � � d � r cos �� PF � � r

� PF � � e � Pl �� PF ��� Pl � � e

r � e�d � r cos ��2

x 2 � y 2 � e 2�d � x�2 � e 2�d 2 � 2dx � x 2 �

�1 � e 2 �x 2 � 2de 2x � y 2 � e 2d 2

�x �
e 2d

1 � e 2�2

�
y 2

1 � e 2 �
e 2d 2

�1 � e 2 �23

e � 1

�x � h�2

a 2 �
y 2

b 2 � 1

b 2 �
e 2d 2

1 � e 2a 2 �
e 2d 2

�1 � e 2 �2h � �
e 2d

1 � e 24

c

c 2 � a 2 � b 2 �
e 4d 2

�1 � e 2 �25

c �
e 2d

1 � e 2 � �h

e �
c

a

1 � e 2 � 0e � 1

�x � h�2

a 2 �
y 2

b 2 � 1

where c 2 � a 2 � b 2e �
c

a

FIGURE 1

y

x
F

l (directrix)

x=d

r cos ¨

P

¨

r

d

C
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704 CHAPTER 10 PARAMETRIC EQUATIONS AND POLAR COORDINATES

By solving Equation 2 for , we see that the polar equation of the conic shown in Fig-
 ure 1 can be written as

If the directrix is chosen to be to the left of the focus as , or if the directrix is cho-
sen to be parallel to the polar axis as , then the polar equation of the conic is given
by the following theorem, which is illustrated by Figure 2. (See Exercises 21–23.)

Theorem A polar equation of the form

represents a conic section with eccentricity . The conic is an ellipse if , 
a parabola if , or a hyperbola if .

Find a polar equation for a parabola that has its focus at the origin and
whose directrix is the line .

SOLUTION Using Theorem 6 with and , and using part (d) of Figure 2, we
see that the equation of the parabola is

A conic is given by the polar equation

Find the eccentricity, identify the conic, locate the directrix, and sketch the conic.

SOLUTION Dividing numerator and denominator by 3, we write the equation as

r

r �
ed

1 � e cos �

x � �d
y � �d

FIGURE 2 
Polar equations of conics

(a) r=
ed

1+e cos ¨

y

xF

x=d

directrix

(b) r=
ed

1-e cos ¨

xF

y

x=_d

directrix

(c) r=
ed

1+e sin ¨

y

F x

y=d         directrix

(d) r=
ed

1-e sin ¨

x

y

y=_d         directrix

F

6

r �
ed

1 � e sin �
orr �

ed

1 � e cos �

e � 1e
e � 1 e � 1

EXAMPLE 1v
y � �6

d � 6e � 1

r �
6

1 � sin �

EXAMPLE 2v

r �
10

3 � 2 cos �

r �
10
3

1 �
2
3 cos �
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SECTION 10.6 CONIC SECTIONS IN POLAR COORDINATES 705

From Theorem 6 we see that this represents an ellipse with . Since , 
we have

so the directrix has Cartesian equation . When , ; when � ,
. So the vertices have polar coordinates and . The ellipse is sketched

in Figure 3.

Sketch the conic .

SOLUTION Writing the equation in the form

we see that the eccentricity is and the equation therefore represents a hyperbola.
Since , and the directrix has equation . The vertices occur when

and , so they are and . It is also useful to
plot the -intercepts. These occur when , ; in both cases . For additional
accuracy we could draw the asymptotes. Note that when or

and when . Thus the asymptotes are parallel to the rays
and . The hyperbola is sketched in Figure 4.

When rotating conic sections, we find it much more convenient to use polar equations
than Cartesian equations. We just use the fact (see Exercise 73 in Section 10.3) that the
graph of is the graph of rotated counterclockwise about the origin
through an angle .

If the ellipse of Example 2 is rotated through an angle about the ori-
gin, find a polar equation and graph the resulting ellipse.

SOLUTION We get the equation of the rotated ellipse by replacing with in the
equation given in Example 2. So the new equation is

We use this equation to graph the rotated ellipse in Figure 5. Notice that the ellipse has
been rotated about its left focus.

ed � 10
3e � 2

3

d �
10
3

e
�

10
3
2
3

� 5

��r � 10� � 0x � �5
�2, ���10, 0�r � 2

r �
12

2 � 4 sin �
EXAMPLE 3

r �
6

1 � 2 sin �

e � 2
y � 3d � 3ed � 6

��6, 3��2� � �6, ��2��2, ��2�3��2� � ��2
r � 6�� � 0x

1 � 2 sin � l 0�r l �
sin � � �

1
21 � 2 sin � � 00�

� � 11��6� � 7��6

FIGURE 4

r=
12

2+4 sin ¨

x0

y

(6, π) (6, 0)

y=3 (directrix)

focus

”2,    ’
π
2

”6,    ’
π
2

r � f ���r � f �� � 
�



��4EXAMPLE 4v

� � ��4�

r �
10

3 � 2 cos�� � ��4�

FIGURE 3

y

0 x

r=
10

3-2 cos ̈x=_5

(directrix)

(10, 0)

(2, π)

focus

FIGURE 5

11

_6

_5 15

r= 10
3-2 cos(¨-π/4)

r=
10

3-2 cos ̈
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706 CHAPTER 10 PARAMETRIC EQUATIONS AND POLAR COORDINATES

In Figure 6 we use a computer to sketch a number of conics to demonstrate the effect of
varying the eccentricity . Notice that when is close to 0 the ellipse is nearly circular,
whereas it becomes more elongated as . When , of course, the conic is a
parabola.

Kepler’s Laws
In 1609 the German mathematician and astronomer Johannes Kepler, on the basis of huge
amounts of astronomical data, published the following three laws of planetary motion.

Kepler’s Laws

1. A planet revolves around the sun in an elliptical orbit with the sun at one focus.

2. The line joining the sun to a planet sweeps out equal areas in equal times.

3. The square of the period of revolution of a planet is proportional to the cube of
the length of the major axis of its orbit.

Although Kepler formulated his laws in terms of the motion of planets around the sun,
they apply equally well to the motion of moons, comets, satellites, and other bodies that
orbit subject to a single gravitational force. In Section 13.4 we will show how to deduce
Kepler’s Laws from Newton’s Laws. Here we use Kepler’s First Law, together with the
polar equation of an ellipse, to calculate quantities of interest in astronomy.

For purposes of astronomical calculations, it’s useful to express the equation of an ellipse
in terms of its eccentricity and its semimajor axis . We can write the distance from the
focus to the directrix in terms of if we use :

So . If the directrix is , then the polar equation is

ee
e � 1e l 1�

FIGURE 6

e=1 e=1.1 e=1.4 e=4

e=0.96e=0.86e=0.68e=0.1 e=0.5

dae
4a

a2 �
e2d 2

�1 � e 2�2 ? d 2 �
a 2�1 � e2�2

e2 ? d �
a�1 � e2�

e

x � ded � a�1 � e2�

r �
ed

1 � e cos �
�

a�1 � e2�
1 � e cos �
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SECTION 10.6 CONIC SECTIONS IN POLAR COORDINATES 707

The polar equation of an ellipse with focus at the origin, semimajor axis ,
eccentricity , and directrix can be written in the form

The positions of a planet that are closest to and farthest from the sun are called its peri-
helion and aphelion, respectively, and correspond to the vertices of the ellipse. (See 
Figure 7.) The distances from the sun to the perihelion and aphelion are called the peri-
helion distance and aphelion distance, respectively. In Figure 1 the sun is at the focus ,
so at perihelion we have and, from Equation 7,

Similarly, at aphelion and .

The perihelion distance from a planet to the sun is and the aphelion
distance is .

(a) Find an approximate polar equation for the elliptical orbit of the earth around the sun
(at one focus) given that the eccentricity is about and the length of the major axis
is about .
(b) Find the distance from the earth to the sun at perihelion and at aphelion.

SOLUTION
(a) The length of the major axis is , so . We are given
that and so, from Equation 7, an equation of the earth’s orbit around the sun is

or, approximately,

(b) From , the perihelion distance from the earth to the sun is

and the aphelion distance is

a7
x � de

r �
a�1 � e2�

1 � e cos �

F
� � 0

r �
a�1 � e2�

1 � e cos 0
�

a�1 � e��1 � e�
1 � e

� a�1 � e�

r � a�1 � e�� � �

a�1 � e�8
a�1 � e�

0.017
2.99 � 108 km

a � 1.495 � 1082a � 2.99 � 108

e � 0.017

r �
a�1 � e2�

1 � e cos �
�

�1.495 � 108� �1 � �0.017�2	
1 � 0.017 cos �

r �
1.49 � 108

1 � 0.017 cos �

a�1 � e� 
 �1.495 � 108��1 � 0.017� 
 1.47 � 108 km

a�1 � e� 
 �1.495 � 108��1 � 0.017� 
 1.52 � 108 km

EXAMPLE 5

8

perihelionaphelion
sun

planet

¨
r

FIGURE 7 
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708 CHAPTER 10 PARAMETRIC EQUATIONS AND POLAR COORDINATES

1–8 Write a polar equation of a conic with the focus at the origin
and the given data.

1. Ellipse,  eccentricity ,  directrix 

2. Parabola,  directrix 

3. Hyperbola,  eccentricity 1.5,  directrix 

4. Hyperbola,  eccentricity 3,  directrix 

5. Parabola,  vertex 

6. Ellipse,  eccentricity ,  vertex 

7. Ellipse,  eccentricity ,  directrix 

8. Hyperbola,  eccentricity 3,  directrix 

9–16 (a) Find the eccentricity, (b) identify the conic, (c) give an
equation of the directrix, and (d) sketch the conic.

9. 10.

11. 12.

13. 14.

15. 16.

; 17. (a) Find the eccentricity and directrix of the conic
and graph the conic and its directrix.

(b) If this conic is rotated counterclockwise about the origin
through an angle , write the resulting equation and
graph its curve.

; 18. Graph the conic and its directrix. Also
graph the conic obtained by rotating this curve about the ori-
gin through an angle .

; 19. Graph the conics with , , 
, and on a common screen. How does the value of

affect the shape of the curve?

; 20. (a) Graph the conics for and var-
ious values of . How does the value of affect the shape
of the conic?

(b) Graph these conics for and various values of .
How does the value of affect the shape of the conic?

21. Show that a conic with focus at the origin, eccentricity , and
directrix has polar equation

x � �3

y � 2

x � 3

�4, 3��2�

0.8 �1, ��2�
1
2 r � 4 sec �

r � �6 csc �

1
2 x � 4

r �
4

5 � 4 sin �
r �

12

3 � 10 cos �

r �
2

3 � 3 sin �
r �

3

2 � 2 cos �

r �
9

6 � 2 cos �
r �

8

4 � 5 sin �

r �
3

4 � 8 cos �
r �

10

5 � 6 sin �

r � 1��1 � 2 sin ��

3��4

r � 4��5 � 6 cos ��

��3

r � e��1 � e cos � � e � 0.4 0.6
0.8 1.0 e

r � ed��1 � e sin �� e � 1
d d

d � 1 e
e

e
x � �d

r �
ed

1 � e cos �

22. Show that a conic with focus at the origin, eccentricity , and
directrix has polar equation

23. Show that a conic with focus at the origin, eccentricity , and
directrix has polar equation

24. Show that the parabolas and
intersect at right angles.

25. The orbit of Mars around the sun is an ellipse with eccen-
tricity and semimajor axis . Find a polar
equation for the orbit.

26. Jupiter’s orbit has eccentricity and the length of the
major axis is . Find a polar equation for the
orbit.

27. The orbit of Halley’s comet, last seen in 1986 and due to 
return in 2062, is an ellipse with eccentricity 0.97 and one
focus at the sun. The length of its major axis is 36.18 AU. 
[An astronomical unit (AU) is the mean distance between the
earth and the sun, about 93 million miles.] Find a polar equa-
tion for the orbit of Halley’s comet. What is the maximum
distance from the comet to the sun?

28. The Hale-Bopp comet, discovered in 1995, has an elliptical
orbit with eccentricity 0.9951 and the length of the major
axis is 356.5 AU. Find a polar equation for the orbit of this
comet. How close to the sun does it come?

29. The planet Mercury travels in an elliptical orbit with eccen-
tricity . Its minimum distance from the sun is 

km. Find its maximum distance from the sun.

30. The distance from the planet Pluto to the sun is 
km at perihelion and km at aphelion.

Find the eccentricity of Pluto’s orbit.

31. Using the data from Exercise 29, find the distance traveled by
the planet Mercury during one complete orbit around the sun.
(If your calculator or computer algebra system evaluates defi-
nite integrals, use it. Otherwise, use Simpson’s Rule.)

e
y � d

r �
ed

1 � e sin �

e
y � �d

r �
ed

1 � e sin �

r � c��1 � cos ��
r � d��1 � cos ��

0.093 2.28 � 108 km

0.048
1.56 � 109 km

0.206
4.6 � 107

4.43 � 109 7.37 � 109

10.6 Exercises

; Graphing calculator or computer required 1. Homework Hints available at stewartcalculus.com
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CHAPTER 10 REVIEW 709

10 Review

1. (a) What is a parametric curve?
(b) How do you sketch a parametric curve?

2. (a) How do you find the slope of a tangent to a parametric
curve?

(b) How do you find the area under a parametric curve?

3. Write an expression for each of the following:
(a) The length of a parametric curve
(b) The area of the surface obtained by rotating a parametric

curve about the 

4. (a) Use a diagram to explain the meaning of the polar coordi-
nates of a point.

(b) Write equations that express the Cartesian coordinates 
of a point in terms of the polar coordinates.

(c) What equations would you use to find the polar coordi nates
of a point if you knew the Cartesian coordinates?

5. (a) How do you find the slope of a tangent line to a polar
curve?

(b) How do you find the area of a region bounded by a polar
curve?

(c) How do you find the length of a polar curve?

x-axis

�r, ��

�x, y�

6. (a) Give a geometric definition of a parabola.
(b) Write an equation of a parabola with focus and direc-

trix . What if the focus is and the directrix 
is ?

7. (a) Give a definition of an ellipse in terms of foci.
(b) Write an equation for the ellipse with foci and 

vertices .

8. (a) Give a definition of a hyperbola in terms of foci.
(b) Write an equation for the hyperbola with foci and

vertices .
(c) Write equations for the asymptotes of the hyperbola in

part (b).

9. (a) What is the eccentricity of a conic section?
(b) What can you say about the eccentricity if the conic section

is an ellipse? A hyperbola? A parabola?
(c) Write a polar equation for a conic section with eccentricity

and directrix . What if the directrix is ?
? ?

�0, p�
y � �p �p, 0�

x � �p

��c, 0�
��a, 0�

��c, 0�
��a, 0�

e x � d x � �d
y � d y � �d

Concept Check

Determine whether the statement is true or false. If it is true, explain why. 
If it is false, explain why or give an example that disproves the statement.

1. If the parametric curve , satisfies ,
then it has a horizontal tangent when .

2. If and are twice differentiable, then

3. The length of the curve , , , is
.

4. If a point is represented by in Cartesian coordinates
(where ) and in polar coordinates, then

.

x � f �t� y � t�t� t��1� � 0
t � 1

y � t�t�x � f �t�

d 2y

dx 2 �
d 2y�dt 2

d 2x�dt 2

a � t � by � t�t�x � f �t�
x

b
a s� f ��t�	 2 � �t��t�	 2 dt

�x, y�
�r, ��x � 0

� � tan �1� y�x�

5. The polar curves and have the
same graph.

6. The equations , , and ,
all have the same graph.

7. The parametric equations , have the same graph
as , .

8. The graph of is a parabola.

9. A tangent line to a parabola intersects the parabola only once.

10. A hyperbola never intersects its directrix.

r � 2 x 2 � y 2 � 4 x � 2 sin 3t
y � 2 cos 3t �0 � t � 2��

x � t 2 y � t 4

x � t 3 y � t 6

y 2 � 2y � 3x

r � sin 2� � 1r � 1 � sin 2�

True-False Quiz
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710 CHAPTER 10 PARAMETRIC EQUATIONS AND POLAR COORDINATES

; Graphing calculator or computer required Computer algebra system requiredCAS

1–4 Sketch the parametric curve and eliminate the parameter to
find the Cartesian equation of the curve.

1. ,  ,  

2. ,  

3. ,  ,  

4. ,  

5. Write three different sets of parametric equations for the 
curve .

6. Use the graphs of  and to sketch the para-
metric curve , . Indicate with arrows the 
direction in which the curve is traced as increases.

7. (a) Plot the point with polar coordinates . Then find
its Cartesian coordinates.

(b) The Cartesian coordinates of a point are . Find two
sets of polar coordinates for the point.

8. Sketch the region consisting of points whose polar coor-
dinates satisfy .

9–16 Sketch the polar curve.

9. 10.

11. 12.

13. 14.

15. 16.

17–18 Find a polar equation for the curve represented by the
given Cartesian equation.

17. 18.

; 19. The curve with polar equation is called a
cochleoid. Use a graph of as a function of in Cartesian
coordinates to sketch the cochleoid by hand. Then graph it
with a machine to check your sketch.

; 20. Graph the ellipse and its directrix. 
Also graph the ellipse obtained by rotation about the origin
through an angle .

�4 � t � 1y � 2 � tx � t 2 � 4t

y � e tx � 1 � e 2 t

0 � � � ��2y � sec �x � cos �

y � 1 � sin �x � 2 cos �

y � sx

y � t�t�x � f �t�
y � t�t�x � f �t�

t

t

x

_1

1 t

y

1

1

�4, 2��3�

��3, 3�

1 � r � 2 and ��6 � � � 5��6

r � sin 4�r � 1 � cos �

r � 3 � cos 3�r � cos 3 �

r � 2 cos���2�r � 1 � cos 2�

r �
3

2 � 2 cos �
r �

3

1 � 2 sin �

x 2 � y 2 � 2x � y � 2

r � �sin � ���
�r

r � 2��4 � 3 cos � �

2��3

21–24 Find the slope of the tangent line to the given curve at the
point corresponding to the specified value of the parameter.

21. , ;  

22. ,  ;  

23. ;  

24. ;  

25–26 Find and .

25. ,  

26. ,  

; 27. Use a graph to estimate the coordinates of the lowest point on
the curve , .  Then use calculus to
find the exact coordinates.

28. Find the area enclosed by the loop of the curve in Exercise 27.

29. At what points does the curve

have vertical or horizontal tangents? Use this information to
help sketch the curve.

30. Find the area enclosed by the curve in Exercise 29.

31. Find the area enclosed by the curve .

32. Find the area enclosed by the inner loop of the curve
.

33. Find the points of intersection of the curves and
.

34. Find the points of intersection of the curves and
.

35. Find the area of the region that lies inside both of the circles
and .

36. Find the area of the region that lies inside the curve
but outside the curve .

37–40 Find the length of the curve.

37. ,  ,  

38. ,  ,  

39. ,  

40. ,  

x � ln t y � 1 � t 2 t � 1

x � t 3 � 6t � 1 y � 2t � t 2 t � �1

r � e �� � � �

r � 3 � cos 3� � � ��2

dy�dx d 2 y�dx 2

x � t � sin t y � t � cos t

x � 1 � t 2 y � t � t 3

x � t 3 � 3t y � t 2 � t � 1

x � 2a cos t � a cos 2t y � 2a sin t � a sin 2t

r 2 � 9 cos 5�

r � 1 � 3 sin �

r � 2
r � 4 cos �

r � cot �
r � 2 cos �

r � 2 sin � r � sin � � cos �

r � 2 � cos 2� r � 2 � sin �

x � 3t 2 y � 2t 3 0 � t � 2

x � 2 � 3t y � cosh 3t 0 � t � 1

r � 1�� � � � � 2�

r � sin3���3� 0 � � � �

Exercises
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CHAPTER 10 REVIEW 711

41–42 Find the area of the surface obtained by rotating the given
curve about the -axis.

41. ,  ,  

42. ,  ,  

; 43. The curves defined by the parametric equations

are called strophoids (from a Greek word meaning “to turn
or twist”). Investigate how these curves vary as varies.

; 44. A family of curves has polar equations where 
is a positive number. Investigate how the curves change as 
changes.

45–48 Find the foci and vertices and sketch the graph.

45. 46.

47.

48.

49. Find an equation of the ellipse with foci and vertices
.

50. Find an equation of the parabola with focus and direc-
trix .

51. Find an equation of the hyperbola with foci and
asymptotes .

52. Find an equation of the ellipse with foci and major
axis with length 8.

x

x � 4st y �
t 3

3
�

1

2t 2 1 � t � 4

x � 2 � 3t y � cosh 3t 0 � t � 1

x �
t 2 � c

t 2 � 1
y �

t�t 2 � c�
t 2 � 1

c

r a � � sin 2� �
a
a

x 2

9
�

y 2

8
� 1 4x 2 � y 2 � 16

6y 2 � x � 36y � 55 � 0

25x 2 � 4y 2 � 50x � 16y � 59

��4, 0�
��5, 0�

�2, 1�
x � �4

�0, �4�
y � �3x

�3, �2�

53. Find an equation for the ellipse that shares a vertex and a
focus with the parabola and that has its other
focus at the origin.

54. Show that if is any real number, then there are exactly 
two lines of slope that are tangent to the ellipse

and their equations are
.

55. Find a polar equation for the ellipse with focus at the origin,
eccentricity .

56. Show that the angles between the polar axis and the 
asymptotes of the hyperbola , , 
are given by .

57. A curve called the folium of Descartes is defined by the
parametric equations

(a) Show that if lies on the curve, then so does ;
that is, the curve is symmetric with respect to the line 

. Where does the curve intersect this line?
(b) Find the points on the curve where the tangent lines are

horizontal or vertical.
(c) Show that the line is a slant asymptote.
(d) Sketch the curve.
(e) Show that a Cartesian equation of this curve is

.
(f ) Show that the polar equation can be written in the form

(g) Find the area enclosed by the loop of this curve.
(h) Show that the area of the loop is the same as the area that

lies between the asymptote and the infinite branches of
the curve. (Use a computer algebra system to evaluate 
the integral.)

y � x

y � �x � 1

x 3 � y 3 � 3xy

r �
3 sec � tan �

1 � tan3�

CAS

x 2 � y � 100

m
m

x 2�a 2 � y 2�b 2 � 1
y � mx � sa 2m 2 � b 2

1
3 , and directrix with equation r � 4 sec �

e 	 1r � ed��1 � e cos ��
cos�1��1�e�

x �
3t

1 � t 3 y �
3t 2

1 � t 3

�b, a��a, b�

      Copyright 2010 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s). 
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.



Problems Plus
1. A curve is defined by the parametric equations

Find the length of the arc of the curve from the origin to the nearest point where there is a verti-
cal tangent line.

2. (a) Find the highest and lowest points on the curve .
(b) Sketch the curve. (Notice that it is symmetric with respect to both axes and both of the lines

, so it suffices to consider initially.)
(c) Use polar coordinates and a computer algebra system to find the area enclosed by the curve.

; 3. What is the smallest viewing rectangle that contains every member of the family of polar curves
, where ? Illustrate your answer by graphing several members of the

family in this viewing rectangle.

4. Four bugs are placed at the four corners of a square with side length . The bugs crawl counter-
clockwise at the same speed and each bug crawls directly toward the next bug at all times. They
approach the center of the square along spiral paths.
(a) Find the polar equation of a bug’s path assuming the pole is at the center of the square. (Use

the fact that the line joining one bug to the next is tangent to the bug’s path.)
(b) Find the distance traveled by a bug by the time it meets the other bugs at the center.

5. Show that any tangent line to a hyperbola touches the hyperbola halfway between the points of
intersection of the tangent and the asymptotes.

6. A circle of radius has its center at the origin. A circle of radius rolls without slipping in
the counterclockwise direction around . A point is located on a fixed radius of the rolling
circle at a distance from its center, . [See parts (i) and (ii) of the figure.] Let be
the line from the center of to the center of the rolling circle and let be the angle that
makes with the positive -axis.
(a) Using as a parameter, show that parametric equations of the path traced out by are

Note: If , the path is a circle of radius ; if , the path is an epicycloid. The path
traced out by for is called an epitrochoid.

; (b) Graph the curve for various values of between and .

(c) Show that an equilateral triangle can be inscribed in the epitrochoid and that its centroid is
on the circle of radius centered at the origin.

Note: This is the principle of the Wankel rotary engine. When the equilateral triangle rotates
with its vertices on the epitrochoid, its centroid sweeps out a circle whose center is at the
center of the curve.

(d) In most rotary engines the sides of the equilateral triangles are replaced by arcs of circles
centered at the opposite vertices as in part (iii) of the figure. (Then the diameter of the rotor
is constant.) Show that the rotor will fit in the epitrochoid if .

x � y
t

1

cos u

u
du y � y

t

1

sin u

u
du

x 4 � y 4 � x 2 � y 2

y 
 x 
 0y � �x
CAS

0 � c � 1r � 1 � c sin �

a

r2rC
PC

L0 � b � rb
L�C

x
P�

x � b cos 3� � 3r cos � y � b sin 3� � 3r sin �

b � r3rb � 0
0 � b � rP

r0b

b

b �
3
2 (2 � s3 )r

(ii)

y

xP¸
¨

P

y

x

r

b

P=P¸

2r

(i) (iii)

712

a

a a

a

FIGURE FOR PROBLEM 4
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Infinite Sequences 
and Series11

Infinite sequences and series were introduced briefly in A Preview of Calculus in connection with Zeno’s

paradoxes and the decimal representation of numbers. Their importance in calculus stems from Newton’s

idea of representing functions as sums of infinite series. For instance, in finding areas he often integrated

a function by first expressing it as a series and then integrating each term of the series. We will pursue his

idea in Section 11.10 in order to integrate such functions as . (Recall that we have previously been

unable to do this.) Many of the functions that arise in mathematical physics and chemistry, such as Bessel

functions, are defined as sums of series, so it is important to be familiar with the basic concepts of con-

vergence of infinite sequences and series.

Physicists also use series in another way, as we will see in Section 11.11. In studying fields as diverse

as optics, special relativity, and electromagnetism, they analyze phenomena by replacing a function with

the first few terms in the series that represents it.

e�x 2

713
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In the last section of this chapter you are
asked to use a series to derive a formula
for the velocity of an ocean wave.
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714 CHAPTER 11 INFINITE SEQUENCES AND SERIES

11.1 Sequences

A sequence can be thought of as a list of numbers written in a definite order:

The number is called the first term, is the second term, and in general is the nth term.
We will deal exclusively with infinite sequences and so each term will have a succes-
sor .

Notice that for every positive integer there is a corresponding number and so a
sequence can be defined as a function whose domain is the set of positive integers. But we
usually write instead of the function notation for the value of the function at the
number .

NOTATION The sequence { , , , . . .} is also denoted by

Some sequences can be defined by giving a formula for the nth term. In the
following examples we give three descriptions of the sequence: one by using the preced-
ing notation, another by using the defining formula, and a third by writing out the terms
of the sequence. Notice that doesn’t have to start at 1.

(a)  

(b)  

(c)  

(d)  

Find a formula for the general term of the sequence

assuming that the pattern of the first few terms continues.

SOLUTION We are given that

Notice that the numerators of these fractions start with 3 and increase by 1 whenever we
go to the next term. The second term has numerator 4, the third term has numerator 5; in
general, the th term will have numerator . The denominators are the powers of 5, 

a1, a2, a3, a4, . . . , an, . . .

a1 a2 an

an

an�1

n an

an f �n�
n

a1 a2 a3

�an � or �an � n�1
�

n

� n

n � 1�n�1

�

an �
n

n � 1 �1

2
, 

2

3
, 

3

4
, 

4

5
, . . . , 

n

n � 1
, . . .�

���1�n�n � 1�
3n � an �

��1�n�n � 1�
3n ��

2

3
, 

3

9
, �

4

27
, 

5

81
, . . . , 

��1�n�n � 1�
3n , . . .�

{sn � 3 }n�3
�

an � sn � 3 , n � 3 {0, 1, s2 , s3 , . . . , sn � 3 , . . .}

�cos 
n�

6 �n�0

�

an � cos 
n�

6
, n � 0 �1, 

s3

2
, 

1

2
, 0, . . . , cos 

n�

6
, . . .�

an

�3

5
, �

4

25
, 

5

125
, �

6

625
, 

7

3125
, . . .�

a 1 �
3

5
a 2 � �

4

25
a 3 �

5

125
a 4 � �

6

625
a 5 �

7

3125

n n � 2

EXAMPLE 1

v EXAMPLE 2
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SECTION 11.1 SEQUENCES 715

so has denominator . The signs of the terms are alternately positive and negative, 
so we need to multiply by a power of . In Example 1(b) the factor meant we
started with a negative term. Here we want to start with a positive term and so we use

or . Therefore

Here are some sequences that don’t have a simple defining equation.

(a) The sequence , where is the population of the world as of January 1 in the
year .

(b) If we let be the digit in the nth decimal place of the number , then is a well-
defined sequence whose first few terms are

(c) The Fibonacci sequence is defined recursively by the conditions

Each term is the sum of the two preceding terms. The first few terms are

This sequence arose when the 13th-century Italian mathematician known as Fibonacci
solved a problem concerning the breeding of rabbits (see Exercise 83).

A sequence such as the one in Example 1(a), , can be pictured either by
plotting its terms on a number line, as in Figure 1, or by plotting its graph, as in Figure 2.
Note that, since a sequence is a function whose domain is the set of positive integers, its
graph consists of isolated points with coordinates

. . .    . . .

From Figure 1 or Figure 2 it appears that the terms of the sequence are
approaching 1 as becomes large. In fact, the difference

can be made as small as we like by taking sufficiently large. We indicate this by writing

In general, the notation

means that the terms of the sequence approach as becomes large. Notice that the
following definition of the limit of a sequence is very similar to the definition of a limit of
a function at infinity given in Section 3.4.

an 5 n

�1 ��1� n

��1� n�1 ��1� n�1

an � ��1� n�1 n � 2

5 n

�pn� pn

n

an e �an �

�7, 1, 8, 2, 8, 1, 8, 2, 8, 4, 5, . . .�

� fn�

f1 � 1 f2 � 1 fn � fn�1 � fn�2 n � 3

�1, 1, 2, 3, 5, 8, 13, 21, . . .�

an � n��n � 1�

�1, a1� �2, a2� �3, a3� �n, an �

an � n��n � 1�
n

1 �
n

n � 1
�

1

n � 1

n

lim
n l �

n

n � 1
� 1

lim
n l �

an � L

�an � L n

EXAMPLE 3

0 11
2
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FIGURE 1

FIGURE 2

0 n

an

1

1

2 3 4 5 6 7

7
8a¶=
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716 CHAPTER 11 INFINITE SEQUENCES AND SERIES

Definition A sequence has the limit and we write

if we can make the terms as close to as we like by taking sufficiently large.
If exists, we say the sequence converges (or is convergent). Otherwise,
we say the sequence diverges (or is divergent).

Figure 3 illustrates Definition 1 by showing the graphs of two sequences that have the
limit .

A more precise version of Definition 1 is as follows.

Definition A sequence has the limit and we write

if for every there is a corresponding integer such that

if    then    

Definition 2 is illustrated by Figure 4, in which the terms , , , . . . are plotted on a
number line. No matter how small an interval is chosen, there exists an
such that all terms of the sequence from onward must lie in that interval.

Another illustration of Definition 2 is given in Figure 5. The points on the graph of
must lie between the horizontal lines and if . This picture
must be valid no matter how small is chosen, but usually a smaller requires a larger .

�an � L

lim
n l �

an � L or an l L as n l �

an L n
limn l � an

L

0 n

an

L

0 n

an

L

FIGURE 3
Graphs of two
sequences with
lim  an= L
n     `

1

L�an�

an l L as n l �orlim
n l �

an � L

N� � 0

	 an � L 	 	 �n � N

a3a2a1

N�L � �, L � ��
aN�1

FIGURE 4 0 L-∑ L L+∑

a¡ a£ a¢a™ a∞aß a¶aˆ a˜aN+1 aN+2

�an�
n � Ny � L � �y � L � �

N��

2

FIGURE 5 20 n

y

1 3 4

L

y=L+∑

N

y=L-∑

Compare this definition with Definition 3.4.5.
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SECTION 11.1 SEQUENCES 717

If you compare Definition 2 with Definition 3.4.5 you will see that the only difference
between and is that is required to be an integer. Thus we
have the following theorem, which is illustrated by Figure 6.

Theorem If and when is an integer, then 
.

In particular, since we know that when (Theorem 3.4.4), we
have

if 

If becomes large as n becomes large, we use the notation . The fol-
lowing precise definition is similar to Definition 3.4.7.

Definition means that for every positive number there is an
integer such that

if    then    

If , then the sequence is divergent but in a special way. We say that
diverges to .

The Limit Laws given in Section 1.6 also hold for the limits of sequences and their proofs
are similar.

If and are convergent sequences and is a constant, then

limn l � an � L limx l � f �x� � L n

3 limx l � f �x� � L f �n� � an n
limn l � an � L

FIGURE 6 20 x

y

1 3 4

L

y=ƒ

limx l � �1�xr � � 0 r � 0

4 lim
n l �

1

nr � 0 r � 0

an lim n l � an � �

limn l � an � � M
N

n � N an � M

lim n l � an � � �an �
�an � �

5

�an � �bn � c

lim
n l �

�an � bn � � lim
n l �

an � lim
n l �

bn

lim
n l �

�an � bn � � lim
n l �

an � lim
n l �

bn

lim
n l �

can � c lim
n l �

an lim
n l �

c � c

lim
n l �

�an bn � � lim
n l �

an � lim
n l �

bn

lim
n l �

an

bn
�

lim
n l �

an

lim
n l �

bn
if lim

n l �
bn � 0         

lim
n l �

an
p � 
 lim

n l �
an� p

if  p � 0 and an � 0

Limit Laws for Sequences
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718 CHAPTER 11 INFINITE SEQUENCES AND SERIES

The Squeeze Theorem can also be adapted for sequences as follows (see Figure 7).

If for and , then .

Another useful fact about limits of sequences is given by the following theorem, whose
proof is left as Exercise 87.

Theorem If , then .

Find .

SOLUTION The method is similar to the one we used in Section 3.4: Divide numerator
and denominator by the highest power of that occurs in the denominator and then use
the Limit Laws.

Here we used Equation 4 with .

Is the sequence convergent or divergent?

SOLUTION As in Example 4, we divide numerator and denominator by :

because the numerator is constant and the denominator approaches . So is 
divergent.

Calculate .

SOLUTION Notice that both numerator and denominator approach infinity as . We
can’t apply l’Hospital’s Rule directly because it applies not to sequences but to functions
of a real variable. However, we can apply l’Hospital’s Rule to the related function

and obtain

Therefore, by Theorem 3, we have

an 
 bn 
 cn n � n0 lim
n l �

an � lim
n l �

cn � L lim
n l �

bn � L

6 lim
n l �

	 an 	 � 0 lim
n l �

an � 0

lim
n l �

n

n � 1

n

lim
n l �

n

n � 1
� lim

n l �

1

1 �
1

n

�
lim
n l �

1 

lim
n l �

1 � lim
n l �

1

n

�
1

1 � 0
� 1

r � 1

EXAMPLE 4

EXAMPLE 5 an �
n

s10 � n

n

lim
n l �

n

s10 � n
� lim

n l �

1

� 10

n 2 �
1

n

� �

0 �an�

lim
n l �

ln n

n

n l �

EXAMPLE 6

f �x� � �ln x��x

lim
x l �

ln x

x
� lim

x l �

1�x

1
� 0

lim
n l �

ln n

n
� 0

Squeeze Theorem for Sequences

FIGURE 7
The sequence �b � is squeezed
between the sequences �a �
and �c �.

0 n

cn

an

bn

n

n

n

This shows that the guess we made earlier
from Figures 1 and 2 was correct.
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Determine whether the sequence is convergent or divergent.

SOLUTION If we write out the terms of the sequence, we obtain

The graph of this sequence is shown in Figure 8. Since the terms oscillate between 1 and
infinitely often, does not approach any number. Thus does not exist;

that is, the sequence is divergent.

Evaluate if it exists.

SOLUTION We first calculate the limit of the absolute value:

Therefore, by Theorem 6,

The following theorem says that if we apply a continuous function to the terms of a con-
vergent sequence, the result is also convergent. The proof is left as Exercise 88.

Theorem If and the function is continuous at , then

Find .

SOLUTION Because the sine function is continuous at , Theorem 7 enables us to write

Discuss the convergence of the sequence , where
.

SOLUTION Both numerator and denominator approach infinity as but here we
have no corresponding function for use with l’Hospital’s Rule ( is not defined when 

is not an integer). Let’s write out a few terms to get a feeling for what happens to 
as gets large:

It appears from these expressions and the graph in Figure 10 that the terms are decreasing
and perhaps approach 0. To confirm this, observe from Equation 8 that

an � ��1�n

��1, 1, �1, 1, �1, 1, �1, . . .�

�1 an lim n l � ��1�n

���1�n �

EXAMPLE 7

lim
n l �

��1�n

n

lim
n l �

 ��1�n

n  � lim
n l �

1

n
� 0

lim
n l �

��1�n

n
� 0

EXAMPLE 8

7 lim
n l �

an � L f L

lim
n l �

f �an� � f �L�

lim
n l �

sin���n�

0

lim
n l �

sin���n� � sin�lim
n l �

���n�� � sin 0 � 0

EXAMPLE 9

an � n!�nn

n! � 1 � 2 � 3 � � � � � n

n l �
x!

x an

EXAMPLE 10v

n

a3 �
1 � 2 � 3

3 � 3 � 3
a2 �

1 � 2

2 � 2
a1 � 1

an �
1 � 2 � 3 � � � � � n

n � n � n � � � � � n
8

an �
1

n �2 � 3 � � � � � n

n � n � � � � � n�

0 n

an

1

1

2 3 4

_1

FIGURE 8

The graph of the sequence in Example 8 is
shown in Figure 9 and supports our answer.

FIGURE 9

0 n

an

1

1

_1

Creating Graphs of Sequences
Some computer algebra systems have special
commands that enable us to create sequences
and graph them directly. With most graphing
calcula tors, however, sequences can be
graphed by using parametric equations. For
instance, the sequence in Example 10 can be
graphed by entering the parametric equations

and graphing in dot mode, starting with 
and setting the -step equal to . The result is
shown in Figure 10.

1t
t � 1

x � t y � t!�t t

FIGURE 10

1

0 10
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720 CHAPTER 11 INFINITE SEQUENCES AND SERIES

Notice that the expression in parentheses is at most 1 because the numerator is less than
(or equal to) the denominator. So

We know that as . Therefore as by the Squeeze Theorem.

For what values of is the sequence convergent?

SOLUTION We know from Section 3.4 and the graphs of the exponential functions in
Section 6.2 (or Section 6.4*) that for and for

. Therefore, putting and using Theorem 3, we have

It is obvious that

and    

If , then , so

and therefore by Theorem 6. If , then diverges as in
Example 7. Figure 11 shows the graphs for various values of . (The case is
shown in Figure 8.)

The results of Example 11 are summarized for future use as follows.

The sequence is convergent if and divergent for all other
values of .

Definition A sequence is called increasing if for all , 
that is, It is called decreasing if for all . 
A sequence is monotonic if it is either increasing or decreasing.

0 	 an 

1

n

1�n l 0 n l � an l 0 n l �

r �r n �

limx l � ax � � a � 1 limx l � ax � 0
0 	 a 	 1 a � r

lim
n l �

r n � ��

0

if r � 1

if 0 	 r 	 1

lim
n l �

1n � 1 lim
n l �

0 n � 0

�1 	 r 	 0 0 	 	 r 	 	 1

lim
n l �

	 r n 	 � lim
n l �

	 r 	n � 0

lim n l � r n � 0 r 
 �1 �r n �
r r � �1

r>1

r=1

0<r<1

0

r<_1

_1<r<0

0 n

an

1

1

n

an

1
1

FIGURE 11
The sequence an=rn

v EXAMPLE 11

�1 	 r 
 1�r n �9
r

lim
n l �

r n � �0

1

if �1 	 r 	 1

if r � 1

�an �10
a1 	 a2 	 a3 	 � � � .

n � 1an 	 an�1

an � an�1 n � 1
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The sequence is decreasing because

and so for all .

Show that the sequence is decreasing.

SOLUTION 1 We must show that , that is,

This inequality is equivalent to the one we get by cross-multiplication:

Since , we know that the inequality is true. Therefore and 
so is decreasing.

SOLUTION 2 Consider the function :

Thus is decreasing on and so . Therefore is decreasing.

Definition A sequence is bounded above if there is a number such that

It is bounded below if there is a number such that

If it is bounded above and below, then is a bounded sequence.

For instance, the sequence is bounded below but not above. The
sequence is bounded because for all .

We know that not every bounded sequence is convergent [for instance, the sequence
satisfies but is divergent from Example 7] and not every mono -

� 3

n � 5�
3

n � 5
�

3

�n � 1� � 5
�

3

n � 6

an � an�1 n � 1

EXAMPLE 12

an �
n

n2 � 1

an�1 	 an

n � 1

�n � 1�2 � 1
	

n

n2 � 1

n � 1

�n � 1�2 � 1
	

n

n2 � 1
&? �n � 1��n2 � 1� 	 n��n � 1�2 � 1�

&? n3 � n2 � n � 1 	 n3 � 2n2 � 2n

&? 1 	 n2 � n

n � 1 n2 � n � 1 an�1 	 an

�an �

f �x� �
x

x 2 � 1

f ��x� �
x 2 � 1 � 2x 2

�x 2 � 1�2 �
1 � x 2

�x 2 � 1�2 	 0 whenever x2 � 1

f �1, �� f �n� � f �n � 1� �an �

EXAMPLE 13

�an � M

an 
 M for all n � 1

m

m 
 an for all n � 1

�an �

11

an � n �an � 0�
an � n��n � 1� 0 	 an 	 1 n

an � ��1�n �1 
 an 
 1

The right side is smaller because it has a
larger denominator.
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722 CHAPTER 11 INFINITE SEQUENCES AND SERIES

tonic sequence is convergent . But if a sequence is both bounded and
monotonic, then it must be convergent. This fact is proved as Theorem 12, but intuitively
you can understand why it is true by looking at Figure 12. If is increasing and
for all , then the terms are forced to crowd together and approach some number .

The proof of Theorem 12 is based on the Completeness Axiom for the set of real
numbers, which says that if is a nonempty set of real numbers that has an upper bound
( for all in ), then has a least upper bound . (This means that is an upper
bound for , but if is any other upper bound, then .) The Completeness Axiom is
an expression of the fact that there is no gap or hole in the real number line.

Monotonic Sequence Theorem Every bounded, monotonic sequence is 
convergent.

PROOF Suppose is an increasing sequence. Since is bounded, the set
has an upper bound. By the Completeness Axiom it has a least upper

bound . Given , is not an upper bound for (since is the least upper
bound). Therefore

But the sequence is increasing so for every . Thus if , we have

so

since . Thus

so .
A similar proof (using the greatest lower bound) works if is decreasing.

The proof of Theorem 12 shows that a sequence that is increasing and bounded above is
convergent. (Likewise, a decreasing sequence that is bounded below is convergent.) This
fact is used many times in dealing with infinite series.

�an � n l ��

�an � an � M
n L

�

S M
x � M x S S b b

S M b � M

12

�an � �an �
S � �an � n � 1�

L � � 0 L � � S L

aN � L � � for some integer N

an � aN n � N n � N

an � L � �

0 � L � an � �

an � L

� L � an � � � whenever n � N

lim n l � an � L
�an �

FIGURE 12 20 n

an

1 3

L

M
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Investigate the sequence defined by the recurrence relation

SOLUTION We begin by computing the first several terms:

These initial terms suggest that the sequence is increasing and the terms are approaching
6. To confirm that the sequence is increasing, we use mathematical induction to show
that for all . This is true for because . If we assume
that it is true for , then we have

so

and

Thus

We have deduced that is true for . Therefore the inequality is true
for all by induction.

Next we verify that is bounded by showing that for all . (Since the
sequence is increasing, we already know that it has a lower bound: for 
all .) We know that , so the assertion is true for . Suppose it is true for

. Then

so

and

Thus

This shows, by mathematical induction, that for all .
Since the sequence is increasing and bounded, Theorem 12 guarantees that it has

a limit. The theorem doesn’t tell us what the value of the limit is. But now that we know
exists, we can use the given recurrence relation to write

Since , it follows that too (as , also). So we have

Solving this equation for , we get , as we predicted.

ak	1 � ak

ak	1 	 6 � ak 	 6

1
2 �ak	1 	 6� �

1
2 �ak 	 6�

ak	2 � ak	1

an	1 � an n � k 	 1
n

�an � an � 6 n
an � a1 � 2

n a1 � 6 n � 1
n � k

ak � 6

ak 	 6 � 12

1
2 �ak 	 6� �

1
2 �12� � 6

ak	1 � 6

an � 6 n
�an �

L � limn l � an

lim
n l �

an	1 � lim
n l �

1
2 �an 	 6� � 1

2 ( lim
n l �

an 	 6) � 1
2 �L 	 6�

an l L an	1 l L n l � n 	 1 l �

L � 1
2 �L 	 6�

L L � 6

n � k

a1 � 2 a2 � 1
2 �2 	 6� � 4 a3 � 1

2 �4 	 6� � 5

a4 � 1
2 �5 	 6� � 5.5 a5 � 5.75 a6 � 5.875

a7 � 5.9375 a8 � 5.96875 a9 � 5.984375

an	1 � an n � 1 n � 1 a2 � 4 � a1

�an �

a1 � 2 an	1 � 1
2 �an 	 6� for n � 1, 2 , 3, . . .

EXAMPLE 14

Mathematical induction is often used in deal-
ing with recursive sequences. See page 98 for
a discussion of the Principle of Mathematical
Induction.

A proof of this fact is requested in Exercise 70.
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1. (a) What is a sequence?
(b) What does it mean to say that ?
(c) What does it mean to say that ?

2. (a) What is a convergent sequence? Give two examples.
(b) What is a divergent sequence? Give two examples.

3–12 List the first five terms of the sequence.

3. 4.

5. 6.

7. 8.

9. ,  

10. ,  

11. ,  

12. ,  ,  

13–18 Find a formula for the general term of the sequence,
assuming that the pattern of the first few terms continues.

13.

14.

15.

16.

17.

18.

19–22 Calculate, to four decimal places, the first ten terms of the
sequence and use them to plot the graph of the sequence by hand.
Does the sequence appear to have a limit? If so, calculate it. If not,
explain why.

19. 20.

21. 22.

limn l � an � 8
limn l � an � �

an �
3n

1 	 2nan �
2n

n 2 	 1

an � cos 
n


2
an �

��1�n�1

5n

an �
��1�nn

n! 	 1
an �

1

�n 	 1�!

an	1 � 5an � 3a1 � 1

an	1 �
an

n
a1 � 6

an	1 �
an

1 	 an
a1 � 2

an	1 � an � an�1a2 � 1a1 � 2

an

{1, 13 , 15 , 17 , 19 , . . .}

�1, �1
3 , 19 , � 1

27 , 1
81 , . . .�

��3, 2, �4
3 , 89 , �16

27 , . . .�
�5, 8, 11, 14, 17, . . .�

� 1
2 , �4

3 , 94 , �16
5 , 25

6 , . . .�
�1, 0, �1, 0, 1, 0, �1, 0, . . .�

an � 2 	
��1�n

n
an �

3n

1 	 6n

an � 1 	
10 n

9 nan � 1 	 (�1
2)n

23–56 Determine whether the sequence converges or diverges. 
If it converges, find the limit.

23. 24.

25. 26.

27. 28.

29. 30.

31. 32.

33. 34.

35. 36.

37. 38.

39. 40.

41. 42.

43. 44.

45. 46.

47. 48.

49.

50.

51.

52.

53.

54.

an � 1 � �0.2�n an �
n3

n3 	 1

an �
3 	 5n2

n 	 n2 an �
n3

n 	 1

an � e1�n an �
3n	2

5n

an � tan� 2n


1 	 8n	 an � 
 n 	 1

9n 	 1

an �
n2

sn3 	 4n
an � e2n��n	2�

an �
��1�n

2sn
an �

��1�n	1n

n 	 sn

an � cos�n�2� an � cos�2�n�

� �2n � 1 �!
�2n 	 1�!� � ln n

ln 2n�
� e n 	 e �n

e 2n � 1 � an �
tan�1n

n

�n2e �n� an � ln�n 	 1� � ln n

an �
cos2n

2n an � s
n 21	3n

an � n sin�1�n� an � 2�n cos n


an � �1 	
2

n	
n

an �
sin 2n

1 	 sn

an � ln�2n2 	 1� � ln�n2 	 1�

an �
�ln n�2

n

an � arctan�ln n�

an � n � sn 	 1 sn 	 3

�0, 1, 0, 0, 1, 0, 0, 0, 1, . . . �

{1
1, 13 , 12 , 14 , 13 , 15 , 14 , 16 , . . .}

11.1 Exercises

; Graphing calculator or computer required 1. Homework Hints available at stewartcalculus.com
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CHAPTER 11.1 SEQUENCES 725

55. 56.

; 57–63 Use a graph of the sequence to decide whether the
sequence is convergent or divergent. If the sequence is conver-
gent, guess the value of the limit from the graph and then prove
your guess. (See the margin note on page 719 for advice on
graphing sequences.)

57. 58.

59. 60.

61.

62.

63.

64. (a) Determine whether the sequence defined as follows is
convergent or divergent:

(b) What happens if the first term is ?

65. If $1000 is invested at 6% interest, compounded annually,
then after years the investment is worth 
dollars.
(a) Find the first five terms of the sequence .
(b) Is the sequence convergent or divergent? Explain.

66. If you deposit $100 at the end of every month into an
account that pays 3% interest per year compounded monthly,
the amount of interest accumulated after months is given
by the sequence

(a) Find the first six terms of the sequence.
(b) How much interest will you have earned after two years?

67. A fish farmer has 5000 catfish in his pond. The number of
catfish increases by 8% per month and the farmer harvests
300 catfish per month.
(a) Show that the catfish population after months is

given recursively by

(b) How many catfish are in the pond after six months?

an �
n!

2n an �
��3�n

n!

an � 1 	 ��2�e�n an � sn sin(
�sn )

an � 
3 	 2n2

8n2 	 n
an � s

n 3n 	 5n

an �
n2 cos n

1 	 n2

an �
1 � 3 � 5 � � � � � �2n � 1�

n!

an �
1 � 3 � 5 � � � � � �2n � 1�

�2n�n

a1 � 1    an	1 � 4 � an for n � 1

a1 � 2

n an � 1000�1.06�n

�an �

n

In � 100�1.0025n � 1

0.0025
� n	

Pn n

Pn � 1.08Pn�1 � 300 P0 � 5000

68. Find the first 40 terms of the sequence defined by

and . Do the same if . Make a conjecture
about this type of sequence.

69. For what values of is the sequence convergent?

70. (a) If is convergent, show that

(b) A sequence is defined by and
for . Assuming that is 

convergent, find its limit.

71. Suppose you know that is a decreasing sequence and 
all its terms lie between the numbers 5 and 8. Explain why 
the sequence has a limit. What can you say about the value 
of the limit?

72–78 Determine whether the sequence is increasing, decreasing,
or not monotonic. Is the sequence bounded?

72.

73. 74.

75. 76.

77. 78.

79. Find the limit of the sequence

80. A sequence is given by , .
(a) By induction or otherwise, show that is increasing 

and bounded above by 3. Apply the Monotonic Sequence
Theorem to show that exists.

(b) Find .

81. Show that the sequence defined by

is increasing and for all . Deduce that is conver-
gent and find its limit.

82. Show that the sequence defined by

satisfies and is decreasing. Deduce that the
sequence is convergent and find its limit.

an	1 � �1
2 an

3an 	 1

if an is an even number

if an is an odd number

a1 � 11 a1 � 25

r �nr n �

�an �

lim
n l �

an	1 � lim
n l �

an

�an � a1 � 1
an	1 � 1��1 	 an � n � 1 �an �

�an �

an � ��2�n	1

an �
1

2n 	 3
an �

2n � 3

3n 	 4

an � n��1�n an � ne �n

an �
n

n 2 	 1
an � n 	

1

n

{s2 , s2s2 , s2s2s2 , . . .}
�an � a1 � s2 an	1 � s2 	 an

�an �

limn l � an

limn l � an

a1 � 1 an	1 � 3 �
1

an

an � 3 n �an �

a1 � 2 an	1 �
1

3 � an

0 � an � 2
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726 CHAPTER 11 INFINITE SEQUENCES AND SERIES

83. (a) Fibonacci posed the following problem: Suppose that 
rabbits live forever and that every month each pair
produces a new pair which becomes productive at age
2 months. If we start with one newborn pair, how many
pairs of rabbits will we have in the month? Show that
the answer is , where is the Fibonacci sequence
defined in Example 3(c).

(b) Let and show that .
Assuming that is convergent, find its limit.

84. (a) Let , , , . . . ,
, where is a continuous function. If

, show that .
(b) Illustrate part (a) by taking , , and 

estimating the value of to five decimal places.

; 85. (a) Use a graph to guess the value of the limit

(b) Use a graph of the sequence in part (a) to find the 
smallest values of that correspond to and

in Definition 2.

86. Use Definition 2 directly to prove that when
.

87. Prove Theorem 6.
[Hint: Use either Definition 2 or the Squeeze Theorem.]

88. Prove Theorem 7.

89. Prove that if and is bounded, then
.

90. Let .

(a) Show that if , then

(b) Deduce that .
(c) Use and in part (b) to

show that is increasing.
(d) Use and in part (b) to show that

.
(e) Use parts (c) and (d) to show that for all .
(f ) Use Theorem 12 to show that exists.

(The limit is . See Equation 6.4.9 or 6.4*.9.)

nth
fn � fn �

an � fn	1�fn an�1 � 1 	 1�an�2

�an �

a1 � a a2 � f �a� a3 � f �a2� � f � f �a��
an	1 � f �an � f
limn l � an � L f �L� � L

f �x� � cos x a � 1
L

lim
nl �

n5

n!

N � � 0.1
� � 0.001

lim n l � r n � 0

� r � � 1

limn l � an � 0 �bn�
limn l � �an bn� � 0

an � �1 	
1

n	n

0 � a � b

b n	1 � a n	1

b � a
� �n 	 1�b n

b n �n 	 1�a � nb� � a n	1

a � 1 	 1��n 	 1� b � 1 	 1�n
�an �

a � 1 b � 1 	 1��2n�
a2n � 4

an � 4 n
lim n l � �1 	 1�n�n

e

91. Let and be positive numbers with . Let be their
arithmetic mean and their geometric mean:

Repeat this process so that, in general,

(a) Use mathematical induction to show that

(b) Deduce that both and are convergent.
(c) Show that . Gauss called the 

common value of these limits the arithmetic-geometric
mean of the numbers and .

92. (a) Show that if and , 
then is convergent and .

(b) If and

find the first eight terms of the sequence . Then use 
part (a) to show that . This gives the 
continued fraction expansion

93. The size of an undisturbed fish population has been modeled
by the formula

where is the fish population after years and and are
positive constants that depend on the species and its environ-
ment. Suppose that the population in year 0 is .
(a) Show that if is convergent, then the only possible 

values for its limit are 0 and .
(b) Show that .
(c) Use part (b) to show that if , then ; 

in other words, the population dies out.
(d) Now assume that . Show that if , then

is increasing and . Show also that 
if , then is decreasing and .
Deduce that if , then .

a b a � b a1

b1

a1 �
a 	 b

2
b1 � sab

an	1 �
an 	 bn

2
bn	1 � san bn

an � an	1 � bn	1 � bn

�an � �bn �
limn l � an � limn l � bn

a b

lim n l � a2n � L lim n l � a2n	1 � L
�an � lim n l � an � L

a1 � 1

an	1 � 1 	
1

1 	 an

�an �
lim n l � an � s2

s2 � 1 	
1

2 	
1

2 	 � � �

pn	1 �
bpn

a 	 pn

pn n a b

p0 � 0
� pn�

b � a
pn	1 � �b�a�pn

a � b limn l � pn � 0

a � b p 0 � b � a
� pn� 0 � pn � b � a

p 0 � b � a � pn� pn � b � a
a � b limn l � pn � b � a

      Copyright 2010 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s). 
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.



SECTION 11.2 SERIES 727

What do we mean when we express a number as an infinite decimal? For instance, what
does it mean to write

The convention behind our decimal notation is that any number can be written as an infi-
nite sum. Here it means that

where the three dots indicate that the sum continues forever, and the more terms we
add, the closer we get to the actual value of .


 � 3.14159 26535 89793 23846 26433 83279 50288 . . .


 � 3 	
1

10
	

4

102 	
1

103 	
5

104 	
9

105 	
2

106 	
6

107 	
5

108 	 ���

�����



11.2 Series

The current record is that has been computed
to (more than two trillion) 
decimal places by T. Daisuke and his team.

2,576,980,370,000



L A B O R AT O R Y  P R O J E C T LOGISTIC SEQUENCES

A sequence that arises in ecology as a model for population growth is defined by the logistic 
difference equation

where measures the size of the population of the generation of a single species. To keep
the numbers manageable, is a fraction of the maximal size of the population, so .
Notice that the form of this equation is similar to the logistic differential equation in Section 9.4.
The discrete model—with sequences instead of continuous functions—is preferable for modeling
insect populations, where mating and death occur in a periodic fashion.

An ecologist is interested in predicting the size of the population as time goes on, and asks 
these questions: Will it stabilize at a limiting value? Will it change in a cyclical fashion? Or will 
it exhibit random behavior?

Write a program to compute the first terms of this sequence starting with an initial population
. Use this program to do the following.

1. Calculate 20 or 30 terms of the sequence for and for two values of such that
. Graph each sequence. Do the sequences appear to converge? Repeat for a dif-

ferent value of between 0 and 1. Does the limit depend on the choice of ? Does it
depend on the choice of ?

2. Calculate terms of the sequence for a value of between 3 and 3.4 and plot them. What do
you notice about the behavior of the terms?

3. Experiment with values of between 3.4 and 3.5. What happens to the terms?

4. For values of between 3.6 and 4, compute and plot at least 100 terms and comment on the
behavior of the sequence. What happens if you change by 0.001? This type of behavior is
called chaotic and is exhibited by insect populations under certain conditions.

CAS

pn	1 � kpn�1 � pn �

nthpn

0 � pn � 1pn

n
p0, where 0 � p0 � 1

kp0 � 1
2

1 � k � 3
p0p0

k

k

k

k
p0

Computer algebra system requiredCAS
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728 CHAPTER 11 INFINITE SEQUENCES AND SERIES

In general, if we try to add the terms of an infinite sequence we get an expression
of the form

which is called an infinite series (or just a series) and is denoted, for short, by the symbol

Does it make sense to talk about the sum of infinitely many terms?
It would be impossible to find a finite sum for the series

because if we start adding the terms we get the cumulative sums 1, 3, 6, 10, 15, 21, . . . and,
after the term, we get , which becomes very large as increases.

However, if we start to add the terms of the series

we get , , , , , , . . . , , . . . . The table shows that as we add more and more
terms, these partial sums become closer and closer to 1. (See also Figure 11 in A Preview
of Calculus, page 6.) In fact, by adding sufficiently many terms of the series we can make
the partial sums as close as we like to 1. So it seems reasonable to say that the sum of this
infinite series is 1 and to write

We use a similar idea to determine whether or not a general series has a sum. We con-
sider the partial sums

and, in general,

These partial sums form a new sequence , which may or may not have a limit. If
exists (as a finite number), then, as in the preceding example, we call it the

sum of the infinite series .

�an �n�1
�

1 a1 	 a2 	 a3 	 � � � 	 an 	 � � �

�
�

n�1
an or � an

1 	 2 	 3 	 4 	 5 	 � � � 	 n 	 � � �

nth n�n 	 1��2 n

1

2
	

1

4
	

1

8
	

1

16
	

1

32
	

1

64
	 � � � 	

1

2n 	 � � �

1
2

3
4

7
8

15
16

31
32

63
64 1 � 1�2n

�
�

n�1

1

2n �
1

2
	

1

4
	

1

8
	

1

16
	 � � � 	

1

2n 	 � � � � 1

s1 � a1

s2 � a1 	 a2

s3 � a1 	 a2 	 a3

s4 � a1 	 a2 	 a3 	 a4

sn � a1 	 a2 	 a3 	 � � � 	 an � �
n

i�1
ai

�sn �

1

lim n l � sn � s
� an

n Sum of first n terms

1 0.50000000
2 0.75000000
3 0.87500000
4 0.93750000
5 0.96875000
6 0.98437500
7 0.99218750

10 0.99902344
15 0.99996948
20 0.99999905
25 0.99999997
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Definition Given a series , let denote its 
th partial sum:

If the sequence is convergent and exists as a real number, then
the series is called convergent and we write

The number is called the sum of the series. If the sequence is divergent, then
the series is called divergent.

Thus the sum of a series is the limit of the sequence of partial sums. So when we write
, we mean that by adding sufficiently many terms of the series we can get as

close as we like to the number . Notice that

Suppose we know that the sum of the first terms of the series is

Then the sum of the series is the limit of the sequence :

In Example 1 we were given an expression for the sum of the first terms, but it’s usu-
ally not easy to find such an expression. In Example 2, however, we look at a famous series
for which we can find an explicit formula for .

An important example of an infinite series is the geometric series

Each term is obtained from the preceding one by multiplying it by the common ratio .
(We have already considered the special case where and on page 728.)

If , then . Since doesn’t exist, the
geometric series diverges in this case.

If , we have

and

sn��
n�1 an � a1 	 a2 	 a3 	 � � �2

n

sn � �
n

i�1
ai � a1 	 a2 	 � � � 	 an

lim n l � sn � s�sn �
� an

�
�

n�1
an � sora1 	 a2 	 � � � 	 an 	 � � � � s

s

��
n�1 an � s

s

�
�

n�1
an � lim

n l �
�
n

i�1
ai

��
n�1 annEXAMPLE 1

sn � a1 	 a2 	 � � � 	 an �
2n

3n 	 5

�sn �

�
�

n�1
an � lim

n l �
sn � lim

n l �

2n

3n 	 5
� lim

n l �

2

3 	
5

n

�
2

3

n

sn

EXAMPLE 2

a � 0a 	 ar 	 ar 2 	 ar 3 	 � � � 	 ar n�1 	 � � � � �
�

n�1
ar n�1

r
r � 1

2a � 1
2

lim n l � snsn � a 	 a 	 � � � 	 a � na l ��r � 1

r � 1

sn � a 	 ar 	 ar 2 	 � � � 	 ar n�1

rsn � ar 	 ar 2 	 � � � 	 ar n�1 	 ar n

�sn �

SECTION 11.2 SERIES 729

Compare with the improper integral

To find this integral we integrate from 1 to 
and then let . For a series, we sum from 
1 to and then let .n l �

t l �

n

t

y
�

1
f �x� dx � lim

t l �
y

t

1
f �x� dx
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730 CHAPTER 11 INFINITE SEQUENCES AND SERIES

Figure 1 provides a geometric demonstration 
of the result in Example 2. If the triangles are
constructed as shown and is the sum of the
series, then, by similar triangles,

s

a
�

a

a � ar
so s �

a

1 � r

s

FIGURE 1

aa

a

ara-ar

ar

ar@

ar#

ar@

s

Subtracting these equations, we get

If , we know from (11.1.9) that as , so

Thus when the geometric series is convergent and its sum is .
If or , the sequence is divergent by (11.1.9) and so, by Equation 3,

does not exist. Therefore the geometric series diverges in those cases.

We summarize the results of Example 2 as follows.

The geometric series

is convergent if and its sum is

If , the geometric series is divergent.

Find the sum of the geometric series

SOLUTION The first term is and the common ratio is . Since ,
the series is convergent by and its sum is

sn � rsn � a � ar n

sn �
a�1 � r n �

1 � r
3

n l �r n l 0�1 � r � 1

lim
n l �

sn � lim
n l �

a�1 � r n �
1 � r

�
a

1 � r
�

a

1 � r
lim
n l �

r n �
a

1 � r

a��1 � r�� r � � 1
�r n �r � 1r � �1

lim n l � sn

4

�
�

n�1
ar n�1 � a 	 ar 	 ar 2 	 � � �

� r � � 1

� r � � 1�
�

n�1
ar n�1 �

a

1 � r

� r � � 1

EXAMPLE 3v

5 �
10
3 	

20
9 �

40
27 	 � � �

� r � � 2
3 � 1r � �

2
3a � 5

4

5 �
10

3
	

20

9
�

40

27
	 � � � �

5

1 � (� 2
3 ) �

5
5
3

� 3

FIGURE 2

0 n

sn

20

3

In words: The sum of a convergent geometric
series is

first term

1 � common ratio

n

1 5.000000
2 1.666667
3 3.888889
4 2.407407
5 3.395062
6 2.736626
7 3.175583
8 2.882945
9 3.078037

10 2.947975

sn
What do we really mean when we say that the
sum of the series in Example 3 is ? Of course,
we can’t literally add an infinite number of
terms, one by one. But, according to Defi ni -
tion 2, the total sum is the limit of the
sequence of partial sums. So, by taking the
sum of sufficiently many terms, we can get as
close as we like to the number . The table
shows the first ten partial sums and the
graph in Figure 2 shows how the sequence of
partial sums approaches .3

3

3

sn
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Is the series convergent or divergent?

SOLUTION Let’s rewrite the nth term of the series in the form :

We recognize this series as a geometric series with and . Since , the
series diverges by .

Write the number . . . as a ratio of integers.

SOLUTION

After the first term we have a geometric series with and . 
Therefore

Find the sum of the series , where 

SOLUTION Notice that this series starts with and so the first term is . (With
series, we adopt the convention that even when .) Thus

This is a geometric series with and . Since , it converges and
gives

Show that the series is convergent, and find its sum.

SOLUTION This is not a geometric series, so we go back to the definition of a convergent
series and compute the partial sums.

We can simplify this expression if we use the partial fraction decomposition

�
�

n�1
22n31�n

arn�1

�
�

n�1
22n31�n � �

�

n�1
�22�n3��n�1� � �

�

n�1

4n

3n�1 � �
�

n�1
4(4

3 )n�1

a � 4 r � 4
3 r � 1

2.317 � 2.3171717

2.3171717. . . � 2.3 	
17

103 	
17

105 	
17

107 	 � � �

a � 17�103 r � 1�102

2.317 � 2.3 	

17

103

1 �
1

102

� 2.3 	

17

1000

99

100

�
23

10
	

17

990
�

1147

495

�
�

n�0
xn � x � � 1.

n � 0 x 0 � 1
x 0 � 1 x � 0

�
�

n�0
xn � 1 	 x 	 x 2 	 x 3 	 x 4 	 � � �

a � 1 r � x � r � � � x � � 1

5 �
�

n�0
xn �

1

1 � x

�
�

n�1

1

n�n 	 1�

sn � �
n

i�1

1

i�i 	 1�
�

1

1 � 2
	

1

2 � 3
	

1

3 � 4
	 � � � 	

1

n�n 	 1�

EXAMPLE 4

v EXAMPLE 5

EXAMPLE 6

4

4

EXAMPLE 7

1

i�i 	 1�
�

1

i
�

1

i 	 1

Another way to identify and is to write out
the first few terms:

4 	
16
3 	

64
9 	 � � �

ra

Module 11.2 explores a series that
depends on an angle in a triangle and enables
you to see how rapidly the series converges
when varies.

TEC
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732 CHAPTER 11 INFINITE SEQUENCES AND SERIES

(see Section 7.4). Thus we have

and so

Therefore the given series is convergent and

Show that the harmonic series

is divergent.

SOLUTION For this particular series it’s convenient to consider the partial sums , ,
, and show that they become large.

Similarly, , , and in general

This shows that as and so is divergent. Therefore the harmonic
series diverges.

Theorem If the series is convergent, then .

sn � �
n

i�1

1

i�i � 1�
� �

n

i�1
� 1

i
�

1

i � 1�
� �1 �

1

2� � � 1

2
�

1

3� � � 1

3
�

1

4� � � � � � � 1

n
�

1

n � 1�
� 1 �

1

n � 1

lim
n l �

sn � lim
n l �

�1 �
1

n � 1� � 1 � 0 � 1

�
�

n�1

1

n�n � 1�
� 1

�
�

n�1

1

n
� 1 �

1

2
�

1

3
�

1

4
� � � �

s2 s4 s8,
s16 s32, . . .

s2 � 1 �
1
2

s4 � 1 �
1
2 � ( 1

3 �
1
4 ) � 1 �

1
2 � ( 1

4 �
1
4 ) � 1 �

2
2

s8 � 1 �
1
2 � ( 1

3 �
1
4 ) � ( 1

5 �
1
6 �

1
7 �

1
8 )

� 1 �
1
2 � ( 1

4 �
1
4 ) � ( 1

8 �
1
8 �

1
8 �

1
8 )

� 1 �
1
2 �

1
2 �

1
2 � 1 �

3
2

s16 � 1 �
1
2 � ( 1

3 �
1
4 ) � ( 1

5 � � � � �
1
8 ) � ( 1

9 � � � � �
1
16 )

� 1 �
1
2 � ( 1

4 �
1
4 ) � ( 1

8 � � � � �
1
8 ) � ( 1

16 � � � � �
1
16 )

� 1 �
1
2 �

1
2 �

1
2 �

1
2 � 1 �

4
2

s32 � 1 �
5
2 s64 � 1 �

6
2

s2n � 1 �
n

2

s2n l � n l � �sn �

v EXAMPLE 8

6 �
�

n�1
an lim

n l �
an � 0

Notice that the terms cancel in pairs. 
This is an example of a telescoping sum:
Because of all the cancellations, the sum 
collapses (like a pirate’s collapsing 
telescope) into just two terms.

Figure 3 illustrates Example 7 by show-
ing the graphs of the sequence of terms

and the sequence 
of partial sums. Notice that and

. See Exer cises 76 and 77 for two 
geometric interpretations of Example 7.
sn l 1

an l 0
�sn �an � 1	[n�n � 1�]

FIGURE 3

0

1

�an�

n

�sn�

The method used in Example 8 for showing
that the harmonic series diverges is due to the
French scholar Nicole Oresme (1323–1382).
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PROOF Let . Then . Since is convergent, the
sequence is convergent. Let . Since as , we also
have . Therefore

NOTE 1 With any series we associate two sequences: the sequence of its par-
tial sums and the sequence of its terms. If is convergent, then the limit of the
sequence is (the sum of the series) and, as Theorem 6 asserts, the limit of the sequence

is 0.

| NOTE 2 The converse of Theorem 6 is not true in general. If , we can-
not conclude that is convergent. Observe that for the harmonic series we have

as , but we showed in Example 8 that is divergent.

Test for Divergence If does not exist or if , then the

series is divergent.

The Test for Divergence follows from Theorem 6 because, if the series is not divergent,
then it is convergent, and so .

Show that the series diverges.

SOLUTION

So the series diverges by the Test for Divergence.

NOTE 3 If we find that , we know that is divergent. If we find that
, we know nothing about the convergence or divergence of . Remember

the warning in Note 2: If , the series might converge or it might diverge.

Theorem If and are convergent series, then so are the series 
(where is a constant), , and , and

(i) (ii) 

(iii)

These properties of convergent series follow from the corresponding Limit Laws for
Sequences in Section 11.1. For instance, here is how part (ii) of Theorem 8 is proved:

Let

�sn � lim n l � sn � s n � 1 l � n l �
lim n l � sn�1 � s

lim
n l �

an � lim
n l �

�sn � sn�1� � lim
n l �

sn � lim
n l �

sn�1

� s � s � 0


 an �sn �
�an � 
 an

�sn � s
�an �

lim n l � an � 0

 an 
 1	n

an � 1	n l 0 n l � 
 1	n

7 lim
n l �

an lim
n l �

an � 0

�
�

n�1
an

lim n l � an � 0

�
�

n�1

n 2

5n 2 � 4

lim
n l �

an � lim
n l �

n 2

5n 2 � 4
� lim

n l �

1

5 � 4	n 2 �
1

5
� 0

lim n l � an � 0 
 an

lim n l � an � 0 
 an

lim n l � an � 0 
 an

8 
 an 
 bn 
 can

c 
 �an � bn � 
 �an � bn �

�
�

n�1
can � c �

�

n�1
an �

�

n�1
�an � bn � � �

�

n�1
an � �

�

n�1
bn

�
�

n�1
�an � bn � � �

�

n�1
an � �

�

n�1
bn

EXAMPLE 9

t � �
�

n�1
bntn � �

n

i�1
bis � �

�

n�1
ansn � �

n

i�1
ai


 anan � sn � sn�1sn � a1 � a2 � � � � � an
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734 CHAPTER 11 INFINITE SEQUENCES AND SERIES

The nth partial sum for the series is

and, using Equation 4.2.10, we have

Therefore is convergent and its sum is

Find the sum of the series .

SOLUTION The series is a geometric series with and , so

In Example 7 we found that

So, by Theorem 8, the given series is convergent and

NOTE 4 A finite number of terms doesn’t affect the convergence or divergence of a
series. For instance, suppose that we were able to show that the series

is convergent. Since

it follows that the entire series is convergent. Similarly, if it is known that
the series converges, then the full series

is also convergent.

un � �
n

i�1
�ai � bi�

lim
n l �

un � lim
n l �

�
n

i�1
�ai � bi� � lim

n l �
��

n

i�1
ai � �

n

i�1
bi�

� lim
n l �

�
n

i�1
ai � lim

n l �
�
n

i�1
bi

� lim
n l �

sn � lim
n l �

tn � s � t


 �an � bn �

�
�

n�1
�an � bn � � s � t � �

�

n�1
an � �

�

n�1
bn


 �an � bn �

�
�

n�1
� 3

n�n � 1�
�

1

2n�

 1	2n a � 1

2 r � 1
2

�
�

n�1

1

2n �
1
2

1 �
1
2

� 1

�
�

n�1

1

n�n � 1�
� 1 

�
�

n�1
� 3

n�n � 1�
�

1

2n� � 3 �
�

n�1

1

n�n � 1�
� �

�

n�1

1

2n

� 3 � 1 � 1 � 4

�
�

n�4

n

n3 � 1

�
�

n�1

n

n3 � 1
�

1

2
�

2

9
�

3

28
� �

�

n�4

n

n3 � 1


�
n�1 n	�n3 � 1�


�
n�N�1 an

�
�

n�1
an � �

N

n�1
an � �

�

n�N�1
an

EXAMPLE 10
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1. (a) What is the difference between a sequence and a series?
(b) What is a convergent series? What is a divergent series?

2. Explain what it means to say that .

3–4 Calculate the sum of the series whose partial sums
are given.

3. 4.

5–8 Calculate the first eight terms of the sequence of partial
sums correct to four decimal places. Does it appear that the series
is convergent or divergent?

5. 6.

7. 8.

; 9–14 Find at least 10 partial sums of the series. Graph both the
sequence of terms and the sequence of partial sums on the same
screen. Does it appear that the series is convergent or divergent?
If it is convergent, find the sum. If it is divergent, explain why.

9. 10.

11. 12.

13. 14.

15. Let .

(a) Determine whether is convergent.
(b) Determine whether is convergent.

16. (a) Explain the difference between

(b) Explain the difference between

17–26 Determine whether the geometric series is convergent or
divergent. If it is convergent, find its sum.

17. 18.

19.

20.


�
n�1 an � 5


�
n�1 an

sn � 2 � 3�0.8�n sn �
n 2 � 1

4n 2 � 1

�
�

n�1

1

n3 �
�

n�1

1

ln�n � 1�

�
�

n�1

n

1 � sn
�
�

n�1

��1�n�1

n!

�
�

n�1

12

��5�n �
�

n�1
cos n

�
�

n�1

n

sn 2 � 4
�
�

n�1

7 n�1

10 n

�
�

n�1
� 1

sn
�

1

sn � 1
� �

�

n�2

1

n�n � 2�

an �
2n

3n � 1
�an �

�

n�1 an

�
n

i�1
ai and �

n

j�1
aj

�
n

i�1
ai and �

n

i�1
aj

3 � 4 �
16
3 �

64
9 � � � � 4 � 3 �

9
4 �

27
16 � � � �

10 � 2 � 0.4 � 0.08 � � � �

2 � 0.5 � 0.125 � 0.03125 � � � �

21. 22.

23. 24.

25. 26.

27–42 Determine whether the series is convergent or divergent. 
If it is convergent, find its sum.

27.

28.

29. 30.

31. 32.

33. 34.

35. 36.

37. 38.

39. 40.

41. 42.

43–48 Determine whether the series is convergent or divergent
by expressing as a telescoping sum (as in Ex am ple 7). If it is
convergent, find its sum.

43. 44.

45.

46.

47. 48.

�
�

n�1
6�0.9�n�1 �

�

n�1

10 n

��9�n�1

�
�

n�1

��3�n�1

4 n �
�

n�0

1

(s2 )n

�
�

n�0

� n

3 n�1 �
�

n�1

e n

3n�1

1

3
�

1

6
�

1

9
�

1

12
�

1

15
� � � �

1

3
�

2

9
�

1

27
�

2

81
�

1

243
�

2

729
� � � �

�
�

n�1

n � 1

3n � 1 �
�

k�1

k�k � 2�
�k � 3�2

�
�

n�1

1 � 2n

3n �
�

n�1

1 � 3 n

2 n

�
�

n�1
s
n 2 �

�

n�1
��0.8�n�1 � �0.3�n�

�
�

n�1
ln� n2 � 1

2n2 � 1� �
�

n�1

1

1 � (2
3)

n

�
�

k�0
��

3�k

�
�

k�1
�cos 1�k

�
�

n�1
arctan n �

�

n�1
� 3

5 n �
2

n�
�
�

n�1
� 1

en �
1

n�n � 1�� �
�

n�1

en

n2

sn

�
�

n�2

2

n2 � 1 �
�

n�1
ln 

n

n � 1

�
�

n�1

3

n�n � 3�

�
�

n�1
�cos 

1

n2
 � cos 

1

�n � 1�2�
�
�

n�1
(e 1	n � e1	�n�1�) �

�

n�2

1

n3 � n

11.2 Exercises

; Graphing calculator or computer required Computer algebra system required 1. Homework Hints available at stewartcalculus.comCAS
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736 CHAPTER 11 INFINITE SEQUENCES AND SERIES

49. Let 
(a) Do you think that or ?
(b) Sum a geometric series to find the value of .
(c) How many decimal representations does the number 1

have?
(d) Which numbers have more than one decimal 

representation?

50. A sequence of terms is defined by

Calculate .

51–56 Express the number as a ratio of integers.

51. 52.

53.

54.

55. 56.

57–63 Find the values of for which the series converges. Find
the sum of the series for those values of .

57. 58.

59. 60.

61. 62.

63.

64. We have seen that the harmonic series is a divergent series
whose terms approach 0. Show that

is another series with this property.

65–66 Use the partial fraction command on your CAS to find 
a convenient expression for the partial sum, and then use this
expression to find the sum of the series. Check your answer by
using the CAS to sum the series directly.

65. 66.

67. If the partial sum of a series is

find and .

x � 0.99999 . . . .
x � 1x � 1

x

a1 � 1 an � �5 � n�an�1


�
n�1 an

0.8 � 0.8888 . . . 0.46 � 0.46464646 . . .

2.516 � 2.516516516 . . .

10.135 � 10.135353535 . . .

1.5342 7.12345

x
x

�
�

n�1
��5�nx n �

�

n�1
�x � 2�n

�
�

n�0

�x � 2�n

3n �
�

n�0
��4�n�x � 5�n

�
�

n�0

2n

x n �
�

n�0

sin n x

3n

�
�

n�0
e nx

�
�

n�1
ln�1 �

1

n�

CAS

�
�

n�1

3n2 � 3n � 1

�n2 � n�3 �
�

n�3

1

n5 � 5n3 � 4n


�
n�1 annth

sn �
n � 1

n � 1


�
n�1 anan

68. If the partial sum of a series is , 

find and .

69. A patient takes 150 mg of a drug at the same time every day.
Just before each tablet is taken, 5% of the drug remains in the
body.
(a) What quantity of the drug is in the body after the third

tablet? After the th tablet?
(b) What quantity of the drug remains in the body in the long

run?

70. After injection of a dose of insulin, the concentration of
insulin in a patient’s system decays exponentially and so it
can be written as , where represents time in hours and

is a positive constant.
(a) If a dose is injected every hours, write an expression

for the sum of the residual concentrations just before the
st injection.

(b) Determine the limiting pre-injection concentration.
(c) If the concentration of insulin must always remain at or

above a critical value , determine a minimal dosage
in terms of , , and .

71. When money is spent on goods and services, those who
receive the money also spend some of it. The people receiv-
ing some of the twice-spent money will spend some of that,
and so on. Economists call this chain reaction the multiplier
effect. In a hypothetical isolated community, the local
government begins the process by spending dollars. Sup-
pose that each recipient of spent money spends and
saves of the money that he or she receives. The val-
ues and s are called the marginal propensity to consume
and the marginal propensity to save and, of course,

.
(a) Let be the total spending that has been generated after 

transactions. Find an equation for .
(b) Show that , where . The number 

is called the multiplier. What is the multiplier if the 
marginal propensity to consume is ?

Note: The federal government uses this principle to justify
deficit spending. Banks use this principle to justify lend ing a
large percentage of the money that they receive in deposits.

72. A certain ball has the property that each time it falls from 
a height onto a hard, level surface, it rebounds to a height

, where . Suppose that the ball is dropped from
an initial height of meters.
(a) Assuming that the ball continues to bounce indefinitely,

find the total distance that it travels.
(b) Calculate the total time that the ball travels. (Use the 

fact that the ball falls in .)
(c) Suppose that each time the ball strikes the surface 

with velocity it rebounds with velocity , where
. How long will it take for the ball to come 

to rest?

73. Find the value of if

an 
�
n�1 an

sn � 3 � n2�n
�
n�1 annth

n

D

De�at t
a

D T

�n � 1�

C D
C a T

D
100c%

100s%
c

c � s � 1
Sn

n Sn

limn l � Sn � kD k � 1	s
k

80%

h
rh 0 � r � 1

H

1
2 tt 2 meters t seconds

v �kv
0 � k � 1

c

�
�

n�2
�1 � c��n � 2
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CHAPTER 11.2 SERIES 737

74. Find the value of such that

75. In Example 8 we showed that the harmonic series is diver-
gent. Here we outline another method, making use of the 
fact that for any . (See Exercise 6.2.103.)

If is the partial sum of the harmonic series, show that
 . Why does this imply that the harmonic series is
divergent?

; 76. Graph the curves , , for
on a common screen. By finding the areas between successive
curves, give a geometric demonstration of the fact, shown in
Example 7, that

77. The figure shows two circles and of radius 1 that touch 
at . is a common tangent line; is the circle that touches 

, , and ; is the circle that touches , , and ; is
the circle that touches , , and . This procedure can be
continued indefinitely and produces an infinite sequence of 
circles . Find an expression for the diameter of and 
thus provide another geometric demonstration of Example 7.

78. A right triangle is given with and . 
is drawn perpendicular to , is drawn perpendicular

to , , and this process is continued indefi nitely, 
as shown in the figure. Find the total length of all the 
perpendiculars

in terms of and .

�
�

n�0
e nc � 10 

e x � 1 � x x � 0
sn nth

e sn � n � 1

y � x n 0 	 x 	 1 n � 0, 1, 2, 3, 4, . . .

�
�

n�1

1

n�n � 1�
� 1

DC
C1TP

C3C1DCC2TDC
C2DC

Cn�Cn �

1 1

P

C£
C™

C¡ D

T

C

 AC  � b�A � 
ABC
DEABCD

EF � ABBC

c

 CD  �  DE  �  EF  �  FG  � � � �


b

A

CEGB

F
H

D ¨

b

79. What is wrong with the following calculation?

(Guido Ubaldus thought that this proved the existence of God
because “something has been created out of nothing.”)

80. Suppose that is known to be a convergent
series. Prove that is a divergent series.

81. Prove part (i) of Theorem 8.

82. If is divergent and , show that is divergent.

83. If is convergent and is divergent, show that 
the series is divergent. [Hint: Argue by 
contradiction.]

84. If and are both divergent, is neces-
sarily divergent?

85. Suppose that a series has positive terms and its partial
sums satisfy the inequality for all . Explain why

must be convergent.

86. The Fibonacci sequence was defined in Section 11.1 by the
equations

Show that each of the following statements is true.

(a)

(b)

(c)

87. The Cantor set, named after the German mathematician Georg
Cantor (1845–1918), is constructed as follows. We start with
the closed interval and remove the open interval . 
That leaves the two intervals and and we remove
the open middle third of each. Four intervals remain and again
we remove the open middle third of each of them. We continue
this procedure indefinitely, at each step removing the open
middle third of every interval that remains from the preceding
step. The Cantor set consists of the numbers that remain in

after all those intervals have been removed.
(a) Show that the total length of all the intervals that are

removed is 1. Despite that, the Cantor set contains infi-
nitely many numbers. Give examples of some numbers in
the Cantor set.

(b) The Sierpinski carpet is a two-dimensional counterpart of
the Cantor set. It is constructed by removing the center
one-ninth of a square of side 1, then removing the centers

0 � 0 � 0 � 0 � � � �

� �1 � 1� � �1 � 1� � �1 � 1� � � � �

� 1 � 1 � 1 � 1 � 1 � 1 � � � �

� 1 � ��1 � 1� � ��1 � 1� � ��1 � 1� � � � �

� 1 � 0 � 0 � 0 � � � � � 1


�
n�1 an �an � 0�


�
n�1 1	an


 canc � 0
 an


 bn
 an


 �an � bn�


 �an � bn�
 bn
 an


 an

nsn 	 1000sn


 an

n � 3fn � fn�1 � fn�2f2 � 1,f1 � 1,

1

fn�1 fn�1
�

1

fn�1 fn
�

1

fn fn�1

�
�

n�2

1

fn�1 fn�1
� 1

�
�

n�2

fn

fn�1 fn�1
� 2

( 1
3, 23 )[0, 1]

[ 2
3, 1][0, 13 ]

[0, 1]
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738 CHAPTER 11 INFINITE SEQUENCES AND SERIES

of the eight smaller remaining squares, and so on. (The fig-
ure shows the first three steps of the construction.) Show
that the sum of the areas of the removed squares is 1. This
implies that the Sierpinski carpet has area 0.

88. (a) A sequence is defined recursively by the equation
for , where and can be any

real numbers. Experiment with various values of and
and use your calculator to guess the limit of the sequence.

(b) Find in terms of and by expressing
in terms of and summing a series.

89. Consider the series .
(a) Find the partial sums and . Do you recognize the

denominators? Use the pattern to guess a formula for .

�an �
a2a1n � 3an � 1

2 �an�1 � an�2 �
a2a1

a2a1limn l � an

a2 � a1an�1 � an

	�n � 1�!
�
n�1 n

s4s1, s2, s3,
sn

(b) Use mathematical induction to prove your guess.
(c) Show that the given infinite series is convergent, and find

its sum.

90. In the figure there are infinitely many circles approaching the
vertices of an equilateral triangle, each circle touching other
circles and sides of the triangle. If the triangle has sides of
length 1, find the total area occupied by the circles.

In general, it is difficult to find the exact sum of a series. We were able to accomplish this
for geometric series and the series because in each of those cases we could
find a simple formula for the partial sum . But usually it isn’t easy to discover such a
formula. Therefore, in the next few sections, we develop several tests that enable us to 
determine whether a series is convergent or divergent without explicitly finding its sum. 
(In some cases, however, our methods will enable us to find good esti  mates of the sum.) Our
first test involves improper integrals.

We begin by investigating the series whose terms are the reciprocals of the squares of the
positive integers:

There’s no simple formula for the sum of the first terms, but the computer-generated
table of approximate values given in the margin suggests that the partial sums are approach-
ing a number near 1.64 as and so it looks as if the series is convergent.

We can confirm this impression with a geometric argument. Figure 1 shows the curve
and rectangles that lie below the curve. The base of each rectangle is an interval

of length 1; the height is equal to the value of the function at the right endpoint of
the interval. 


 1	�n�n � 1��
nth sn

�
�

n�1

1

n 2 �
1

12 �
1

22 �
1

32 �
1

42 �
1

52 � � � �

sn n

n l �

y � 1	x 2

y � 1	x 2

FIGURE 1

x

y

0 21 3 4 5

y=
1
≈

area= 1
1@

area= 1
2@

area= 1
3@

area= 1
4@

area= 1
5@

11.3 The Integral Test and Estimates of Sums

n

5 1.4636
10 1.5498
50 1.6251

100 1.6350
500 1.6429

1000 1.6439
5000 1.6447

sn � �
n

i�1

1

i 2
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SECTION 11.3 THE INTEGRAL TEST AND ESTIMATES OF SUMS 739

So the sum of the areas of the rectangles is

If we exclude the first rectangle, the total area of the remaining rectangles is smaller than
the area under the curve for , which is the value of the integral .
In Section 7.8 we discovered that this improper integral is convergent and has value 1. So
the picture shows that all the partial sums are less than

Thus the partial sums are bounded. We also know that the partial sums are increasing
(because all the terms are positive). Therefore the partial sums converge (by the Mono tonic
Sequence Theorem) and so the series is convergent. The sum of the series (the limit of the
partial sums) is also less than 2:

[The exact sum of this series was found by the Swiss mathematician Leonhard Euler 
(1707–1783) to be , but the proof of this fact is quite difficult. (See Problem 6 in the
Problems Plus following Chapter 15.)]

Now let’s look at the series

The table of values of suggests that the partial sums aren’t approaching a finite number,
so we suspect that the given series may be divergent. Again we use a picture for confirma-
tion. Figure 2 shows the curve , but this time we use rectangles whose tops lie
above the curve.

The base of each rectangle is an interval of length 1. The height is equal to the value of
the function at the left endpoint of the interval. So the sum of the areas of all the
rectangles is

This total area is greater than the area under the curve for , which is equal 
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740 CHAPTER 11 INFINITE SEQUENCES AND SERIES

to the integral . But we know from Section 7.8 that this improper integral is
divergent. In other words, the area under the curve is infinite. So the sum of the series must
be infinite; that is, the series is divergent.

The same sort of geometric reasoning that we used for these two series can be used to
prove the following test. (The proof is given at the end of this section.)

The Integral Test Suppose is a continuous, positive, decreasing function on
and let . Then the series is convergent if and only if the improper
integral is convergent. In other words:

(i) If is convergent, then is convergent.

(ii) If is divergent, then is divergent.

NOTE When we use the Integral Test, it is not necessary to start the series or the integral
at . For instance, in testing the series

Also, it is not necessary that be always decreasing. What is important is that be ulti-
mately decreasing, that is, decreasing for larger than some number . Then is 
convergent, so is convergent by Note 4 of Section 11.2.

Test the series for convergence or divergence.

SOLUTION The function is continuous, positive, and decreasing on
so we use the Integral Test:

Thus is a convergent integral and so, by the Integral Test, the series
is convergent.

For what values of is the series convergent?

SOLUTION If , then . If , then . In
either case , so the given series diverges by the Test for Divergence
(11.2.7).

If , then the function is clearly continuous, positive, and decreasing
on . We found in Chapter 7 [see (7.8.2)] that
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In order to use the Integral Test we need to be
able to evaluate and therefore we
have to be able to find an antiderivative of .
Frequently this is difficult or impossible, so we
need other tests for convergence too.
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SECTION 11.3 THE INTEGRAL TEST AND ESTIMATES OF SUMS 741

It follows from the Integral Test that the series converges if and diverges 
if . (For , this series is the harmonic series discussed in Example 8 in
Section 11.2.)

The series in Example 2 is called the p-series. It is important in the rest of this chapter,
so we summarize the results of Example 2 for future reference as follows.

The -series is convergent if and divergent if .

(a) The series

is convergent because it is a p-series with .
(b) The series

is divergent because it is a p-series with .

NOTE We should not infer from the Integral Test that the sum of the series is equal to
the value of the integral. In fact,

Therefore, in general,

Determine whether the series converges or diverges.

SOLUTION The function is positive and continuous for because the
logarithm function is continuous. But it is not obvious whether or not is decreasing, so
we compute its derivative:

Thus when , that is, . It follows that is decreasing when
and so we can apply the Integral Test:

Since this improper integral is divergent, the series is also divergent by the
Integral Test.
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742 CHAPTER 11 INFINITE SEQUENCES AND SERIES

Estimating the Sum of a Series
Suppose we have been able to use the Integral Test to show that a series is convergent
and we now want to find an approximation to the sum of the series. Of course, any partial
sum is an approximation to because . But how good is such an approxima-
tion? To find out, we need to estimate the size of the remainder

The remainder is the error made when , the sum of the first terms, is used as an approx-
imation to the total sum.

We use the same notation and ideas as in the Integral Test, assuming that is decreas-
ing on . Comparing the areas of the rectangles with the area under for
in Figure 3, we see that

Similarly, we see from Figure 4 that

So we have proved the following error estimate.

Remainder Estimate for the Integral Test Suppose , where is a 
continuous, positive, decreasing function for and is convergent. If

, then

(a) Approximate the sum of the series by using the sum of the first 10 terms.
Estimate the error involved in this approximation. 
(b) How many terms are required to ensure that the sum is accurate to within ?

SOLUTION In both parts (a) and (b) we need to know . With , which
satisfies the conditions of the Integral Test, we have

(a) Approximating the sum of the series by the 10th partial sum, we have

According to the remainder estimate in , we have

So the size of the error is at most .
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SECTION 11.3 THE INTEGRAL TEST AND ESTIMATES OF SUMS 743

(b) Accuracy to within means that we have to find a value of such that
. Since

we want

Solving this inequality, we get

We need 32 terms to ensure accuracy to within .

If we add to each side of the inequalities in , we get

because . The inequalities in give a lower bound and an upper bound for .
They provide a more accurate approximation to the sum of the series than the partial sum

does.

Use with to estimate the sum of the series .

SOLUTION The inequalities in become

From Example 5 we know that

so

Using , we get

If we approximate by the midpoint of this interval, then the error is at most half the
length of the interval. So

If we compare Example 6 with Example 5, we see that the improved estimate in can
be much better than the estimate . To make the error smaller than we had to
use 32 terms in Example 5 but only 10 terms in Example 6.
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Although Euler was able to calculate the exact
sum of the -series for , nobody has been
able to find the exact sum for . In Example
6, however, we show how to estimate this sum.

p p � 2
p � 3
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744 CHAPTER 11 INFINITE SEQUENCES AND SERIES

Proof of the Integral Test
We have already seen the basic idea behind the proof of the Integral Test in Figures 1 and
2 for the series and . For the general series , look at Figures 5 and 6. The
area of the first shaded rectangle in Figure 5 is the value of at the right endpoint of ,
that is, . So, comparing the areas of the shaded rectangles with the area under

from 1 to , we see that

(Notice that this inequality depends on the fact that is decreasing.) Likewise, Figure 6
shows that

(i) If is convergent, then gives

since . Therefore

Since for all , the sequence is bounded above. Also

since . Thus is an increasing bounded sequence and so it is con-
vergent by the Monotonic Sequence Theorem (11.1.12). This means that is convergent.

(ii) If is divergent, then as because . But
gives

and so . This implies that and so diverges.
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Computer algebra system required 1. Homework Hints available at stewartcalculus.comCAS

1. Draw a picture to show that

What can you conclude about the series?

2. Suppose is a continuous positive decreasing function for
and . By drawing a picture, rank the following

three quantities in increasing order:
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3–8 Use the Integral Test to determine whether the series is 
convergent or divergent.

3. 4.

5. 6.

7. 8.
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11.3 Exercises
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CHAPTER 11.3 THE INTEGRAL TEST AND ESTIMATES OF SUMS 745

9–26 Determine whether the series is convergent or divergent.

9. 10.

11.

12.

13.

14.

15. 16.

17. 18.

19. 20.

21. 22.

23. 24.

25. 26.

27–28 Explain why the Integral Test can’t be used to determine
whether the series is convergent.

27. 28.

29–32 Find the values of for which the series is convergent.

29. 30.

31. 32.

33. The Riemann zeta-function is defined by

and is used in number theory to study the distribution of prime
numbers. What is the domain of ?
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34. Leonhard Euler was able to calculate the exact sum of the 
-series with :

(See page 739.) Use this fact to find the sum of each series.

(a) (b)

(c)

35. Euler also found the sum of the -series with :

Use Euler’s result to find the sum of the series.

(a) (b)

36. (a) Find the partial sum of the series . Estimate the
error in using as an approximation to the sum of the
series.

(b) Use with to give an improved estimate of the
sum.

(c) Compare your estimate in part (b) with the exact value
given in Exercise 35.

(d) Find a value of so that is within of the sum.

37. (a) Use the sum of the first 10 terms to estimate the sum of the
series . How good is this estimate?

(b) Improve this estimate using with .
(c) Compare your estimate in part (b) with the exact value

given in Exercise 34.
(d) Find a value of that will ensure that the error in the

approximation is less than .

38. Find the sum of the series correct to three decimal
places.

39. Estimate correct to five decimal places.

40. How many terms of the series would you
need to add to find its sum to within ?

41. Show that if we want to approximate the sum of the series
so that the error is less than 5 in the ninth decimal

place, then we need to add more than terms!

42. (a) Show that the series is convergent.
(b) Find an upper bound for the error in the approximation

.
(c) What is the smallest value of such that this upper bound

is less than ?
(d) Find for this value of .
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746 CHAPTER 11 INFINITE SEQUENCES AND SERIES

(b) Interpret

as a difference of areas to show that . There-
fore is a decreasing sequence.

(c) Use the Monotonic Sequence Theorem to show that is
convergent.

45. Find all positive values of for which the series 
converges.

46. Find all values of for which the following series converges. 
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In the comparison tests the idea is to compare a given series with a series that is known to
be convergent or divergent. For instance, the series

reminds us of the series , which is a geometric series with and and is
therefore convergent. Because the series is so similar to a convergent series, we have the
feeling that it too must be convergent. Indeed, it is. The inequality

shows that our given series has smaller terms than those of the geometric series and
therefore all its partial sums are also smaller than 1 (the sum of the geometric series). This
means that its partial sums form a bounded increasing sequence, which is convergent. It
also follows that the sum of the series is less than the sum of the geometric series:

Similar reasoning can be used to prove the following test, which applies only to series
whose terms are positive. The first part says that if we have a series whose terms are 
smaller than those of a known convergent series, then our series is also convergent. The
second part says that if we start with a series whose terms are larger than those of a known
divergent series, then it too is divergent.

The Comparison Test Suppose that and are series with positive terms.

(i) If is convergent and for all , then is also convergent.

(ii) If is divergent and for all , then is also divergent.
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11.4 The Comparison Tests

43. (a) Use to show that if is the partial sum of the har-
monic series, then

(b) The harmonic series diverges, but very slowly. Use part (a)
to show that the sum of the first million terms is less than
15 and the sum of the first billion terms is less than 22.

44. Use the following steps to show that the sequence

has a limit. (The value of the limit is denoted by and is called
Euler’s constant.)
(a) Draw a picture like Figure 6 with and interpret

as an area [or use ] to show that for all .
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SECTION 11.4 THE COMPARISON TESTS 747

PROOF

(i) Let

Since both series have positive terms, the sequences and are increasing
. Also , so for all . Since .

Thus for all . This means that is increasing and bounded above and therefore
converges by the Monotonic Sequence Theorem. Thus converges.

(ii) If is divergent, then (since is increasing). But so .
Thus . Therefore diverges.

In using the Comparison Test we must, of course, have some known series for the
purpose of comparison. Most of the time we use one of these series: 

■ A -series [ con verges if and diverges if ; see (11.3.1)]
■ A geometric series [ converges if and diverges if ; 

see (11.2.4)]

Determine whether the series converges or diverges.

SOLUTION For large the dominant term in the denominator is , so we compare the
given series with the series . Observe that

because the left side has a bigger denominator. (In the notation of the Comparison Test,
is the left side and is the right side.) We know that

is convergent because it’s a constant times a -series with . Therefore

is convergent by part (i) of the Comparison Test.

NOTE 1 Although the condition or in the Comparison Test is given for
all , we need verify only that it holds for , where is some fixed integer, because
the convergence of a series is not affected by a finite number of terms. This is illustrated in
the next example.

Test the series for convergence or divergence.

SOLUTION We used the Integral Test to test this series in Example 4 of Section 11.3, but
we can also test it by comparing it with the harmonic series. Observe that for

and so

�sn � �tn �
�sn�1 � sn � an�1 � sn � tn l t tn � t n ai � bi, we have sn � tn

sn � t n �sn �
� an

� bn tn l � �tn � ai � bi sn � tn

sn l � � an

sn � �
n

i�1
ai tn � �

n

i�1
bi t � �

�

n�1
bn

� bn

p � 1�np p � 1 p � 1

� ar n�1 � r � 	 1 � r � � 1

�
�

n�1

5

2n2 � 4n � 3

n 2n2

� 5��2n2 �

5

2n2 � 4n � 3
	

5

2n2

an bn

�
�

n�1

5

2n2 �
5

2
 �

�

n�1

1

n2

p p � 2 � 1

�
�

n�1

5

2n2 � 4n � 3

v EXAMPLE 1

an � bn an � bn

n n � N N

�
�

k�1

ln k

k

ln k � 1
k � 3

v EXAMPLE 2

k � 3
ln k

k
�

1

k

It is important to keep in mind the distinction
between a sequence and a series. A sequence 
is a list of numbers, whereas a series is a sum.
With every series there are associated two
sequences: the sequence of terms and the
sequence of partial sums.�sn �

�an �
� an

Standard Series for Use 
with the Comparison Test
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748 CHAPTER 11 INFINITE SEQUENCES AND SERIES

We know that is divergent ( -series with ). Thus the given series is diver-
gent by the Comparison Test.

NOTE 2 The terms of the series being tested must be smaller than those of a convergent
series or larger than those of a divergent series. If the terms are larger than the terms of a
convergent series or smaller than those of a divergent series, then the Comparison Test 
doesn’t apply. Consider, for instance, the series

The inequality

is useless as far as the Comparison Test is concerned because is convergent
and . Nonetheless, we have the feeling that ought to be convergent
because it is very similar to the convergent geometric series . In such cases the fol-
lowing test can be used.

The Limit Comparison Test Suppose that and are series with positive 
terms. If

where c is a finite number and , then either both series converge or both
diverge.

PROOF Let m and M be positive numbers such that . Because is close
to c for large n, there is an integer N such that

and so

If converges, so does . Thus converges by part (i) of the Comparison
Test. If diverges, so does and part (ii) of the Comparison Test shows that
diverges.

Test the series for convergence or divergence.

SOLUTION We use the Limit Comparison Test with

and obtain

�
�

n�1

1

2n � 1

1

2n � 1
�

1

2n

� bn � � ( 1
2 )n

an � bn � 1��2n � 1�
� ( 1

2 )n

� an � bn

lim
n l �

an

bn
� c

c � 0

m 	 c 	 M an�bn

m 	
an

bn
	 M when n � N

mbn 	 an 	 Mbn when n � N

� bn � Mbn � an

� bn � mbn � an

�
�

n�1

1

2n � 1

an �
1

2n � 1
bn �

1

2n

lim
n l �

an

bn
� lim

n l �

1��2 n � 1�
1�2 n � lim

n l �

2n

2n � 1
� lim

n l �

1

1 � 1�2n � 1 � 0

EXAMPLE 3

p � 1p� 1�k

Exercises 40 and 41 deal with the 
cases and .c � �c � 0
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SECTION 11.4 THE COMPARISON TESTS 749

Since this limit exists and is a convergent geometric series, the given series con-
verges by the Limit Comparison Test.

Determine whether the series converges or diverges.

SOLUTION The dominant part of the numerator is and the dominant part of the denom-
inator is . This suggests taking

Since is divergent ( -series with ), the given series diverges
by the Limit Comparison Test.

Notice that in testing many series we find a suitable comparison series by keeping
only the highest powers in the numerator and denominator.

Estimating Sums
If we have used the Comparison Test to show that a series converges by comparison
with a series , then we may be able to estimate the sum by comparing remainders.
As in Section 11.3, we consider the remainder

For the comparison series we consider the corresponding remainder

Since for all , we have . If is a -series, we can estimate its remain-
der as in Section 11.3. If is a geometric series, then is the sum of a geometric
series and we can sum it exactly (see Exercises 35 and 36). In either case we know that
is smaller than .

Use the sum of the first 100 terms to approximate the sum of the series
. Estimate the error involved in this approximation.

SOLUTION Since

the given series is convergent by the Comparison Test. The remainder for the compar-
ison series was estimated in Example 5 in Section 11.3 using the Remainder Esti-
mate for the Integral Test. There we found that

� 1�2n

�
�

n�1

2n2 � 3n

s5 � n 5 

2n2

sn5 � n 5�2

an �
2n2 � 3n

s5 � n 5 
bn �

2n2

n 5�2 �
2

n 1�2

lim
n l �

an

bn
� lim

n l �

2n2 � 3n

s5 � n 5 
�

n 1�2

2
� lim

n l �

2n5�2 � 3n3�2

2s5 � n 5 

� lim
n l �

2 �
3

n

2� 5

n5 � 1

�
2 � 0

2s0 � 1
� 1

� bn � 2 � 1�n 1�2 p p � 1
2 	 1

EXAMPLE 4

� bn

� an

� bn � an

Rn � s � sn � an�1 � an�2 � � � �

� bn

Tn � t � tn � bn�1 � bn�2 � � � �

an � bn n Rn � Tn � bn p
Tn � bn Tn

Rn

Tn

� 1��n3 � 1�

1

n3 � 1
	

1

n3

Tn

� 1�n3

Tn � y
�

n

1

x 3 dx �
1

2n2

v EXAMPLE 5
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750 CHAPTER 11 INFINITE SEQUENCES AND SERIES

Therefore the remainder for the given series satisfies

With we have

Using a programmable calculator or a computer, we find that

with error less than .

Rn � Tn �
1

2n2

n � 100

R100 �
1

2�100�2 � 0.00005

�
�

n�1

1

n3 � 1
� �

100

n�1

1

n3 � 1
� 0.6864538

0.00005

Rn

1. Homework Hints available at stewartcalculus.com

1. Suppose and are series with positive terms and 
is known to be convergent.
(a) If for all , what can you say about ? Why?
(b) If for all , what can you say about ? Why?

2. Suppose and are series with positive terms and 
is known to be divergent.
(a) If for all n, what can you say about ? Why?
(b) If for all n, what can you say about ? Why?

3–32 Determine whether the series converges or diverges.

3. 4.

5. 6.

7. 8.

9. 10.

11. 12.

13. 14.

15. 16.

17. 18.

19. 20.

� an � bn � bn

an � bn n � an

an 	 bn n � an

� an � bn � bn

an � bn � an

an 	 bn � an

�
�

n�1

n

2n3 � 1 �
�

n�2

n3

n4 � 1

�
�

n�1

n � 1

nsn
�
�

n�1

n � 1

n2
sn

�
�

n�1

9n

3 � 10 n �
�

n�1

6n

5n � 1

�
�

k�1

ln k

k �
�

k�1

k sin2k

1 � k 3

�
�

k�1

s
3 k

sk 3 � 4k � 3
�
�

k�1

�2k � 1��k 2 � 1�
�k � 1��k 2 � 4�2

�
�

n�1

arctan n

n1.2 �
�

n�2

sn

n � 1

�
�

n�1

4n�1

3n � 2 �
�

n�1

1

s
3 3n 4 � 1

�
�

n�1

1

sn 2 � 1
�
�

n�1

1

2n � 3

�
�

n�1

1 � 4n

1 � 3n �
�

n�1

n � 4n

n � 6 n

21. 22.

23. 24.

25. 26.

27. 28.

29. 30.

31. 32.

33–36 Use the sum of the first 10 terms to approximate the sum of
the series. Estimate the error.

33. 34.

35. 36.

37. The meaning of the decimal representation of a number
(where the digit is one of the numbers 0, 1, 

2, . . . , 9) is that

Show that this series always converges.

�
�

n�1

sn � 2

2n2 � n � 1 �
�

n�3

n � 2

�n � 1� 3

�
�

n�1

5 � 2n

�1 � n2�2 �
�

n�1

n2 � 5n

n3 � n � 1

�
�

n�1

sn4 � 1

n3 � n2 �
�

n�2

1

nsn2 � 1

�
�

n�1
	1 �

1

n
2

e�n �
�

n�1

e 1�n

n

�
�

n�1

1

n! �
�

n�1

n!

n n

�
�

n�1
sin	1

n
 �
�

n�1

1

n 1�1�n

�
�

n�1

1

sn4 � 1
�
�

n�1

sin 2 n

n3

�
�

n�1
5�n cos2n �

�

n�1

1

3n � 4n

0.d1d2d3 . . . di

0.d1d2d3d4 . . . �
d1

10
�

d2

102 �
d3

103 �
d4

104 � � � �

11.4 Exercises
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SECTION 11.5 ALTERNATING SERIES 751

38. For what values of does the series converge?

39. Prove that if and converges, then also 
converges.

40. (a) Suppose that and are series with positive terms
and is convergent. Prove that if

then is also convergent.
(b) Use part (a) to show that the series converges.

(i) (ii)

41. (a) Suppose that and are series with positive terms
and is divergent. Prove that if

then is also divergent.

p ��
n�2 1��n p ln n�

an � 0 � an � an
2

� an � bn

� bn

lim
n l �

an

bn
� 0

� an

�
�

n�1

ln n

n3 �
�

n�1

ln n

sn en

� an � bn

� bn

lim
n l �

an

bn
� �

� an

(b) Use part (a) to show that the series diverges.

(i) (ii)

42. Give an example of a pair of series and with positive
terms where and diverges, but
converges. (Compare with Exercise 40.)

43. Show that if and then is
divergent.

44. Show that if and is convergent, then
is convergent.

45. If is a convergent series with positive terms, is it true that
is also convergent?

46. If and are both convergent series with positive terms,
is it true that is also convergent?

�
�

n�2

1

ln n �
�

n�1

ln n

n

� an � bn

lim n l � �an�bn� � 0 � bn � an

� anlim n l � nan � 0, an � 0

� ln�1 � an �� anan � 0

� an

� sin�an �

� bn� an

� an bn

The convergence tests that we have looked at so far apply only to series with positive 
terms. In this section and the next we learn how to deal with series whose terms are not
necessarily positive. Of particular importance are alternating series, whose terms alternate
in sign.

An alternating series is a series whose terms are alternately positive and negative. Here
are two examples:

We see from these examples that the term of an alternating series is of the form

where is a positive number. (In fact, .)
The following test says that if the terms of an alternating series decrease toward 0 in

absolute value, then the series converges.

Alternating Series Test If the alternating series

satisfies

(i)

(ii)

then the series is convergent.

1 �
1

2
�

1

3
�

1

4
�

1

5
�

1

6
� � � � � �

�

n�1
��1�n�1 1

n

�
1

2
�

2

3
�

3

4
�

4

5
�

5

6
�

6

7
� � � � � �

�

n�1
��1�n n

n � 1

nth

an � ��1�n�1bn or an � ��1�nbn

bn bn � � an �

�
�

n�1
��1�n�1bn � b1 � b2 � b3 � b4 � b5 � b6 � � � � bn � 0

bn�1 � bn for all n

lim
n l �

bn � 0

11.5 Alternating Series
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752 CHAPTER 11 INFINITE SEQUENCES AND SERIES

Before giving the proof let’s look at Figure 1, which gives a picture of the idea behind
the proof. We first plot on a number line. To find we subtract , so is to the 
left of . Then to find we add , so is to the right of . But, since , is to 
the left of . Continuing in this manner, we see that the partial sums oscillate back and
forth. Since , the successive steps are becoming smaller and smaller. The even par-
tial sums , , , . . . are increasing and the odd partial sums , , , . . . are decreasing.
Thus it seems plausible that both are converging to some number , which is the sum of the
series. Therefore we consider the even and odd partial sums separately in the follow-
ing proof.

PROOF OF THE ALTERNATING SERIES TEST We first consider the even partial sums:

In general

Thus

But we can also write

Every term in brackets is positive, so for all . Therefore the sequence 
of even partial sums is increasing and bounded above. It is therefore convergent by the
Monotonic Sequence Theorem. Let’s call its limit , that is,

Now we compute the limit of the odd partial sums:

[by condition (ii)]

Since both the even and odd partial sums converge to , we have 
[see Exercise 92(a) in Section 11.1] and so the series is convergent.

s1 � b1 s2 b2 s2

s1 s3 b3 s3 s2 b3 � b2 s3

s1

bn l 0
s2 s4 s6 s1 s3 s5

s

FIGURE 1 0 s¡s™ s£s¢ s∞sß s

b¡

-b™

+b£

-b¢

+b∞

-bß

s2 � b1 � b2 � 0 since b2 � b1

s4 � s2 � �b3 � b4 � � s2 since b4 � b3

s2n � s2n�2 � �b2n�1 � b2n � � s2n�2 since b2n � b2n�1

0 � s2 � s4 � s6 � � � � � s2n � � � �

s2n � b1 � �b2 � b3 � � �b4 � b5 � � � � � � �b2n�2 � b2n�1� � b2n

s2n � b1 n �s2n �

s

lim
n l �

s2n � s

lim
n l �

s2n�1 � lim 
n l �

�s2n � b2n�1�

� lim
n l �

s2n � lim
n l �

b2n�1

� s � 0

� s

s lim n l � sn � s

      Copyright 2010 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s). 
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.



SECTION 11.5 ALTERNATING SERIES 753

The alternating harmonic series

satisfies

(i) because    

(ii) 

so the series is convergent by the Alternating Series Test.

The series is alternating, but

so condition (ii) is not satisfied. Instead, we look at the limit of the term of the series:

This limit does not exist, so the series diverges by the Test for Divergence.

Test the series for convergence or divergence.

SOLUTION The given series is alternating so we try to verify conditions (i) and (ii) of the
Alternating Series Test.

Unlike the situation in Example 1, it is not obvious that the sequence given by
is decreasing. However, if we consider the related function

, we find that

Since we are considering only positive , we see that if , that is,
. Thus is decreasing on the interval . This means that

and therefore when . (The inequality can be verified directly but
all that really matters is that the sequence is eventually decreasing.)

Condition (ii) is readily verified:

Thus the given series is convergent by the Alternating Series Test.

1 �
1

2
�

1

3
�

1

4
� � � � � �

�

n�1

��1�n�1

n

bn�1 � bn
1

n � 1
�

1

n

lim
n l �

bn � lim
n l �

1

n
� 0

�
�

n�1

��1�n3n

4n � 1

lim
n l �

bn � lim
n l �

3n

4n � 1
� lim

n l �

3

4 �
1

n

�
3

4

nth

lim
n l �

an � lim
n l �

��1�n3n

4n � 1

�
�

n�1
��1�n�1 n2

n3 � 1

bn � n2��n3 � 1�
f �x� � x 2��x 3 � 1�

f 	�x� �
x �2 � x 3 �
�x 3 � 1�2

x f 	�x� � 0 2 � x 3 � 0
x 
 s

3 2 f (s3 2 , �) f �n � 1� � f �n�
bn�1 � bn n � 2 b2 � b1

�bn �

lim
n l �

bn � lim
n l �

n2

n3 � 1
� lim

n l �

1

n

1 �
1

n3

� 0

EXAMPLE 1v

v EXAMPLE 2

EXAMPLE 3

Figure 2 illustrates Example 1 by show  ing the
graphs of the terms and the
partial sums . Notice how the values of 
zigzag across the limiting value, which appears
to be about . In fact, it can be proved that
the exact sum of the series is 
(see Exercise 36).

ln 2 � 0.693
0.7

snsn

an � ��1�n�1�n

FIGURE 2

0 n

1

�an�

�sn�

Instead of verifying condition (i) of the Alter-
nating Series Test by com puting a derivative,
we could verify that directly by
using the tech ni que of Solution 1 of
Example 13 in Section 11.1.

bn�1 � bn
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754 CHAPTER 11 INFINITE SEQUENCES AND SERIES

Estimating Sums
A partial sum of any convergent series can be used as an approximation to the total sum
, but this is not of much use unless we can estimate the accuracy of the approximation. The

error involved in using is the remainder . The next theorem says that 
for series that satisfy the conditions of the Alternating Series Test, the size of the error is
smaller than , which is the absolute value of the first neglected term.

Alternating Series Estimation Theorem If is the sum of an alter nating
series that satisfies

(i) and (ii) 

then

PROOF We know from the proof of the Alternating Series Test that s lies between any two
consecutive partial sums and . (There we showed that is larger than all even par-
tial sums. A similar argument shows that is smaller than all the odd sums.) It follows
that

Find the sum of the series correct to three decimal places.

SOLUTION We first observe that the series is convergent by the Alternating Series Test
because

(i)

(ii) so as 

To get a feel for how many terms we need to use in our approximation, let’s write out
the first few terms of the series:

Notice that

and

By the Alternating Series Estimation Theorem we know that

This error of less than does not affect the third decimal place, so we have
correct to three decimal places.

sn

s
s � sn Rn � s � sn

bn�1

s � 	 ��1�n�1bn

bn�1 � bn lim
n l �

bn � 0


 Rn 
 � 
 s � sn 
 � bn�1

sn sn�1


 s � sn 
 � 
 sn�1 � sn 
 � bn�1

s
s

�
�

n�0

��1�n

n!

s �
1

0!
�

1

1!
�

1

2!
�

1

3!
�

1

4!
�

1

5!
�

1

6!
�

1

7!
� � � �

� 1 � 1 �
1
2 �

1
6 �

1
24 �

1
120 �

1
720 �

1
5040 � � � �

b7 � 1
5040 �

1
5000 � 0.0002

s6 � 1 � 1 �
1
2 �

1
6 �

1
24 �

1
120 �

1
720 � 0.368056


 s � s6 
 � b7 � 0.0002

v EXAMPLE 4

1

�n � 1�!
�

1

n! �n � 1�
�

1

n!

0 �
1

n!
�

1

n
l 0

1

n!
l 0 n l �

0.0002
s � 0.368

You can see geometrically why the Alternating
Series Estimation Theorem is true by looking at
Figure 1 (on page 752). Notice that 

and so on. Notice also that 
lies between any two consecutive partial sums.

s
 s � s5 
 � b6,
s � s4 � b5,

In Section 11.10 we will prove that
for all , so what we 

have obtained in Example 4 is actually an
approximation to the number .e�1

xex � 	�
n�0 xn�n!

By definition, .0! � 1
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SECTION 11.5 ALTERNATING SERIES 755

| NOTE The rule that the error (in using to approximate ) is smaller than the first 
neglected term is, in general, valid only for alternating series that satisfy the conditions of
the Alternating Series Estimation Theorem. The rule does not apply to other types of series.

sn s

1. (a) What is an alternating series?
(b) Under what conditions does an alternating series

converge?
(c) If these conditions are satisfied, what can you say about

the remainder after terms?

2–20 Test the series for convergence or divergence.

2.

3.

4.

5. 6.

7. 8.

9. 10.

11. 12.

13. 14.

15. 16.

17. 18.

19. 20.

; 21–22 Graph both the sequence of terms and the sequence of 
partial sums on the same screen. Use the graph to make a rough
estimate of the sum of the series. Then use the Alternating Series
Estimation Theorem to estimate the sum correct to four decimal
places.

21.

n

2
3 �

2
5 �

2
7 �

2
9 �

2
11 � � � �

�
2
5 �

4
6 �

6
7 �

8
8 �

10
9 � � � �

1

s2
�

1

s3
�

1

s4
�

1

s5
�

1

s6
� � � �

�
�

n�1

��1�n�1

2n � 1 �
�

n�1

��1� n�1 

ln�n � 4�

�
�

n�1
��1�n 3n � 1

2n � 1 �
�

n�1
��1�n n

sn3 � 2

�
�

n�1
��1�ne�n �

�

n�1
��1�n sn

2n � 3

�
�

n�1
��1�n�1 n2

n3 � 4 �
�

n�1
��1�n�1ne�n

�
�

n�1
��1�n�1e 2�n �

�

n�1
��1�n�1 arctan n

�
�

n�0

 sin(n �
1
2)�

1 � sn
�
�

n�1

 n cos n�

2n

�
�

n�1
��1�n sin��

n � �
�

n�1
��1�n cos��

n �
�
�

n�1
��1�n n n

n! �
�

n�1
��1�n(sn � 1 � sn )

�
�

n�1

��0.8�n

n!

22.

23–26 Show that the series is convergent. How many terms of
the series do we need to add in order to find the sum to the indi-
cated accuracy?

23.

24.

25.

26.

27–30 Approximate the sum of the series correct to four 
decimal places.

27. 28.

29. 30.

31. Is the 50th partial sum of the alternating series
an overestimate or an underestimate of the 

total sum? Explain.

32–34 For what values of is each series convergent?

32.

33. 34.

35. Show that the series , where if is odd
and if is even, is divergent. Why does the Alter-
nating Series Test not apply?

�
�

n�1

��1�n

n 5n (
 error 
 � 0.0001)

�
�

n�1
��1�n�1ne�n (
 error 
 � 0.01)

�
�

n�1

��1�n�1

n6 (
 error 
 � 0.00005)

�
�

n�0

��1�n

10nn!
(
 error 
 � 0.000005)

�
�

n�1

��1�n�1 n2

10 n �
�

n�1

��1�n

3 nn!

�
�

n�1

��1�n

�2n�! �
�

n�1

��1�n�1

n6

s50

	�
n�1 ��1�n�1�n

p

�
�

n�1

��1�n�1

np

�
�

n�1

��1�n

n � p �
�

n�2
��1�n�1 �ln n� p

n

	 ��1�n�1bn bn � 1�n n
bn � 1�n2 n

�
�

n�1
��1�n�1 n

8n

11.5 Exercises

; Graphing calculator or computer required 1. Homework Hints available at stewartcalculus.com
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756 CHAPTER 11 INFINITE SEQUENCES AND SERIES

36. Use the following steps to show that

Let and be the partial sums of the harmonic and alter-
 nating harmonic series.
(a) Show that .

�
�

n�1

��1�n�1

n
� ln 2

snhn

s2n � h2n � hn

(b) From Exercise 44 in Section 11.3 we have

as

and therefore

as 

Use these facts together with part (a) to show that
as .

hn � ln n l � n l �

n l �h2n � ln�2n� l �

n l �s2n l ln 2

Given any series , we can consider the corresponding series

whose terms are the absolute values of the terms of the original series.

Definition A series is called absolutely convergent if the series of 
absolute values is convergent.

Notice that if is a series with positive terms, then and so absolute con-
vergence is the same as convergence in this case.

The series

is absolutely convergent because

is a convergent -series ( ).

We know that the alternating harmonic series

is convergent (see Example 1 in Section 11.5), but it is not absolutely convergent because
the corresponding series of absolute values is

which is the harmonic series ( -series with ) and is therefore divergent.

	 an

�
�

n�1

 an 
 � 
 a1 
 � 
 a2 
 � 
 a3 
 � � � �

	 an

	 
 an 



 an 
 � an	 an

�
�

n�1

��1�n�1

n2 � 1 �
1

22 �
1

32 �
1

42 � � � �

�
�

n�1
 ��1�n�1

n2  � �
�

n�1

1

n2 � 1 �
1

22 �
1

32 �
1

42 � � � �

p � 2p

�
�

n�1

��1�n�1

n
� 1 �

1

2
�

1

3
�

1

4
� � � �

EXAMPLE 1

EXAMPLE 2

1

�
�

n�1
 ��1�n�1

n  � �
�

n�1

1

n
� 1 �

1

2
�

1

3
�

1

4
� � � �

p � 1p

11.6 Absolute Convergence and the Ratio and Root Tests

We have convergence tests for series with
positive terms and for alternating series. But
what if the signs of the terms switch back and
forth irregularly? We will see in Example 3 that
the idea of absolute convergence sometimes
helps in such cases.
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Definition A series is called conditionally convergent if it is convergent
but not absolutely convergent.

Example 2 shows that the alternating harmonic series is conditionally convergent. Thus
it is possible for a series to be convergent but not absolutely convergent. However, the next
theorem shows that absolute convergence implies convergence.

Theorem If a series is absolutely convergent, then it is convergent.

PROOF Observe that the inequality

is true because is either or . If is absolutely convergent, then is
convergent, so is convergent. Therefore, by the Comparison Test, is
convergent. Then

is the difference of two convergent series and is therefore convergent.

Determine whether the series

is convergent or divergent.

SOLUTION This series has both positive and negative terms, but it is not alternating. 
(The first term is positive, the next three are negative, and the following three are posi-
tive: The signs change irregularly.) We can apply the Comparison Test to the series of
absolute values

Since for all , we have

We know that is convergent ( -series with ) and therefore is
convergent by the Comparison Test. Thus the given series is absolutely
convergent and therefore convergent by Theorem 3.

The following test is very useful in determining whether a given series is absolutely 
convergent.

	 an2

3 	 an

0 � an � 
 an 
 � 2
 an 


 an 
 an �an 	 an 	 
 an 

	 2
 an 
 	 (an � 
 an 
)

� an � � (an � 
 an 
) � � 
 an 


�
�

n�1

cos n

n2 �
cos 1

12 �
cos 2

22 �
cos 3

32 � � � �

�
�

n�1
 cos n

n2  � �
�

n�1


 cos n 

n2


 cos n 
 � 1 n


 cos n 

n2 �

1

n2

	 1�n2 p p � 2 	 
 cos n 
�n2

	 �cos n��n2

v EXAMPLE 3

FIGURE 1

0 n

0.5

�an�

�sn�

Figure 1 shows the graphs of the terms and
partial sums of the series in Example 3.
Notice that the series is not alternating but
has positive and negative terms.

sn

an
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The Ratio Test

(i) If , then the series is absolutely convergent 

(and therefore convergent).

(ii) If or , then the series 

is divergent.

(iii) If , the Ratio Test is inconclusive; that is, no conclusion can

be drawn about the convergence or divergence of .

PROOF
(i) The idea is to compare the given series with a convergent geometric series. Since

, we can choose a number such that . Since

the ratio will eventually be less than ; that is, there exists an integer 
such that

or, equivalently,

Putting successively equal to , , , . . . in , we obtain

and, in general,

Now the series

is convergent because it is a geometric series with . So the inequality
together with the Comparison Test, shows that the series

�
�

n�1
anlim

n l �
 an�1

an
 � L � 1

�
�

n�1
anlim

n l �
 an�1

an
 � �lim

n l �
 an�1
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 � L 
 1
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n l �

 an�1
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 � 1

	 an

L � r � 1rL � 1

L � randlim
n l �

 an�1
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 � L

Nr
 an�1�an 
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 � r whenever n � N
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 � 
 an 
 r whenever n � N4

N � 2N � 1Nn


 aN�1 
 � 
 aN 
 r


 aN�2 
 � 
 aN�1 
 r � 
 aN 
 r 2


 aN�3 
 � 
 aN�2 
 r � 
 aN 
 r 3

for all k � 1
 aN�k 
 � 
 aN 
 r k5

�
�

k�1

 aN 
 r k � 
 aN 
 r � 
 aN 
 r 2 � 
 aN 
 r 3 � � � �

50 � r � 1

�
�

n�N�1

 an 
 � �

�

k�1

 aN�k 
 � 
 aN�1 
 � 
 aN�2 
 � 
 aN�3 
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SECTION 11.6 ABSOLUTE CONVERGENCE AND THE RATIO AND ROOT TESTS 759

is also convergent. It follows that the series is convergent. (Recall that a finite
number of terms doesn’t affect convergence.) Therefore is absolutely convergent.

(ii) If or , then the ratio will eventually be
greater than 1; that is, there exists an integer such that

This means that whenever and so

Therefore diverges by the Test for Divergence.

NOTE Part (iii) of the Ratio Test says that if , the test gives no
information. For instance, for the convergent series we have

whereas for the divergent series we have

Therefore, if , the series might converge or it might diverge. In
this case the Ratio Test fails and we must use some other test.

Test the series for absolute convergence.

SOLUTION We use the Ratio Test with :

Thus, by the Ratio Test, the given series is absolutely convergent and therefore 
convergent.

	�
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 an 


	 an


 an�1�an 

 an�1�an 
l �
 an�1�an 
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1
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1
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�
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1

n�2 l 1

	 1�n

as n l � an�1
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 �
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1
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�
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n � 1
�

1
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1
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l 1

	 anlimn l � 
 an�1�an 
 � 1

�
�

n�1
��1�n n3

3nEXAMPLE 4

an � ��1�nn3�3n

 an�1

an
 � |

��1�n�1�n � 1�3

3n�1

��1�nn3

3n | � �n � 1�3

3n�1 �
3n

n3

�
1

3
 � n � 1

n �3

�
1

3
 �1 �

1

n�3

l
1

3
� 1

Estimating Sums
In the last three sections we used various meth-
ods for estimating the sum of a series—the
method depended on which test was used to
prove convergence. What about series for 
which the Ratio Test works? There are two 
possibilities: If the series happens to be an alter-
nating series, as in Example 4, then it is best to
use the methods of Section 11.5. If the terms are
all positive, then use the special methods
explained in Exercise 38.

The Ratio Test is usually conclusive if the th
term of the series contains an exponential or a
factorial, as we will see in Examples 4 and 5.

n
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Test the convergence of the series .

SOLUTION Since the terms are positive, we don’t need the absolute value
signs.

(see Equation 6.4.9 or 6.4*.9). Since , the given series is divergent by the Ratio
Test.

NOTE Although the Ratio Test works in Example 5, an easier method is to use the Test
for Divergence. Since

it follows that does not approach 0 as . Therefore the given series is divergent by
the Test for Divergence.

The following test is convenient to apply when th powers occur. Its proof is similar to
the proof of the Ratio Test and is left as Exercise 41.

The Root Test

(i) If , then the series is absolutely convergent 

(and therefore convergent).

(ii) If or , then the series is divergent.

(iii) If , the Root Test is inconclusive.

If , then part (iii) of the Root Test says that the test gives no infor-
mation. The series could converge or diverge. (If in the Ratio Test, don’t try the
Root Test because will again be 1. And if in the Root Test, don’t try the Ratio Test
because it will fail too.)

Test the convergence of the series .

SOLUTION

Thus the given series converges by the Root Test.
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Rearrangements
The question of whether a given convergent series is absolutely convergent or condi tionally
convergent has a bearing on the question of whether infinite sums behave like finite sums.

If we rearrange the order of the terms in a finite sum, then of course the value of the sum
remains unchanged. But this is not always the case for an infinite series. By a rearrange-
ment of an infinite series we mean a series obtained by simply changing the order of
the terms. For instance, a rearrangement of could start as follows:

It turns out that

if is an absolutely convergent series with sum s,
then any rearrangement of has the same sum s.

However, any conditionally convergent series can be rearranged to give a different sum. To
illustrate this fact let’s consider the alternating harmonic series

(See Exercise 36 in Section 11.5.) If we multiply this series by , we get

Inserting zeros between the terms of this series, we have

Now we add the series in Equations 6 and 7 using Theorem 11.2.8:

Notice that the series in contains the same terms as in , but rearranged so that one neg-
ative term occurs after each pair of positive terms. The sums of these series, however, are
different. In fact, Riemann proved that

if is a conditionally convergent series and r is any real number what-
soever, then there is a rearrangement of that has a sum equal to r.

A proof of this fact is outlined in Exercise 44.
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2 ln 28

68

	 an

	 an

Adding these zeros does not affect the sum of
the series; each term in the sequence of partial
sums is repeated, but the limit is the same.

1. What can you say about the series in each of the following
cases?

(a) (b)

(c)

2–30 Determine whether the series is absolutely convergent, 
conditionally convergent, or divergent.

2.

3. 4.
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11.6 Exercises

1. Homework Hints available at stewartcalculus.com
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15. 16.

17. 18.

19. 20.

21. 22.

23. 24.

25. 26.

27.

28.

29.

30.

31. The terms of a series are defined recursively by the equations

Determine whether converges or diverges.

32. A series is defined by the equations

Determine whether converges or diverges.

33–34 Let be a sequence of positive numbers that converges 
to . Determine whether the given series is absolutely convergent.

33. 34.

35. For which of the following series is the Ratio Test inconclusive
(that is, it fails to give a definite answer)?

(a) (b)

(c) (d)
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36. For which positive integers is the following series convergent?

37. (a) Show that converges for all .
(b) Deduce that for all .

38. Let be a series with positive terms and let .
Suppose that , so converges by the
Ratio Test. As usual, we let be the remainder after terms,
that is,

(a) If is a decreasing sequence and , show, by
summing a geometric series, that

(b) If is an increasing sequence, show that

39. (a) Find the partial sum of the series . Use Exer-
cise 38 to estimate the error in using as an approximation
to the sum of the series.

(b) Find a value of so that is within of the sum.
Use this value of to approximate the sum of the series.

40. Use the sum of the first 10 terms to approximate the sum of 
the series

Use Exercise 38 to estimate the error.

41. Prove the Root Test. [Hint for part (i): Take any number such
that and use the fact that there is an integer such
that whenever .]

42. Around 1910, the Indian mathematician Srinivasa Ramanujan
discovered the formula

William Gosper used this series in 1985 to compute the first
17 million digits of .
(a) Verify that the series is convergent.
(b) How many correct decimal places of do you get if you

use just the first term of the series? What if you use two
terms?

43. Given any series , we define a series whose terms are
all the positive terms of and a series whose terms 
are all the negative terms of . To be specific, we let
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Notice that if , then and , whereas if
, then and .

(a) If is absolutely convergent, show that both of the
series and are convergent.

(b) If is conditionally convergent, show that both of the
series and are divergent.

44. Prove that if is a conditionally convergent series and 
is any real number, then there is a rearrangement of 

whose sum is . [Hints: Use the notation of Exercise 43. 

an
� � 0an

� � anan 
 0
an

� � 0an
� � anan � 0

� an

� an
�� an

�

� an

� an
�� an

�

� an

� anr
r

Take just enough positive terms so that their sum is greater
than . Then add just enough negative terms so that the
cumulative sum is less than . Continue in this manner and use
Theorem 11.2.6.]

45. Suppose the series is conditionally convergent.
(a) Prove that the series is divergent.
(b) Conditional convergence of is not enough to deter-

mine whether is convergent. Show this by giving an
example of a conditionally convergent series such that

converges and an example where diverges.

r an
�

r

� an

� n2an

� an

� nan

� nan � nan

an
�

We now have several ways of testing a series for convergence or divergence; the problem
is to decide which test to use on which series. In this respect, testing series is similar to inte-
grating functions. Again there are no hard and fast rules about which test to apply to a given
series, but you may find the following advice of some use.

It is not wise to apply a list of the tests in a specific order until one finally works. That
would be a waste of time and effort. Instead, as with integration, the main strategy is to
classify the series according to its form.

1. If the series is of the form , it is a -series, which we know to be convergent
if and divergent if .

2. If the series has the form or , it is a geometric series, which converges
if and diverges if . Some preliminary algebraic manipulation may
be required to bring the series into this form.

3. If the series has a form that is similar to a -series or a geometric series, then 
one of the comparison tests should be considered. In particular, if is a rational 
function or an algebraic function of (involving roots of polynomials), then the
series should be compared with a -series. Notice that most of the series in Exer-
cises 11.4 have this form. (The value of should be chosen as in Sec tion 11.4 by
keeping only the highest powers of in the numerator and denominator.) The com-
parison tests apply only to series with positive terms, but if has some negative
terms, then we can apply the Comparison Test to and test for absolute 
convergence.

4. If you can see at a glance that , then the Test for Divergence should
be used.

5. If the series is of the form or , then the Alternating Series
Test is an obvious possibility.

6. Series that involve factorials or other products (including a constant raised to the
power) are often conveniently tested using the Ratio Test. Bear in mind that

as for all -series and therefore all rational or algebraic 
functions of . Thus the Ratio Test should not be used for such series.

7. If is of the form , then the Root Test may be useful.

8. If , where is easily evaluated, then the Integral Test is effective
(assuming the hypotheses of this test are satisfied).

� 1�np p
p 
 1 p � 1

� ar n�1 � ar n

� r � � 1 � r � 	 1

p
an

n
p

p
n

� an

� � an �

lim n l � an � 0

� ��1�n�1bn � ��1�nbn

nth

� an�1�an �l 1 n l � p
n

an �bn �n

an � f �n� x
�

1 f �x� dx

11.7 Strategy for Testing Series
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764 CHAPTER 11 INFINITE SEQUENCES AND SERIES

In the following examples we don’t work out all the details but simply indicate which
tests should be used.

Since as , we should use the Test for Divergence.

Since is an algebraic function of , we compare the given series with a -series. The
comparison series for the Limit Comparison Test is , where

Since the integral is easily evaluated, we use the Integral Test. The Ratio Test
also works.

Since the series is alternating, we use the Alternating Series Test.

Since the series involves , we use the Ratio Test.

Since the series is closely related to the geometric series , we use the Comparison
Test.
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n�1

n � 1

2n � 1

an l 1
2 � 0 n l �

�
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n�1

sn3 � 1

3n3 � 4n2 � 2

an n p
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3n3
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n3�2

3n3
�

1

3n3�2

�
�

n�1
ne�n2

x
�

1 xe�x2

dx

�
�

n�1
��1�n n3

n4 � 1

�
�

k�1

2k

k!

k!

�
�

n�1

1

2 � 3n

� 1�3n

v EXAMPLE 1

EXAMPLE 2

v EXAMPLE 3

EXAMPLE 4

v EXAMPLE 5

EXAMPLE 6

1–38 Test the series for convergence or divergence.

1. 2.

3. 4.

5. 6.

7. 8.

9. 10.
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n � 3n �
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n�1
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n 2n

�
�
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��1�n n
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�
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n2 2n�1
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�
�
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�
�
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�

n�1
n2e�n3

11. 12.

13. 14.

15. 16.

17.

18.
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k�1

1

ksk 2 � 1

�
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3n n2
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�

n�1

sin 2n

1 � 2n

�
�

k�1

2 k�13k�1
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n2 � 1
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�
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n�1
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�
�

n�2

��1�n�1

sn � 1

11.7 Exercises
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19. 20.

21. 22.

23. 24.

25. 26.

27. 28.

�
�

n�1
��1�n cos�1�n2� �

�

k�1

1

2 � sin k

�
�

n�1
n sin�1�n��

�

n�1
tan�1�n�

�
�

n�1

n2 � 1

5n�
�

n�1

n!

e n2

�
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e 1�n

n2�
�

k�1

k ln k

�k � 1�3

�
�

n�1
��1�n ln n

sn
�
�

k�1

s
3 k � 1

k (sk � 1) 29. 30.

31. 32.

33. 34.

35. 36.

37. 38.
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cosh n
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n�1
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n4n�
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5 k

3 k � 4 k

�
�

n�1
� n

n � 1�n2

A power series is a series of the form

where is a variable and the ’s are constants called the coefficients of the series. For each
fixed , the series is a series of constants that we can test for convergence or divergence.
A power series may converge for some values of and diverge for other values of . The
sum of the series is a function

whose domain is the set of all for which the series converges. Notice that resembles a
polynomial. The only difference is that has infinitely many terms.

For instance, if we take for all , the power series becomes the geometric series

which converges when and diverges when . (See Equation 11.2.5.)
More generally, a series of the form

is called a power series in or a power series centered at a or a power series about
a. Notice that in writing out the term corresponding to in Equations 1 and 2 we have
adopted the convention that even when . Notice also that when
all of the terms are 0 for and so the power series always converges when .

For what values of is the series convergent?

SOLUTION We use the Ratio Test. If we let , as usual, denote the nth term of the series,
then . If , we have

1 �
�

n�0
cnxn � c0 � c1 x � c2x 2 � c3x 3 � � � �

x cn

x
x x

f �x� � c0 � c1 x � c2x 2 � � � � � cnxn � � � �

x f
f

1

cn � 1 n

�
�

n�0
xn � 1 � x � x 2 � � � � � xn � � � �

�1 � x � 1 � x � 	 1

2 �
�

n�0
cn�x � a�n � c0 � c1�x � a� � c2�x � a�2 � � � �

�x � a�
n � 0

�x � a�0 � 1 x � a x � a
n 	 1 x � a

x �
�

n�0
n!xn

an

an � n!xn x � 0

2

v EXAMPLE 1

� lim
n l �

�n � 1�� x � � �lim
n l �

� an�1

an
� � lim

n l �
� �n � 1�!xn�1

n!xn �

11.8 Power Series

Trigonometric Series
A power series is a series in which each term is
a power function. A trigonometric series

is a series whose terms are trigonometric 
functions. This type of series is discussed on 
the website

www.stewartcalculus.com

Click on Additional Topics and then on Fourier
Series.

�
�

n�0
�an cos nx � bn sin nx�

Notice that

� �n � 1�n!

�n � 1�! � �n � 1�n�n � 1� � . . . � 3 � 2 � 1
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By the Ratio Test, the series diverges when . Thus the given series converges only
when .

For what values of does the series converge?

SOLUTION Let . Then

By the Ratio Test, the given series is absolutely convergent, and therefore convergent,
when and divergent when . Now

so the series converges when and diverges when or .
The Ratio Test gives no information when so we must consider

and separately. If we put in the series, it becomes , the harmonic
series, which is divergent. If , the series is , which converges by the
Alternating Series Test. Thus the given power series converges for .

We will see that the main use of a power series is that it provides a way to represent
some of the most important functions that arise in mathematics, physics, and chemistry. In
particular, the sum of the power series in the next example is called a Bessel function, after
the German astronomer Friedrich Bessel (1784–1846), and the function given in Exer cise 35
is another example of a Bessel function. In fact, these functions first arose when Bessel
solved Kepler’s equation for describing planetary motion. Since that time, these functions
have been applied in many different physical situations, including the temperature distri-
bution in a circular plate and the shape of a vibrating drumhead.

Find the domain of the Bessel function of order 0 defined by

SOLUTION Let . Then

Thus, by the Ratio Test, the given series converges for all values of . In other words,
the domain of the Bessel function is .
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Notice how closely the computer-generated
model (which involves Bessel functions and
cosine functions) matches the photograph of a
vibrating rubber membrane.
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Recall that the sum of a series is equal to the limit of the sequence of partial sums. So
when we define the Bessel function in Example 3 as the sum of a series we mean that, for
every real number ,

where    

The first few partial sums are

Figure 1 shows the graphs of these partial sums, which are polynomials. They are all approx-
imations to the function , but notice that the approximations become better when more
terms are included. Figure 2 shows a more complete graph of the Bessel function.

For the power series that we have looked at so far, the set of values of for which the
series is convergent has always turned out to be an interval [a finite interval for the geometric
series and the series in Example 2, the infinite interval in Example 3, and a col-
lapsed interval in Example 1]. The following theorem, proved in Appendix F,
says that this is true in general.

Theorem For a given power series there are only three 
possibilities:

(i) The series converges only when .

(ii) The series converges for all .

(iii) There is a positive number such that the series converges if
and diverges if .

The number in case (iii) is called the radius of convergence of the power series. By
convention, the radius of convergence is in case (i) and in case (ii). The inter-
val of convergence of a power series is the interval that consists of all values of for which
the series converges. In case (i) the interval consists of just a single point . In case (ii) the
interval is . In case (iii) note that the inequality can be rewritten as

. When is an endpoint of the interval, that is, , anything
can happen—the series might converge at one or both endpoints or it might diverge at both
endpoints. Thus in case (iii) there are four possibilities for the interval of convergence:

The situation is illustrated in Figure 3.
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768 CHAPTER 11 INFINITE SEQUENCES AND SERIES

We summarize here the radius and interval of convergence for each of the examples
already considered in this section.

In general, the Ratio Test (or sometimes the Root Test) should be used to determine the
radius of convergence . The Ratio and Root Tests always fail when is an endpoint of the
interval of convergence, so the endpoints must be checked with some other test.

Find the radius of convergence and interval of convergence of the series

SOLUTION Let . Then

By the Ratio Test, the given series converges if and diverges if .
Thus it converges if and diverges if . This means that the radius of con-
vergence is .

We know the series converges in the interval , but we must now test for con-
vergence at the endpoints of this interval. If , the series becomes

which diverges. (Use the Integral Test or simply observe that it is a -series with
.) If , the series is

which converges by the Alternating Series Test. Therefore the given power series con-
verges when , so the interval of convergence is .
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Find the radius of convergence and interval of convergence of the series

SOLUTION If , then

Using the Ratio Test, we see that the series converges if and it diverges
if . So it converges if and diverges if . Thus the
radius of convergence is .

The inequality can be written as , so we test the series at
the endpoints and 1. When , the series is

which diverges by the Test for Divergence [ doesn’t converge to 0]. When ,
the series is

which also diverges by the Test for Divergence. Thus the series converges only when
, so the interval of convergence is .
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EXAMPLE 5v

1. What is a power series?

2. (a) What is the radius of convergence of a power series? 
How do you find it?

(b) What is the interval of convergence of a power series? 
How do you find it?

3–28 Find the radius of convergence and interval of convergence
of the series.

3. 4.

5. 6.

7. 8.
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9. 10.

11. 12.

13. 14.

15. 16.

17. 18.

19. 20.

�
�

n�1

��3�n

nsn
x n �

�

n�1

x n

n3n

�
�

n�2
��1�n x n

4n ln n �
�

n�0
��1�n x 2n�1

�2n � 1�!

�
�

n�0

�x � 2�n

n2 � 1 �
�

n�0
��1�n �x � 3� n

2n � 1

�
�

n�1

3n�x � 4�n

sn
�
�

n�1

n

4n �x � 1�n

�
�

n�1

�x � 2�n

n n �
�

n�1

�2x � 1�n

5n
sn

�
�

n�1
��1�n n 2 x n

2 n �
�

n�1

10 nx n

n3

11.8 Exercises

; Graphing calculator or computer required Computer algebra system required 1. Homework Hints available at stewartcalculus.comCAS
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770 CHAPTER 11 INFINITE SEQUENCES AND SERIES

21. ,  

22. ,  

23. 24.

25. 26.

27.

28.

29. If is convergent, does it follow that the following
series are convergent?

(a) (b)

30. Suppose that converges when and diverges
when . What can be said about the convergence or
divergence of the following series?

(a) (b)

(c) (d)

31. If is a positive integer, find the radius of convergence of 
the series

32. Let and be real numbers with . Find a power series
whose interval of convergence is 
(a) (b)
(c) (d)

33. Is it possible to find a power series whose interval of conver-
gence is ? Explain.

; 34. Graph the first several partial sums of the series ,
together with the sum function , on a com-
mon screen. On what interval do these partial sums appear to
be converging to ?

�
�

n�1

�5x � 4�n

n3 �
�

n�2

x 2n

n�ln n�2

�
�

n�1

x n

1 � 3 � 5 � � � � � �2n � 1�

�
�

n�1

n!x n

1 � 3 � 5 � � � � � �2n � 1�

cn 4n��
n�0

�
�

n�0
cn��4�n�

�

n�0
cn��2�n

x � �4��
n�0 cn x n

x � 6

�
�

n�0
cn 8n�

�

n�0
cn

�
�

n�0
��1�ncn 9n�

�

n�0
cn��3�n

k

p � qqp

�p, q��p, q�
p, q�p, q�

0, ��

��
n�0 x nsn�x�

f �x� � 1��1 � x�

�
�

n�1
n!�2x � 1�n �

�

n�1

n 2 x n

2 � 4 � 6 � � � � � �2n�

�
�

n�1

n

bn �x � a�n b 
 0

�
�

n�2

b n

ln n
�x � a�n b 
 0

�
�

n�0

�n!�k

�kn�!
 x n

f �x�

35. The function defined by

is called the Bessel function of order 1.
(a) Find its domain.

; (b) Graph the first several partial sums on a common 
screen.

(c) If your CAS has built-in Bessel functions, graph on the
same screen as the partial sums in part (b) and observe
how the partial sums approximate .

36. The function defined by

is called an Airy function after the English mathematician 
and astronomer Sir George Airy (1801–1892).
(a) Find the domain of the Airy function.

; (b) Graph the first several partial sums on a common screen.
(c) If your CAS has built-in Airy functions, graph on the

same screen as the partial sums in part (b) and observe
how the partial sums approximate .

37. A function is defined by

that is, its coefficients are and for all 
. Find the interval of convergence of the series and find

an explicit formula for .

38. If , where for all , find the
interval of convergence of the series and a formula for .

39. Show that if , where , then the
radius of convergence of the power series is .

40. Suppose that the power series satisfies
for all . Show that if exists, then it is equal
to the radius of convergence of the power series.

41. Suppose the series has radius of convergence 2 and
the series has radius of convergence 3. What is the
radius of convergence of the series ?

42. Suppose that the radius of convergence of the power series
is . What is the radius of convergence of the power

series ?

CAS J1

J1

A

A�x� � 1 �
x 3

2 � 3
�

x 6

2 � 3 � 5 � 6
�

x 9

2 � 3 � 5 � 6 � 8 � 9
� � � �

CAS A

A

f

f �x� � 1 � 2x � x 2 � 2x 3 � x 4 � � � �

c2n � 1 c2n�1 � 2
n 	 0

f �x�

f �x� � ��
n�0 cn x n cn�4 � cn n 	 0

f �x�

lim n l � s
n � cn � � c c � 0

� cn x n R � 1�c

� cn�x � a� n cn � 0
n lim n l � � cn�cn�1 �

� cn x n

� dn x n

� �cn � dn�x n

� cn x n R
� cn x 2n

J1

J1�x� � �
�

n�0

��1�nx 2n�1

n!�n � 1�!22n�1

In this section we learn how to represent certain types of functions as sums of power series
by manipulating geometric series or by differentiating or integrating such a series. You might
wonder why we would ever want to express a known function as a sum of infinitely many
terms. We will see later that this strategy is useful for integrating functions that don’t have
elementary antiderivatives, for solving differential equations, and for approximating func-

11.9 Representations of Functions as Power Series
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SECTION 11.9 REPRESENTATIONS OF FUNCTIONS AS POWER SERIES 771

tions by polynomials. (Scientists do this to simplify the expressions they deal with; computer
scientists do this to represent functions on calculators and computers.)

We start with an equation that we have seen before:

We first encountered this equation in Example 6 in Section 11.2, where we obtained it by
observing that the series is a geometric series with and . But here our point of
view is different. We now regard Equation 1 as expressing the function
as a sum of a power series.

Express as the sum of a power series and find the interval of
convergence.

SOLUTION Replacing by in Equation 1, we have

Because this is a geometric series, it converges when , that is, , or
. Therefore the interval of convergence is . (Of course, we could have

determined the radius of convergence by applying the Ratio Test, but that much work is
unnecessary here.)

Find a power series representation for .

SOLUTION In order to put this function in the form of the left side of Equation 1, we first
factor a 2 from the denominator:

This series converges when , that is, . So the interval of conver-
gence is .

1
1

1 � x
� 1 � x � x 2 � x 3 � � � � � �

�

n�0
xn � x � � 1

a � 1 r � x
f �x� � 1��1 � x�

FIGURE 1

ƒ=
1

1-x
and some partial sums

0 x

y

1_1

f

s™

s∞

sˆ
s¡¡

1��1 � x 2 �

x �x 2

1

1 � x 2 �
1

1 � ��x 2 �
� �

�

n�0
��x 2 �n

� �
�

n�0
��1�nx 2n � 1 � x 2 � x 4 � x 6 � x 8 � � � �

� �x 2 � � 1 x 2 � 1

� x � � 1 ��1, 1�

v EXAMPLE 1

1��x � 2�

1

2 � x
�

1

2�1 �
x

2�
�

1

2�1 � ��
x

2��
�

1

2
 �

�

n�0
��

x

2�n

� �
�

n�0

��1�n

2n�1 x n

� �x�2 � � 1 � x � � 2
��2, 2�

EXAMPLE 2

A geometric illustration of Equation 1 is shown
in Figure 1. Because the sum of a series is the
limit of the sequence of partial sums, we have

where

is the th partial sum. Notice that as 
increases, becomes a better approxi-
mation to for .

1

1 � x
� lim

n l �
sn�x�

�1 � x � 1f �x�
sn�x�

nn

sn�x� � 1 � x � x 2 � � � � � x n
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772 CHAPTER 11 INFINITE SEQUENCES AND SERIES

Find a power series representation of .

SOLUTION Since this function is just times the function in Example 2, all we have to
do is to multiply that series by :

Another way of writing this series is as follows:

As in Example 2, the interval of convergence is .

Differentiation and Integration of Power Series
The sum of a power series is a function whose domain is the inter-
val of convergence of the series. We would like to be able to differentiate and integrate such
functions, and the following theorem (which we won’t prove) says that we can do so by dif-
ferentiating or integrating each individual term in the series, just as we would for a polyno-
mial. This is called term-by-term differentiation and integration.

Theorem If the power series has radius of convergence ,
then the function defined by

is differentiable (and therefore continuous) on the interval and

(i)

(ii) 

The radii of convergence of the power series in Equations (i) and (ii) are both .

NOTE 1 Equations (i) and (ii) in Theorem 2 can be rewritten in the form

(iii)

(iv) 

x 3��x � 2�

x 3

x 3

x 3

x � 2
� x 3 �

1

x � 2
� x 3 �

�

n�0

��1�n

2n�1 xn � �
�

n�0

��1�n

2n�1 xn�3

� 1
2 x 3 �

1
4 x 4 �

1
8 x 5 �

1
16 x 6 � � � �

x 3

x � 2
� �

�

n�3

��1�n�1

2n�2 xn

��2, 2�

f �x� � ��
n�0 cn�x � a�n

EXAMPLE 3

R � 0� cn�x � a�n2
f

f �x� � c0 � c1�x � a� � c2�x � a�2 � � � � � �
�

n�0
cn�x � a�n

�a � R, a � R�

f ��x� � c1 � 2c2�x � a� � 3c3�x � a�2 � � � � � �
�

n�1
ncn�x � a�n�1

y f �x� dx � C � c0�x � a� � c1
�x � a�2

2
� c2

�x � a�3

3
� � � �

� C � �
�

n�0
cn

�x � a�n�1

n � 1

R

d

dx��
�

n�0
cn�x � a�n� � �

�

n�0

d

dx
	cn�x � a�n 


y ��
�

n�0
cn�x � a�n�dx � �

�

n�0
y cn�x � a�n dx

It’s legitimate to move across the 
sigma sign because it doesn’t depend on . 
[Use Theorem 11.2.8(i) with .]c � x 3

n
x 3

In part (ii), is written as
, where , so all

the terms of the series have the same form.
C � C1 � ac0c0�x � a� � C

x c0 dx � c0 x � C1
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SECTION 11.9 REPRESENTATIONS OF FUNCTIONS AS POWER SERIES 773

We know that, for finite sums, the derivative of a sum is the sum of the derivatives and the
integral of a sum is the sum of the integrals. Equations (iii) and (iv) assert that the same is
true for infinite sums, provided we are dealing with power series. (For other types of series
of functions the situation is not as simple; see Exercise 38.)

NOTE 2 Although Theorem 2 says that the radius of convergence remains the same
when a power series is differentiated or integrated, this does not mean that the interval of
convergence remains the same. It may happen that the original series converges at an end-
point, whereas the differentiated series diverges there. (See Exercise 39.)

NOTE 3 The idea of differentiating a power series term by term is the basis for a power-
ful method for solving differential equations. We will discuss this method in Chapter 17.

In Example 3 in Section 11.8 we saw that the Bessel function

is defined for all . Thus, by Theorem 2, is differentiable for all and its derivative is
found by term-by-term differentiation as follows:

Express as a power series by differentiating Equation 1. What
is the radius of convergence?

SOLUTION Differentiating each side of the equation

we get

If we wish, we can replace n by n � 1 and write the answer as

According to Theorem 2, the radius of convergence of the differentiated series is the
same as the radius of convergence of the original series, namely, .

Find a power series representation for and its radius of 
convergence.

SOLUTION We notice that the derivative of this function is . From Equation 1
we have

EXAMPLE 4

J0�x� � �
�

n�0

��1�nx 2n

22n�n!�2

xJ0x

J0��x� � �
�

n�0

d

dx

��1�nx 2n

22n�n!�2 � �
�

n�1

��1�n2nx 2n�1

22n�n!�2

1��1 � x�2EXAMPLE 5v

1

1 � x
� 1 � x � x 2 � x 3 � � � � � �

�

n�0
xn

1

�1 � x�2 � 1 � 2x � 3x 2 � � � � � �
�

n�1
nxn�1

1

�1 � x�2 � �
�

n�0
�n � 1�xn

R � 1

ln�1 � x�EXAMPLE 6

1��1 � x�

� x � � 1
1

1 � x
�

1

1 � ��x�
� 1 � x � x 2 � x 3 � � � �
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Integrating both sides of this equation, we get

To determine the value of we put in this equation and obtain .
Thus and

The radius of convergence is the same as for the original series: .

Find a power series representation for .

SOLUTION We observe that and find the required series by integrating
the power series for found in Example 1.

To find we put and obtain . Therefore

Since the radius of convergence of the series for is 1, the radius of conver-
gence of this series for is also 1.

(a) Evaluate as a power series.

(b) Use part (a) to approximate correct to within .

SOLUTION
(a) The first step is to express the integrand, , as the sum of a power series.
As in Example 1, we start with Equation 1 and replace by :

ln�1 � x� � y
1

1 � x
dx � y �1 � x � x 2 � x 3 � � � �� dx

� x �
x 2

2
�

x 3

3
�

x 4

4
� � � � � C

� �
�

n�1
��1�n�1 xn

n
� C � x � � 1

ln�1 � 0� � Cx � 0C
C � 0

� x � � 1ln�1 � x� � x �
x 2

2
�

x 3

3
�

x 4

4
� � � � � �

�

n�1
��1�n�1 x

n

n

R � 1

f �x� � tan�1xEXAMPLE 7v

f ��x� � 1��1 � x 2 �
1��1 � x 2 �

tan�1x � y
1

1 � x 2 dx � y �1 � x 2 � x 4 � x 6 � � � �� dx

� C � x �
x 3

3
�

x 5

5
�

x 7

7
� � � �

x � 0C C � tan�1 0 � 0

tan�1x � x �
x 3

3
�

x 5

5
�

x 7

7
� � � � � �

�

n�0
��1�n x 2n�1

2n � 1

1��1 � x 2 �
tan�1x

EXAMPLE 8
x 	1��1 � x 7 �
 dx

10�7
x

0.5
0 	1��1 � x 7 �
 dx

1��1 � x 7 �
�x 7x

1

1 � x 7 �
1

1 � ��x 7 �
� �

�

n�0
��x 7 �n

� �
�

n�0
��1�nx 7n � 1 � x 7 � x 14 � � � �

The power series for obtained 
in Example 7 is called Gregory’s series after
the Scottish mathematician James Gregory
(1638–1675), who had anticipated some of
Newton’s discoveries. We have shown that
Gregory’s series is valid when ,
but it turns out (although it isn’t easy to prove)
that it is also valid when . Notice that
when the series becomes

This beautiful result is known as the Leibniz 
formula for .	

	

4
� 1 �

1

3
�

1

5
�

1

7
� � � �

x � 1
x � 
1

�1 � x � 1

tan�1x
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Now we integrate term by term:

This series converges for , that is, for .

(b) In applying the Fundamental Theorem of Calculus, it doesn’t matter which anti-
derivative we use, so let’s use the antiderivative from part (a) with :

This infinite series is the exact value of the definite integral, but since it is an alternating
series, we can approximate the sum using the Alternating Series Estimation Theorem. If
we stop adding after the term with , the error is smaller than the term with :

So we have

y
1

1 � x 7 dx � y �
�

n�0
��1�nx 7n dx � C � �

�

n�0
��1�n x 7n�1

7n � 1

� C � x �
x 8

8
�

x 15

15
�

x 22

22
� � � �

� x � � 1� �x 7 � � 1

C � 0

y
0.5

0

1

1 � x 7 dx � �x �
x 8

8
�

x 15

15
�

x 22

22
� � � ��

0

1�2

�
1

2
�

1

8 � 28 �
1

15 � 215 �
1

22 � 222 � � � � �
��1�n

�7n � 1�27n�1 � � � �

n � 4n � 3

1

29 � 229 � 6.4 � 10�11

y
0.5

0

1

1 � x 7 dx �
1

2
�

1

8 � 28 �
1

15 � 215 �
1

22 � 222 � 0.49951374

This example demonstrates one way in 
which power series representations are useful.
Integrating by hand is incredibly
difficult. Different computer algebra systems
return different forms of the answer, but they
are all extremely complicated. (If you have a
CAS, try it yourself.) The infinite series answer
that we obtain in Exam ple 8(a) is actually much
easier to deal with than the finite answer 
provided by a CAS.

1��1 � x 7 �

1. If the radius of convergence of the power series 
is 10, what is the radius of convergence of the series

? Why?

2. Suppose you know that the series converges for
. What can you say about the following series? Why?

3–10 Find a power series representation for the function and deter-
mine the interval of convergence.

3. 4.

5. 6.

��
n�0 cn x n

��
n�1 ncn x n�1

��
n�0 bn x n

� x � � 2

�
�

n�0

bn

n � 1
 x n�1

f �x� �
1

1 � x
f �x� �

5

1 � 4x 2

f �x� �
2

3 � x
f �x� �

1

x � 10

7. 8.

9. 10.

11–12 Express the function as the sum of a power series by first
using partial fractions. Find the interval of convergence.

11. 12.

13. (a) Use differentiation to find a power series representation for

What is the radius of convergence?

f �x� �
1 � x

1 � x
f �x� �

x 2

a 3 � x 3

f �x� �
3

x 2 � x � 2
f �x� �

x � 2

2x 2 � x � 1

f �x� �
1

�1 � x�2

f �x� �
x

9 � x 2 f �x� �
x

2x 2 � 1

11.9 Exercises

; Graphing calculator or computer required 1. Homework Hints available at stewartcalculus.com
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(b) Use part (a) to find a power series for

(c) Use part (b) to find a power series for

14. (a) Use Equation 1 to find a power series representation for
. What is the radius of convergence?

(b) Use part (a) to find a power series for .
(c) By putting in your result from part (a), express

as the sum of an infinite series.

15–20 Find a power series representation for the function and
determine the radius of convergence.

15. 16.

17. 18.

19. 20.

; 21–24 Find a power series representation for , and graph and
several partial sums on the same screen. What happens as
increases?

21. 22.

23. 24.

25–28 Evaluate the indefinite integral as a power series. What is
the radius of convergence?

25. 26.

27. 28.

29–32 Use a power series to approximate the definite integral to
six decimal places.

29. 30.

31. 32.

f �x� �
x 2

�1 � x�3

f �x� � ln�1 � x�
f �x� � x ln�1 � x�

x � 1
2 ln 2

f �x� � x 2 tan�1�x 3�f �x� � ln�5 � x�

f �x� �  x

2 � x�
3

f �x� �
x

�1 � 4x�2

f �x� �
x 2 � x

�1 � x�3f �x� �
1 � x

�1 � x�2

ff
nsn�x�

f �x� � ln�x 2 � 4�f �x� �
x

x 2 � 16

f �x� � tan�1�2x�f �x� � ln1 � x

1 � x�

y
t

1 � t 8 dt y
t

1 � t 3 dt

y x 2 ln�1 � x� dx y
tan�1x

x
dx

y
0.4

0
ln�1 � x 4� dxy

0.2

0

1

1 � x 5 dx

y
0.3

0

x 2

1 � x 4 dxy
0.1

0
 x arctan�3x� dx

f �x� �
1

�1 � x�3

33. Use the result of Example 7 to compute correct to
five decimal places.

34. Show that the function

is a solution of the differential equation

35. (a) Show that (the Bessel function of order 0 given in 
Example 4) satisfies the differential equation

(b) Evaluate correct to three decimal places.

36. The Bessel function of order 1 is defined by

(a) Show that satisfies the differential equation

(b) Show that .

37. (a) Show that the function

is a solution of the differential equation

(b) Show that .

38. Let . Show that the series
converges for all values of but the series of derivatives

diverges when , an integer. For what values
of does the series converge?

39. Let

Find the intervals of convergence for , , and .

40. (a) Starting with the geometric series , find the sum of
the series

(b) Find the sum of each of the following series.

(i) ,  (ii)

f ��x� � f �x� � 0

J0

x 2J0��x� � xJ0��x� � x 2J0�x� � 0

x
1

0 J0�x� dx

J1�x� � �
�

n�0

��1�n x 2n�1

n! �n � 1�!22n�1

J1

x 2J1��x� � xJ1��x� � �x 2 � 1�J1�x� � 0

J0��x� � �J1�x�

f �x� � �
�

n�0

x n

n!

f ��x� � f �x�

f �x� � e x

fn�x� � �sin nx��n2 � fn�x�
x

� fn��x� x � 2n	 n
x � fn��x�

f �x� � �
�

n�1

x n

n2

f f � f �

��
n�0 x n

�
�

n�1
nx n�1 � x � � 1 

f �x� � �
�

n�0

��1�nx 2n

�2n�!

arctan 0.2

�
�

n�1

n

2n� x � � 1�
�

n�1
nx n
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