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HOW FAST DOES A TANK DRAIN?

Problem 2(b) is best done as a classroom
demonstration or as a group project with three
students in each group: a timekeeper to call
out seconds, a bottle keeper to estimate the
height every 10 seconds, and a record keeper
to record these values.

© Richard Le Borne, Dept. Mathematics,
Tennessee Technological University

If water (or other liquid) drains from atank, we expect that the flow will be greatest at first (when
the water depth is greatest) and will gradually decrease as the water level decreases. But we need
amore precise mathematical description of how the flow decreases in order to answer the kinds
of questions that engineers ask: How long does it take for a tank to drain completely? How much
water should atank hold in order to guarantee a certain minimum water pressure for a sprinkler
system?

Let h(t) and V(t) be the height and volume of water in atank at timet. If water drains through a
hole with area a at the bottom of the tank, then Torricelli’'s Law says that

v

m E = —a\/Zgh

where g is the acceleration due to gravity. So the rate at which water flows from the tank is propor-
tional to the square root of the water height.

1. (a) Suppose thetank iscylindrical with height 6 ft and radius 2 ft and the hole is circular
with radius 1 inch. If we take g = 32 ft/<? show that h satisfies the differential equation

dh 1
= - _i\/ﬁ

dt
(b) Solve this equation to find the height of the water at time t, assuming the tank is full at
timet = 0.
(c) How long will it take for the water to drain completely?

2. Because of the rotation and viscosity of the liquid, the theoretical model given by Equa-
tion 1 isn’'t quite accurate. Instead, the model

dh
(2] gl il

is often used and the constant k (which depends on the physical properties of the liquid) is

determined from data concerning the draining of the tank.

(@) Suppose that aholeisdrilled in the side of a cylindrical bottle and the height h of the
water (above the hole) decreases from 10 cm to 3 cm in 68 seconds. Use Equation 2 to
find an expression for h(t). Evaluate h(t) for t = 10, 20, 30, 40, 50, 60.

(b) Drill a4-mm hole near the bottom of the cylindrical part of a two-liter plastic soft-drink
bottle. Attach a strip of masking tape marked in centimeters from 0 to 10, with O corre-
sponding to the top of the hole. With one finger over the hole, fill the bottle with water
to the 10-cm mark. Then take your finger off the hole and record the values of h(t) for
t = 10, 20, 30, 40, 50, 60 seconds. (You will probably find that it takes 68 seconds for
the level to decrease to h = 3 cm.) Compare your data with the values of h(t) from
part (a). How well did the model predict the actual values?

3. In many parts of the world, the water for sprinkler systemsin large hotels and hospitalsis
supplied by gravity from cylindrical tanks on or near the roofs of the buildings. Suppose
such atank hasradius 10 ft and the diameter of the outlet is 2.5 inches. An engineer hasto
guarantee that the water pressure will be at least 2160 Ib/ft? for aperiod of 10 minutes.
(When afire happens, the electrical system might fail and it could take up to 10 minutes for
the emergency generator and fire pump to be activated.) What height should the engineer
specify for the tank in order to make such a guarantee? (Use the fact that the water pressure
at adepth of d feetisP = 62.5d. See Section 8.3.)



628 CHAPTER 9 DIFFERENTIAL EQUATIONS

4. Not all water tanks are shaped like cylinders. Suppose a tank has cross-sectional area A(h) at
height h. Then the volume of water up to height hiis V = fg A(u) du and so the Fundamental
Theorem of Calculus gives dV/dh = A(h). It follows that

dv dV dh dh
ot o AW

and so Torricelli’s Law becomes

A(h) % = —a./2gh

(a) Suppose the tank has the shape of a sphere with radius 2 m and is initially half full of
water. If the radius of the circular hole is 1 cm and we take g = 10 m/s?, show that h
satisfies the differential equation

(4h — h?) %: —0.0001+/20h

(b) How long will it take for the water to drain completely?

WHICH IS FASTER, GOING UP OR COMING DOWN?

In modeling force due to air resistance,

various functions have been used, depending
on the physical characteristics and speed of the
ball. Here we use a linear model, —pw, but a
quadratic model (—pv? on the way up and p»?
on the way down) is another possibility for
higher speeds (see Exercise 50 in Section 9.3).
For a golf ball, experiments have shown that a
good model is —pw** gaing up and p| v |**
coming down. But no matter which force func-
tion —f (v) is used [where f (v) > 0 forv > 0
and f(v) < 0 for v < 0], the answer to the
question remains the same. See F. Brauer,
“What Goes Up Must Come Down, Eventually,”
Amer. Math. Monthly 108 (2001), pp. 437—-440.

Suppose you throw a ball into the air. Do you think it takes longer to reach its maximum height
or to fall back to earth from its maximum height? We will solve the problem in this project but,
before getting started, think about that situation and make a guess based on your physical
intuition.

1. Aball with mass m is projected vertically upward from the earth’s surface with a positive
initial velocity »,. We assume the forces acting on the ball are the force of gravity and a
retarding force of air resistance with direction opposite to the direction of motion and with
magnitude p| »(t) |, where p is a positive constant and »(t) is the velocity of the ball at time t.
In both the ascent and the descent, the total force acting on the ball is —pv — mg. [During
ascent, o(t) is positive and the resistance acts downward; during descent, »(t) is negative and
the resistance acts upward.] So, by Newton’s Second Law, the equation of motion is

mo' = —pv — myg

Solve this differential equation to show that the velocity is

o) = ( . mg>epum _mg
p p

2. Show that the height of the ball, until it hits the ground, is

mg \ m 7 mgt
(t) = <1) +)(1 _ geymy _ G0
y ‘T p)op p

Graphing calculator or computer required
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3. Lett; be the time that the ball takes to reach its maximum height. Show that

L= m In<mg b p110>
p mg

Find this time for a ball with mass 1 kg and initial velocity 20 m/s. Assume the air
resistance is 3 of the speed.

4, Let t, be the time at which the ball falls back to earth. For the particular ball in Problem 3,
estimate t, by using a graph of the height function y(t). Which is faster, going up or com-
ing down?

5. In general, it’s not easy to find t, because it’s impossible to solve the equation y(t) = 0
explicitly. We can, however, use an indirect method to determine whether ascent or
descent is faster: we determine whether y(2t;) is positive or negative. Show that

m?g 1
y(2t) = 02 (x < 2Inx>

where x = eP*™ Then show that x > 1 and the function

1
fx)=x———21
(x) = x < nx

is increasing for x > 1. Use this result to decide whether y(2t;) is positive or negative.
What can you conclude? Is ascent or descent faster?

m Models for Population Growth

In this section we investigate differential equations that are used to model population
growth: the law of natural growth, the logistic equation, and several others.

I The Law of Natural Growth

One of the models for population growth that we considered in Section 9.1 was based
on the assumption that the population grows at a rate proportional to the size of the
population:

dP

m kP
Is that a reasonable assumption? Suppose we have a population (of bacteria, for instance)
with size P = 1000 and at a certain time it is growing at a rate of P’ = 300 bacteria per
hour. Now let’s take another 1000 bacteria of the same type and put them with the first pop-
ulation. Each half of the combined population was previously growing at a rate of 300 bac-
teria per hour. We would expect the total population of 2000 to increase at a rate of
600 bacteria per hour initially (provided there’s enough room and nutrition). So if we double
the size, we double the growth rate. It seems reasonable that the growth rate should be pro-
portional to the size.

In general, if P(t) is the value of a quantity y at time t and if the rate of change of P with

respect to t is proportional to its size P(t) at any time, then

L
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wherek isaconstant. Equation 1issometimescalled the law of natural growth. If k is pos-
itive, then the population increases; if k is negative, it decreases.

Because Equation 1 is a separable differential equation, we can solve it by the methods
of Section 9.3:

%?szm
In|P| =kt + C
|P| = e**¢ = g%
P = Aek

where A (= +e€ or 0) is an arbitrary constant. To see the significance of the constant A,
we observe that

P(0) = Ae¥'° = A

Therefore A istheinitial value of the function.

[2] The solution of the initial-value problem

Examples and exercises on the use of [2] are dpP o o
given in Section 6.5. dt = kP P(O) = Po

is P(t) = Poekt

Another way of writing Equation 1is

1dp_
P dt

which says that the relative growth rate (the growth rate divided by the population size)
is constant. Then [2| says that a population with constant relative growth rate must grow
exponentially.

We can account for emigration (or “ harvesting”) from a popul ation by modifying Equa-
tion 1: If the rate of emigration is a constant m, then the rate of change of the population
ismodeled by the differential equation

dpP
@ E—kP—m

See Exercise 15 for the solution and consequences of Equation 3.

I The Logistic Model

As we discussed in Section 9.1, a population often increases exponentially in its early
stages but levels off eventually and approaches its carrying capacity because of limited
resources. If P(t) isthe size of the population at time t, we assume that

d—P% kP if Pissmall
dt



FIGURE 1
Direction field for the logistic
equation in Example 1
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This saysthat the growth rateisinitially close to being proportional to size. In other words,
the relative growth rate is almost constant when the population is small. But we also want
to reflect the fact that the relative growth rate decreases as the population P increases and
becomes negativeif P ever exceedsitscarrying capacity M, the maximum population that
the environment is capable of sustaining in the long run. The simplest expression for the
relative growth rate that incorporates these assumptionsis

1dpP P

Pt k<1 B V)
Multiplying by P, we obtain the model for population growth known asthe logistic differ-
ential equation:

dP P
[4] e kp<l - v)

Notice from Equation 4 that if P is small compared with M, then P/M is close to 0 and so
dP/dt = kP. However, if P — M (the population approaches its carrying capacity), then
P/M — 1, so dP/dt — 0. We can deduce information about whether solutions increase or
decrease directly from Equation 4. If the population P lies between 0 and M, then the right
side of the equation is positive, so dP/dt > 0 and the population increases. But if the pop-
ulation exceeds the carrying capacity (P > M), then 1 — P/M is negative, so dP/dt < 0
and the popul ation decreases.

Let’s start our more detailed analysis of the logistic differential equation by looking at a
direction field.

I [E7XTIEN Draw adirection field for the logistic equation with k = 0.08 and carry-
ing capacity M = 1000. What can you deduce about the solutions?

SOLUTION In this case the logistic differential equation is

dP P
o 0.08P<1 - —1000>

A direction field for this equation is shown in Figure 1. We show only the first quadrant
because negative populations aren’t meaningful and we are interested only in what hap-
pens after t = 0.
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The logistic equation is autonomous (dP/dt depends only on P, not on t), so the
slopes are the same along any horizonta line. As expected, the slopes are positive for
0 < P < 1000 and negative for P > 1000.

The slopes are small when P is close to 0 or 1000 (the carrying capacity). Notice that
the solutions move away from the equilibrium solution P = 0 and move toward the
equilibrium solution P = 1000.

In Figure 2 we use the direction field to sketch solution curves with initial populations
P(0) = 100, P(0) = 400, and P(0) = 1300. Notice that solution curves that start below
P = 1000 are increasing and those that start above P = 1000 are decreasing. The slopes
are greatest when P = 500 and therefore the solution curves that start below P = 1000
have inflection points when P = 500. In fact we can prove that al solution curves that
start below P = 500 have an inflection point when P is exactly 500. (See Exercise 11.)
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Solution curves for the logistic 0 20 40 60 80 !
equation in Example 1 [ |

Thelogistic equation is separable and so we can solve it explicitly using the method
of Section 9.3. Since
P (- P
dt M

we have

dP
5] fP(l—P/M)szdt

To evaluate the integral on the left side, we write

1 B M
P(1L-P/M) P(M—P)

Using partia fractions (see Section 7.4), we get

M
P(M — P)

1
M—P

1
==+
P



SECTION 9.4 MODELS FOR POPULATION GROWTH

This enables us to rewrite Equation 5:

j<%+MfP>dP=jkdt

In[P|—=In|[M—-P|=kt+C

M- P
In =—-kt-C
P
M-P —kt—C —Cp—kt
=e =e %
P
M- P
= Ae ™
[¢] p
where A = +e~°. Solving Equation 6 for P, we get
M—l—Ae’kt > P__ 1
P M 1+ Ae™™
1+ Ae™

633

We find the value of A by puttingt = 0 in Equation 6. If t = 0, then P = P, (the initia

population), so

M-P
———— = A=A
Po
Thus the solution to the logistic equation is
M M — Po
7 Pt) = ——— where A =
® 1+ Ae ™ 0

Using the expression for P(t) in Equation 7, we see that
tIim Pit) =M
which isto be expected.

[E7ZTF] Write the solution of the initial-value problem

dP p
o 0.08P<1 - M) P(0) = 100

and use it to find the population sizes P(40) and P(80). At what time does the population

reach 900?

SOLUTION The differential equation is alogistic equation with k = 0.08, carrying
capacity M = 1000, and initial population P, = 100. So Equation 7 gives the
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Compare the solution curve in Figure 3 with
the lowest solution curve we drew from the
direction field in Figure 2.

1000

~ 1000
- 1+ 9670.081

0 ‘ ‘ ‘ 780

FIGURE 3

population at time t as

1000 1000 — 100
Pt) = ———& here A= ——F—— =
O = peoom  Where 100 ’
1000
Thus P(t) = 11 9o 00w
So the population sizes when t = 40 and 80 are
1000 1000
P(40) = T 9072 = 731.6 P(80) = 1T 005 = 985.3

The population reaches 900 when

1000

1+ o0

Solving this equation for t, we get

_o08t __ 10
1+ 9e 0% =¥

008t _ 1
€ = 81

—0.08t=1Ing = —In81

_In81
0.08

~ 54.9

So the population reaches 900 when t is approximately 55. As a check on our work, we
graph the population curve in Figure 3 and observe where it intersects the line P = 900.
The cursor indicates that t = 55. [ |

I Comparison of the Natural Growth and Logistic Models

In the 1930s the biologist G. F. Gause conducted an experiment with the protozoan Para-
mecium and used a logistic equation to model his data. The table gives his daily count of the
population of protozoa. He estimated the initial relative growth rate to be 0.7944 and the car-
rying capacity to be 64.

t (days) 0 1 2

P (observed) 2 3 22

16 39 52 54 47 50 76 69 51 57 70 53 59 57

I [E7YTEE] Find the exponential and logistic models for Gause’s data. Compare the
predicted values with the observed values and comment on the fit.

SOLUTION Given the relative growth rate k = 0.7944 and the initial population P, = 2,
the exponential model is

P(t) — Poekt — 260.7944t
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Gause used the same value of k for his logistic model. [This is reasonable because
Po = 2 is small compared with the carrying capacity (M = 64). The equation

2
—k(1-—= )=k
L)

shows that the value of k for the logistic model is very close to the value for the expo-
nential model.]
Then the solution of the logistic equation in Equation 7 gives

1 dP
Po dt

M 64
PO T e ™~ T4 e oo
M-—P, 64-2
here A= = =31
whner Py 2
64
So P(t) =

1 + 31e—0A7944t

We use these equations to calculate the predicted values (rounded to the nearest integer)
and compare them in the following table.

t (days) 0 1] 2 | 3 4 5 6 | 7 8 9 | 10 | 11 | 12 | 13 | 14 | 15 | 16
P (observed) 2 3 22 | 16 39 52 54 | 47 50 76 | 69 51 57 70 53 | 59 57
P (logistic model) 2 | 4 9 17 28 40 51 | 57 61 | 62 | 63 | 64 | 64 | 64 | 64 | 64 | 64
P (exponential model) 2 | 4] 10 | 22 48 | 106
We notice from the table and from the graph in Figure 4 that for the first three or four
days the exponential model gives results comparable to those of the more sophisticated
logistic model. For t = 5, however, the exponential model is hopelessly inaccurate, but
the logistic model fits the observations reasonably well.
P
P = 007944
60 +
401
_ 64
204+ pP= 1+ 316_0‘79441
FIGURE 4 ‘ ‘ ‘ ‘
The exponential and logistic 0 4 8 12 16 !
models for the Paramecium data [ |

Many countries that formerly experienced exponential growth are now finding that their
rates of population growth are declining and the logistic model provides a better model.
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t B(t) t B(t)
1980 9,847 1992 | 10,036
1982 9,856 1994 | 10,109
1984 9,855 1996 | 10,152
1986 9,862 1998 | 10,175
1988 9,884 2000 | 10,186
1990 9,962

FIGURE 5

Logistic model for

the population of Belgium

The table in the margin shows midyear values of B(t), the population of Belgium, in thou-
sands, at time t, from 1980 to 2000. Figure 5 shows these data points together with a shift-
ed logistic function obtained from a calculator with the ability to fit a logistic function to
these points by regression. We see that the logistic model provides a very good fit.

P
10,100
10,000
9,900
I 350
9,800+ P=9840 + o= S
O] 1980 1984 1988 1992 1996 2000 !

I Other Models for Population Growth

The Law of Natural Growth and the logistic differential equation are not the only equa-
tions that have been proposed to model population growth. In Exercise 20 we look at the
Gompertz growth function and in Exercises 21 and 22 we investigate seasonal-growth
models.

Two of the other models are modifications of the logistic model. The differential

equation
dP P
—=kP|{1—-—] —
dt < M) ¢

has been used to model populations that are subject to harvesting of one sort or another.
(Think of a population of fish being caught at a constant rate.) This equation is explored
in Exercises 17 and 18.

For some species there is a minimum population level m below which the species tends
to become extinct. (Adults may not be able to find suitable mates.) Such populations have
been modeled by the differential equation

dpP P m
o k"<1 _ﬁ><1 _F>

where the extra factor, 1 — m/P, takes into account the consequences of a sparse popula-
tion (see Exercise 19).
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1.

Graphing calculator or computer required
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Suppose that a population develops according to the logistic

equation
dP
—— = 0.05P — 0.0005P?
dt
where t is measured in weeks.
(a) What is the carrying capacity? What is the value of k?
(b) A direction field for this equation is shown. Where are
the slopes close to 0? Where are they largest? Which
solutions are increasing? Which solutions are decreasing?

P
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NN N N N N N N N N NN
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— = — — — — — — - — - —
0+ — — — ——— — — — — — —
— e — — —
e e — —
50 — e e — — —
— e e — — —
////////////
aleliolirslioioioiiviioiiotiaiiv
0 20 40 60 !

(c) Use the direction field to sketch solutions for initial pop-
ulations of 20, 40, 60, 80, 120, and 140. What do these
solutions have in common? How do they differ? Which
solutions have inflection points? At what population
levels do they occur?

(d) What are the equilibrium solutions? How are the other
solutions related to these solutions?

. Suppose that a population grows according to a logistic

model with carrying capacity 6000 and k = 0.0015 per year.

(a) Write the logistic differential equation for these data.

(b) Draw a direction field (either by hand or with a computer
algebra system). What does it tell you about the solution
curves?

(c) Use the direction field to sketch the solution curves for
initial populations of 1000, 2000, 4000, and 8000. What
can you say about the concavity of these curves? What is
the significance of the inflection points?

(d) Program a calculator or computer to use Euler’s method
with step size h = 1 to estimate the population after
50 years if the initial population is 1000.

(e) If the initial population is 1000, write a formula for the
population after t years. Use it to find the population after
50 years and compare with your estimate in part (d).

(f) Graph the solution in part (¢) and compare with the solu-
tion curve you sketched in part (c).

. The Pacific halibut fishery has been modeled by the differen-

tial equation

dy _ Y
dt ky<l M)

where y(t) is the biomass (the total mass of the members of
the population) in kilograms at time t (measured in years),
the carrying capacity is estimated to be M = 8 X 107 kg, and
k = 0.71 per year.

(@) If y(0) = 2 X 10" kg, find the biomass a year later.

(b) How long will it take for the biomass to reach 4 X 107 kg?

. Suppose a population P(t) satisfies

P _ 04p — 0.001P2
dt

P(0) = 50

where t is measured in years.

(a) What is the carrying capacity?

(b) What is P’(0)?

(c) When will the population reach 50% of the carrying
capacity?

. Suppose a population grows according to a logistic model

with initial population 1000 and carrying capacity 10,000. If
the population grows to 2500 after one year, what will the
population be after another three years?

. The table gives the number of yeast cells in a new laboratory

culture.
Time (hours) Yeast cells Time (hours) Yeast cells
0 18 10 509
2 39 12 597
4 80 14 640
6 171 16 664
8 336 18 672

Computer algebra system required

(a) Plot the data and use the plot to estimate the carrying
capacity for the yeast population.

(b) Use the data to estimate the initial relative growth rate.

(c) Find both an exponential model and a logistic model for
these data.

(d) Compare the predicted values with the observed values,
both in a table and with graphs. Comment on how well
your models fit the data.

(e) Use your logistic model to estimate the number of yeast
cells after 7 hours.

. The population of the world was about 5.3 billion in 1990.

Birth rates in the 1990s ranged from 35 to 40 million per

year and death rates ranged from 15 to 20 million per year.

Let’s assume that the carrying capacity for world population

is 100 billion.

(a) Write the logistic differential equation for these data.
(Because the initial population is small compared to the

1. Homework Hints available at stewartcalculus.com
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carrying capacity, you can take k to be an estimate of
the initial relative growth rate.)

(b) Use the logistic model to estimate the world population
in the year 2000 and compare with the actual population
of 6.1 billion.

(c) Use the logistic model to predict the world population in
the years 2100 and 2500.

(d) What are your predictions if the carrying capacity is
50 billion?

. () Make a guess as to the carrying capacity for the US

population. Use it and the fact that the population was
250 million in 1990 to formulate a logistic model for the
US population.

(b) Determine the value of k in your model by using the
fact that the population in 2000 was 275 million.

(c) Use your model to predict the US population in the years
2100 and 2200.

(d) Use your model to predict the year in which the US
population will exceed 350 million.

. One model for the spread of a rumor is that the rate of spread

is proportional to the product of the fraction y of the popula-

tion who have heard the rumor and the fraction who have not

heard the rumor.

(a) Write a differential equation that is satisfied by y.

(b) Solve the differential equation.

(c) A small town has 1000 inhabitants. At 8 am, 80 people
have heard a rumor. By noon half the town has heard it.
At what time will 90% of the population have heard the
rumor?

Biologists stocked a lake with 400 fish and estimated the
carrying capacity (the maximal population for the fish of that
species in that lake) to be 10,000. The number of fish tripled
in the first year.

(a) Assuming that the size of the fish population satisfies the
logistic equation, find an expression for the size of the
population after t years.

(b) How long will it take for the population to increase
to 50007

(a) Show that if P satisfies the logistic equation [4], then

2
CLIERLATINE +
dt M M

(b) Deduce that a population grows fastest when it reaches
half its carrying capacity.

For a fixed value of M (say M = 10), the family of logistic
functions given by Equation 7 depends on the initial value

P, and the proportionality constant k. Graph several members
of this family. How does the graph change when P, varies?
How does it change when k varies?

13. The table gives the midyear population of Japan, in

thousands, from 1960 to 2005.

Year Population Year Population
1960 94,092 1985 120,754
1965 98,883 1990 123,537
1970 104,345 1995 125,341
1975 111,573 2000 126,700
1980 116,807 2005 127,417

Use a graphing calculator to fit both an exponential function
and a logistic function to these data. Graph the data points
and both functions, and comment on the accuracy of the
models. [Hint: Subtract 94,000 from each of the population
figures. Then, after obtaining a model from your calculator,
add 94,000 to get your final model. It might be helpful to
choose t = 0 to correspond to 1960 or 1980.]

. The table gives the midyear population of Spain, in thou-

sands, from 1955 to 2000.

Year Population Year Population
1955 29,319 1980 37,488
1960 30,641 1985 38,535
1965 32,085 1990 39,351
1970 33,876 1995 39,750
1975 35,564 2000 40,016

Use a graphing calculator to fit both an exponential function
and a logistic function to these data. Graph the data points
and both functions, and comment on the accuracy of the
models. [Hint: Subtract 29,000 from each of the population
figures. Then, after obtaining a model from your calculator,
add 29,000 to get your final model. It might be helpful to
choose t = 0 to correspond to 1955 or 1975.]

. Consider a population P = P(t) with constant relative birth

and death rates « and B, respectively, and a constant emigra-

tion rate m, where «, 8, and m are positive constants. Assume
that « > B. Then the rate of change of the population at time
t is modeled by the differential equation

Cj—P:kP—m

pm wherek = a — B

(a) Find the solution of this equation that satisfies the initial
condition P(0) = P,.

(b) What condition on m will lead to an exponential expan-
sion of the population?

(¢) What condition on m will result in a constant population?
A population decline?

(d) In 1847, the population of Ireland was about 8 million
and the difference between the relative birth and death
rates was 1.6% of the population. Because of the potato
famine in the 1840s and 1850s, about 210,000 inhabitants
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per year emigrated from Ireland. Was the population
expanding or declining at that time?

Let ¢ be a positive number. A differential equation of the
form

dy
L =k 1+c
a

where Kk is a positive constant, is called a doomsday equation

because the exponent in the expression ky'* is larger than

the exponent 1 for natural growth.

(a) Determine the solution that satisfies the initial condition
y(0) = Yo.

(b) Show that there is a finite time t = T (doomsday) such
that lim_7-y(t) = .

(c) An especially prolific breed of rabbits has the growth
term My, If 2 such rabbits breed initially and the war-
ren has 16 rabbits after three months, then when is
doomsday?

Let’s modify the logistic differential equation of Example 1
as follows:

dP P

(a) Suppose P(t) represents a fish population at time t,
where t is measured in weeks. Explain the meaning of the
final term in the equation (—15).

(b) Draw a direction field for this differential equation.

(c) What are the equilibrium solutions?

(d) Use the direction field to sketch several solution curves.
Describe what happens to the fish population for various
initial populations.

(e) Solve this differential equation explicitly, either by using
partial fractions or with a computer algebra system. Use
the initial populations 200 and 300. Graph the solutions
and compare with your sketches in part (d).

Consider the differential equation

dP P
E = 008P<1 - 1000> —C

as a model for a fish population, where t is measured in

weeks and c is a constant.

(@) Use a CAS to draw direction fields for various values
of c.

(b) From your direction fields in part (a), determine the
values of ¢ for which there is at least one equilibrium
solution. For what values of ¢ does the fish population
always die out?

(c) Use the differential equation to prove what you discov-
ered graphically in part (b).

(d) What would you recommend for a limit to the weekly
catch of this fish population?
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19. There is considerable evidence to support the theory that for

20.

21.

some species there is a minimum population m such that the
species will become extinct if the size of the population falls
below m. This condition can be incorporated into the logistic
equation by introducing the factor (1 — m/P). Thus the mod-
ified logistic model is given by the differential equation

dP P m
dt‘k"<l‘M><l‘P)

(a) Use the differential equation to show that any solution is
increasing if m < P < M and decreasing if 0 < P < m.

(b) For the case where k = 0.08, M = 1000, and m = 200,
draw a direction field and use it to sketch several solu-
tion curves. Describe what happens to the population for
various initial populations. What are the equilibrium
solutions?

(c) Solve the differential equation explicitly, either by using
partial fractions or with a computer algebra system. Use
the initial population Py.

(d) Use the solution in part (c) to show that if Py < m, then
the species will become extinct. [Hint: Show that the
numerator in your expression for P(t) is 0 for some
value of t.]

Another model for a growth function for a limited popu-
lation is given by the Gompertz function, which is a
solution of the differential equation

dP M
ot c In< P )P

where c is a constant and M is the carrying capacity.

(a) Solve this differential equation.

(b) Compute lim_... P(t).

(c) Graph the Gompertz growth function for M = 1000,

P, = 100, and ¢ = 0.05, and compare it with the logistic
function in Example 2. What are the similarities? What
are the differences?

(d) We know from Exercise 11 that the logistic function
grows fastest when P = M/2. Use the Gompertz differ-
ential equation to show that the Gompertz function
grows fastest when P = M/e.

In a seasonal-growth model, a periodic function of time is
introduced to account for seasonal variations in the rate of
growth. Such variations could, for example, be caused by
seasonal changes in the availability of food.

(a) Find the solution of the seasonal-growth model

dP
FTa kP cos(rt — ¢)

where k, r, and ¢ are positive constants.

(b) By graphing the solution for several values of k, r, and
¢, explain how the values of k, r, and ¢ affect the solu-
tion. What can you say about lim,_... P(t)?
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22. Suppose we alter the differential equation in Exercise 21 as

follows:

dP 5

it kP cos*(rt — ¢)

(a) Solve this differential equation with the help of a table of
integrals or a CAS.

(b) Graph the solution for several values of k, r, and ¢. How
do the values of k, r, and ¢ affect the solution? What can
you say about lim,_... P(t) in this case?

23. Graphs of logistic functions (Figures 2 and 3) look suspi-

ciously similar to the graph of the hyperbolic tangent
function (Figure 3 in Section 6.7). Explain the similarity by
showing that the logistic function given by Equation 7 can be
written as

P(t) = :M[1 + tanh(ik(t — ©))]

where ¢ = (In A)/k. Thus the logistic function is really just
a shifted hyperbolic tangent.

m Linear Equations

A first-order linear differential equation is one that can be put into the form

7] L+ Pogy = Q)

where P and Q are continuous functions on a given interval. This type of equation occurs
frequently in various sciences, as we will see.

An example of a linear equation is xy’ + y = 2x because, for x # 0, it can be written
in the form

[2] y’+%y=2

Notice that this differential equation is not separable because it’s impossible to factor the
expression for y’ as a function of x times a function of y. But we can still solve the equa-
tion by noticing, by the Product Rule, that

Xy’ +y=(xy)
and so we can rewrite the equation as
(xy)" = 2x

If we now integrate both sides of this equation, we get

—x+ <
y X

xy=x2+C or
If we had been given the differential equation in the form of Equation 2, we would have
had to take the preliminary step of multiplying each side of the equation by x.

It turns out that every first-order linear differential equation can be solved in a similar
fashion by multiplying both sides of Equation 1 by a suitable function 1(x) called an
integrating factor. We try to find | so that the left side of Equation 1, when multiplied by
1(x), becomes the derivative of the product I(x)y:

3] 10(y" + POyY) = (1)’
If we can find such a function I, then Equation 1 becomes

(10y)" = 10 Q)
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Integrating both sides, we would have

1(X)y = j 1(X)Q(x) dx + C

so the solution would be

(4] y(x) = % [j 1) Q(x) dx + c]
To find such an I, we expand Equation 3 and cancel terms:
1)y’ + 10 P(X)y = (1:)y)" = I'(¥)y + 1(x)y’
() P(x) = I'(x)

This is a separable differential equation for I, which we solve as follows:

dl

1= j P(x) dx

In|||=fP(x)dx

| = Ae [ P(x) dx

where A = *=e®. We are looking for a particular integrating factor, not the most general
one, so we take A = 1 and use

@ |(X) — e.j' P(x) dx

Thus a formula for the general solution to Equation 1 is provided by Equation 4, where |
is given by Equation 5. Instead of memorizing this formula, however, we just remember
the form of the integrating factor.

To solve the linear differential equation y” + P(x)y = Q(x), multiply both sides by
the integrating factor 1(x) = e/ "% and integrate both sides.

. . . d
7 IEXYETEN Solve the differential equation % + 3x%y = 6x2

SOLUTION The given equation is linear since it has the form of Equation 1 with
P(x) = 3x*and Q(x) = 6x2 An integrating factor is

3

|(X) — e‘[3x2dx = gX

Multiplying both sides of the differential equation by e*’, we get

3dy 3 3
X == + 3x%*y = 6x%*
i X%y = 6x

d 3 3
X _62x
or —dx(ey)— X‘e
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Figure 1 shows the graphs of several members of ~ Integrating both sides, we have
the family of solutions in Example 1. Notice that

they all approach 2 as x — . eXy = j 6x%  dx = 2% + C
6
c=2 y=2+Ce™ -
c=1
€= 01 I [E7XTEITFA Find the solution of the initial-value problem
1S ‘ 18 X%y +xy=1 X >0 y(1) =2
Cc=-2
=3 SOLUTION We must first divide both sides by the coefficient of y’ to put the differential
equation into standard form:
FIGURE 1
1 1
"ty =— x>0
6] y Sy =;

The integrating factor is
I(X) = ef(l/x)dx — elnx =X

Multiplication of Equation 6 by x gives

, 1 , 1
Xy +y=; or (xy)=;

1
Then xy=f?dx=lnx+C
The solution of the initial-value problem in
Example 2 is shown in Figure 2. Inx + C
and so =—
5 X
(1,2) Since y(1) = 2, we have
0 4 - Inl1+C _c
1
Therefore the solution to the initial-value problem is
-5
Inx + 2
FIGURE 2 -

[E7EEE] Solvey’ + 2xy = 1.

SOLUTION The given equation is in the standard form for a linear equation. Multiplying
by the integrating factor

e.|'2xd>< — ex2
X2\, x? x?

we get ey’ + 2xe¥y =e
or (ey) = e~

Therefore eXy = j e’ dx + C



Even though the solutions of the differential
equation in Example 3 are expressed in terms of
an integral, they can still be graphed by a com-
puter algebra system (Figure 3).

2.5
' R
c=2
-2.5 2.5
c=-2
A J
-2.5
FIGURE 3
R

® L

O
switch

FIGURE 4

The differential equation in Example 4 is both
linear and separable, so an alternative method is
to solve it as a separable equation (Example 4 in
Section 9.3). If we replace the battery by a gen-
erator, however, we get an equation that is lin-
ear but not separable (Example 5).
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Recall from Section 7.5 that | eX’ dx can’t be expressed in terms of elementary functions.

Nonetheless, it’s a perfectly good function and we can leave the answer as
y=e* f eXdx + Ce™

Another way of writing the solution is
y=e>* fox etdt + Ce ™

(Any number can be chosen for the lower limit of integration.)

B Application to Electric Circuits

In Section 9.2 we considered the simple electric circuit shown in Figure 4: An electro-
motive force (usually a battery or generator) produces a voltage of E(t) volts (V) and a
current of 1(t) amperes (A) at time t The circuit also contains a resistor with a resistance
of R ohms () and an inductor with an inductance of L henries (H).

Ohm’s Law gives the drop in voltage due to the resistor as RI. The voltage drop due to
the inductor is L(dl/dt). One of Kirchhoff’s laws says that the sum of the voltage drops is
equal to the supplied voltage E(t). Thus we have

[7] L%%+M=Em

which is a first-order linear differential equation. The solution gives the current | at time t.

V| Suppose that in the simple circuit of Figure 4 the resistance is 12 Q) and
the inductance is 4 H. If a battery gives a constant voltage of 60 V and the switch is
closed when t = 0 so the current starts with 1(0) = 0, find (a) 1(t), (b) the current after
1's, and (c) the limiting value of the current.

SOLUTION
(d) IfweputL =4, R =12, and E(t) = 60 in Equation 7, we obtain the initial-value
problem

dl
4— + 121 = 60 1(0)=0
dt ©
or ﬂ+3I=15 1(00=0
dt

Multiplying by the integrating factor e/ 3% = e we get

dl
ema + 3e% = 15e®

d 3t
il 1) = 15e3t
pm (e°) 5e

ew=f5ﬁm=%“+c

I(t) =5 + Ce ™
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Figure 5 shows how the current in Example 4 Since 1(0) = 0,wehave5+ C=0,s0C = —5and
approaches its limiting value.
I(t) =51 —¢e®)
6
[ y=5 (b) After 1 second the current is
1(1) =51 —-e3 =475A
(c) The limiting value of the current is given by
55 liml(t) =1lim51—e3¥)=5-5lime¥®=5-0=5 [

0 : t—o t—ow t—oo
FIGURE 5

[E7EET Suppose that the resistance and inductance remain asin Example 4
but, instead of the battery, we use a generator that produces a variable voltage of
E(t) = 60sin 30t volts. Find I(t).

SOLUTION Thistimethe differential equation becomes

4%4— 121 = 60sin 30t or %+3I = 15sin 30t

The same integrating factor e* gives

d dl
— (e3) = e®*— + 3e® = 15e*sin 30t
dt S dt
Figure 6 shows the graph of the current ) )
when the battery is replaced by a generator. Using Formula 98 in the Table of Integrals, we have
2 . e .
e = j 15¢*'sin 30t dt = 15 -~ (3sin 30t ~ 30c0s 30Y) + C
0 a5 | = 553 (sin 30t — 10cos 30t) + Ce ™™
Since I(0) = 0, we get
50
-+ C=0
) 101
FIGURE 6 S0 I(t) = 15:(sin 30t — 10 cos 30t) + ye [
m Exercises
1-4 Determine whether the differential equation is linear. o d . d
e 1. sinx Y 4+ (cosx)y = sin(x?) 12. x Y 4y = x‘%e*
1Lx—y =xy 2y +xy?=Jx dx dx
1 1 .
Ly =—+— 4. ysinx = x%’ —x 13.(1+t)d—u+u=1+t, t>0
X oy dt
5-14 Solve the differential equation. 14. tlnt% +r=te'
5y +y=1 6.y —y=¢ef
1y =x-y 8. 4x%y + x%y' = sin 15-20 Solve the initial-value problem.
9. xy’ +y=+X 10. y' +y = sin(e*) 15. X%y’ + 2xy = Inx, y(1) =2

Graphing calculator or computer required 1. Homework Hints available at stewartcalculus.com



16.

17.

18.

19.

t3% + 3t’y = cost, y(m) =0
t%=t2+3u, t>0, u@2=4
2xy' +y=6x, x>0, y4) =20
xy' =y +x?snx, y(m =0

20. (x? + 1)% +3x(y—1) =0, y0) =2

21-22 Solve the differential equation and use a graphing calcula-
tor or computer to graph several members of the family of solu-
tions. How does the solution curve change as C varies?

Y
<]

21.

xy' + 2y = e* 22, xy' =x*+ 2y

23.

A Bernoulli differential equation (named after James
Bernoulli) is of the form

dy

— + P = "

ax T POy = Qxy
Observe that, if n = 0 or 1, the Bernoulli equation is linear.
For other values of n, show that the substitution u = y*™"
transforms the Bernoulli equation into the linear equation

d
d—t’( +(1—nPXU=(1-nQX
24-25 Use the method of Exercise 23 to solve the differential
equation.
! 2 ’ 2 y3
24.xy +y=7xy 25.y+;y=?

26.

21.

28.

29.

Solve the second-order equation xy” + 2y’ = 12x2 by
making the substitutionu = y’.

In the circuit shown in Figure 4, a battery supplies a constant
voltage of 40 V, the inductanceis 2 H, the resistance is 10 (),
and 1(0) = 0.

(&) Find I(t).

(b) Find the current after 0.1 s.

In the circuit shown in Figure 4, a generator supplies a volt-

age of E(t) = 40sin 60t volts, the inductance is 1 H, the

resistanceis20 (), and 1(0) = 1 A.

(& Find I(t).

(b) Find the current after 0.1 s.

(c) Use agraphing device to draw the graph of the current
function.

The figure shows a circuit containing an electromotive force,
a capacitor with a capacitance of C farads (F), and a resistor
with aresistance of R ohms (€2). The voltage drop across the
capacitor is Q/C, where Q is the charge (in coulombs), so in

30.

31.

32.

33.

34.
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this case Kirchhoff’s Law gives

Q_
RI+ S = E()

But | = dQ/dt (see Example 3in Section 2.7), so we have

dQ 1
—_— 4 — —
R m C Q=E()
Suppose the resistance is 5 (), the capacitance is0.05 F, a
battery gives a constant voltage of 60 V, and the initial charge
isQ(0) = 0 C. Find the charge and the current at time't.

® R

O

In the circuit of Exercise29,R = 2 (), C = 0.01 F,
Q(0) = 0, and E(t) = 10sin 60t. Find the charge and the
current at timet.

Let P(t) be the performance level of someone learning a skill
as afunction of the training timet. The graph of P iscalled a
learning curve. In Exercise 15 in Section 9.1 we proposed
the differential equation

dP

— =k[M — P(t

o = KM — P(1)]
as areasonable model for learning, where k is a positive con-
stant. Solve it as alinear differential equation and use your
solution to graph the learning curve.

Two new workers were hired for an assembly line. Jim pro-
cessed 25 units during the first hour and 45 units during the
second hour. Mark processed 35 units during the first hour
and 50 units the second hour. Using the model of Exercise 31
and assuming that P(0) = 0, estimate the maximum number
of units per hour that each worker is capable of processing.

In Section 9.3 we looked at mixing problems in which the
volume of fluid remained constant and saw that such prob-
lems give rise to separable equations. (See Example 6 in that
section.) If the rates of flow into and out of the system are
different, then the volume is not constant and the resulting
differential equation islinear but not separable.

A tank contains 100 L of water. A solution with a salt con-
centration of 0.4 kg/L isadded at arate of 5L/min. The
solution is kept mixed and is drained from the tank at arate
of 3L/min. If y(t) is the amount of salt (in kilograms) after
t minutes, show that y satisfies the differential equation

a_,
dt 100 + 2t

Solve this equation and find the concentration after
20 minutes.

A tank with a capacity of 400 L is full of a mixture of water
and chlorine with a concentration of 0.05 g of chlorine per
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liter. In order to reduce the concentration of chlorine, fresh
water is pumped into the tank at arate of 4 L /s. The mixtureis
kept stirred and is pumped out at arate of 10 L /s. Find the
amount of chlorine in the tank as a function of time.

35. An object with mass m is dropped from rest and we assume
that the air resistance is proportional to the speed of the object.
If s(t) is the distance dropped after t seconds, then the speed is
v = s'(t) and the acceleration isa = v'(t). If g is the accelera-
tion due to gravity, then the downward force on the object is
myg — cv, where c is a positive constant, and Newton's Second
Law gives

m dv m C
—_— = — Cv
a9

(a) Solvethisasalinear equation to show that

mg B
— 1 —e ct/m
v="( )

(b) What is the limiting velocity?
(c) Find the distance the object has fallen after t seconds.

36. If weignore air resistance, we can conclude that heavier
objects fall no faster than lighter objects. But if we take air
resistance into account, our conclusion changes. Use the
expression for the velocity of afalling object in Exercise 35(a)
to find do/dm and show that heavier objects do fall faster than

(b) Solve the linear differential equation in part (a) and
thus obtain an expression for P(t). Compare with Equa-
tion 9.4.7.

38. To account for seasonal variation in the logistic differential
equation we could alow k and M to be functions of t:

dP P
E = k(t)P(l - M(t))

(a) Verify that the substitution z = 1/P transforms this
equation into the linear equation
dz k(t)
k(t)z = ——~
dt M(t)
(b) Write an expression for the solution of the linear equa-
tionin part (a) and use it to show that if the carrying
capacity M is constant, then

M

PO = T Cme 10w

Deduce that if to k(t) dt = oo, then lim;—... P(t) =
[Thiswill be true if k(t) = ko + acosbt with ko > O
which describes a positive intrinsic growth rate with a

lighter ones.

periodic seasonal variation.]
(c) If kisconstant but M varies, show that

37. () Show that the substitution z = 1/P transforms the logistic

differential equation P’ = kP(1 — P/M) into the linear

differential equation
k

2+ kz=—

M

m Predator-Prey Systems

z(t)y =e™ ds + Ce

v

and use I'Hospital’s Rule to deduce that if M(t) has a
limit ast— o, then P(t) has the same limit.

We have looked at avariety of models for the growth of asingle speciesthat livesalonein
an environment. In this section we consider more realistic models that take into account
the interaction of two species in the same habitat. We will see that these models take the
form of apair of linked differential equations.

We first consider the situation in which one species, called the prey, has an ample food
supply and the second species, called the predators, feeds on the prey. Examples of prey
and predators include rabbits and wolvesin an isolated forest, food fish and sharks, aphids
and ladybugs, and bacteria and amoebas. Our model will have two dependent variablesand
both are functions of time. We let R(t) be the number of prey (using R for rabhbits) and W(t)
be the number of predators (with W for wolves) at timet.

In the absence of predators, the ample food supply would support exponential growth
of the prey, that is,

R

e kR wherek is a positive constant

In the absence of prey, we assume that the predator population would decline at arate pro-



W represents the predator.
R represents the prey.

The Lotka-Volterra equations were proposed
as a model to explain the variations in the
shark and food-fish populations in the
Adriatic Sea by the Italian mathematician
Vito Volterra (1860-1940).
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portional to itself, that is,

dw . L.
i rw wherer is a positive constant

With both species present, however, we assume that the principal cause of death among the
prey is being eaten by a predator, and the birth and survival rates of the predators depend
on their available food supply, namely, the prey. We also assume that the two species
encounter each other at arate that is proportional to both populations and is therefore pro-
portional to the product RW. (The more there are of either population, the more encoun-
ters there are likely to be.) A system of two differential equations that incorporates these
assumptionsis as follows:

dr
— =kR — aRW d—W=—rW~l-bRW
dt dt

wherek, r, a, and b are positive constants. Notice that the term —aRW decreases the nat-
ural growth rate of the prey and the term bRW increases the natural growth rate of the
predators.

Theequationsin | 1] are known asthe predator-prey equations, or the Lotka-Volterra
equations. A solution of this system of equationsis a pair of functions R(t) and W(t) that
describe the populations of prey and predator as functions of time. Because the system is
coupled (R and W occur in both equations), we can’'t solve one equation and then the other;
we have to solve them simultaneously. Unfortunately, it is usually impossible to find
explicit formulas for R and W as functions of t. We can, however, use graphical methods
to analyze the equations.

I BTN Suppose that populations of rabbits and wolves are described by the
Lotka-Volterraequations | 1] with k = 0.08,a = 0.001, r = 0.02, and b = 0.00002. The
timet is measured in months.

(a) Find the constant solutions (called the equilibrium solutions) and interpret

the answer.

(b) Use the system of differential equations to find an expression for dW/dR.

(c) Draw adirection field for the resulting differential equation in the RW-plane. Then
use that direction field to sketch some solution curves.

(d) Suppose that, at some point in time, there are 1000 rabbits and 40 wolves. Draw the
corresponding solution curve and use it to describe the changes in both population levels.
(e) Use part (d) to make sketches of R and W as functions of t.

SOLUTION
(a) With the given values of k, a, r, and b, the L otka-Volterra equations become

‘31_? — 0.08R — 0.001RW
o:j_vtv — _0.02W + 0.00002RW

Both R and W will be constant if both derivatives are O, that is,
R’ = R(0.08 — 0.001W) =0
W’ = W(—0.02 + 0.00002R) = 0
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One solutionisgiven by R = 0 and W = 0. (This makes sense: If there are no rabbits or
wolves, the populations are certainly not going to increase.) The other constant solution is
0.08 0.02

=———=280 R

~ 0001 = 1000

~ 000002
So the equilibrium populations consist of 80 wolves and 1000 rabbits. This means that
1000 rabhits are just enough to support a constant wolf population of 80. There are nei-
ther too many wolves (which would result in fewer rabbits) nor too few wolves (which
would result in more rabbits).

(b) We use the Chain Rule to eliminate t:

dw  dw dR
dt dR dt
dw
dW  dt  —0.02W + 0.00002RW
* R~ dR 008R — 0.00IRW
dt

(c) If wethink of W as a function of R, we have the differential equation

dW _ —0.02W + 0.00002RW
dR  0.08R — 0.001RW

We draw the direction field for this differential equation in Figure 1 and we use it to
sketch several solution curves in Figure 2. If we move along a solution curve, we
observe how the relationship between R and W changes as time passes. Notice that the
curves appear to be closed in the sense that if we travel along a curve, we always return
to the same point. Notice also that the point (1000, 80) isinside all the solution curves.
That point is called an equilibrium point because it corresponds to the equilibrium solu-
tion R = 1000, W = 80.

w w

150+ / / /= = — — — — — — — — -~~~ =~~~ 10+ /1 /7 /- = — = — —— —— - -~~~ -~~~
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100 I 1/ /7 7/ — — =~ >~ >N N NN N N NN NN 100 I AN AN
| I I I AP N N U W W W A W Y W W W | \ AN
' VAN \NNN—=—~ 2V /1 /1 7 1T | / /1
VYN NN — — — — A A A A g \ - 7
VAN SN~ — — — — — - o~ \ - -
50" A\ NN~ — — — e - — 50" AV NN — — — e =TT e - —
A\ N~ = - = — = = - = = = = = = = = A\ N~ === = - — = - == = = = = = =
NN~ - e - - NN — = - — — — — = = — - = = = = =
N~ = - = = - - - - — - —— = = = = = - N~ = - = = - - - - — - —— = = = = = -

0 1000 2000 3000 R 0 1000 2000 3000 R

FIGURE 1 Direction field for the predator-prey system FIGURE 2 Phase portrait of the system

When we represent solutions of a system of differential equations asin Figure 2, we
refer to the RW-plane as the phase plane, and we call the solution curves phase trajec-
tories. So a phase trajectory is a path traced out by solutions (R, W) as time goes by. A
phase portrait consists of equilibrium points and typical phase trgjectories, as shown in
Figure 2.
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(d) Starting with 1000 rabbits and 40 wolves corresponds to drawing the solution curve
through the point Po(1000, 40). Figure 3 shows this phase trajectory with the direction
field removed. Starting at the point Py at timet = 0 and letting t increase, do we move
clockwise or counterclockwise around the phase tragjectory? If we put R = 1000 and
W = 40 in the first differential equation, we get

dr

T 0.08(1000) — 0.001(1000)(40) = 80 — 40 = 40
Since dR/dt > 0, we conclude that R isincreasing at P, and so we move counter-
clockwise around the phase trajectory.

w

P,
140+

120+
100+
80+ P,
60+
401

P, (1000, 40)
20+

) FIGURE 3 0 500 1000 1500 2000 2500 3000 R
Phase trajectory through (1000, 40)

We see that at P, there aren’t enough wolves to maintain a balance between the popu-
lations, so the rabbit population increases. That results in more wolves and eventually
there are so many wolves that the rabbits have a hard time avoiding them. So the number
of rabbits begins to decline (at P1, where we estimate that R reaches its maximum popu-
lation of about 2800). This means that at some later time the wolf population starts to
fall (at P2, where R = 1000 and W =~ 140). But this benefits the rabbits, so their popul a-
tion later starts to increase (at Ps, where W = 80 and R = 210). As a consequence, the
wolf population eventualy starts to increase as well. This happens when the popul ations
return to their initial values of R = 1000 and W = 40, and the entire cycle begins again.

(e) From the description in part (d) of how the rabbit and wolf populations rise and fall,
we can sketch the graphs of R(t) and W(t). Suppose the points P, P,, and Ps in Figure 3
are reached at timesty, t,, and t3. Then we can sketch graphs of R and W asin Figure 4.

R W
2500 + 1407
120+
2000 + 1001
1500 + 80+
1000 1 607
404
500+ -
0 tt, ! 0 Lot I !

FIGURE 4 Graphs of the rabbit and wolf populations as functions of time
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In Module 9.6 you can change the
coefficients in the Lotka-Volterra equations and
observe the resulting changes in the phase
trajectory and graphs of the rabbit and wolf
populations.

FIGURE 5
Comparison of the rabbit
and wolf populations

FIGURE 6

Relative abundance of hare and lynx
from Hudson’'s Bay Company records

CHAPTER 9 DIFFERENTIAL EQUATIONS

To make the graphs easier to compare, we draw the graphs on the same axes but with
different scales for R and W, asin Figure 5. Notice that the rabbits reach their maximum
popul ations about a quarter of a cycle before the wolves.

R
3000+
Number 20001 Number
of of
rabbits wolves
1000
0 Lo 13 !
|

An important part of the modeling process, as we discussed in Section 1.2, is to inter-
pret our mathematical conclusions as real-world predictions and to test the predictions
against real data. The Hudson’s Bay Company, which started trading in animal fursin
Canadain 1670, has kept records that date back to the 1840s. Figure 6 shows graphs of the
number of pelts of the snowshoe hare and its predator, the Canada lynx, traded by the com-
pany over a 90-year period. You can see that the coupled oscillations in the hare and lynx
populations predicted by the Lotka-Volterra model do actually occur and the period of
these cyclesisroughly 10 years.

160

120

Thousands 80 +

of hares

40 1

0 1850 1875 1900 1925

Although the relatively simple Lotka-Volterra model has had some success in explain-
ing and predicting coupled populations, more sophisticated models have also been pro-
posed. One way to modify the Lotka-Volterra equations is to assume that, in the absence
of predators, the prey grow according to alogistic model with carrying capacity M. Then the

Lotka-Volterraequations | 1] are replaced by the system of differential equations

d—R=kR<1—%>—aRW d—W=—rW-|—bRW

dt dt

Thismodel isinvestigated in Exercises 11 and 12.
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Models have al so been proposed to describe and predict population levels of two or more

species that compete for the same resources or cooperate for mutual benefit. Such models
are explored in Exercises 2—4.

m Exercises

1. For each predator-prey system, determine which of the vari-

the absence of frogs, the fly population will grow exponentialy

ables, x or y, represents the prey population and which rep-
resents the predator population. Is the growth of the prey
restricted just by the predators or by other factors as well? Do
the predators feed only on the prey or do they have additional
food sources? Explain.

(a) ((jT)t( = —0.05x + 0.0001xy

dy
at 0.1y — 0.005xy

(b) (:T)t( = 0.2x — 0.0002x2? — 0.006xy

% = —0.015y + 0.00008xy

. Each system of differential equations is a model for two
species that either compete for the same resources or cooperate
for mutual benefit (flowering plants and insect pollinators, for
instance). Decide whether each system describes competition
or cooperation and explain why it is a reasonable model. (Ask
yourself what effect an increase in one species has on the
growth rate of the other.)

d
@ d—’: — 0.12x — 0.0006x2 + 0.00001xy

% = 0.08x + 0.00004xy

d
(b) d—’t‘ = 0.15x — 0.0002x2 — 0.0006xy

% = 0.2y — 0.00008y? — 0.0002xy
. The system of differential equations
dx )
P 0.5x — 0.004x° — 0.001xy
dy )
o 0.4y — 0.001y* — 0.002xy

isamodel for the populations of two species.

(a) Does the model describe cooperation, or competition,
or a predator-prey relationship?

(b) Find the equilibrium solutions and explain their
significance.

. Flies, frogs, and crocodiles coexist in an environment. To sur-
vive, frogs need to eat flies and crocodiles need to eat frogs. In

Computer algebra system required

and the crocodile population will decay exponentialy. In the
absence of crocodiles and flies, the frog population will decay
exponentialy. If P(t), Q(t), and R(t) represent the populations
of these three species at timet, write a system of differential
equations as amodel for their evolution. If the constantsin
your equation are all positive, explain why you have used plus
or minus signs.

5-6 A phase trgjectory is shown for populations of rabbits (R) and
foxes (F).

(a) Describe how each population changes as time goes by.

(b) Use your description to make a rough sketch of the graphs of R

and F as functions of time.

F
300

200 T+

100 +

0 400 800 1200 1600 2000 R

160 T t=0
120 +
80 T

401

0 400 800 1200 1600 R

1. Homework Hints available at stewartcal culus.com
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7-8 Graphs of populations of two species are shown. Use them to (c) Thedirection field for the differential equation in part (b) is
sketch the corresponding phase trajectory. shown. Use it to sketch a phase portrait. What do the phase
trajectories have in common?
1.y species 1 L
200 +
species 2 4007 /2 - --ZZZIIIIIIIIIIC
| 7/ /7 - = = — — -~ N~~~ N~~~
o7 30047 C-Cooooooioooiios
1 ! S S s = = =~~~ NN NN NN N NN
1001 001 L TTTIIIIII I )
B S
301 T
5 1 > e
0 5000 10000 15000 A
8.

(d) Suppose that at timet = 0 there are 1000 aphids and
200 ladybugs. Draw the corresponding phase trajectory and
use it to describe how both populations change.

(e) Use part (d) to make rough sketches of the aphid and lady-
bug populations as functions of t. How are the graphs
related to each other?

11. In Example 1 we used L otka-Volterra equations to model popu-
lations of rabbits and wolves. Let's modify those equations as
. : " follows:
0 5 10 15 ! dr
s = 0.08R(1 — 0.0002R) — 0.001RW
. dw
9. In Example 1(b) we showed that the rabbit and wolf popula- P —0.02W + 0.00002RW

tions satisfy the differential equation

W —0.02W + 0.00002RW (8 According to these equations, what happens to the rabbit

population in the absence of wolves?

dR 0.08R — 0.001RW (b) Find al the equilibrium solutions and explain their
By solving this separable differential equation, show that significance.
(c) The figure shows the phase trgjectory that starts at the point
R 002y 0.08 —c (1000, 40). Describe what eventually happens to the rabbit
g 0-00002Rg 0.001W and wolf populations.
where C is a constant. w
It isimpossible to solve this equation for W as an explicit

function of R (or vice versa). If you have a computer agebra 071

system that graphs implicitly defined curves, use this equation

and your CAS to draw the solution curve that passes through 1

the point (1000, 40) and compare with Figure 3. 60
10. Populations of aphids and ladybugs are modeled by the 1

equations 30

d—A = 2A — 0.01AL
dt 40 +
L
?Tt = —0.5L + 0.0001AL
+ + + + + R
(8) Find the equilibrium solutions and explain their 8001000 1200 1400 1600
significance. (d) Sketch graphs of the rabbit and wolf populations as

(b) Find an expression for dL /dA. functions of time.



12. In Exercise 10 we modeled populations of aphids and lady-
bugs with a L otka-Volterra system. Suppose we modify those
equations as follows:

A
?Tt = 2A(1 — 0.0001A) — 0.01AL
%{ = —0.5L + 0.0001AL

(@) In the absence of ladybugs, what does the model predict
about the aphids?

n Review
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(b) Find the equilibrium solutions.

(c) Find an expression for dL /dA.

(d) Use a computer algebra system to draw a direction field
for the differential equation in part (c). Then use the
direction field to sketch a phase portrait. What do the
phase trajectories have in common?

(e) Suppose that at timet = O there are 1000 aphids and
200 ladybugs. Draw the corresponding phase trajectory
and use it to describe how both populations change.

(f) Use part (€) to make rough sketches of the aphid and
ladybug populations as functions of t. How are the
graphs related to each other?

Concept Check

1. (@) What is a differential equation?
(b) What is the order of a differential equation?
(c) What isan initia condition?

2. What can you say about the solutions of the equation
y’ = x? + y?just by looking at the differential equation?

3. What is adirection field for the differential equation
y' = F(x,y)?

4. Explain how Euler’s method works.
5. What is a separable differential equation? How do you solve it?

6. What is afirst-order linear differential equation? How do you
solveit?

1. (d) Write adifferential equation that expresses the law of natural
growth. What does it say in terms of relative growth rate?
(b) Under what circumstances is this an appropriate model for
population growth?
(c) What are the solutions of this equation?

8. (a) Write the logistic equation.
(b) Under what circumstances is this an appropriate model for
population growth?

9. (a) Write Lotka-Volterra equations to model populations of
food fish (F) and sharks (S).
(b) What do these equations say about each population in the
absence of the other?

True-False Quiz

Determine whether the statement is true or false. If it is true, explain why.
If it is false, explain why or give an example that disproves the statement.

1. All solutions of the differential equationy’ = —1 — y* are
decreasing functions.

2. Thefunction f(x) = (In x)/x is asolution of the differential
equation x2y’ + xy = 1.

3. Theeguationy’ = x + y is separable.
4. Theeguationy’ = 3y — 2x + 6xy — 1lisseparable.

5. Theequation ey’ = y islinear.
6. Theequationy’ + xy = e’ islinear.
1. If y isthe solution of the initial-value problem

dy _ _y -
dt_2y<1 5) y(0) =1

thenlim..y = 5.
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Exercises

1. (8) A direction field for the differential equation
y' = y(y — 2)(y — 4) is shown. Sketch the graphs of the
solutions that satisfy the given initial conditions.

(i) y(0) = -03 (i) yO =1
(iii) y(0) =3 (iv) y(0) =43
(b) If theinitial condition isy(0) = c, for what values of

cislime_.. y(t) finite? What are the equilibrium solutions?
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2. (a) Sketch adirection field for the differential equation
y’ = x/y. Then use it to sketch the four solutions that
satisfy the initial conditionsy(0) = 1, y(0) = —1,
y(2) =1, andy(-2) = 1.
(b) Check your work in part (a) by solving the differential
equation explicitly. What type of curve is each solution
curve?

3. (@) A direction field for the differential equation
y’ = x? — y?is shown. Sketch the solution of the
initial-value problem
y =x*—y? y0 =1

Use your graph to estimate the value of y(0.3).
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Graphing calculator or computer required

(b) Use Euler’s method with step size 0.1 to estimate y(0.3),
where y(x) is the solution of the initial-value problem in
part (8). Compare with your estimate from part (a).

(c) On what lines are the centers of the horizontal line
segments of the direction field in part (a) located? What
happens when a solution curve crosses these lines?

4. (a) Use Euler’s method with step size 0.2 to estimate y(0.4),
where y(x) is the solution of the initial-value problem

y(0 =1

(b) Repeat part (a) with step size 0.1.

(c) Find the exact solution of the differential equation and
compare the value at 0.4 with the approximations in
parts (a) and (b).

yr — 2Xy2

5-8 Solve the differential equation.

dx
——=1-t+x—-1tx
dt

8. x%y' —y=2x%"

5.y = xe S — y cosx 6.

7. 2ye’y’ = 2x + 3yX

9-11 Solve theinitial-value problem.

dr
, — —+ =, =
9 p” 2tr=r, r(0)=5

10. (1 + cosx)y’ = (1 + e¥)sinx,
y@) =2

y(0) =0
1. xy’ —y=xlnx,

12. Solve theinitial-value problemy’ = 3x%, y(0) = 1, and
graph the solution.
13-14 Find the orthogonal trajectories of the family of curves.

13. y = ke* 14, y = ek

15. (8) Write the solution of the initial-value problem

dP P
o ot <1 - 2000) P(0) = 100

and use it to find the population when t = 20.
(b) When does the population reach 12007

16. (&) The population of the world was 5.28 billion in 1990 and
6.07 billion in 2000. Find an exponential model for these
data and use the model to predict the world population in
the year 2020.

(b) According to the model in part (a), when will the world
population exceed 10 billion?

(c) Usethe datain part (a) to find alogistic model for the pop-
ulation. Assume a carrying capacity of 100 billion. Then



17.

18.

19.

20.

21.

22.

use the logistic model to predict the population in 2020.
Compare with your prediction from the exponential model.

(d) According to the logistic model, when will the world popu-
lation exceed 10 billion? Compare with your prediction in
part (b).

The von Bertalanffy growth model is used to predict the length
L(t) of afish over a period of time. If L.. isthe largest length
for a species, then the hypothesis is that the rate of growth in
length is proportional to L.. — L, the length yet to be achieved.
(a) Formulate and solve a differential equation to find an
expression for L(t).
(b) For the North Sea haddock it has been determined that
L.. = 53 cm, L(0) = 10 cm, and the constant of proportion-
ality is 0.2. What does the expression for L(t) become with
these data?

A tank contains 100 L of pure water. Brine that contains
0.1 kg of salt per liter enters the tank at arate of 10 L /min.
The solution is kept thoroughly mixed and drains from the
tank at the same rate. How much salt isin the tank after

6 minutes?

One model for the spread of an epidemic is that the rate of
spread isjointly proportional to the number of infected

people and the number of uninfected people. In an isolated
town of 5000 inhabitants, 160 people have a disease at the
beginning of the week and 1200 have it at the end of the week.
How long does it take for 80% of the population to become
infected?

The Brentano-Stevens Law in psychology models the way that
a subject reacts to astimulus. It states that if R represents the
reaction to an amount S of stimulus, then the relative rates of
increase are proportional:

1R _kds
R dt S dt
wherek is a positive constant. Find R as a function of S.

The transport of a substance across a capillary wall in lung
physiology has been modeled by the differential equation

dh R h

dt V \k+h
where h is the hormone concentration in the bloodstream, t is
time, R is the maximum transport rate, V is the volume of the
capillary, and k is a positive constant that measures the affinity
between the hormones and the enzymes that assist the process.

Solve this differential equation to find a relationship between
h and t.

Populations of birds and insects are modeled by the equations

dx

— = 0.4x — 0.002

it 0.4x — 0.002xy

dy

o —0.2y + 0.000008xy

(a) Which of the variables, x or y, represents the bird popula-
tion and which represents the insect population? Explain.
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(b) Find the equilibrium solutions and explain their
significance.

(c) Find an expression for dy/dx.

(d) Thedirection field for the differential equation in part (c) is
shown. Use it to sketch the phase trgjectory corresponding
toinitial populations of 100 birds and 40,000 insects. Then
use the phase trajectory to describe how both populations

change.
y
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(e) Use part (d) to make rough sketches of the bird and insect
populations as functions of time. How are these graphs
related to each other?

23. Suppose the model of Exercise 22 is replaced by the equations

((jT)t( = 0.4x(1 — 0.000005x) — 0.002xy
dy
S = ~02y + 0.000008xy

(a) According to these equations, what happens to the insect
population in the absence of birds?

(b) Find the equilibrium solutions and explain their
significance.

(c) The figure shows the phase trgjectory that starts with
100 birds and 40,000 insects. Describe what eventually
happens to the bird and insect populations.

260 +
240 +
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200 T
180 T
160 T
140 +
120 +
100 +

15000 25000 35000 45000 ¥

(d) Sketch graphs of the bird and insect populations as
functions of time.
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24.

25.

CHAPTER 9 DIFFERENTIAL EQUATIONS

Barbara weighs 60 kg and is on a diet of 1600 calories per day,
of which 850 are used automatically by basal metabolism. She
spends about 15 cal /kg/day times her weight doing exercise. If
1 kg of fat contains 10,000 cal and we assume that the storage
of caloriesin the form of fat is 100% efficient, formulate a dif-
ferential equation and solve it to find her weight as a function
of time. Does her weight ultimately approach an equilibrium
weight?

When aflexible cable of uniform density is suspended between
two fixed points and hangs of its own weight, the shape
y = f(x) of the cable must satisfy a differential equation of the

form
dzy dy 2
— 7 — + —7
dx? K/t (dx

wherek is a positive constant. Consider the cable shown in the

figure.

(8 Letz = dy/dx inthe differentia equation. Solve the result-
ing first-order differential equation (in z), and then integrate
tofindy.

(b) Determine the length of the cable.

y
(—=b, h) (b, h)
(0, a)
b 0 b X




Problems Plus

FIGURE FOR PROBLEM 9

. Find all functions f such that f’ is continuous and

[f(x)]2 = 100 + f:{[f(t)]z +[f@®]2dt  forall rea x

. A student forgot the Product Rule for differentiation and made the mistake of thinking

that (fg)' = f'g’. However, he was lucky and got the correct answer. The function f that he
used was f (x) = e** and the domain of his problem was the interval (% oo). What was the
function g?

. Let f be afunction with the property that f(0) = 1,f'(0) = 1, and f(a + b) = f(a)f(b)

for al real numbers a and b. Show that f'(x) = f(x) for al x and deduce that f(x) = e*.

. Find dl functions f that satisfy the equation

(f 0 dx><J‘ m dx) -

. Find the curvey = f(x) such that f(x) = 0, f(0) = 0, f(1) = 1, and the area under the graph

of f from 0to x is proportional to the (n + 1)st power of f(x).

. A subtangent is a portion of the x-axis that lies directly beneath the segment of a tangent line

from the point of contact to the x-axis. Find the curves that pass through the point (c, 1) and
whose subtangents all have length c.

. A peach pieistaken out of the oven at 5:00 pm. At that timeit is piping hot, 100°C.

At 5:10 pm its temperature is 80°C; at 5:20 pm it is 65°C. What is the temperature of the
room?

. Snow began to fall during the morning of February 2 and continued steadily into the after-

noon. At noon a snowplow began removing snow from aroad at a constant rate. The plow
traveled 6 km from noon to 1 pm but only 3 km from 1 pm to 2 Pm. When did the snow begin
to fall? [Hints: To get started, let t be the time measured in hours after noon; let x (t) be the
distance traveled by the plow at time t; then the speed of the plow is dx/dt. Let b be the
number of hours before noon that it began to snow. Find an expression for the height of the
snow at time t. Then use the given information that the rate of removal R (in m¥/h) is
constant.]

. A dog sees arabbit running in a straight line across an open field and gives chase. In arect-

angular coordinate system (as shown in the figure), assume:
(i) Therabbit is at the origin and the dog is at the point (L, 0) at the instant the dog first
sees the rabbit.

(ii) Therabbit runs up the y-axis and the dog aways runs straight for the rabbit.
(iii) Thedog runs at the same speed as the rabbit.
(a) Show that the dog's path is the graph of the function y = f(x), where y satisfies the dif-

ferential equation
d2y dy 2
N A— + 7
X ax? \/1 (dx)

(b) Determine the solution of the equation in part (&) that satisfies the initial conditions
y =y’ = 0when x = L. [Hint: Let z = dy/dx in the differential equation and solve the
resulting first-order equation to find z; then integrate z to find y.]

(c) Does the dog ever catch the rabhit?

Graphing calculator or computer required
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10.

1.

12.

13.

14.

15.

16.

(@) Suppose that the dog in Problem 9 runs twice as fast as the rabbit. Find a differential
equation for the path of the dog. Then solve it to find the point where the dog catches the
rabbit.

(b) Suppose the dog runs half as fast as the rabbit. How close does the dog get to the rabbit?
What are their positions when they are closest?

A planning engineer for a new alum plant must present some estimates to his company

regarding the capacity of a silo designed to contain bauxite ore until it is processed into alum.

The ore resembles pink talcum powder and is poured from a conveyor at the top of the silo.

The siloisacylinder 100 ft high with aradius of 200 ft. The conveyor carries ore at arate of

60,0007 ft3/h and the ore maintains a conical shape whose radius is 1.5 times its height.

(a) If, at acertain timet, the pileis 60 ft high, how long will it take for the pile to reach the
top of the silo?

(b) Management wants to know how much room will be left in the floor area of the silo when
the pileis 60 ft high. How fast is the floor area of the pile growing at that height?

(c) Suppose aloader starts removing the ore at the rate of 20,0007 ft3h when the height of
the pile reaches 90 ft. Suppose, also, that the pile continues to maintain its shape. How
long will it take for the pile to reach the top of the silo under these conditions?

Find the curve that passes through the point (3, 2) and has the property that if the tangent line
isdrawn at any point P on the curve, then the part of the tangent line that lies in the first
quadrant is bisected at P.

Recall that the normal line to a curve at a point P on the curve is the line that passes through
P and is perpendicular to the tangent line at P. Find the curve that passes through the point
(3, 2) and has the property that if the normal lineis drawn at any point on the curve, then
the y-intercept of the normal line is always 6.

Find all curves with the property that if the normal line is drawn at any point P on the curve,
then the part of the normal line between P and the x-axis is bisected by the y-axis.

Find all curves with the property that if aline is drawn from the origin to any point (x, y) on
the curve, and then atangent is drawn to the curve at that point and extended to meet the
x-axis, the result is an isosceles triangle with equal sides meeting at (X, ).

(@) An outfielder fields a baseball 280 ft away from home plate and throws it directly to the
catcher with an initial velocity of 100 ft/s. Assume that the velocity »(t) of the ball after

t seconds satisfies the differential equation dv/dt = — 550 because of air resistance. How
long does it take for the ball to reach home plate? (Ignore any vertical motion of the
ball.)

(b) The manager of the team wonders whether the ball will reach home plate sooner if it
isrelayed by an infielder. The shortstop can position himself directly between the out-
fielder and home plate, catch the ball thrown by the outfielder, turn, and throw the ball
to the catcher with an initial velocity of 105 ft/s. The manager clocks the relay time of
the shortstop (catching, turning, throwing) at half a second. How far from home plate
should the shortstop position himself to minimize the total time for the ball to reach
home plate? Should the manager encourage a direct throw or arelayed throw? What if
the shortstop can throw at 115 ft/s?

(c) For what throwing velocity of the shortstop does a relayed throw take the same time
as adirect throw?



Parametric Equations and

Polar Coordinates

The Hale-Bopp comet, with its blue ion tail and white dust tail, appeared in  *
the sky in March 1997. In Section 10.6 you will see how polar coordinates
provide a convenient equation for the path of this comet.

© Dean Ketelsen

So far we have described plane curves by giving y as afunction of X [y = f(x)] or x as afunction
of y [x = g(y)] or by giving arelation between x and y that defines y implicitly as a function of x
[ f(x,y) = O]. In this chapter we discuss two new methods for describing curves.

Some curves, such as the cycloid, are best handled when both x and y are given in terms of athird
variable t called a parameter [x = f(t), y = g(t)]. Other curves, such as the cardioid, have their most
convenient description when we use a new coordinate system, called the polar coordinate system.
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m Curves Defined by Parametric Equations

Y c

C (x, y)=(f(0), g(0)
D

/ 0 X

FIGURE 1

This equation in x and y describes where the
particle has been, but it doesn't tell us when

the particle was at a particular point. The para-

metric equations have an advantage—they tell
us when the particle was at a point. They also
indicate the direction of the motion.

Imagine that a particle moves along the curve C shown in Figure 1. It is impossible to
describe C by an equation of the form y = f(x) because C failsthe Vertical Line Test. But
the x- and y-coordinates of the particle are functions of time and so we can write x = f(t)
andy = ¢(t). Such apair of equationsis often a convenient way of describing a curve and
gives rise to the following definition.

Suppose that x and y are both given as functions of athird variablet (called a param-
eter) by the equations

x=f1t y=g(t)

(called parametric equations). Each value of t determines a point (x, y), which we can
plot in a coordinate plane. Ast varies, the point (x, y) = (f(t), g(t)) variesand traces out a
curve C, which we call aparametric curve. The parameter t does not necessarily represent
time and, in fact, we could use a letter other than t for the parameter. But in many
applications of parametric curves, t does denote time and therefore we can interpret
(x,y) = (f(t), g(t)) asthe position of aparticle at timet.

Sketch and identify the curve defined by the parametric equations

x=t?-2t y=t+1

SOLUTION Each value of t gives apoint on the curve, as shown in the table. For instance,
if t = 0,thenx = 0,y = 1 and so the corresponding point is (0, 1). In Figure 2 we plot
the points (x, y) determined by several values of the parameter and we join them to pro-
duce acurve.

t X y ! t=4
1=3
-2 8 -1 )
-1 3 0 =
0 0 1 ,_1<
1 -1 2 0.0
2 0 3 IZO\ §
3 3 4 of T ¥
4 8 5 t=-2

FIGURE 2

A particle whose position is given by the parametric equations moves along the curve
in the direction of the arrows ast increases. Notice that the consecutive points marked
on the curve appear at equal time intervals but not at equal distances. That is because the
particle slows down and then speeds up as t increases.

It appears from Figure 2 that the curve traced out by the particle may be a parabola.
This can be confirmed by eliminating the parameter t as follows. We obtaint =y — 1
from the second equation and substitute into the first equation. This gives

X=t"-2t=(y—-1°-2y-1)=y>—4y+3

and so the curve represented by the given parametric equationsis the parabola
X=y?— 4y + 3.
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No restriction was placed on the parameter t in Example 1, so we assumed that t could
be any real number. But sometimes we restrict t to liein afinite interval. For instance, the
parametric curve

x=t2—-2t y=t+1 O0st<4

shown in Figure 3 isthe part of the parabolain Example 1 that starts at the point (0, 1) and
ends at the point (8, 5). The arrowhead indicates the direction in which the curveis traced
astincreasesfrom 0 to 4.

In general, the curve with parametric equations

x = f(t) y =g(t) asts<b
has initial point (f(a), g(a)) and terminal point ( f(b), g(b)).

7 IETEF What curve is represented by the following parametric equations?
X = cost y = sint ost=<2nm

SOLUTION If we plot points, it appears that the curve isacircle. We can confirm this
impression by eliminating t. Observe that

X2+ y?=cost + sint=1

Thus the point (x, y) moves on the unit circle x? + y? = 1. Notice that in this example
the parameter t can be interpreted as the angle (in radians) shown in Figure 4. Ast
increases from 0 to 277, the point (x, y) = (cost, sint) moves once around the circle in
the counterclockwise direction starting from the point (1, 0). [

[E7ETE] What curve is represented by the given parametric equations?
X = sin 2t y = CO0S 2t Ost=27w
SOLUTION Again we have

X2+ y?=sn?2t + cos’2t =1

o the parametric equations again represent the unit circle x? + y? = 1. But ast
increases from 0 to 277, the point (x, y) = (sin 2t, cos 2t) starts at (0, 1) and moves twice
around the circle in the clockwise direction as indicated in Figure 5. [

Examples 2 and 3 show that different sets of parametric equations can represent the same
curve. Thuswe distinguish between acurve, which isaset of points, and aparametric curve,
in which the points are traced in a particular way.

[E7YZT Find parametric equations for the circle with center (h, k) and radiusr.

SOLUTION If we take the equations of the unit circlein Example 2 and multiply the
expressionsfor x andy by r, weget x = r cost, y = r sint. You can verify that these
equations represent a circle with radius r and center the origin traced counterclockwise.
We now shift h unitsin the x-direction and k unitsin the y-direction and obtain para-
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metric equations of the circle (Figure 6) with center (h, k) and radiusr:

X =h + rcost y=k+ rsint Ost=<2mw

FIGURE 6
x=h+rcost,y=k+rsint 0 x [ ]

7 7Y Sketch the curve with parametric equations x = sint, y = sin?t.

SOLUTION Observethaty = (sint)? = x2 and so the point (x, y) moves on the parabola

y = x2 But note also that, since —1 < sint < 1, wehave —1 < x < 1, so the para-
metric equations represent only the part of the parabolafor which —1 < x < 1. Since
sint is periodic, the point (x, y) = (sint, sin’t) moves back and forth infinitely often
along the parabolafrom (=1, 1) to (1, 1). (See Figure 7.) [

FIGURE 7

Module 10.1A gives an animation of the
relationship between motion along a parametric
curve x = f(t), y = ¢(t) and motion along the
graphs of f and g as functions of t. Clicking on

=3¢

TRIG gives you the family of parametric curves

7S02

x=acosht y=csindt

If you choosea = b = ¢ = d = 1and click
on animate, you will see how the graphs of

x = costandy = sintrelate to the circle in
Example 2. If youchoosea =b =c¢c = 1, Y Y
d = 2, you will see graphs as in Figure 8. By
clicking on animate or maving the t-slider to
the right, you can see from the color coding how
motion along the graphs of x = cost and

y = sin 2t corresponds to motion along the para- * !
metric curve, which is called a Lissajous figure.

FIGURE 8 X=C0St y=sin2t¢ y=sin2t

I Graphing Devices

Most graphing calculators and computer graphing programs can be used to graph curves
defined by parametric equations. In fact, it's instructive to watch a parametric curve being
drawn by agraphing cal culator because the points are plotted in order as the corresponding
parameter values increase.



SECTION 10.1 CURVES DEFINED BY PARAMETRIC EQUATIONS 663

3 [E70ZT Use agraphing device to graph the curve x = y* — 3y2,
" SOLUTION If welet the parameter bet = y, then we have the equations
-3 3 X = t4 - 3t2 y = t
- Usin_g these parametric_: equation§ to graph the curve, we obtain Figure 9 It would be
possible to solve the given equation (x = y* — 3y?) for y as four functions of x and
-3 graph them individually, but the parametric equations provide a much easier method.
FIGURE 9 —
In general, if we need to graph an equation of the form x = ¢(y), we can use the para-
metric equations
x=g(t) y=t
Notice also that curveswith equationsy = f(x) (the oneswe are most familiar with—graphs
of functions) can aso be regarded as curves with parametric equations
x=t y = f(t)
Graphing devices are particularly useful for sketching complicated curves. For instance,
the curves shown in Figures 10, 11, and 12 would be virtually impossible to produce by hand.
1.5
-1.5 L5
-1.5
FIGURE 10 FIGURE 11 FIGURE 12
x=sinr+2cos5r+sin13s x=sint—sin2.3¢ x=sin7+1sin5t+4cos2.3
y:COSH-%SinSH-%COSBt y = cost y:COSH-%COSSH*%SinZ.Bt

One of the most important uses of parametric curvesisin computer-aided design (CAD).
In the Laboratory Project after Section 10.2 we will investigate special parametric curves,
called Bézier curves, that are used extensively in manufacturing, especialy in the auto-
motive industry. These curves are also employed in specifying the shapes of |etters and
other symbolsin laser printers.

I The Cycloid

An animation in Module 10.18 shows [E70ZTFA The curve traced out by a point P on the circumference of acircle asthe

how the cycloid is formed as the circle moves. circlerollsalong astraight lineis called acycloid (see Figure 13). If the circle has
radius r and rolls along the x-axis and if one position of P isthe origin, find parametric
equations for the cycloid.

N RGO N N

FIGURE 13 P
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- C(ré,r)
P¥———Ho
1y
X l
o T
10 —
FIGURE 14
A
cycloid
FIGURE 15

FIGURE 16

SOLUTION We choose as parameter the angle of rotation 6 of the circle (§ = 0 when P is
at the origin). Suppose the circle has rotated through 6 radians. Because the circle has
been in contact with the line, we see from Figure 14 that the distance it has rolled from
the originis

|OT| =acPT=r6

Therefore the center of the circle is C(r#, r). Let the coordinates of P be (x, y). Then
from Figure 14 we see that

x=|OT| - |PQ|=r0—rsinf=r(0 — sino)
y=|TC| = |QC|=r —rcosf = r(1 — cosb)

Therefore parametric equations of the cycloid are

[1] X=r(0 — sinb) y = r(1 — cos6) fER

One arch of the cycloid comes from one rotation of the circle and so is described by
0 < 6 =< 2. Although Equations 1 were derived from Figure 14, which illustrates the
case where 0 < 6 < /2, it can be seen that these equations are still valid for other
values of 0 (see Exercise 39).

Although it is possible to eliminate the parameter 6 from Equations 1, the resulting
Cartesian equation in x and y is very complicated and not as convenient to work with as
the parametric equations. [ |

One of the first people to study the cycloid was Galileo, who proposed that bridges be
built in the shape of cycloids and who tried to find the areaunder one arch of acycloid. Later
this curve arose in connection with the brachistochrone problem: Find the curve along
which aparticle will didein the shortest time (under the influence of gravity) from a point
Atoalower point B not directly beneath A. The Swiss mathematician John Bernoulli, who
posed this problem in 1696, showed that among all possible curves that join A to B, asin
Figure 15, the particle will take the least time sliding from A to B if the curve is part of an
inverted arch of acycloid.

The Dutch physicist Huygens had already shown that the cycloid is also the solution to
the tautochrone problem; that is, no matter where a particle P is placed on an inverted
cycloid, it takes the same time to slide to the bottom (see Figure 16). Huygens proposed that
pendulum clocks (which he invented) should swing in cycloidal arcs because then the pen-
dulum would take the same time to make a complete oscillation whether it swings through
awide or asmall arc.

I Families of Parametric Curves
V| Investigate the family of curves with parametric equations
X = a + cost y = atant + sint
What do these curves have in common? How does the shape change as a increases?

SOLUTION We use a graphing device to produce the graphs for the casesa = —2, —1,
—0.5,-0.2,0,0.5, 1, and 2 shown in Figure 17. Notice that all of these curves (except
the case a = 0) have two branches, and both branches approach the vertical asymptote
X = a as x approaches a from the left or right.
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FIGURE 17 Members of the family
x=a+cost,y=atanr +sint,

al graphed in the viewing rectangle
[—4,4] by [-4,4]

SECTION 10.1 CURVES DEFINED BY PARAMETRIC EQUATIONS
[T IR
|
: a=-—0.5 | a=-—0.2
| |
} }
| |
| |
|
|

| |
a=1 ! a=2 !
| |
| |
} }
| |
| |
| |
| |
~

665

When a < —1, both branches are smooth; but when a reaches —1, the right branch
acquires a sharp point, called a cusp. For a between —1 and 0 the cusp turns into a loop,
which becomes larger as a approaches 0. When a = 0, both branches come together and

form acircle (see Example 2). For a between 0 and 1, the left branch has aloop, which
shrinks to become a cusp when a = 1. For a > 1, the branches become smooth again,
and as a increases further, they become less curved. Natice that the curves with a posi-
tive are reflections about the y-axis of the corresponding curves with a negative.

These curves are called conchoids of Nicomedes after the ancient Greek scholar
Nicomedes. He called them conchoids because the shape of their outer branches

resembles that of a conch shell or mussel shell.

m Exercises

1-4 Sketch the curve by using the parametric equations to plot
points. Indicate with an arrow the direction in which the curveis
traced ast increases.

Lx=t2+t y=t>—-t —-2<ts<2
2 x=1t3 y=t*—4t, -3<t=<3

3. x=cost, y=1-snt, 0st< 7/2
4. x=e'+t y=e'—t, —2st<2

5-10

(a) Sketch the curve by using the parametric equations to plot
points. Indicate with an arrow the direction in which the curve
istraced ast increases.

(b) Eliminate the parameter to find a Cartesian equation of the
curve.

5. x=3—4t, y=2-3t

6.x=1-2t y=3t—-1 -2<t<4
.x=1—-1t3 y=t—-2 -2<ts<2
8. x=t—1 y=t*+1 -2sts2

Graphing calculator or computer required

9. x=4t, y=1-t

10. x=1t> y=t3

11-18

(a) Eliminate the parameter to find a Cartesian equation of the
curve.

(b) Sketch the curve and indicate with an arrow the direction in
which the curve is traced as the parameter increases.

M. x=sin30, y=cos3, —w<0O<n

12 x=3cos, y=2snh, 0<O<m

o<t<m/2

13. x =dint, y= csct,

14. x=¢'—1 y=¢e*

15. x=¢% y=t+1
16. y=yt+1, y=4yt—1
17. x = sinht, y = cosht

18. x =tan?d, y=sech, —w/2<6<m/2

1. Homework Hints available at stewartcalculus.com
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19-22 Describe the motion of a particle with position (x, y) as
t variesin the given interval.

19. x =3+ 2cost, y=1+ 2sint, 7/2<t< 3m/2
20. x = 2sint, y=4+ cost, 0<t<37/2
21. x =5sint, y=2cost, —w<t<bmnw

2. x =sint, y=cost, —2r<t<2mw

25-27 Usethe graphs of x = f(t) andy = ¢(t) to sketch the para-
metric curve x = f(t), y = ¢(t). Indicate with arrows the direction
in which the curve is traced ast increases.

23. Suppose acurve is given by the parametric equations x = f(t), 2%
y = ¢g(t), where therange of f is[1, 4] and therange of g is '

[2, 3]. What can you say about the curve?

24. Match the graphs of the parametric equations x = f(t) and
y = ¢(t) in (8)—(d) with the parametric curves labeled [-IV.
Give reasons for your choices.

—_—
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=

(b) I

N

1 t li t
21. x y
1 1
, 1
X t 1t

28. Match the parametric equations with the graphs labeled I-V1.
Give reasons for your choices. (Do not use a graphing device.)
@x=t'—t+1 y=t>

byx=t2—2t y=t

(© I

X (c) x=1sin2t, y=sin(t + sin2t)

(d) x =cos5t, y=sn2t

(e x=1t+sin4t, y=1t>+ cos3t
sin 2t cos 2t

Ox=2rw Y= e

\.
[}
(3]

(d) v

=
~
~<

T
U

\Y

1
in
]
]
N

I
y y
X
X
VI
y
%
X



A 2.
I 30.

31.

A 32.

33.

34,

Graph thecurvex =y — 2sin my.

Graph the curvesy = x* — 4x and x = y° — 4y and find
their points of intersection correct to one decimal place.

(a) Show that the parametric equations

X=X+ X2—x)t  y=yr+ (y2— yt

where 0 < t < 1, describe the line segment that joins the
points Py(Xy, y1) and Pa(X2, Y2).

(b) Find parametric equations to represent the line segment
from (—2,7) to (3, —1).

Use a graphing device and the result of Exercise 31(a) to
draw the triangle with vertices A(1, 1), B(4, 2), and C(1, 5).

Find parametric equations for the path of a particle that
moves along the circle x> + (y — 1)> = 4 in the manner
described.

(a) Once around clockwise, starting at (2, 1)

(b) Three times around counterclockwise, starting at (2, 1)
(c) Hafway around counterclockwise, starting at (0, 3)

(a) Find parametric equations for the ellipse
x?/a? + y%/b? = 1. [Hint: Modify the equations of
the circle in Example 2.]

(b) Use these parametric equations to graph the ellipse when
a=3andb=1,2 4 and8.

(c) How does the shape of the ellipse change as b varies?

35-36 Use agraphing calculator or computer to reproduce the
picture.

37-38 Compare the curves represented by the parametric
equations. How do they differ?

37.

38.

(@ x=t3 y=t? (b) x=15 y=t*
cpx=e3 y=¢?

@x=t y=t? (b) x = cost, y = sec’t
©x=¢e', y=¢?*

39.
40.

Derive Equations 1 for the case 77/2 < 6 < .

Let P be apoint at a distance d from the center of acircle of
radius r. The curve traced out by P asthecirclerollsalong a
straight lineis called a trochoid. (Think of the motion of a
point on a spoke of a bicycle wheel.) The cycloid is the spe-
cial case of atrochoid with d = r. Using the same parameter
0 as for the cycloid and, assuming the line is the x-axis and

SECTION 10.1

a.

42.

43.
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0 = 0 when P is at one of its lowest points, show that para-
metric equations of the trochoid are

Xx=rf6—dsné y=r —dcosf
Sketch the trochoid for thecasesd < randd >r.

If a and b are fixed numbers, find parametric equations for
the curve that consists of all possible positions of the point P
in the figure, using the angle 0 as the parameter. Then elimi-
nate the parameter and identify the curve.

y

If a and b are fixed numbers, find parametric equations for
the curve that consists of al possible positions of the point P
in the figure, using the angle 6 as the parameter. The line
segment AB is tangent to the larger circle.

y
A
a < P
[
o B X

A curve, called awitch of Maria Agnesi, consists of all pos-
sible positions of the point P in the figure. Show that para-
metric equations for this curve can be written as

x=2acotd y=2asin’)
Sketch the curve.
y
y=2a C
N
N
N
N
/0
A\i P
a+ |
|
|}
A
|
|
N
o X
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44.

A as.

46.

CHAPTER 10 PARAMETRIC EQUATIONS AND POLAR COORDINATES

(a) Find parametric equations for the set of all points P as
shown in the figure such that | OP | = | AB|. (This curve
is called the cissoid of Diocles after the Greek scholar
Diocles, who introduced the cissoid as a graphical
method for constructing the edge of a cube whose volume
istwice that of agiven cube.)

(b) Use the geometric description of the curve to draw a
rough sketch of the curve by hand. Check your work by
using the parametric equations to graph the curve.

x=2a

Suppose that the position of one particle at timet is given by

X1 = 3sint y; = 2 cost ost<2rw

and the position of a second particleis given by

X, = —3 + cost y» =1+ sint Ost=s27w

(a) Graph the paths of both particles. How many points of
intersection are there?

(b) Are any of these points of intersection collision points?
In other words, are the particles ever at the same place at
the same time? If so, find the collision points.

(c) Describe what happens if the path of the second particle
is given by

X2 = 3 + cost y2=1+sint ost=<2w
If aprojectileisfired with an initial velocity of v, meters per
second at an angle a above the horizontal and air resistance

is assumed to be negligible, then its position after t seconds

I
LI

A 4.

A g8.

 g0.

A4 s0.

A s1.

A s2.

is given by the parametric equations

X = (vo COS )t y = (voSin )t — 3gt?

where g is the acceleration due to gravity (9.8 m/s?).

(@ If agunisfired with o = 30° and v = 500 m/s, when
will the bullet hit the ground? How far from the gun will
it hit the ground? What is the maximum height reached
by the bullet?

(b) Use a graphing device to check your answers to part (a).
Then graph the path of the projectile for several other
values of the angle « to see where it hits the ground.
Summarize your findings.

(c) Show that the path is parabolic by eliminating the
parameter.

Investigate the family of curves defined by the parametric
equations x = t, y = t3 — ct. How does the shape change
as ¢ increases? | llustrate by graphing several members of the
family.

The swallowtail catastrophe curves are defined by the para-
metric equations x = 2ct — 4t3, y = —ct? + 3t* Graph
several of these curves. What features do the curves have in
common? How do they change when ¢ increases?

Graph several members of the family of curves with
parametric equationsx = t + acost,y =t + asint, where
a > 0. How does the shape change as a increases? For what
values of a does the curve have aloop?

Graph several members of the family of curves

X =sint + sinnt,y = cost + cosnt wheren is apositive
integer. What features do the curves have in common? What
happens as n increases?

The curves with equations x = asinnt, y = b cost are
called Lissajous figures. Investigate how these curves vary
when a, b, and n vary. (Take n to be a positive integer.)

Investigate the family of curves defined by the parametric
equationsx = cost,y = sint — sinct, wherec > 0. Start
by letting ¢ be a positive integer and see what happens to the
shape as ¢ increases. Then explore some of the possibilities
that occur when ¢ is a fraction.

RUNNING CIRCLES AROUND CIRCLES

y In this project we investigate families of curves, called hypocycloids and epicycloids, that are
generated by the motion of a point on a circle that rolls inside or outside another circle.

¢ / 1. A hypocycloid is a curve traced out by afixed point P on acircle C of radiusb as C rolls on the
b inside of acircle with center O and radius a. Show that if the initial position of P is (a, 0) and
P 9 P (a,0) the parameter 6 is chosen asin the figure, then parametric equations of the hypocycloid are
o A X

X=(a—b)coso + bcos(al

=) =)

y—(a—b)sinG—bsin(a

Graphing calculator or computer required
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Look at Module 10.1B to see how
hypocycloids and epicycloids are formed by
the motion of rolling circles.

2. Use agraphing device (or the interactive graphic in TEC Module 10.1B) to draw the graphs of
hypocycloids with a a positive integer and b = 1. How does the value of a affect the graph?
Show that if wetakea = 4, then the parametric equations of the hypocycloid reduce to

Xx=4cos’ y=4s€n%
This curveis caled ahypocycloid of four cusps, or an astroid.

3. Nowtry b= 1anda = n/d, afraction where n and d have no common factor. First letn = 1
and try to determine graphically the effect of the denominator d on the shape of the graph. Then
let n vary while keeping d constant. What happenswhenn = d + 1?

4. What happensif b = 1 and a is irrational ? Experiment with an irrational number like /2 or
e — 2. Take larger and larger values for 6 and speculate on what would happen if we were to
graph the hypocycloid for all real values of 6.

5. If the circle C rolls on the outside of the fixed circle, the curve traced out by P is called an
epicycloid. Find parametric equations for the epicycloid.

6. Investigate the possible shapes for epicycloids. Use methods similar to Problems 2—4.

m Calculus with Parametric Curves

If we think of the curve as being traced out by
a moving particle, then dy/dt and dx/dt are

the vertical and horizontal velocities of the par-

ticle and Formula 1 says that the slope of the
tangent is the ratio of these velocities.

2,

dy
dy  dt?

Note that ——
@) otethat 5 # —o
dt?

Having seen how to represent curves by parametric equations, we now apply the methods
of calculusto these parametric curves. In particular, we solve problems involving tangents,
area, arc length, and surface area.

I Tangents

Suppose f and g are differentiable functions and we want to find the tangent line at a point
on the curve wherey is also a differentiable function of x. Then the Chain Rule gives

dy _dy dx
dt — dx dt

If dx/dt # 0, we can solve for dy/dx:

dy
dy dt . dx
(1] ax  Ox it =0
dt

Equation 1 (which you can remember by thinking of canceling the dt’s) enables us
to find the slope dy/dx of the tangent to a parametric curve without having to eliminate
the parameter t. We see from [1] that the curve has a horizontal tangent when dy/dt = 0
(provided that dx/dt # 0) and it has a vertical tangent when dx/dt = O (provided that
dy/dt # 0). Thisinformation is useful for sketching parametric curves.

Aswe know from Chapter 4, it is also useful to consider d?y/dx2. This can be found by
replacing y by dy/dx in Equation 1:

(o)
d>y  d (dy)_ dt \ dx
dx?z  dx \dx/  dx
dt



670 CHAPTER 10 PARAMETRIC EQUATIONS AND POLAR COORDINATES

y=3(x—-3)

FIGURE 1

70T A curve C is defined by the parametric equationsx = t2 y = t* — 3t.
(a) Show that C has two tangents at the point (3, 0) and find their equations.

(b) Find the points on C where the tangent is horizontal or vertical.

(c) Determine where the curve is concave upward or downward.

(d) Sketch the curve.

SOLUTION

(@) Noticethat y = t® — 3t = t(t> — 3) = Owhent = O or t = =./3. Therefore the
point (3, 0) on C arises from two values of the parameter, t = /3 andt = —/3. This
indicates that C crosses itself at (3, 0). Since

dy dy/dt  3t2-3 3(t 1)

dx dx/dt 2t 2

t

the slope of the tangent whent = +./3 isdy/dx = +6/(2./3) = +/3, so the equa-
tions of the tangents at (3, 0) are

y=+/3(x-3 ad y=-/3(x-3)

(b) C has a horizontal tangent when dy/dx = 0, that is, when dy/dt = 0 and dx/dt # 0.
Since dy/dt = 3t2 — 3, this happens when t? = 1, that is, t = + 1. The corresponding
pointson C are (1, —2) and (1, 2). C has avertical tangent when dx/dt = 2t = 0, that is,
t = 0. (Notethat dy/dt # 0 there.) The corresponding point on C is (0, 0).

(c) To determine concavity we calculate the second derivative:

dfay) 3(,, 1
dzy:dt dx/ _ 2 t? :3(t2+1)

dx? dx 2t 4¢3
dt

Thus the curve is concave upward when t > 0 and concave downward whent < 0.
(d) Using the information from parts (b) and (c), we sketch C in Figure 1. [ |

V] EXAMPLE 2.

(a) Find the tangent to the cycloid x = r(6 — sin 0), y = r(1 — cos 6) at the point
where § = /3. (See Example 7 in Section 10.1.)

(b) At what points is the tangent horizontal? When is it vertical?

SOLUTION
(a) The slope of the tangent lineis

dy dy/d0  rsne  sing
dx dx/d6 r(l—cosf) 1— cos6

(7)) vlo=i)s

dy __sn(w/3)  _ V3/2 _
dx 1-cos(m/3) 1-—3 =3

When 6 = 7/3, we have

wl3

bad
I
-
S
ME
|
Q.
>
ME
SN———
I

and



FIGURE 2

The limits of integration for t are found

as usual with the Substitution Rule. When
X = a, tiseither wor B. When x = b, tis
the remaining value.

~N o

O‘ 27rr X

FIGURE 3

The result of Example 3 says that the area
under one arch of the cycloid is three times the
area of the rolling circle that generates the
cycloid (see Example 7 in Section 10.1). Galileo
guessed this result but it was first proved by
the French mathematician Roberval and the
[talian mathematician Torricelli.
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Therefore the slope of the tangent is /3 and its equation is

i) e

3
The tangent is sketched in Figure 2.

‘ 0 27r 4r X

(b) The tangent is horizontal when dy/dx = 0, which occurs when sin # = 0 and
1 - cosf# 0, thatis, 6 = (2n — 1), n an integer. The corresponding point on the
cycloidis ((2n — 1), 2r).

When 6 = 2n, both dx/d6 and dy/d6 are 0. It appears from the graph that there
are vertical tangents at those points. We can verify this by using I'Hospital’s Rule as
follows:

siné cos6
= 0

im ——=|lim — =
o—2nzt 1 — COSO o—2nzt SN O

m
o—2nmt dX

A similar computation shows that dy/dx — — as § — 2n#, so indeed there are verti-
cal tangents when 6 = 2nr, that is, when x = 2nrr. [ |

I Areas

We know that the area under a curve y = F(x) fromatob is A= jab F(x) dx, where
F(x) = 0. If the curveistraced out once by the parametric equations x = f(t) andy = g4(t),
a <t < B, then we can calculate an area formula by using the Substitution Rule for
Definite Integrals as follows:

A= Lbydx = jﬁ g(®) f'(t) dt [or jﬁ g (1) dt]

1 IETXTEIEE] Find the area under one arch of the cycloid

X=1r(0 — sinb) y =r(1 — cos6)

(See Figure 3.)

SOLUTION One arch of the cycloid isgiven by 0 < 6 < 2#. Using the Substitution Rule
withy = r(1 — cos #) and dx = r(1 — cos ) d6, we have

2mr 2
A fo ydx = fo r(1 — cosf)r(l — cos®)do

= rZJ:ﬁ (1 — cos 6)*do = rzf:” (1 — 2cos 6 + cos’6) do

rzjozw[l — 20050 + 3(1 + cos26)] do
— r2[§0 — 2sin6 + isin 20]57

= rz(g . 277') = 3712
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FIGURE 4

I Arc Length

We already know how to find the length L of a curve C given in the form y = F(x),
a < x < b. Formula8.1.3 saysthat if F’ is continuous, then

[2] L=f1/1+<%>2dx

Suppose that C can also be described by the parametric equations x = f(t) andy = ¢(t),
a < t < B, where dx/dt = f’(t) > 0. This means that C is traversed once, from left to
right, ast increases from ato g and f(a) = a, f(B) = b. Putting Formula 1 into Formula
2 and using the Substitution Rule, we obtain

b dy \? B dy/dt \? dx
= N e & = + == ) =
- f \/1 <dx> o j \/1 <dx/dt at ™

Since dx/dt > 0, we have

B dx \? dy \?
2 () (6 s
Evenif C can't be expressed intheformy = F(x), Formula3isstill valid but we obtain
it by polygonal approximations. We divide the parameter interval [, 8] into n subintervals
of equal width At. If to, ts, to, . . ., t, are the endpoints of these subintervals, then xi = f (1)
andy; = ¢(t;) arethe coordinates of points Pi(x;, yi) that lie on C and the polygon with ver-
ticesPg, Py, . . ., P, approximates C. (See Figure 4.)

As in Section 8.1, we define the length L of C to be the limit of the lengths of these
approximating polygonsasn —

n
L =lim Y |Pi_:Pi]

n—w j_q

The Mean Value Theorem, when applied to f on theinterval [t;_, ti], gives anumber t in
(tifl, ti) such that

f(ti) - f(tifl) = f,(ti*)(ti - tifl)
If welet Ax; = xi — Xi—1 and Ay; = y; — Vi_1, this equation becomes
Ax; = f/(t) At

Similarly, when applied to g, the Mean Value Theorem gives anumber t* in (ti_1, t;) such
that

Ay; = g'(t"™) At
Therefore

|PitPi| = V(AXi)? + (Ayi)? = V[ F/(tF) At]? + [g'(t"*) At]?
= VL) + 9§12 At

and so

4] L= tim 3 VT + [T At
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The sum in [4] resembles a Riemann sum for the function /[ f'(t)]? + [¢'(t)]2 butitisnot
exactly a Riemann sum because t # t** in general. Nevertheless, if f' and g’ are contin-
uous, it can be shown that the limit in [4] isthe same asiif i and t* were equal, namely,

L= [ VIFOF + [yOF dt

Thus, using Leibniz notation, we have the following result, which has the same form as For-
mula 3.

@ Theorem If acurve C isdescribed by the parametric equations x = f(t),
y =g(t), a < t < B, wheref’ and g’ are continuous on [«, 8] and C is traversed
exactly once ast increases from « to B, then the length of C is

RACRER

Notice that the formulain Theorem 5 is consistent with the general formulasL = | ds
and (ds)? = (dx)? + (dy)? of Section 8.1.

[E70ETE If we use the representation of the unit circle given in Example 2 in Sec-
tion 10.1,

X = cost y =sgint Ost=27

then dx/dt = —sint and dy/dt = cost, so Theorem 5 gives

2m 2 2
L =j \/<dx> + (d—y> dt=f2”\/sin2t + costt dt=f2”dt= 2
0 0

0 dt dt

as expected. If, on the other hand, we use the representation given in Example 3 in Sec-
tion 10.1,
X = sn2t y = Cos 2t Ost=27

then dx/dt = 2 cos 2t, dy/dt = —2sin 2t, and the integral in Theorem 5 gives

27 dx 2 dy 2 2m > — 2w
L \/(E) +<E> dt = [ VAcos 2t + A4St dt = [ 24t = 4w

[ Notice that the integral gives twice the arc length of the circle because ast increases
from O to 27, the point (sin 2t, cos 2t) traverses the circle twice. In general, when find-
ing the length of a curve C from a parametric representation, we have to be careful to
ensure that C istraversed only once ast increases from « to . [ |

1 IETYTEIE Find the length of one arch of the cycloid x = r (0 — sin6),
y = r(1 — cos#).

SOLUTION From Example 3 we see that one arch is described by the parameter interval
0 < 6= 27 Since

dx _ dy
a0 r(1 — cosb) and a0 rsing
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The result of Example 5 says that the length of
one arch of a cycloid is eight times the radius of
the generating circle (see Figure 5). This was first
proved in 1658 by Sir Christopher Wren, who
later became the architect of St. Paul’s Cathedral
in London

y

FIGURE 5

we have

LG ()

= fOZW\/rZ(l — cosf)? + rzsinZd de

= jo% Jr2(1 — 2cosf + cos?6 + sin?f) do

=r fozv V2(1 = cos6) do

To evaluate this integral we use the identity sin>x = 3(1 — cos 2x) with # = 2x, which
gives1 — cos § = 2sin%(6/2). Since0 < 9 < 27, wehave0 < /2 < wand so
sin(6/2) = 0. Therefore

V2(1 — cos6) = /4 sin2(6/2) = 2|sin(6/2)| = 2 sin(6/2)
and so L=2r foqusin(O/Z) do = 2r[—2 cos(0/2)]§”

=2r[2+ 2] =8r -

I Surface Area

In the same way as for arc length, we can adapt Formula 8.2.5 to obtain a formula for
surface area. If the curve given by the parametric equationsx = f(t),y = g(t), a < t < B,
is rotated about the x-axis, where f’, g’ are continuous and g(t) = O, then the area of the
resulting surface is given by

e R

The general symbolicformulasS = | 27y dsand S = | 27x ds (Formulas8.2.7 and 8.2.8)
are still valid, but for parametric curves we use

dx \? dy \?
= —_— + —_—
(&) (5

[E70ZTE  Show that the surface area of asphere of radiusr is 47r2.

SOLUTION The sphere is obtained by rotating the semicircle
X = rcost y=rsint Ost=snw

about the x-axis. Therefore, from Formula 6, we get

S = J‘OW27T|’ snt/(—=rsint? + (r cost)2dt

= waoﬂrsint«/rz(sinZt + cos?t) dt = 27-rfoﬂrsint - rdt

= Zwrzfoﬁsintdt = Zwrz(—cost)]g = 4qr? [ ]
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m Exercises

1-2 Find dy/dx. A 23-24 Graph the curve in aviewing rectangle that displays all
1. x=tsint, y=t>+t 2. x=1t y=te! the important aspects of the curve.

23 x=t*—2t3-2t% y=t3 -1t

3-6 Find an equation of the tangent to the curve at the point
corresponding to the given value of the parameter.

I x=1+4t—1t? y=2—-1% t=1

2. x=t*+4t°—8t3 y=22-1t

25. Show that the curve x = cost, y = sint cost has two

x=t—t?' y=1+1t% t=1 tangents at (0, 0) and find their equations. Sketch the curve.
5. x=tcost, y=tsint; t=m 26. Graphthecurvex = cost + 2cos2t,y = sint + 2sin2tto
6. x = §n%6, y=cos%; 6=m/6 discover where it crosses itself. Then find equations of both
tangents at that point.
7-8 Find an equation of the tangent to the curve at the given 21. (3) Find the slope of the tangent line to the trochoid
point by two methods: (a) without eliminating the parameter and X=1r6— d sng,y=r-— dcos 6 interms of 6. (See
(b) by first eliminating the parameter. Exercise 40 in Section10.1)
) (b) Show that if d < r, then the trochoid does not have a
7.x=1+Int, y=1t*+2; (1,93 vertical tangent.
8.x=1+t, y=e (29 28. (a) Find the slope of the tangent to the astroid x = a cos®6,
y = asin®ginterms of . (Astroids are explored in the
9-10 Find an equation of the tangent(s) to the curve at the given Laboratory Project on page 668.)
point. Then graph the curve and the tangent(s). (b) At what points is the tangent horizontal or vertical?

At wh i h h lor —1?
0. x=6snt, y=t2+t (0,0 (c) At what points does the tangent have slope 1 or

; — 913 \ — _ 32
10, X = coSt + cos2t, y=sint+sn2t: (—1,1) 29. At what pointson the curvex = 2t% y = 1 + 4t — t* does

the tangent line have slope 1?

11-16 Find dy/dx and d?y/dx2 For which values of t isthe 30. Find equations of the tangents to the curve x = 3t* + 1,
curve concave upward? y = 2t* + 1 that pass through the point (4, 3).

M x=t2+1 y=t>+t 120 x=t3+1 y=t>—t 31. Use the parametric equations of an ellipse, x = a cos 6,
y =bsin#, 0= 6 < 27, tofind the area that it encloses.
13. x=¢!, y=te! 14. x=t>+1 y=e'—1
. 32. Find the area enclosed by the curvex = t? — 2t,y = /t and
15. x =2sint, y=3cost, 0<t<2mw the y-axis.
16. x=cos2t, y=cost, O<t<m 33. Find the area enclosed by the x-axis and the curve

x=1+¢e\y=t—t2

17-20 Find the points on the curve where the tangent is horizon-
tal or vertical. If you have a graphing device, graph the curve to
check your work.

17.x=t*-3t, y=t>-3
18. x =t3—3t, y=13— 3t

34. Find the area of the region enclosed by the astroid
X = acos®f, y = asin®0. (Astroids are explored in the Labo-
ratory Project on page 668.)

19. x = cosf, y = cos30

20. x =S,y =g

A4 21. Use agraph to estimate the coordinates of the rightmost point
onthecurvex =t — t% y = e'. Then use calculus to find the
exact coordinates.

{4 22. Use agraph to estimate the coordinates of the lowest point
and the leftmost point on the curve x = t* — 2t,y =t + t* 35. Find the area under one arch of the trochoid of Exercise 40 in
Then find the exact coordinates. Section 10.1 for the cased < r.

Graphing calculator or computer required Computer algebra system required 1. Homework Hints available at stewartcal culus.com
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36. Let R be the region enclosed by the loop of the curvein
Example 1.
(@) Find the area of %R.
(b) If % isrotated about the x-axis, find the volume of the
resulting solid.
(c) Find the centroid of 9.

37-40 Set up an integral that represents the length of the curve.
Then use your calculator to find the length correct to four
decimal places.

3.x=t+e!, y=t—el, 0st<?2
W/ x=t>—t, y=t' 1st<4
39. x=t—2snt, y=1-2cost, O0<t=<dnwr

0. x=t+t, y=t—t, 0<t<1

41-44 Find the exact length of the curve.

M. x=1+3t%4 y=4+2t3 0sts1

2. x=¢'4+e"', y=5-2t, 0st<3

43. x =tsint, y=tcost, O0<t=<1

44. x =3cost —cos3t, y=3sint—sn3t, O0<t<w

{4 45-46 Graph the curve and find its length.

45. x =e'cost, y=e'snt, Ostsnw
4. x = cost + In(tan3t), y=sint, m/4<t=<3m/4
™ 47. Graphthecurvex = sint + sin 1.5t, y = cost and find its

length correct to four decimal places.

48. Find the length of the loop of the curve x = 3t — t3,
y = 3t2

49. Use Simpson’s Rule with n = 6 to estimate the length of the
cuvex =t—e, y=t+e, -6<st<6.

50. In Exercise 43 in Section 10.1 you were asked to derive the

parametric equations x = 2a cot §, y = 2a sin’g for the
curve called the witch of MariaAgnesi. Use Simpson’s Rule
with n = 4 to estimate the length of the arc of this curve
givenby /4 < 0 < /2.

51-52 Find the distance traveled by a particle with position (x, y)
astvariesin the given time interval. Compare with the length of
the curve.

51. x =sin’t, y=cos’t, 0<t=<3x

52. x =cost, y=cost, 0<t<d4nx

53. Show that the total length of the ellipse x = a sin 6,
y=Dbcosh,a>b>0,is

L = 4a foﬂ/zx/l —e2sin29 do
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where e is the eccentricity of the ellipse (e = c/a, where

c=+az-— b2).

54. Find the total length of the astroid x = a cos®d, y = a sin®6,
wherea > 0.
CAS| 55. (a) Graph the epitrochoid with equations
x = 11lcost — 4 cos(11t/2)
y = 11sint — 4sin(11t/2)
What parameter interval gives the complete curve?
(b) Use your CAS to find the approximate length of this
curve,
CAs| 56. A curve called Cornu’s spiral is defined by the parametric

Y
<]

equations
x = C(t) = f; cos(7ru?/2) du

y = S(t) = j; sin(7u%/2) du

where C and S are the Fresnel functions that were introduced
in Chapter 4.
(a) Graph this curve. What happens ast — <« and as
t— —?
(b) Find the length of Cornu’s spiral from the origin to the
point with parameter valuet.

57-60 Set up anintegral that represents the area of the surface
obtained by rotating the given curve about the x-axis. Then use
your calculator to find the surface area correct to four decimal
places.

57. x =tsint, y=tcost, 0st< «/2
58. x = sint, y=s8n2t, 0s<t< 7/2
59. x =1+te', y=(t*+1e!, 0st<1
60. x=t>—1t3 y=t+t% O0st=<1

61-63 Find the exact area of the surface obtained by rotating the
given curve about the x-axis.

61. x =13, y=t>
62. x =3t — t%, y=3t?

o=st=<1
0st<1

63. x =acos’d, y=asn®, 0<6=<mx/2

64. Graph the curve

X = 2 cosf — cos 26 y=2sn60 — sin26

If this curve is rotated about the x-axis, find the area of the
resulting surface. (Use your graph to help find the correct
parameter interval.)

65-66 Find the surface area generated by rotating the given curve
about the y-axis.

65. x =3t%4 y=2t3 0st<5



66.

x=el—t y=4e"? 0=<t<1

67.

68.

69.

If £’ iscontinuousand f'(t) # 0 for a < t < b, show that the
parametric curve x = f(t),y = g(t),a < t < b, can be put in
the form y = F(x). [Hint: Show that f ~* exists]

Use Formula 2 to derive Formula 7 from Formula 8.2.5 for the
case in which the curve can be represented in the form
y=FXx,a<x<h.

The curvature at a point P of acurveis defined as

d¢
ds

K=

where ¢ isthe angle of inclination of the tangent line at P,
as shown in the figure. Thus the curvature is the absolute value
of the rate of change of ¢ with respect to arc length. It can be
regarded as a measure of the rate of change of direction of the
curve at P and will be studied in greater detail in Chapter 13.
(a) For aparametric curve x = x(t), y = y(t), derive the
formula
_ [y - %y
- [X2 + yz ]3/2
where the dots indicate derivatives with respect to t, so
X = dx/dt. [Hint: Use ¢ = tan *(dy/dx) and Formula 2 to
find d¢p/dt. Then use the Chain Rule to find d¢p/ds.]
(b) By regarding acurvey = f(x) as the parametric curve
x = X, y = f(x), with parameter x, show that the formula
in part (a) becomes
_ ldty/ax?]
©T T+ (dy/dxT

y

N
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70. (a) Usethe formulain Exercise 69(b) to find the curvature of
the parabolay = x? at the point (1, 1).
(b) At what point does this parabola have maximum curvature?

. Usethe formulain Exercise 69(a) to find the curvature of the
cycloidx = 6 — sinf,y = 1 — cos# at the top of one of its
arches.

72. (a) Show that the curvature at each point of a straight line
isk=0.
(b) Show that the curvature at each point of a circle of
radiusr is k = 1/r.

73. A string is wound around a circle and then unwound while
being held taut. The curve traced by the point P at the end of
the string is called the involute of the circle. If the circle has
radius r and center O and the initial position of P is (r, 0), and
if the parameter 6 is chosen asin the figure, show that

parametric equations of the involute are
X = r(cosf + 6 sino) y =r(sing — 0 cos6)

y

74. A cow istied to asilo with radius r by arope just long enough
to reach the opposite side of the silo. Find the area available for
grazing by the cow.

Bézier curves are used in computer-aided design and are named after the French mathema-
tician Pierre Bézier (1910-1999), who worked in the automotive industry. A cubic Bézier curve
is determined by four control points, Po(Xo, Yo), P1(X1, Y1), P2(X2, y2), and Ps(Xs, y3), and is
defined by the parametric equations

X = Xo(1 — 1) + 3xt(1 — t)® + 3xt3(1 — t) + xst®

y =Yo(1 — )® + 3y:t(1 — )* + y,t(1 — 1) + yst®

@ Graphing calculator or computer required
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where 0 < t < 1. Notice that when t = 0 we have (X, y) = (Xo, Yo) and whent = 1 we have
(X, y) = (X3, ¥a), so the curve starts at P, and ends at Ps.

1. Graph the Bézier curve with control points Py(4, 1), P1(28, 48), P,(50, 42), and P5(40, 5).
Then, on the same screen, graph the line segments PoP1, P1P», and P,Ps. (Exercise 31 in
Section 10.1 shows how to do this.) Notice that the middle control points P; and P, don't lie
on the curve; the curve starts at Po, heads toward P, and P, without reaching them, and ends
at Ps.

2. From the graph in Problem 1, it appears that the tangent at P, passes through P, and the
tangent at P; passes through P,. Prove it.

3. Try to produce a Bézier curve with aloop by changing the second control point in
Problem 1.

4. Some laser printers use Bézier curves to represent letters and other symbols. Experiment
with control points until you find a Bézier curve that gives a reasonable representation of the
letter C.

5. More complicated shapes can be represented by piecing together two or more Bézier curves.
Suppose the first Bézier curve has control points Po, P1, P2, P3 and the second one has con-
trol points Ps, P4, Ps, Ps. If we want these two pieces to join together smoothly, then the
tangents at P; should match and so the points P,, P3, and P, all have to lie on this common
tangent line. Using this principle, find control points for a pair of Bézier curves that repre-
sent the letter S.

FIGURE 1

(=r, 0)
FIGURE 2

polar axis

A coordinate system represents a point in the plane by an ordered pair of numbers called
coordinates. Usually we use Cartesian coordinates, which are directed distances from two
perpendicular axes. Here we describe a coordinate system introduced by Newton, called
the polar coordinate system, which is more convenient for many purposes.

We choose a point in the plane that is called the pole (or origin) and islabeled O. Then
wedraw aray (half-line) starting at O called the polar axis. Thisaxisisusually drawn hor-
izontally to the right and corresponds to the positive x-axis in Cartesian coordinates.

If P isany other point in the plane, let r be the distance from O to P and let 6 bethe angle
(usually measured in radians) between the polar axis and the line OP asin Figure 1. Then
the point P is represented by the ordered pair (r, #) and r, 6 are called polar coordinates
of P. We use the convention that an angle is positive if measured in the counterclockwise
direction from the polar axis and negative in the clockwise direction. If P = O, thenr = 0
and we agree that (0, 6) represents the pole for any value of 6.

We extend the meaning of polar coordinates (r, 6) to the case in which r is negative by
agreeing that, asin Figure 2, the points (—r, #) and (r, 6) lie on the sameline through O and
at the same distance | r | from O, but on opposite sidesof O. If r > 0, the point (r, ) liesin
the same quadrant as 6; if r < O, it lies in the quadrant on the opposite side of the pole.
Notice that (—r, 0) represents the same point as (r, 6 + ).

70N Plot the points whose polar coordinates are given.
(@ (1,57/4) (b) (2, 3m) (© (2, —27/3) (d) (=3,37/4)
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SOLUTION The points are plotted in Figure 3. In part (d) the point (—3, 37/4) is located
three units from the pole in the fourth quadrant because the angle 37/4 isin the second
quadrant and r = —3 is negative.

3w
£
N

(2,3)

0

In the Cartesian coordinate system every point has only one representation, but in the
polar coordinate system each point has many representations. For instance, the point
(1, 57/4) in Example 1(a) could be written as (1, —37/4) or (1, 137/4) or (—1, 7/4). (See
Figure4.)

In fact, since acomplete counterclockwise rotation is given by an angle 247, the point rep-

resented by polar coordinates (r, 0) is also represented by
(r, 8 + 2nm) and (=r,06+ 2n + H)m)
where n is any integer.

The connection between polar and Cartesian coordinates can be seen from Figure 5, in
which the pole corresponds to the origin and the polar axis coincides with the positive
x-axis. If the point P has Cartesian coordinates (x, y) and polar coordinates(r, 6), then, from
the figure, we have

X . y
cosf = — sing ==
r r

and so
(1] X = rcosf y=rsin6

Although Equations 1 were deduced from Figure 5, which illustrates the case where
r>0and0 < 0 < /2, these equations are valid for all values of r and 6. (See the gen-
eral definition of sin# and cos 6 in Appendix D.)

Equations 1 alow usto find the Cartesian coordinates of a point when the polar coordi-
nates are known. To find r and 6 when x and y are known, we use the equations



680 CHAPTER 10 PARAMETRIC EQUATIONS AND POLAR COORDINATES

FIGURE 6

(2] r2=x2+y? tan0=%

which can be deduced from Equations 1 or simply read from Figure 5.

[E7ZTF Convert the point (2, 7r/3) from polar to Cartesian coordinates.
SOLUTION Since r = 2 and § = /3, Equations 1 give

T 1
X=rcosf=2cos—=2-—=1
3 2

w

— 1 =2s5in—=2+ — =
Yy rsiné 3|n3 2 V3

Therefore the point is (1, \/37) in Cartesian coordinates. L

[E7EEE] Represent the point with Cartesian coordinates (1, —1) in terms of polar
coordinates.

SOLUTION If we choose r to be positive, then Equations 2 give

=Ry = VT E (I =2

tang=2 = -1
X

Since the point (1, —1) lies in the fourth quadrant, we can choose 6§ = — /4 or
6 = 7/4. Thus one possible answer is (y2, —/4); another is (v2, 7/4). [

NOTE Equations 2 do not uniquely determine 6 when x and y are given because, as 6
increases through the interval 0 < 6 < 277, each value of tan 6 occurs twice. Therefore, in
converting from Cartesian to polar coordinates, it’s not good enough just to find r and 6
that satisfy Equations 2. As in Example 3, we must choose 6 so that the point (r, 6) lies in
the correct quadrant.

[ Polar Curves

The graph of a polar equation r = f(6), or more generally F(r, ) = 0, consists of all
points P that have at least one polar representation (r, 8) whose coordinates satisfy the
equation.

W7 EEENETEE What curve is represented by the polar equation r = 2?

SOLUTION The curve consists of all points (r, ) with r = 2. Since r represents the dis-
tance from the point to the pole, the curve r = 2 represents the circle with center O and
radius 2. In general, the equation r = a represents a circle with center O and radius |a|.
(See Figure 6.) [ |



FIGURE 7
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[E70ZTF Sketch the polar curve 6 = 1.

SOLUTION This curve consists of all points (r, 6) such that the polar angle 6 is 1 radian. It
is the straight line that passes through O and makes an angle of 1 radian with the polar
axis (see Figure 7). Notice that the points (r, 1) on the line with r > 0 are in the first
quadrant, whereas those with r < 0 are in the third quadrant. [

[ EXAMPLE 6

(a) Sketch the curve with polar equation r = 2 cos 6.
(b) Find a Cartesian equation for this curve.

SOLUTION

(a) In Figure 8 we find the values of r for some convenient values of 6 and plot the
corresponding points (r, 6). Then we join these points to sketch the curve, which appears
to be a circle. We have used only values of 6 between 0 and 7, since if we let 6 increase
beyond 7, we obtain the same points again.

0 r=2cos 6

0 2

/6 NE)

/4 NG

/3 1

/2 0

27/3 -1

FIGURE 8 3m/4 -2

Table of values and 57/6 -3
graph of r=2cos 6 ™ -2

(b) To convert the given equation to a Cartesian equation we use Equations 1 and 2.
From x = r cos # we have cos § = x/r, so the equation r = 2 cos 6 becomes r = 2x/r,
which gives

2x=r’=x"+y*> or xX*+y’-2x=0
Completing the square, we obtain

x—1%*+y2=1

which is an equation of a circle with center (1, 0) and radius 1. [
y
P
’
Figure 9 shows a geometrical illustration
that the circle in Example 6 has the equation [
r = 2 cos 6. The angle OPQ is a right angle o) 2 0 x
(Why?) and so r/2 = cos 6.
FIGURE 9
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wIy T

FIGURE 10
r=1+sin @ in Cartesian coordinates,
0602w

1 [ETNTETFA Sketchthe curve r = 1 + sin 6.

SOLUTION Instead of plotting points as in Example 6, we first sketch the graph of

r =1 + sin 6 in Cartesian coordinates in Figure 10 by shifting the sine curve up one
unit. This enables us to read at a glance the values of r that correspond to increasing
values of 6. For instance, we see that as 6 increases from 0 to 7/2, r (the distance from O)
increases from 1 to 2, so we sketch the corresponding part of the polar curve in Figure
11(a). As 6 increases from /2 to ar, Figure 10 shows that r decreases from 2 to 1, so
we sketch the next part of the curve as in Figure 11(b). As 6 increases from 7 to 37/2,
r decreases from 1 to 0 as shown in part (c). Finally, as 6 increases from 377/2 to 2,

r increases from 0 to 1 as shown in part (d). If we let 6 increase beyond 27 or decrease
beyond 0, we would simply retrace our path. Putting together the parts of the curve
from Figure 11(a)—(d), we sketch the complete curve in part (e). It is called a cardioid
because it’s shaped like a heart.

0 0 0

=1~ a=0 o=m > \ \/h*/ 0=2m |
6= 6="=r

(a) (c) (d) (e)

FIGURE 11 Stages in sketching the cardioid r =1 +sin 6

Module 10.3 helps you see how

polar curves are traced out by showing
animations similar to Figures 10—13.

Sketch the curve r = cos 26.

SOLUTION As in Example 7, we first sketch r = cos 26, 0 < 6 < 247, in Cartesian coor-
dinates in Figure 12. As 6 increases from 0 to 7r/4, Figure 12 shows that r decreases
from 1 to 0 and so we draw the corresponding portion of the polar curve in Figure 13
(indicated by @). As 6 increases from 7r/4 to /2, r goes from 0 to —1. This means that
the distance from O increases from 0 to 1, but instead of being in the first quadrant this
portion of the polar curve (indicated by @) lies on the opposite side of the pole in the
third quadrant. The remainder of the curve is drawn in a similar fashion, with the arrows
and numbers indicating the order in which the portions are traced out. The resulting
curve has four loops and is called a four-leaved rose.

r 9:%
i _ 37 9="
! N ® 4
® ® ® N L
N v
Nz
6 o=m 6=0
s s 3m T Sm 3m Im 2m =
4 2 4 4 2 2 P /// \\\
@ ® ® @ 7 N
| yid ® N
FIGURE 12 FIGURE 13

r = co0s 26 in Cartesian coordinates

Four-leaved rose r = cos 26



FIGURE 14

@
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I Symmetry

When we sketch polar curves it is sometimes helpful to take advantage of symmetry. The

following three rules are explained by Figure 14.

(a) If a polar equation is unchanged when @ is replaced by — 6, the curve is symmetric
about the polar axis.

(b) If the equation is unchanged when r is replaced by —r, or when 6 is replaced by
0 + ar, the curve is symmetric about the pole. (This means that the curve remains
unchanged if we rotate it through 180° about the origin.)

(c) If the equation is unchanged when @ is replaced by 7= — 6, the curve is symmetric
about the vertical line 0 = 7/2.

(b) (c)

The curves sketched in Examples 6 and 8 are symmetric about the polar axis, since
cos(—6) = cos 6. The curves in Examples 7 and 8 are symmetric about 6 = /2 because
sin(m — 6) = sin 6 and cos 2(7 — 6) = cos 26. The four-leaved rose is also symmetric
about the pole. These symmetry properties could have been used in sketching the curves.
For instance, in Example 6 we need only have plotted points for 0 < 6 < #/2 and then
reflected about the polar axis to obtain the complete circle.

I Tangents to Polar Curves

To find a tangent line to a polar curve r = f(6), we regard 6 as a parameter and write its
parametric equations as

X =rcos6 = f(6)cos o y=rsing="1(6)sing

Then, using the method for finding slopes of parametric curves (Equation 10.2.1) and the
Product Rule, we have

ﬂ ﬂsin0+ r cos 6

@ d_y:ﬂ: de
ax % ﬂcos¢9—rsin¢9

de de

We locate horizontal tangents by finding the points where dy/d6 = 0 (provided that
dx/d6 # 0). Likewise, we locate vertical tangents at the points where dx/d6 = 0 (pro-
vided that dy/d6 # 0).
Notice that if we are looking for tangent lines at the pole, then r = 0 and Equation 3 sim-
plifies to
dy dr

— =tano if —#0
dx " e
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For instance, in Example 8 we found that r = cos 26 = 0 when 0 = /4 or 37/4. This
means that the lines § = 7r/4 and 6 = 37/4 (or y = x and y = —x) are tangent lines to
r = cos 26 at the origin.

[ EXAMPLE 9|

(a) For the cardioid r = 1 + sin 6 of Example 7, find the slope of the tangent line
when 0 = /3.
(b) Find the points on the cardioid where the tangent line is horizontal or vertical.

SOLUTION Using Equation 3 with r = 1 + sin 6, we have

dr .
—sin @ + rcos 6

dy  do _cosf sinf + (1 + sin@)cosd
dx dr . cos 6 cosd — (1 + sinH)sino
— cosf — rsin @
do
_cosf(l+2sinh)  cosf(l+ 2sinp)

1-2sin20—sind (L +sin@)(1 — 2sing)

(a) The slope of the tangent at the point where 6 = /3 is

dy _cos(m/3)(1 + 2sin(m/3) 1+ 3)

dX [p-rjs (L +sin(w/3))(L — 2sin(a/3) (1 + v/3/2)(1 — V3)
- 1+.3 _1+3 1
T E) e

(b) Observe that

dy _ i g) — _m 37 7= lm

d6—0050(1+25m0)—0 when0—2, > 6 &

ax . o _3m m 5w

E=(1+sm0)(1—23m0)—0 when 0 = 26 6

Therefore there are horizontal tangents at the points (2, m/2), (3, 777/6), (, 1177/6) and
vertical tangents at (3, 77/6) and (2, 57/6). When 6 = 3/2, both dy/d6 and dx,/d6 are
0, so we must be careful. Using I’Hospital’s Rule, we have

. dy , 1+ 2siné . cos 6
lim —= lim —— lim ——————
0—@m/2)~ dX 0—>@m/2- 1 — 2sin @ ) \ —~@w2- 1 + sin 6

cos 0 1 —sin 0
=-—5 lim ————=—=1lim =
3 o~@m2- 1 + sind 3 0—@w/2~ C0S 6
(5,27 | (3, 1) . dy
226 ) |\276 By symmetry, lim — = —o
ysy y —@m/2)* dX

FIGURE 15
Tangent lines for r=1+sin @ Thus there is a vertical tangent line at the pole (see Figure 15). [ |
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NOTE Instead of having to remember Equation 3, we could employ the method used to
derive it. For instance, in Example 9 we could have written

X =rcosf = (1+ sinf)cosh = cosf + ;sin 20

y=rsinf=(1+sinfh)sing=sind + sin?0
Then we have
dy dy/d§ cos6 + 2sinf cosf  cosb + sin 26
dx  dx/d®  —sin@+cos26  —sinf + cos 26

which is equivalent to our previous expression.

I Graphing Polar Curves with Graphing Devices

Although it’s useful to be able to sketch simple polar curves by hand, we need to use a
graphing calculator or computer when we are faced with a curve as complicated as the ones
shown in Figures 16 and 17.

1

FIGURE 16 FIGURE 17
r=sin*(2.40) + cos*2.46) r=sin*(1.26) + cos’(66)

Some graphing devices have commands that enable us to graph polar curves directly.
With other machines we need to convert to parametric equations first. In this case we take
the polar equation r = f(0) and write its parametric equations as

X =rcos 0 = f(0)coso y=rsing="f(6)sind

Some machines require that the parameter be called t rather than 6.

[E70TIETY Graph the curve r = sin(86/5).

SOLUTION Let’s assume that our graphing device doesn’t have a built-in polar graphing
command. In this case we need to work with the corresponding parametric equations,
which are

X = r cos § = sin(86/5) cos 6 y = rsin 6 = sin(86/5) sin 6
In any case we need to determine the domain for 6. So we ask ourselves: How many

complete rotations are required until the curve starts to repeat itself? If the answer
is n, then

_ 8(6 + 2nm) _(80 16n77> .
SIN ———— = = SI 5

sinf — +
5 5 5
and so we require that 16n/5 be an even multiple of . This will first occur when
n = 5. Therefore we will graph the entire curve if we specify that 0 < 0 < 107
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Switching from 6 to t, we have the equations

X = sin(8t/5) cos t y = sin(8t/5) sin t 0<t=<107w
and Figure 18 shows the resulting curve. Notice that this rose has 16 loops. [ |
V| Investigate the family of polar curves given by r = 1 + ¢ sin 6. How

does the shape change as ¢ changes? (These curves are called limagons, after a French
word for snail, because of the shape of the curves for certain values of c.)

SOLUTION Figure 19 shows computer-drawn graphs for various values of c. Forc > 1
there is a loop that decreases in size as ¢ decreases. When ¢ = 1 the loop disappears and

FIGU.RE 18 the curve becomes the cardioid that we sketched in Example 7. For ¢ between 1 and ; the
r=sin(86/3) cardioid’s cusp is smoothed out and becomes a “dimple.” When ¢ decreases from 3 to 0,
In Exercise 53 you are asked to prove analytically e limacon is shaped like an oval. This oval becomes more circular as ¢ — 0, and when
what we have discovered from the graphs in ¢ = 0 the curve is just the circle r = 1.

Figure 19.

c=1.7 c=1 c=0.7 c=0.5 c=0.2

D D) PP
O YD

=0 —0.2 c=-0.5 c=-0.8 c=-1
FIGURE 19 The remaining parts of Figure 19 show that as ¢ becomes negative, the shapes change
Members of the family of in reverse order. In fact, these curves are reflections about the horizontal axis of the corre-
limagons =1+ csin 6 sponding curves with positive c. -

Limacons arise in the study of planetary motion. In particular, the trajectory of Mars, as
viewed from the planet Earth, has been modeled by a limagon with a loop, as in the parts
of Figure 19 with |c| > 1.

m Exercises

1-2 Plot the point whose polar coordinates are given. Then find 4. (a) (_\/j 577/4) (b) (1,5m/2) () (2, —7m/6)
two other pairs of polar coordinates of this point, one with r > 0
and one with r < 0.

5-6 The Cartesian coordinates of a point are given.
1. (a) 2, 7/3) (b) (1, —3m/4) (©) (=1, 7/2) (i) Find polar coordinates (r, 6) of the point, where r > 0

2. (a) (1, 77/4 b) (-3, 7/6 c) (1, -1) and 0 < 0 < 2.
@1 /o O« /9 © (ii) Find polar coordinates (r, 6) of the point, where r < 0

and 0 < 0 < 2.
3-4 Plot the point whose polar coordinates are given. Then find the 5. (a) (2, —2) (b) (_1 ﬁ)
Cartesian coordinates of the point. ( f ) '
6. (a) (3v3,3 b) (1, -2
3 (2) (1, ) © (2. —27/3) (0 (~2.37/4) @ 0 @2

Graphing calculator or computer required 1. Homework Hints available at stewartcalculus.com



7-12 Sketch the region in the plane consisting of points whose
polar coordinates satisfy the given conditions.

.r=1

8.0s<r<2 w<0<37/2
.1r=0, w/d<0<3w/4

0. 1<sr<3, w/6<60<57/6
1M.2<r<3, 57/3<6<7mw/3

12 r=1 w<60<27

SECTION 10.3 POLAR COORDINATES 687

42. r? = cos 46
4. rp=1
46. r =3 + 4cos6

M. r?=9sin 26
43. r =2 + sin 30
45, r =1+ 2cos20

13. Find the distance between the points with polar coordinates
(2, m/3) and (4, 27/3).

14. Find a formula for the distance between the points with polar
coordinates (ry, 6;) and (r,, 6,).

15-20 Identify the curve by finding a Cartesian equation for the
curve.

15. r2=5 16. r = 4sech
18. 0= /3

20. r =tan 6 secH

17. r = 2co0s 0
19. r2cos 26 =1

47-48 The figure shows a graph of r as a function of 0 in Cartesian
coordinates. Use it to sketch the corresponding polar curve.

4. 8.
,
2<
2 A
1 i :
} } } } 0 77 2m 0
0 T 27 0 ol

21-26 Find a polar equation for the curve represented by the given
Cartesian equation.

2. y=2 2. y=x
23. y =1+ 3x 24. 4y? =x
25. x% + y? = 2¢x 26. xy =4

27-28 For each of the described curves, decide if the curve would
be more easily given by a polar equation or a Cartesian equation.
Then write an equation for the curve.

21. (a) A line through the origin that makes an angle of /6 with
the positive x-axis
(b) A vertical line through the point (3, 3)

28. (a) Acircle with radius 5 and center (2, 3)
(b) A circle centered at the origin with radius 4

29-46 Sketch the curve with the given polar equation by first

sketching the graph of r as a function of 6 in Cartesion coordinates.

29. r = —2sino 30. r=1—cosf
31. r =2(1 + cosb) 32 r=1+ 2cos6
3B.r=660=0 3. r=1Ing 6=1
35. r = 45sin 36 36. r = cos 56
37. r=2cos 46 38. r = 3 cos 66
39.r=1-2sin6 4. r=2 +sind

49. Show that the polar curve r = 4 + 2 sec 6 (called a conchoid)
has the line x = 2 as a vertical asymptote by showing that
lim,_ ... x = 2. Use this fact to help sketch the conchoid.

50. Show that the curve r = 2 — csc 6 (also a conchoid) has the
liney = —1 as a horizontal asymptote by showing that
lim,_...y = —1. Use this fact to help sketch the conchoid.

51. Show that the curve r = sin 0 tan 6 (called a cissoid of
Diocles) has the line x = 1 as a vertical asymptote. Show also
that the curve lies entirely within the vertical strip 0 < x < 1.
Use these facts to help sketch the cissoid.

52. Sketch the curve (x? + y?)* = 4x2y2

53. (a) In Example 11 the graphs suggest that the limagon
r =1 + ¢ sin @ has an inner loop when | ¢ | > 1. Prove
that this is true, and find the values of 6 that correspond to
the inner loop.
(b) From Figure 19 it appears that the limacon loses its dimple
when ¢ = ;. Prove this.

54. Match the polar equations with the graphs labeled I-VI. Give
reasons for your choices. (Don’t use a graphing device.)
@r=v6, 0<6<167 (M) r=06> 0<6<167
(c) r = cos(6/3) (d) r=1+ 2cosf
() r=2+sin 30 (f) r=1+ 2sin36

v & H
©©
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55-60 Find the slope of the tangent line to the given polar curve 74. Use a graph to estimate the y-coordinate of the highest points

at the point specified by the value of 6. on the curve r = sin 26. Then use calculus to find the exact
55, r=2sing, 0= /6 56, r=2—sin6 6=m/3 value,
[ 75. Investigate the family of curves with polar equations
5.r=1/6, 6=m 58. r=cos(6/3), 6=m r =1 + ¢ cos 6, where c is a real number. How does the
2
59. r — c0s 26, 0 — /4 60. r— 1+ 2cosh, 06— m/3 shape change as ¢ changes?

{4 76. Investigate the family of polar curves

r=1+ cos"
61-64 Find the points on the given curve where the tangent line

is horizontal or vertical where n is a positive integer. How does the shape change as n

) increases? What happens as n becomes large? Explain the
61. r = 3cos 6 62. r =1 —sin6 shape for large n by considering the graph of r as a function
63. r =1+ coso 64 r=ce’ of 6 in Cartesian coordinates.

71. Let P be any point (except the origin) on the curve r = f(6).
If ¢ is the angle between the tangent line at P and the radial

65. Show that the polar equation r = a sin 6 + b cos 6, where line OP show that

ab # 0, represents a circle, and find its center and radius.

tan ¢ =
66. Show that the curves r = a sinf and r = a cos 6 intersect at dr/d6

right angles. . . .
[Hint: Observe that s = ¢ — 6 in the figure.]

67-72 Use a graphing device to graph the polar curve. Choose

the parameter interval to make sure that you produce the entire
curve.

67. r =1+ 2sin(6/2) (nephroid of Freeth)
68. r = /1 — 0.8sin2%6 (hippopede)

69. r = e""? — 2 cos(46) (butterfly curve)

70. r = |tan@|/*’l (valentine curve)

78. (a) Use Exercise 77 to show that the angle between the tan-
gent line and the radial line is s = 7r/4 at every point on

72. r = sin%(40) + cos(46) the curve r = e’

A (b) Hlustrate part (a) by graphing the curve and the tangent

7. r =1+ cos*™ (PacMan curve)

lines at the points where § = 0 and /2.

73. How are the graphs of r = 1 + sin(# — 7r/6) and (c) Prove that any polar curve r = f(0) with the property that
r =1+ sin(@ — 7/3) related to the graph of r = 1 + sin 0? the angle ¢ between the radial line and the tangent line is
In general, how is the graph of r = f(6 — «) related to the a constant must be of the form r = Ce*’, where C and k
graph of r = f(6)? are constants.

FAMILIES OF POLAR CURVES

In this project you will discover the interesting and beautiful shapes that members of families of
polar curves can take. You will also see how the shape of the curve changes when you vary the
constants.

1. (a) Investigate the family of curves defined by the polar equations r = sin n, where n is a
positive integer. How is the number of loops related to n?
(b) What happens if the equation in part (a) is replaced by r = |sin n6|?

2. Afamily of curves is given by the equations r = 1 + csin n6, where c is a real number and
n is a positive integer. How does the graph change as n increases? How does it change as ¢
changes? Illustrate by graphing enough members of the family to support your conclusions.

Graphing calculator or computer required
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3. Afamily of curves has polar equations

— 1—acosé
1+ acos6

Investigate how the graph changes as the number a changes. In particular, you should identify
the transitional values of a for which the basic shape of the curve changes.

4. The astronomer Giovanni Cassini (1625-1712) studied the family of curves with polar
equations

r* —2c?r?cos260 + c* —a*=0

where a and c are positive real numbers. These curves are called the ovals of Cassini even
though they are oval shaped only for certain values of a and c. (Cassini thought that these
curves might represent planetary orbits better than Kepler’s ellipses.) Investigate the variety of
shapes that these curves may have. In particular, how are a and c related to each other when
the curve splits into two parts?

m Areas and Lengths in Polar Coordinates

/2

FIGURE 1

FIGURE 2

FIGURE 3

In this section we develop the formula for the area of a region whose boundary is given by
a polar equation. We need to use the formula for the area of a sector of a circle:

(1] A =310

where, as in Figure 1, r is the radius and 6 is the radian measure of the central angle.
Formula 1 follows from the fact that the area of a sector is proportional to its central angle:
A = (6/2m)mr? = ;r%0. (See also Exercise 35 in Section 7.3.)

Let % be the region, illustrated in Figure 2, bounded by the polar curve r = f(0)
and by the rays 6 = a and 6 = b, where f is a positive continuous function and where
0 <b — a =< 27 We divide the interval [a, b] into subintervals with endpoints 6o,
01, 6, ..., 6,and equal width A6. The rays 6 = 6; then divide QR into n smaller regions
with central angle A9 = 6; — 6;_;. If we choose 6} in the ith subinterval [6;_1, 6], then
the area AA, of the ith region is approximated by the area of the sector of a circle with cen-
tral angle A6 and radius f(60;). (See Figure 3.)

Thus from Formula 1 we have

AA =3[ F(61)]? A0

and so an approximation to the total area A of R is
n
[2] A=Y 3[f(61)] A6
i=1

It appears from Figure 3 that the approximation in improves as n — . But the sums
in [2] are Riemann sums for the function g(6) = 3[ f(6)]2 so

lim 3 {1007 A0 = [P 10T oo
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=C0S2 —
r 6 0 i

FIGURE 4

FIGURE 5

It therefore appears plausible (and can in fact be proved) that the formulafor the area A of
the polar region R is

3] A= Lb%[f(e)]zdo

Formula 3 is often written as

[4] Ajzrde

with the understanding that r = f(6). Note the similarity between Formulas 1 and 4.
When we apply Formula 3 or 4 it is helpful to think of the area as being swept out by a
rotating ray through O that starts with angle a and ends with angle b.

1 IEXETFEN Find the area enclosed by one loop of the four-leaved rose r = cos 26.

SOLUTION Thecurver = cos 26 was sketched in Example 8 in Section 10.3. Notice
from Figure 4 that the region enclosed by the right loop is swept out by aray that rotates
from 0 = —x/4 to 0 = w/4. Therefore Formula 4 gives

A= FM lr2dg =1 f/; c0s2260dh = J‘;T/A cos220 do

T/ 4

A=fo”/4§(1+cos40)d0=%[0+%sin4e]§/“=% —

7 [E7XTEITFA Find the area of the region that liesinside the circler = 3 sin 6 and out-
sidethe cardioidr = 1 + siné.

SOLUTION The cardioid (see Example 7 in Section 10.3) and the circle are sketched in
Figure 5 and the desired region is shaded. The values of a and b in Formula 4 are deter-
mined by finding the points of intersection of the two curves. They intersect when
3sing = 1 + sin, which givessing = 3, so § = 7/6, 57/6. The desired area can be
found by subtracting the area inside the cardioid between 6 = 77/6 and 0 = 57/6 from
the areainside the circle from 7/6 to 57/6. Thus
A= js”/e (3sin6)2d6 — f”/ﬁ(l + sing)2de
Since the region is symmetric about the vertical axis 6 = /2, we can write
_ 1 (/2 .o 1 /2 . .5
A= 2[2L/6 9sin20 do ZL/B (1+ 2sin6 + sn e)do]
- j’;/:(ssin% —1-2sing)do

= r;/: (3—4cos20 — 2sin6) db [because sin?0 = (1 — cos 26)]

=360 — 2sin26 + 2cos(9]7,/6 [ |
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Example 2 illustrates the procedure for finding the area of the region bounded by two
polar curves. In general, let R be aregion, as illustrated in Figure 6, that is bounded by
curveswith polar equationsr = f(6),r = g(6), 0 = a,and 6 = b, where f(0) = g(#) = 0
and 0 < b — a < 27. Thearea A of R is found by subtracting the areainside r = ¢(6)
from the areainside r = f(6), so using Formula 3 we have

A= [73HO1do — ["3lg(0))2do
=3[ ([FOF — [g(0)T?) do

CAUTION The fact that a single point has many representations in polar coordinates
sometimes makes it difficult to find all the points of intersection of two polar curves. For
instance, it is obvious from Figure 5 that the circle and the cardioid have three points of
intersection; however, in Example 2 we solved the equationsr = 3sinfandr = 1 + siné
and found only two such points, (% 77/6) and (g 577/6). Theoriginisalso apoint of inter-
section, but we can't find it by solving the equations of the curves because the origin has
no single representation in polar coordinates that satisfies both equations. Notice that, when
represented as (0, 0) or (0, ), the origin satisfiesr = 3sin# and so it lies on the circle;
when represented as (0, 377/2), it satisfiesr = 1 + sinf and so it lies on the cardioid.
Think of two points moving along the curves as the parameter value 60 increases from 0 to
27r. Ononecurvetheoriginisreached at # = 0 and 6 = ; on the other curveit isreached
at 6 = 37/2. The points don't collide at the origin because they reach the origin at differ-
ent times, but the curves intersect there nonethel ess.

Thus, to find all points of intersection of two polar curves, it is recommended that you
draw the graphs of both curves. It is especialy convenient to use a graphing calculator or
computer to help with this task.

[E7YZTE] Find al points of intersection of the curvesr = cos20 and r = 3.

SOLUTION If we solve the equations r = cos 26 and r = 3, we get cos 20 = 3 and, there-
fore, 20 = 7/3, 57/3, 77/ 3, 117/3. Thus the values of 6 between 0 and 27 that satisfy
both equations are # = /6, 57/6, 77/6, 117/6. We have found four points of inter-
section: (3, 7/6), (3, 57/6), (3, 77/6), and (3, 117/6).

However, you can see from Figure 7 that the curves have four other points of inter-
section—namely, (3, 7/3), (3, 27/3), (3, 47/3), and (3, 57/3). These can be found using
symmetry or by noticing that another equation of the circleisr = —3 and then solving

the equationsr = cos 260 andr = —3. _—

I Arc Length

To find the length of a polar curver = f(0), a < 6 < b, we regard 6 as a parameter and
write the parametric equations of the curve as

X =r cosf = f(0)coso y=rsing=f(0)sino
Using the Product Rule and differentiating with respect to 6, we obtain

d—X=£coso—rsin0 d—y=£sin0+rcoso9
do  dé do  dé
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S0, using cos®d + sin’g = 1, we have

ax 2+ dy)*_ (dr 2cos,zf)— 2r£coso sin® + r’sin?g
de de de de

+ ar 2sinzﬁ? + 2r ar sin@ cosé + r?cos?6
do do

— ﬂ 2+ r2
dé
Assuming that f’ is continuous, we can use Theorem 10.2.5 to write the arc length as
b dx \2 dy \?
L= — ) + (=) do
(&) (&)

Therefore the length of a curve with polar equationr = f(6),a< 6 < b, is

8 L=Lb,/r2+<j—;>2 do

V| Find the length of the cardioidr = 1 + siné.

SOLUTION The cardioid is shown in Figure 8. (We sketched it in Example 7 in
Section 10.3.) Itsfull length is given by the parameter interval 0 < 6 < 27, SO
Formula 5 gives

_ 2 2 ﬂz _ 2 0 > 2
L L r +(d0> de fo V(1 + sin 6)2 + cos20 do

- foz’l/z ¥ 2sn0 do

We could evaluate this integral by multiplying and dividing the integrand by

FIGURE 8 /2 — 2sin@, or we could use a computer algebra system. In any event, we find that the
r=1+sné length of the cardioid isL = 8. [ |
m Exercises

1-4 Find the area of the region that is bounded by the given curve 5-8 Find the area of the shaded region.

and lies in the specified sector. 5. 6.

Lr=e % xm/2<60<m

2 r=cosf, 0<6<mw/6

3.r2=9sn26, r=0 0<6<mx/2

4. r=tanh, w/6<60<m/3

=

r=+/0 r=1+cos6f

ﬁ Graphing calculator or computer required 1. Homework Hints available at stewartcal culus.com



r=4+3sné r=sin26

9-12 Sketch the curve and find the area that it encloses.
9. r=2sn6 10. r=1—-sno

M. r =3+ 2cosh 12 r=4+ 3sin6

13-16 Graph the curve and find the area that it encloses.

13. r=2+sin46

15. r = /1 + cos?(50)

14. r = 3 — 2cos46
16. r=1+ 5sin660

17-21 Find the area of the region enclosed by one loop of

the curve.
17. r = 4 cos 30 18. r2=1sin26
19. r = sin46 20. r=2sn59

21. r =1+ 2sin # (inner loop)

22. Find the area enclosed by the loop of the strophoid
r=2cosf — sech.

23-28 Find the area of the region that lies inside the first curve
and outside the second curve.

23. r =2cosh, r=1 2. r=1—-sn6g, r=1
25. r2=8c0s20, r=2

26. r=2+snh, r=3sno

21. r = 3cosH, r=1+ cosé

28.r =3sinh, r=2—snb

29-34 Find the area of the region that lies inside both curves.

29. r = /3 cosf, r=sng
30. r=1+cosf, r=1-— cosé
31. r=s8n20, r = cos20

322 r=3+2cosh, r=3+ 2snh

33. r2=1sin20, r?= cos20

3. r=asing, r=bcosh, a>0 b>0
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36.

693
. Find the areainside the larger loop and outside the smaller
loop of the limagon r = 3 + cosé.

. Find the area between a large loop and the enclosed small
loop of the curver = 1 + 2 cos36.

37-42 Find al points of intersection of the given curves.

a.
42.

.r=14+sn6, r=3sno

.r=1-cosf, r=1+sn6

. r=2sn20, r =1

. r=cos30, r=sn30
r=sn6, r=sn26
r2=sn2, r?=cos20

Al a3

44

. The points of intersection of the cardioidr = 1 + sinf and
the spiral loop r = 26, —7/2 < 6 < /2, can’'t be found
exactly. Use a graphing device to find the approximate values
of 6 at which they intersect. Then use these values to esti-
mate the area that lies inside both curves.

. When recording live performances, sound engineers often use
amicrophone with a cardioid pickup pattern because it sup-
presses noise from the audience. Suppose the microphone is
placed 4 m from the front of the stage (as in the figure) and
the boundary of the optimal pickup region is given by the
cardioid r = 8 + 8sin6, wherer is measured in meters and
the microphone is at the pole. The musicians want to know
the area they will have on stage within the optimal pickup
range of the microphone. Answer their question.

stage

12m

\\_Jg/
microphone

audience

45-48 Find the exact length of the polar curve.

45, r=2cosh, O0<6O=<m

46. r = 5°,
41. r = 62,

0=<0=<27

O0=<6=<27

48. r = 2(1 + cos®b)

{4 49-50 Find the exact length of the curve. Use agraph to
determine the parameter interval.

49, r = cos*(6/4)

50. r = cos¥(6/2)
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51-54 Use acalculator to find the length of the curve correct to (where ' iscontinuous and 0 < a < b < 7) about the
four decimal places. If necessary, graph the curve to determine the polar axisis

parameter interval.

51. One loop of the curver = cos 26
52. r =tanh, w/6<60< 7/3

53. r = sin(6sing)

54. r = sin(6/4)

—_(° ; 2 dr ?
S = Ja 2wrsing 4 re+ <d0> de
(b) Use the formulain part (8) to find the surface area
generated by rotating the lemniscate r? = cos 26 about the
polar axis.

56. (a) Find aformulafor the area of the surface generated by

55. (a) Use Formula 10.2.6 to show that the area of the surface rotating the polar curver = f(6), a < 6 < b (where f" is
generated by rotating the polar curve continuousand 0 < a < b < 7), about theline = /2.

(b) Find the surface area generated by rotating the lemniscate

r=1(6) a<6<b r2 = cos 26 about theline = /2.

m Conic Sections

FIGURE 1
Conics

directrix

vertex

FIGURE 2

In this section we give geometric definitions of parabolas, ellipses, and hyperbolas and
derive their standard equations. They are called conic sections, or conics, because they
result from intersecting a cone with a plane as shown in Figure 1.

I Parabolas

A parabola is the set of pointsin a plane that are equidistant from a fixed point F (called
the focus) and afixed line (called the directrix). This definition isillustrated by Figure 2.
Notice that the point halfway between the focus and the directrix lies on the parabolg; it is
called the vertex. The line through the focus perpendicular to the directrix is called the axis
of the parabola.

In the 16th century Galileo showed that the path of a projectile that is shot into
the air at an angle to the ground is a parabola. Since then, parabolic shapes have been
used in designing automobile headlights, reflecting tel escopes, and suspension bridges. (See
Problem 16 on page 196 for the reflection property of parabolas that makes them so useful.)

We obtain a particularly simple equation for a parabola if we place its vertex at the
origin O and its directrix parallel to the x-axis as in Figure 3. If the focus is the point
(0, p), then the directrix has the equation y = —p. If P(x, y) is any point on the parabola,



F(Ovp)l

P(x,y)

FIGURE 3
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then the distance from P to the focusis
[PF| = Vx> +(y = pp?

and the distance from P to the directrix is |y + p|. (Figure 3 illustrates the case where
p > 0.) The defining property of a parabolais that these distances are equal:

VXE+H(y = pZ =y +p]
We get an equivalent equation by squaring and simplifying:
X2+ (y—p?r=ly+pP=(+p?
X* +y? = 2py + p?=y*+ 2py + p°
x? = 4py

[1] An equation of the parabola with focus (0, p) and directrix y = —p is
x* = 4py

If wewritea = 1/(4p), then the standard equation of a parabola [1] becomesy = ax?

It opens upward if p > 0 and downward if p < O [see Figure 4, parts (a) and (b)]. The

graph is symmetric with respect to the y-axis because [ 1] is unchanged when x is replaced
by —x.

y y y

(@ x*=4py,p>0

FIGURE 4

FIGURE 5

IRV

» (0, p) x=—p x=—p

(b) x*=4py, p<0 (©) y*=4px,p>0 (d) y*=4dpx, p<0

If we interchange x and y in [1], we obtain

[2] y? = 4px

which isan equation of the parabolawith focus (p, 0) and directrix x = —p. (Interchanging
x and y amounts to reflecting about the diagonal liney = x.) The parabola opensto the right
if p > Oandtotheleftif p < O[seeFigure4, parts(c) and (d)]. In both casesthe graphis
symmetric with respect to the x-axis, which is the axis of the parabola

[E7YZTF] Find the focus and directrix of the parabolay? + 10x = 0 and sketch
the graph.

SOLUTION If we write the equation asy? = —10x and compare it with Equation 2, we see
that 4p = —10,s0 p = —3. Thusthefocusis (p, 0) = (-3, 0) and the directrix isx = 3.
The sketch is shown in Figure 5. [ |
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y

(=a,0)

(—c,0) 0 ¢ (.0 x
(0’_17)
FIGURE 8
2 2
%+%=1,a2b

I Ellipses

An ellipse isthe set of points in a plane the sum of whose distances from two fixed points
F, and F, is a constant (see Figure 6). These two fixed points are called the foci (plural of
focus). One of Kepler'slawsisthat the orbits of the planetsin the solar system are ellipses
with the sun at one focus.

y
| —— %
[':](_C, 0) 0 FZ(C’ E)) X
FIGURE 6 FIGURE 7

In order to obtain the ssimplest equation for an ellipse, we place the foci on the x-axis at
thepoints(—c, 0) and (c, 0) asin Figure 7 so that the origin is halfway between thefoci. Let
the sum of the distances from a point on the ellipse to the foci be 2a > 0. Then P(x, y) isa
point on the ellipse when

|PF1’ + |PF2‘ = 2a

that is, Jx+c)2+y2+J/(x—c2+y2=2a
or Jx—c)2+y2=2a—J(x+c2+y2

Squaring both sides, we have
X2 — 2cx + c2 4+ y2=4a? — 4a/(x + )2 + y? + X2+ 2cx + c2 + y?

which simplifiesto av/(x +¢)2+y2 =a? + cx

We sguare again:
a?(x? + 2cx + ¢? + y?) = a* + 2a%x + cX?

which becomes (@2 —c?)x?+ a?y*=a*a®* — c¢?

From triangle F;F,P in Figure 7 we see that 2c < 2a, so ¢ < a and therefore
a% — ¢2 > 0. For convenience, let b?> = a® — ¢2 Then the equation of the ellipse becomes
b2x? + a%y? = a®?or, if both sides are divided by a®h?,

y
IE] —+F=1

Since b? = a? — c? < a?, it follows that b < a. The x-intercepts are found by setting
y = 0. Then x?/a? =1, or x> = a? so x = *a. The corresponding points (a, 0) and
(—a, 0) are called the vertices of the ellipse and the line segment joining the vertices
is called the major axis. To find the y-intercepts we set x = 0 and obtain y> = b2, so
y = *=b. The line segment joining (0, b) and (0, —b) is the minor axis. Equation 3 is
unchanged if x isreplaced by —x or y isreplaced by —y, so the ellipse is symmetric about
both axes. Notice that if the foci coincide, thenc = 0, so a = b and the ellipse becomes a
circlewithradiusr = a = b.
We summarize this discussion as follows (see also Figure 8).



(0,a)
0,0)
(=b,0) (b,0)
0 X

(07 _C)
(07 7(1)

FIGURE 9

2 y2

p + ? =1,a=b

FIGURE 10
9x*+16y* =144

FIGURE 11
P is on the hyperbola when
|PF,| — |PF,| = *=2a.
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(4] Theellipse
2 2
%+%=1 a=b>0

has foci (*c, 0), wherec? = a? — b?, and vertices (+a, 0).

If thefoci of an ellipse are located on the y-axis at (0, =c), then we can find its equation
by interchanging x and y in [4]. (See Figure 9.)

(5] Theellipse
X2 y2
F-l-?:l a=b>0

has foci (0, =c), wherec? = a? — b?, and vertices (0, *a).

I BT Sketch the graph of 9x? + 16y? = 144 and locate the foci.
SOLUTION Divide both sides of the equation by 144:

XZ

— +

16 9
The equation is now in the standard form for an ellipse, so we havea? = 16, b2 = 9,
a = 4, and b = 3. The x-intercepts are =4 and the y-intercepts are =3. Also,
c®=a2—-b?=7,50c = /7 and thefoci are (++/7, 0). The graph is sketched in
Figure 10. [ |

7 IEXYETEE] Find an equation of the ellipse with foci (0, +2) and vertices (0, +3).

SOLUTION Using the notation of [5], we havec = 2 and a = 3. Then we obtain
b?2=a? — c?=9 — 4 = 5, soan equation of the ellipseis
X2 oy
—t+=—=1
5 9

Another way of writing the equation is 9x? + 5y? = 45, [

Like parabolas, ellipses have an interesting reflection property that has practical conse-
guences. If a source of light or sound is placed at one focus of a surface with elliptical
cross-sections, then all the light or sound is reflected off the surface to the other focus (see
Exercise 65). Thisprincipleisused in lithotripsy, atreatment for kidney stones. A reflector
with elliptical cross-section is placed in such away that the kidney stone is at one focus.
High-intensity sound waves generated at the other focus are reflected to the stone and
destroy it without damaging surrounding tissue. The patient is spared the trauma of surgery
and recovers within afew days.

I Hyperbolas

A hyperbola isthe set of al pointsin a plane the difference of whose distances from two

fixed points F; and F, (the foci) isaconstant. This definition isillustrated in Figure 11.
Hyperbolas occur frequently as graphs of equations in chemistry, physics, biology, and

economics (Boyle's Law, Ohm'’s Law, supply and demand curves). A particularly signifi-
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cant application of hyperbolasisfound in the navigation systems devel oped in World Wars
| and Il (see Exercise 51).

Notice that the definition of a hyperbolais similar to that of an ellipse; the only change
is that the sum of distances has become a difference of distances. In fact, the derivation of
the equation of ahyperbolaisalso similar to the one given earlier for an ellipse. It isleft as
Exercise 52 to show that when thefoci are on the x-axis at (*c, 0) and the difference of dis-
tancesis | PF.| — |PF,| = *2a, then the equation of the hyperbolais

X2 2

a P

where ¢ = a? + b2 Notice that the x-intercepts are again +a and the points (a, 0) and
(—a, 0) are the vertices of the hyperbola. But if we put x = 0 in Equation 6 we get
y2 = —b? whichisimpossible, so thereisno y-intercept. The hyperbolais symmetric with
respect to both axes.

To analyze the hyperbolafurther, we look at Equation 6 and obtain

y2

=1t

a

2
x2 =1
This shows that x2 = a2, so | x| = 4/x? = a. Therefore we have x = a or x < —a. This
means that the hyperbola consists of two parts, called its branches.

When we draw ahyperbolait isuseful to first draw itsasymptotes, which are the dashed
linesy = (b/a)x and y = —(b/a)x shown in Figure 12. Both branches of the hyperbola
approach the asymptotes; that is, they come arbitrarily close to the asymptotes. [ See Exer-
cise 73 in Section 4.5, where these lines are shown to be slant asymptotes.]

The hyperbola
XZ y2
PO
FIGURE 12
2y has foci (+c, 0), wherec? = a? + b?, vertices (+a, 0), and asymptotes
a& b y = *=(b/a)x.

If the foci of a hyperbola are on the y-axis, then by reversing the roles of x and y we
obtain the following information, which isillustrated in Figure 13.

The hyperbola

has foci (0, +c), where c? = a? + b?, vertices (0, +a), and asymptotes

FIGURE 13 y = =@/bx

yZ xZ

< 2=

a b [E7YZT Find the foci and asymptotes of the hyperbola9x? — 16y? = 144 and sketch

its graph.



FIGURE 14
x> —16y> =144

/

FIGURE 15
Ox?—4y*—72x+8y+176=0

SECTION 10.5 CONIC SECTIONS 699

SOLUTION If we divide both sides of the equation by 144, it becomes

X y?2
R
9

2
16
which is of the form given in [7] witha = 4and b = 3. Sincec? = 16 + 9 = 25, the

foci are (=5, 0). The asymptotes are the linesy = Sx andy = — $x. The graph is shown
in Figure 14. [ |

[E70ZT Find the foci and equation of the hyperbolawith vertices (0, 1) and asymp-
totey = 2x.

SOLUTION From [8] and the given information, we seethat a = 1 and a/b = 2. Thus
b=a/2=3andc’=a’ + b? =3 Thefoci are (0, +/5/2) and
the equation of the hyperbolais

y2—4x?=1 [

I Shifted Conics

Asdiscussed in Appendix C, we shift conics by taking the standard equations [1], [2], [4],
[5], [7], and [8] and replacing x andy by x — handy — k.

[E7YZT Find an equation of the ellipse with foci (2, —2), (4, —2) and vertices
(1, -2), (5, -2).

SOLUTION The major axisis the line segment that joins the vertices (1, —2), (5, —2)
and has length 4, so a = 2. The distance between the foci is 2, so ¢ = 1. Thus

b? = a? — ¢? = 3. Since the center of the elipseis (3, —2), wereplace x and y in
by x — 3andy + 2to obtain

(x =37  (y+2° _

1
4 3

as the equation of the ellipse. [ |

1 IETETEA Sketch the conic 9x2 — 4y? — 72x + 8y + 176 = 0 and find itsfoci.
SOLUTION We complete the squares as follows:
4(y? — 2y) — 9(x* — 8x) = 176
Ay2—2y + 1) — 9(x2 — 8x + 16) = 176 + 4 — 144
4y —1)2?—9(x —4)*=236

(y-1°  (x—47 _
9 4

1

Thisisin theform |8] except that x and y arereplaced by x — 4andy — 1. Thus
a?=19,b%= 4, and c? = 13. The hyperbolais shifted four units to the right and one
unit upward. The foci are (4, 1 + /13) and (4, 1 — /13) and the vertices are (4, 4) and
(4, —2). The asymptotesarey — 1 = tg(x — 4). The hyperbolais sketched in

Figure 15. [ ]
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m Exercises

1-8 Find the vertex, focus, and directrix of the parabola and sketch 23. 4> —y> — 24x — 4y + 28=0

its graph.
24. y?> — 4x*> — 2y + 16x = 31

1. x? =6y 2. 2y? = bx
. 2x = —y? . 3%+ 8y = . i . o
3 2 y 4 8 =0 25-30 ldentify the type of conic section whose equation is given
5 (x +22?=8(y — 3 6. X — 1= (y + 5)? and find the vertices and foci.
7.y2+2y+12x+25=0 8 y+12x— 2x>= 16 25 x*=y+1 % x*=y*+1
2. x? =4y — 2y? 28. y2— 8y =6x — 16
9-10 Find an equation of the parabola. Then find the focus and 29, y2+ 2y =4x%2+ 3 30. 4x2+ 4x +y*=0
directrix.
9. 5 10. _ : . - :
~ 31-48 Find an equation for the conic that satisfies the given
1= / conditions.
) X b 31. Parabola, vertex (0,0), focus (1, 0)
| —1 0 2 32. Parabola, focus (0, 0), directrixy =6
33. Parabola, focus(—4,0), directrixx =2

34. Parabola, focus (3, 6), vertex (3,2)

11-16 Find the vertices and foci of the ellipse and sketch
its graph. 35. Parabola, vertex (2,3), vertica axis,
2 2 ) ) passing through (1, 5)

LA A 2+
. 2 4 3% 8 36. Parabola, horizontal axis,

assing through (—1, 0), (1, —1), and (3, 1
13. x*+9y>=9 14. 100x* + 36y* = 225 passing through (~1,0), (1. ~1). and 3, 1)
. . . N

15, Ox2 — 18X + 4y? = 27 37. Ellipse, foci (£2,0), vertices(£5,0)

16. X2 + 3y + 2x — 12y + 10 =0 38. Ellipse, foci (0, =5), vertices (0, =13)

39. Ellipse, foci (0, 2), (0, 6), vertices (0, 0), (0, 8)

17-18 Find an eguation of the ellipse. Then find its foci. a0. Ellipse, foci (0, —1), (8, —1), vertex (9, —1)

17. ¥ 18. y .
41. Ellipse, center (—1,4), vertex (—1,0), focus (-1, 6)
] ~
/ \ < 42. Ellipse, foci (+4,0), passing through (—4, 1.8)
1 —1
43. Hyperbola, vertices (+3,0), foci (=5, 0)
o 1 A N~ ? = J
\ / T 44. Hyperbola, vertices (0, +2), foci (0, £5)
45. Hyperbola, vertices (—3, —4), (-3, 6),
foci (=3, =7), (=3,9)
46. Hyperbola, vertices(—1, 2), (7, 2),
19-24 Find the vertices, foci, and asymptotes of the hyperbola and foci (=2, 2), (8,2)
sketch its graph.
) ) ) ) 47. Hyperbola, vertices(+3,0), asymptotesy = *+2x
Yy X _ XY
19 25 9 1 20. 336 64 ! 48. Hyperbola, foci (2, 0), (2, 8),
mptotesy = 3 + 3xandy = 5 — 3x
21. x? — y2 = 100 22. y? — 16x2 = 16 aymprotesy : y §

1. Homework Hints available at stewartcal culus.com



49.

50.

51.

52.

53.

The point in alunar orbit nearest the surface of the moon is
called perilune and the point farthest from the surface is called
apolune. The Apollo 11 spacecraft was placed in an elliptical
lunar orbit with perilune altitude 110 km and apolune altitude
314 km (above the moon). Find an equation of this ellipse if
the radius of the moon is 1728 km and the center of the moon
is at one focus.

A cross-section of a parabolic reflector is shown in the figure.

The bulb is located at the focus and the opening at the focus

is 10 cm.

(a) Find an equation of the parabola.

(b) Find the diameter of the opening | CD
the vertex.

, 11 cm from

C

A

5cm
—11cm—

F
5cm

B\

Vv

D

In the LORAN (LOng RANge Navigation) radio navigation
system, two radio stations located at A and B transmit simulta-
neous signals to a ship or an aircraft located at P. The onboard
computer converts the time difference in receiving these signals
into a distance difference | PA| — | PB|, and this, according to
the definition of a hyperbola, locates the ship or aircraft on one
branch of a hyperbola (see the figure). Suppose that station B is
located 400 mi due east of station A on a coastline. A ship
received the signal from B 1200 microseconds (w.s) before it
received the signal from A.
(a) Assuming that radio signalstravel at a speed of 980 ft/us,
find an equation of the hyperbola on which the ship lies.
(b) If the ship is due north of B, how far off the coastlineis
the ship?

e ] \
transmitting stations \

Use the definition of a hyperbolato derive Equation 6 for a
hyperbola with foci (*c, 0) and vertices (*a, 0).

Show that the function defined by the upper branch of the
hyperbolay?a? — x?/b? = 1 is concave upward.

54.

55.

56.

57.

58.

59.

60.

61.

62.

63.

64.

65.
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Find an equation for the ellipse with foci (1, 1) and (—1, —1)
and magjor axis of length 4.

Determine the type of curve represented by the equation

x? y
k

in each of the following cases: (a) k > 16, (b) 0 < k < 16,

and (c) k < 0.

(d) Show that al the curvesin parts (a) and (b) have the same
foci, no matter what the value of K is.

(a) Show that the equation of the tangent line to the parabola
y2 = 4px at the point (Xo, yo) can be written as

Yoy = 2p(X + Xo)

(b) What is the x-intercept of this tangent line? Use this fact to
draw the tangent line.

Show that the tangent lines to the parabola x? = 4py drawn
from any point on the directrix are perpendicular.

Show that if an ellipse and a hyperbola have the same foci,
then their tangent lines at each point of intersection are
perpendicular.

Use parametric equations and Simpson’s Rule withn = 8 to
estimate the circumference of the ellipse 9x? + 4y? = 36.

The planet Pluto travelsin an elliptical orbit around the sun

(at one focus). The length of the major axisis 1.18 X 10%° km

and the length of the minor axisis 1.14 X 10% km. Use Simp-
son’s Rule with n = 10 to estimate the distance traveled by the
planet during one complete orbit around the sun.

Find the area of the region enclosed by the hyperbola
x?/a? — y*/b? = 1 and the vertical line through a focus.

(@) If an dlipseis rotated about its major axis, find the volume
of the resulting solid.

(b) If it isrotated about its minor axis, find the resulting
volume.

Find the centroid of the region enclosed by the x-axis and the
top half of the ellipse 9x? + 4y? = 36.

(a) Calculate the surface area of the ellipsoid that is generated
by rotating an ellipse about its major axis.

(b) What is the surface area if the ellipse is rotated about its
minor axis?

Let P(x4, y1) be apoint on the ellipse x?/a? + y?/b? = 1 with
foci F1 and F, and let « and 8 be the angles between the lines
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hyperbola. It shows that light aimed at a focus F, of a hyper-

PF., PF, and the ellipse as shown in the figure. Prove that
bolic mirror is reflected toward the other focus F;.)

a = B. This explains how whispering galleries and lithotripsy

work. Sound coming from one focus is reflected and passes y
through the other focus. [Hint: Use the formulain Problem 15
on page 195 to show that tan a = tan B.]
~ P
B
y
T Py F, 0 Fyo

66. Let P(x4, y1) be apoint on the hyperbolax?a? — y?/b? =1
with foci F; and F, and let « and 8 be the angles between
the lines PF;, PF, and the hyperbola as shown in the figure.
Prove that « = B. (Thisisthe reflection property of the

m Conic Sections in Polar Coordinates

In the preceding section we defined the parabolain terms of afocus and directrix, but we
defined the ellipse and hyperbolain terms of two foci. In this section we give a more uni-
fied treatment of all three types of conic sectionsin terms of afocus and directrix. Further-
more, if we place the focus at the origin, then a conic section has a simple polar eguation,
which provides a convenient description of the motion of planets, satellites, and comets.

E] Theorem Let F be afixed point (called the focus) and | be afixed line (called
the directrix) in aplane. Let e be a fixed positive number (called the eccentricity).
The set of al points P in the plane such that

| PF

—=e

PI|

(that is, the ratio of the distance from F to the distance from | is the constant €)
isaconic section. The conic is

(@) andlipseife <1
(b) aparabolaife =1
(c) ahyperbolaife > 1

PROOF Noticethat if the eccentricity ise = 1, then |PF| = | Pl| and so the given condi-
tion simply becomes the definition of a parabola as given in Section 10.5.



[ (directrix)

FIGURE 1
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Let us place the focus F at the origin and the directrix paralel to the y-axis and
d unitsto the right. Thus the directrix has equation x = d and is perpendicular to the
polar axis. If the point P has polar coordinates (r, 6), we see from Figure 1 that

|PF|=r |Pl|=d —rcos@
Thus the condition | PF|/|PI| = e, or |PF| = e|PI |, becomes
[2] r=e(d — rcosé)

If we square both sides of this polar equation and convert to rectangular coordinates,
we get
X2 +y?2=eXd — x)>? =e%d? — 2dx + x?)

or (1 —e?)x?+ 2de* + y? =e%d?

After completing the square, we have

eZd 2 y2 e2d2
+ + =
3] <X 1—e2> 1-e> (1—e??
If e < 1, werecognize Equation 3 as the equation of an ellipse. Infact, it is of the form
(x—h? y?
Tz Tpr !
where
e’d e’d? e’d?
h=—-—— e h? =
[4] 1-—e? a (1 — e?)? 1—e?

In Section 10.5 we found that the foci of an ellipse are at a distance ¢ from the center,
where
e'd?
2_ 32 _p2=
@ ¢ a (1 _ e2)2

2
This shows that c= e’d = —h

and confirms that the focus as defined in Theorem 1 means the same as the focus defined
in Section 10.5. It also follows from Equations 4 and 5 that the eccentricity is given by

e =—
a

If e > 1,then 1 — e? < 0 and we see that Equation 3 represents a hyperbola. Just as we
did before, we could rewrite Equation 3 in the form

(x —h? y?
T2 pr t

and see that

c
e=g where c¢?2=a? + b? -
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By solving Equation 2 for r, we see that the polar equation of the conic shown in Fig-
ure 1 can be written as
o ed
1+ ecosé

If the directrix is chosen to be to the left of thefocusasx = —d, or if the directrix is cho-
sen to be parallel to the polar axisasy = =d, then the polar equation of the conic isgiven
by the following theorem, which isillustrated by Figure 2. (See Exercises 21-23.)

y y
y y
T x=d x=—d / y=d directrix
directrix directrix
F X

F X F X 7 >

/ \ y=—d directrix
- ed o ed L ed L ed

@ 7= 15 cosg O == coss ©r=Tesng @ r=1="gng
FIGURE 2
Polar equations of conics

(6] Theorem A polar equation of the form
ed ed

r=—— or r=——
1=+ ecosb 1*esnd

represents a conic section with eccentricity e. The conicisan ellipseif e < 1,
aparabolaif e = 1, or ahyperbolaif e > 1.

I [E7XTEZEN Find a polar equation for a parabolathat hasits focus at the origin and
whose directrix istheliney = —6.

SOLUTION Using Theorem 6 withe = 1 and d = 6, and using part (d) of Figure 2, we
see that the equation of the parabolais

6
r=——
1-sn6

7 IEXETF A conicisgiven by the polar equation

10

f=—
3 — 2cos6

Find the eccentricity, identify the conic, locate the directrix, and sketch the conic.

SOLUTION Dividing numerator and denominator by 3, we write the equation as
10
3

r=——>5——
1— 5 cosé



10

x=-5 = 32 coso
(directrix) /
//focus
/Q 10,07/
(2, )
FIGURE 3
FIGURE 4
o 12
"T2%4sne

10
L= 32 cos(— m/4)

(=

—6

=5 ‘ 15

10
I =3=2cosh

FIGURE 5
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From Theorem 6 we see that this represents an ellipse withe = 5. Sinceed = %,
we have

so the directrix has Cartesian equation x = —5. When 8 = 0, r = 10; when 6 = ,
r = 2. So the vertices have polar coordinates (10, 0) and (2, 7). The ellipse is sketched
in Figure 3. [ ]

12

Sketch the conicr = —————.
| EXAMPLE 3 >+ 4506

SOLUTION Writing the equation in the form

. 6
1+ 2sné6

we see that the eccentricity ise = 2 and the equation therefore represents a hyperbola.
Sinceed = 6, d = 3 and the directrix has equation y = 3. The vertices occur when

0 = /2 and 37/2, so they are (2, w/2) and (—6, 37/2) = (6, 7/2). It isalso useful to
plot the x-intercepts. These occur when 6 = 0, 7r; in both cases r = 6. For additional
accuracy we could draw the asymptotes. Note that r — =oowhen1 + 2sin — 0" or
0 and1 + 2sinf = Owhensin = —3. Thus the asymptotes are parallel to the rays
0 = 7m/6 and 6 = 117/6. The hyperbola is sketched in Figure 4.

~
(lg) > e —3(di .
y (directrix)
~
7 ~N
/.//::\\_\
- 0 X X
7 60m) O\ 6.0) R
focus >

When rotating conic sections, we find it much more convenient to use polar equations
than Cartesian equations. We just use the fact (see Exercise 73 in Section 10.3) that the
graph of r = f(# — «) isthe graph of r = f(6) rotated counterclockwise about the origin
through an angle a.

V| If the ellipse of Example 2 is rotated through an angle /4 about the ori-
gin, find a polar equation and graph the resulting ellipse.

SOLUTION We get the equation of the rotated ellipse by replacing 6 with 6 — /4 in the
equation given in Example 2. So the new equation is

. 10
3 — 2cos(§ — m/4)

We use this equation to graph the rotated ellipse in Figure 5. Notice that the ellipse has
been rotated about its left focus. [
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In Figure 6 we use a computer to sketch anumber of conicsto demonstrate the effect of
varying the eccentricity e. Notice that when e is close to O the ellipse is nearly circular,
whereas it becomes more elongated as e — 1°. When e = 1, of course, the conic is a

parabola.
e=0.1 e=0.5 e=10.68 e=10.86 e=10.96
e=1 e=1.1 e=1.4 e=4

FIGURE 6

I Kepler's Laws

In 1609 the German mathematician and astronomer Johannes Kepler, on the basis of huge
amounts of astronomical data, published the following three laws of planetary motion.

Kepler's Laws
1. A planet revolves around the sun in an elliptical orbit with the sun at one focus.
2. Thelinejoining the sun to a planet sweeps out equal areas in equal times.

3. The square of the period of revolution of a planet is proportiona to the cube of
the length of the major axis of its orbit.

Although Kepler formulated his laws in terms of the motion of planets around the sun,
they apply equally well to the motion of moons, comets, satellites, and other bodies that
orbit subject to a single gravitational force. In Section 13.4 we will show how to deduce
Kepler's Laws from Newton's Laws. Here we use Kepler's First Law, together with the
polar equation of an ellipse, to calculate quantities of interest in astronomy.

For purposes of astronomical calculations, it's useful to express the equation of an ellipse
interms of its eccentricity e and its semimajor axis a. We can write the distance d from the
focus to the directrix in terms of a if we use [4]:

e, a-e) | al-e)
(1—-e?2 e? e

Soed = a(1 — e?). If thedirectrix isx = d, then the polar equation is

. ed _a(l—e?)
1+ ecosé 1+ ecosé




planet

\aphelion

FIGURE 7

sun

periheli on/
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The polar equation of an ellipse with focus at the origin, semimajor axis a,
eccentricity e, and directrix x = d can be written in the form

_al-e?
1+ ecos6

The positions of a planet that are closest to and farthest from the sun are called its peri-
helion and aphelion, respectively, and correspond to the vertices of the ellipse. (See
Figure 7.) The distances from the sun to the perihelion and aphelion are called the peri-
helion distance and aphelion distance, respectively. In Figure 1 the sun is at the focus F,
so at perihelion we have # = 0 and, from Equation 7,

al-e) _al-el+e _

= = a(l—e
1+ ecosO 1+e ( )

Similarly, at aphelion § = wandr = a(1 + e).

The perihelion distance from a planet to the sunisa(1l — e) and the aphelion
distanceisa(l + e).

EXAMPLE 5

(a) Find an approximate polar equation for the elliptical orbit of the earth around the sun
(at one focus) given that the eccentricity is about 0.017 and the length of the major axis
isabout 2.99 X 10% km.

(b) Find the distance from the earth to the sun at perihelion and at aphelion.

SOLUTION
() The length of the major axisis2a = 2.99 X 108 soa = 1.495 X 108 We are given
that e = 0.017 and so, from Equation 7, an equation of the earth’s orbit around the sun is

_ a(l — e? (1495 X 10%)[1 — (0.017)?]
1+ ecos6 1 + 0.017 cos6

or, approximately,

- 1.49 x 108
1 + 0.017 cos6

(b) From [8], the perihelion distance from the earth to the sun is
a(l —e) = (1.495 X 10°)(1 — 0.017) = 1.47 X 108km
and the aphelion distance is

a(l + e) ~ (1495 X 10°)(1 + 0.017) ~ 1.52 X 10°km -
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m Exercises

1-8 Write a polar equation of a conic with the focus at the origin
and the given data.

1.
. Parabola, directrixx = —3
. Hyperbola, eccentricity 1.5, directrixy = 2

0 N OO 1AW N

Ellipse, eccentricity 3, directrix x = 4

. Hyperbola, eccentricity 3, directrixx = 3

. Parabola, vertex (4, 37/2)

. Ellipse, eccentricity 0.8, vertex (1, w/2)

. Ellipse, eccentricity 3, directrix r = 4 sec6

. Hyperbola, eccentricity 3, directrixr = —6 csc6

9-16 (a) Find the eccentricity, (b) identify the conic, (c) give an
equation of the directrix, and (d) sketch the conic.

Y . — T -

' 5—4sn6 ' 3 — 10cos6
Mr=—2 or=———

' 3+ 3sin6 ' 2 + 2 cosf

9

Br=—7 " M r=——"——

6 + 2 cosé 4+ 5s8n6

TR S - T p—

' 4 — 8 cosd ' 5-6sn6

/9 17. (a) Find the eccentricity and directrix of the conic

A 18

Y
<]

A 20.

21.

Graphing calculator or computer required

19.

r = 1/(1 — 2sin#) and graph the conic and its directrix.

(b) If this conic is rotated counterclockwise about the origin
through an angle 37/4, write the resulting equation and
graph its curve.

. Graph the conic r = 4/(5 + 6 cos#) and its directrix. Also

graph the conic obtained by rotating this curve about the ori-
gin through an angle /3.

Graph the conicsr = e/(1 — e cosf) withe = 0.4, 0.6,
0.8, and 1.0 on a common screen. How does the value of e
affect the shape of the curve?

(a) Graphtheconicsr = ed/(1 + e sinf) fore = 1 and var-
ious values of d. How does the value of d affect the shape
of the conic?

(b) Graph these conics for d = 1 and various values of e.
How does the value of e affect the shape of the conic?

Show that a conic with focus at the origin, eccentricity e, and
directrix x = —d has polar equation
ed

r=——o——
1 — e cosé

22

23.

24.

25.

26.

21.

28.

29.

30.

31.

Show that a conic with focus at the origin, eccentricity e, and
directrix y = d has polar equation

ed

r=——
1+ esno

Show that a conic with focus at the origin, eccentricity e, and
directrix y = —d has polar equation

ed

r=——
1—esno

Show that the parabolasr = ¢/(1 + cos6) and
r =d/(1 — cosé) intersect at right angles.

The orbit of Mars around the sun is an ellipse with eccen-
tricity 0.093 and semimajor axis 2.28 X 10° km. Find a polar
equation for the orbit.

Jupiter’s orbit has eccentricity 0.048 and the length of the
major axisis 1.56 X 10° km. Find a polar equation for the
orbit.

The orbit of Halley’s comet, last seen in 1986 and due to
return in 2062, is an €ellipse with eccentricity 0.97 and one
focus at the sun. The length of its major axisis 36.18 AU.
[An astronomical unit (AU) is the mean distance between the
earth and the sun, about 93 million miles.] Find a polar equa-
tion for the orbit of Halley’s comet. What is the maximum
distance from the comet to the sun?

The Hale-Bopp comet, discovered in 1995, has an elliptical
orbit with eccentricity 0.9951 and the length of the major
axisis 356.5 AU. Find a polar equation for the orbit of this
comet. How close to the sun does it come?

© Dean Ketelsen

The planet Mercury travelsin an elliptical orbit with eccen-
tricity 0.206. Its minimum distance from the sun is
4.6 X 107 km. Find its maximum distance from the sun.

The distance from the planet Pluto to the sun is
4.43 % 10° km at perihelion and 7.37 X 10° km at aphelion.
Find the eccentricity of Pluto’s orbit.

Using the data from Exercise 29, find the distance traveled by
the planet Mercury during one complete orbit around the sun.
(If your calculator or computer algebra system evaluates defi-
nite integrals, use it. Otherwise, use Simpson’s Rule.)

1. Homework Hints available at stewartcalculus.com
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(@) What is a parametric curve?
(b) How do you sketch a parametric curve?

. (&) How do you find the slope of atangent to a parametric

curve?
(b) How do you find the area under a parametric curve?

. Write an expression for each of the following:

(@) The length of a parametric curve
(b) The area of the surface obtained by rotating a parametric
curve about the x-axis

. (8) Use adiagram to explain the meaning of the polar coordi-

nates (r, 6) of a point.

(b) Write equations that express the Cartesian coordinates
(x,y) of apoint in terms of the polar coordinates.

(c) What equations would you use to find the polar coordinates
of apoint if you knew the Cartesian coordinates?

. (@) How do you find the slope of atangent line to a polar

curve?

(b) How do you find the area of a region bounded by a polar
curve?

(c) How do you find the length of a polar curve?

. (a) Give ageometric definition of a parabola.

(b) Write an equation of a parabola with focus (0, p) and direc-
trix y = —p. What if the focusis (p, 0) and the directrix
isx = —p?

. () Give adefinition of an dllipse in terms of foci.

(b) Write an equeation for the ellipse with foci (*c, 0) and
vertices (*a, 0).

. (a) Give adefinition of a hyperbolain terms of foci.

(b) Write an equation for the hyperbola with foci (+c, 0) and
vertices (*a, 0).

(c) Write equations for the asymptotes of the hyperbolain
part (b).

. (d) What is the eccentricity of a conic section?

(b) What can you say about the eccentricity if the conic section
isan ellipse? A hyperbola? A parabola?

(c) Write apolar equation for a conic section with eccentricity
e and directrix x = d. What if the directrix isx = —d?
y=d?y=—d?

True-False Quiz

Determine whether the statement is true or false. If it is true, explain why.
If it is false, explain why or give an example that disproves the statement.

1.

3.

If the parametric curve x = f(t), y = ¢(t) satisfiesg’'(1) = O,
then it has a horizontal tangent whent = 1.

. If x = f(t) and y = g(t) are twice differentiable, then

d?y  d?y/dt®
dx?  d*/dt?
The length of thecurvex = f(t),y = g(t),a<t<b,is

VT + 4] dt.

. If apoint is represented by (x, y) in Cartesian coordinates

(where x # 0) and (r, 0) in polar coordinates, then
0 = tan"}(y/x).

10.

. Thepolar curvesr = 1 — sin20 and r = sin 20 — 1 have the

same graph.

. Theequationsr = 2, x? + y?> =4, and x = 2 sin 3t,

y = 2 cos 3t (0 < t < 27) dl have the same graph.

. The parametric equations x = t? y = t* have the same graph

asx =1t3y=t"

. The graph of y? = 2y + 3x isa parabola.

. A tangent line to a parabola intersects the parabola only once.

A hyperbola never intersects its directrix.
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Exercises
1-4 Sketch the parametric curve and eliminate the parameter to 21-24 Find the dope of the tangent line to the given curve at the
find the Cartesian equation of the curve. point corresponding to the specified value of the parameter.
1L.x=t>+4, y=2-t —-4sts<l1 2. x=Int,y=1+1t% t=1
2 x=1+¢e% y=c¢' 2 x=t*+6t+1 y=2t—1t% t=-1
3. x=cosf, y=sech, 0<6<m/2 B.r=e? =7
4 x=2cosf, y=1+sno 24. r=3+cos30;, 6= /2

5. Write three different sets of parametric equations for the

curvey = Vx. 25-26 Find dy/dx and d?y/dx2.
6. Usethe graphsof x = f(t) and y = g(t) to sketch the para- 25 x=t+sint, y=t- cost
metric curve x = f(t), y = g(t). Indicate with arrows the %. x=1+t> y=t—t

direction in which the curve is traced ast increases.

27. Use agraph to estimate the coordinates of the lowest point on
thecurvex = t3 — 3t,y = t2 + t + 1. Then use calculus to
find the exact coordinates.

28. Find the area enclosed by the loop of the curve in Exercise 27.

29. At what points does the curve

1. (a) Elsoé:teéytc\év;giﬁ(;icoordmates (4, 27/3). Then find X =2acost—acos2t y=2asint—asn2t
have vertical or horizontal tangents? Use this information to

(b) The Cartesian coordinates of a point are (—3, 3). Find two
help sketch the curve.

sets of polar coordinates for the point.

8. Sketch the region consisting of points whose polar coor- 30. Find the area enclosed by the curve in Exercise 29.
dinates satisfy 1 < r < 2and /6 < 0 < 5x/6. )
31. Find the area enclosed by the curve r?> = 9 cos 56.

9-16 Sketch the polar curve, 32. Find the area enclosed by the inner loop of the curve

9. r=1- cosf 10. r = sin46 r=1- 3sné.
. r=cos30 12. r =3 + cos39 33. Find the points of intersection of the curvesr = 2 and
13. r =1 + cos 20 14. r = 2 cos(6/2) r = 4 cosé.
3 3 34. Find the points of intersection of the curvesr = cot 6 and
B = 2ene B Yy r =2 cos6.
35. Find the area of the region that liesinside both of the circles
17-18 Find a polar equation for the curve represented by the r=2sngandr=sn6 + coso.
given Cartesian equation. 36. Find the area of the region that lies inside the curve
17.x+y=2 18. x2+y2=2 r = 2 + cos 260 but outside the curver = 2 + sin 6.

) ) ) ) 37-40 Find the length of the curve.
IA4 19. The curve with polar equation r = (sinf)/6@iscaled a

cochleoid. Use agraph of r asafunction of 6 in Cartesian 3. x=3t% y=2t% 0<t<2
cc_)ordinates Fo sketch the cochleoid by hand. Then graph it B8 x=2+3 y=coshd, O=t=1
with a machine to check your sketch.

{4 20. Graphtheelipser = 2/(4 — 3 cos6) and its directrix.
Also graph the ellipse obtained by rotation about the origin 4. r=sn%0/3), O0<s6O6<m
through an angle 27/3.

9. r=1/0, 7m<0<2mw

Graphing calculator or computer required Computer algebra system required



41-42 Find the area of the surface obtained by rotating the given
curve about the x-axis.

|

42,

t3
Cx =4k, y=73

y = cosh 3t,

1
+—, 1<t<4
2t2

X =2+ 3t ost<1

/A4 3. The curves defined by the parametric equations

t2—c

_ _u’-o
t2+ 1

X =
t2+1

are called strophoids (from a Greek word meaning “to turn
or twist”). Investigate how these curves vary as ¢ varies.

. A family of curves has polar equationsr* = |sin 26| where
a is a positive number. Investigate how the curves change as
a changes.

45-48 Find the foci and vertices and sketch the graph.

2 2

X y 2 2
4. — +->-=1 46. 4x2 — y2 =1
9 8 X y 6
47. By>+ x — 36y + 55=0

. 25x? + 4y? 4+ 50x — 16y = 59

. Find an equation of the ellipse with foci (*4, 0) and vertices
(=5, 0).

50. Find an equation of the parabola with focus (2, 1) and direc-

trix x = —4.

. Find an equation of the hyperbola with foci (0, +4) and

asymptotesy = *3x.

52. Find an equation of the ellipse with foci (3, =2) and major

axis with length 8.

53.

54

55.

56.

57.

CHAPTER 10 REVIEW M1
Find an eguation for the ellipse that shares a vertex and a
focus with the parabola x? + y = 100 and that has its other
focus at the origin.

Show that if m isany real number, then there are exactly
two lines of slope m that are tangent to the ellipse

x?/a? + y*/b? = 1 and their equations are

y =mx * ya’m? + b2.

Find a polar equation for the ellipse with focus at the origin,
eccentricity %, and directrix with equation r = 4 sec 6.

Show that the angles between the polar axis and the
asymptotes of the hyperbolar = ed/(1 — e cos#), e > 1,
are given by cos ¥(=1/e).

A curve called the folium of Descartes is defined by the
parametric equations
3t

X=
1+ t8

o3
y 1+ t°

(a) Show that if (a, b) lies on the curve, then so does (b, a);
that is, the curve is symmetric with respect to the line
y = X. Where does the curve intersect this line?

(b) Find the points on the curve where the tangent lines are
horizontal or vertical.

(c) Show that theliney = —x — 1isasdant asymptote.

(d) Sketch the curve.

(e) Show that a Cartesian equation of this curveis
X3+ y3 = 3xy.

(f) Show that the polar equation can be written in the form

_ 3secHtand
1+ tan®)

(9) Find the area enclosed by the loop of this curve.

(h) Show that the area of the loop is the same as the area that
lies between the asymptote and the infinite branches of
the curve. (Use a computer algebra system to evaluate
the integral.)



Problems Plus

A curveis defined by the parametric equations

t COSU tSinu
fidu =deu

Find the length of the arc of the curve from the origin to the nearest point where there is a verti-
cal tangent line.

(a) Find the highest and lowest points on the curve x* + y* = x2 + y2

(b) Sketch the curve. (Notice that it is symmetric with respect to both axes and both of the lines
y = *X, soit sufficesto consider y = x = Oinitialy.)

(c) Use polar coordinates and a computer algebra system to find the area enclosed by the curve.

. What is the smallest viewing rectangle that contains every member of the family of polar curves

r=1+ csinf, where0 < ¢ < 1?lllustrate your answer by graphing several members of the
family in this viewing rectangle.

Four bugs are placed at the four corners of a square with side length a. The bugs craw! counter-

clockwise at the same speed and each bug crawls directly toward the next bug at all times. They

approach the center of the square along spiral paths.

(a) Find the polar equation of a bug's path assuming the poleis at the center of the square. (Use
the fact that the line joining one bug to the next is tangent to the bug's path.)

(b) Find the distance traveled by a bug by the time it meets the other bugs at the center.

Show that any tangent line to a hyperbola touches the hyperbola halfway between the points of
intersection of the tangent and the asymptotes.

A circle C of radius 2r has its center at the origin. A circle of radius r rolls without slipping in
the counterclockwise direction around C. A point P is located on afixed radius of the rolling
circle at adistance b fromits center, 0 < b < r. [See parts (i) and (ii) of thefigure.] Let L be
the line from the center of C to the center of therolling circle and let 6 be the angle that L
makes with the positive x-axis.

(a) Using 6 as a parameter, show that parametric equations of the path traced out by P are

X = b cos36 + 3rcos y=hbsin36 + 3rsind

Note: If b = 0, the path isacircle of radius 3r; if b = r, the path is an epicycloid. The path
traced out by P for 0 < b < r iscalled an epitrochoid.

(b) Graph the curve for various values of b between O and r.

(c) Show that an equilateral triangle can be inscribed in the epitrochoid and that its centroid is
on the circle of radius b centered at the origin.
Note: Thisisthe principle of the Wankel rotary engine. When the equilateral triangle rotates
with its vertices on the epitrochoid, its centroid sweeps out a circle whose center is at the
center of the curve.

(d) In most rotary engines the sides of the equilateral triangles are replaced by arcs of circles
centered at the opposite vertices asin part (iii) of the figure. (Then the diameter of the rotor
is constant.) Show that the rotor will fit in the epitrochoid if b < 2(2 — /3)r.

y

CAS
Al 3
a 4.
a a 5.
6.
a
FIGURE FOR PROBLEM 4
A
y
P=P,
2r r
<b
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Infinite Sequences
and Series

In the last section of this chapter you are
asked to use a series to derive a formula
for the velocity of an ocean wave.

© Epic Stock / Shutterstock

Infinite sequences and series were introduced briefly in A Preview of Calculus in connection with Zeno's
paradoxes and the decimal representation of numbers. Their importance in calculus stems from Newton’s
idea of representing functions as sums of infinite series. For instance, in finding areas he often integrated
afunction by first expressing it as a series and then integrating each term of the series. We will pursue his
ideain Section 11.10 in order to integrate such functions as e *". (Recall that we have previously been
unable to do this.) Many of the functions that arise in mathematical physics and chemistry, such as Bessel
functions, are defined as sums of series, so it isimportant to be familiar with the basic concepts of con-
vergence of infinite sequences and series.

Physicists also use series in another way, as we will see in Section 11.11. In studying fields as diverse
as optics, specia relativity, and electromagnetism, they analyze phenomena by replacing a function with
the first few terms in the series that represents it.

3
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m Sequences

A sequence can be thought of asalist of numbers written in a definite order:
ai, dp, A3, A4, ..., Ap, ...

The number a; iscalled thefirst term, a, isthe second term, and in genera a, isthenth term.
We will deal exclusively with infinite sequences and so each term a, will have a succes-
SOr an-1.

Notice that for every positive integer n there is a corresponding number a, and so a
seguence can be defined as a function whose domain is the set of positive integers. But we
usually write a, instead of the function notation f(n) for the value of the function at the
number n.

NOTATION The sequence{a, a, as, . . .} isaso denoted by
{an} o {antn

[E70ZTFN Some sequences can be defined by giving aformulafor the nth term. In the
following examples we give three descriptions of the sequence: one by using the preced-
ing notation, another by using the defining formula, and a third by writing out the terms

of the sequence. Notice that n doesn’t have to start at 1.

n | o 1234 o
@ 1n+1f S 2’345 nt1
b (=1"(n + 1) _(=D)'(n+1) 23 4 5 (=1"(n + 1)
(b) — = 39 el @
© {wn-3}_, aa=vn—-3,n=3 {01+2,V3,....,.vn-3,..}
nmw|~ n 3 1 n
(d) {cos?}FO an=cos?, n=0 {1,7,5,0,...,(:03?,...} [

1 BT Find aformulafor the general term a, of the sequence

3 4 5 6 7
5' 25"125° 625’3125
assuming that the pattern of the first few terms continues.

SOLUTION We are given that

4,5 .8 L __ 1
25 125 N 625 * 3125

1 5 2
Notice that the numerators of these fractions start with 3 and increase by 1 whenever we
go to the next term. The second term has numerator 4, the third term has numerator 5; in
general, the nth term will have numerator n + 2. The denominators are the powers of 5,



a,

a

4
a,ay|
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FIGURE 1

a,

AAAAAAA

FIGURE 2
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S0 a, has denominator 5". The signs of the terms are alternately positive and negative,
so we need to multiply by a power of —1. In Example 1(b) the factor (—1)" meant we
started with a negative term. Here we want to start with a positive term and so we use
(=1)" Yor (=1)"*L. Therefore

n-+2
5ﬂ

an = (_1)n—1

[E7EEE] Here are some sequences that don't have a simple defining equation.

(a) The sequence {p.}, where p, is the population of the world as of January 1 in the
year n.

(b) If we let a, be the digit in the nth decimal place of the number e, then {a,} is awell-
defined sequence whose first few terms are

{7,1,8,2,8,1,8,2,8,4,5,...}
(c) The Fibonacci sequence {f,} is defined recursively by the conditions
fi=1 fb=1 fo="fo1 + fiz n=3
Each term is the sum of the two preceding terms. The first few terms are
{1,1,2,3,5,8,13,21,.. .}

This sequence arose when the 13th-century Italian mathematician known as Fibonacci
solved a problem concerning the breeding of rabbits (see Exercise 83). [ |

A sequence such asthe one in Example 1(a), a, = n/(n + 1), can be pictured either by
plotting its terms on a number line, asin Figure 1, or by plotting its graph, asin Figure 2.
Note that, since a sequence is a function whose domain is the set of positive integers, its
graph consists of isolated points with coordinates

(La) (2a) (@Ba) ... (a)

From Figure 1 or Figure 2 it appears that the terms of the sequencea, = n/(n + 1) are
approaching 1 as n becomes large. In fact, the difference

n 1
1- =
n+1 n+1

can be made as small as we like by taking n sufficiently large. We indicate this by writing

lim =1
n—e N+ 1

In general, the notation
lima,=1L

means that the terms of the sequence {a,} approach L as n becomes large. Notice that the
following definition of the limit of a sequence isvery similar to the definition of alimit of
afunction at infinity given in Section 3.4.
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[1] Definition A sequence{a,} hasthe limit L and we write

lima, =L or an—>Lan—ow

n—o
if we can make the terms a,, as close to L as we like by taking n sufficiently large.
If limn_.. a, exists, we say the sequence converges (or is convergent). Otherwise,
we say the sequence diverges (or is divergent).

Figure 3 illustrates Definition 1 by showing the graphs of two sequences that have the

limit L.

al‘l an

L S S L
FIGURE 3
Graphs of two
sequences with
i 0 n 0 n
lim a,=L

n—co

A more precise version of Definition 1 isasfollows.

[2] Definition A sequence {a,} has the limit L and we write

lima, =1L or an—L an—w»

n—ow

Compare this definition with Definition 3.4.5.
if for every ¢ > 0 thereis a corresponding integer N such that

if n>N then |a,—L|<e

Definition 2 isillustrated by Figure 4, in which thetermsay, a,, as, . . . are plotted on a
number line. No matter how small aninterval (L — &, L + ¢) ischosen, there existsan N
such that all terms of the sequence from ay.; onward must lie in that interval.

ay+1 AN+2 \ ay  dg

FIGURE 4 0 L~e L Lkre

»

>

»
—~

Another illustration of Definition 2 isgivenin Figure 5. The points on the graph of {a,}
must lie between the horizontal linesy =L + e andy = L — ¢ if n > N. This picture
must be valid no matter how small ¢ is chosen, but usually asmaller e requiresalarger N.

y
y=L+e
L
y=L—¢
L # -
FIGURE 5 234 N



FIGURE 6

Limit Laws for Sequences

SECTION 11.1  SEQUENCES ni

If you compare Definition 2 with Definition 3.4.5 you will see that the only difference
between lim,_... a, = L andlim,_... f(x) = L isthat nisrequired to be aninteger. Thuswe
have the following theorem, which isillustrated by Figure 6.

(3] Theorem If lim, ... f(x) = L and f(n) = a, when n isaninteger, then
limp—-a, = L.

0 1234 x

In particular, since we know that lim, .. (1/x") = 0 when r > 0 (Theorem 3.4.4), we
have

1
(3] lim—=0 ifr>0

n—co N

If a, becomes large as n becomes large, we use the notation lim,_... a, = . The fol-
lowing precise definition is similar to Definition 3.4.7.

E] Definition lim,_... a, = © meansthat for every positive number M there is an
integer N such that

if n>N then a, > M

If lim,_. a, = o, then the sequence {a, } is divergent but in a special way. We say that
{an} divergesto .

The Limit Lawsgivenin Section 1.6 also hold for thelimits of sequences and their proofs
aresimilar.

If {a,} and {b,} are convergent sequences and ¢ is a constant, then

lim (a, + by) = lima, + limb,

n—o n—o n—w

lim (a, — by) = lima, — limb,

n—ow n—o n—ow

limca, = c lim a, limc=c

n—o n—w« n—o

lim (a,by) = lima, - lim b,
n—ow n—o n—ow

a lima,

. n o . .
lim— =& if limb,#0
n—= P, lim b, n—co

n—o

limap = [nm an]" if p>0anda, >0
n—ow

n—o
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Squeeze Theorem for Sequences

"Cn

.
.an

FIGURE 7

The sequence {b,} is squeezed
between the sequences{a,}
and {c,}.

This shows that the guess we made earlier
from Figures 1 and 2 was correct.

The Squeeze Theorem can also be adapted for sequences as follows (see Figure 7).

Ifa,<b,<c,forn=ngand lima, = limc, =L, thenlimb, = L.

n—o n—o n—o

Another useful fact about limits of sequencesis given by the following theorem, whose
proof isleft as Exercise 87.

[6] Theorem If lim|a,| =0, then lim a, = 0.
n—c

n—o

n
Find lim ——.

| EXAMPLE 4 lim-——

SOLUTION The method is similar to the one we used in Section 3.4: Divide numerator

and denominator by the highest power of n that occurs in the denominator and then use

the Limit Laws.

lim1
lim . = lim = o 1
n—o n—o
1+ — Iim1+ lim—
n n—oo n—oo n
1+0
Here we used Equation 4 withr = 1. [ |

n
S 0NHEEE [sthe sequence a, = ——— convergent or divergent?
| EXAMPLE 5 seq T 9 ¢

SOLUTION Asin Example 4, we divide numerator and denominator by n:

n 1
lIim—m——=lim———==
n—oe /10+ n n—o 10 1

—_ + R
VnZ n

because the numerator is constant and the denominator approaches 0. So {a,} is
divergent. [ |

. Inn
[E70 I Calculate lim —

SOLUTION Notice that both numerator and denominator approach infinity asn — . We
can't apply I'Hospital's Rule directly because it applies not to sequences but to functions
of area variable. However, we can apply I'Hospital’s Rule to the related function

f(x) = (Inx)/x and obtain

1/x
[im—=Ilim——=0
X—>00 X X—>00 1
Therefore, by Theorem 3, we have
Inn
lim— =20 [ |

n—ew N



FIGURE 8

The graph of the sequence in Example 8 is
shown in Figure 9 and supports our answer.

an
1+

_1<> .

FIGURE 9

Creating Graphs of Sequences

Some computer algebra systems have special
commands that enable us to create sequences
and graph them directly. With most graphing
calculators, however, sequences can be
graphed by using parametric equations. For
instance, the sequence in Example 10 can be
graphed by entering the parametric equations

X =t y = ti/t!

and graphing in dot mode, starting witht = 1
and setting the t-step equal to 1. The result is
shown in Figure 10.

1

0 < e e 0

FIGURE 10
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[E70ZTFA Determine whether the sequence a, = (—1)" is convergent or divergent.
SOLUTION If we write out the terms of the sequence, we obtain
{-1,1,-1,1,-1,1,-1,..}

The graph of this sequence is shown in Figure 8. Since the terms oscillate between 1 and
—1infinitely often, a, does not approach any number. Thus lim,_... (—1)" does not exist;

that is, the sequence {(—1)"} is divergent. [ |
="
Evaluate lim . if it exists.
n—®
SOLUTION We first calculate the limit of the absolute value:
-1)" 1
lim =1 [im—=0
n—ow n n—o [
Therefore, by Theorem 6,
_1 n
Iim( ) =0 [ |
n—o n

Thefollowing theorem saysthat if we apply a continuous function to the terms of a con-
vergent sequence, the result is also convergent. The proof is left as Exercise 88.

Theorem If lim a, = L and the function f is continuous at L, then
n—o

lim f(a) = (L)

BT Find lim sin(ar/n).
n—ow
SOLUTION Because the sine function is continuous at 0, Theorem 7 enables us to write

lim sin(7-r/n)=sin<lim(7-r/n)> =sn0=0 [ |
I IE7XZTET0 Discuss the convergence of the sequence a, = n!/n", where
n=1-2-3----+n.

SOLUTION Both numerator and denominator approach infinity asn — o but here we
have no corresponding function for use with I’ Hospital’s Rule (x! is not defined when
X isnot an integer). Let’s write out a few terms to get afeeling for what happens to a,
asn gets large:

1-2

dy = —— dsz =

-3
ar=1 3

1-2
3-3-

a =

It appears from these expressions and the graph in Figure 10 that the terms are decreasing
and perhaps approach 0. To confirm this, observe from Equation 8 that

1<2.3.....n>
ap=—|—
n n'no-.-.n

:ooN

2
1-2-
n-n- *n
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FIGURE 11
The sequence a, = r"

Notice that the expression in parentheses is at most 1 because the numerator is less than
(or equal to) the denominator. So

E

n

O<a,=<

We know that 1/n — 0 asn — o, Therefore a, — 0 asn — <o by the Squeeze Theorem.
[

7 IETXZTFEN For what values of r is the sequence {r"} convergent?

SOLUTION We know from Section 3.4 and the graphs of the exponential functionsin
Section 6.2 (or Section 6.4*) that lim,_...a* = o« fora > 1 and limy_...a* = 0 for
0 < a < 1. Therefore, putting a = r and using Theorem 3, we have

limn— 1% if r>1
n—s 0 ifo<r<1

It is obvious that
lim1" = and limO" =

n—o n—ow

If —1<r<0,then0<|r| <1, 0
lim|r"| = lim|r["=0
n—o n—o
and therefore lim, ... r" = 0 by Theorem 6. If r < —1, then {r"} diverges asin
Example 7. Figure 11 shows the graphs for various values of r. (Thecaser = —1is
shown in Figure 8.)
a, a
r>1,

1 . —-1<r<o0

1 ) n r<<—1 -

The results of Example 11 are summarized for future use as follows.

[9] The sequence {r"} is convergent if —1 < r < 1 and divergent for all other
values of r.

limr" =

n—o

0 if -1<r<1
1 ifr=1

Definition A sequence {a,} is caled increasing if a, < an.1 foraln= 1,
thatis, a; < a; < az < - - -. Itiscalled decreasing if a, > an+i foraln= 1.
A sequence is monotonic if it is either increasing or decreasing.




The right side is smaller because it has a
larger denominator.

SECTION 11.1  SEQUENCES 21

} is decreasing because

EXAMPLE 12 Thesequence{n 2

3 3 3

> =
n+5 (n+1)+5 n+6

andsoa, > a1 foraln= 1. [

TR Show that the sequence a, = 1 is decreasing.
SOLUTION 1 We must show that a,.1 < a,, that is,
n+1 n

<
n+12+1 n2+1
Thisinequality is equivalent to the one we get by cross-multiplication:

n+1 - n
n+12+1 n?2+1

< M+ 1N?>+ 1) <nln+ 1?2+ 1]
= n+nP+n+1<n®+2n?2+2n

&< 1<n?’+n

Since n = 1, we know that the inequality n? + n > 1 istrue. Therefore a,.+1 < a, and
so {a,} is decreasing.

SOLUTION 2 Consider the function f(x) = N 1:

x> +1-2x* 1-x° _
(x* + 1) (x? + 1)

f/(x) = 0  whenever x>>1

Thus f isdecreasing on (1, ©) and so f(n) > f(n + 1). Therefore {a,} isdecreasing. .

@ Definition A sequence {a,} is bounded above if there is a number M such that
a, <M foraln=1

It is bounded below if there is a number m such that
m < a, foraln=1

If it is bounded above and below, then {a,} is a bounded sequence.

For instance, the sequence a, = n is bounded below (a, > 0) but not above. The
sequence a, = n/(n + 1) isbounded because 0 < a, < 1 for all n.

We know that not every bounded sequence is convergent [for instance, the sequence
an, = (—1)" satisfies —1 < a, < 1 but is divergent from Example 7] and not every mono-
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FIGURE 12

tonic sequence is convergent (a, = n — «). But if a sequence is both bounded and
monotonic, then it must be convergent. This fact is proved as Theorem 12, but intuitively
you can understand why it istrue by looking at Figure 12. If {a,} isincreasingand a, < M
for al n, then the terms are forced to crowd together and approach some number L.

0[123 n

The proof of Theorem 12 is based on the Completeness Axiom for the set R of real
numbers, which saysthat if S isanonempty set of real numbers that has an upper bound M
(x <M fordl xinS), then S has aleast upper bound b. (This means that b is an upper
bound for S, but if M is any other upper bound, then b < M.) The CompletenessAxiom is
an expression of the fact that there is no gap or hole in the real number line.

@ Monotonic Sequence Theorem Every bounded, monotonic sequence is
convergent.

PROOF Suppose{a,} isan increasing sequence. Since{a,} is bounded, the set

S = {a, | n = 1} has an upper bound. By the Completeness Axiom it has a least upper
bound L. Givene > 0, L — e isnot an upper bound for S (since L isthe least upper
bound). Therefore

av>L—¢ for someinteger N

But the sequenceisincreasing so a, = ay for every n > N. Thusif n > N, we have
an>L—¢
SO OsL—-a.<e
sincea, < L.Thus
|IL—a,| <e  whenever n >N

solim,_.. a, = L.
A similar proof (using the greatest lower bound) worksiif {a,} is decreasing. [

The proof of Theorem 12 shows that a sequence that isincreasing and bounded aboveis
convergent. (Likewise, a decreasing sequence that is bounded below is convergent.) This
fact is used many timesin dealing with infinite series.



Mathematical induction is often used in deal-
ing with recursive sequences. See page 98 for
a discussion of the Principle of Mathematical

Induction.

A proof of this fact is requested in Exercise 70.

SECTION 11.1  SEQUENCES 123

[ET0TIET Investigate the sequence {a, } defined by the recurrence relation
ai=2  ani =3, + 6 forn=1,2,3,...

SOLUTION We begin by computing the first several terms:

a, =2 a,=32+6)=4 as=34+6) =5
as=35+6)=55 as=575 as = 5.875
a; = 5.9375 as = 5.96875 ao = 5.984375

These initial terms suggest that the sequence is increasing and the terms are approaching
6. To confirm that the sequence is increasing, we use mathematical induction to show
that an+1 > a, foral n = 1. Thisistruefor n = 1 because a, = 4 > a,. If we assume
that it istrue for n = k, then we have

A1 > Ak
So a1+ 6>ac+6
and (a1 + 6) > 3(ax + 6)
Thus A2 > Ak+1

We have deduced that a,+; > a, istrue for n = k + 1. Therefore the inequality is true
for al n by induction.

Next we verify that {a,} is bounded by showing that a, < 6 for al n. (Since the
seguence isincreasing, we already know that it has alower bound: a, = a; = 2 for
al n.) We know that a; < 6, so the assertion istrue for n = 1. Suppose it is true for
n = k. Then

a<6
so ax+6<12
and Ja+6)<3(12) =6
Thus a1 <6

This shows, by mathematical induction, that a, < 6 for al n.

Since the sequence {a,} is increasing and bounded, Theorem 12 guarantees that it has
alimit. The theorem doesn’t tell us what the value of the limit is. But now that we know
L = lim,_... a, exists, we can use the given recurrence relation to write

lim an:y = lim 3(a, + 6) = %(Iim an + 6) =1L+ 6)
Sincea, — L, it follows that a,+; — L too (ash — o, n + 1 — o« aso). So we have
L=3(L+6)

Solving this equation for L, we get L = 6, as we predicted. [ |
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m Exercises

1. (@) What is a sequence? 23-56 Determine whether the sequence converges or diverges.
(b) What does it mean to say that lim,_... a, = 8? If it converges, find the limit.
(c) What does it mean to say that lim,_... a, = «? ne
23. a,=1-(02)" 24 a, = —;
2. (8) What is a convergent sequence? Give two examples. n“+1
(b) What is a divergent sequence? Give two examples. 34 5n2 n?
25 a,=—— 26. a, = 1
3-12 List thefirst five terms of the sequence. n+n n+
2n 3" 3n+2
. ap = . Ay = 21. a, = e*" 2. a,=
dan=le basTr ! "o
(_1)"*1 nm 2n n+1
an = 6. a, = cos—- 29, a, = tan Ll 30. a, =
T ’ 2 1+ 8n o+ 1
1 (=1)"n 2
1 ay=—— 8 a,= n 2
n I n 1 N a=—-—— 32. a, = e?V/0*+2
(n + 1! n +1 Ji T an
9. a=1 an=25,—3
1 h S e 1 o= 20N
an N 2yn " n+uhn
10. 2, =6, a1 = T \/> \/>
35. a, = cos(n/2) 36. a, = cos(2/n)
an
MN.a=2 a1=—-—
1+ a, . {(Zn—l)!} " {Inn}
N on 1 .
12. &, = 2, az = 11 dn+1 = adn — an-1 (2” + 1) In2n
e"+e™" tan™'n
39. 2'171 40. a, =
13-18 Find aformulafor the general term a, of the sequence, e - n
assuming that the pattern of the first few terms continues.
M. {n%e "} 42. a,=In(n+ 1) — Inn

B {13575}
2
14. {11 _%1 %1 _2717187111 <. } 43. a, = cosn a4, a, = n/21+3n

2n
15 {-3,2 48 -8 |}

45. a, = n sin(1/n) 46. a, = 2 "cosn
16. {5, 8,11, 14,17, .. }

n
2 sin2n
17. {%! _g:%: _%1%1 o } 47. an, = <1 + ) 48. an =

n C1+4n
18. {1,0,-1,0,1,0,-1,0,...}

49. a, = In(2n?> + 1) — In(n? + 1)

19-22 Cdculate, to four decimal places, the first ten terms of the (Inn)2
sequence and use them to plot the graph of the sequence by hand. 50. a, = o
Does the sequence appear to have alimit? If so, calculate it. If not,
explain why. 51. a, = arctan(Inn)
3n (="

19'a”=1+6n Zo-an=2+T 52 a,=n—+/n+1/n+3

" 10" 53. {0,1,0,0,1,0,0,0,1,...}
2 a,=1+(-3) 2 8,-1+°;

5. {15,505 50060 )

Graphing calculator or computer required 1. Homework Hints available at stewartcalculus.com



!
B5. a, = on 56. a, = ol

57-63 Use a graph of the sequence to decide whether the
sequence is convergent or divergent. If the sequence is conver-
gent, guess the value of the limit from the graph and then prove
your guess. (See the margin note on page 719 for advice on

graphing sequences.)

5. a, =1+ (—2/e)" 88. a, = /n sin(m/y/n)
3+ 2n?
59. an= /= 60. a, = /3" + 5"
\/8n2+n
61 a_nzcosn
T 142
1-3-5-----(2n—-1)
62. a, =
n!
63a_1.3.5.....(7_n_1)
o 2n)"

64. (a) Determine whether the sequence defined as follows is
convergent or divergent:

as=1 1 =4 — a, forn=1

(b) What happensiif thefirst termisa; = 2?

65. If $1000 isinvested at 6% interest, compounded annualy,
then after n years the investment is worth a, = 1000(1.06)"
dollars.

(a) Find the first five terms of the sequence {a,}.
(b) Isthe sequence convergent or divergent? Explain.

66. If you deposit $100 at the end of every month into an
account that pays 3% interest per year compounded monthly,
the amount of interest accumulated after n months is given
by the sequence

1.0025" — 1
Ih = 100(0.0025 - n)

(a) Find the first six terms of the sequence.
(b) How much interest will you have earned after two years?

67. A fish farmer has 5000 catfish in his pond. The number of
catfish increases by 8% per month and the farmer harvests
300 catfish per month.

(a) Show that the catfish population P, after n monthsis
given recursively by
Pn = 1.08Pn71 - 300 Po = 5000
(b) How many catfish are in the pond after six months?

68.

69.
10.

n.
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Find the first 40 terms of the sequence defined by

- 3an if a,isan even number
" |3, + 1 if a,isan odd number

and a; = 11. Do the sameif a; = 25. Make a conjecture
about this type of sequence.

For what values of r is the sequence {nr"} convergent?

(@) If {an} is convergent, show that

lim as = lim a,
n—o n—o
(b) A sequence {a,} is defined by a; = 1 and
an+1 = 1/(1 + a,) for n = 1. Assuming that {a,} is
convergent, find its limit.

Suppose you know that {a,} is a decreasing sequence and
al its terms lie between the numbers 5 and 8. Explain why
the sequence has a limit. What can you say about the value
of the limit?

72-78 Determine whether the sequence is increasing, decreasing,
or not monotonic. |s the sequence bounded?

12.

13.

15.

11.

an — (_2)n+l

1 74a_Zn—B
2n + 3 TN 3+ 4

an

a, =n(—=1)" 76. a, =ne "

1
8. a,=n+ —
n

19.

81.

82.

Find the limit of the sequence

(V2. v2z 222, }

A sequence {a,} isgivenby a; = V2, ani1 = V2 + a, .

(a) By induction or otherwise, show that {a,} isincreasing
and bounded above by 3. Apply the Monctonic Sequence
Theorem to show that lim,_... &, exists.

(b) Find lim,—.. a,.

Show that the sequence defined by

1
a;=1 a1 =3— —
an

isincreasing and a, < 3 for all n. Deduce that {a,} is conver-
gent and find its limit.

Show that the sequence defined by

1
3—a,

a; = 2 Ap+1 =

satisfies 0 < a, < 2 and is decreasing. Deduce that the
sequence is convergent and find its limit.
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83. (a) Fibonacci posed the following problem: Suppose that
rabbits live forever and that every month each pair
produces a new pair which becomes productive at age

2 months. If we start with one newborn pair, how many
pairs of rabbits will we have in the nth month? Show that

the answer is f,, where { f,} is the Fibonacci sequence
defined in Example 3(c).

(b) Let an = fos1/fa and show that an-1 = 1 + 1/a,-».
Assuming that {a,} is convergent, find its limit.

84. () Leta; = a,a, =f(a),as =f(ap) =f(f(a)),...,
an+1 = f(an), where f is a continuous function. If
lim,—...a, =L, show that f(L) = L.

(b) Hlustrate part (a) by taking f(x) = cosx, a = 1, and
estimating the value of L to five decimal places.

™| 85. (a) Use agraph to guess the value of the limit

(b) Use a graph of the sequencein part (a) to find the
smallest values of N that correspond to ¢ = 0.1 and
e = 0.001 in Definition 2.

86. Use Definition 2 directly to prove that lim,—.. r" = 0 when

[r| <1

87. Prove Theorem 6.
[Hint: Use either Definition 2 or the Squeeze Theorem.]

88. Prove Theorem 7.

89. Provethat if lim,_.. a, = 0 and {b,} is bounded, then
limy— (ayb,) = 0.

1\
90. Leta, = 1+H .

(a) Show that if 0 < a < b, then
bn+l _ an+l

<+

(b) Deduce that b"[(n + 1)a — nb] < a"™.

(cUssa=1+12/(n+ 1)andb =1+ 1/nin part (b) to

show that {a,} isincreasing.

(d)Usea=1landb =1+ 1/(2n) in part (b) to show that

aon < 4.
(e) Use parts (c) and (d) to show that a, < 4 for al n.

(f) Use Theorem 12 to show that lim,_... (1 + 1/n)" exists.

(Thelimit ise. See Equation 6.4.9 or 6.4*.9.)

92.

93.

. Leta and b be positive numbers with a > b. Let a, be their

arithmetic mean and b, their geometric mean:

bl = \/aib
Repeat this process so that, in general,

a, + by
2

bn+1 =/ anbn

an+1 =

(a) Use mathematical induction to show that

an > an+1 > bnJr]. > bn

(b) Deduce that both {a,} and {b,} are convergent.

(c) Show that lim,—... a, = lim,_... b,. Gauss called the
common value of these limits the arithmetic-geometric
mean of the numbersa and b.

(a) Show that if lim,_...a,, = Land lim,_... azns1 = L,
then {a,} is convergent and lim,_...a, = L.
(b) Ifa; = 1 and

a1 =1+
n+1 1+an

find the first eight terms of the sequence {a,}. Then use
part (a) to show that lim,_... a, = /2. This gives the
continued fraction expansion

1

VZ=1s———
+ [
2 24 .-
The size of an undisturbed fish population has been modeled
by the formula
bpn

pn+l* a+ pn

where p, is the fish population after n years and a and b are

positive constants that depend on the species and its environ-

ment. Suppose that the population in year 0 is po > 0.

(a) Show that if {p,} is convergent, then the only possible
valuesforitslimitareOand b — a.

(b) Show that py+1 < (b/a)pn.

(c) Use part (b) to show that if a > b, then lim,_... p, = O;
in other words, the population dies out.

(d) Now assume that a < b. Show that if po < b — a, then
{pn}isincreasingand 0 < p, < b — a. Show also that
if po>b — a, then{p,} isdecreasingand p, > b — a.
Deducethat if a < b, then lim,_...p, = b — a.
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LOGISTIC SEQUENCES

A sequence that arises in ecology as a model for population growth is defined by the logistic
difference equation

Po+1 = Kpa(1 — pn)

where p, measures the size of the population of the nth generation of a single species. To keep
the numbers manageable, p, is a fraction of the maximal size of the population, so 0 < p, < 1.
Notice that the form of this equation is similar to the logistic differential equation in Section 9.4.
The discrete model—with sequences instead of continuous functions—is preferable for modeling
insect populations, where mating and death occur in a periodic fashion.

An ecologist is interested in predicting the size of the population as time goes on, and asks
these questions: Will it stabilize at a limiting value? Will it change in a cyclical fashion? Or will
it exhibit random behavior?

Write a program to compute the first n terms of this sequence starting with an initial population
Po, Where 0 < po < 1. Use this program to do the following.

1. Calculate 20 or 30 terms of the sequence for po = 3 and for two values of k such that
1 < k < 3. Graph each sequence. Do the sequences appear to converge? Repeat for a dif-
ferent value of po between 0 and 1. Does the limit depend on the choice of po? Does it
depend on the choice of k?

2. Calculate terms of the sequence for a value of k between 3 and 3.4 and plot them. What do
you notice about the behavior of the terms?

3. Experiment with values of k between 3.4 and 3.5. What happens to the terms?

4. For values of k between 3.6 and 4, compute and plot at least 100 terms and comment on the
behavior of the sequence. What happens if you change po by 0.001? This type of behavior is
called chaotic and is exhibited by insect populations under certain conditions.

Computer algebra system required

m Series

What do we mean when we express a number as an infinite decimal? For instance, what
does it mean to write

The current record is that 7 has been computed 7 = 3.14159 26535 89793 23846 26433 83279 50288 . . .
to 2,576,980,370,000 (more than two trillion)
decimal places by T. Daisuke and his team. The convention behind our decimal notation is that any number can be written as an infi-

nite sum. Here it means that

_g, 1 4 1 S5 9 _ 2 _ 6 5
T 10 ' 102 ' 10° ' 10*  10° = 10° @ 10’ = 10°

where the three dots (- - ) indicate that the sum continues forever, and the more terms we
add, the closer we get to the actual value of 7.
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>

Sum of first n terms

~NOo o b~ WNBE

10
15
20
25

0.50000000
0.75000000
0.87500000
0.93750000
0.96875000
0.98437500
0.99218750
0.99902344
0.99996948
0.99999905
0.99999997

Ingeneral, if wetry to add the terms of an infinite sequence {a, },—, we get an expression
of theform

[1] ai+a;tas+---+ant -

which is called an infinite series (or just aseries) and is denoted, for short, by the symbol

> an or > an
n=1

Does it make sense to talk about the sum of infinitely many terms?
It would be impossible to find afinite sum for the series

142+3+4+5+---+n+---

becauseif we start adding the terms we get the cumulative sums 1, 3, 6, 10, 15, 21, . . . and,
after the nth term, we get n(n + 1)/2, which becomes very large asn increases.
However, if we start to add the terms of the series

1 1
_ + _
16 32

+=+ =+

N
|

1 1
+ — 4+ e 4+ — 4 -
64 2"

NI

wegets, 1,8 16 2 a1 - - - L — 1/2", ... . Thetable shows that as we add more and more
terms, these partial sums become closer and closer to 1. (See also Figure 11 in A Preview
of Calculus, page 6.) In fact, by adding sufficiently many terms of the series we can make
the partial sums as close aswe like to 1. So it seems reasonable to say that the sum of this
infinite seriesis 1 and to write

8

1 1
_+.+_+.:1

1
==+
2 16 2"

I
|

+ =+

L
L 2"

n

We use asimilar ideato determine whether or not ageneral series | 1] has asum. We con-
sider the partial sums

Si = az

S,=a; + a
S3=a; + a, + az
S4=a;+a+as+ as

and, in general,

M::

Ss,=a,ta+az+---+a,= a;

1

These partial sums form a new sequence {s,}, which may or may not have a limit. If
lim,—. S, = s exists (as a finite number), then, asin the preceding example, we call it the
sum of theinfinite series = a,.



Compare with the improper integral
J"‘f(x) dx = lim f‘f(x) dx
1 t—e J1

To find this integral we integrate from 1 to t
and then lett — co. For a series, we sum from
1tonandthenletn — oo,
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(2] Definition GivenaseriesS;—ja, =a, + a, + as + - - -, let s, denoteits
nth partial sum:

n

Ss=Yai=ay+a+ - +a
i=1

If the sequence {s,} is convergent and lim,_... s, = s exists as area number, then
the series T a, is called convergent and we write

ata+-c-+a+-o-=s o Ya,=s

The number s is called the sum of the series. If the sequence {s,} is divergent, then
the seriesis called divergent.

Thus the sum of a seriesis the limit of the sequence of partial sums. So when we write
Sh-1a, = S, we mean that by adding sufficiently many terms of the series we can get as
close as we like to the number s. Notice that

8

n
a, = lim Y a
1

n—o _q

n

2, GWIHESH Suppose we know that the sum of the first n terms of the series =7, a, is

_2n
3n+5

Ss=a,t+a+ ---+ a,

Then the sum of the seriesis the limit of the sequence {s.}:

M8

a, = lims, = lim—20— — [im—2_ 2 —
L ne= ' n—=3n+5  no= 5 3
3+F

n

In Example 1 we were given an expression for the sum of the first n terms, but it's usu-
ally not easy to find such an expression. In Example 2, however, we ook at afamous series
for which we can find an explicit formulafor s,.

[E70ZTF Animportant example of an infinite series is the geometric series

ar"?t a#0

M s

atar+ar?+ar®+ - tar"t+ o=

n=1

Each term is obtained from the preceding one by multiplying it by the common ratio r.
(We have already considered the special case wherea = and r = } on page 728.)
Ifr=1,thens,=a+a+ -+ a=na— *oo. Sincelim,_. s, doesn’t exist, the
geometric series diverges in this case.
If r # 1, we have

s,=a-+ar+ar’+---+ar"!

and rs, = ar+ar?+---+ar"*+ar"
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Figure 1 provides a geometric demonstration Subtracting these equations, we get
of the result in Example 2. If the triangles are
constructed as shown and s is the sum of the Sy —Is,=a— ar"
series, then, by similar triangles,
s__a __a al - r")
a a—a O ST1-v¢ @ Sn = 1—r
a’ If —1 <r <1, weknow from (11.1.9) that r" — 0 asn — «, sO
ar’ . _all-r" a a .. a
lims, = lim = — limr" =
ar? n—o noe 1 —r 1-r 1—1rn-e 1-7r

ar Thuswhen | r| < 1 the geometric seriesis convergent and itssumisa/(1 — r).

a—ar ar Ifr< —21orr > 1, thesequence {r"} isdivergent by (11.1.9) and so, by Equation 3,
limn_... S, does not exist. Therefore the geometric series diverges in those cases. [ |

We summarize the results of Example 2 asfollows.

a a
(4] The geometric series
p - ar"t=a+ar+ar?+ -
n=1
FIGURE 1 . . . .
isconvergent if [r| < 1anditssumis
In words: The sum of a convergent geometric o
T B a
series is > ar"t= Ir| <1
first term n=1 1-r
1~ commonratio If |r| = 1, the geometric series is divergent.

1 IETYEEE] Find the sum of the geometric series

SOLUTION Thefirsttermisa = 5 and the common ratio isr = —3. Since|r| =5 < 1,
the series is convergent by [4] and its sum is

5 10 20 40 __ 5 _5_,
3 9 27 1-(-%) 3 -
What do we really mean when we say that the S,
sum of the series in Example 3 is 3? Of course, n Sn
we can't literally add an infinite number of 1 5.000000
terms, one by one. But, according to Defini- ’
tion 2, the total sum is the limit of the 2 1.666667 1 L
sequence of partial sums. So, by taking the 3 3.883889 3 oottty
sum of sufficiently many terms, we can get as 4 2.407407 .
close as we like to the number 3. The table 5 3.395062
shows the first ten partial sums s, and the 6 2.736626
graph in Figure 2 shows how the sequence of 7 3.175583
partial sums approaches 3. 8 2882945 0 2'0 n
9 3.078037
10 2.947975
FIGURE 2




Another way to identify a and r is to write out
the first few terms:

4+8+2 4.

Module 11.2 explores a series that
depends on an angle @ in a triangle and enables
you to see how rapidly the series converges
when 6 varies.
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[ETTE Isthe series Y, 223" convergent or divergent?

n=1
SOLUTION Let's rewrite the nth term of the seriesin the form ar"*;

- 34

%

2 22n3l—n — E (22)n3—(n—l) _ 2
n=1 n=1

n13n1

We recognize this series as a geometric serieswitha = 4 and r = 3. Sincer > 1, the
series diverges by [4]. [

7 ETEEE Write the number 2.317 = 2.3171717. . . asaratio of integers.

SOLUTION

17 17 17
23171717... = 23 4+ — + — + —
108 10° 107

After the first term we have a geometric serieswitha = 17/10% and r = 1/102
Therefore

Ed 17
— 10° 1000
2317=23 + —— =23+ ——
L £

102 100

_ 23 17 147
10 990 495

[E70E3 Find the sum of the series Y, x", where | x| < 1.
n=0

SOLUTION Notice that this series starts with n = 0 and so the first term is x° = 1. (With
series, we adopt the convention that x° = 1 even when x = 0.) Thus

DX =14+x+xX2+x3+ x4

n=0
Thisis ageometric serieswitha = 1andr = x. Since |r| = |x| < 1, it converges and
gives

- 1
X" = |
[5] ngo 1-—x

[E7ITFA Show that the series E is convergent, and find its sum.

(+1)

SOLUTION Thisisnot ageometric series, so we go back to the definition of a convergent
series and compute the partial sums.

1 1 1 1
+ + o ——
+1) 1.2 2.3 3-4 n(n + 1)

We can simplify this expression if we use the partial fraction decomposition

1 1 1

|(| 1) i i+1




732 CHAPTER 11 INFINITE SEQUENCES AND SERIES

Notice that the terms cancel in pairs.

This is an example of a telescoping sum:
Because of all the cancellations, the sum
collapses (like a pirate’s collapsing
telescope) into just two terms.

Figure 3 illustrates Example 7 by show-

ing the graphs of the sequence of terms

a, = 1/[n(n + 1)] and the sequence {s,}
of partial sums. Notice that a, — 0 and
s, — 1. See Exercises 76 and 77 for two
geometric interpretations of Example 7.

FIGURE 3

The method used in Example 8 for showing

that the harmonic series diverges is due to the

French scholar Nicole Oresme (1323-1382).

(see Section 7.4). Thus we have

.1
n+1
. . 1
and so lims,=1lim|1- =
n—o n—o n+1
Therefore the given series is convergent and
< 1
2 e ——
no1 N(n + 1)

1 EZNTETE] Show that the harmonic series

DM

1 1 1 1
—=14+=4+=—+=
n 2 3 4

n=1

is divergent.

+ ..

SOLUTION For this particular series it’s convenient to consider the partial sums s, Ss, Ss,

S16, Sa2, - - - and show that they become large.

32:1+%
ssi=1+3+(+H)>1+3+(G+3) =1+

1 1 1 1 1 1 1

s=1+;+(GE+)+(GE+e+i+3)

1 1 1 1 1 1 1
>143+ G+ +GE+re+ri+a)
=1+53+5;+;=1+3

se=1+3+(G+)+(E+-+)+(F+-+

1 1 1 1 1 1
>1+3+ G+ +G+ -+ +(F+ -+
=1+3+3+5;+5=1+3

Similarly, s, > 1 + 2,56 > 1 + 2, and in general
n

SH>1+_

’ 2

This shows that s,n — o as n — o and so {s,} is divergent. Therefore the harmonic

series diverges.

(6] Theorem If the series Y, a, is convergent, then
n=1

lima, = 0.
n—o




SECTION 11.2 SERIES 733

PROOF Lets,=a; +a; + --- + a,. Thena, = s, — Sp—1. Since = a, is convergent, the
sequence {s,} is convergent. Let lim,_...s, = s. Sincen — 1 — ccas n — oo, we also
have limn_. S,-1 = s. Therefore
lima, = lim (s, — Sp-1) = lim's, — lim s,-;

n—o n—o n—o

n—oe

=s5s—-5=0 |

NOTE 1 With any series > a, we associate two sequences: the sequence {s,} of its par-
tial sums and the sequence {a,} of its terms. If = a, is convergent, then the limit of the
sequence {s,} is s (the sum of the series) and, as Theorem 6 asserts, the limit of the sequence
{an}is 0.

[@) nNOTE 2 The converse of Theorem 6 is not true in general. If lim, ... a, = 0, we can-
not conclude that > a, is convergent. Observe that for the harmonic series = 1/n we have
a, = 1/n — 0 as n — o, but we showed in Example 8 that = 1/n is divergent.

Test for Divergence If lim a, does not exist or if lim a, # 0, then the

n—o n—o

series , a, is divergent.

n=1

The Test for Divergence follows from Theorem 6 because, if the series is not divergent,
then it is convergent, and so lim,_... a, = 0.

2

I n .
IE7YETE] Show that the series Y, ey diverges.
n=1

SOLUTION
lim ay — fim—"— —im—~_ —L g
noe | e 5n24+ 4 ne=5+4/n2 5
So the series diverges by the Test for Divergence. [ |

NOTE 3 If we find that lim,_... a, # 0, we know that = a, is divergent. If we find that
lim,_..a, = 0, we know nothing about the convergence or divergence of = a,. Remember
the warning in Note 2: If lim,_... a, = 0, the series = a, might converge or it might diverge.

Theorem If = a, and = b, are convergent series, then so are the series > ca,
(where c is a constant), = (a, + b,), and = (a, — by), and

M Sca=c3 a (i) S @ tb)=a+3 b

(i) S @ —b)=Ya -3 b,

These properties of convergent series follow from the corresponding Limit Laws for
Sequences in Section 11.1. For instance, here is how part (ii) of Theorem 8 is proved:
Let

|
\|
o
I
\|
2
I
N
o
I
M8

bn

i=1 n=1 i=1 n=1
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The nth partial sum for the series = (a, + by) is

Un:i(ai"’bi)

i=1
and, using Equation 4.2.10, we have

lim u, = lim E(a. + by) = lim (Eai + Ebi>
n—o n—o i_q i=1 i=1

n n
= lim Y a + lim > b;
nN—=%j=1 N—=%j=1

=lims, + limt,=s +t

n—o n—o

Therefore = (a, + by) is convergent and its sum is

E(an+b)—s+t—2an+2b _—
n=1 n=1 n=1
3 1
[ETYTEITETN Find the sum of the series E T + = .
SOLUTION The series S 1/2" is a geometric series witha = 3 and r = 3, so
£ 1 %
= = =1
gz 1-3
In Example 7 we found that
E n(n + 1)
So, by Theorem 8, the given series is convergent and
& 1 & 1 S 1
+—=]=3) — —
E<n(n+1) ) ngln(n+l) 22
[

=3-1+1=4

NOTE 4 A finite number of terms doesn’t affect the convergence or divergence of a
series. For instance, suppose that we were able to show that the series

is convergent. Since

z 1 2 3 &
STttt I

it follows that the entire series =;_; n/(n® + 1) is convergent. Similarly, if it is known that
the series >7-n+1 &, converges, then the full series

is also convergent.
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1. (a) What is the difference between a sequence and a series?
(b) What is a convergent series? What is a divergent series?

2. Explain what it means to say that =7, a, = 5.
3-4 Calculate the sum of the series ;-1 a, whose partial sums
are given.

21

. s =2 — 3(0.8)" 4 5= ———
3 s 3(0.8) S a1

o0 ks loﬂ
21. Y 6(0.9)" 1 22,
2,609 2 o
S (=3t S 01
23, 24, .
21 4 ngo (ﬁ)
o
25, 20 g 26. E 3n —

5-8 Calculate the first eight terms of the sequence of partial
sums correct to four decimal places. Does it appear that the series
is convergent or divergent?

S 1 S 1
5 n§1? 6. g In(n + 1)
z n & (=t
7 g 1+ \/> 8 ngl n!

{4 9-14 Find at least 10 partial sums of the series. Graph both the

sequence of terms and the sequence of partial sums on the same
screen. Does it appear that the series is convergent or divergent?
If it is convergent, find the sum. If it is divergent, explain why.

=10 »
9, 10. cosn

El (=5 ngl

© n S 7n+1
1. — 12.

ngl nz+ 4 n=1 10"

* 1 1 *
13. —_—

ngl ( n n+1 > g (n + 2)

2n
15. Leta, = .
3n+1

(a) Determine whether {a,} is convergent.
(b) Determine whether >3- a, is convergent.

16. (a) Explain the difference between

n n

>a  and > a

i=1 j=1
(b) Explain the difference between

2a and X a

Il
-

17-26 Determine whether the geometric series is convergent or
divergent. If it is convergent, find its sum.

17.3-4+5 %+
19. 10 — 2 + 0.4 — 0.08 + - - -
20. 2 + 0.5 + 0.125 + 0.03125 + - - -

18. 4+3+5+5%+ -

Graphing calculator or computer required

27-42 Determine whether the series is convergent or divergent.
If it is convergent, find its sum.

1 1 1 1 1
o+ =+

2. 4+ b —
3 6 9 12 15
1 2 1 2 1 2
28 -4+ -4 —F— =t -
3 9 27 81 243 729
S n—1 S kk +2)
29. 30. —_—
P 2+ 3y
Sl 2 L1430
1. 2.
3 ngl 3" 3 1 2"
3. > 2 34. Y [(0.8)"! — (0.3)"]
n=1 n=1
S n?+1 & 1
35. In| =——— 36. — Y
ngl (2n2+1) n§11+(§)
£ T k 3
37. Y <) 38. > (cos 1)
k= \ 3 k=1
& S 3 2
39. > arctann 40. > (n + >
n=1 n=1 5 n

)
[

-
]

(1 1 S el
fn. > < +) 2 Y

43-48 Determine whether the series is convergent or divergent
by expressing s, as a telescoping sum (as in Example 7). If it is
convergent, find its sum.

ad 2 < n
43. 44, |
Ez n> -1 Z‘l n n+1
& 3
45. —
ngl n(n + 3)
ad 1 1
46. = - cos——
ngl <cos il 1)2>
47. Y (e — e/n) 48. E
n=1 n=2 n —n

Computer algebra system required

1. Homework Hints available at stewartcalculus.com
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49. Letx =0.99999....
(@) Do you think that x < 1 or x = 1?
(b) Sum a geometric series to find the value of x.
(c) How many decimal representations does the number 1
have?
(d) Which numbers have more than one decimal
representation?
50. A sequence of terms is defined by
a=1 a= (5 —nan

Calculate >7-1 a,.

51-56 Express the number as a ratio of integers.
51. 0.8 = 0.8888....

53. 2.516 = 2.516516516 . . .
54, 10.135 = 10.135353535 . . .

55. 1.5342 56. 7.12345

52. 0.46 — 0.46464646 . . .

57-63 Find the values of x for which the series converges. Find
the sum of the series for those values of x.

58. i (x+2)"

n=1 n=1

60. i (=4)"(x = 5)"

2" Z sin"x
61. 207 62. EO 3
63. X e™

n=0

64. We have seen that the harmonic series is a divergent series
whose terms approach 0. Show that

21 In<1 + i)

is another series with this property.

65-66 Use the partial fraction command on your CAS to find

a convenient expression for the partial sum, and then use this
expression to find the sum of the series. Check your answer by
using the CAS to sum the series directly.

Z 3 +3n+1 z 1

65. > 66.

o (P4 n)? = n® —5n%+ 4n

67. If the nth partial sum of a series 37-1 @, is

n—-1
n+1

Sh =

find a, and =7-; a,.

68.

69.

0.

n.

72.

13.

If the nth partial sum of a series =7-1a,iss, =3 — n2™",
find a, and =7-; an.

A patient takes 150 mg of a drug at the same time every day.

Just before each tablet is taken, 5% of the drug remains in the

body.

(a) What quantity of the drug is in the body after the third
tablet? After the nth tablet?

(b) What quantity of the drug remains in the body in the long
run?

After injection of a dose D of insulin, the concentration of

insulin in a patient’s system decays exponentially and so it

can be written as De™®', where t represents time in hours and

a is a positive constant.

(a) If adose D is injected every T hours, write an expression
for the sum of the residual concentrations just before the
(n + 1)st injection.

(b) Determine the limiting pre-injection concentration.

(c) If the concentration of insulin must always remain at or
above a critical value C, determine a minimal dosage D
in terms of C, a, and T.

When money is spent on goods and services, those who
receive the money also spend some of it. The people receiv-
ing some of the twice-spent money will spend some of that,
and so on. Economists call this chain reaction the multiplier
effect. In a hypothetical isolated community, the local
government begins the process by spending D dollars. Sup-
pose that each recipient of spent money spends 100c% and
saves 100s% of the money that he or she receives. The val-
ues ¢ and s are called the marginal propensity to consume
and the marginal propensity to save and, of course,
c+s=1

(a) Let S, be the total spending that has been generated after
n transactions. Find an equation for S,.

(b) Show that lim,_... S, = kD, where k = 1/s. The number
k is called the multiplier. What is the multiplier if the
marginal propensity to consume is 80%?

Note: The federal government uses this principle to justify

deficit spending. Banks use this principle to justify lending a

large percentage of the money that they receive in deposits.

A certain ball has the property that each time it falls from

a height h onto a hard, level surface, it rebounds to a height

rh, where 0 < r < 1. Suppose that the ball is dropped from

an initial height of H meters.

(a) Assuming that the ball continues to bounce indefinitely,
find the total distance that it travels.

(b) Calculate the total time that the ball travels. (Use the
fact that the ball falls 34t meters in t seconds.)

(c) Suppose that each time the ball strikes the surface
with velocity v it rebounds with velocity —kv, where
0 < k < 1. How long will it take for the ball to come
to rest?

Find the value of c if

Ms

1+c) "=

n

2



14.

15.

A 16.

1.

18.

Find the value of ¢ such that

s

e" =10

n=0

In Example 8 we showed that the harmonic series is diver-
gent. Here we outline another method, making use of the
fact that e* > 1 + x for any x > 0. (See Exercise 6.2.103.)

If s, is the nth partial sum of the harmonic series, show that
e™ >n + 1. Why does this imply that the harmonic series is
divergent?

Graphthecurvesy =x" 0<x=<1,forn=0,1,2,3,4,...
on a common screen. By finding the areas between successive
curves, give a geometric demonstration of the fact, shown in
Example 7, that

i 1

Znn+1)

The figure shows two circles C and D of radius 1 that touch
at P. T is a common tangent line; C, is the circle that touches
C, D, and T; C; is the circle that touches C, D, and Cy; Cs is
the circle that touches C, D, and C,. This procedure can be
continued indefinitely and produces an infinite sequence of
circles {C,}. Find an expression for the diameter of C, and
thus provide another geometric demonstration of Example 7.

Aright triangle ABC is given with ~A = ¢ and |[AC| = b.
CD is drawn perpendicular to AB, DE is drawn perpendicular
to BC, EF L AB, and this process is continued indefinitely,
as shown in the figure. Find the total length of all the
perpendiculars

|CD| + |DE| + |EF| + |FG| + - - -

in terms of b and 6.
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79. What is wrong with the following calculation?
0=0+0+0+"-"
=1-D+@Q-D+@Q-1)+ -
=1-14+1-14+1-1+"---
=1+(-1+D)+(-1+D)+(-1+1)+---
=14+0+0+0+---=1

(Guido Ubaldus thought that this proved the existence of God
because “something has been created out of nothing.”)

80. Suppose that =7—1 a, (a, # 0) is known to be a convergent
series. Prove that =7-; 1/a, is a divergent series.

81. Prove part (i) of Theorem 8.
82. If = a, is divergent and ¢ # 0, show that = ca, is divergent.

83. If T a, is convergent and = b, is divergent, show that
the series = (a, + b,) is divergent. [Hint: Argue by
contradiction.]

84. If = a, and = b, are both divergent, is = (a, + b,) neces-
sarily divergent?

85. Suppose that a series = a, has positive terms and its partial
sums s, satisfy the inequality s, < 1000 for all n. Explain why
> a, must be convergent.

86. The Fibonacci sequence was defined in Section 11.1 by the
equations

f1 = 1, fz = 1, fn = fn—l + fn—z n=3

Show that each of the following statements is true.
1 1 1

@t faf Tofs
= 1

b =1

(b) ngz fa1 fasa
.

() X =2

n=2 fnfl fn+1

87. The Cantor set, named after the German mathematician Georg
Cantor (1845-1918), is constructed as follows. We start with
the closed interval [0, 1] and remove the open interval (3, 3).
That leaves the two intervals [0, ;] and [, 1] and we remove
the open middle third of each. Four intervals remain and again
we remove the open middle third of each of them. We continue
this procedure indefinitely, at each step removing the open
middle third of every interval that remains from the preceding
step. The Cantor set consists of the numbers that remain in
[0, 1] after all those intervals have been removed.

(a) Show that the total length of all the intervals that are
removed is 1. Despite that, the Cantor set contains infi-
nitely many numbers. Give examples of some numbers in
the Cantor set.

(b) The Sierpinski carpet is a two-dimensional counterpart of
the Cantor set. It is constructed by removing the center
one-ninth of a square of side 1, then removing the centers
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of the eight smaller remaining squares, and so on. (The fig- (b) Use mathematical induction to prove your guess.
ure shows the first three steps of the construction.) Show (c) Show that the given infinite series is convergent, and find
that the sum of the areas of the removed squares is 1. This its sum.

implies that the Sierpinski carpet has area 0.

88. (a) A sequence {a,} is defined recursively by the equation
an = 3(an1 + an2) for n = 3, where a; and a, can be any
real numbers. Experiment with various values of a; and a,
and use your calculator to guess the limit of the sequence.
(b) Find lim,_... a, in terms of a; and a, by expressing

ant1 — anin terms of a, — a; and summing a series.

89. Consider the series =5—1n/(n + 1)!.
(a) Find the partial sums sy, Sz, S3, and s,. Do you recognize the
denominators? Use the pattern to guess a formula for s,.

90. In the figure there are infinitely many circles approaching the
vertices of an equilateral triangle, each circle touching other
circles and sides of the triangle. If the triangle has sides of
length 1, find the total area occupied by the circles.

m The Integral Test and Estimates of Sums

n

n S =, iz
i=1 1
5 1.4636
10 1.5498
50 1.6251
100 1.6350
500 1.6429
1000 1.6439
5000 1.6447

In general, it is difficult to find the exact sum of a series. We were able to accomplish this
for geometric series and the series = 1/[n(n + 1)] because in each of those cases we could
find a simple formula for the nth partial sum s,. But usually it isn’t easy to discover such a
formula. Therefore, in the next few sections, we develop several tests that enable us to
determine whether a series is convergent or divergent without explicitly finding its sum.
(In some cases, however, our methods will enable us to find good estimates of the sum.) Our
first test involves improper integrals.

We begin by investigating the series whose terms are the reciprocals of the squares of the
positive integers:

ngln 12+22+32+42+52+
There’s no simple formula for the sum s, of the first n terms, but the computer-generated
table of approximate values given in the margin suggests that the partial sums are approach-
ing a number near 1.64 as n — <0 and so it looks as if the series is convergent.

We can confirm this impression with a geometric argument. Figure 1 shows the curve
y = 1/x* and rectangles that lie below the curve. The base of each rectangle is an interval
of length 1; the height is equal to the value of the function y = 1/x? at the right endpoint of
the interval.

y

1 1 1.1 1 1
2

area = P

|
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So the sum of the areas of the rectangles is

I SO S SR BN O §
12 22 32 42 52 = 2

>

If we exclude the first rectangle, the total area of the remaining rectangles is smaller than
the area under the curve y = 1/x*for x = 1, which is the value of the integral [* (1/x?) dx.
In Section 7.8 we discovered that this improper integral is convergent and has value 1. So
the picture shows that all the partial sums are less than

1 © 1
—2+f17dx—2

Thus the partial sums are bounded. We also know that the partial sums are increasing
(because all the terms are positive). Therefore the partial sums converge (by the Monotonic
Sequence Theorem) and so the series is convergent. The sum of the series (the limit of the
partial sums) is also less than 2:

[The exact sum of this series was found by the Swiss mathematician Leonhard Euler
(1707-1783) to be 7%/6, but the proof of this fact is quite difficult. (See Problem 6 in the
Problems Plus following Chapter 15.)]

Now let’s look at the series

< 1
v eos L A E A ECEY
=i
5 3.2317 The table of values of s, suggests that the partial sums aren’t approaching a finite number,
10 5.0210 S0 we suspect that the given series may be divergent. Again we use a picture for confirma-
50 12.7524 tion. Figure 2 shows the curve y = 1/+/X, but this time we use rectangles whose tops lie
100 18.5896 above the curve.
500 43.2834
1000 61.8010 y 1
5000 139.9681 O
i i i i
0 o2 ] 3 ] e ] s X
area=— 1 area=— 1 area=— 1 area=— 1
FIGURE 2 J1 J2 J3 J4

The base of each rectangle is an interval of length 1. The height is equal to the value of
the functiony = 1/+/x at the left endpoint of the interval. So the sum of the areas of all the
rectangles is

R EY AT

This total area is greater than the area under the curve y = 1/+/x for x = 1, which is equal
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In order to use the Integral Test we need to be
able to evaluate [;" f (x) dx and therefore we
have to be able to find an antiderivative of f.
Frequently this is difficult or impossible, so we
need other tests for convergence too.

to the integral J’f’ (1/\/Y) dx. But we know from Section 7.8 that this improper integral is
divergent. In other words, the area under the curve is infinite. So the sum of the series must
be infinite; that is, the series is divergent.

The same sort of geometric reasoning that we used for these two series can be used to
prove the following test. (The proof is given at the end of this section.)

The Integral Test Suppose f is a continuous, positive, decreasing function on [1, «)
and let a, = f(n). Then the series 2;-; a, is convergent if and only if the improper
integral [, f(x) dx is convergent. In other words:

(i) If J? f(x) dx is convergent, then Y, a, is convergent.

n=1

(i) If ff f(x) dx is divergent, then gl a, is divergent.

NOTE When we use the Integral Test, it is not necessary to start the series or the integral
atn = 1. For instance, in testing the series

% 1
we use L W dx

Also, it is not necessary that f be always decreasing. What is important is that f be ulti-
mately decreasing, that is, decreasing for x larger than some number N. Then =7-y a, is
convergent, so 27-: a, is convergent by Note 4 of Section 11.2.

- 1 .
[ETETEN Test the series D, o for convergence or divergence.
n=1

SOLUTION The function f(x) = 1/(x2 + 1) is continuous, positive, and decreasing on
[1, ) so we use the Integral Test:

o 1
f dx = lim '
t—o J1

1 . Tt
v 1dx—tll_)rr;tan x]l

X2 +

T w
=lim{tan"'t — — | = — —
t~>x< 4) 2

Thus ff 1/(x* + 1) dx is a convergent integral and so, by the Integral Test, the series
> 1/(n? + 1) is convergent. ]

NS
|

. I
7 IE7XTZTF For what values of p is the series , Pl convergent?
n=1

SOLUTION If p < 0, then lim,_... (1/n?) = oo, If p = 0, then lim,_... (1/n?) = 1. In
either case lim,_... (1/n®) # 0, so the given series diverges by the Test for Divergence
(11.2.7).

If p > 0, then the function f(x) = 1/x" is clearly continuous, positive, and decreasing
on [1, »). We found in Chapter 7 [see (7.8.2)] that

w1
L Fdx converges if p > 1 and divergesifp < 1
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It follows from the Integral Test that the series = 1/n® converges if p > 1 and diverges
if 0 < p < 1. (For p = 1, this series is the harmonic series discussed in Example 8 in
Section 11.2.) .

The series in Example 2 is called the p-series. It is important in the rest of this chapter,
so we summarize the results of Example 2 for future reference as follows.

U . . .
(1] The p-series Y, i convergent if p > 1 and divergent if p <
n=1

EXAMPLE 3
(a) The series

is convergent because it is a p-series with p = 3 > 1.
(b) The series

i 1 _ i 1 _ 14 1 N 1 N 1 e
n=1 nl/3 n=1 3 n Y 2 \3/§ \3/1
is divergent because it is a p-series with p = 5 < 1. [ |

NOTE We should not infer from the Integral Test that the sum of the series is equal to
the value of the integral. In fact,

1 2 © 1
P % whereas f —dx=1

=]
s

Therefore, in general,

ngl a, # L f(x) dx

. . < Inn .
1 IETXTE Determine whether the series , . converges or diverges.

n=1

SOLUTION The function f(x) = (In x)/x is positive and continuous for x > 1 because the
logarithm function is continuous. But it is not obvious whether or not f is decreasing, so
we compute its derivative:
1/x)x —Inx 1—-1Inx

x?2 T

f'(x) =

Thus f'(x) < 0 when In x > 1, that is, x > e. It follows that f is decreasing when x > e
and so we can apply the Integral Test:

foo Inx j_d (Inx)z]

(Inty>

= lim

t—x

Since this improper integral is divergent, the series = (In n)/n is also divergent by the
Integral Test. [
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a
ntl|apio

FIGURE 3

y
y

=flx)

ay+1

Apt2

FIGURE 4

n+1

I Estimating the Sum of a Series

Suppose we have been able to use the Integral Test to show that a series> a, is convergent
and we now want to find an approximation to the sum s of the series. Of course, any partial
sum s, isan approximation to s becauselim,_... S, = s. But how good is such an approxima-
tion? To find out, we need to estimate the size of the remainder

Rh=8—S =an1+ a2t anst -

Theremainder R, isthe error made when s,,, the sum of thefirst n terms, isused as an approx-
imation to the total sum.

We use the same notation and ideas as in the Integral Test, assuming that f is decreas-
ing on[n, «). Comparing the areas of the rectangleswith the areaunder y = f(x) for x > n
in Figure 3, we see that

Rh=an1 +ap+ - < f:f(x) dx

Similarly, we see from Figure 4 that

Ry = @ns1 + Ansz + ---aj“lf(x)dx
n+

So we have proved the following error estimate.

[2] Remainder Estimate for the Integral Test Suppose f(k) = ai, where f isa
continuous, positive, decreasing function for x = n and = a, is convergent. If
Rn =5 — sp, then

fl f(x) dx < Ry < f:f(x) dx

V| EXAMPLE 5|

(a) Approximate the sum of the series > 1/n* by using the sum of the first 10 terms.
Estimate the error involved in this approximation.

(b) How many terms are required to ensure that the sum is accurate to within 0.0005?

SOLUTION In both parts (&) and (b) we need to know |~ f(x) dx. With f(x) = 1/x3, which
satisfies the conditions of the Integral Test, we have

f”‘idx—nm B Y G S S N
nox3 t—o 2x? |, e 2t2  2n? 2n?

(a) Approximating the sum of the series by the 10th partial sum, we have

S 1 1 1 1 1
nglﬁzsl():F-i-?-f—?‘i‘"'+Wzl.1975

According to the remainder estimate in [2], we have

1 1

S SO S
10 x3 2(10)> 200

So the size of the error is at most 0.005.



Although Euler was able to calculate the exact

sum of the p-series for p = 2, nobody has been
able to find the exact sum for p = 3. In Example
6, however, we show how to estimate this sum.
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(b) Accuracy to within 0.0005 means that we have to find a value of n such that
R» =< 0.0005. Since
Ry, = J‘n F dx = W
1
we want —— < 0.0005
2n
Solving this inequality, we get

1
n? > 000l 1000 or n > /1000 =~ 31.6

We need 32 terms to ensure accuracy to within 0.0005. [ |

If we add s, to each side of the inequalitiesin [2], we get

(3] snﬂLF+1 f(x)dxssssn+rf(x)dx

because s, + R, = s. Theinequalitiesin | 3] give alower bound and an upper bound for s.
They provide a more accurate approximation to the sum of the series than the partial sum
s, does.

. _ . |
SO Use[3] with n = 10 to estimate the sum of the series Y, g
n=1
SOLUTION Theinequalitiesin [3] become
-1 - 1
slo+j —dessssloJrj — dx
n X 10 X

From Example 5 we know that

.1 1
an Fdx N 2n?
© T o112 T T T 201002

Using sio = 1.197532, we get
1.201664 < s < 1.202532

If we approximate s by the midpoint of this interval, then the error is at most half the
length of the interval. So

1

1 n?

M8

~ 1.2021 with error < 0.0005 |

n

If we compare Example 6 with Example 5, we see that the improved estimate in | 3| can
be much better than the estimate s = s,. To make the error smaller than 0.0005 we had to
use 32 terms in Example 5 but only 10 termsin Example 6.
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of 1 2 3 4 5 - n X

0

FIGURE 6

m Exercises

Il Proof of the Integral Test

We have already seen the basic idea behind the proof of the Integral Test in Figures 1 and
2for theseries = 1/n?and = 1/4/n. For the general seriess a,, look at Figures’5 and 6. The
area of thefirst shaded rectanglein Figure 5 isthe value of f at the right endpoint of [1, 2],
that is, f(2) = a,. So, comparing the areas of the shaded rectangles with the area under
y = f(x) from 1 to n, we see that

(4] a2+a3+---+ansflnf(x)dx

(Notice that this inequality depends on the fact that f is decreasing.) Likewise, Figure 6
shows that

5] [Mfoodx<ai+a+ - +anm
(i) If f f(x) dx is convergent, then [4] gives

éai < Lnf(x) dx < fff(x) dx

since f(x) = 0. Therefore

Sy =a; + Eaisalﬂtff(x)dx:M,wy
i=2

Since s, < M for al n, the sequence {s,} is bounded above. Also
Sh+1 = Sp + @n+1 = Sp

sincean+1 = f(n + 1) = 0. Thus {s,} is an increasing bounded sequence and so it is con-
vergent by the Monotonic Sequence Theorem (11.1.12). Thismeansthat > a, is convergent.

(i) If [ f(x) dx isdivergent, then [} f(x) dx — % asn — o because f(x) = 0. But
gives

n—-1
Lnf(x) dx< Y ai= s,
i—1

and so s,—1 — . Thisimpliesthat s, — o and so = a, diverges. [ |

1. Draw a picture to show that

S0l w 1
Som<| i

3-8 Usethe Integral Test to determine whether the seriesis
convergent or divergent.

dx

S 1 S 1
3. > sﬁ 4. Y Y
What can you conclude about the series? n=1 Vi mt
2. Suppose f isa continuous positive decreasing function for 5 Y ——— 6 !
x = 1and a, = f(n). By drawing a picture, rank the following n-1 (2n +1) -1V + 4
three quantities in increasing order: Z n < s
. . 7. El e 8. zlnze’n
Lsf(x) dx > a > a
i=1 i=2

Computer algebra system required

1. Homework Hints available at stewartcalculus.com



9-26 Determine whether the series is convergent or divergent.

= 1 »
9. X — 10. D, n 0%
n=1 NV n=3
1 1 1
MIl+t=—+—"—+—+—+
8 27 64 125
12. 1+ 1 + 1 + 1 + 1 + e
' 2J2 3J3 44 55
T ST S
) 3 5 7 9
1 1 1 1 1
¥ —+=+—+—"—+-—=+-
5 8 11 14 17
s Jn+4 o n?
15. —_— 16.
ngl n2 21 n®+1
S 1 S 3n—4
17. — 18. —
nglnz""‘]’ anz—Zn
S Inn & 1
19. 20.
ngl n® ngln +6n + 13
& 1 > 1
21. 22.
22 ninn i n(lnn)?
£ e1/n % 2
23. 24. —
ngl n2 23 e"
25 ii 26 i*
" Ein?+nd Taoant+ 1

27-28 Explain why the Integral Test can't be used to determine
whether the series is convergent.

St Sh

29-32 Find the values of p for which the seriesis convergent.
%3, S 03 T
31. ngln(l + n?)P 32, éll:—:

33. The Riemann zeta-function ¢ is defined by

501
-2

and is used in number theory to study the distribution of prime

numbers. What is the domain of {?
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34. Leonhard Euler was able to calculate the exact sum of the
p-serieswithp = 2:

1 772
7_

(@=3
(See page 739.) Use this fact to find the sum of each series.

@3~ O 31

2 N?

© 2 o

35. Euler aso found the sum of the p-series with p = 4:

py

{4 = Eln* %

Use Euler’s result to find the sum of the series.
— b -
@ 21(”) ®) k§5 k—2*

36. (a) Find the partial sum sy of the series 351 1/n*. Estimate the
error in using sio as an approximation to the sum of the
series.

(b) Use[3] with n = 10 to give an improved estimate of the
sum.

(c) Compare your estimate in part (b) with the exact value
given in Exercise 35.

(d) Find avaue of n so that s, iswithin 0.00001 of the sum.

37. (a) Usethe sum of the first 10 terms to estimate the sum of the
series 371 1/n2. How good is this estimate?
(b) Improve this estimate using | 3| with n = 10.
(c) Compare your estimate in part (b) with the exact value
given in Exercise 34.
(d) Find avaue of n that will ensure that the error in the
approximation s = s, is less than 0.001.

38. Find the sum of the series =7-; 1/n® correct to three decimal
places.

39. Estimate =_; (2n + 1) © correct to five decimal places.

40. How many terms of the series -, 1/[n(In n)?] would you
need to add to find its sum to within 0.01?

41. Show that if we want to approximate the sum of the series
Sho1n 1% oo that the error is less than 5 in the ninth decimal
place, then we need to add more than 10**** terms!

CAS 42. (a) Show that the series 373 (Inn)%/n? is convergent.

(b) Find an upper bound for the error in the approximation
S = s,.

(c) What isthe smallest value of n such that this upper bound
isless than 0.05?

(d) Find s, for this value of n.
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43. (a) Use[4] to show that if s, isthe nth partial sum of the har-
monic series, then

Ss<1+Inn

(b) The harmonic series diverges, but very slowly. Use part (a)
to show that the sum of the first million terms is less than
15 and the sum of the first billion terms is less than 22.

44. Use the following steps to show that the sequence

t—1+1+1+---+1 |
" 23 noon
has alimit. (The value of the limit is denoted by y and is called
Euler’s constant.)
(a) Draw apicture like Figure 6 with f(x) = 1/x and interpret
t, as an area [or use[5]] to show that t, > O for al n.

m The Comparison Tests

(b) Interpret

ty — thys = [IN( + 1) — Inn] —
s=[In(n + 1) = Inn] 1

as a difference of areas to show that t, — t,+1 > 0. There-
fore {t,} is a decreasing sequence.

(c) Use the Monotonic Sequence Theorem to show that {t,} is
convergent.

45. Find all positive values of b for which the series 35—, b'""
converges.

46. Find al values of ¢ for which the following series converges.

gy 1
n21<n n+1>

In the comparison tests the idea is to compare a given series with a series that is known to
be convergent or divergent. For instance, the series

1]

1
2"+ 1

©
2
n=1

reminds us of the series 3, 1/2", which is ageometric serieswitha = ; andr = ; and is
therefore convergent. Because the series 1] isso similar to a convergent series, we have the
feeling that it too must be convergent. Indeed, it is. The inequality

1 1

<
2"+1 20

shows that our given series [1| has smaller terms than those of the geometric series and
therefore all its partial sums are also smaller than 1 (the sum of the geometric series). This
means that its partial sums form a bounded increasing sequence, which is convergent. It
also follows that the sum of the seriesis less than the sum of the geometric series:

Similar reasoning can be used to prove the following test, which applies only to series
whose terms are positive. The first part says that if we have a series whose terms are
smaller than those of a known convergent series, then our series is also convergent. The
second part saysthat if we start with a series whose terms are larger than those of aknown
divergent series, then it too is divergent.

The Comparison Test Suppose that = a, and = b, are series with positive terms.
(i) If = by isconvergent and a, < b, for all n, then = a, is also convergent.
(ii) If = b, isdivergent and a, = b, for al n, then = a, is also divergent.
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It is important to keep in mind the distinction PROOF

between a sequence and a series. A sequence n n ©

is a list of numbers, whereas a series is a sum. (i) Let S\ =2 a t,= > b t= > b,

With every series = a, there are associated two i=1 i=1 n=1

sequences: the sequence {a, } of terms and the

sequence {s,} of partial sums. Since both series have positive terms, the sequences {s,} and {t,} are increasing

(Snt1 = Sn + @ns+1 = Sy). Alsot, — t, sot, < tfor al n. Sincea; < b;, we haves, < t,.
Thuss, < tfor al n. This meansthat {s,} isincreasing and bounded above and therefore
converges by the Monotonic Sequence Theorem. Thus = a, converges.

(ii) If X by isdivergent, thent, — « (since {t,} isincreasing). But a; = b; so s, = t,.

Thuss, — oo. Therefore T a, diverges. [ |
Standard Series for Use In using the Comparison Test we must, of course, have some known series = b, for the
with the Comparison Test purpose of comparison. Most of the time we use one of these series:

m A p-series[E 1/nP convergesif p > 1 and divergesif p < 1; %e(11.3.1)]

= A geometric series [S ar"* convergesif | r| < 1 and divergesif |r| = 1;
see (11.2.4)]

1 IETXTIN Determine whether the series D,

————— converges or diverges.
Zi2n?+4n + 3 g 9

SOLUTION For large n the dominant term in the denominator is 2n?, so we compare the
given series with the series = 5/(2n?). Observe that

5 5
o A N2
2n° +4n + 3 2n

because the left side has a bigger denominator. (In the notation of the Comparison Test,
an isthe left side and b, is the right side.) We know that

< 551
2o 24w
is convergent because it’s a constant times a p-series with p = 2 > 1. Therefore
S ___ 5%
no1 202+ 4n + 3

is convergent by part (i) of the Comparison Test. [ |

NOTE 1 Although the condition a, < b, or a, = b, in the Comparison Test is given for
all n, we need verify only that it holds for n = N, where N is some fixed integer, because
the convergence of aseriesis not affected by afinite number of terms. Thisisillustrated in
the next example.

.« Ink !
7 ETYET#F] Test the series Y, S for convergence or divergence.
k=1

SOLUTION We used the Integral Test to test this seriesin Example 4 of Section 11.3, but
we can also test it by comparing it with the harmonic series. Observe that Ink > 1 for
k= 3and so

Ink 1
_— > — k=3
k k
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Exercises 40 and 41 deal with the
casesc = Oand ¢ = oo,

We know that > 1/k is divergent (p-series with p = 1). Thus the given seriesis diver-
gent by the Comparison Test. [ |

NOTE 2 Thetermsof the seriesbeing tested must be smaller than those of a convergent
series or larger than those of a divergent series. If the terms are larger than the terms of a
convergent series or smaller than those of a divergent series, then the Comparison Test
doesn’t apply. Consider, for instance, the series

The inequality

>_
2"—-1 2"

is useless as far as the Comparison Test is concerned because > b, = = (%)n is convergent
and a, > b,. Nonetheless, we have the feeling that = 1/(2" — 1) ought to be convergent
because it is very similar to the convergent geometric series > (%)” In such cases the fol-
lowing test can be used.

The Limit Comparison Test Suppose that > a, and = b, are series with positive

terms. If
. ap
lim—=c¢

n—o n

where ¢ is afinite number and ¢ > 0, then either both series converge or both
diverge.

PROOF Let m and M be positive numbers such that m < ¢ < M. Because a,/b, is close
toc for large n, thereisan integer N such that

an
m<b—<M when n > N
n
and so mb, < a, < Mb, when n > N

If = b, converges, so does> Mb,. Thus = a, converges by part (i) of the Comparison
Test. If = b, diverges, so does > mb, and part (ii) of the Comparison Test showsthat > a,
diverges. [ |

e 1
IETITETE] Test the series 3 ———
n=1 -

SOLUTION We use the Limit Comparison Test with

for convergence or divergence.

and obtain

. ap . 1/(2"-1) ) 2" 1
[im—=Ilim————= = =
o by on—= 1/20 noe 20— 1 e 1-—1/2
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Since this limit existsand = 1/2" is a convergent geometric series, the given series con-
verges by the Limit Comparison Test. [ |

z 2n?+ 3n
[0 Determine whether the series ), ———
ngl /5 + nd
SOLUTION The dominant part of the numerator is 2n? and the dominant part of the denom-
inator is/n® = n%2. This suggests taking

converges or diverges.

~2n*+ 3n 2
T BEw T
o a o 2n®+3n n¥?2  2n%? + 3n%?
lim— = lim . = lim
n—= P, = /54+n5 2 n—= 2,/ + ns
3
+ —
— lim 2 n _2+0 1
- 5 2,0+ 1
2 ? +1

Since = b, = 23 1/n?isdivergent (p-serieswith p=3< 1), the given series diverges
by the Limit Comparison Test. [ |

Notice that in testing many series we find a suitable comparison series > b, by keeping
only the highest powers in the numerator and denominator.

I Estimating Sums

If we have used the Comparison Test to show that a series = a, converges by comparison
with aseries = by, then we may be able to estimate the sum = a, by comparing remainders.
Asin Section 11.3, we consider the remainder

Rh=S8—S =an1+ an2+ ---
For the comparison series > b, we consider the corresponding remainder
Tn:t_tnzbn+1+bn+2+

Sincea, < b, for al n, wehave R, < T,. If £ b, isa p-series, we can estimate its remain-
der T, asin Section 11.3. If = b, is a geometric series, then T, is the sum of a geometric
series and we can sum it exactly (see Exercises 35 and 36). In either case we know that R,
issmaller than T,.

1 ETYTEES Use the sum of the first 100 terms to approximate the sum of the series
> 1/(n® + 1). Estimate the error involved in this approximation.

SOLUTION Since
1t 1
nf+1 n®
the given series is convergent by the Comparison Test. The remainder T, for the compar-

ison series 3 1/n® was estimated in Example 5 in Section 11.3 using the Remainder Esti-
mate for the Integral Test. There we found that

1
2n?

To < f%dx =
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Therefore the remainder R, for the given series satisfies

1
Ri=T, =
2n?
With n = 100 we have
Rigo = ———— = 0.00005
%= 2(100)?

Using a programmable calculator or a computer, we find that

S 1 o

=~ ~ 0.6864538
n=1n3+1 Zln3+l
with error less than 0.00005. [ |
m Exercises
1. Suppose X a, and = b, are series with positive terms and = b, i n + 2 i n+2
i 21. — 22. —
is known to be convergent. “omirn+1 A+ 13
(@) If a, > b, for al n, what can you say about = a,? Why?
(b) If a, < b, for al n, what can you say about = a,? Why? » s 5+ 2n ” i n? — 5n
" 2\2 " 3
2. Suppose = a, and = b, are series with positive terms and = b, w1 (14107 il
is known to be divergent. > A ¥ 1 o 1
(@) If a, > b, for al n, what can you say about = a,? Why? 2. Y Y rn? 2%. Y PV
(b) If a, < by for al n, what can you say about  a,? Why? =t 2
_ . . . ®© 1 2 w© e1/n
3-32 Determine whether the series converges or diverges. 2. 3 <1 " > e 28 3
o n © n3 n=1 n n=1 n
3. — 4.
212n3+1 22n4_1 = q =l
29. — 30 Y —
5 s n+1 6 *n-—1 n=1 M n=1 M
" nyn .nzlnz\/ﬁ = 1 > 1
31. 2 sin{ — 32. 2 1 in
* o i 6" n=1 n n=1 N
1 8.
2134‘10" o1 D" —1
9 i Ink 10 i k sin?k 33-36 Usethe sum of the first 10 terms to approximate the sum of
ek e 1+ ke the series. Estimate the error.
z 1 5 sin’n
S Jk o (2k — D(k*— 1) 3. Y —— 3. Y
1. e 12. — ’ / : 3
kgl /K3 + 4k + 3 kgl (k + 1)(k2 T 4)2 -1 4/N+ 1 =1 N
o o & & 1
arctann n N cos? S
13, 3 Xoa u S Jn 35. 215 cos’n 36. ngl ST
n=1 n n=2 N — 1
£ 4n+l © 1
15 32 6. 3 Foor 37. The meaning of the decimal representation of a number
"t mt 0.d:d,ds . . . (where the digit d; is one of the numbers 0, 1,
> 1 i 1 2,...,9) isthat
17. Y —— 18. >
=1 4/N2+ 1 n-1 2N + 3 d; d; ds da
O.d1d2d3d4... = +72+73+ Y
o n © n 10 10 10 10
0 S 1+4 % S n+ 4
a1+ 3 “aan+ 6" Show that this series always converges.

-

. Homework Hints available at stewartcal culus.com
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38. For what values of p does the series =7-, 1/(n® In n) converge? (b) Use part (a) to show that the series diverges.
39. Provethat if a, = 0 and = a, converges, then = a2 also Q) i 1 (ii) i Inn
converges. n—2 Inn -1 N

40. (a) Suppose that = a, and = b, are series with positive terms

. . 42. Give an example of apair of series* a, and = b, with positive
and = b, is convergent. Prove that if

terms where lim, ... (a,/b,) = 0 and = b, diverges, but = a,

lim an 0 converges. (Compare with Exercise 40.)
n—e by

then S a, is also convergent 43. Show that if a, > Oand lim,_. na, # 0, then> a, is

N . -
(b) Use part (@) to show that the series converges. divergent.
0 > Inan (i) > Inn 44. Show that if a, > 0 and = a, is convergent, then = In(1 + a,)
= -1 /ne’ is convergent.
4. (a) Supposethat > a, and = b, are series with positive terms
and = b, is divergent. Prove that if 45. If = a, is aconvergent series with positive terms, isit true that
a ¥ sin(a,) is aso convergent?

lim— = o
e b 46. If S a, and I b, are both convergent series with positive terms,

then = a, is also divergent. isit truethat = a, b, is aso convergent?

m Alternating Series

The convergence tests that we have looked at so far apply only to series with positive
terms. In this section and the next we learn how to deal with series whose terms are not
necessarily positive. Of particular importance are alternating series, whose terms alternate
insign.

Analternating series isaserieswhose terms are alternately positive and negative. Here
are two examples:

1 1 1 1 1 s 1
l-—+-—-——+=——=+-= -t =
2 3 4 5 6 ngl( ) n
1 2 3 4 5 6 s n
- - — Y — - — 4 = — ... = —1)"
2 3 4 5 6 7 g()n+1

We see from these examples that the nth term of an alternating seriesis of the form
a,= (1", o a =(-1b,

where b, is a positive number. (In fact, b, = | a,|.)
The following test says that if the terms of an alternating series decrease toward O in
absolute value, then the series converges.

Alternating Series Test |f the alternating series
E(_1)n_1bn=b1_b2+b3_b4+b5_b5+"' bn>0
n=1

satisfies
(i) buai<b, foraln
(i) limb,=0

then the series is convergent.
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FIGURE 1

Before giving the proof let’s look at Figure 1, which gives a picture of the idea behind
the proof. We first plot s; = b; on a number line. To find s, we subtract by, so s; is to the
left of s;. Then to find s; we add bs, so s; is to the right of s,. But, since b; < b, s3 is to
the left of s,. Continuing in this manner, we see that the partial sums oscillate back and
forth. Since b, — 0, the successive steps are becoming smaller and smaller. The even par-
tial sums s,, S4, Se, - . - are increasing and the odd partial sums s;, Ss, Ss, . . . are decreasing.
Thus it seems plausible that both are converging to some number s, which is the sum of the
series. Therefore we consider the even and odd partial sums separately in the follow-
ing proof.

b,
— bZ
+ by
— b,
+ bs
— b()
‘ e
0 S, Sy Se s S5 3 51

PROOF OF THE ALTERNATING SERIES TEST We first consider the even partial sums:

S,=b;—hb,=0 since b, < b;
Ss =5+ (s —hy) =s; since by < bs
In general Son = Son—2 + (D2n-1 — b2n) = S;n2  since b < bons
Thus 0<S <S5 <S=<-'"<S,=<:'--
But we can also write
Son =01 — (b = bs) — (bs — bs) — -+ = (ban-2 — D2n-1) — b2n

Every term in brackets is positive, so s,, < b, for all n. Therefore the sequence {s,n}
of even partial sums is increasing and bounded above. It is therefore convergent by the
Monotonic Sequence Theorem. Let’s call its limit s, that is,

lims,, =s

n—w

Now we compute the limit of the odd partial sums:

lim Szne1 = 1im (Szn + b2ni1)
n—so

n—o

lim szy + lim bapis
n—o n—o
=s+0 [by condition (ii)]
=S

Since both the even and odd partial sums converge to s, we have lim,_... S, = S
[see Exercise 92(a) in Section 11.1] and so the series is convergent. [ |



Figure 2 illustrates Example 1 by showing the
graphs of the terms a, = (—1)""%/n and the
partial sums Sp. Notice how the values of S,
zigzag across the limiting value, which appears
to be about 0.7. In fact, it can be proved that
the exact sum of the series is In 2 = 0.693
(see Exercise 36).

I S S S SR SR S S
L e L

P T Y
—t—t—t—

FIGURE 2

Instead of verifying condition (i) of the Alter-
nating Series Test by computing a derivative,
we could verify that bn.1 << b, directly by
using the technique of Solution 1 of
Example 13 in Section 11.1.
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I IEX0ZTER The alternating harmonic series

1 1 1 2 (=1t
1 —_ _|_ N — _|_ e e — L —
2 3 4 ngl n
satisfies
i) bhi1 < by because < —
(i) o n+1 n
1
(i) lim by, = lim re 0
so the series is convergent by the Alternating Series Test. [ |
L ow (=13, .
1 BT The series D, pre—y is alternating, but
n=1 -
3n 3 3
lim b, = lim = lim =—
nLoc I‘ILOC n—1 nL” 1 4

so condition (i) is not satisfied. Instead, we look at the limit of the nth term of the series:

. . (=D"3n
lima, = lim ————
n—o n n—o 4n — 1

This limit does not exist, so the series diverges by the Test for Divergence.

n2

n®+1

[ET0ETE] Test the series Y, (—1)"** for convergence or divergence.
n=1
SOLUTION The given series is alternating so we try to verify conditions (i) and (ii) of the
Alternating Series Test.
Unlike the situation in Example 1, it is not obvious that the sequence given by
b, = n%(n® + 1) is decreasing. However, if we consider the related function
f(x) = x%/(x® + 1), we find that

x(2 — x?)

P00 = et 1y

Since we are considering only positive x, we see that f'(x) < 0if 2 — x* < 0, that is,
x > /2. Thus f is decreasing on the interval (\3/5 00). This means that f(n + 1) < f(n)
and therefore bn1 < b, when n = 2. (The inequality b, < b; can be verified directly but
all that really matters is that the sequence {b,} is eventually decreasing.)

Condition (ii) is readily verified:

2

lim b, = lim =lim———=0
n—ow " n—ow n3 +1 n—o 1
1+—3
n

Thus the given series is convergent by the Alternating Series Test.
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You can see geometrically why the Alternating
Series Estimation Theorem is true by looking at

Figure 1 (on page 752). Notice that s — s4 < bs,

|'s — ss| < bg, and so on. Notice also that s
lies between any two consecutive partial sums.

By definition, 0! = 1.

In Section 11.10 we will prove that
e* = 3h_o x"/n! for all x, so what we
have obtained in Example 4 is actually an

approximation to the number e .

I Estimating Sums

A partial sum s, of any convergent series can be used as an approximation to the total sum
s, but this is not of much use unless we can estimate the accuracy of the approximation. The
error involved in using s = s, is the remainder R, = s — s,. The next theorem says that
for series that satisfy the conditions of the Alternating Series Test, the size of the error is
smaller than b,.1, which is the absolute value of the first neglected term.

Alternating Series Estimation Theorem If s = 3 (—1)" b, is the sum of an alternating
series that satisfies

(i) bps<b, and (i) limb, =0

then |Rn|=|5_sn|$bn+1

PROOF We know from the proof of the Alternating Series Test that s lies between any two
consecutive partial sums s, and s,+1. (There we showed that s is larger than all even par-
tial sums. A similar argument shows that s is smaller than all the odd sums.) It follows
that

‘S_Sn|$‘sn+1_sn|=bn+l L

="

nl

correct to three decimal places.

7 IETYET Find the sum of the series Y,
n=0
SOLUTION We first observe that the series is convergent by the Alternating Series Test
because
. 1 1 1
() =

n+D) i+l ot

1 1 1
(i) 0<—<——0 s0o——0a n—wx
n! n n!

To get a feel for how many terms we need to use in our approximation, let’s write out
the first few terms of the series:

5= 0! 1! 20 3t 4 51 6! 7!

—1 _ ¢ 1,1 1, 1 1 .,
=1-1+3-6+txu— 1w+t 7 s T

1 1 1 1 1 1 1 1
+

Notice that b; = cos < =55 = 0.0002
and Ss=1—1+3—1t+ 25— 135 + 72 =~ 0.368056
By the Alternating Series Estimation Theorem we know that

|S — Se| < b; < 0.0002

This error of less than 0.0002 does not affect the third decimal place, so we have
s =~ 0.368 correct to three decimal places. [ |
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@ NOTE The rule that the error (in using s, to approximate s) is smaller than the first

neglected term is, in general, valid only for alternating series that satisfy the conditions of
the Alternating Series Estimation Theorem. The rule does not apply to other types of series.

m Exercises

1. (@) What is an alternating series?
(b) Under what conditions does an alternating series
converge?
(c) If these conditions are satisfied, what can you say about
the remainder after n terms?

2-20 Test the series for convergence or divergence.
2 2 2 2 2
25-sti-s+ta—

2 4 6 8
3. —5tg—7tsg—9 -

1 1 1 1 1
f — - — -+ — ...
2 3 4 5 6
< (*1)"71 il (,1)n71
5 6.
ngl 2n+1 ngl In(n + 4)
& 3n—-1 i n
1 =" 8 Y L —
ngl( ) 2n+1 ngl( ) Jn3+ 2
. . N
9 1)"e™" 10 —1)n
ngl( ) ngl( ) 2n + 3
o n2 o
1. -1t — 12. —1)"ine™
ngl 1) n®+ 4 El (=1)
13. > (—1)" le?" 14. Y (—1)"'arctann
n=1 =
15 i sin(n + 3)m 1, 3 neosnm
. —o 1+ +/n ' n=1 2"
17. X (-1)" Sin<w> 18. Y (—1)“cos<w>
n=1 n n=1 n
19. 3 (—1)"% 20 3 (T i-vn)
n=1 . n=1

2 (—1)"*11n
n=1 8

23-26 Show that the series is convergent. How many terms of
the series do we need to add in order to find the sum to the indi-
cated accuracy?

2. é (o (| error | < 0.00005)
24, 21 (;51)” (lerror | < 0.0001)

25, 20 (1;12' (| error | < 0.000005)
26. n}j (—=1)" e (|error| < 0.01)

21-22 Graph both the sequence of terms and the sequence of
partial sums on the same screen. Use the graph to make a rough

estimate of the sum of the series. Then use the Alternating Series

Estimation Theorem to estimate the sum correct to four decimal
places.

(-0.8)"
1 nl

DMs

21.

n

Graphing calculator or computer required

27-30 Approximate the sum of the series correct to four
decimal places.

* (_l)n 3 ( 1)n+1
21 ngl (2n)! g

£ (_1)n71n2 1)n
29, 21710” 30. nEl 3

31. Is the 50th partial sum ss, of the alternating series
Sio1 (—1)"Y/n an overestimate or an underestimate of the
total sum? Explain.

32-34 For what values of p is each series convergent?

)nl
322
n=1

(=" < py (INn)P
nm1 N+ p 3 Ez =) n

DMs

33.

35. Show that the series = (—1)"*b,, where b, = 1/n if n is odd
and b, = 1/n?if n is even, is divergent. Why does the Alter-
nating Series Test not apply?

1. Homework Hints available at stewartcalculus.com
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36. Use the following steps to show that (b) From Exercise 44 in Section 11.3 we have

(-1
1 n

DM s

n

=1In2

hh —Inn—vy as n—»
and therefore

hzn — In(2n) — as n—

Let h, and s, be the partial sums of the harmonic and alter-

nating harmonic series.
(@) Show that s;n = hzn — hy.

Use these facts together with part (a) to show that
Son—>In2asn — o,

m Absolute Convergence and the Ratio and Root Tests

We have convergence tests for series with
positive terms and for alternating series. But
what if the signs of the terms switch back and
forth irregularly? We will see in Example 3 that
the idea of absolute convergence sometimes
helps in such cases.

Given any series = a,, we can consider the corresponding series
2 Jan| = la| + [a| + [as| + -+
n=1

whose terms are the absolute values of the terms of the original series.

E] Definition A series X a, is called absolutely convergent if the series of
absolute values = | a,| is convergent.

Notice that if = a, is a series with positive terms, then |a,| = a, and so absolute con-
vergence is the same as convergence in this case.

[E7XTIEEN The series
5 (=t 1 1 1
_— =1 — 4+ —= — — 4+ -
ngl n2 22 32 42
is absolutely convergent because
& (=t 5 1 1
=) ==1+=+=+=+
ngl n2 21 n2 2 2 42
is a convergent p-series (p = 2). [ |

[E7NTIEF We know that the alternating harmonic series

(-1t 1.1 1
_— —_— 3 — — — 4 ..
2 Y23

n=1 n

is convergent (see Example 1 in Section 11.5), but it is not absolutely convergent because
the corresponding series of absolute values is

o 1

n=1 N

Gt il
n

1 1 1
=1+ +=+=+ -
2 3 4

o
)
n=1

which is the harmonic series (p-series with p = 1) and is therefore divergent. [ |



Figure 1 shows the graphs of the terms a, and
partial sums Sy of the series in Example 3.
Notice that the series is not alternating but
has positive and negative terms.

05T
{sut
{an}
0 ’ n
FIGURE 1

SECTION 11.6 ABSOLUTE CONVERGENCE AND THE RATIO AND ROOT TESTS 157

@ Definition A series X a, is called conditionally convergent if it is convergent
but not absolutely convergent.

Example 2 shows that the alternating harmonic series is conditionally convergent. Thus
it is possible for a series to be convergent but not absolutely convergent. However, the next
theorem shows that absolute convergence implies convergence.

@ Theorem If a series T a, is absolutely convergent, then it is convergent.

PROOF Observe that the inequality
0<a,+ |an| < 2|ay|
is true because | a, | is either a, or —a,. If = a, is absolutely convergent, then = |a, | is

convergent, so = 2| a, | is convergent. Therefore, by the Comparison Test, S (a, + |a,|) is
convergent. Then

Za =2 (an+|an) - X an]

is the difference of two convergent series and is therefore convergent. [

7 IETYTEE] Determine whether the series

S cosn cos 1 cos 2 cos 3
2 2 2 + 2 + 2 +
n=1 n 1 2 3

is convergent or divergent.

SOLUTION This series has both positive and negative terms, but it is not alternating.
(The first term is positive, the next three are negative, and the following three are posi-
tive: The signs change irregularly.) We can apply the Comparison Test to the series of
absolute values

cosn| & |cosn|
ngl n> | ngl n?
Since [cos n| < 1 for all n, we have
cosn| 1
—_— g —_—
n? n?

We know that = 1/n? is convergent (p-series with p = 2) and therefore = |cos n|/n? is
convergent by the Comparison Test. Thus the given series = (cos n)/n? is absolutely
convergent and therefore convergent by Theorem 3. [ |

The following test is very useful in determining whether a given series is absolutely
convergent.
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The Ratio Test

. . |a o
(i) If lim S — L < 1, then the series > a, is absolutely convergent

n—e | ap n=1

(and therefore convergent).

.. . An+1 . An+1 . S
(i) If lim |—=| =L > 1or lim |—=| = o, then the series Y, a,
n—=| dp n—= | dp n=1
is divergent.
. An+1 . . . . .
(iii) If lim |——| = 1, the Ratio Test is inconclusive; that is, no conclusion can

n—ow an

be drawn about the convergence or divergence of = a,.

PROOF
(i) The idea is to compare the given series with a convergent geometric series. Since
L < 1, we can choose a number r such that L < r < 1. Since

dn+1
an

lim

n—o

=L and L<r

the ratio | a,+1/an | will eventually be less than r; that is, there exists an integer N
such that

an+1
2l <r whenever n= N

n

or, equivalently,
(4] |an1| <|as|r  whenever n =N
Putting n successively equal to N, N + 1, N + 2, . .. in [4], we obtain
lani| < |an]|r
|ansz| < |anci|r < |an|r?

|aN+3| < |aN+2|r< |<'31N||’3

and, in general,

(5] |an| < |an|r®  forallk =1

Now the series

8

lan|r=[an|r + ay[r® + [ax[r® + -
1

=~
Il

is convergent because it is a geometric series with 0 < r < 1. So the inequality
together with the Comparison Test, shows that the series

0 0

> lan| = > lansk] = |ans1| + |ansz2| + |anss| + -0 -
n=N+1 k=1



The Ratio Test is usually conclusive if the nth
term of the series contains an exponential or a
factorial, as we will see in Examples 4 and 5.

Estimating Sums

In the last three sections we used various meth-
ods for estimating the sum of a series—the
method depended on which test was used to
prove convergence. What about series for

which the Ratio Test works? There are two
possibilities: If the series happens to be an alter-
nating series, as in Example 4, then it is best to
use the methods of Section 11.5. If the terms are
all positive, then use the special methods
explained in Exercise 38.
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is also convergent. It follows that the series =;—; | an | is convergent. (Recall that a finite
number of terms doesn’t affect convergence.) Therefore = a, is absolutely convergent.

(i) 1f|ansi/an|—L > 1or|ami/as|— o, then the ratio | a,.1/a. | will eventually be
greater than 1; that is, there exists an integer N such that

an+1
an

>1 whenever n = N

This means that |an+1| > |an| whenever n = N and so

lima, #0

n—o

Therefore X a, diverges by the Test for Divergence. [ |

NOTE Part (iii) of the Ratio Test says that if lim,_... |a,+1/an| = 1, the test gives no
information. For instance, for the convergent series = 1/n* we have

1
ani1 (n + 1) n? 1
= = > = > —1 as n-—ox
an 1 (n+1) 1
— 1+ —
n n
whereas for the divergent series > 1/n we have
1
Ani1 n+1 n 1
= = = —1 as n—w
an 1 n+1 1
— 1 + —
n n

Therefore, if lim,—.. | a,+1/a,| = 1, the series = a, might converge or it might diverge. In
this case the Ratio Test fails and we must use some other test.

- n®
SN Test the series D, (—1)" 3 for absolute convergence.
n=1

SOLUTION We use the Ratio Test with a, = (—1)"n%/3"

(—1)"(n + 1

v | 3 _h+1° 3
an (_1)nn3 3n+1 n3
3n

1{n+1\ 1 1)\ 1
=—|l—) ==11+—] >=<1
3 n 3 n 3

Thus, by the Ratio Test, the given series is absolutely convergent and therefore
convergent. [
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. a n"
1 IETXTE Test the convergence of the series , i
n=1 N:

SOLUTION Since the terms a, = n"/n! are positive, we don’t need the absolute value
signs.

a  (n+ 1™ nl

an (n+21! n"
B (n+1)(n+1)”.n_!
N (n + )n! n"

= =|1+=) —e asn—ow
n n

(see Equation 6.4.9 or 6.4*.9). Since e > 1, the given series is divergent by the Ratio
Test. [

NOTE Although the Ratio Test works in Example 5, an easier method is to use the Test
for Divergence. Since
nl‘l

ap=—=

n-n-n-
n! 12+3«---+n

=N

it follows that a, does not approach 0 as n — oc. Therefore the given series is divergent by
the Test for Divergence.

The following test is convenient to apply when nth powers occur. Its proof is similar to
the proof of the Ratio Test and is left as Exercise 41.

The Root Test

(i) If lim {/|a.| = L < 1, then the series ), a, is absolutely convergent
n—o n=1

(and therefore convergent).

(i) Iflim {Ja,] =L > 1or lim {/[a,| = o, then the series >, a, is divergent.
n—o n—o

n=1

(iii) If lim ¢/|a,| = 1, the Root Test is inconclusive.

If lim,—- ¥/|a.| = 1, then part (iii) of the Root Test says that the test gives no infor-
mation. The series = a, could converge or diverge. (If L = 1 in the Ratio Test, don’t try the
Root Test because L will again be 1. And if L = 1 in the Root Test, don’t try the Ratio Test
because it will fail too.)

. - [ 2n+3)"
1 IET0TEA Test the convergence of the series , < > .

n=1 Sn + 2
SOLUTION
= 2n + 3\"
" 3n + 2

3
an+3 "'
3n+2 2

n

Ta] -

w
+

Thus the given series converges by the Root Test. [ |



Adding these zeros does not affect the sum of
the series; each term in the sequence of partial

sums is repeated, but the limit is the same.

m Exercises
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I Rearrangements

The question of whether a given convergent series is absolutely convergent or conditionally
convergent has a bearing on the question of whether infinite sums behave like finite sums.

If we rearrange the order of the terms in a finite sum, then of course the value of the sum
remains unchanged. But this is not always the case for an infinite series. By a rearrange-
ment of an infinite series = a, we mean a series obtained by simply changing the order of
the terms. For instance, a rearrangement of = a, could start as follows:

a,+a, +as taz+as+ais+agt+a;+ay+ ---

It turns out that

if = a, is an absolutely convergent series with sum s,
then any rearrangement of ¥ a, has the same sum s.

However, any conditionally convergent series can be rearranged to give a different sum. To
illustrate this fact let’s consider the alternating harmonic series

(6]

(See Exercise 36 in Section 11.5.) If we multiply this series by 3, we get

1 1 1 1 1 1 1
—2t3—its—gti—gt---=1In2

1 1 1 1 1
5—2+g—g+"':§|n2
Inserting zeros between the terms of this series, we have

Now we add the series in Equations 6 and 7 using Theorem 11.2.8:

Notice that the series in [8] contains the same terms as in [6], but rearranged so that one neg-
ative term occurs after each pair of positive terms. The sums of these series, however, are
different. In fact, Riemann proved that

0+;+0—5+0+z+0—5+---=3In2

1+3-3+s+7—3+---=3In2

if = a, is a conditionally convergent series and r is any real number what-
soever, then there is a rearrangement of = a, that has a sum equal to r.

A proof of this fact is outlined in Exercise 44.

1. What can you say about the series = a, in each of the following 5 i (=" 6 i (=3)"
cases? 5N+ 1 TS 2n+ 1)1
. ag _|an
@ lim || =8 (b) lim || =0.8 . -
n—ow| ap n—o N 7 2 k(g)k 8 2 n!
il 2, 100"
- an+
(c) lim a—l =1
"] @n 3 (1.1)" < n
9. X (-1)"—— 10. Y (-)"—=
2-30 Determine whether the series is absolutely convergent, n=t n n=t vnd + 2
conditionally convergent, or divergent. )
. ; " é (=1)"e¥n 2 i sin4n
23 (_2) =T =
n=1 n
SN < n & 10" z n
3. —_— 4, -t 13. ——— 14. —
ngl 5" ngl( ) n®+ 4 n=1 (n + 1)42n+1 n=1 (710)n+1

1. Homework Hints available at stewartcalculus.com
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i 1)”arctann . iS—cosn
(=" & on!
17. 18. —
nEZ Inn Zln“
< 3 S (=2)n
19. EM 20. E( n)
n=1 n! n=1 N
= nZ+1\ = —2n \"
2 nzl<2n2+ 1) 2 n22<n + 1)
- 1\" = (2n)!
23. 1+ — 24,
r121< n) ngl (n!)z
& n'®100" S 2"
25. —_— 26. —
n=1 n! nop Nl
g . 1'3,1-3-5 1-3-5-7
' 3! 5! 7!
N 1.3.5.....(2n_1)
+ (="t +
=1 (2n — 1!
2 2-6 2-6-10 2-6-10-14
28. — + +
5 5-8 5-8-11 5-8-11-14
29.22-4-6--'--(2n)
n=1 n!
& 2"n!
30. -1)"
21( )5-8-11-~---(3n+2)

31. Theterms of a series are defined recursively by the equations

5n+1a
4n+3°"

ar=2 an+1 =

Determine whether = a, converges or diverges.

32. A seriesT a, is defined by the equations

a 2+cosna
n+1=7 n
Jn

Determine whether = a, converges or diverges.

ar=1

33-34 Let {b,} be a sequence of positive numbers that converges
to 2. Determine whether the given series is absolutely convergent.
& (=1)"n!

34. —_———
ngl nnb1b2b3 et bn

& ba cosnm

332

35. For which of the following series is the Ratio Test inconclusive

(that is, it fails to give a definite answer)?

1
@ ngl? (b) nzlg
3 (_3)n71 f
(© Zﬁ NG (d) nEl 1+ 17

36.

31.

38.

39.

40.

4.

42.

For which positive integers k is the following series convergent?

(&) Show that =7—_¢ x"/n! converges for al x.
(b) Deduce that lim, ... x"/n! = 0 for all x.

Let > a, be a series with positive terms and let r, = an+1/an.
Suppose that lim, ... r, = L < 1, s0 T a, converges by the
Ratio Test. As usual, we let R, be the remainder after n terms,
that is,

Rh=ani1 + anio + anez + - - ¢

(@) If {r,} isadecreasing sequence and rn.1 < 1, show, by
summing a geometric series, that

Rn < L
1- M1
(b) If {r,} is an increasing sequence, show that

an+1

1-1L

(a) Find the partial sum ss of the series >7-; 1/(n2"). Use Exer-
cise 38 to estimate the error in using ss as an approximation
to the sum of the series.

(b) Find avalue of n so that s, is within 0.00005 of the sum.
Use this value of n to approximate the sum of the series.

Use the sum of the first 10 terms to approximate the sum of
the series

uMs

n
72"
Use Exercise 38 to estimate the error.

Prove the Root Test. [Hint for part (i): Take any number r such
that L < r < 1 and use the fact that thereis an integer N such
that ¢/|a,| < r whenever n = N.]

Around 1910, the Indian mathematician Srinivasa Ramanujan
discovered the formula

1_2y2 ¢ S (4n)!(1103 + 26390n)
9801 = (n1)*396°"

William Gosper used this seriesin 1985 to compute the first

17 million digits of .

(8) Verify that the series is convergent.

(b) How many correct decimal places of 7 do you get if you
use just the first term of the series? What if you use two
terms?

. Given any series ™ a,, we define a series S ai whose terms are

all the positive terms of = a, and a series = a; whose terms
are all the negative terms of = a,. To be specific, we let

a+:a”+‘an‘ afzan_|an‘
§ 2 " 2



44

m Strategy for Testing Series

We now have several ways of testing a series for convergence or divergence; the problem
isto decide which test to use on which series. In this respect, testing seriesis similar to inte-
grating functions. Again there are no hard and fast rules about which test to apply to agiven
series, but you may find the following advice of some use.

It is not wise to apply alist of the tests in a specific order until one finally works. That
would be a waste of time and effort. Instead, as with integration, the main strategy is to
classify the series according to its form.

a, < 0, thenay, = a,and ai = 0.

series > aj and = a are convergent.
(b) If = a, is conditionally convergent, show that both of the 45
series ¥ ai and X ap are divergent.
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Notice that if a, > 0, then aj = a, and ay = 0, whereas if Take just enough positive terms ai so that their sum is greater
than r. Then add just enough negative terms a; so that the
(a) If = a, is absolutely convergent, show that both of the cumulative sum is less than r. Continue in this manner and use
Theorem 11.2.6.]
. Suppose the series = a, is conditionally convergent.

(a) Prove that the series 3 n?a, is divergent.
(b) Conditional convergence of = a, is not enough to deter-

Prove that if = a, is a conditionally convergent series and mine whether = na, is convergent. Show this by giving an
r isany real number, then there is arearrangement of = a, example of a conditionally convergent series such that
whose sumisr. [Hints: Use the notation of Exercise 43. > na, converges and an example where = na, diverges.

1. If the seriesis of the form = 1/n®, it is a p-series, which we know to be convergent

if p> 1anddivergentif p < 1.

. If the serieshastheform = ar"* or 2 ar", it is a geometric series, which converges

if |r| < 1anddivergesif |r| = 1. Some preliminary algebraic manipulation may
be required to bring the series into this form.

. If the series has aform that is similar to a p-series or a geometric series, then

one of the comparison tests should be considered. In particular, if a, is arational
function or an agebraic function of n (involving roots of polynomials), then the
series should be compared with a p-series. Notice that most of the series in Exer-
cises 11.4 have this form. (The value of p should be chosen asin Section 11.4 by
keeping only the highest powers of n in the numerator and denominator.) The com-
parison tests apply only to series with positive terms, but if = a, has some negative
terms, then we can apply the Comparison Test to = |a, | and test for absolute
convergence.

. If you can see at a glance that lim,_... a, # 0, then the Test for Divergence should

be used.

. If the seriesis of the form = (—1)" *b, or = (—1)"b,, then the Alternating Series

Test is an obvious possibility.

. Series that involve factorials or other products (including a constant raised to the

nth power) are often conveniently tested using the Ratio Test. Bear in mind that
|an+1/an|— 1 asn — o for al p-series and therefore all rational or algebraic
functions of n. Thus the Ratio Test should not be used for such series.

. If a, isof the form (b, )", then the Root Test may be useful.
. If a, = f(n), where J'f f(x) dx is easily evaluated, then the Integral Test is effective

(assuming the hypotheses of this test are satisfied).
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In the following examples we don’t work out all the details but simply indicate which

tests should be used.
VI EXAMPLE 1 IO
1 2n+1

Sincea, — 3 # 0 asn — %, we should use the Test for Divergence.

EXAMPLE 2 i)

Z vnd+ 1

=1 3n° + 4n2 + 2

Since a, is an agebraic function of n, we compare the given series with a p-series. The

comparison series for the Limit Comparison Test is = b,, where

V| EXAMPLE 3 IDYIC
n=1

b Jnd o onp2 1
" 303 303 3n¥2

Since the integral |;” xe ™ dx is easily evaluated, we use the Integral Test. The Ratio Test

also works.

EXIEE 3 (-1

n3

nt+ 1

Since the series is aternating, we use the Alternating Series Test.

V] ExavpLe 5 BB

k=1 K!

Since the seriesinvolves k!, we use the Ratio Test.

5 01
Eﬂmn§12+3n

Since the seriesis closely related to the geometric series > 1/3", we use the Comparison

Test.

1-38 Test the series for convergence or divergence.

) 21 (ZnnJgn )"
& 2’1(_ d nzr]r 2
6. 21 2n1+ 1

8 él (kzik;)l

10. gnze’na

S (1 1
1. — + =
ngl n3 3n>
o 3n n2
13.
21 n!
% 2k713k+1
15.
Zl k
1721.3.5 ..... (2n_1)
n-12:5-8 +(3n—-1
© (_1 n—-1
18.
ngz \/ﬁ -1

12 i#
e kVvkz+ 1

9]
=]
N
>

DMs

14.

11+ 2"

n

S n+1
16. D,

n=1 n®+ 1
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: Inn S oYk-1 Z (=1 - N
19. -1)"— 20. 29. 30. 1)) ——

ngl( ) NG zlk(\/EJrl) =1 coshn Zl( ) j+5

. - 1 L 5 < (n)"

1" 2 _— 31. 32.

2. ngl( 1)" cos(1/n?) 2. k§12+ o gl ETST ngl e
zsi 1 z4i ' 33§ n_ ) 34§¥

= tan(1/n) A nsin(1/n) T2 \n+1 " Zin + ncosn

S n! Zn’+1 35 S 1 36 S 1
2. ngl e”2 2. ngl g" ) ngl ni+in ' ngz (|n n)ln"

5 klink z el 3. Y (V2 - 1) 8 Y (V2 -1
2. Y 3 28 > — n1 n=1

1 (k+ 1) -1 N
m Power Series

A power series is aseries of the form
(1] S X" = Co + C1X + CoX2 + Cax3 + - -
n=0

Trigonometric Series

A power series is a series in which each term is

a power function. A trigonometric series

8

n

is a series whose terms are trigonometric
functions. This type of series is discussed on

the website

www.stewartcalculus.com

(a, cosnx + b, sinnx)
0

Click on Additional Topics and then on Fourier

Series.

Notice that

M+Dl=n+Dn(h—1)-----3-

=(n+ I)n!

2.

1

where x isavariable and the c,’s are constants called the coefficients of the series. For each
fixed x, the series | 1] isaseries of constants that we can test for convergence or divergence.
A power series may converge for some values of x and diverge for other values of x. The
sum of the seriesisafunction

f(X):cO+C1X+c2X2+"'+Can+---

whose domain is the set of all x for which the series converges. Notice that f resembles a
polynomial. The only differenceisthat f hasinfinitely many terms.
For instance, if wetake c, = 1 for al n, the power series becomes the geometric series

X"=14+X+XEF X

Mg

n=0

which convergeswhen —1 < x < 1 and divergeswhen | x| = 1. (See Equation 11.2.5.)
More generally, a series of the form

(2] iCn(X—a)n=00+Cl(X_a)+C2(X_a)2+"'

iscaled apower series in (x — a) or apower series centered at a or apower series about
a. Notice that in writing out the term corresponding ton = 0in Equations 1 and 2 we have
adopted the convention that (x — a)° = 1 even when x = a. Notice aso that when x = a
all of thetermsare O for n = 1 and so the power series [2] always converges when x = a.

1 IET0TEEN For what values of x isthe series Y, n!x" convergent?

n=0
SOLUTION We use the Ratio Test. If we let a,, as usual, denote the nth term of the series,
then a, = n!x". If x # 0, we have

An+1

an

(n + I)rx"*t

= [im Y

n—w%

lim

n—ow

=lim(n + 1)|x| =«
n—o
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Notice how closely the computer-generated
model (which involves Bessel functions and
cosine functions) matches the photograph of a
vibrating rubber membrane.

By the Ratio Test, the series diverges when x # 0. Thus the given series converges only

when x = 0. [
e (x=3r
7 IETYET#F For what values of x does the series D, %converge?
n=1
SOLUTION Leta, = (x — 3)"/n. Then
a1 | [(x =3 n
an n+1 (x—=3)"
1
= 1\x—3\—>\x—3\ an—o
1+=
n

By the Ratio Test, the given seriesis absolutely convergent, and therefore convergent,
when [x — 3| < 1 and divergent when |x — 3| > 1. Now

[x -=3|<1 << -1<x-3<1 & 2<x<4

so the series converges when 2 < x < 4 and divergeswhen x < 2 or x > 4.

The Ratio Test gives no information when | x — 3| = 1 so we must consider x = 2
and x = 4 separately. If we put x = 4 in the series, it becomes = 1/n, the harmonic
series, which is divergent. If x = 2, the seriesis = (—1)"/n, which converges by the
Alternating Series Test. Thus the given power series convergesfor 2 < x < 4. [

We will see that the main use of a power series is that it provides a way to represent
some of the most important functions that arise in mathematics, physics, and chemistry. In
particular, the sum of the power seriesin the next exampleiscalled aBessel function, after
the German astronomer Friedrich Bessel (1784-1846), and the function given in Exercise 35
is another example of a Bessel function. In fact, these functions first arose when Bessel
solved Kepler’'s equation for describing planetary motion. Since that time, these functions
have been applied in many different physical situations, including the temperature distri-
bution in acircular plate and the shape of avibrating drumhead.

[E7YZTF] Find the domain of the Bessel function of order O defined by

W0 =3 —(;nlgmx)z

SOLUTION Leta, = (—1)"x?"/[2*"(n!)?]. Then

an+1 (_1)n+1X2(n+1) 22n(n!)2
a | 2"+ DI ()%
X2n+2 22n(n!)2

2272(n + 1)4(n1)? : X2

2
=4(nx—+1)2—>0<1 for all x

Thus, by the Ratio Test, the given series converges for al values of x. In other words,
the domain of the Bessel function Jo is (—o, ) = R. [ |
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Recall that the sum of a seriesis equal to the limit of the sequence of partial sums. So
when we define the Bessel function in Example 3 as the sum of a series we mean that, for
every real number x,

] n _1)iX2i
Jo(x) = limsy(x)  where  si(X) = X 5
n—co = 2 I(I!)
Thefirst few partial sums are
X2 x2 x4
=1 —1-— =1+ =
So(X) S1(x) 2 S2(X) 4 64
xz  x* x® xz x4 x© x8
=1—-—+— - =1—-—+4+ = - +
ss(%) 4 " ea 2304 s4) 4 " ea 2304 147456

Figure 1 showsthe graphs of these partial sums, which are polynomials. They are all approx-
imations to the function Jo, but notice that the approximations become better when more
terms are included. Figure 2 shows a more complete graph of the Bessel function.

For the power series that we have looked at so far, the set of values of x for which the
seriesis convergent has alwaysturned out to be an interval [afiniteinterval for the geometric
series and the series in Example 2, the infinite interval (—o, ) in Example 3, and a col-
lapsed interval [0, O] = {0} in Example 1]. The following theorem, proved in Appendix F,
saysthat thisistrue in general.

@ Theorem For agiven power series Y, ¢,(x — a)" there are only three
possibilities: n=0

(i) The series converges only when x = a.

(ii) The series converges for all x.

(iii) Thereis a positive number R such that the series convergesif |[x — a| <R
and divergesif |[x —a| > R.

The number R in case (iii) is called the radius of convergence of the power series. By
convention, theradius of convergenceisR = Oincase(i) and R = »incase(ii). Theinter-
val of convergence of apower seriesistheinterval that consists of all values of x for which
the series converges. In case (i) theinterval consists of just asingle point a. In case (ii) the
interval is (—co, ). In case (iii) note that the inequality |x — a| < R can be rewritten as
a — R <x < a+ R.When x isanendpoint of the interval, that is, x = a = R, anything
can happen—the series might converge at one or both endpoints or it might diverge at both
endpoints. Thusin case (iii) there are four possihilities for the interval of convergence:

(@a—-R,a+R) (a—R,a+R] [a—R,a+R) [a—R,a+R]
The situation isillustrated in Figure 3.

convergence for |x —a| <R

a—R a a+R

e _ I —
divergencefor |[x —a|>R
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We summarize here the radius and interval of convergence for each of the examples
already considered in this section.

Series Radius of convergence Interval of convergence
Geometric series éo X" R=1 (-1,1)
Example 1 nEi‘,on! X" R=0 {0}
Example 2 E (X = 3)n R=1 [2,4)
Example 3 HEO (zznl()r:|;n R=o (—o0,

In general, the Ratio Test (or sometimes the Root Test) should be used to determine the
radius of convergence R. The Ratio and Root Tests alwaysfail when x is an endpoint of the
interval of convergence, so the endpoints must be checked with some other test.

[E70ZT Find the radius of convergence and interval of convergence of the series

3
n—o /N + 1
SOLUTION Leta, = (—=3)"x"/+/n + 1. Then
Ay | [(=3"X" Un+1] 3y n+1
an Jn+2 (=3)"x" n+2

PN ol LN o
=3 1+(2/n)\x] 3|x| asn

By the Ratio Test, the given series convergesif 3| x| < 1 and divergesif 3|x| > 1.
Thus it convergesiif | x| < 3 and divergesif | x| > 3. This means that the radius of con-
vergenceisR = :.

We know the series converges in the interval (— 3 %) but we must now test for con-

vergence at the endpoints of thisinterval. If x = — 3, the series becomes
S E9(3) < 1 1 1 1
— =t —= 4+ —=+ -
n§=:0 Jn+1 2:: n+1 ﬁ V2 U3 4

which diverges. (Usethe Integral Test or simply observe that it is a p-series with
p=13<1)Ifx =3, the seriesis

which converges by the Alternating Series Test. Therefore the given power series con-

vergeswhen —% < x < }, so the interval of convergenceis (-3, 3]. _—
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1 IETYTEEE Find the radius of convergence and interval of convergence of the series

Z nx + 2)"

>

0 3n+l
n=

SOLUTION If a, = n(x + 2)"/3""1 then

an1|  |(n+ Dx+ 2" 3t
an 3nt2 nx + 2)"
B 1+£ |x+2|%\x+2\ a5 1 o0
n 3 3

Using the Ratio Test, we see that the series convergesif |x + 2|/3 < 1 and it diverges
if |[x + 2|/3 > 1. Soit convergesif |x + 2| < 3 and divergesif |[x + 2| > 3. Thus the
radius of convergenceisR = 3.

Theinequality |x + 2| < 3 can be written as —5 < x < 1, so we test the series at

the endpoints —5 and 1. When x = —5, the seriesis
SN i s g
E 3n+1 = % 2 (_1) n
n=0 n=0

which diverges by the Test for Divergence [(—1)"n doesn’t converge to 0]. When x = 1,
the seriesis

i n@®"

o 3n+l
n=

=52n
n=0

which also diverges by the Test for Divergence. Thus the series converges only when

—5 < x < 1, sotheinterval of convergenceis (-5, 1). [ |
m Exercises
1. What is a power series? i n2xn = 10"x"
_p _ _ 9. X (-1)"— 10. Y —
2. (d) What is the radius of convergence of a power series? n—1 2 =1 N
How do you find it? = (g v on
(b) What is the interval of convergence of a power series? 1. Y !xn 12 > X -
How do you find it? n=1 N4/N -1 N3
3-28 Find the radius of convergence and interval of convergence 13. i (—1)" X" 1. i (—1)" X
of the series. n—2 4" Inn n—0 2n + 1)!
: S S x-2r % (x=3"
3. —=1)"nx" 4. = 15. 16. ="
ngl( ) ngl In o N+ 1 ngo( ) 2n+1
o X" S (=" & 3(x + 4" Zn
5. 6. 17. —_— 18. —(xx+ 1"
n§=:1 2n—1 ngl n? ngl Jn ngl 4" (x )
- X" < S (x=2r S (2x =)
1. — 8. n"x" 19. 20.
Z’O n! ngl ngl n" ngl 5n/n

Graphing calculator or computer required Computer algebra system required 1. Homework Hints available at stewartcal culus.com
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21.

22.

23.

25.

21.

28.
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S N

Efn(x—a)", b>0

-1 b

= 0

—-a)", b>0

22 -,

z ad n2x"
nl(2x — 1" 24,

= ( ) 212.4.6.....(21)

g (5x — 4)" g ooxa
—_— 26.

Z'l n® 22 n(lnn)?

ks Xn

211.3.5. e e (2n—1)

S ntx"

211.3.5. < (2n - 1)

29.

30.

31.

32.

33.

34.

If Sh-o Cn4" is convergent, does it follow that the following
series are convergent?
@ 3 (-2 ®) 3 ci(-4y

Suppose that =7- ¢, X" converges when x = —4 and diverges
when x = 6. What can be said about the convergence or
divergence of the following series?

@3 O 3 o
© 3 ci-3r @ 3 109

If k is a positive integer, find the radius of convergence of
the series

© (n!)k
ngo (kn)!
Let p and g be real numbers with p < g. Find a power series
whose interval of convergence is

@ (p,a) () (p,al

(© [pa) (d [p, al

Isit possible to find a power series whose interval of conver-
genceis[0, «©)? Explain.

Xn

Graph the first several partial sums s,(x) of the series =5-o X",
together with the sum function f(x) = 1/(1 — x), on a com-
mon screen. On what interval do these partial sums appear to
be converging to f(x)?

]
1<

(<)
>
[%2]

%

[«

m Representations of Functions as Power Series

35.

36.

31.

38.

39.

40.

a.

42.

The function J; defined by

% (_ 1)nX2n+l
M0 = 2 S v

n=0

is called the Bessel function of order 1.

(a) Find its domain.

(b) Graph the first several partial sums on a common
screen.

(c) If your CAS has built-in Bessel functions, graph J; on the
same screen as the partial sumsin part (b) and observe
how the partial sums approximate J;.

The function A defined by

3 6 9

X X X
+ + +o
2-3 2-3-5-6 2-3-5-6-8-9

is called an Airy function after the English mathematician

and astronomer Sir George Airy (1801-1892).

(a) Find the domain of the Airy function.

(b) Graph the first several partial sums on a common screen.

(c) If your CAS has built-in Airy functions, graph A on the
same screen as the partial sumsin part (b) and observe
how the partial sums approximate A.

A function f is defined by

Ax) =1+

f)=1+2x+ x>+ 23+ x*+ - --

that is, its coefficients are ¢,, = 1 and ¢,n1 = 2 for all
n = 0. Find the interval of convergence of the series and find
an explicit formulafor f(x).

If f(X) = =h-0C.X", Where o4 = ¢, for al n = 0, find the
interval of convergence of the series and aformulafor f(x).

Show that if lim,—.. v/| cn| = ¢, wherec # 0, then the
radius of convergence of the power series > ¢,x"isR = 1/c.

Suppose that the power series > c,(x — a)" satisfies Cn # O
for al n. Show that if lim,—.. | c,/Cq+1| exists, then it is equal
to the radius of convergence of the power series.

Suppose the series = ¢,x" has radius of convergence 2 and
the series = d,x" has radius of convergence 3. What is the
radius of convergence of the series = (¢, + dn)x"?

Suppose that the radius of convergence of the power series
> ¢ x"isR. What is the radius of convergence of the power
series = ¢, x2"?

In this section we learn how to represent certain types of functions as sums of power series
by manipulating geometric series or by differentiating or integrating such aseries. You might
wonder why we would ever want to express a known function as a sum of infinitely many
terms. We will see later that this strategy is useful for integrating functions that don’'t have
elementary antiderivatives, for solving differential equations, and for approximating func-



A geometric illustration of Equation 1 is shown
in Figure 1. Because the sum of a series is the
limit of the sequence of partial sums, we have
1
—— = lim s,(x
1—x _Jim n(X)
where
Si(¥) =1+ x+ x>+ -+ +x"

is the nth partial sum. Notice that as n
increases, sy(x) becomes a better approxi-
mationto f(x) for —1 <x < 1.

FIGURE 1

flx)= —= and some partial sums

SECTION 11.9 REPRESENTATIONS OF FUNCTIONS AS POWER SERIES

m

tions by polynomials. (Scientists do thisto simplify the expressionsthey deal with; computer
scientists do this to represent functions on calculators and computers.)
We start with an equation that we have seen before:

1

1]

1-—x

—— =1+ x+ X2+ X+ =

M s

X" [x| <1

n=0

We first encountered this equation in Example 6 in Section 11.2, where we obtained it by
observing that the series is a geometric serieswitha = 1 and r = x. But here our point of
view is different. We now regard Equation 1 as expressing the function f(x) = 1/(1 — x)

as asum of a power series.

Si

( sy

Ss

/_’1 0

I IE7NTEEN Express1/(1 + x?2) asthe sum of apower series and find the interval of

convergence.

SOLUTION Replacing x by —x?2in Equation 1, we have

1 1
1+x* 1-(=x%

n=0

D)X =1 —-x2+x* = xC+xE— -

Because this is a geometric series, it converges when | —x?| < 1, that is, x*> < 1, or
|x| < 1. Therefore the interval of convergenceis (—1, 1). (Of course, we could have
determined the radius of convergence by applying the Ratio Test, but that much work is

unnecessary here.)

Find a power series representation for 1/(x + 2).

SOLUTION In order to put this function in the form of the left side of Equation 1, we first

factor a 2 from the denominator:
1 1

i3] i ()]
2()

1
2
o (=",
:ngo 2n+l X

This series converges when | —x/2| < 1, that is, | x| < 2. So the interval of conver-

genceis(—2, 2).
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It's legitimate to move x* across the
sigma sign because it doesn’t depend on n.
[Use Theorem 11.2.8(i) with ¢ = x*]

In part (ii), [ co dx = cox + Cy is written as
Co(x — a) + C, where C = C; + acy, so all
the terms of the series have the same form.

[E70ZTFE] Find a power series representation of x%/(x + 2).

SOLUTION Since this function is just x® times the function in Example 2, all we have to
do is to multiply that series by x°:

LSPURE SNV OO o VLUl o VAR
X+ 2 X + 2 n=0 2n+1 n=0 2n+1

= b0 =i = b
Another way of writing this series is as follows:

XS l n—-1

E ( n)Z Xn
X+ 2 n=3 2
As in Example 2, the interval of convergence is (—2, 2). [ |

I Differentiation and Integration of Power Series
The sum of a power series is a function f(x) = S7_o ca(x — a)" whose domain is the inter-

val of convergence of the series. We would like to be able to differentiate and integrate such
functions, and the following theorem (which we won’t prove) says that we can do so by dif-
ferentiating or integrating each individual term in the series, just as we would for a polyno-

mial. This is called term-by-term differentiation and integration.

@ Theorem If the power series = c,(x — a)" has radius of convergence R > 0,
then the function f defined by

0

f(X) =cCo+ Ci(x —a) + colx —a)y+--- E WX — a)"

is differentiable (and therefore continuous) on the interval (a — R, a + R) and

M8

(i) F'(X) =c1 + 2c,(x —a) + 3cas(x —a)> + -+ - = X ncy(x —a)" !

n

(x — a)? Lo X a)’

1

(ii)ff(x)olx=c+co(x—a)+cl . G+
o (X_a)n+1
= + n—————————
¢ .ZOC n+1

The radii of convergence of the power series in Equations (i) and (ii) are both R.

NOTE 1 Equations (i) and (ii) in Theorem 2 can be rewritten in the form

(iii) —[i Ca(x — a)”] = i (;j—x [co(x — a)"]

n=0

(iv) f [i Ca(x — a)”]dx = i fcn(x — a)"dx



SECTION 11.9 REPRESENTATIONS OF FUNCTIONS AS POWER SERIES 173

We know that, for finite sums, the derivative of a sum is the sum of the derivatives and the
integral of a sum is the sum of the integrals. Equations (iii) and (iv) assert that the same is
true for infinite sums, provided we are dealing with power series. (For other types of series
of functions the situation is not as simple; see Exercise 38.)

NOTE 2 Although Theorem 2 says that the radius of convergence remains the same
when a power series is differentiated or integrated, this does not mean that the interval of
convergence remains the same. It may happen that the original series converges at an end-
point, whereas the differentiated series diverges there. (See Exercise 39.)

NOTE 3 The idea of differentiating a power series term by term is the basis for a power-
ful method for solving differential equations. We will discuss this method in Chapter 17.

[E7YZT In Example 3 in Section 11.8 we saw that the Bessel function

Jo(x) = 2 CLx”

n=0 22“(”')2

is defined for all x. Thus, by Theorem 2, J, is differentiable for all x and its derivative is
found by term-by-term differentiation as follows:

) B o d (_1)nX2n o 1) 2nX2n 1
W0 = Gy A 2wy -

I IE00E0E3 Express 1/(1 — x)* as a power series by differentiating Equation 1. What
is the radius of convergence?

SOLUTION Differentiating each side of the equation

1 -
=1+ X+ X+t =X
1-x ngo
1 2 S n—-1

we get s=1+2x+3x*+ - = 2 nx

(1_X) n

If we wish, we can replace n by n + 1 and write the answer as

[
uN

s _1 i go (n + 1)x"

According to Theorem 2, the radius of convergence of the differentiated series is the
same as the radius of convergence of the original series, namely, R = 1. [ |

IE7YEIET Find a power series representation for In(1 + x) and its radius of
convergence.

SOLUTION We notice that the derivative of this function is 1/(1 + x). From Equation 1
we have
11
1+x 1-(—x)

=1-x+x2=x3+--- |x| <1
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The power series for tan~*x obtained
in Example 7 is called Gregory's series after
the Scottish mathematician James Gregory
(1638—1675), who had anticipated some of
Newton's discoveries. We have shown that
Gregory's series is valid when —1 < x < 1,
but it turns out (although it isn't easy to prove)
that it is also valid when x = *1. Notice that
when x = 1 the series becomes

T 1 1 1

—=1l-—+=-=+

4 3 5 7
This beautiful result is known as the Leibniz
formula for 7.

INFINITE SEQUENCES AND SERIES

Integrating both sides of this equation, we get

1
In(1+x)=f1+de=f(1—x+x2—x3+-~)dx
x> x* x!
=X-——+—7>—-——+---+C
2 3 4
© Xn
=X ()t —+C  |x|<1
n=1 n

To determine the value of C we put x = 0 in this equation and obtain In(1 + 0) = C.
Thus C = 0 and

x2  x® x4 :
Nl+x)=x—-—+—_———+ =
( ) 2 3 4 n

DMs

Xn
(s x] <1

The radius of convergence is the same as for the original series: R = 1.

1 IEXYETFA Find a power series representation for f(x) = tan'x.

SOLUTION We observe that f'(x) = 1/(1 + x?) and find the required series by integrating
the power series for 1/(1 + x2) found in Example 1.

1
1+ x?

tan’1x=f dx=f(1—x2+x4—x6+---)dx

—C+X—X—3+X——X—7+
3 5 7

To find C we put x = 0 and obtain C = tan"*0 = 0. Therefore

L 3 x5 X7 i( ) 2n+1
tan ' xX=x—-——+——"—""4+ -+ = —1)"
3 5 7 Pl

X
2n+1

Since the radius of convergence of the series for 1/(1 + x?) is 1, the radius of conver-
gence of this series for tan*x is also 1. [ |

EXAMPLE 8
(a) Evaluate [[1/(1 + x")]dx as a power series.

(b) Use part (a) to approximate f;°[1/(1 + x”)]dx correct to within 107"

SOLUTION
(a) The first step is to express the integrand, 1/(1 + x7), as the sum of a power series.
As in Example 1, we start with Equation 1 and replace x by —x":

1 - 1 < o
1+x7_1—(—x7)_n§0( X))

=2 (DX =1-x"+x¥—--.
n=0



This example demonstrates one way in

which power series representations are useful.
Integrating 1/(1 + x7) by hand is incredibly
difficult. Different computer algebra systems
return different forms of the answer, but they
are all extremely complicated. (If you have a
CAS, try it yourself.) The infinite series answer
that we obtain in Example 8(a) is actually much
easier to deal with than the finite answer
provided by a CAS.

SECTION 11.9 REPRESENTATIONS OF FUNCTIONS AS POWER SERIES

Now we integrate term by term:

n+1

1 - * X
dx = XM dx=C + 3 (=1) ——
j1+x7 X on( )xdx ZO( ]
XB XlS XZZ
—CHX— =T
T8 T 15 T 2

This series converges for | —x’| < 1, that is, for |x| < 1.

(b) In applying the Fundamental Theorem of Calculus, it doesn’t matter which anti-
derivative we use, so let’s use the antiderivative from part (a) with C = 0:

o 1+x7 8 15 22 0
2 8-2% 15.2B%  22.2% (7n + 1)27+!

175

This infinite series is the exact value of the definite integral, but since it is an alternating

series, we can approximate the sum using the Alternating Series Estimation Theorem.

If

we stop adding after the term with n = 3, the error is smaller than the term with n = 4

1
W ~ 6.4 x 1074
So we have
o5 1 1 1 1 1
dx =~ — — + - ~ 0.49951374 [
fo 1+x’ 2 8 .28 15 - 2% 22 - 2%
m Exercises

1. If the radius of convergence of the power series 75— C,X" 7. f(x) = X 8. f(x) = X
is 10, what is the radius of convergence of the series 9 + x?2 2x2 + 1

Sho1 NCaX""1? Why? 2
9 f(x) =~ 0. F00 = -5
' 1-x ' a®—x®

2. Suppose you know that the series S7—o byx" converges for
| x| < 2. What can you say about the following series? Why?

11-12 Express the function as the sum of a power series by first

i by 1 using partial fractions. Find the interval of convergence.
o hn+1
3 X+ 2
1. f(X)=m 12. f(X)=m
3-10 Find a power series representation for the function and deter-
mine the interval of convergence.
5 13. (a) Use differentiation to find a power series representation for
3 f(x) = g )= —— @ P P
1+x 1 - 4x
f(x) = L
2 1+ x)?
5 f(x) =——— 6. f(x) = . .
00 3—X 9 x + 10 What is the radius of convergence?

Graphing calculator or computer required

1. Homework Hints available at stewartcalculus.com
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(b) Use part (a) to find a power series for

1

=

(c) Use part (b) to find a power series for

X2

=17
14. (a) Use Equation 1 to find a power series representation for
f(x) = In(1 — x). What is the radius of convergence?
(b) Use part (a) to find a power series for f(x) = x In(1 — x).
(c) By putting x = 3 in your result from part (a), express In 2
as the sum of an infinite series.

15-20 Find a power series representation for the function and
determine the radius of convergence.

15. f(x) = In(5 — x) 16. f(x) = x%tan"1(x%)

X X ¥
14 x X% + X
19. f(X)=W 20. f(X)=W

21-24 Find a power series representation for f, and graph f and
several partial sums s,(x) on the same screen. What happens as n
increases?

X
X% + 16

1+x
23. f(x) = In(1 —x)

21. f(x) =

22. 1(x) = In(x? + 4)

24. f(x) = tan 1(2x)

25-28 Evaluate the indefinite integral as a power series. What is
the radius of convergence?

t t

zs.jl_tsdt 26.f1+t3dt

21 flen(l+x) dx 28 ~mdx
: J .

29-32 Use a power series to approximate the definite integral to
six decimal places.

02 1
2. | T 0

30. [0“ In(1 + x*) dx

3 X2
32 L” dx

31. joo'lx arctan(3x) dx T+ %

33.

34.

35.

36.

38.

39.

40.

Use the result of Example 7 to compute arctan 0.2 correct to
five decimal places.

Show that the function

=2 (_(;?1))1(

is a solution of the differential equation
f'(x) + f(x) =0

(@) Show that J, (the Bessel function of order 0 given in
Example 4) satisfies the differential equation

X2J7'(X) + xJ5(X) + x2Jp(x) =0
(b) Evaluate [; Jo(x) dx correct to three decimal places.
The Bessel function of order 1 is defined by

o= 3 U

no nI(n + 1)122+?
(a) Show that J; satisfies the differential equation
X2J(x) + xJ(X) + (x2 — 1)Ji(x) =0

(b) Show that J¢(x) = —Ji(x).

. (a) Show that the function

f0=3 %
is a solution of the differential equation
f'(x) = f(x)
(b) Show that f(x) = e*.

Let f,(x) = (sin nx)/n% Show that the series = f,(x)
converges for all values of x but the series of derivatives

> f/(x) diverges when x = 2nar, n an integer. For what values
of x does the series = f,'(x) converge?

Let
Xn
1 Nn?

DM s

f(x) =

Find the intervals of convergence for f, f’, and f”.

(a) Starting with the geometric series =7, x", find the sum of
the series

x| <1

(b) Find the sum of each of the following series.

(i) énx”, Ix|<1 (i) 2121



