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Notations
(The number after the item indicates the page where the notation is defined.)

SET THEORY >i[ISi intersection of sets Si, i [ I
 <i[ISi union of sets Si, i [ I
 [a]  {x [ S | x , a}, equivalence class of S containing a, 18
 |s| number of elements in the set of S

SPECIAL SETS Z  integers, additive groups of integers, ring of integers
 Q  rational numbers, field of rational numbers
 Q1  multiplicative group of positive rational numbers
 F* set of nonzero elements of F
 R real numbers, field of real numbers
 R1 multiplicative group of positive real numbers
 C complex numbers

FUNCTIONS f21  inverse of the function f
AND ARITHMETIC t | s  t divides s, 3
 t B s t does not divide s, 3
 gcd(a, b)  greatest common divisor of the integers a and b, 4
 lcm(a, b)  least common multiple of the integers a and b, 6
 |a 1 b| 2a2 � b2, 13
 f(a) image of a under f, 20
 f: A → B mapping of A to B, 20
 gf, ab composite function, 21

ALGEBRAIC SYSTEMS D4  group of symmetries of a square, dihedral group of 
order 8, 33

 Dn  dihedral group of order 2n, 34
 e identity element, 43
 Zn  group {0, 1, . . . , n 2 1} under addition modulo n, 44
 det A the determinant of A, 45
 U(n)  group of units modulo n (that is, the set of integers 

less than n and relatively prime to n under multiplica-
tion modulo n), 46

 Rn  {(a1, a2, . . . , an) U a1, a2, . . . , an [ R}, 47
 SL(2, F)  group of 2 3 2 matrices over F with  

determinant 1, 48
 GL(2, F)  2 3 2 matrices of nonzero determinants with coeffi-

cients from the field F (the general linear group), 48
 g21 multiplicative inverse of g, 51
 2g additive inverse of g, 52
 UGU order of the group G, 60
 UgU order of the element g, 60
 H # G subgroup inclusion, 61
 H , G subgroup H 2 G, 61
 kal {an U n [ Z}, cyclic group generated by a, 65
 Z(G)  {a [ G U ax 5 xa for all x in G}, the center of G, 66
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 C(a)  {g [ G U ga 5 ag}, the centralizer of a in G, 68
 kS l subgroup generated by the set S, 71
 C(H)  {x [ G U xh 5 hx for all h [ H}, the centralizer  

of H, 72
 f(n) Euler phi function of n, 84
 N(H)  {x [ G U xHx21 5 H} 5 {x [ G U Hx 5 xH}, the 

normalizer of H in G, 95
 cl(a) conjugacy class of a, 95
 Gn {gn U g [ G}, 96
 Sn  group of one-to-one functions from  

{1, 2, ? ? ? , n} to itself, 101
 An alternating group of degree n, 110
 G < G G and G are isomorphic, 128
 fa  mapping given by fa(x) 5 axa21 for all x, 135
 Aut(G) group of automorphisms of the group G, 136
 Inn(G) group of inner automorphisms of G, 136
 aH {ah U h [ H}, 144
 aHa21 {aha21 | h [ H}, 144
 UG:HU the index of H in G, 148
 HK {hk U h [ H, k [ K}, 150
 stabG(i)  {f [ G U f(i) 5 i}, the stabilizer of i under the per-

mutation group G, 151
 orbG(i)  {f(i ) U f [ G}, the orbit of i under the  

permutation group G, 151
 G1 % G2 % ? ? ? % Gn  external direct product of groups G1, G2, . . . , Gn, 162
 Uk(n) {x [ U(n) U x mod k 5 1}, 166
 G9 commutator subgroup, 181
 H v G H is a normal subgroup of G, 185
 G/H factor group, 187
 H 3 K internal direct product of H and K, 196
 H1 3 H2 3 ? ? ? 3 Hn internal direct product of H1, . . . , Hn, 197
 Ker f kernel of the homomorphism f, 208
 f21(g9) inverse image of g9 under f, 210

 f21(K) inverse image of K under f, 211
 Z[x]  ring of polynomials with integer coefficients, 246
 M2(Z)  ring of all 2 3 2 matrices with integer entries, 246
 R1 % R2 % ? ? ? % Rn direct sum of rings, 247
 nZ ring of multiples of n, 249
 Z[i] ring of Gaussian integers, 249
 U(R) group of units of the ring R, 251
 char R characteristic of R, 258
 kal principal ideal generated by a, 268
 ka1, a2, . . . , anl ideal generated by a1, a2, . . . , an, 268
 R/A factor ring, 268
 A 1 B sum of ideals A and B, 275
 AB product of ideals A and B, 275
 Ann(A) annihilator of A, 277
 N(A) nil radical of A, 277
 F(x) field of quotients of F[x], 291
 R[x] ring of polynomials over R, 298
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 deg f (x) degree of the polynomial, 300
 Fp(x) pth cyclotomic polynomial, 316
 M2(Q) ring of 2 3 2 matrices over Q, 352
 kv1, v2, . . . , vnl subspace spanned by v1, v2, . . . , vn, 353
 F(a1, a2, . . . , an) extension of F by a1, a2, . . . , an, 363
 f 9(x) the derivative of f (x), 368
 [E:F] degree of E over F, 378
 GF( pn) Galois field of order pn, 389
 GF( pn)* nonzero elements of GF( pn), 390
 cl(a) {xax21 U x [ G}, the conjugacy class of a, 409
 Pr(G)  probability that two elements from G commute, 411
 np  the number of Sylow p-subgroups of a group, 416
 W(S) set of all words from S, 446
 ka1, a2, . . . , an U w1 5 w2 5

 . . . 5 wtl  group with generators a1, a2, . . . , an and relations w1 
5 w2 5 . . . 5 wt , 449

 Q4 quarternions, 453
 Q6 dicyclic group of order 12, 453
 D` infinite dihedral group, 454
 fix(f) {i [ S U f(i) 5 i}, elements fixed by f, 497
 Cay(S:G)  Cayley digraph of the group G with generating set S, 

506
 k * (a, b, . . . , c) concatenation of k copies of (a, b, . . . , c), 514
 (n, k)  linear code, k-dimensional subspace of Fn, 531
 Fn  F % F % ? ? ? % F, direct product of n copies of the 

field F, 531
 d(u, v)  Hamming distance between vectors u and v, 532
 wt(u)  the number of nonzero components of the vector u 

(the Hamming weight of u), 532
 Gal(E/F) the automorphism group of E fixing F, 554
 EH fixed field of H, 554
 Fn(x) nth cyclotomic polynomial, 571
 C⊥ dual code of a code C, 582
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Preface

John Lennon and Paul McCartney, “Paperback Writer,” single, 1966*

Although I wrote the first edition of this book more than 25 years ago, 
my goals for it remain the same. I want students to receive a solid intro-
duction to the traditional topics. I want readers to come away with the 
view that abstract algebra is a contemporary subject—that its concepts 
and methodologies are being used by working mathematicians, com-
puter scientists, physicists, and chemists. I want students to see the  
connections between abstract algebra and number theory and geom-
etry. I want students to be able to do computations and to write proofs. 
I want students to enjoy reading the book. And I want to convey to the 
reader my enthusiasm for this beautiful subject.

Educational research has shown that an effective way of learning 
mathematics is to interweave worked-out examples and practice prob-
lems. Thus, I have made examples and exercises the heart of the book. 
The examples elucidate the definitions, theorems, and proof techniques. 
The exercises facilitate understanding, provide insight, and develop the 
ability of the students to do proofs. The exercises often foreshadow 
definitions, concepts, and theorems to come. Many exercises focus on 
special cases and ask the reader to generalize. Generalizing is a skill 
that students should develop but rarely do. Even if an instructor chooses 
not to spend class time on the applications in the book, I feel that hav-
ing them there demonstrates to students the utility of the theory.

Changes for the eighth edition include 200 new exercises, new ex-
amples, and a freshening of the quotations, historical notes, and biogra-
phies. These changes accentuate and enhance the hallmark features that 
have made previous editions of the book a comprehensive, lively, and 
engaging introduction to the subject:

nontraditional special topics

xi

*Copyright © 1966 (Renewed) Stony/ATV Tunes LLC. All rights administered by 
Sony/ATV Music Publishing, 8 Music Square West, Nashville, TN 37203. All rights 
reserved. Used by permission.
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xii

-
cises appearing in each chapter and in Supplementary Exercise sets 
that synthesize concepts from multiple chapters

exercises
 

routine computations to quite challenging problems

my website, that stress guessing and making conjectures

as well as from everyday life

and events behind the mathematics

charts, and reproductions of stamps and currency that honor  
mathematicians

 
exploration of topics

To make room for the new material, the computer exercises from 
previous editions are available at www.d.umn.edu/~jgallian or through 
Cengage’s book companion site at www.cengage.com/math/gallian. 
The first website also offers a wealth of additional online resources 
supporting the book, including:

abstract algebra is a valuable subject to learn

and much, much more

Additionally, Cengage offers the following student and instructor  
ancillaries to accompany the book:

Student Solutions Manual, available for purchase separately, with 
detailed solutions to the odd-numbered exercises in the book 
(ISBN:978-1-133-60853-0)

worked-out solutions to all exercises in the text, which allows you to 
create customized, secure solutions printouts (in PDF format) 
matched exactly to the problems you assign in class. Sign up for  
access at www.cengage.com/solutionbuilder. 
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 xiii

Instructor’s Solutions Manual with solutions to all the exercises 
in the book and additional test questions and solutions

 
exercises designed to be done with the free computer algebra system 
software GAP

the exercises in the GAP lab manual

and the accuracy checker, Roger Lipsett. I am grateful to each for their 
careful attention to the manuscript. My appreciation also goes to Molly 
Taylor, Shaylin Hogan, and Alex Gontar from Cengage Learning, as 
well as Katie Costello and the Cengage production staff.

The thoughtful input of the following people, who served as re-
viewers for the eighth edition, is also sincerely appreciated: Homer 
Austin, Salisbury University; David Barth-Hart, Rochester Institute 

University; Daniel Daly, Southeast Missouri State University; Paul 
Felt, University of Texas of the Permian Basin; Donald Hartig, 
California Polytechnic State University, San Luis Obispo; Nancy  
Ann Neudauer, Pacific University; Bingwu Wang, Eastern Michigan 
University; Dana Williams, Dartmouth College; and Norbert Youmbi, 
Saint Francis University.

Over the years, many faculty and students have kindly sent me valu-
able comments and suggestions. They have helped to make each edition 
better. I owe many thanks to my UMD colleague Robert McFarland for 
giving me numerous exercises and comments that have been included 
in this edition. Douglas Dunham, another UMD colleague, has gener-
ously provided the spectacular cover image for this edition. For an ex-
planation of the mathematics underlying this image see www.d.umn 
.edu/~jgallian/Dunhamimage. Please send any comments and sugges-
tions you have to me at jgallian@d.umn.edu

Joseph A. Gallian
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 1

P A R T  1

Integers and 
Equivalence Relations
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3

Preliminaries

The whole of science is nothing more than a refinement  
of everyday thinking.

albert einstein, Physics and Reality

Properties of Integers
Much of abstract algebra involves properties of integers and sets. In this 
chapter we collect the properties we need for future reference.

An important property of the integers, which we will often use, is the 
so-called Well Ordering Principle. Since this property cannot be proved 
from the usual properties of arithmetic, we will take it as an axiom.

Well Ordering Principle

Every nonempty set of positive integers contains a smallest member.

The concept of divisibility plays a fundamental role in the theory of 
numbers. We say a nonzero integer t is a divisor of an integer s if there 
is an integer u such that s 5 tu. In this case, we write t | s (read “t 
 divides s”). When t is not a divisor of s, we write t B s. A prime is a 
positive integer greater than 1 whose only positive divisors are 1 and 
itself. We say an integer s is a multiple of an integer t if there is an in-
teger u such that s 5 tu or, equivalently, if t is a divisor of s.

As our first application of the Well Ordering Principle, we establish 
a fundamental property of integers that we will use often.

 Theorem 0.1 Division Algorithm

Let a and b be integers with b . 0. Then there exist unique integers q 

and r with the property that a 5 bq 1 r , where 0 # r , b.

PROOF We begin with the existence portion of the theorem. Consider 
the set S 5 {a 2 bk | k is an integer and a 2 bk $ 0}. If 0 [ S, then b 

0
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4 Integers and Equivalence Relations

divides a and we may obtain the desired result with q 5 a/b and r 5 0. 
Now assume 0 n S. Since S is nonempty [if a . 0, a 2 b ? 0 [ S; if a , 
0, a 2 b(2a) 5 a(1 2 2b) [ S; a � 0 since 0 n S], we may apply the 
Well Ordering Principle to conclude that S has a smallest member, say 
r 5 a 2 bq. Then a 5 bq 1 r and r $ 0, so all that remains to be proved 
is that r , b.

If r $ b, then a 2 b(q 1 1) 5 a 2 bq 2 b 5 r 2 b $ 0, so that  
a 2 b(q 1 1) [ S. But a 2 b(q 1 1) , a 2 bq, and a 2 bq is the 
smallest member of S. So, r , b.

To establish the uniqueness of q and r, let us suppose that there are 
integers q, q9, r, and r9 such that

a 5 bq 1 r,  0 # r , b,  and  a 5 bq9 1 r9,  0 # r9 , b.

For convenience, we may also suppose that r9 $ r. Then bq 1 r 5  
bq9 1 r9 and b(q 2 q9) 5 r9 2 r. So, b divides r9 2 r and 0 # r9 2 r #  
r9 , b. It follows that r9 2 r 5 0, and therefore r9 5 r and q 5 q9. 

The integer q in the division algorithm is called the quotient upon di-
viding a by b; the integer r is called the remainder upon dividing a by b.

 EXAMPLE 1 For a 5 17 and b 5 5, the division algorithm gives  
17 5 5 ? 3 1 2; for a 5 223 and b 5 6, the division algorithm gives 
223 5 6(24) 1 1. 

Definitions Greatest Common Divisor, Relatively Prime Integers
The greatest common divisor of two nonzero integers a and b is the 
largest of all common divisors of a and b. We denote this integer by 
gcd(a, b). When gcd(a, b) 5 1, we say a and b are relatively prime.

The following property of the greatest common divisor of two inte-
gers plays a critical role in abstract algebra. The proof provides an ap-
plication of the division algorithm and our second application of the 
Well Ordering Principle. 

 Theorem 0.2 GCD Is a Linear Combination

For any nonzero integers a and b, there exist integers s and t such that 

gcd(a, b) 5 as 1 bt. Moreover, gcd(a, b) is the smallest positive integer 

of the form as 1 bt.

PROOF Consider the set S 5 {am 1 bn | m, n are integers and  
am 1 bn . 0}. Since S is obviously nonempty (if some choice of m 
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0 | Preliminaries 5

and n makes am 1 bn , 0, then replace m and n by 2m and 2n), the 
Well Ordering Principle asserts that S has a smallest member, say,  
d 5 as 1 bt. We claim that d 5 gcd(a, b). To verify this claim, use the 
division algorithm to write a 5 dq 1 r, where 0 # r , d. If r . 0,  
then r 5 a 2 dq 5 a 2 (as 1 bt)q 5 a 2 asq 2 btq 5 a(1 2 sq) 1 
b(2tq) [ S, contradicting the fact that d is the smallest member of S. 
So, r 5 0 and d divides a. Analogously (or, better yet, by symmetry), 
d divides b as well. This proves that d is a common divisor of a and b. 
Now suppose d9 is another common divisor of a and b and write a 5 
d9h and b 5 d9k. Then d 5 as 1 bt 5 (d9h)s 1 (d9k)t 5 d9(hs 1 kt), 
so that d9 is a divisor of d. Thus, among all common divisors of a and 
b, d is the greatest. 

The special case of Theorem 0.2 when a and b are relatively prime is 
so important in abstract algebra that we single it out as a corollary.

 Corollary 

If a and b are relatively prime, then there exist integers s and t such 

that as 1 bt 5 1.

 EXAMPLE 2 gcd(4, 15) 5 1; gcd(4, 10) 5 2; gcd(22 ? 32 ? 5, 2 ? 33 ? 
72) 5 2 ? 32. Note that 4 and 15 are relatively prime, whereas 4 and 10 are 
not. Also, 4 ? 4 1 15(21) 5 1 and 4(22) 1 10 ? 1 5 2. 

The next lemma is frequently used. It appeared in Euclid’s Elements.

 Euclid’s Lemma p | ab Implies p | a or p | b

If p is a prime that divides ab, then p divides a or p divides b.

PROOF Suppose p is a prime that divides ab but does not divide a. We 
must show that p divides b. Since p does not divide a, there are  
integers s and t such that 1 5 as 1 pt. Then b 5 abs 1 ptb, and since  
p divides the right-hand side of this equation, p also  divides b. 

Note that Euclid’s Lemma may fail when p is not a prime, since  
6 | (4 ? 3) but 6 B 4 and 6 B 3.

Our next property shows that the primes are the building blocks for 
all integers. We will often use this property without explicitly saying so.
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6 Integers and Equivalence Relations

 Theorem 0.3 Fundamental Theorem of Arithmetic

Every integer greater than 1 is a prime or a product of primes. This 

product is unique, except for the order in which the factors appear. 

That is, if n 5 p1p2 
. . . p

r
 and n 5 q1q2 

. . . q
s
, where the p’s and q’s 

are primes, then r 5 s and, after renumbering the q’s, we have p
i
 5 q

i
 

for all i.

We will prove the existence portion of Theorem 0.3 later in this 
chapter (Example 11). The uniqueness portion is a consequence of 
Euclid’s Lemma (Exercise 31).

Another concept that frequently arises is that of the least common 
multiple of two integers.

Definition Least Common Multiple
The least common multiple of two nonzero integers a and b is the 
smallest positive integer that is a multiple of both a and b. We will  
denote this integer by lcm(a, b).

We leave it as an exercise (Exercise 10) to prove that every common 
multiple of a and b is a multiple of lcm(a, b).

 EXAMPLE 3 lcm(4, 6) 5 12; lcm(4, 8) 5 8; lcm(10, 12) 5 60; 
lcm(6, 5) 5 30; lcm(22 ? 32 ? 5, 2 ? 33 ? 72) 5 22 ? 33 ? 5 ? 72. 

Modular Arithmetic
Another application of the division algorithm that will be important to 
us is modular arithmetic. Modular arithmetic is an abstraction of a 
method of counting that you often use. For example, if it is now 
September, what month will it be 25 months from now? Of course, the 
answer is October, but the interesting fact is that you didn’t arrive at the 
answer by starting with September and counting off 25 months.  
Instead, without even thinking about it, you simply observed that  
25 5 2 ? 12 1 1, and you added 1 month to September. Similarly, if it 
is now Wednesday, you know that in 23 days it will be Friday. This 
time, you arrived at your answer by noting that 23 5 7 ? 3 1 2, so you 
added 2 days to Wednesday instead of counting off 23 days. If your 
electricity is off for 26 hours, you must advance your clock 2 hours, 
since 26 5 2 ? 12 1 2. Surprisingly, this simple idea has numerous 
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0 | Preliminaries 7

important applications in mathematics and computer science. You will 
see a few of them in this section. The following notation is convenient.

When a 5 qn 1 r, where q is the quotient and r is the remainder 
upon dividing a by n, we write a mod n 5 r. Thus,

 3 mod 2 5 1 since 3 5 1 ? 2 1 1,
 6 mod 2 5 0 since 6 5 3 ? 2 1 0,
 11 mod 3 5 2 since 11 5 3 ? 3 1 2,
 62 mod 85 5 62 since 62 5 0 ? 85 1 62,
 22 mod 15 5 13 since 22 5 (21)15 1 13.

In general, if a and b are integers and n is a positive integer, then  
a mod n 5 b mod n if and only if n divides a 2 b (Exercise 7).

In our applications, we will use addition and multiplication mod n. 
When you wish to compute ab mod n or (a 1 b) mod n, and a or b  
is greater than n, it is easier to “mod first.” For example, to compute  
(27 ? 36) mod 11, we note that 27 mod 11 5 5 and 36 mod 11 5 3, so 
(27 ? 36) mod 11 5 (5 ? 3) mod 11 5 4. (See Exercise 9.)

Modular arithmetic is often used in assigning an extra digit to identi-
fication numbers for the purpose of detecting forgery or errors. We 
present two such applications.

 EXAMPLE 4 The United States Postal Service money order shown 
in Figure 0.1 has an identification number consisting of 10 digits together 
with an extra digit called a check. The check digit is the 10-digit number 
modulo 9. Thus, the number 3953988164 has the check digit 2, since  

Figure 0.1

99708_ch00_ptg01_hr_001-028.indd   7 05/06/12   6:16 PM

Copyright 2012 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights,
some third party content may be suppressed from the eBook and/or eChapter(s). Editorial review has deemed that any suppressed content does not materially
affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.



8 Integers and Equivalence Relations

3953988164 mod 9 5 2.† If the number 39539881642 were incorrectly 
entered into a computer (programmed to calculate the check digit) as, 
say, 39559881642 (an error in the fourth position), the machine would 
calculate the check digit as 4, whereas the entered check digit would be 
2. Thus, the error would be detected. 

 EXAMPLE 5 Airline companies, the United Parcel Service, and  
the rental-car companies Avis and National use the mod 7 values of 
identification numbers to assign check digits. Thus, the identification 
number 00121373147367 (see Figure 0.2) has the check digit 3 appended 

Figure 0.2

Figure 0.3

†The value of N mod 9 is easy to compute with a calculator. If N 5 9q 1 r, where r is 
the remainder upon dividing N by 9, then on a calculator screen N 4 9 appears as 
q.rrrrr . . . , so the first decimal digit is the check digit. For example, 3953988164 4 9 5 
439332018.222, so 2 is the check digit. If N has too many digits for your calculator, 
replace N by the sum of its digits and divide that number by 9. Thus, 3953988164  
mod 9 5 56 mod 9 5 2. The value of 3953988164 mod 9 can also be computed by 
searching Google for “3953988164 mod 9.”
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0 | Preliminaries 9

to it because 121373147367 mod 7 5 3. Similarly, the UPS pickup re-
cord number 768113999, shown in Figure 0.3, has the check digit 2 
appended to it. 

The methods used by the Postal Service and the airline companies 
do not detect all single-digit errors (see Exercises 41 and 45). However, 
detection of all single-digit errors, as well as nearly all  errors involving 
the transposition of two adjacent digits, is easily achieved. One method 
that does this is the one used to assign the so-called Universal Product 
Code (UPC) to most retail items (see Figure 0.4). A UPC identification 
number has 12 digits. The first six digits identify the manufacturer, the 
next five identify the  product, and the last is a check. (For many items, 
the 12th digit is not printed, but it is always bar-coded.) In Figure 0.4, 
the check digit is 8.

Figure 0.4

To explain how the check digit is calculated, it is convenient to intro-
duce the dot product notation for two k-tuples:

(a1, a2, . . . , ak) ? (w1, w2, . . . , wk) 5 a1w1 1 a2w2 1 ? ? ? 1 akwk.

An item with the UPC identification number a1a2 ??? a12 satisfies the 
condition

(a1, a2, . . . , a12) ? (3, 1, 3, 1, . . . , 3, 1) mod 10 5 0.

To verify that the number in Figure 0.4 satisfies this condition, we  
calculate

(0 ? 3 1 2 ? 1 1 1 ? 3 1 0 ? 1 1 0 ? 3 1 0 ? 1 1 6 ? 3 1 5 ? 1 
     1 8 ? 3 1 9 ? 1 1 7 ? 3 1 8 ? 1) mod 10 5 90 mod 10 5 0.

The fixed k-tuple used in the calculation of check digits is called the 
weighting vector.

Now suppose a single error is made in entering the number in  
Figure 0.4 into a computer. Say, for instance, that 021000958978 is 
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10 Integers and Equivalence Relations

 entered (notice that the seventh digit is incorrect). Then the computer 
calculates

0 ? 3 1 2 ? 1 1 1 ? 3 1 0 ? 1 1 0 ? 3 1 0 ? 1 1 9 ? 3 
  1 5 ? 1 1 8 ? 3 1 9 ? 1 1 7 ? 3 1 8 ? 1 5 99.

Since 99 mod 10 ∞ 0, the entered number cannot be correct.
In general, any single error will result in a sum that is not 0 modulo 10.
The advantage of the UPC scheme is that it will detect nearly all 

errors involving the transposition of two adjacent digits as well as all 
errors involving one digit. For doubters, let us say that the identifica-
tion number given in Figure 0.4 is entered as 021000658798. Notice 
that the last two digits preceding the check digit have been transposed. 
But by calculating the dot product, we obtain 94 mod 10 ∞ 0, so we 
have detected an error. In fact, the only undetected transposition  
errors of adjacent digits a and b are those where |a 2 b| 5 5. To  
verify this, we observe that a transposition error of the form

a1a2 ? ? ? aiai11 ? ? ? a12 → a1a2 ? ? ? ai11ai ? ? ? a12

is undetected if and only if

(a1, a2, . . . , ai11, ai, . . . , a12) ? (3, 1, 3, 1, . . . , 3, 1) mod 10 5 0.

That is, the error is undetected if and only if

(a1, a2, . . . , ai11, ai, . . . , a12) ? (3, 1, 3, 1, . . . , 3, 1) mod 10
   5 (a1, a2, . . . , ai, ai11, . . . , a12) ? (3, 1, 3, 1, . . . , 3, 1) mod 10.

This equality simplifies to either

(3ai11 1 ai) mod 10 5 (3ai 1 ai11) mod 10

or

(ai11 1 3ai) mod 10 5 (ai 1 3ai11) mod 10,

depending on whether i is even or odd. Both cases reduce to 2(ai11 2 ai) 
mod 10 5 0. It follows that |ai11 2 ai| 5 5, if ai11 ∞ ai.

In 2005, United States companies began to phase in the use of a 13th 
digit to be in conformance with the 13-digit product identification num-
bers used in Europe. The weighting vector for 13-digit numbers is (1, 3, 
1, 3, . . . , 3, 1).

Identification numbers printed on bank checks (on the bottom left 
between the two colons) consist of an eight-digit number a1a2 ? ? ? a8 
and a check digit a9, so that

(a1, a2, . . . , a9) ? (7, 3, 9, 7, 3, 9, 7, 3, 9) mod 10 5 0.
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0 | Preliminaries 11

As is the case for the UPC scheme, this method detects all single-
digit errors and all errors involving the transposition of adjacent digits 
a and b except when |a 2 b| 5 5. But it also detects most errors of the 
form ? ? ? abc ? ? ? → ? ? ? cba ? ? ?, whereas the UPC method detects no 
errors of this form.

In Chapter 5, we will examine more sophisticated means of assign-
ing check digits to numbers.

What about error correction? Suppose you have a number such as 
73245018 and you would like to be sure that if even a single mistake 
were made in entering this number into a computer, the computer 
would nevertheless be able to determine the correct number. (Think of 
it. You could make a mistake in dialing a telephone number but still get 
the correct phone to ring!) This is possible using two check digits. One 
of the check digits determines the magnitude of any single-digit error, 
while the other check digit locates the position of the error. With these 
two pieces of information, you can fix the error. To illustrate the idea, let 
us say that we have the eight-digit identification number a1a2 ? ? ? a8. We 
assign two check digits a9 and a10 so that

(a1 1 a2 1 ? ? ? 1 a9 1 a10) mod 11 5 0

and

(a1, a2, . . . , a9, a10) ? (1, 2, 3, . . . , 10) mod 11 5 0

are satisfied.
Let’s do an example. Say our number before appending the two 

check digits is 73245018. Then a9 and a10 are chosen to satisfy

 (7 1 3 1 2 1 4 1 5 1 0 1 1 1 8  1 a9 1 a10) mod 11 5 0 (1)

and

 (7 ? 1 1 3 ? 2 1 2 ? 3 1 4 ? 4 1 5 ? 5 1 0 ? 6  (2)
      1 1 ? 7 1 8 ? 8 1 a9 ? 9 1 a10 ? 10) mod 11 5 0.

Since 7 1 3 1 2 1 4 1 5 1 0 1 1 1 8  5 30  and 30 mod 11 5 8,  
Equation (1) reduces to

 (8 1 a9 1 a10) mod 11 5 0. (19)

Likewise, since (7 ? 1 1 3 ? 2 1 2 ? 3 1 4 ? 4 1 5 ? 5 1  
0 ? 6 1 1 ? 7 1 8 ? 8) mod 11 5 10, Equation (2) reduces to

 (10 1 9a9 1 10a10) mod 11 5 0. (29)
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12 Integers and Equivalence Relations

Since we are using mod 11, we may rewrite Equation (29) as

(21 2 2a9 2 a10) mod 11 5 0

and add this to Equation (19) to obtain 7 2 a9 5 0. Thus a9 5 7. Now 
substituting a9 5 7 into Equation (19) or Equation (29), we obtain  
a10 5 7 as well. So, the number is encoded as 7324501877.

Now let us suppose that this number is erroneously entered into  
a computer programmed with our encoding scheme as 7824501877  
(an error in position 2). Since the sum of the digits of the received  
number  mod 11 is 5, we know that some digit is 5 too large (assum-
ing only one error has been made). But which one? Say the  
error is in position i. Then the second dot product has the form a1 ? 1 1 
a2 ? 2 1 ? ? ? 1 (ai 1 5)i 1 ai11 ? (i 1 1) 1 ? ? ? 1 a10 ? 10 5  
(a1, a2, ? ? ?, a10) ? (1, 2,  ? ? ? , 10) 1 5i. So, (7, 8, 2, 4, 5, 0, 1, 8, 7, 7) ?  
(1, 2, 3, 4, 5, 6, 7, 8, 9, 10) mod 11 5 5i mod 11. Since the left-hand 
side mod 11 is 10, we see that i 5 2. Our conclusion: The digit in posi-
tion 2 is 5 too large. We have successfully corrected the error.

Modular arithmetic is often used to verify the validity of statements 
about divisibility regarding all positive integers by checking only  
finitely many cases.

 EXAMPLE 6 Consider the statement, “The sum of the cubes of any 
three consecutive integers is divisible by 9.” This statement is equiva-
lent to checking that the equation (n3 1 (n 1 1)3 1 (n 1 2)3) mod 9 5 0 
is true for all integers n. Because of properties of modular arithmetic, to 
prove this, all we need do is check the validity of the equation for n 5 0, 
1, …, 8. 

Modular arithmetic is occasionally used to show that certain equa-
tions have no rational number solutions.

 EXAMPLE 7 We use mod 3 arithmetic to show that there are no  
integers a and b such that a2 2 6b 5 2. To see this, suppose that there 
are such integers. Then, taking both sides modulo 3, there is an integer 
solution to a2 mod 3 5 2. But trying a 5 0, 1, and 2 we obtain a contra-
diction. 
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Complex Numbers
Recall that complex numbers are expressions of the form a 1 b 2 �1, 
where a and b are real numbers. The number 2 �1 is defined to have 
the property 2 �12 5 21. It is customary to use i to denote 2 �1. 
Then, i2 5 21. Complex numbers written in the form a 1 bi are said to 
be in standard form. In some instances it is convenient to write a com-
plex number a 1 bi in another form. To do this we represent a 1 bi as 
the point (a,b) in a plane coordinatized by a horizontal axis called the 
real axis and a vertical i axis called the imaginary axis. The distance 
from the point a 1 bi to the origin is r 5 2a2 � b2 and is often  
denoted by |a 1 bi|. If we draw the line segment from the origin to  
a 1 bi and denote the angle formed by the line segment and the positive 
real axis by u, we can write a 1 bi as r(cos u 1 i sin u) (see Figure 0.5). 
This form of a 1 bi is called the polar form. An advantage of the polar 
form is demonstrated in parts 5 and 6 of Theorem 0.4.

 Theorem 0.4 Properties of Complex Numbers

 1. Closure under addition: (a 1 bi) 1 (c 1 di) 5 (a 1 c) 1 (b 1 d)i
 2. Closure under multiplication: (a 1 bi) (c 1 di) 5 (ac) 1 (ad)i 1 

(bc)i 1 (bd)i2 5 (ac 2 bd) 1 (ad 1 bc)i

 3. Closure under division (c 1 di � 0) : 
(a � bi)

(c � di)
 5 

(a � bi)

(c � di)
 
(c � di)

(c � di)
 5 

(ac � bd) � (bc � ad)i

c2 � d2  5 
(ac � bd)

c2 � d2  1 
(bc � ad)

c2 � d2 i
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14 Integers and Equivalence Relations

 4. Complex conjugation: (a 1 bi) (a 2 bi) 5 a2 1 b2

 5. Inverses: For every nonzero complex number a 1 bi there is a  
complex number c 1 di such that (a 1 bi) (c 1 di) 5 1. (That is,  
(a 1 bi)21 exists in C.)

 6. Powers: For every complex number a 1 bi 5 r(cos u 1 i sin u) and 
every positive integer n, we have (a 1 bi)n 5 3r1cos u � i sin u2 4n 5 
rn (cos n u 1 i sin n u).

 7. Radicals: For every complex number a 1 bi 5 r(cos u 1 i sin u) and 
every positive integer n, we have (a � bi)

1
n 5 3r1cos u � i sin u2 41n 5 

r
1
n (cos un � i sin un).

PROOF Parts 1 and 2 are definitions. Part 4 follows from part 2. Part 6 
is proved in Example 10 in the next section of this chapter. Part 7 fol-
lows from Exercise 25 in this chapter. 

The next example illustrates properties of complex numbers.

 EXAMPLE 8 (3 1 5i) 1 (25 1 2i) 5 22 1 7i; 
(3 1 5i)(25 1 2i) 5 225 1 (219)i 5 225 2 19i; 

3 � 5i

�2 � 7i
�

3 � 5i

�2 � 7i
  

�2 � 7i

�2 � 7i
 5 

29 � 31i

53
�

29

53
�

�31

53
i; 

(3 1 5i) (3 2 5i) 5 9 1 25 5 34; 

(3 1 5i)21 �
3

34
�

5

34
i. 

To find (3 1 5i)4 and (3 � 5i)
1
4 we first note that if u 5 arctan 5

3,  

then cos u 5 
3

234
 and sin u 5 

5

234
 . Thus, (3 1 5i)4 5 ((234(cos u 1  

i sin u))4 5 2344 (cos 4u 1 i sin 4u) and (3 � 5i)
1
4 5 (234(cos u 1 

i sin u))
1
4 5 234 

1
4  (cos u4 1 i sin u4).

Mathematical Induction
There are two forms of proof by mathematical induction that we will 
use. Both are equivalent to the Well Ordering Principle. The explicit 
formulation of the method of mathematical induction came in the 
16th century. Francisco Maurolico (1494–1575), a teacher of Galileo, 
used it in 1575 to prove that 1 1 3 1 5 1 ? ? ? 1 (2n 2 1) 5 n2, and 
Blaise Pascal (1623–1662) used it when he presented what we now 
call Pascal’s triangle for the coefficients of the binomial expansion. 
The term mathematical induction was coined by Augustus De Morgan.
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0 | Preliminaries 15

 Theorem 0.5 First Principle of Mathematical Induction

Let S be a set of integers containing a. Suppose S has the property that 

whenever some integer n $ a belongs to S, then the integer n 1 1 also 

belongs to S. Then, S contains every integer greater than or equal to a.

PROOF The proof is left as an exercise (Exercise 33). 

So, to use induction to prove that a statement involving positive inte-
gers is true for every positive integer, we must first verify that the state-
ment is true for the integer 1. We then assume the statement is true for 
the integer n and use this assumption to prove that the statement is true 
for the integer n 1 1.

Our next example uses some facts about plane geometry. Recall that 
given a straightedge and compass, we can construct a right angle.

 EXAMPLE 9 We use induction to prove that given a straightedge, a 
compass, and a unit length, we can construct a line segment of length    
2n for every positive integer n. The case when n 5 1 is given. Now we 
assume that we can construct a line segment of length 2n. Then use the 
straightedge and compass to construct a right triangle with height 1 and 
base 2n. The hypotenuse of the triangle has length 2n � 1. So, by 
induction, we can construct a line segment of length 2n for every posi-
tive integer n. 

 EXAMPLE 10 DeMOIVRE’S THEOREM We use induction to prove 
that for every positive integer n and every real number u, (cos u 1  
i sin u)n 5 cos nu 1 i sin nu, where i is the complex number 2 �1. 
Obviously, the statement is true for n 5 1. Now assume it is true for n. 
We must prove that (cos u 1 i sin u)n11 5 cos(n 1 1)u 1 i sin(n 1 1)u. 
Observe that

 (cos u 1 i sin u)n11  5 (cos u 1 i sin u)n(cos u 1 i sin u) 
5 (cos nu 1 i sin nu)(cos u 1 i sin u) 
5 cos nu cos u 1 i(sin nu cos u  
  1 sin u cos nu) 2 sin nu sin u.

Now, using trigonometric identities for cos(a 1 b) and sin(a 1 b), we 
see that this last term is cos(n 1 1)u 1 i sin(n 1 1)u. So, by induction, 
the statement is true for all positive integers. 

In many instances, the assumption that a statement is true for an in-
teger n does not readily lend itself to a proof that the statement is true 
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16 Integers and Equivalence Relations

for the integer n 1 1. In such cases, the following equivalent form of 
 induction may be more convenient. Some authors call this formulation 
the strong form of induction.

 Theorem 0.6 Second Principle of Mathematical Induction

Let S be a set of integers containing a. Suppose S has the property that 

n belongs to S whenever every integer less than n and greater than or 

equal to a belongs to S. Then, S contains every integer greater than or 

equal to a.

PROOF The proof is left to the reader. 

To use this form of induction, we first show that the statement is true 
for the integer a. We then assume that the statement is true for all inte-
gers that are greater than or equal to a and less than n, and use this as-
sumption to prove that the statement is true for n.

 EXAMPLE 11 We will use the Second Principle of Mathematical 
Induction with a 5 2 to prove the existence portion of the Fundamental 
Theorem of Arithmetic. Let S be the set of integers greater than 1 that 
are primes or products of primes. Clearly, 2 [ S. Now we assume that 
for some integer n, S contains all integers k with 2 # k , n. We must 
show that n [ S. If n is a prime, then n [ S by definition. If n is not a 
prime, then n can be written in the form ab, where 1 , a , n and 1 , b 
, n. Since we are assuming that both a and b belong to S, we know that 
each of them is a prime or a product of primes. Thus, n is also a product 
of primes. This completes the proof. 

Notice that it is more natural to prove the Fundamental Theorem of 
Arithmetic with the Second Principle of Mathematical Induction than 
with the First Principle. Knowing that a particular integer factors as a 
product of primes does not tell you anything about factoring the next 
larger integer. (Does knowing that 5280 is a product of primes help you 
to factor 5281 as a product of primes?)

The following problem appeared in the “Brain Boggler” section of 
the January 1988 issue of the science magazine Discover.*

 EXAMPLE 12 The Quakertown Poker Club plays with blue chips 
worth $5.00 and red chips worth $8.00. What is the largest bet that 
 cannot be made?

*“Brain Boggler” by Maxwell Carver. Copyright © 1988 by Discover Magazine. Used 
by permission.
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0 | Preliminaries 17

To gain insight into this problem, we try various combinations of 
blue and red chips and obtain 5, 8, 10, 13, 15, 16, 18, 20, 21, 23, 24, 25, 
26, 28, 29, 30, 31, 32, 33, 34, 35, 36, 37, 38, 39, 40. It appears that the 
answer is 27. But how can we be sure? Well, we need only prove that 
every integer greater than 27 can be written in the form a ? 5 1  
b ? 8, where a and b are nonnegative integers. This will solve the prob-
lem, since a represents the number of blue chips and b the number of red 
chips needed to make a bet of a ? 5 1 b ? 8. For the purpose of contrast, 
we will give two proofs—one using the First Principle of Mathematical 
Induction and one using the Second Principle.

Let S be the set of all integers greater than or equal to 28 of the form 
a ? 5 1 b ? 8, where a and b are nonnegative. Obviously, 28 [ S. Now 
assume that some integer n [ S, say, n 5 a ? 5 1 b ? 8. We must show 
that n 1 1 [ S. First, note that since n $ 28, we cannot have both a and 
b less than 3. If a $ 3, then

 n 1 1 5 (a ? 5 1 b ? 8) 1 (23 ? 5 1 2 ? 8)
 5 (a 2 3) ? 5 1 (b 1 2) ? 8.

(Regarding chips, this last equation says that we may increase a bet 
from n to n 1 1 by removing three blue chips from the pot and adding 
two red chips.) If b $ 3, then

 n 1 1 5 (a ? 5 1 b ? 8) 1 (5 ? 5 2 3 ? 8)
 5 (a 1 5) ? 5 1 (b 2 3) ? 8.

(The bet can be increased by 1 by removing three red chips and adding 
five blue chips.) This completes the proof.

To prove the same statement by the Second Principle, we note that 
each of the integers 28, 29, 30, 31, and 32 is in S. Now assume that  
for some integer n . 32, S contains all integers k with 28 # k , n.  
We must show that n [ S. Since n 2 5 [ S, there are nonnegative 
 integers a and b such  that n 2 5 5 a ? 5 1 b ? 8. But then  
n 5 (a 1 1) ? 5 1 b ? 8. Thus n is in S. 

Equivalence Relations
In mathematics, things that are considered different in one context may 
be viewed as equivalent in another context. We have already seen one 
such example. Indeed, the sums 2 1 1 and 4 1 4 are certainly different 
in ordinary arithmetic, but are the same under modulo 5 arithmetic. 
Congruent triangles that are situated differently in the plane are not the 
same, but they are often considered to be the same in plane geometry. 
In physics, vectors of the same magnitude and direction can produce 
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18 Integers and Equivalence Relations

different effects—a 10-pound weight placed 2 feet from a fulcrum pro-
duces a different effect than a 10-pound weight placed 1 foot from a 
fulcrum. But in linear algebra, vectors of the same magnitude and di-
rection are considered to be the same. What is needed to make these 
distinctions precise is an appropriate generalization of the notion of 
equality; that is, we need a formal mechanism for specifying whether or 
not two quantities are the same in a given setting. This mechanism is an 
equivalence relation.

Definition Equivalence Relation
An equivalence relation on a set S is a set R of ordered pairs of 
 elements of S such that

 1. (a, a) [ R for all a [ S  (reflexive property).
 2. (a, b) [ R implies (b, a) [ R  (symmetric property).
 3. (a, b) [ R and (b, c) [ R imply (a, c) [ R  (transitive property).

When R is an equivalence relation on a set S, it is customary to write 
aRb instead of (a, b) [ R. Also, since an equivalence relation is just a 
generalization of equality, a suggestive symbol such as <, ;, or , is 
usually used to denote the relation. Using this notation, the three condi-
tions for an equivalence relation become a , a; a , b implies  
b  , a; and a , b and b , c imply a , c. If , is an equivalence relation 
on a set S and a [ S, then the set [a] 5 {x [ S | x , a} is called the 
equivalence class of S containing a.

 EXAMPLE 13 Let S be the set of all triangles in a plane. If a, b [ S, 
define a , b if a and b are similar—that is, if a and b have correspond-
ing angles that are the same. Then , is an equivalence relation on S. 

 EXAMPLE 14 Let S be the set of all polynomials with real coeffi-
cients. If f, g [ S, define f , g if f 9 5 g9, where f 9 is the derivative of 
f. Then , is an equivalence relation on S. Since two polynomials with 
equal derivatives differ by a constant, we see that for any f in S, [ f ] 5 
{ f 1 c | c is real}. 

 EXAMPLE 15 Let S be the set of integers and let n be a positive inte-
ger. If a, b [ S, define a ; b if a mod n 5 b mod n (that is, if a 2 b is 
divisible by n). Then ; is an equivalence relation on S and [a] 5 {a 1 
kn | k [ S}. Since this particular relation is important in abstract alge-
bra, we will take the trouble to verify that it is indeed an equivalence 
 relation. Certainly, a 2 a is divisible by n, so that a ; a for all a in S. 
Next, assume that a ; b, say, a 2 b 5 rn. Then, b 2 a 5 (2r)n, and 
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0 | Preliminaries 19

therefore b ; a. Finally, assume that a ; b and b ; c, say, a 2 b 5 rn 
and b 2 c 5 sn. Then, we have a 2 c 5 (a 2 b) 1 (b 2 c) 5 rn 1 sn 5 
(r 1 s)n, so that a ; c. 

 EXAMPLE 16 Let ; be as in Example 15 and let n 5 7. Then we 
have 16 ; 2; 9 ; 25; and 24 ; 3. Also, [1] 5 {. . . , 220, 213, 26, 1, 
8, 15, . . .} and [4] 5 {. . . , 217, 210, 23, 4, 11, 18, . . .}. 

 EXAMPLE 17 Let S 5 {(a, b) | a, b are integers, b 2 0}. If  
(a, b), (c, d ) [ S, define (a, b) < (c, d ) if ad 5 bc. Then < is an equiv-
alence relation on S. [The motivation for this example comes from frac-
tions. In fact, the pairs (a, b) and (c, d) are equivalent if the fractions a/b 
and c/d are equal.] 

To verify that < is an equivalence relation on S, note that (a, b) < (a, b) 
requires that ab 5 ba, which is true. Next, we assume that (a, b) < (c, d), 
so that ad 5 bc. We have (c, d) < (a, b) provided that cb 5 da, which is 
true from commutativity of multiplication. Finally, we  assume that (a, b) 
< (c, d ) and (c, d) < (e, f ) and prove that (a, b) < (e, f ). This amounts to 
using ad 5 bc and cf 5 de to show that af 5 be. Multiplying both sides 
of ad 5 bc by f and replacing cf by de, we obtain adf 5 bcf 5 bde. Since 
d 2 0, we can cancel d from the first and last terms. 

Definition Partition
A partition of a set S is a collection of nonempty disjoint subsets of S 
whose union is S. Figure 0.6 illustrates a partition of a set into four 
subsets.

S

Figure 0.6 Partition of S into four subsets.

 EXAMPLE 18 The sets {0}, {1, 2, 3, . . .}, and {. . . , 23, 22, 21} 
constitute a partition of the set of integers. 

 EXAMPLE 19 The set of nonnegative integers and the set of non-
positive integers do not partition the integers, since both contain 0. 
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20 Integers and Equivalence Relations

The next theorem reveals that equivalence relations and partitions 
are intimately intertwined.

 Theorem 0.7 Equivalence Classes Partition

The equivalence classes of an equivalence relation on a set S 

constitute a partition of S. Conversely, for any partition P of S, there 

is an equivalence relation on S whose equivalence classes are the 

elements of P.

PROOF Let , be an equivalence relation on a set S. For any a [ S, the 
reflexive property shows that a [ [a]. So, [a] is nonempty and the union 
of all equivalence classes is S. Now, suppose that [a] and [b] are distinct 
equivalence classes. We must show that [a] > [b] 5 0/ . On the contrary, 
assume c [ [a] > [b]. We will show that [a] # [b]. To this end, let x [ [a]. 
We then have c , a, c , b, and x , a. By the symmetric property, we 
also have a , c. Thus, by transitivity, x , c, and by transitivity again, 
x , b. This proves [a] # [b]. Analogously, [b] # [a]. Thus, [a] 5 [b], 
in contradiction to our assumption that [a] and [b] are distinct equiva-
lence classes.

To prove the converse, let P be a collection of nonempty disjoint 
subsets of S whose union is S. Define a , b if a and b belong to the 
same subset in the collection. We leave it to the reader to show that , is 
an equivalence relation on S (Exercise 61). 

Functions (Mappings)
Although the concept of a function plays a central role in nearly every 
branch of mathematics, the terminology and notation associated with 
functions vary quite a bit. In this section, we establish ours.

Definition Function (Mapping)
A function (or mapping) f from a set A to a set B is a rule that assigns 
to each element a of A exactly one element b of B. The set A is called 
the domain of f, and B is called the range of f. If f assigns b to a, then 
b is called the image of a under f. The subset of B comprising all the 
images of elements of A is called the image of A under f.

We use the shorthand f: A → B to mean that f is a mapping from 
A to B. We will write f(a) 5 b or f: a → b to indicate that f carries 
a to b.

There are often different ways to denote the same element of a set. In 
defining a function in such cases one must verify that the function 
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0 | Preliminaries 21

 values assigned to the elements depend not on the way the elements 
are expressed but on only the elements themselves. For example, the 
correspondence f from the rational numbers to the integers given by 
f(a/b) 5 a 1 b does not define a function since 1/2 5 2/4 but f(1/2) ? 
f(2/4). To verify that a correspondence is a function, you assume that  
x1 5 x2 and prove that f(x1) 5 f (x2).

Definition Composition of Functions
Let f: A → B and c: B → C. The composition cf is the map ping from 
A to C defined by (cf)(a) 5 c(f(a)) for all a in A. The composition 
function cf can be visualized as in Figure 0.7.

a   (  (a))φ

    (a)

ψ

ψφ

ψφ

φ

Figure 0.7 Composition of functions f and c.

In calculus courses, the composition of f with g is written ( f 8 g)(x) and 
is defined by ( f 8 g)(x) 5 f (g(x)). When we compose functions, we omit 
the “circle.”

 EXAMPLE 20 Let f (x) 5 2x 1 3 and g(x) 5 x2 1 1. Then (  fg)(5) 5 
f (g(5)) 5 f (26) 5 55; (g f )(5) 5 g (  f (5)) 5 g (13) 5 170. More generally, 
( fg)(x) 5 f (g(x)) 5 f (x2 1 1) 5 2(x2 1 1) 1 3 5 2x2 1 5 and (g f )(x) 5 
g ( f (x)) 5 g (2x 1 3) 5 (2x 1 3)2 1 1 5 4x2 1 12x 1 9 1 1 5 4x2 1  
12x 1 10. Note that the function fg is not the same as the function g f. 

There are several kinds of functions that occur often enough to be 
given names.

Definition One-to-One Function
A function f from a set A is called one-to-one if for every a1, a2 [ A, 
f(a1) 5 f(a2) implies a1 5 a2.

The term one-to-one is suggestive, since the definition ensures that 
one element of B can be the image of only one element of A. Alternatively, 
f is one-to-one if a1 � a2 implies f(a1) � f(a2). That is, different ele-
ments of A map to different elements of B. See Figure 0.8.
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22 Integers and Equivalence Relations

a1 a1

a2 a2

(a1)φ

φ

φ

  (a1) 5    (a2) 
 (a2)

is one-to-one is not one-to-oneψ

ψ

ψ  ψ 

φ

Figure 0.8

Definition Function from A onto B
A function f from a set A to a set B is said to be onto B if each element 
of B is the image of at least one element of A. In symbols, f: A → B is 
onto if for each b in B there is at least one a in A such that f(a) 5 b. 
See Figure 0.9.

φ is onto is not ontoψ

ψ

φ

Figure 0.9

The next theorem summarizes the facts about functions we will need.

 Theorem 0.8 Properties of Functions

Given functions a: A → B, b: B → C, and g: C → D, then

 1. g(ba) 5 (gb)a (associativity).

 2. If a and b are one-to-one, then ba is one-to-one.

 3. If a and b are onto, then ba is onto.

 4.  If a is one-to-one and onto, then there is a function a21 from B 

onto A such that (a21a)(a) 5 a for all a in A and (aa21)(b) 5 b 

for all b in B.

PROOF We prove only part 1. The remaining parts are left as exercises 
(Exercise 57). Let a [ A. Then (g(ba))(a) 5 g((ba)(a)) 5 g(b(a(a))). 
On the other hand, ((gb)a)(a) 5 (gb)(a(a)) 5 g(b(a(a))). So, g(ba) 5 
(gb)a. 
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0 | Preliminaries 23

It is useful to note that if a is one-to-one and onto, the function a21 
described in part 4 of Theorem 0.8 has the property that if a (s) 5 t, 
then a21(t) 5 s. That is, the image of t under a21 is the unique element s 
that maps to t under a. In effect, a21 “undoes” what a does.

 EXAMPLE 21 Let Z denote the set of integers, R the set of real 
numbers, and N the set of nonnegative integers. The following table il-
lustrates the properties of one-to-one and onto.

Domain Range Rule One-to-One Onto
 Z Z x → x3 Yes No
 R R x → x3 Yes Yes
 Z N x → |x| No Yes
 Z Z x → x2 No No

To verify that x → x3 is one-to-one in the first two cases, notice that if  
x3 5 y3, we may take the cube roots of both sides of the equation to ob-
tain x 5 y. Clearly, the mapping from Z to Z given by x → x3 is not onto, 
since 2 is the cube of no integer. However, x → x3 defines an onto func-
tion from R to R, since every real number is the cube of its cube root 
(that is, 32b → b). The remaining verifications are left to the reader. 

Exercises

I was interviewed in the Israeli Radio for five minutes and I said that more 
than 2000 years ago, Euclid proved that there are infinitely many primes. 
Immediately the host interrupted me and asked: “Are there still infinitely 
many primes?”

noga alon

  1. For n 5 5, 8, 12, 20, and 25, find all positive integers less than n 
and rel atively prime to n.

  2. Determine gcd(24 ? 32 ? 5 ? 72, 2 ? 33 ? 7 ? 11) and lcm(23 ? 32 ? 5,  
2 ? 33 ? 7 ? 11).

  3. Determine 51 mod 13, 342 mod 85, 62 mod 15, 10 mod 15, (82 ? 73) 
mod 7, (51 1 68) mod 7, (35 ? 24) mod 11, and (47 1 68) mod 11.

  4. Find integers s and t such that 1 5 7 ? s 1 11 ? t. Show that s and t 
are not unique.

  5. Show that if a and b are positive integers, then ab 5 lcm(a, b) ? 
gcd(a, b).

  6. Suppose a and b are integers that divide the integer c. If a and b are 
relatively prime, show that ab divides c. Show, by example, that if 
a and b are not relatively prime, then ab need not divide c.
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24 Integers and Equivalence Relations

  7. If a and b are integers and n is a positive integer, prove that a mod n 5 
b mod n if and only if n divides a 2 b.

  8. Let d 5 gcd(a, b). If a 5 da9 and b 5 db9, show that gcd(a9, b9) 5 1.
  9. Let n be a fixed positive integer greater than 1. If a mod n 5 a9 and  

b mod  n 5 b9, prove that (a 1 b) mod n 5 (a9 1 b9) mod n and (ab) 
mod n 5 (a9b9) mod n. (This exercise is referred to in Chapters 6,  
8, 10, and 15.)

 10. Let a and b be positive integers and let d 5 gcd(a, b) and m 5 
lcm(a, b). If t divides both a and b, prove that t divides d. If s is a 
multiple of both a and b, prove that s is a multiple of m.

 11. Let n and a be positive integers and let d 5 gcd(a, n). Show that the 
equation ax mod n 5 1 has a solution if and only if d 5 1. (This 
 exercise is referred to in Chapter 2.)

 12. Show that 5n 1 3 and 7n 1 4 are relatively prime for all n.
 13. Suppose that m and n are relatively prime and r is any integer. Show 

that there are integers x and y such that mx 1 ny 5 r.
 14. Let p, q, and r be primes other than 3. Show that 3 divides p2 1  

q2 1 r2.
 15. Prove that every prime greater than 3 can be written in the form 

6n 1 1 or 6n 1 5.
 16. Determine 71000 mod 6 and 61001 mod 7.
 17. Let a, b, s, and t be integers. If a mod st 5 b mod st, show that a 

mod s 5 b mod s and a mod t 5 b mod t. What condition on s and 
t is needed to make the converse true? (This exercise is referred to 
in Chapter 8.)

 18. Determine 8402 mod 5.
 19. Show that gcd(a, bc) 5 1 if and only if gcd(a, b) 5 1 and 

gcd(a, c) 5 1. (This exercise is referred to in Chapter 8.)
 20. Let p1, p2, . . . , pn be primes. Show that p1 p2 ? ? ? pn 1 1 is divisible 

by none of these primes.
 21. Prove that there are infinitely many primes. (Hint: Use Exercise 20.)
 22. Express (27 2 3i)21 in standard form.

 23. Express 
�5 � 2i

4 � 5i
 in standard form.

 24. Express (cos 3608 1 i sin 3608)1/8 in standard form without trig 
expressions. (Note that cos 3608 1 i sin 3608 5 1.)

 25. Prove that for any positive integer n, (cos u 1 i sin u)1/n 5 cos un 1  

i sin un.
 26. For every positive integer n, prove that 1 1 2 1 ? ? ? 1 n 5  

n(n 1 1)/2.
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 27. For every positive integer n, prove that a set with exactly n elements 
has exactly 2n subsets (counting the empty set and the entire set).

 28. Prove that 2n32n 2 1 is always divisible by 17.
 29. Prove that there is some positive integer n such that  n, n 1 1,  

n 1 2, ? ? ?  , n 1 200 are all composite.
 30. (Generalized Euclid’s Lemma) If p is a prime and p divides  

a1a2 ? ? ? an, prove that p divides ai for some i.
 31. Use the Generalized Euclid’s Lemma (see Exercise 30) to establish 

the uniqueness portion of the Fundamental Theorem of Arithmetic.
 32. What is the largest bet that cannot be made with chips worth $7.00 

and $9.00? Verify that your answer is correct with both forms of 
 induction.

 33. Prove that the First Principle of Mathematical Induction is a conse-
quence of the Well Ordering Principle.

 34. The Fibonacci numbers are 1, 1, 2, 3, 5, 8, 13, 21, 34, . . . . In gen-
eral, the Fibonacci numbers are defined by f1 5 1, f2 5 1, and for   
n $ 3,  fn 5 fn21 1 fn22. Prove that the nth Fibonacci number fn sat-
isfies fn , 2n.

 35. Prove by induction on n that for all positive integers n, n3 1  
(n 1 1)3 1 (n 1 2)3 is a multiple of 9.

 36. Suppose that there is a statement involving a positive integer  
parameter n and you have an argument that shows that whenever 
the statement is true for a particular n it is also true for n 1 2. What 
remains to be done to prove the statement is true for every positive 
integer? Describe a situation in which this strategy would be  
applicable.

 37. In the cut “As” from Songs in the Key of Life, Stevie Wonder men-
tions the equation 8 3 8 3 8 5 4. Find all integers n for which this 
statement is true, modulo n.

 38. Prove that for every integer n, n3 mod 6 5 n mod 6.
 39. If it is 2:00 a.m. now, what time will it be 3736 hours from now?
 40. Determine the check digit for a money order with identification 

number 7234541780.
 41. Suppose that in one of the noncheck positions of a money order 

number, the digit 0 is substituted for the digit 9 or vice versa. Prove 
that this error will not be detected by the check digit. Prove that all 
other errors involving a single position are detected.

 42. Suppose that a money order identification number and check digit 
of 21720421168 is erroneously copied as 27750421168. Will the 
check digit detect the error?
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26 Integers and Equivalence Relations

 43. A transposition error involving distinct adjacent digits is one of the 
form . . . ab . . . → . . . ba . . . with a ≠ b. Prove that the money 
order check-digit scheme will not detect such errors unless the 
check digit itself is transposed.

 44. Determine the check digit for the Avis rental car with identification 
number 540047. (See Example 5.)

 45. Show that a substitution of a digit ai9 for the digit ai  (ai9 ≠ ai) in  
a noncheck position of a UPS number is detected if and only 
if |ai 2 ai9| ≠ 7.

 46. Determine which transposition errors involving adjacent digits are 
detected by the UPS check digit.

 47. Use the UPC scheme to determine the check digit for the number 
07312400508.

 48. Explain why the check digit for a money order for the number N is 
the repeated decimal digit in the real number N 4 9.

 49. The 10-digit International Standard Book Number (ISBN-10) 
a1a2a3a4a5a6a7a8 a9a10 has the property (a1, a2, . . . , a10) ? (10, 9, 8, 7, 
6, 5, 4, 3, 2, 1) mod 11 5 0. The digit a10 is the check digit. When 
a10 is required to be 10 to make the dot product 0, the character X is 
used as the check digit. Verify the check digit for the ISBN-10 as-
signed to this book.

 50. Suppose that an ISBN-10 has a smudged entry where the question 
mark appears in the number 0-716?-2841-9. Determine the missing 
digit.

 51. Suppose three consecutive digits abc of an ISBN-10 are scrambled as 
bca. Which such errors will go undetected?

 52. The ISBN-10 0-669-03925-4 is the result of a transposition of two 
 adjacent digits not involving the first or last digit. Determine the 
correct ISBN-10.

 53. Suppose the weighting vector for ISBN-10s were changed to (1, 2, 
3, 4, 5, 6, 7, 8, 9, 10). Explain how this would affect the check digit.

 54. Use the two-check-digit error-correction method described in this 
chapter to append two check digits to the number 73445860.

 55. Suppose that an eight-digit number has two check digits appended 
using the error-correction method described in this chapter and it is 
incorrectly transcribed as 4302511568. If exactly one digit is in-
correct, determine the correct number.

 56. The state of Utah appends a ninth digit a9 to an eight-digit driver’s 
license number a1a2 . . . a8 so that (9a1 1 8a2 1 7a3 1 6a4 1 5a5 1 
4a6 1 3a7 1 2a8 1 a9) mod 10 5 0. If you know that the license 
number 149105267 has exactly one digit incorrect, explain why the 
error cannot be in position 2, 4, 6, or 8.
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 57. Complete the proof of Theorem 0.8.
 58. Let S be the set of real numbers. If a, b [ S, define a , b if a 2 b 

is an integer. Show that , is an equivalence relation on S. Describe 
the equivalence classes of S.

 59. Let S be the set of integers. If a, b [ S, define aRb if ab $ 0. Is R an 
equivalence relation on S?

 60. Let S be the set of integers. If a, b [ S, define aRb if a 1 b is even. 
Prove that R is an equivalence relation and determine the equiva-
lence classes of S.

 61. Complete the proof of Theorem 0.7 by showing that , is an equiva-
lence relation on S.

 62. Prove that 3, 5, and 7 are the only three consecutive odd integers 
that are prime.

 63. What is the last digit of 3100? What is the last digit of 2100?
 64. Prove that none of the integers 11, 111, 1111, 11111, . . . is a square 

of an integer.
 65. (Cancellation Property) Suppose a, b, and g are functions. If ag 5 

bg and g is one-to-one and onto, prove that a 5 b.

Computer Exercises

Computer exercises for this chapter are available at the website:

http://www.d.umn.edu/~jgallian

Suggested Readings

Linda Deneen, “Secret Encryption with Public Keys,” The UMAP Journal 
8 (1987): 9–29.

This well-written article describes several ways in which modular 
arithmetic can be used to code secret messages. They range from a 
simple scheme used by Julius Caesar to a highly sophisticated scheme 
invented in 1978 and based on modular n arithmetic, where n has more 
than 200 digits.

J. A. Gallian, “Assigning Driver’s License Numbers,” Mathematics  
Magazine 64 (1991): 13–22.

This article describes various methods used by the states to assign driv-
er’s license numbers. Several include check digits for error detection. 
This article can be downloaded at http://www.d.umn.edu/~jgallian/ 
license.pdf
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J. A. Gallian, “The Mathematics of Identification Numbers,” The College 
Mathe matics Journal 22 (1991): 194–202.

This article is a comprehensive survey of check-digit schemes that are 
associated with identification numbers. This article can be downloaded 
at http://www.d.umn.edu/~jgallian/ident.pdf 

J. A. Gallian and S. Winters, “Modular Arithmetic in the Marketplace,” 
The American Mathematical Monthly 95 (1988): 548–551.

This article provides a more detailed analysis of the check-digit 
schemes presented in this chapter. In particular, the error detection 
rates for the various schemes are given. This article can be downloaded 
at http://www.d.umn.edu/~jgallian/marketplace.pdf 
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Groups

For online student resources, visit this textbook’s website at 
www.CengageBrain.com

99708_ch01_ptg01_hr_029-041.indd   29 06/06/12   4:56 PM

Copyright 2012 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights,
some third party content may be suppressed from the eBook and/or eChapter(s). Editorial review has deemed that any suppressed content does not materially
affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

http://www.CengageBrain.com


99708_ch01_ptg01_hr_029-041.indd   30 06/06/12   4:56 PM

Copyright 2012 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights,
some third party content may be suppressed from the eBook and/or eChapter(s). Editorial review has deemed that any suppressed content does not materially
affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.



31

Introduction  
to Groups

Symmetry is a vast subject, significant in art and nature. Mathematics lies 
at its root, and it would be hard to find a better one on which to 
demonstrate the working of the mathematical intellect.

hermann weyl, Symmetry

1

Symmetries of a Square
Suppose we remove a square region from a plane, move it in some way, 
then put the square back into the space it originally occupied. Our goal 
in this chapter is to describe all possible ways in which this can be 
done. More specifically, we want to describe the possible relationships 
between the starting position of the square and its final position in 
terms of motions. However, we are interested in the net effect of a mo-
tion, rather than in the motion itself. Thus, for example, we consider a 
908 rotation and a 4508 rotation as equal, since they have the same net 
effect on every point. With this simplifying convention, it is an easy 
matter to achieve our goal.

To begin, we can think of the square region as being transparent 
(glass, say), with the corners marked on one side with the colors blue, 
white, pink, and green. This makes it easy to distinguish between mo-
tions that have different effects. With this marking scheme, we are now 
in a position to describe, in simple fashion, all possible ways in which a 
square object can be repositioned. See Figure 1.1. We now claim that 
any motion—no matter how complicated—is equivalent to one of these 
eight. To verify this claim, observe that the final position of the square 
is completely determined by the location and orientation (that is, face 
up or face down) of any particular corner. But, clearly, there are only 
four locations and two orientations for a given corner, so there are 
 exactly eight distinct final positions for the corner.
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R0R0   = Rotation of 0° (no change in position)
P W

BG

P W

BG

R90
R90  = Rotation of 90° (counterclockwise)

P W

BG

W B

GP

R180 = Rotation of 180°
P W

BG

B G

PW

R180

R270 = Rotation of 270°
P W

BG

G P

WB
R270

H     = Flip about a horizontal axis
P W

BG

G B

WP
H

V     = Flip about a vertical axis
P W

BG

W P

GB
V

D    = Flip about the main diagonal
P G

BW
D

P W

BG

D�   = Flip about the other diagonal
P W

BG

B W

PG
D�

Figure 1.1

Let’s investigate some consequences of the fact that every motion is 
equal to one of the eight listed in Figure 1.1. Suppose a square is repo-
sitioned by a rotation of 908 followed by a flip about the horizontal axis 
of symmetry.

P
HR90

G

BW

P W

BG

W B

GP

Thus, we see that this pair of motions—taken together—is equal to 
the single motion D. This observation suggests that we can compose 
two motions to obtain a single motion. And indeed we can, since the 
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eight motions may be viewed as functions from the square region to 
itself, and as such we can combine them using function composition.

With this in mind, we write H R90 5 D because in lower level math 
courses function composition f 8 g means “g followed by f.” The eight 
motions R0, R90, R180, R270, H, V, D, and D9, together with the operation 
composition, form a mathematical system called the dihedral group of 
order 8 (the  order of a group is the number of elements it contains). It is 
denoted by D4. Rather than introduce the formal definition of a group 
here, let’s look at some properties of groups by way of the example D4.

To facilitate future computations, we construct an operation table or 
Cayley table (so named in honor of the prolific English mathematician 
Arthur Cayley, who first introduced them in 1854) for D4 below. The 
circled entry represents the fact that D 5 HR90. (In general, ab denotes 
the entry at the intersection of the row with a at the left and the column 
with b at the top.)

 R0 R90 R180 R270 H V D D9

R0 R0 R90 R180 R270 H V D D9
R90 R90 R180 R270 R0 D9 D H V
R180 R180 R270 R0 R90 V H D9 D
R270 R270 R0 R90 R180 D D9 V H
H H D  V D9 R0 R180 R90 R270
V V D9 H D R180 R0 R270 R90
D D V D9 H R270 R90 R0 R180
D9 D9 H D V R90 R270 R180 R0

Notice how orderly this table looks! This is no accident. Perhaps the 
most important feature of this table is that it has been completely filled 
in without introducing any new motions. Of course, this is because, as 
we have already pointed out, any sequence of motions turns out to be 
the same as one of these eight. Algebraically, this says that if A and B 
are in D4, then so is AB. This property is called closure, and it is one of 
the requirements for a mathematical system to be a group. Next, notice 
that if A is any element of D4, then AR0 5 R0A 5 A. Thus, combining 
any element A on either side with R0 yields A back again. An element 
R0 with this property is called an identity, and every group must have 
one. Moreover, we see that for each element A in D4, there is exactly 
one element B in D4 such that AB 5 BA 5 R0. In this case, B is said to 
be the inverse of A and vice versa. For example, R90 and R270 are  
 inverses of each other, and H is its own inverse. The term inverse is a 
descriptive one, for if A and B are inverses of each other, then B “un-
does” whatever A “does,” in the sense that A and B taken together in ei-
ther  order produce R0, representing no change. Another striking feature 
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of the table is that every element of D4 appears exactly once in each 
row and column. This feature is something that all groups must have, 
and, indeed, it is quite useful to keep this fact in mind when construct-
ing the table in the first place.

Another property of D4 deserves special comment. Observe that 
HD Z DH but R90R180 5 R180R90. Thus, in a group, ab may or may not 
be the same as ba. If it happens that ab 5 ba for all choices of group 
elements a and b, we say the group is commutative or—better yet—
Abelian (in honor of the great Norwegian mathematician Niels Abel). 
Otherwise, we say the group is non-Abelian.

Thus far, we have illustrated, by way of D4, three of the four con-
ditions that define a group—namely, closure, existence of an identity, 
and existence of inverses. The remaining condition required for a group 
is associativity; that is, (ab)c 5 a(bc) for all a, b, c in the set. To be sure 
that D4 is indeed a group, we should check this equation for each of the 
83 5 512 possible choices of a, b, and c in D4. In practice, however, 
this is rarely done! Here, for example, we simply observe that the eight 
motions are functions and the operation is function composition. Then, 
since function composition is associative, we do not have to check the 
equations.

The Dihedral Groups
The analysis carried out above for a square can similarly be done for  
an equilateral triangle or regular pentagon or, indeed, any regular n-gon 
(n $ 3). The corresponding group is denoted by Dn and is called the 
 dihedral group of order 2n.

The dihedral groups arise frequently in art and nature. Many of the 
decorative designs used on floor coverings, pottery, and buildings have 
one of the dihedral groups as a group of symmetry. Corporation logos 
are rich sources of dihedral symmetry [1]. Chrysler’s logo has D5 as a 
symmetry group, and that of Mercedes-Benz has D3. The ubiquitous 
five-pointed star has symmetry group D5. The phylum Echinodermata 
contains many sea animals (such as starfish, sea cucumbers, feather 
stars, and sand dollars) that exhibit patterns with D5 symmetry.

Chemists classify molecules according to their symmetry. Moreover, 
symmetry considerations are applied in orbital calculations, in determin-
ing energy levels of atoms and molecules, and in the study of molecular 
vibrations. The symmetry group of a pyramidal molecule such as ammo-
nia (NH3), depicted in Figure 1.2, is D3.
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N

H

H
H

Figure 1.2 A pyramidal molecule with symmetry group D3.

Mineralogists determine the internal structures of crystals (that is, 
rigid bodies in which the particles are arranged in three-dimensional 
repeating  patterns—table salt and table sugar are two examples) by 
studying two- dimensional x-ray projections of the atomic makeup  
of the crystals. The symmetry present in the projections reveals the 
 internal symmetry of the crystals themselves. Commonly occurring 
symmetry patterns are D4 and D6 (see Figure 1.3). Interestingly, it is 
mathematically impossible for a crystal to possess a Dn symmetry pat-
tern with n 5 5 or n . 6.

 
Figure 1.3 X-ray diffraction photos revealing D4 symmetry patterns in crystals.

The dihedral group of order 2n is often called the group of sym-
metries of a regular n-gon. A plane symmetry of a figure F in a 
plane is a function from the plane to itself that carries F onto F and 
preserves distances; that is, for any points p and q in the plane, the  
distance from the image of p to the image of q is the same as the 
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distance from p to q. (The term symmetry is from the Greek word 
symmetros, meaning “of like measure.”) The symmetry group of a 
plane figure is the set of all symmetries of the figure. Symmetries in 
three dimensions are defined analogously. Obviously, a rotation of a 
plane about a point in the plane is a symmetry of the plane, and a rota-
tion about a line in three dimensions is a symmetry in three-dimensional 
space. Similarly, any translation of a plane or of three-dimensional 
space is a symmetry. A reflection across a line L is that function that 
leaves every point of L fixed and takes any point q, not on L, to the point 
q9 so that L is the perpendicular bisector of the line segment joining 
q and q9 (see Figure 1.4). A reflection across a plane in three dimen-
sions is defined analogously. Notice that the restriction of a 1808 rota-
tion about a line L in three dimensions to a plane containing L is a 
 reflection across L in the plane. Thus, in the dihedral groups, the mo-
tions that we described as flips about axes of symmetry in three dimen-
sions (for example, H, V, D, D9) are reflections across lines in two 
 dimensions. Just as a reflection across a line is a plane symmetry that 
cannot be achieved by a physical motion of the plane in two dimen-
sions, a  reflection across a plane is a three-dimensional symmetry that 
cannot be achieved by a physical motion of three-dimensional space. A 
cup, for instance, has reflective symmetry across the plane bisecting 
the cup, but this symmetry cannot be duplicated with a physical mo-
tion in three dimensions.

 

q

q9

L   

Figure 1.4

Many objects and figures have rotational symmetry but not reflective 
symmetry. A symmetry group consisting of the rotational symmetries of 
08, 3608/n, 2(3608)/n, . . . , (n 2 1)3608/n, and no other symmetries, is 
called a cyclic rotation group of order n and is denoted by 7R360/n8. Cyclic 
rotation groups, along with dihedral groups, are favorites of artists, de-
signers, and nature. Figure 1.5 illustrates with corporate logos the cyclic 
rotation groups of orders 2, 3, 4, 5, 6, 8, 16, and 20.

A study of symmetry in greater depth is given in Chapters 27 and 28.
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Exercises

The only way to learn mathematics is to do mathematics.
paul r. halmos, A Hilbert Space Problem Book

  1. With pictures and words, describe each symmetry in D3 (the set of 
symmetries of an equilateral triangle).

  2. Write out a complete Cayley table for D3. Is D3 Abelian?
  3. In D4, find all elements X such that
 a. X3 5 V;
 b. X3 5 R90;
 c. X3 5 R0;
 d. X2 5 R0;
 e. X2 5 H.
  4. Describe in pictures or words the elements of D5 (symmetries of a 

regular pentagon).
  5. For n $ 3, describe the elements of Dn. (Hint: You will need to 

consider two cases—n even and n odd.) How many elements 
does Dn have?

  6. In Dn,  explain geometrically why a reflection followed by a reflec-
tion must be a rotation.

  7. In Dn,  explain geometrically why a rotation followed by a rotation 
must be a rotation.

  8. In Dn,  explain geometrically why a rotation and a reflection taken 
together in either order must be a reflection.

  9. Associate the number 1 with a rotation and the number 21 with a 
reflection. Describe an analogy between multiplying these two 
numbers and multiplying elements of Dn.

Figure 1.5 Logos with cyclic rotation symmetry groups.
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38 Groups

 10. If r1, r2, and r3 represent rotations from Dn and f1,  f2, and f3 represent 
reflections from Dn,  determine whether r1r2 f1r3 f2 f3r3 is a rotation 
or a reflection.

 11. Find elements A, B, and C in D4 such that AB 5 BC but A Z C. 
(Thus, “cross cancellation” is not valid.)

 12. Explain what the following diagram proves about the group Dn.

1 1

2

1

n

2

31

2

13

n2

n

n – 11

2n

F

FR360/ n

R360 /n

 13. Describe the symmetries of a nonsquare rectangle. Construct the 
corresponding Cayley table.

 14. Describe the symmetries of a parallelogram that is neither a rect-
angle nor a rhombus. Describe the symmetries of a rhombus that is 
not a rectangle.

 15. Describe the symmetries of a noncircular ellipse. Do the same for 
a hyperbola.

 16. Consider an infinitely long strip of equally spaced H’s:

? ? ? H H H H ? ? ?

  Describe the symmetries of this strip. Is the group of symmetries 
of the strip Abelian?

 17. For each of the snowflakes in the figure, find the symmetry group 
and locate the axes of reflective symmetry (disregard imperfections).

 Photographs of snowflakes from the Bentley and Humphreys atlas.
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1 | Introduction to Groups 39

 18. Determine the symmetry group of the outer shell of the cross sec-
tion of the human immunodeficiency virus (HIV) shown below.

 19. Does a fan blade have a cyclic symmetry group or a dihedral sym-
metry group?

 20. Bottle caps that are pried off typically have 22 ridges around the 
rim. Find the symmetry group of such a cap.

 21. What group theoretic property do uppercase letters F, G, J, L, P, Q, R 
have that is not shared by the remaining uppercase letters in the 
alphabet?

 22. What symmetry property does the word “zoonosis” have when 
written in uppercase letters? (It means a disease of humans acquired 
from animals.)

 23. What symmetry property do the words “mow,” “sis,” and “swims” 
have when written in uppercase letters?

 24. For each design below, determine the symmetry group (ignore 
 imperfections).
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Suggested Reading

Michael Field and Martin Golubitsky, Symmetry in Chaos, Oxford  
University Press, 1992.

This book has many beautiful symmetric designs that arise in  
chaotic dynamic systems.

Suggested Website

http://britton.disted.camosun.bc.ca/jbsymteslk.htm

This spectacular website on symmetry and tessellations has numerous  
activities and links to many other sites on related topics. It is a wonderful 
website for K–12 teachers and students.
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Niels Abel

He [Abel] has left mathematicians 
 something to keep them busy for five 
 hundred years.

charles hermite

Niels Henrik Abel, one of the foremost 
mathematicians of the 19th century, was 
born in Norway on August 5, 1802. At the 
age of 16, he began reading the classic math-
ematical works of Newton, Euler, Lagrange, 
and Gauss. When Abel was 18 years old, his 
father died, and the burden of supporting the 
family fell upon him. He took in private pu-
pils and did odd jobs, while continuing to do 
mathematical research. At the age of 19, 
Abel solved a problem that had vexed lead-
ing mathematicians for hundreds of years. 
He proved that, unlike the situation for equa-
tions of degree 4 or less, there is no finite 
(closed) formula for the solution of the gen-
eral fifth-degree equation.

Although Abel died long before the ad-
vent of the subjects that now make up ab-
stract algebra, his solution to the quintic 
problem laid the groundwork for many of 
these subjects. Just when his work was be-
ginning to receive the attention it deserved, 
Abel contracted tuberculosis. He died on 
April 6, 1829, at the age of 26. 

In recognition of the fact that there is no 
Nobel Prize for mathematics, in 2002 Norway 
established the Abel Prize as the “Nobel Prize 
in mathematics” in honor of its native son. At 
approximately the $1,000,000 level, the Abel 
Prize is now seen as an award equivalent to a 
Nobel Prize.

To find more information about Abel, visit:
http://www-groups.dcs.st-and  

.ac.uk/~history/

A 500-kroner bank note first issued 
by Norway in 1948.

This stamp was issued in 1929 
to commemorate the 100th 
anniversary of Abel’s death.
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Groups

A good stock of examples, as large as possible, is indispensable  
for a thorough understanding of any concept, and when I want  
to learn something new, I make it my first job to build one.

paul r. halmos

2

Definition and Examples of Groups
The term group was used by Galois around 1830 to describe sets of 
one-to-one functions on finite sets that could be grouped together to 
form a set closed under composition. As is the case with most funda-
mental concepts in mathematics, the modern definition of a group that 
follows is the result of a long evolutionary process. Although this defi-
nition was given by both Heinrich Weber and Walther von Dyck in 
1882, it did not gain universal acceptance until the 20th century.

Definition Binary Operation
Let G be a set. A binary operation on G is a function that assigns each 
ordered pair of elements of G an element of G.

A binary operation on a set G, then, is simply a method (or for-
mula) by which the members of an ordered pair from G combine to 
yield a new member of G. This condition is called closure. The most 
familiar binary operations are ordinary addition, subtraction, and 
multiplication of integers. Division of integers is not a binary opera-
tion on the integers because an integer divided by an integer need not 
be an integer.

The binary operations addition modulo n and multiplication mod-
ulo n on the set {0, 1, 2, . . . , n 2 1}, which we denote by Zn, play an 
extremely important role in abstract algebra. In certain situations we 
will want to combine the elements of Zn by addition modulo n only; 
in other situations we will want to use both addition modulo n  and 
multiplication modulo n to combine the elements. It will be clear 
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2 | Groups 43

from the context whether we are using addition only or addition and 
multiplication. For example, when multiplying matrices with entries 
from Zn, we will need both addition modulo n and multiplication 
modulo n.

Definition Group
Let G be a set together with a binary operation (usually called multipli-
cation) that assigns to each ordered pair (a, b) of elements of G an ele-
ment in G denoted by ab. We say G is a group under this operation if 
the following three properties are satisfied.

 1. Associativity. The operation is associative; that is, (ab)c 5 a(bc) for 
all a, b, c in G.

 2. Identity. There is an element e (called the identity) in G such that 
 ae 5 ea 5 a for all a in G.

 3. Inverses. For each element a in G, there is an element b in G 
(called an inverse of a) such that ab 5 ba 5 e.

In words, then, a group is a set together with an associative opera-
tion such that there is an identity, every element has an inverse, and any 
pair of elements can be combined without going outside the set. Be 
sure to verify closure when testing for a group (see Example 5). Notice 
that if a is the inverse of b, then b is the inverse of a.

If a group has the property that ab 5 ba for every pair of elements a 
and b, we say the group is Abelian. A group is non-Abelian if there is 
some pair of elements a and b for which ab 2 ba. When encountering 
a particular group for the first time, one should determine whether or 
not it is Abelian.

Now that we have the formal definition of a group, our first job is 
to build a good stock of examples. These examples will be used 
throughout the text to illustrate the theorems. (The best way to grasp 
the meat of a theorem is to see what it says in specific cases.) As we 
progress, the reader is bound to have hunches and conjectures that 
can be tested against the stock of examples. To develop a better un-
derstanding of the following examples, the reader should supply the 
missing details.

 EXAMPLE 1 The set of integers Z (so denoted because the German 
word for numbers is Zahlen), the set of rational numbers Q (for quo-
tient), and the set of real numbers R are all groups under ordinary addi-
tion. In each case, the identity is 0 and the inverse of a is 2a. 
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44 Groups

 EXAMPLE 2 The set of integers under ordinary multiplication is not 
a group. Since the number 1 is the identity, property 3 fails. For exam-
ple, there is no integer b such that 5b 5 1. 

 EXAMPLE 3 The subset {1, 21, i, 2i} of the complex numbers  
is a group under complex multiplication. Note that 21 is its own inverse, 
whereas the inverse of i is 2i, and vice versa. 

 EXAMPLE 4 The set Q1 of positive rationals is a group under ordi-
nary multiplication. The inverse of any a is 1/a 5 a21. 

 EXAMPLE 5 The set S of positive irrational numbers together with 1 
under multiplication satisfies the three properties given in the defi nition 
of a group but is not a group. Indeed, 22 ? 22 5 2, so S is not closed 
under multiplication. 

 EXAMPLE 6 A rectangular array of the form ca b

c d
d  is called a 

2 3 2 matrix. The set of all 2 3 2 matrices with real entries is a group 
under componentwise addition. That is,

ca1 b1

c1 d1
d � ca2 b2

c2 d2
d � ca1 � a2

c1 � c2

b1 � b2

d1 � d2
d

The identity is c0 0

0 0
d , and the inverse of ca b

c d
d  is c�a �b

�c �d
d . 

 EXAMPLE 7 The set Zn 5 {0, 1, . . . , n 2 1} for n $ 1 is a group 
under addition modulo n. For any j . 0 in Zn, the inverse of j is n 2 j.  
This group is usually referred to as the group of integers modulo n. 

As we have seen, the real numbers, the 2 3 2 matrices with real en-
tries, and the integers modulo n are all groups under the appropriate 
addition. But what about multiplication? In each case, the existence of 
some elements that do not have inverses prevents the set from being a 
group under the usual multiplication. However, we can form a group in 
each case by simply throwing out the rascals. Examples 8, 9, and 11 
 illustrate this.

 EXAMPLE 8 The set R* of nonzero real numbers is a group under 
ordinary multiplication. The identity is 1. The inverse of a is 1/a. 
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2 | Groups 45

 EXAMPLE 9† The determinant of the 2 3 2 matrix ca b

c d
d  is the

number ad 2 bc. If A is a 2 3 2 matrix, det A denotes the determinant
of A. The set

GL(2, R) 5 e ca b

c d
d ` a, b, c, d [ R, ad � bc ? 0 f

of 2 3 2 matrices with real entries and nonzero determinants is a non-
Abelian group under the operation

ca1 b1

c1 d1
d ca2 b2

c2 d2
d � ca1a2 � b1c2

c1a2 � d1c2

a1b2 � b1d2

c1b2 � d1d2
d .

The first step in verifying that this set is a group is to show that the 
product of two matrices with nonzero determinants also has a nonzero 
determinant. This follows from the fact that for any pair of 2 3 2 
matrices A and B, det (AB) 5 (det A)(det B).

Associativity can be verified by direct (but cumbersome) calcula-

tions. The identity is c1 0

0 1
d ; the inverse of ca b

c d
d  is

≥ d

ad bc

b

ad bc

c

ad bc

a

ad bc

¥
(explaining the requirement that ad 2 bc 2 0). This very important 
non-Abelian group is called the general linear group of 2 3 2 matrices 
over R. 

 EXAMPLE 10 The set of all 2 3 2 matrices with real entries is not a 
group under the operation defined in Example 9. Inverses do not exist 
when the determinant is 0. 

Now that we have shown how to make subsets of the real numbers 
and subsets of the set of 2 3 2 matrices into multiplicative groups, we 
next consider the integers under multiplication modulo n.

†For simplicity, we have restricted our matrix examples to the 2 3 2 case. However, 
readers who have had linear algebra can readily generalize to n 3 n matrices.

99708_ch02_ptg01_hr_042-059.indd   45 05/06/12   6:16 PM

Copyright 2012 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights,
some third party content may be suppressed from the eBook and/or eChapter(s). Editorial review has deemed that any suppressed content does not materially
affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.



46 Groups

 EXAMPLE 11 (L. EULER, 1761) By Exercise 11 in Chapter 0, an 
 integer a has a multiplicative inverse modulo n if and only if a and n are 
relatively prime. So, for each n . 1, we define U(n) to be the set of all 
positive integers less than n and relatively prime to n. Then U(n) is a 
group under multiplication modulo n. (We leave it to the reader to check 
that this set is closed under this operation.)

For n 5 10, we have U(10) 5 {1, 3, 7, 9}. The Cayley table for 
U(10) is

mod 10 1 3 7 9

 1 1 3 7 9
 3 3 9 1 7
 7 7 1 9 3
 9 9 7 3 1

(Recall that ab mod n is the unique integer r with the property a ? b 5 
nq 1 r, where 0 # r , n and a ? b is ordinary multiplication.) In the 
case that n is a prime, U(n) 5 {1, 2, . . . , n 2 1}. 

In his classic book Lehrbuch der Algebra, published in 1895,  Heinrich 
Weber gave an extensive treatment of the groups U(n) and described 
them as the most important examples of finite Abelian groups.

 EXAMPLE 12 The set {0, 1, 2, 3} is not a group under multiplica-
tion modulo 4. Although 1 and 3 have inverses, the elements 0 and 2 
do not. 

 EXAMPLE 13 The set of integers under subtraction is not a group, 
since the operation is not associative. 

With the examples given thus far as a guide, it is wise for the reader 
to pause here and think of his or her own examples. Study actively! 
Don’t just read along and be spoon-fed by the book.

 EXAMPLE 14 The complex numbers C 1 {a 1 bi | a, b [ R,  
i2 5 21} are a group under the operation (a 1 bi) 1 (c 1 di) 5  
(a 1 c) 1 (b 1 d)i. The inverse of a 1 bi is 2a 2bi. The nonzero 
complex numbers C* are a group under the operation (a 1 bi)  

(c 1 di) 5 (ac 2 bd) 1 (ad 1 bc)i. The inverse of a 1 bi is 
1

a � bi
 5 

1

a � bi
  

a � bi

a � bi
 5 

1

a2 � b2 a 2 
1

a2 � b2 bi. 
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2 | Groups 47

 EXAMPLE 15 For all integers n $ 1, the set of complex nth roots 
of unitye cos 

k # 360�

n
 � i sin 

k # 360�

n
`  k � 0, 1, 2, . . . , n � 1 f

(i.e., complex zeros of xn 2 1) is a group under multiplication. (See 
DeMoivre’s Theorem—Example 10 in Chapter 0.) Compare this group 
with the one in Example 3. 

Recall from Chapter 0 that the complex number cos u 1 i sin u can 
be represented geometrically as the point (cos u, sin u) in a plane coor-
dinatized by a real horizontal axis and a vertical imaginary axis, where 
u is the angle formed by the line segment joining the origin and the 
point (cos u, sin u) and the positive real axis. Thus, the six complex  
zeros of x6 5 1 are located at points around the circle of radius 1, 60° 
apart, as shown in Fig ure 2.1.

2
1

2
1

2
3

60

–
2
1

2
3–– i i

2
1

2
3+

2
3

i2
1

2
3+– i

Imaginary

Real–1 1

√
√

√√

√

Figure 2.1

 EXAMPLE 16 The set Rn 5 {(a1, a2, . . . , an) U a1, a2, . . . , an [ R} 
is a group under componentwise addition [i.e., (a1, a2, . . . , an) 1 
(b1, b2, . . . , bn) 5 (a1 1 b1, a2 1 b2, . . . , an 1 bn)]. 

 EXAMPLE 17 For a fixed point (a, b) in R2, define Ta,b: R
2 → R2 

by (x, y) → (x 1 a, y 1 b). Then G 5 {Ta,b U a, b [ R} is a group 
under function composition. Straightforward calculations show that 
Ta,bTc,d 5 Ta1c,b1d. From this formula we may observe that G is closed, 
T0,0 is the identity, the inverse of Ta,b is T2a,2b, and G is Abelian. 
Function composition is always associative. The elements of G are 
called translations. 
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 EXAMPLE 18 The set of all 2 3 2 matrices with determinant 1 with en-
tries from Q (rationals), R (reals), C (complex numbers), or Zp (p a prime) 
is a non-Abelian group under matrix multiplication. This group is called  
the special linear group of 2 3 2 matrices over Q, R, C, or Zp, respectively.  
If the entries are from F, where F is any of the above, we denote this group 
by SL(2, F). For the group SL(2, F), the formula given in Example 9 for

the inverse of ca b

c d
d  simplifies to c d �b

�c a
d .

 
When the matrix 

entries are from Zp, we use modulo p arithmetic to compute determi-
nants, matrix products, and inverses. To illustrate the case SL(2, Z5), 

consider the element A 5 c3 4

4 4
d . Then det A 5 (3 ? 4 2 4 ? 4) mod 5 5 

24 mod 5 5 1, and the inverse of A is
 
c 4 �4

�4 3
d � c4 1

1 3
d . Note

that c3 4

4 4
d c4 1

1 3
d � c1 0

0 1
d  when the arithmetic is done modulo 5. 

Example 9 is a special case of the following general construction.

 EXAMPLE 19 Let F be any of Q, R, C, or Zp ( p a prime). The set 
GL(2, F) of all 2 3 2 matrices with nonzero determinants and entries 
from F is a non-Abelian group under matrix multiplication. As in 
 Example 18, when F is Zp, modulo p arithmetic is used to calculate 
 determinants, matrix products, and inverses. The formula given in 

Example 9 for the inverse of ca b

c d
d  remains valid for elements from

GL(2, Zp), provided we interpret division by ad 2 bc as multiplication 
by the inverse of (ad 2 bc) modulo p. For example, in GL(2, Z7),

consider c4 5

6 3
d.  Then the determinant (ad 2 bc) mod 7 is (12 2 30)

mod 7 5 218 mod 7 5 3 and the inverse of 3 is 5 [since (3 ? 5) 

mod 7 5 1]. So, the inverse of c4 5

6 3
d  is c3 ? 5 2 ? 5

1 ? 5 4 ? 5
d � c1 3

5 6
d . 

[The reader should check that c4 5

6 3
d  c1 3

5 6
d � c1 0

0 1
d  in GL(2, Z7)]. 

The group GL(n, F) is called the general linear group of n 3 n  
matrices over F.

 EXAMPLE 20 The set {1, 2, . . . , n 2 1} is a group under multipli-
cation modulo n if and only if n is prime. 

 EXAMPLE 21 The set of all symmetries of the infinite ornamental 
pat tern in which arrowheads are spaced uniformly a unit apart along  
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2 | Groups 49

a line is an Abelian group under composition. Let T denote a translation 
to the right by one unit, T 21 a translation to the left by one unit, and H  
a reflection across the horizontal line of the figure. Then, every member  
of the group is of the form x1x2 ? ? ? xn, where each xi [  
{T, T21, H}. In this case, we say that T, T21, and H generate the group. 

Table 2.1 summarizes many of the specific groups that we have 
 presented thus far.

As the previous examples demonstrate, the notion of a group is a 
very broad one indeed. The goal of the axiomatic approach is to find 
properties general enough to permit many diverse examples having 
these properties and specific enough to allow one to deduce many inter-
esting consequences.

The goal of abstract algebra is to discover truths about algebraic 
 systems (that is, sets with one or more binary operations) that are inde-
pendent of the specific nature of the operations. All one knows  
or needs to know is that these operations, whatever they may be, have

Table 2.1  Summary of Group Examples (F can be any of Q, R, C, or Zp; L is a reflection)

   Form of 
Group Operation Identity Element Inverse Abelian

Z Addition 0 k 2k Yes
Q1 Multiplication 1 m/n, n/m Yes
   m, n . 0
Zn Addition mod n 0 k n 2 k Yes
R* Multiplication 1 x 1/x Yes

C* Multiplication 1 a 1 bi 
1

a2 � b2 a �
1

a2 � b2 bi Yes

GL(2, F) Matrix   ≥ d

ad 2 bc

2b

ad 2 bc

2c

ad 2 bc

a

ad 2 bc

¥ No
   multiplication c 1 0

0 1
d  c a b

c d
d
,

   ad 2 bc 2 0
U(n) Multiplication 1 k, Solution to Yes
   mod n  gcd(k, n) 5 1 kx mod n 5 1
Rn Componentwise (0, 0, …, 0) (a1, a2, …, an) (2a1, 2a2, …, 2an) Yes
   addition
SL(2, F) Matrix c 1 0

0 1
d  c a b

c d
d
,

 c d

�c

�b

a
d  No

   multiplication

   ad 2 bc 5 1
Dn Composition R0 Ra, L R360 2 a, L No
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certain properties. We then seek to deduce consequences of these 
properties. This is why this branch of mathematics is called abstract 
algebra. It must be remembered, however, that when a specific group 
is being discussed, a specific operation must be given (at least   
im plicitly).

Elementary Properties of Groups
Now that we have seen many diverse examples of groups, we wish to 
deduce some properties that they share. The definition itself raises 
some fundamental questions. Every group has an identity. Could a 
group have more than one? Every group element has an inverse. Could 
an element have more than one? The examples suggest not. But exam-
ples can only suggest. One cannot prove that every group has a unique 
identity by looking at examples, because each example inherently has 
properties that may not be shared by all groups. We are forced to 
 restrict ourselves to the properties that all groups have; that is, we must 
view groups as abstract entities rather than argue by example. The next 
three theorems illustrate the abstract approach.

 Theorem 2.1 Uniqueness of the Identity

In a group G, there is only one identity element.

PROOF Suppose both e and e9 are identities of G. Then,

 1. ae 5 a for all a in G, and
 2. e9a 5 a for all a in G.

The choices of a 5 e9 in (part 1) and a 5 e in (part 2) yield e9e 5 e9 
and e9e 5 e. Thus, e and e9 are both equal to e9e and so are equal to 
each other. 

Because of this theorem, we may unambiguously speak of “the iden-
tity” of a group and denote it by ‘e’ (because the German word for 
identity is Einheit).

 Theorem 2.2 Cancellation

In a group G, the right and left cancellation laws hold; that is,  

ba 5 ca implies b 5 c, and ab 5 ac implies b 5 c.
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PROOF Suppose ba 5 ca. Let a9 be an inverse of a. Then multi- 
plying on the right by a9 yields (ba)a9 5 (ca)a9. Associativity yields  
b(aa9) 5 c(aa9). Then be 5 ce and, therefore, b 5 c as desired. Simi-
larly, one can prove that ab 5 ac implies b 5 c by multiplying by a9 on 
the left. 

A consequence of the cancellation property is the fact that in a 
 Cayley table for a group, each group element occurs exactly once in 
each row and column (see Exercise 31). Another consequence of the 
cancellation property is the uniqueness of inverses.

 Theorem 2.3 Uniqueness of Inverses

For each element a in a group G, there is a unique element b in G 

such that ab 5 ba 5 e.

PROOF Suppose b and c are both inverses of a. Then ab 5 e and  
ac 5 e, so that ab 5 ac. Canceling the a on both sides gives b 5 c, as 
desired. 

As was the case with the identity element, it is reasonable, in view 
of Theorem 2.3, to speak of “the inverse” of an element g of a group;  
in fact, we may unambiguously denote it by g21. This notation is sug-
gested by that used for ordinary real numbers under multiplication. 
Similarly, when n is a positive integer, the associative law allows us to 
use gn to denote the unambiguous product

gg ? ? ? g.

n factors

We define g0 5 e. When n is negative, we define gn 5 (g21)|n| [for ex-
ample, g23 5 (g21)3]. Unlike for real numbers, in an abstract group we 
do not permit noninteger exponents such as g1/2. With this notation, the 
familiar laws of exponents hold for groups; that is, for all integers m and 
n and any group element g, we have gmgn 5 gm1n and (gm)n 5 gmn. 
 Although the way one manipulates the group expressions gmgn and  
(gm)n coincides with the laws of exponents for real numbers, the laws 
of  exponents fail to hold for expressions involving two group elements. 
Thus, for groups in general, (ab)n Z anbn (see Exercise 23).

The important thing about the existence of a unique inverse for each 
group element a is that for every element b in the group there is a unique 
solution in the group of the equations ax 5 b and xa 5 b. Namely,  
x 5 a21b in the first case and x 5 ba21 in the second case. In contrast, 
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in the set {0, 1, 2, 3, 4, 5}, the equation 2x 5 4 has the solutions x 5 2 
and x 5 5 under the operation multiplication mod 6. However, this set 
is not a group under multiplication mod 6.

Also, one must be careful with this notation when dealing with a 
specific group whose binary operation is addition and is denoted by 
“1.” In this case, the definitions and group properties expressed in 
multiplicative notation must be translated to additive notation. For 
 example, the inverse of g is written as 2g. Likewise, for example, g3

Table 2.2

 Multiplicative Group Additive Group

a ? b or ab Multiplication a 1 b Addition
e or 1 Identity or one 0 Zero
a21 Multiplicative inverse of a 2a Additive inverse of a
an Power of a na Multiple of a
ab21 Quotient a 2 b Difference

means g 1 g 1 g and is usually written as 3g, whereas g23 means 
(2g) 1 (2g) 1 (2g) and is written as 23g. When additive notation  
is used, do not interpret “ng” as combining n and g under the group 
operation; n may not even be an element of the group! Table 2.2 shows 
the common notation and corresponding terminology for groups under 
multiplication and groups under addition. As is the case for real num-
bers, we use a 2 b as an abbreviation for a 1 (2b).

Because of the associative property, we may unambiguously write 
the expression abc, for this can be reasonably interpreted as only (ab)c 
or a(bc), which are equal. In fact, by using induction and repeated ap-
plication of the associative property, one can prove a general associa-
tive property that essentially means that parentheses can be inserted or 
deleted at will without affecting the value of a product involving any 
number of group elements. Thus,

a2(bcdb2) 5 a2b(cd )b2 5 (a2b)(cd )b2 5 a(abcdb)b,

and so on.
Although groups do not have the property that (ab)n 5 anbn, there is 

a simple relationship between (ab)21 and a21 and b21.

 Theorem 2.4 Socks–Shoes Property

For group elements a and b, (ab)21 5 b21a21.

PROOF Since (ab)(ab)21 5 e and (ab)(b21a21) 5 a(bb21)a21 5  
aea21 5 aa21 5 e, we have by Theorem 2.3 that (ab)21 5 b21a21. 
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Historical Note
We conclude this chapter with a bit of history concerning the non-
commutativity of matrix multiplication. In 1925, quantum theory was 
replete with annoying and puzzling ambiguities. It was Werner 
Heisenberg who recognized the cause. He observed that the product of 
the quantum-theoretical analogs of the classical Fourier series did not 
necessarily commute. For all his boldness, this shook Heisenberg. As 
he later recalled [2, p. 94]:

In my paper the fact that XY was not equal to YX was very disagreeable to me. I felt 
this was the only point of difficulty in the whole scheme, otherwise I would be per-
fectly happy. But this difficulty had worried me and I was not able to solve it.

Heisenberg asked his teacher, Max Born, if his ideas were worth pub-
lishing. Born was fascinated and deeply impressed by Heisenberg’s new 
approach. Born wrote [1, p. 217]:

After having sent off Heisenberg’s paper to the Zeitschrift für Physik for publica-
tion, I began to ponder over his symbolic multiplication, and was soon so involved 
in it that I thought about it for the whole day and could hardly sleep at night. For I 
felt there was something fundamental behind it, the consummation of our endeav-
ors of many years. And one morning, about the 10 July 1925, I suddenly saw light: 
Heisenberg’s symbolic multiplication was nothing but the matrix calculus, well-
known to me since my student days from Rosanes’ lectures in Breslau.

Born and his student, Pascual Jordan, reformulated Heisenberg’s ideas 
in terms of matrices, but it was Heisenberg who was credited with the 
formulation. In his autobiography, Born lamented [1, p. 219]:

Nowadays the textbooks speak without exception of Heisenberg’s matrices, Heisen-
berg’s commutation law, and Dirac’s field quantization.

In fact, Heisenberg knew at that time very little of matrices and had to study 
them.

Upon learning in 1933 that he was to receive the Nobel Prize  
with Dirac and Schrödinger for this work, Heisenberg wrote to Born 
[1, p. 220]:

If I have not written to you for such a long time, and have not thanked you for your 
congratulations, it was partly because of my rather bad conscience with respect to 
you. The fact that I am to receive the Nobel Prize alone, for work done in Göttingen 
in collaboration—you, Jordan, and I—this fact depresses me and I hardly know 
what to write to you. I am, of course, glad that our common efforts are now appreci-
ated, and I enjoy the recollection of the beautiful time of collaboration. I also be-
lieve that all good physicists know how great was your and Jordan’s contribution to 
the structure of quantum mechanics—and this remains unchanged by a wrong deci-
sion from outside. Yet I myself can do nothing but thank you again for all the fine 
collaboration, and feel a little ashamed.

The story has a happy ending, however, because Born received the 
Nobel Prize in 1954 for his fundamental work in quantum mechanics.

99708_ch02_ptg01_hr_042-059.indd   53 05/06/12   6:16 PM

Copyright 2012 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights,
some third party content may be suppressed from the eBook and/or eChapter(s). Editorial review has deemed that any suppressed content does not materially
affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.



54 Groups

Exercises

“For example” is not proof.
jewish proverb

  1. Which of the following binary operations are closed?
 a. subtraction of positive integers
 b. division of nonzero integers
 c. function composition of polynomials with real coefficients
 d. multiplication of 2 3 2 matrices with integer entries
  2. Which of the following binary operations are associative?
 a. multiplication mod n
 b. division of nonzero rationals
 c. function composition of polynomials with real coefficients
 d. multiplication of 2 3 2 matrices with integer entries
  3. Which of the following binary operations are commutative?
 a. substraction of integers
 b. division of nonzero real numbers
 c. function composition of polynomials with real coefficients
 d. multiplication of 2 3 2 matrices with real entries
  4. Which of the following sets are closed under the given operation?
 a. {0, 4, 8, 12} addition mod 16
 b. {0, 4, 8, 12} addition mod 15
 c. {1, 4, 7, 13} multiplication mod 15
 d. {1, 4, 5, 7} multiplication mod 9
  5. In each case, find the inverse of the element under the given  

operation.
 a. 13 in Z20
 b. 13 in U(14)
 c. n21 in U(n) (n . 2)
 d. 322i in C*, the group of nonzero complex numbers under mul-

tiplication
  6. In each case, perform the indicated operation.
 a. In C*, (7 1 5i)( 23 1 2i)

 b. In GL(2, Z13), det c7 4

1 5
d

 c. In GL (2, R), c6 3

8 2
d �1

 d. In GL(2, Z13), c6 3

8 2
d �1
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2 | Groups 55

  7. Give two reasons why the set of odd integers under addition is not 
a group.

  8. Referring to Example 13, verify the assertion that subtraction is not 
associative.

  9. Show that {1, 2, 3} under multiplication modulo 4 is not a group 
but that {1, 2, 3, 4} under multiplication modulo 5 is a group.

 10. Show that the group GL(2, R) of Example 9 is non-Abelian by ex-
hibiting a pair of matrices A and B in GL(2, R) such that AB 2 BA.

 11. Find the inverse of the element c2 6

3 5
d in GL(2, Z11).

 12. Give an example of group elements a and b with the property that 
a21ba 2 b.

 13. Translate each of the following multiplicative expressions into its 
additive counterpart. Assume that the operation is commutative.

 a. a2b3

 b. a22(b21c)2

 c. (ab2)23c2 5 e
 14. For group elements a, b, and c, express (ab)3 and (ab22 c)22 with-

out parentheses.
 15. Let G be a group and let H 5 {x21 | x [ G}. Show that G 5 H  

as sets.
 16. Show that the set {5, 15, 25, 35} is a group under multiplication 

modulo 40. What is the identity element of this group? Can you see 
any relationship between this group and U(8)?

 17. (From the GRE Practice Exam)* Let p and q be distinct primes. 
Suppose that H is a proper subset of the integers that is a group un-
der addition that contains exactly three elements of the set {p, p 1 q, 
pq, pq, qp}.  Determine which of the following are the three elements 
in H.
 a. pq, pq, qp

 b. p 1 q, pq, pq

 c. p, p 1 q, pq
 d. p, pq, qp

 e. p, pq, pq

 18. List the members of H 5 {x 2 | x [ D4} and K 5 {x  [ D4 | x
2 5 e}.

 19. Prove that the set of all 2 3 2 matrices with entries from R and 
determinant 11 is a group under matrix multiplication.

 20. For any integer n . 2, show that there are at least two elements in 
U(n) that satisfy x2 5 1.

 21. An abstract algebra teacher intended to give a typist a list of nine in-
tegers that form a group under multiplication modulo 91. Instead, 

*GRE materials selected from the GRE Practice Exam, Question 9 by Educational Testing 
Service. Reprinted by permission of Educational Testing Service, the copyright owner.
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one of the nine integers was inadvertently left out, so that the list 
appeared as 1, 9, 16, 22, 53, 74, 79, 81. Which integer was left out? 
(This really happened!)

 22. Let G be a group with the property that for any x, y, z in the group, 
xy 5 zx implies y 5 z. Prove that G is Abelian. (“Left-right cancel-
lation” implies commutativity.)

 23. (Law of Exponents for Abelian Groups) Let a and b be elements of 
an Abelian group and let n be any integer. Show that (ab)n 5 anbn. 
Is this also true for non-Abelian groups?

 24. (Socks–Shoes Property) Draw an analogy between the statement 
(ab)21 5 b21 a21 and the act of putting on and taking off your socks 
and shoes. Find distinct nonidentity elements a and b from a  
non-Abelian group such that (ab)21 5 a21 b21. Find an example 
that shows that in a group, it is possible to have (ab)22 Z b22 a22. 
What would be an appropriate name for the group property  
(abc)21 5 c21 b21 a21?

 25. Prove that a group G is Abelian if and only if (ab)21 5 a21b21 for 
all a and b in G.

 26. Prove that in a group, (a21)21 5 a for all a.

 27. For any elements a and b from a group and any integer n, prove 
that (a21ba)n 5 a21bna.

 28. If a1, a2, . . . , an belong to a group, what is the inverse of a1a2 . . . an?

 29. The integers 5 and 15 are among a collection of 12 integers that 
form a group under multiplication modulo 56. List all 12.

 30. Give an example of a group with 105 elements. Give two examples 
of groups with 44 elements.

 31. Prove that every group table is a Latin square†; that is, each ele-
ment of the group appears exactly once in each row and each  
column.

 32. Construct a Cayley table for U(12).

 33. Suppose the table below is a group table. Fill in the blank entries.

†Latin squares are useful in designing statistical experiments. There is also a close con-
nection between Latin squares and finite geometries.

  e a b c d

 e e — — — —
 a — b — — e
 b — c d e —
 c — d — a b

 d — — — — —
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2 | Groups 57

 34. Prove that in a group, (ab)2 5 a2b2 if and only if ab 5 ba.
 35. Let a, b, and c be elements of a group. Solve the equation axb 5 c 

for x. Solve a21xa 5 c for x.
 36. Let a and b belong to a group G. Find an x in G such that xabx21 5 ba.
 37. Let G be a finite group. Show that the number of elements x of G 

such that x3 5 e is odd. Show that the number of elements x of G 
such that x2 2 e is even.

 38. Give an example of a group with elements a, b, c, d, and x such 
that axb 5 cxd but ab 2 cd. (Hence “middle cancellation” is not 
valid in groups.)

 39. Suppose that G is a group with the property that for every choice 
of elements in G, axb 5 cxd implies ab 5 cd. Prove that G is  
Abelian. (“Middle cancellation” implies commutativity.)

 40. Find an element X in D4 such that R90VXH 5 D9.
 41. Suppose F1 and F2 are distinct reflections in a dihedral group Dn. 

Prove that F1F2 2 R0.
 42. Suppose F1 and F2 are distinct reflections in a dihedral group Dn 

such that F1F2 5 F2F1. Prove that F1F2 5 R180.
 43. Let R be any fixed rotation and F any fixed reflection in a dihedral 

group. Prove that RkFRk 5 F.
 44. Let R be any fixed rotation and F any fixed reflection in a dihedral 

group. Prove that FRkF 5 R2k. Why does this imply that Dn is  
non-Abelian?

 45. In the dihedral group Dn, let R 5 R360/n and let F be any reflection. 
Write each of the following products in the form Ri or RiF, where  
0 # i , n.

  a. In D4, FR22FR5

  b. In D5, R
23FR4FR22

  c. In D6, FR5FR22F
 46. Prove that the set of all rational numbers of the form 3m6n, where m 

and n are integers, is a group under multiplication.
 47. Prove that if G is a group with the property that the square of every 

element is the identity, then G is Abelian. (This exercise is referred 
to in Chapter 26.)

 48. Prove that the set of all 3 3 3 matrices with real entries of the form

£ 1 a b

0 1 c

0 0 1

§
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  is a group. (Multiplication is defined by

£1 a b

0 1 c

0 0 1

§  £1 a� b�

0 1 c�

0 0 1

§ � £1 a � a� b� � ac� � b

0 1 c� � c

0 0 1

§ .
 

 This group, sometimes called the Heisenberg group after the  Nobel 
Prize–winning physicist Werner Heisenberg, is intimately related to 
the Heisenberg Uncertainty Principle of quantum physics.)

 49. Prove the assertion made in Example 20 that the set {1, 2, . . . ,  
n 2 1} is a group under multiplication modulo n if and only if n is 
prime.

 50. In a finite group, show that the number of nonidentity elements 
that satisfy the equation x5 5 e is a multiple of 5. If the stipulation 
that the group be finite is omitted, what can you say about the 
number of nonidentity elements that satisfy the equation x5 5 e?

 51. List the six elements of GL(2, Z2). Show that this group is non-
Abelian by finding two elements that do not commute. (This exer-
cise is referred to in Chapter 7.)

 52. Let G � e ca a

a a
d �a [ R, a Z 0 f . Show that G is a group under

  matrix multiplication. Explain why each element of G has an inverse 
even though the matrices have 0 determinants. (Compare with  
Example 10.)

 53. Suppose that in the definition of a group G, the condition that there 
exists an element e with the property ae 5 ea 5 a for all a in G is 
replaced by ae 5 a for all a in G. Show that ea 5 a for all a in G. 
(Thus, a one-sided identity is a two-sided identity.)

 54. Suppose that in the definition of a group G, the condition that for 
each element a in G there exists an element b in G with the prop-
erty ab 5 ba 5 e is replaced by the condition ab 5 e. Show that  
ba 5 e. (Thus, a one-sided inverse is a two-sided inverse.)

Computer Exercises

Software for the computer exercises in this chapter is available 
at the website:

http://www.d.umn.edu/~jgallian
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3 Finite Groups; 
Subgroups

In our own time, in the period 1960–1980, we have seen particle physics 
emerge as the playground of group theory.

FREEMAN DYSON

Terminology and Notation
As we will soon discover, finite groups—that is, groups with finitely 
many elements—have interesting arithmetic properties. To facilitate 
the study of finite groups, it is convenient to introduce some terminol-
ogy and notation.

Definition Order of a Group
The number of elements of a group (finite or infinite) is called its  
order. We will use |G| to denote the order of G.

Thus, the group Z of integers under addition has infinite order, 
whereas the group U(10) 5 {1, 3, 7, 9} under multiplication modulo 
10 has order 4.

Definition Order of an Element
The order of an element g in a group G is the smallest positive integer 
n such that gn 5 e. (In additive notation, this would be ng 5 0.) If no 
such integer exists, we say that g has infinite order. The order of an 
 element g is denoted by |g|.

So, to find the order of a group element g, you need only compute the 
sequence of products g, g2, g3, . . . , until you reach the identity for the 
first time. The exponent of this product (or coefficient if the operation is 
addition) is the order of g. If the identity never appears in the sequence, 
then g has infinite order.

 EXAMPLE 1 Consider U(15) 5 {1, 2, 4, 7, 8, 11, 13, 14} under 
multiplication modulo 15. This group has order 8. To find the order of 

99708_ch03_ptg01_hr_060-076.indd   60 03/05/12   2:09 PM

Copyright 2012 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights,
some third party content may be suppressed from the eBook and/or eChapter(s). Editorial review has deemed that any suppressed content does not materially
affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.
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the element 7, say, we compute the sequence 71 5 7, 72 5 4, 73 5 13, 
74 5 1, so |7| 5 4. To find the order of 11, we compute 111 5 11,  
112 5 1, so |11| 5 2. Similar computations show that |1| 5 1, |2| 5 4, 
|4| 5 2, |8| 5 4, |13| 5 4, |14| 5 2. [Here is a trick that makes these 
calculations easier. Rather than compute the sequence 131, 132, 133, 
134, we may observe that 13 5 22 mod 15, so that 132 5 (22)2 5 4, 
133 5 22 ? 4 5 28, 134 5 (22)(28) 5 1.]†     

 EXAMPLE 2 Consider Z10 under addition modulo 10. Since 1 ? 2 5 2, 
2 ? 2 5 4, 3 ? 2 5 6, 4 ? 2 5 8, 5 ? 2 5 0, we know that |2| 5 5. Similar 
computations show that |0| 5 1, |7| 5 10, |5| 5 2, |6| 5 5. (Here 2 ? 2 is 
an abbreviation for 2 1 2, 3 ? 2 is an abbreviation for 2 1 2 1 2, etc.) 

 EXAMPLE 3 Consider Z under ordinary addition. Here every nonzero 
element has infinite order, since the sequence a, 2a, 3a, . . . never includes 
0 when a � 0. 

The perceptive reader may have noticed among our examples of 
groups in Chapter 2 that some are subsets of others with the same 
 binary operation. The group SL(2, R) in Example 18, for instance, is a 
subset of the group GL(2, R) in Example 9. Similarly, the group of 
complex numbers {1, 21, i, 2i} under multiplication is a subset of the 
group described in Example 15 for n equal to any multiple of 4. This 
situation arises so often that we introduce a special term to describe it.

Definition Subgroup
If a subset H of a group G is itself a group under the operation of G, we 
say that H is a subgroup of G.

We use the notation H # G to mean that H is a subgroup of G. If we 
want to indicate that H is a subgroup of G but is not equal to G itself, 
we write H , G. Such a subgroup is called a proper subgroup. The 
subgroup {e} is called the trivial subgroup of G; a subgroup that is not 
{e} is called a nontrivial subgroup of G.

Notice that Zn under addition modulo n is not a subgroup of Z under 
addition, since addition modulo n is not the operation of Z.

Subgroup Tests
When determining whether or not a subset H of a group G is a sub-
group of G, one need not directly verify the group axioms. The next 

† The website http://www.google.com provides a convenient way to do modular arith-
metic. For example, to compute 134 mod 15, just type “13ˆ4 mod 15” in the search box.
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three results provide simple tests that suffice to show that a subset of a 
group is a subgroup.

 Theorem 3.1 One-Step Subgroup Test

Let G be a group and H a nonempty subset of G. If ab21 is in H 

whenever a and b are in H, then H is a subgroup of G. (In additive 

notation, if a 2 b is in H whenever a and b are in H, then H is a 

subgroup of G.)

PROOF Since the operation of H is the same as that of G, it is clear 
that this operation is associative. Next, we show that e is in H. Since H 
is nonempty, we may pick some x in H. Then, letting a 5 x and b 5 x 
in the hypothesis, we have e 5 xx21 5 ab21 is in H. To verify that x21 
is in H whenever x is in H, all we need to do is to choose a 5 e and  
b 5 x in the statement of the theorem. Finally, the proof will be com-
plete when we show that H is closed; that is, if x, y belong to H, we 
must show that xy is in H also. Well, we have already shown that y21 is 
in H whenever y is; so, letting a 5 x and b 5 y21, we have xy 5 x(y21)21 5 
ab21 is in H.     

Although we have dubbed Theorem 3.1 the One-Step Sub group Test, 
there are actually four steps involved in applying the theorem. (After 
you gain some experience, the first three steps will be routine.) Notice 
the similarity between the last three steps listed  below and the three 
steps involved in the Second Principle of Mathematical Induction.

 1.  Identify the property P that distinguishes the elements of H; that is, 
identify a defining condition.

 2.  Prove that the identity has property P. (This verifies that H is 
 nonempty.)

 3.  Assume that two elements a and b have property P.
 4.  Use the assumption that a and b have property P to show that 

ab21 has pro perty P.

The procedure is illustrated in Examples 4 and 5.

 EXAMPLE 4 Let G be an Abelian group with identity e. Then H 5  
{x [ G | x2 5 e} is a subgroup of G. Here, the defining property of H 
is the condition x2 5 e. So, we first note that e2 5 e, so that H is non-
empty. Now we assume that a and b belong to H. This means that a2 5 e 
and b2 5 e. Finally, we must show that (ab21)2 5 e. Since G is  
Abelian, (ab21)2 5 ab21ab21 5 a2(b21)2 5 a2(b2)21 5 ee21 5 e. 
Therefore, ab21 belongs to H and, by the One-Step Subgroup Test, H 
is a subgroup of G.     
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3 | Finite Groups; Subgroups 63

In many instances, a subgroup will consist of all elements that have 
a particular form. Then the property P is that the elements have that 
particular form. This is illustrated in the following example.

 EXAMPLE 5 Let G be an Abelian group under multiplication with 
identity e. Then H 5 {x2 | x [ G} is a subgroup of G. (In words, H is 
the set of all “squares.”) Since e2 5 e, the identity has the correct form. 
Next, we write two elements of H in the correct form, say, a2 and b2. We 
must show that a2(b2)21 also has the correct form; that is, a2(b2)21 is the 
square of some element. Since G is Abelian, we may write a2(b2)21 as 
(ab21)2, which is the correct form. Thus, H is a subgroup of G.     

Beginning students often prefer to use the next theorem instead of 
Theorem 3.1.

 Theorem 3.2 Two-Step Subgroup Test

Let G be a group and let H be a nonempty subset of G. If ab is in H 

whenever a and b are in H (H is closed under the operation), and a21 

is in H whenever a is in H (H is closed under taking inverses), then H 

is a subgroup of G.

PROOF By Theorem 3.1, it suffices to show that a, b [ H implies  
ab21 [ H. So, we suppose that a, b [ H. Since H is closed under  
taking inverses, we also have b21 [ H. Thus, ab21 [ H by closure un-
der multiplication.     

When applying the Two-Step Subgroup Test, we proceed exactly as 
in the case of the One-Step Subgroup Test, except we use the assump-
tion that a and b have property P to prove that ab has property P and 
that a21 has property P.

 EXAMPLE 6 Let G be an Abelian group. Then H 5 {x [ G | |x| is 
finite} is a subgroup of G. Since e1 5 e, H Z u. To apply the Two-Step 
Subgroup Test we assume that a and b belong to H and prove that ab 
and a21 belong to H. Let |a| 5 m and |b| 5 n. Then, because G is 
Abelian, we have (ab)mn 5 (am)n(bn)m 5 enem 5 e. Thus, ab has finite 
order (this does not show that |ab| 5 mn). Moveover, (a21)m 5 (am)21 5 
e21 5 e shows that a21 has finite order. 

We next illustrate how to use the Two-Step Subgroup Test by intro-
ducing an important technique for creating new subgroups of Abelian 
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64 Groups

groups from existing ones. The method will be extended to some sub-
groups of non-Abelian groups in later chapters.

 EXAMPLE 7 Let G be an Abelian group and H and K be subgroups 
of G. Then HK 5 {hk | h [ H, k [ K} is a subgroup of G. First note 
that e 5 ee belongs to HK because e is in both H and K. Now suppose 
that a and b are in HK. Then by definition of H there are elements h1,  
h2 [ H and k1, k2 [ K such that a 5 h1k1 and b 5 h2k2. We must prove 
that ab [ HK and a21 [ HK. Observe that because G is Abelian and H 
and K are subgroups of G, we have ab 5 h1k1h2k2 5 (h1h2)(k1k2) [ HK. 
Likewise, a21 5 (h1k1)

21 5 k1
21h1

21 5 h1
21k1

21 [ HK. 

How do you prove that a subset of a group is not a subgroup? Here 
are three possible ways, any one of which guarantees that the subset is 
not a subgroup:

 1. Show that the identity is not in the set.
 2. Exhibit an element of the set whose inverse is not in the set.
 3. Exhibit two elements of the set whose product is not in the set.

 EXAMPLE 8 Let G be the group of nonzero real numbers under 
multiplication, H 5 {x [ G | x 5 1 or x is irrational} and K 5  
{x [ G | x $ 1}. Then H is not a subgroup of G, since 22 [ H  
but 22 ? 22 5 2 o H. Also, K is not a subgroup, since 2 [ K but  
221 o K.  

When dealing with finite groups, it is easier to use the following 
subgroup test.

 Theorem 3.3 Finite Subgroup Test

Let H be a nonempty finite subset of a group G. If H is closed under 

the operation of G, then H is a subgroup of G.

PROOF In view of Theorem 3.2, we need only prove that a21 [ H 
whenever a [ H. If a 5 e, then a21 5 a and we are done. If a ∞ e, 
consider the sequence a, a2, . . . . By closure, all of these elements  
belong to H. Since H is finite, not all of these elements are distinct. Say 
ai 5 aj and i . j. Then, ai2j 5 e; and since a ∞ e, i 2 j . 1. Thus, 
aai2j21 5 ai2j 5 e and, therefore, ai2j21 5 a21. But i 2 j 2 1 $ 1  
implies ai2j21 [ H and we are done.     
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3 | Finite Groups; Subgroups 65

Examples of Subgroups
The proofs of the next few theorems show how our subgroup tests 
work. We first introduce an important notation. For any element a from 
a group, we let kal denote the set {an | n [ Z}. In particular, observe 
that the exponents of a include all negative integers as well as 0 and the 
positive integers (a0 is defined to be the identity).

 Theorem 3.4 kal Is a Subgroup

Let G be a group, and let a be any element of G. Then, kal is a sub-

group of G.

PROOF Since a [ kal, kal is not empty. Let an, am [ kal. Then,  
an(am)21 5 an2m [ kal; so, by Theorem 3.1, kal is a subgroup of G. 

The subgroup kal is called the cyclic subgroup of G generated by a. In 
the case that G 5 kal, we say that G is cyclic and a is a generator of G. 
(A cyclic group may have many generators.) Notice that although the 
list . . . , a22, a21, a0, a1, a2, . . . has infinitely many entries, the set  
{an | n [ Z} might have only finitely many elements. Also note that, 
since aiaj 5 ai1j 5 aj1i 5 ajai, every cyclic group is Abelian.

 EXAMPLE 9 In U(10), k3l 5 {3, 9, 7, 1} 5 U(10), for 31 5 3,  
32 5 9, 33 5 7, 34 5 1, 35 5 34 ? 3 5 1 ? 3, 36 5 34 ? 32 5 9, . . . ; 321 5 7 
(since 3 ? 7 5 1), 322 5 9, 323 5 3, 324 5 1, 325 5 324 ? 321 5  
1 ? 7, 326 5 324 ? 322 5 1 ? 9 5 9, . . . .     

 EXAMPLE 10 In Z10, k2l 5 {2, 4, 6, 8, 0}. Remember, an means na 
when the operation is addition.     

 EXAMPLE 11 In Z, k21l 5 Z. Here each entry in the list . . . , 
22(21), 21(21), 0(21), 1(21), 2(21), . . . represents a distinct group 
element.     

 EXAMPLE 12 In Dn, the dihedral group of order 2n, let R denote a 
rotation of 360/n degrees. Then,

Rn 5 R360° 5 e,    Rn11 5 R,    Rn12 5 R2, . . . .

Similarly, R21 5 Rn21, R22 5 Rn22, . . . , so that kRl 5 {e, R, . . . , 
Rn21}. We see, then, that the powers of R “cycle back” periodically 
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66 Groups

with period n. Visually, raising R to successive positive powers is the 
same as moving counterclockwise around the following circle one 
node at a time, whereas raising R to successive negative powers is the 
same as moving around the circle clockwise one node at a time.

 

Rn 5 e

Rn11 5 R R21 5 Rn21 

R22 5 Rn22 Rn12 5 R2

 

In Chapter 4 we will show that |kal| 5 |a|; that is, the order of the 
subgroup generated by a is the order of a itself. (Actually, the definition 
of |a| was chosen to ensure the validity of this equation.)

For any element a of a group G, it is useful to think of kal as the 
smallest subgroup of G containing a. This notion can be extended to 
any collection S of elements from a group G by defining kSl as the  
subgroup of G with the property that kSl contains S and if H is any  
subgroup of G containing S, then H also contains kSl Thus, kSl is the 
smallest subgroup of G that contains S. The set kSl is called the sub-
group generated by S. We illustrate this concept in the next example. 
The verifications are left to the reader (Exercise 40).

 EXAMPLE 13 In Z20, k8,14l 5 {0, 2, 4,…, 18} 5 k2l; in Z, k8, 13l 5 
Z; in D4, kH, Vl 5 {H, H2, V, HV} 5 {R0, R180, H, V}; in D4, kR90, Vl 5 
{R90, R90

2, R90
3, R90

4, V, R90V, R90
2V, R90

3V} 5 D4; in C*, the group of 
nonzero complex numbers under multiplication, k1, il 5 {1, 21, i, –i} 5 
kil; in C, the group of complex numbers under addition, k1, il 5 {a 1 bi 
| a, b [ Z} (This group is called the “Gaussian integers”); in R, the 
group of real numbers under addition, k2, p, 22l 5 {2a 1 bp 1 c22 
| a, b, c [ Z}; in a group in which a, b, c, and d commute, ka, b, c, dl 5 
{aqbrcsdt | q, r, s, t [ Z}. 

We next consider one of the most important subgroups.

Definition Center of a Group
The center, Z(G ), of a group G is the subset of elements in G that  
commute with every element of G. In symbols,

Z(G) 5 {a [ G | ax 5 xa for all x in G}.

[The notation Z(G) comes from the fact that the German word for  
center is Zentrum. The term was coined by J. A. de Séguier in 1904.]
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3 | Finite Groups; Subgroups 67

 Theorem 3.5 Center Is a Subgroup

The center of a group G is a subgroup of G.

PROOF For variety, we shall use Theorem 3.2 to prove this result. 
Clearly, e [ Z(G), so Z(G) is nonempty. Now, suppose a, b [ Z(G). 
Then (ab)x 5 a(bx) 5 a(xb) 5 (ax)b 5 (xa)b 5 x(ab) for all x in G; 
and, therefore, ab [ Z(G).

Next, assume that a [ Z(G). Then we have ax 5 xa for all x in G. 
What we want is a21x 5 xa21 for all x in G. Informally, all we need do 
to obtain the second equation from the first one is simultaneously to 
bring the a’s across the equals sign:

ax 5 xa

becomes xa21 5 a21x. (Be careful here; groups need not be commuta-
tive. The a on the left comes across as a21 on the left, and the a on the 
right comes across as a21 on the right.) Formally, the desired equation 
can be obtained from the original one by multiplying it on the left and 
right by a21, like so:

a21(ax)a21 5 a21(xa)a21,
(a21a)xa21 5 a21x(aa21),

exa21 5 a21xe,
xa21 5 a21x.

This shows that a21 [ Z(G) whenever a is.     

For practice, let’s determine the centers of the dihedral groups.

 EXAMPLE 14 For n $ 3,

Z1Dn2 � e 5R0, R1806 when n is even,5 5R06 when n is odd.

To verify this, first observe that since every rotation in Dn is a power 
of R360/n, rotations commute with rotations. We now investigate when a 
rotation commutes with a reflection. Let R be any rotation in Dn and let  
F be any reflection in Dn. Observe that since RF is a reflection we have 
RF 5 (RF )21 5 F21 R21 5 FR21. Thus, it follows that R and F commute 
if and only if FR 5 RF  5 FR21. By cancellation, this holds if and only 
if R 5 R21. But R 5 R21 only when R 5 R0 or R 5 R180, and R180 is in 
Dn only when n is even. So, we have proved that Z(Dn) 5 {R0} when n 
is odd and Z(Dn) 5 {R0, R180} when n is even. 
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68 Groups

Although an element from a non-Abelian group does not necessarily 
commute with every element of the group, there are always some 
 elements with which it will commute. For example, every element a 
commutes with all powers of a. This observation prompts the next defi-
nition and theorem.

Definition Centralizer of a in G
Let a be a fixed element of a group G. The centralizer of a in G, C(a), is 
the set of all elements in G that commute with a. In symbols, C(a) 5 
{g [ G | ga 5 ag}.

 EXAMPLE 15 In D4, we have the following centralizers:

 C(R0) 5 D4 5 C(R180),
 C(R90) 5 {R0, R90, R180, R270} 5 C(R270),
 C(H) 5 {R0, H, R180, V} 5 C(V),
 C(D) 5 {R0, D, R180, D9} 5 C(D9).     

Notice that each of the centralizers in Example 15 is actually a sub-
group of D4. The next theorem shows that this was not a coincidence.

 Theorem 3.6 C(a) Is a Subgroup

For each a in a group G, the centralizer of a is a subgroup of G.

PROOF A proof similar to that of Theorem 3.5 is left to the reader to 
supply (Exercise 41).     

Notice that for every element a of a group G, Z(G) # C(a). Also, 
 observe that G is Abelian if and only if C(a) 5 G for all a in G.

Exercises

The purpose of proof is to understand, not to verify.
arnold ross

  1. For each group in the following list, find the order of the group 
and the order of each element in the group. What relation do you 
see between the orders of the elements of a group and the order of 
the group?

Z12,    U(10),    U(12),    U(20),    D4
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3 | Finite Groups; Subgroups 69

  2. Let Q be the group of rational numbers under addition and let Q* 
be the group of nonzero rational numbers under multiplication. 
In Q, list the elements in k1

2l. In Q*, list the elements in k1
2l.

  3. Let Q and Q* be as in Exercise 2. Find the order of each element in 
Q and in Q*.

  4. Prove that in any group, an element and its inverse have the same 
order.

  5. Without actually computing the orders, explain why the two ele-
ments in each of the following pairs of elements from Z30 must 
have the same order: {2, 28}, {8, 22}. Do the same for the follow-
ing pairs of elements from U(15): {2, 8}, {7, 13}.

  6. In the group Z12, find |a|, |b|, and |a 1 b| for each case.
 a. a 5 6, b 5 2
 b. a 5 3, b 5 8
 c. a 5 5, b 5 4

Do you see any relationship between |a|, |b|, and |a 1 b|?
  7. If a, b, and c are group elements and |a| 5 6, |b| 5 7, express 

(a4c22b4)21 without using negative exponents.
  8. What can you say about a subgroup of D3 that contains R240 and a 

reflection F? What can you say about a subgroup of D3 that con-
tains two reflections?

  9. What can you say about a subgroup of D4 that contains R270 and a 
reflection? What can you say about a subgroup of D4 that contains 
H and D? What can you say about a subgroup of D4 that contains H 
and V?

 10. How many subgroups of order 4 does D4 have?
 11. Determine all elements of finite order in R*, the group of nonzero 

real numbers under multiplication.
 12. If a and b are group elements and ab Z ba, prove that aba Z e.
 13. Suppose that H is a nonempty subset of a group G that is closed 

under the group operation and has the property that if a is not in H 
then a21 is not in H. Is H a subgroup?

 14. Let G be the group of polynomials under addition with coefficients 
from Z10. Find the orders of f (x) 5 7x2 1 5x 1 4, g(x) 5 4x2 1 8x  
1 6, and f (x) 1 g(x) 5 x2 1 3x. If h(x) 5 anx

n 1 an21xn21 1 …  
1 a0 belongs to G, determine |h(x)| given that gcd (a1, a2, …, an) 5 1; 
gcd(a1, a2, …, an) 5 2; gcd(a1, a2, …, an) 5 5; and gcd(a1, a2, …,  
an) 5 10.

 15. If a is an element of a group G and |a| 5 7, show that a is the cube 
of some element of G.
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70 Groups

 16. Suppose that H is a nonempty subset of a group G with the prop-
erty that if a and b belong to H then a21b21 belongs to H. Prove or 
disprove that this is enough to guarantee that H is a subgroup of G.

 17. Prove that if an Abelian group has more than three elements of 
order 2, then it has at least 7 elements of order 2. Find an example 
that shows this is not true for non-Abelian groups.

 18. Suppose that a is a group element and a6 5 e. What are the possi-
bilities for |a|? Provide reasons for your answer.

 19. If a is a group element and a has infinite order, prove that am ? an 
when m ? n.

 20. Let x belong to a group. If x2 2 e and x6 5 e, prove that x4 2 e and 
x5 ∞ e. What can we say about the order of x?

 21. Show that if a is an element of a group G, then |a| # |G|.
 22. Show that U(14) 5 k3l 5 k5l. [Hence, U(14) is cyclic.] Is  

U(14) 5 k11l?
 23. Show that U(20) 2 kkl for any k in U(20). [Hence, U(20) is not 

cyclic.]
 24. Suppose n is an even positive integer and H is a subgroup of Zn. 

Prove that either every member of H is even or exactly half of the 
members of H are even.

 25. Prove that for every subgroup of Dn, either every member of the 
subgroup is a rotation or exactly half of the members are rotations.

 26. Prove that a group with two elements of order 2 that commute must 
have a subgroup of order 4.

 27. For every even integer n, show that Dn has a subgroup of order 4.
 28. Suppose that H is a proper subgroup of Z under addition and H 

contains 18, 30, and 40. Determine H.
 29. Suppose that H is a proper subgroup of Z under addition and that H 

contains 12, 30, and 54. What are the possibilities for H?
 30. Prove that the dihedral group of order 6 does not have a subgroup 

of order 4.
 31. For each divisor k . 1 of n, let Uk(n) 5 {x [ U(n) | x mod k 5 1}. 

[For example, U3(21) 5 {1, 4, 10, 13, 16, 19} and U7(21) 5 {1, 8}.] 
List the elements of U4(20), U5(20), U5(30), and U10(30). Prove that 
Uk(n) is a subgroup of U(n). Let H 5 {x [ U(10) | x mod 3 5 1}. Is 
H a subgroup of U(10)? (This exercise is referred to in Chapter 8.)

 32. If H and K are subgroups of G, show that H > K is a subgroup of 
G. (Can you see that the same proof shows that the intersection 
of  any number of subgroups of G, finite or infinite, is again a 
 subgroup of G?)
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3 | Finite Groups; Subgroups 71

 33. Let G be a group. Show that Z(G) 5 >a[GC(a). [This means the 
 intersection of all subgroups of the form C(a).]

 34. Let G be a group, and let a [ G. Prove that C(a) 5 C(a21).
 35. For any group element a and any integer k, show that C(a) # C(ak). 

Use this fact to complete the following statement: “In a group, if x 
commutes with a, then . . . .” Is the converse true?

 36. Complete the partial Cayley group table given below.

 37. Suppose G is the group defined by the following Cayley table.

 1 2 3 4 5 6 7 8

1 1 2 3 4 5 6 7 8
2 2 1 4 3 6 5 8 7
3 3 4 2 1 7 8 6 5
4 4 3 1 2 8 7 5 6
5 5 6 8 7 1   
6 6 5 7 8  1  
7 7 8 5 6   1 
8 8 7 6 5    1

 1 2 3 4 5 6 7 8

1 1 2 3 4 5 6 7 8
2 2 1 8 7 6 5 4 3
3 3 4 5 6 7 8 1 2
4 4 3 2 1 8 7 6 5
5 5 6 7 8 1 2 3 4
6 6 5 4 3 2 1 8 7
7 7 8 1 2 3 4 5 6
8 8 7 6 5 4 3 2 1

 a. Find the centralizer of each member of G.
 b. Find Z(G).
 c.  Find the order of each element of G. How are these orders arith-

metically related to the order of the group?

 38. If a and b  are distinct group elements, prove that either a2 2 b2 or 
a3 2 b3.

 39. Let S be a subset of a group and let H be the intersection of all sub-
groups of G that contain S.

 a. Prove that kSl 5 H.
 b. If S is nonempty, prove that kSl 5 {s1

n1 s2
n2  … sm

nm | m $ 1, si [ S, 
ni [ Z}. (The si terms need not be distinct.)
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72 Groups

 40. In the group Z, find
 a. k8, 14l;
 b. k8, 13l;
 c. k6, 15l;
 d. km, nl;
 e. k12, 18, 45l.

In each part, find an integer k such that the subgroup is kkl.
 41. Prove Theorem 3.6.

 42. If H is a subgroup of G, then by the centralizer C(H) of H we mean 
the set {x [ G | xh 5 hx for all h [ H}. Prove that C(H) is a sub-
group of G.

 43. Must the centralizer of an element of a group be Abelian?

 44. Must the center of a group be Abelian?

 45. Let G be an Abelian group with identity e and let n be some fixed in-
teger. Prove that the set of all elements of G that satisfy the equation 
xn 5 e is a subgroup of G. Give an example of a group G in which the 
set of all elements of G that satisfy the equation x2 5 e does not form 
a subgroup of G. (This exercise is referred to in Chapter 11.)

 46. Suppose a belongs to a group and |a| 5 5. Prove that C(a) 5 C(a3). 
Find an element a from some group such that |a| 5 6 and C(a) ∞ 
C(a3).

 47. Let G be the set of all polynomials with coefficients from the set 
{0, 1, 2, 3}. We can make G a group under addition by adding the 
polynomials in the usual way, except that we use modulo 4 to com-
bine the coefficients. With this group operation, determine the or-
ders of the elements of G. Determine a necessary and sufficient 
condition for an element of G to have order 2.

 48. In each case, find elements a and b from a group such that |a| 5  
|b| 5 2.

 a. |ab| 5 3   b. |ab| 5 4   c. |ab| 5 5
  Can you see any relationship among |a|, |b|, and |ab|?
 49. Suppose a group contains elements a and b such that |a| 5 4,  

|b| 5 2, and a3b 5 ba. Find |ab|.
 50. Suppose a and b are group elements such that |a| 5 2, b ? e, and 

aba 5 b 2. Determine |b|.
 51. Let a be a group element of order n, and suppose that d is a posi-

tive divisor of n. Prove that |ad | 5 n/d.

 52. Consider the elements A � c0 �1

1     0
d and B � c 0 1

�1 �1
d from 

  SL(2, R). Find |A|, |B|, and |AB|. Does your answer surprise you?
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 53. Consider the element A � c1 1

0 1
d  in SL(2, R). What is the order of 

  A? If we view A � c1 1

0 1
d  as a member of SL(2, Zp) (p is a prime), 

  what is the order of A?
 54. For any positive integer n and any angle u, show that in the group 

SL(2, R), c cos u � sin u

sin u      cos u
d n � c cos nu � sin nu

sin nu      cos nu
d .

Use this formula to find the order ofc cos 60� � sin 60�

sin 60�      cos 60�
d  and c cos 22� � sin 22�

sin 22 �     cos 22�
d .

  (Geometrically, c cos u � sin u

sin u      cos u
d  represents a rotation of the plane 

  u degrees.)
 55. Let G be the symmetry group of a circle. Show that G has elements 

of every finite order as well as elements of infinite order.
 56. Let x belong to a group and |x| 5 6. Find |x2|, |x3|, |x4|, and |x5|. Let 

y belong to a group and |y| 5 9. Find |yi| for i 5 2, 3, . . . , 8. Do 
these examples suggest any relationship between the order of the 
power of an element and the order of the element?

 57. D4 has seven cyclic subgroups. List them. 
 58. U(15) has six cyclic subgroups. List them.
 59. Prove that a group of even order must have an element of order 2.
 60. Suppose G is a group that has exactly eight elements of order 3. 

How many subgroups of order 3 does G have?
 61. Let H be a subgroup of a finite group G. Suppose that g belongs to 

G and n is the smallest positive integer such that gn [ H. Prove that 
n divides |g|.

 62. Compute the orders of the following groups.
  a. U(3), U(4), U(12)
  b. U(5), U(7), U(35)
  c. U(4), U(5), U(20)
  d. U(3), U(5), U(15)
  On the basis of your answers, make a conjecture about the relation-

ship among |U(r)|, |U(s)|, and |U(rs)|.
 63. Let R* be the group of nonzero real numbers under multiplication 

and let H 5 {x [ R* | x2 is rational}. Prove that H is a subgroup of 
R*. Can the exponent 2 be replaced by any positive integer and still 
have H be a subgroup?
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 64. Compute |U(4)|, |U(10)|, and |U(40)|. Do these groups provide a 
counterexample to your answer to Exercise 62? If so, revise your 
conjecture.

 65. Find a cyclic subgroup of order 4 in U(40).
 66. Find a noncyclic subgroup of order 4 in U(40).

 67. Let G 5 e  ca b

c d
d ` a, b, c, d [ Z f  under addition. Let H 5

  e ca b

c d
d  [  G | a� b�c� d � 0f .  Prove that H is a subgroup of G.

  What if 0 is replaced by 1?
 68. Let H 5 {A [ GL(2, R) | det A is an integer power of 2}. Show that 

H is a subgroup of GL(2, R).
 69. Let H be a subgroup of R under addition. Let K 5 {2a | a [ H}. 

Prove that K is a subgroup of R* under multiplication.
 70. Let G be a group of functions from R to R*, where the operation 

of G is multiplication of functions. Let H 5 { f  [ G | f(2) 5 1}. 
Prove that H is a subgroup of G. Can 2 be replaced by any real 
number?

 71. Let G 5 GL(2, R) and H � e ca 0

0 b
d ` a and b are nonzero inte-

gers f
 
under the operation of matrix multiplication. Prove or

  disprove that H is a subgroup of GL(2, R).
 72. Let H 5 {a 1 bi | a, b [ R, ab $ 0}. Prove or disprove that H is a 

subgroup of C under addition.
 73. Let H 5 {a 1 bi | a, b [ R, a2 1 b2 5 1}. Prove or disprove that 

H is a subgroup of C* under multiplication. Describe the elements 
of H geometrically.

 74. Let G be a finite Abelian group and let a and b belong to G. Prove 
that the set Ka, bL 5 {aib j | i, j [ Z} is a subgroup of G. What can 
you say about |Ka, bL| in terms of |a| and |b|?

 75. Let H be a subgroup of a group G. Prove that the set HZ(G) 5  
{hz | h [ H, z [ Z(G)} is a subgroup of G. This exercise is referred 
to in this chapter.

 76. Let G be a group and H a subgroup. For any element g of G, define 
gH 5 {gh | h [ H}. If G is Abelian and g has order 2, show that the 
set K 5 H < gH is a subgroup of G. Is your proof valid if we drop 
the assumption that G is Abelian and let K = Z(G) < gZ(G)?

 77. Let a belong to a group and |a| 5 m. If n is relatively prime to m, 
show that a can be written as the nth power of some element in the 
group.
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3 | Finite Groups; Subgroups 75

 78. Let F be a reflection in the dihedral group Dn and R a rotation in 
Dn. Determine C(F) when n is odd. Determine C(F) when n is 
even. Determine C(R).

 79. Let G 5 GL(2, R).

 a. Find C a c1 1

1 0
d b.

 b. Find C a c0 1

1 0
d b.

 c. Find Z(G).
 80. Let G be a finite group with more than one element. Show that G 

has an element of prime order.

Computer Exercises

Computer exercises for this chapter are available at the website:

http://www.d.umn.edu/~jgallian

Suggested Readings

Ruth Berger, “Hidden Group Structure,” Mathematics Magazine 78 
(2005): 45–48.

In this note, the author investigates groups obtained from U(n) by mul-
tiplying each element by some k in U(n). Such groups have identities 
that are not obvious.

J. Gallian and M. Reid, “Abelian Forcing Sets,” American Mathematical 
Monthly 100 (1993): 580–582.

A set S is called Abelian forcing if the only groups that satisfy (ab)n 5 
anbn for all a and b in the group and all n in S are the Abelian ones. 
This paper characterizes the Abelian forcing sets. It can be downloaded 
at http://www.d.umn.edu/~jgallian/forcing.pdf

Gina Kolata, “Perfect Shuffles and Their Relation to Math,” Science 216 
(1982): 505–506.

This is a delightful nontechnical article that discusses how group the-
ory and computers were used to solve a difficult problem about shuf-
fling a deck of cards. Serious work on the problem was begun by an 
undergraduate student as part of a programming course.
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Suggested Software

Allen Hibbard and Kenneth Levasseur, Exploring Abstract Algebra with 
Mathematica, New York: Springer-Verlag, 1999.

This book, intended as a supplement for a course in abstract algebra,  
consists of 14 group labs, 13 ring labs, and documentation for the   
Abstract Algebra software on which the labs are based. The software uses 
the Mathematica language, and only a basic familiarity with the program 
is required. The software can be freely downloaded at http://www 
.central.edu/eaam/ and can be used independently of the book.
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4 Cyclic Groups

The notion of a “group,” viewed only 30 years ago as the epitome of 
sophistication, is today one of the mathematical concepts most widely  
used in physics, chemistry, biochemistry, and mathematics itself.

alexey sosinsky, 1991

Properties of Cyclic Groups
Recall from Chapter 3 that a group G is called cyclic if there is an ele-
ment a in G such that G 5 {an | n [ Z}. Such an element a is called a 
generator of G. In view of the notation introduced in the preceding 
chapter, we may indicate that G is a cyclic group generated by a by 
writing G 5 kal.

In this chapter, we examine cyclic groups in detail and determine 
their important characteristics. We begin with a few examples.

 EXAMPLE 1 The set of integers Z under ordinary addition is cyclic. 
Both 1 and 21 are generators. (Recall that, when the operation is addi-
tion, 1n is interpreted as

1 1 1 1 ? ? ?  1 1
 

n terms

when n is positive and as

 (21) 1 (21) 1 ? ? ?  1 (21)
 
 |n| terms

when n is negative.)   

 EXAMPLE 2 The set Zn 5 {0, 1, . . . , n 2 1} for n $ 1 is a   
cy  clic group under addition modulo n. Again, 1 and 21 5 n 2 1 are  
generators.     

99708_ch04_ptg01_hr_077-098.indd   77 06/06/12   9:23 AM

Copyright 2012 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights,
some third party content may be suppressed from the eBook and/or eChapter(s). Editorial review has deemed that any suppressed content does not materially
affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.



78 Groups

Unlike Z, which has only two generators, Zn may have many genera-
tors (depending on which n we are given).

 EXAMPLE 3 Z8 5 k1l 5 k3l 5 k5l 5 k7l. To verify, for instance, that 
Z8 5 k3l, we note that k3l 5 {3, 3 1 3, 3 1 3 1 3, . . .} is the set {3, 6, 
1, 4, 7, 2, 5, 0} 5 Z8. Thus, 3 is a gen erator of Z8. On the other hand, 2 
is not a generator, since k2l 5 {0, 2, 4, 6} 2 Z8.  

 EXAMPLE 4 (See Example 11 in Chapter 2.)
U(10) 5 {1, 3, 7, 9} 5 {30, 31, 33, 32} 5 k3l. Also, {1, 3, 7, 9} 5  
{70, 73, 71, 72} 5 k7l. So both 3 and 7 are generators for U(10). 

Quite often in mathematics, a “nonexample” is as helpful in under-
standing a concept as an example. With regard to cyclic groups, U(8) 
serves this purpose; that is, U(8) is not a cyclic group. How can we 
verify this? Well, note that U(8) 5 {1, 3, 5, 7}. But

k1l 5 {1},
k3l 5 {3, 1},
k5l 5 {5, 1},
k7l 5 {7, 1},

so U(8) 2 kal for any a in U(8).
With these examples under our belts, we are now ready to tackle  

cyclic groups in an abstract way and state their key properties.

 Theorem 4.1 Criterion for ai 5 a j

Let G be a group, and let a belong to G. If a has infinite order, then  

ai 5 aj if and only if i 5 j. If a has finite order, say, n, then kal 5  

{e, a, a2, . . . , an–1} and ai 5 aj if and only if n divides i – j.

PROOF If a has infinite order, there is no nonzero n such that an is the 
identity. Since ai 5 aj implies ai2j 5 e, we must have i 2 j 5 0, and the 
first statement of the theorem is proved.

Now assume that |a| 5 n. We will prove that kal 5 {e, a, . . . , an21}. 
Certainly, the elements e, a, . . . , an21 are in kal.

Now, suppose that ak is an arbitrary member of kal. By the division 
algorithm, there exist integers q and r such that

k 5 qn 1 r  with  0 # r , n.
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4 | Cyclic Groups 79

Then ak 5 aqn1r 5 aqnar 5 (an)qar 5 ear 5 ar, so that ak [ {e, a,  
a2, . . . , an21}. This proves that kal 5 {e, a, a2, . . . , an21}.

Next, we assume that ai 5 a j  and prove that n divides i 2 j. We 
 begin by observing that ai 5 aj implies ai2j 5 e. Again, by the division 
algorithm, there are integers q and r such that

i 2 j 5 qn 1 r    with    0 # r , n.

Then ai2j 5 aqn1r, and therefore e 5 ai2j 5 aqn1r 5 (an)qar 5 eqar 5 
ear 5 ar. Since n is the least positive integer such that an is the identity, 
we must have r 5 0, so that n divides i 2 j.

Conversely, if i 2 j 5 nq, then ai2j 5 anq 5 eq 5 e, so that  
ai 5 aj. 

Theorem 4.1 reveals the reason for the dual use of the notation and 
terminology for the order of an element and the order of a group.

 Corollary 1 |a| 5 |kal|

For any group element a, |a| 5 |kal|.

One special case of Theorem 4.1 occurs so often that it deserves 
 singling out.

 Corollary 2 ak 5 e Implies That |a| Divides k

Let G be a group and let a be an element of order n in G. If ak 5 e, 

then n divides k.

PROOF Since ak 5 e 5 a0, we know by Theorem 4.1 that n divides  
k 2 0. 

Theorem 4.1 and its corollaries for the case |a| 5 6 are illustrated in 
Figure 4.1.

What is important about Theorem 4.1 in the finite case is that it says 
that multiplication in kal is essentially done by addition modulo n. That 
is, if (i 1 j) mod n 5 k, then aia j 5 ak. Thus, no matter what group G 
is, or how the element a is chosen, multiplication in kal works the same 
as addition in Zn whenever |a| 5 n. Similarly, if a has infinite order,
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80 Groups

... a–6 = a0 = a6 ...

... a –5 = a = a7...

... a–4 = a 2 = a8 ...

... a–3 = a3 = a9...

... a–2 = a4 = a 10...

... a–1 = a 5 = a 11...

Figure 4.1

then multiplication in kal works the same as addition in Z, since aia j  
5 ai1j and no modular arithmetic is done.

For these reasons, the cyclic groups Zn and Z serve as prototypes for 
all cyclic groups, and algebraists say that there is essentially only one 
cyclic group of each order. What is meant by this is that, although 
there may be many different sets of the form {an | n [ Z}, there is 
 essentially only one way to operate on these sets. Algebraists do not 
really care what the elements of a set are; they care only about the 
 algebraic properties of the set—that is, the ways in which the elements 
of a set can be combined. We will return to this theme in the chapter 
on isomorphisms (Chapter 6).

The next theorem provides a simple method for computing |ak| 
knowing only |a|, and its first corollary provides a simple way to tell 
when kail 5 kajl.

 Theorem 4.2 kakl 5 kagcd(n,k)l and |ak| 5 n/gcd(n, k)

Let a be an element of order n in a group and let k be a positive 

integer. Then kakl 5 kagcd(n,k)l and |ak| 5 n/gcd(n, k).

PROOF To simplify the notation, let d 5 gcd(n, k) and let k 5 dr. 
Since ak 5 (ad)r, we have by closure that kakl # kadl. By Theorem 0.2 
(the gcd theorem), there are integers s and t such that d 5 ns 1 kt. So, 
ad 5 ans1kt 5 ansakt 5 (an)s(ak)t 5 e(ak)t 5 (ak)t [ kakl. This  
proves kadl # kakl. So, we have verified that kakl 5 kagcd(n,k)l.

We prove the second part of the theorem by showing first that |ad| 5  
n/d for any divisor d of n. Clearly, (ad)n/d 5 an 5 e, so that |ad| # n/d. On  
the other hand, if i is a positive integer less than n/d, then (ad)i 2 e by de-
finition of |a|. We now apply this fact with d 5 gcd(n, k) to obtain |ak| 5 
|kakl| 5 |kagcd(n,k)l| 5 |agcd(n,k)| 5 n/gcd(n, k).  

The advantage of Theorem 4.2 is that it allows us to replace one  
generator of a cyclic subgroup with a more convenient one. For example, 
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4 | Cyclic Groups 81

if |a| 5 30, we have ka26l 5 ka2l, ka23l 5 kal, ka22l 5 ka2l, ka21l 5 ka3l. 
From this we can easily see that |a23| 5 30 and |a22| 5 15. Moreover, if 
one wants to list the elements of, say, ka21l, it is easier to list the elements 
of ka3l instead. (Try it doing it both ways!).

Theorem 4.2 establishes an important relationship between the order 
of an element in a finite cyclic group and the order of the group.

 Corollary 1 Orders of Elements in Finite Cyclic Groups

In a finite cyclic group, the order of an element divides the order  

of the group.

 Corollary 2 Criterion for kail � kajl and |ai| � |aj|

Let |a| 5 n. Then kail 5 kajl if and only if gcd(n, i) 5 gcd(n, j),  

and |ai| 5 |aj| if and only if gcd(n, i) 5 gcd(n, j) .

PROOF Theorem 4.2 shows that kail 5 kagcd(n,i)l and ka jl 5 kagcd(n,j)l, 
so that the proof reduces to proving that kagcd(n,i)l 5 kagcd(n,j)l if and 
only if gcd(n, i) 5 gcd(n,  j). Certainly, gcd(n, i) 5 gcd(n, j) implies 
that kagcd(n,i)l 5 kagcd(n, j)l. On the other hand, kagcd(n,i)l 5 kagcd(n,j)l 
 implies that |agcd(n,i)| 5 |agcd(n,j)|, so that by the second conclusion of 
Theorem 4.2, we have n/gcd(n, i) 5 n/gcd(n, j), and therefore gcd(n, i) 5 
gcd(n, j). 

The second part of the corollary follows from the first part and 
Corollary 1 of Theorem 4.1.

The next two corollaries are important special cases of the preceding 
corollary.

 Corollary 3 Generators of Finite Cyclic Groups

Let |a| 5 n. Then kal 5 kajl  if and only if gcd(n, j) 5 1, and  

|a| 5 |kajl| if and only if gcd(n, j) 5 1.

 Corollary 4 Generators of Zn

An integer k in Z
n 

 is a generator of Z
n
 if and only if gcd(n, k) 5 1.

The value of Corollary 3 is that once one generator of a cyclic group has 
been found, all generators of the cyclic group can easily be determined. 
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82 Groups

For example, consider the subgroup of all rotations in D6. Clearly, one 
generator is R60. And, since |R60| 5 6, we see by Corollary 3 that the only 
other generator is (R60)

5 5 R300. Of course, we could have readily de-
duced this information without the aid of Corollary 3 by direct calcula-
tions. So, to illustrate the real power of Corollary 3, let us use it to find all 
generators of the cyclic group U(50). First, note that direct computations 
show that |U(50)| 5 20 and that 3 is one of its generators. Thus, in view of 
Corollary 3, the complete list of generators for U(50) is

 3 mod 50 5 3, 311 mod 50 5 47,
 33 mod 50 5 27, 313 mod 50 5 23,
 37 mod 50 5 37, 317 mod 50 5 13,
 39 mod 50 5 33, 319 mod 50 5 17.

Admittedly, we had to do some arithmetic here, but it certainly entailed 
much less work than finding all the generators by simply determining 
the order of each element of U(50) one by one.

The reader should keep in mind that Theorem 4.2 and its corollaries 
apply only to elements of finite order.

Classification of Subgroups 
of Cyclic Groups

The next theorem tells us how many subgroups a finite cyclic group has 
and how to find them.

 Theorem 4.3 Fundamental Theorem of Cyclic Groups

Every subgroup of a cyclic group is cyclic. Moreover, if |kal| 5 n, 

then the order of any subgroup of kal is a divisor of n; and, for each 

positive divisor k of n, the group kal has exactly one subgroup of 

order k—namely, kan/kl.

Before we prove this theorem, let’s see what it means. Understand- 
ing what a theorem means is a prerequisite to understanding its proof. 
Suppose G 5 kal and G has order 30. The first and second parts of the 
theorem say that if H is any subgroup of G, then H has the form ka30/kl for 
some k that is a divisor of 30. The third part of the theorem says that G 
has one subgroup of each of the orders 1, 2, 3, 5, 6, 10, 15, and 30—and 
no others. The proof will also show how to find these subgroups.

PROOF Let G 5 kal and suppose that H is a subgroup of G. We must 
show that H is cyclic. If it consists of the identity alone, then clearly H is 
cyclic. So we may assume that H 2 {e}. We now claim that H contains 
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4 | Cyclic Groups 83

an element of the form at, where t is positive. Since G 5 kal, every 
 element of H has the form at; and when at belongs to H with t , 0, then 
a2t belongs to H also and 2t is positive. Thus, our claim is verified. Now 
let m be the least positive integer such that am [ H. By closure, kaml # H. 
We next claim that H 5 kaml. To prove this claim, it suffices to let b be an 
arbitrary member of H and show that b is in kaml. Since b [ G 5 kal, we 
have b 5 ak for some k. Now, apply the division algorithm to k and m to 
obtain integers q and r such that k 5 mq 1 r where 0 # r , m. Then ak 5 
amq1r 5 amqar, so that ar 5 a2mqak. Since ak 5 b [ H and a2mq 5 
(am)2q is in H also, ar [ H. But, m is the least positive integer such that 
am [ H, and 0 # r , m, so r must be 0. Therefore, b 5 ak 5 amq 5  
(am)q [ kaml. This proves the assertion of the theorem that every sub-
group of a cyclic group is cyclic.

To prove the next portion of the theorem, suppose that |kal| 5 n and 
H is any subgroup of kal. We have already shown that H 5 kaml, where 
m is the least positive integer such that am [ H. Using e 5 b 5 an as in 
the preceding paragraph, we have n 5 mq.

Finally, let k be any positive divisor of n. We will show that kan/kl is 
the one and only subgroup of kal of order k. From Theorem 4.2, we see 
that kan/kl has order n/gcd(n, n/k) 5 n/(n/k) 5 k. Now let H be any 
 subgroup of kal of order k. We have already shown above that H 5 kaml, 
where m is a divisor of n. Then m 5 gcd(n, m) and k 5 |am| 5 |agcd(n,m)| 5 
n/gcd (n, m) 5 n/m. Thus, m 5 n/k and H 5 kan/kl. 

Returning for a moment to our discussion of the cyclic group kal, 
where a has order 30, we may conclude from Theorem 4.3 that the sub-
groups of kal are precisely those of the form kaml, where m is a divisor 
of 30. Moreover, if k is a divisor of 30, the subgroup of order k is  
ka30/kl. So the list of subgroups of kal is:

 kal 5 {e, a, a2, . . . , a29} order 30,
 ka2l 5 {e, a2, a4, . . . , a28} order 15,
 ka3l 5 {e, a3, a6, . . . , a27} order 10,

ka5l 5 {e, a5, a10, a15, a20, a25} order 6,
 ka6l 5 {e, a6, a12, a18, a24} order 5,
 ka10l 5 {e, a10, a20} order 3,
 ka15l 5 {e, a15} order 2,
 ka30l 5 {e} order 1.

In general, if kal has order n and k divides n, then kan/kl is the unique 
subgroup of order k.

Taking the group in Theorem 4.3 to be Zn and a to be 1, we obtain 
the following important special case.
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84 Groups

 Corollary Subgroups of Zn

For each positive divisor k of n, the set kn/kl is the unique subgroup 

of Z
n
 of order k; moreover, these are the only subgroups of Z

n
.

 EXAMPLE 5 The list of subgroups of Z30 is

 k1l 5 {0, 1, 2, . . . , 29} order 30,
 k2l 5 {0, 2, 4, . . . , 28} order 15,
 k3l 5 {0, 3, 6, . . . , 27} order 10,
 k5l 5 {0, 5, 10, 15, 20, 25} order 6,
 k6l 5 {0, 6, 12, 18, 24} order 5,
k10l 5 {0, 10, 20} order 3,
k15l 5 {0, 15} order 2,
k30l 5 {0} order 1.     

Theorems 4.2 and 4.3 provide a simple way to find all the generators 
of the subgroups of a finite cyclic group.

 EXAMPLE 6 To find the generators of the subgroup of order 9 in 
Z36, we observe that 36/9 5 4 is one generator. To find the others, we 
have from Corollary 3 of Theorem 4.2 that they are all elements of Z36 
of the form 4j, where gcd(9, j) 5 1. Thus,

k4 ? 1l 5 k4 ? 2l 5 k4 ? 4l 5 k4 ? 5l 5 k4 ? 7l 5 k4 ? 8l.

In the generic case, to find all the subgroups of kal of order 9 where  
|a| 5 36, we have 

k(a4)1l 5 k(a4)2l 5 k(a4)4l 5 k(a4)5l 5 k(a4)7l 5 k(a4)8l.

In particular, note that once you have the generator an/d for the subgroup 
of order d where d is a divisor of |a| 5 n, all the generators of kadl have 
the form (ad) j where j [ U(d). 

By combining Theorems 4.2 and 4.3, we can easily count the num-
ber of elements of each order in a finite cyclic group. For convenience, 
we introduce an important number-theoretic function called the Euler 
phi function. Let f(1) 5 1, and for any integer n . 1, let f(n) denote 
the number of positive integers less than n and relatively prime to n. 
Notice that by definition of the group U(n), |U(n)| 5 f(n). The first 12 
values of f(n) are given in Table 4.1.

Table 4.1 Values of f(n)

n 1 2 3 4 5 6 7 8 9 10 11 12

f(n) 1 1 2 2 4 2 6 4 6 4 10 4
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4 | Cyclic Groups 85

 Theorem 4.4 Number of Elements of Each Order in a Cyclic Group

If d is a positive divisor of n, the number of elements of order d in  

a cyclic group of order n is f(d).

PROOF By Theorem 4.3, the group has exactly one subgroup of  
order d—call it kal. Then every element of order d also generates the 
subgroup kal and, by Corollary 3 of Theorem 4.2, an element ak gener-
ates kal if and only if gcd(k, d ) 5 1. The number of such elements is 
precisely f(d). 

Notice that for a finite cyclic group of order n, the number of  elements 
of order d for any divisor d of n depends only on d. Thus, Z8, Z640, and 
Z80000 each have f(8) 5 4 elements of order 8.

Although there is no formula for the number of elements of each 
 order for arbitrary finite groups, we still can say something important 
in this regard.

 Corollary Number of Elements of Order d in a Finite Group

In a finite group, the number of elements of order d is a multiple  

of f(d).

PROOF If a finite group has no elements of order d, the statement is 
true, since f(d) divides 0. Now suppose that a [ G and |a| 5 d. By 
Theorem 4.4, we know that kal has f(d) elements of order d. If all 
 elements of order d in G are in kal, we are done. So, suppose that there 
is an element b in G of order d that is not in kal. Then, kbl also has f(d) 
 elements of order d. This means that we have found 2f(d) elements of 
order d in G provided that kal and kbl have no elements of order d in 
common. If there is an element c of order d that belongs to both kal and 
kbl, then we have kal 5 kcl 5 kbl, so that b [ kal, which is a contradic-
tion. Continuing in this fashion, we see that the number of elements of 
order d in a finite group is a multiple of f(d).  

On its face, the value of Theorem 4.4 and its corollary seem limited  
for large values of n, because it is tedious to determine the number of 
 positive integers less than or equal to n and relatively prime to n  
by  examining them one by one. However, the following properties of the 
f function make computing f (n) simple: For any prime p, f (pn) 5 
pn � pn�1

 (see Exercise 85) and for relatively prime m and n, f(mn)  
5 f (m) f (n). Thus, f (40) 5 f (8) f (5) 5 4 ? 4 5 16; f (75) 5  
f (52)f (3) 5 (25 2 5) ? 2 5 40.
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86 Groups

The relationships among the various subgroups of a group can be 
 illustrated with a subgroup lattice of the group. This is a diagram that in-
cludes all the subgroups of the group and connects a subgroup H at one 
level to a subgroup K at a higher level with a sequence of line segments 
if and only if H is a proper subgroup of K. Although there are many 
ways to draw such a diagram, the connections between the  subgroups 
must be the same. Typically, one attempts to present the diagram in an 
eye-pleasing fashion. The lattice diagram for Z30 is shown in Figure 4.2. 
Notice that k10l is a subgroup of both k2l and k5l, but k6l is not a sub-
group of k10l.

<10>

<0>

<6> <15>

<3>

<5>
<2>

<1>

Figure 4.2 Subgroup lattice of Z30.

The precision of Theorem 4.3 can be appreciated by comparing the 
ease with which we are able to identify the subgroups of Z30 with that of 
doing the same for, say, U(30) or D30. And these groups have relatively 
simple structures among noncyclic groups.

We will prove in Chapter 7 that a certain portion of Theorem 4.3 
 extends to arbitrary finite groups; namely, the order of a subgroup di-
vides the order of the group itself. We will also see, however, that a finite 
group need not have exactly one subgroup corresponding to each divisor 
of the order of the group. For some divisors, there may be none at all, 
whereas for other divisors, there may be many. Indeed, D4, the dihedral 
group of order 8, has five subgroups of order 2 and three of order 4.

One final remark about the importance of cyclic groups is appropri-
ate. Although cyclic groups constitute a very narrow class of finite 
groups, we will see in Chapter 11 that they play the role of building 
blocks for all finite Abelian groups in much the same way that primes 
are the building blocks for the integers and that chemical elements are 
the building blocks for the chemical compounds.
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4 | Cyclic Groups 87

Exercises

It is not unreasonable to use the hypothesis.
arnold ross 

  1. Find all generators of Z6, Z8, and Z20.
  2. Suppose that kal, kbl, and kcl are cyclic groups of orders 6, 8, and 

20, respectively. Find all generators of kal, kbl, and kcl.
  3. List the elements of the subgroups k20l and k10l in Z30. Let a be a 

group element of order 30. List the elements of the subgroups ka20l 
and ka10l.

  4. List the elements of the subgroups k3l and k15l in Z18. Let a be a 
group element of order 18. List the elements of the subgroups ka3l 
and ka15l.

  5. List the elements of the subgroups k3l and k7l in U(20).
  6. What do Exercises 3, 4, and 5 have in common? Try to make a gen-

eralization that includes these three cases.
  7. Find an example of a noncyclic group, all of whose proper sub-

groups are cyclic.
  8. Let a be an element of a group and let |a| 5 15. Compute the or-

ders of the following elements of G.
  a. a3, a6, a9, a12

  b. a5, a10

  c. a2, a4, a8, a14

  9. How many subgroups does Z20 have? List a generator for each of 
these subgroups. Suppose that G 5 kal and |a| 5 20. How many 
subgroups does G have? List a generator for each of these sub-
groups.

 10. In Z24, list all generators for the subgroup of order 8. Let G 5 kal 
and let |a| 5 24. List all generators for the subgroup of order 8.

 11. Let G be a group and let a [ G. Prove that ka21l 5 kal.
 12. In Z, find all generators of the subgroup k3l. If a has infinite order, 

find all generators of the subgroup ka3l.
 13. In Z24, find a generator for k21l > k10l. Suppose that |a| 5 24. Find 

a generator for ka21l > ka10l. In general, what is a generator for the 
subgroup kaml > kanl?

 14. Suppose that a cyclic group G has exactly three subgroups: G  itself, 
{e}, and a subgroup of order 7. What is |G|? What can you say if 7 
is replaced with p where p is a prime?

99708_ch04_ptg01_hr_077-098.indd   87 06/06/12   9:23 AM

Copyright 2012 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights,
some third party content may be suppressed from the eBook and/or eChapter(s). Editorial review has deemed that any suppressed content does not materially
affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.



88 Groups

 15. Let G be an Abelian group and let H 5 {g [ G | |g| divides 12}. 
Prove that H is a subgroup of G. Is there anything special about 12 
here? Would your proof be valid if 12 were replaced by some other 
positive integer? State the general result.

 16. Find a collection of distinct subgroups ka1l, ka2l, . . . , kanl of Z240  
with the property that ka1l , ka2l , ? ? ? , kanl with n as large as  
possible.

 17. Complete the following statement: |a| 5 |a2| if and only if |a| . . . .
 18. If a cyclic group has an element of infinite order, how many ele-

ments of finite order does it have?
 19. List the cyclic subgroups of U(30).
 20. Suppose that G is an Abelian group of order 35 and every element 

of G satisfies the equation x35 5 e. Prove that G is cyclic. Does 
your argument work if 35 is replaced with 33?

 21. Let G be a group and let a be an element of G.
  a. If a12 5 e, what can we say about the order of a?
  b. If am 5 e, what can we say about the order of a?
  c.  Suppose that |G| 5 24 and that G is cyclic. If a8 2 e and a12 2 e, 

show that kal 5 G.
 22. Prove that a group of order 3 must be cyclic.
 23. Let Z denote the group of integers under addition. Is every sub-

group of Z cyclic? Why? Describe all the subgroups of Z. Let a be 
a group element with infinite order. Describe all subgroups of kal.

 24. For any element a in any group G, prove that kal is a subgroup of 
C(a) (the centralizer of a).

 25. If d is a positive integer, d 2 2, and d divides n, show that the num-
ber of elements of order d in Dn is f(d ). How many elements of 
order 2 does Dn have?

 26. Find all generators of Z. Let a be a group element that has infinite 
order. Find all generators of kal.

 27. Prove that C*, the group of nonzero complex numbers under multi-
plication, has a cyclic subgroup of order n for every positive integer n.

 28. Let a be a group element that has infinite order. Prove that kail 5 
kajl if and only if i 5 6j.

 29. List all the elements of order 8 in Z8000000. How do you know your 
list is complete? Let a be a group element such that |a| � 8000000. 
List all elements of order 8 in kal. How do you know your list is 
complete?

 30. Suppose a and b belong to a group, a has odd order, and aba21 5 
b21. Show that b2 5 e.
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4 | Cyclic Groups 89

 31. Let G be a finite group. Show that there exists a fixed positive integer 
n such that an 5 e for all a in G. (Note that n is independent of a.)

 32. Determine the subgroup lattice for Z12.
 33. Determine the subgroup lattice for Zp2q, where p and q are distinct 

primes.
 34. Determine the subgroup lattice for Z8.
 35. Determine the subgroup lattice for Zpn, where p is a prime and n is 

some positive integer.
 36. Prove that a finite group is the union of proper subgroups if and 

only if the group is not cyclic.
 37. Show that the group of positive rational numbers under multiplica-

tion is not cyclic.

 38. Consider the set {4, 8, 12, 16}. Show that this set is a group under 
multiplication modulo 20 by constructing its Cayley table. What 
is the identity element? Is the group cyclic? If so, find all of its 
generators.

 39. Give an example of a group that has exactly 6 subgroups (including 
the trivial subgroup and the group itself). Generalize to exactly n 
subgroups for any positive integer n.

 40. Let m and n be elements of the group Z. Find a generator for the 
group kml > knl.

 41. Suppose that a and b are group elements that commute and have 
orders m and n. If kal > kbl 5 {e}, prove that the group contains an 
element whose order is the least common multiple of m and n. 
Show that this need not be true if a and b do not commute.

 42. Suppose that a and b belong to a group G, a and b commute, and 
|a| and |b| are finite. What are the possibilities for |ab|?

 43. Suppose that a and b belong to a group G, a and b commute, and |a| 
and |b| are finite. Prove that G has an element of order lcm(|a|, |b|).

 44. Let F and F9 be distinct reflections in D21. What are the possibili-
ties for |FF9|?

 45. Suppose that H is a subgroup of a group G and |H| 5 10. If a  
belongs to G and a6 belongs to H, what are the possibilities for |a|?

 46. Which of the following numbers could be the exact number of  
elements of order 21 in a group: 21600, 21602, 21604?

 47. If G is an infinite group, what can you say about the number of  
elements of order 8 in the group? Generalize.

 48. Suppose that K is a proper subgroup of D35 and K contains at least 
two reflections. What are the possible orders of K? Explain your 
reasoning.
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90 Groups

 49. For each positive integer n, prove that C*, the group of nonzero 
complex numbers under multiplication, has exactly f(n) elements 
of order n.

 50. Prove or disprove that H 5 {n [ Z | n is divisible by both 8 and 10} 
is a subgroup of Z.

 51. Suppose that G is a finite group with the property that every non-
identity element has prime order (for example, D3 and D5). If Z(G) 
is not trivial, prove that every nonidentity element of G has the 
same order.

 52. Prove that an infinite group must have an infinite number of  
subgroups.

 53. Let p be a prime. If a group has more than p 2 1 elements of order p, 
why can’t the group be cyclic?

 54. Suppose that G is a cyclic group and that 6 divides |G|. How many 
elements of order 6 does G have? If 8 divides |G|, how many ele-
ments of order 8 does G have? If a is one element of order 8, list 
the other elements of order 8.

 55. List all the elements of Z40 that have order 10. Let |x| 5 40. List all 
the elements of kxl that have order 10.

 56. Reformulate the corollary of Theorem 4.4 to include the case when 
the group has infinite order.

 57. Determine the orders of the elements of D33 and how many there 
are of each.

 58. If G is a cyclic group and 15 divides the order of G, determine the 
number of solutions in G of the equation x15 5 e. If 20 divides the 
order of G, determine the number of solutions of x20 5 e. 
Generalize.

 59. If G is an Abelian group and contains cyclic subgroups of orders 4 
and 5, what other sizes of cyclic subgroups must G contain? 
Generalize.

 60. If G is an Abelian group and contains cyclic subgroups of orders 4 
and 6, what other sizes of cyclic subgroups must G contain? 
Generalize.

 61. Prove that no group can have exactly two elements of order 2.
 62. Given the fact that U(49) is cyclic and has 42 elements, deduce the 

number of generators that U(49) has without actually finding any of 
the generators.

 63. Let a and b be elements of a group. If |a| 5 10 and |b| 5 21, show 
that kal > kbl 5 {e}.

 64. Let a and b belong to a group. If |a| and |b| are relatively prime, 
show that kal > kbl 5 {e}.
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4 | Cyclic Groups 91

 65. Let a and b belong to a group. If |a| 5 24 and |b| 5 10, what are 
the possibilities for |kal > kbl|?

 66. Prove that U(2n) (n $ 3) is not cyclic.
 67. Suppose that G is a group of order 16 and that, by direct computa-

tion, you know that G has at least nine elements x such that  
x8 5 e. Can you conclude that G is not cyclic? What if G has at 
least five elements x such that x4 5 e? Generalize.

 68. Prove that Zn has an even number of generators if n . 2. What 
does this tell you about f(n)?

 69. If |a5| 5 12, what are the possibilities for |a|? If |a4| 5 12, what 
are the possibilities for |a|?

 70. Suppose that |x| 5 n. Find a necessary and sufficient condition on 
r and s such that kxrl # kxsl.

 71. Suppose a is a group element such that |a28| � 10 and |a22| � 20. 
Determine �a�.

 72. Let a be a group element such that |a| � 48. For each part, find a  
divisor k of 48 such that

  a. ka21l 5 kakl;
  b. ka14l 5 kakl;
  c. ka18l 5 kakl.
 73. Let p be a prime. Show that in a cyclic group of order pn 21, every 

element is a pth power (that is, every element can be written in the 
form ap for some a).

 74. Prove that H � e c1 n

0 1
d  `  n [ Z f  is a cyclic subgroup of  

GL(2, R).
 75. Let a and b belong to a group. If |a| 5 12, |b| 5 22, and kal > kbl 2 

{e}, prove that a6 5 b11.
 76. (2008 GRE Practice Exam) If x is an element of a cyclic group of 

order 15 and exactly two of x3, x5, and x9 are equal, determine |x13|.
 77. Determine the number of cyclic subgroups of order 4 in Dn.
 78. If n is odd, prove that Dn has no subgroup of order 4.
 79. If n $ 4 and is even, show that Dn has exactly n/2 noncyclic  

subgroups of order 4.
 80. If n $ 4 and n is divisible by 2 but not by 4, prove that Dn has  

exactly n/2 subgroups of order 4.
 81. How many subgroups of order n does Dn have?
 82. Let G be the set of all polynomials of the form ax2 1 bx 1 c with 

coefficients from the set {0, 1, 2}. We can make G a group under 
addition by adding the polynomials in the usual way, except that 
we use modulo 3 to combine the coefficients. With this operation, 
prove that G is a group of order 27 that is not cyclic.
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 83. Let a and b belong to some group. Suppose that |a| � m, |b| � n, 
and m and n are relatively prime. If ak � bk for some integer k, 
prove that mn divides k.

 84. For every integer n greater than 2, prove that the group U 1n2 � 12  
is not cyclic.

 85. Prove that for any prime p and positive integer n, f 1pn2  5 
pn � pn�1.

 86. Give an example of an infinite group that has exactly two elements 
of order 4.

Computer Exercises

Computer exercises for this chapter are available at the website:

http://www.d.umn.edu/~jgallian

Suggested Reading

Deborah L. Massari, “The Probability of Generating a Cyclic Group,”  
Pi Mu Epsilon Journal 7 (1979): 3–6.

In this easy-to-read paper, it is shown that the probability of a ran-
domly chosen element from a cyclic group being a generator of the 
group depends only on the set of prime divisors of the order of the 
group, and not on the order itself. This article, written by an under-
graduate student, received first prize in a Pi Mu Epsilon paper contest.
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James Joseph Sylvester

I really love my subject.
j. j. sylvester

†F. Cajori, Teaching and History of Mathematics in the United States, Washington: Government 
Printing Office, 1890, 265–266.

James Joseph Sylvester was the most  influ - 
ential mathematician in America in the 19th 
century. Sylvester was born on September 3, 
1814, in London and showed his mathemati-
cal genius early. At the age of 14, he studied 
under De Morgan and won several prizes for 
his mathematics, and at the unusually young 
age of 25, he was elected a fellow of the 
Royal Society.

After receiving B.A. and M.A. degrees 
from Trinity College in Dublin in 1841, 
Sylvester began a professional life that was 
to include academics, law, and actuarial ca-
reers. In 1876, at the age of 62, he was ap-
pointed to a prestigious position at the newly 
founded Johns Hopkins University. During 
his seven years at Johns Hopkins, Sylvester 
pursued research in pure mathematics  
with tremendous vigor and enthusiasm.  
He also founded the American Journal of 
Mathematics, the first journal in America 
devoted to mathematical research. Sylvester 
returned to England in 1884 to a professor-
ship at Oxford, a position he held until his 
death on March 15, 1897.

Sylvester’s major contributions to math-
ematics were in the theory of equations, 
 matrix theory, determinant theory, and in-
variant theory (which he founded with 
Cayley). His writings and lectures—flowery 
and eloquent, pervaded with poetic flights, 
emotional expressions, bizarre utterances, 
and paradoxes—reflected the personality of 
this sensitive, excitable, and enthusiastic 

man. We quote three of his students.† E. W. 
Davis commented on Sylvester’s teaching 
methods.

Sylvester’s methods! He had none. “Three lec-
tures will be delivered on a New Universal 
Algebra,” he would say; then, “The course 
must be extended to twelve.” It did last all the 
rest of that year. The following year the course 
was to be Substitutions-Theorie, by Netto. We 
all got the text. He lectured about three times, 
following the text closely and stopping sharp 
at the end of the hour. Then he began to think 
about matrices again. “I must give one lecture 
a week on those,” he said. He could not con-
fine himself to the hour, nor to the one lecture 
a week. Two weeks were passed, and Netto 
was forgotten entirely and never mentioned 
again. Statements like the following were not 
infrequent in his  lectures: “I haven’t proved 
this, but I am as sure as I can be of anything 
that it must be so. From this it will follow, 
etc.” At the next lecture it turned out that what 
he was so sure of was false. Never mind, he 
kept on forever guessing and trying, and  
presently a wonderful discovery followed, 
then another and another. Afterward he would 
go back and work it all over again, and sur-
prise us with all sorts of side lights. He then 
made another leap in the dark, more treasures 
were discovered, and so on forever.
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Sylvester’s enthusiasm for teaching and his 
influence on his students are captured in the 
following passage written by Sylvester’s first 
student at Johns Hopkins, G. B. Halsted.

A short, broad man of tremendous vitality, . . . 
Sylvester’s capacious head was ever lost in  
the highest cloud-lands of pure mathematics. 
Often in the dead of night he would get his 
 favorite pupil, that he might communicate  
the very last product of his creative thought. 
Everything he saw suggested to him  some- 
thing new in the higher algebra. This transmu-
tation of everything into new  mathematics  
was a revelation to those who knew him 
 intimately. They began to do it themselves.

Another characteristic of Sylvester, which 
is very unusual among mathematicians, was 
his apparent inability to remember mathemat-
ics! W. P. Durfee had the following to say.

Sylvester had one remarkable peculiarity. He 
seldom remembered theorems, propositions, 
etc., but had always to deduce them when he 
wished to use them. In this he was the very 
antithesis of Cayley, who was thoroughly 
conversant with everything that had been 
done in every branch of mathematics.

I remember once submitting to Sylvester 
some investigations that I had been engaged 
on, and he immediately denied my first state-
ment, saying that such a proposition had never 
been heard of, let alone proved. To his aston-
ishment, I showed him a paper of his own in 
which he had proved the proposition; in fact,  
I believe the object of his paper had been the 
very proof which was so strange to him.

For more information about Sylvester, 
visit:

http://www-groups.dcs.st-and 
.ac.uk/~history/
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Supplementary Exercises for Chapters 1–4

If you really want something in this life, you have to work for it. Now quiet, 
they’re about to announce the lottery numbers!

homer simpson

True/false questions for Chapters 1–4 are available on the Web at: 

http://www.d.umn.edu/~jgallian/TF

  1. Let G be a group and let H be a subgroup of G. For any fixed x in 
G, define xHx21 5 {xhx21 | h [ H}. Prove the following.

 a. xHx21 is a subgroup of G.
 b. If H is cyclic, then xHx21 is cyclic.
 c. If H is Abelian, then xHx21 is Abelian.
  The group xHx21 is called a conjugate of H. (Note that conjuga- 

tion preserves structure.)
  2. Let G be a group and let H be a subgroup of G. Define N(H) 5  

{x [ G |  xHx21 5 H}. Prove that N(H) (called the normalizer of 
H) is a  subgroup of G.†

  3. Let G be a group. For each a [ G, define cl(a) 5 {xax21 | x [ G}. 
Prove that these subsets of G partition G. [cl(a) is called the 
 conjugacy class of a.]

  4. The group defined by the following table is called the group of 
quaternions. Use the table to determine each of the following.

  a. The center
  b. cl(a)
  c. cl(b)
  d. All cyclic subgroups

  e a a2 a3 b ba ba2 ba3

 e e a a2 a3 b ba ba2 ba3

 a a a2 a3 e ba3 b ba ba2

 a2 a2 a3 e a ba2 ba3 b ba
 a3 a3 e a a2 ba ba2 ba3 b
 b b ba ba2 ba3 a2 a3 e a
 ba ba ba2 ba3 b a a2 a3 e
 ba2 ba2 ba3 b ba e a a2 a3

 ba3 ba3 b ba ba2 a3 e a a2

†This very important subgroup was first used by L. Sylow in 1872 to prove the exis-
tence of certain kinds of subgroups in a group. His work is discussed in Chapter 24.
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96 Groups

  5. (Conjugation preserves order.) Prove that, in any group, |xax21| 5 
|a|. (This exercise is referred to in Chapter 24.)

  6. Prove that, in any group, |ab| 5 |ba|.
  7. If a and b are group elements, prove that |ab| 5 |a21b21|.
  8. Prove that a group of order 4 cannot have a subgroup of order 3.
  9. If a, b, and c are elements of a group, give an example to show that 

it need not be the case that |abc| 5 |cba|.
 10. Let a and b belong to a group G. Prove that there is an element x in 

G such that xax 5 b if and only if ab 5 c2 for some element c in G.
 11. Prove that if a is the only element of order 2 in a group, then a lies 

in the center of the group.
 12. Let G be the plane symmetry group of the infinite strip of equally 

spaced H’s shown below.

H H HHH
Axis 1 Axis 2

  Let x be the reflection about Axis 1 and let y be the reflection about 
Axis 2. Calculate |x|, |y|, and |xy|. Must the product of elements  
of finite order have finite order? (This exercise is referred to in 
Chapter 27.)

 13. What are the orders of the elements of D15? How many elements 
have each of these orders?

 14. Prove that a group of order 4 is Abelian.
 15. Prove that a group of order 5 must be cyclic.
 16. Prove that an Abelian group of order 6 must be cyclic.
 17. Let G be an Abelian group and let n be a fixed positive integer. Let 

Gn 5 {gn | g [ G}. Prove that Gn is a subgroup of G. Give an ex-
ample showing that Gn need not be a subgroup of G when G is 
non-Abelian. (This exercise is referred to in Chapter 11.)

 18. Let G 5 {a � b226, where a and b are rational numbers not both 
0. Prove that G is a group under ordinary multiplication.

 19. (1969 Putnam Competition) Prove that no group is the union of 
two proper subgroups. Does the statement remain true if “two” is 
replaced by “three”?

 20. Prove that the subset of elements of finite order in an Abelian 
group forms a subgroup. (This subgroup is called the torsion sub-
group.) Is the same thing true for non-Abelian groups?

 21. Let p be a prime and let G be an Abelian group. Show that the set 
of all elements whose orders are powers of p is a subgroup of G.
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Supplementary Exercises for Chapters 1–4 97

 22. Suppose that a and b are group elements. If |b| � 2 and bab � a4, 
determine the possibilities for |a|.

 23. Suppose that a finite group is generated by two elements a and b 
(that is, every element of the group can be expressed as some prod-
uct of a’s and b’s). Given that a35 b2 5 e and ba2 5 ab, construct 
the Cayley table for the group. We have already seen an example 
of a group that satisfies these conditions. Name it.

 24. If a is an element from a group and |a| � n, prove that C(a) 5 
C(ak) when k is relatively prime to n.

 25. Let x and y belong to a group G. If xy [ Z(G), prove that xy 5 yx.
 26. Suppose that H and K are nontrivial subgroups of Q under addi-

tion. Show that H > K is a nontrivial subgroup of Q. Is this true if 
Q is replaced by R?

 27. Let H be a subgroup of G and let g be an element of G. Prove that 
N(gHg21) 5 gN(H)g21. See Exercise 2 for the notation.

 28. Let H be a subgroup of a group G and let |g| 5 n. If gm belongs to 
H, and m and n are relatively prime, prove that g belongs to H.

 29. Find a group that contains elements a and b such that |a| 5 2,  
|b| 5 11, and |ab| 5 2.

 30. Suppose that G is a group with exactly eight elements of order 10. 
How many cyclic subgroups of order 10 does G have?

 31. (1989 Putnam Competition) Let S be a nonempty set with an asso-
ciative operation that is left and right cancellative (xy 5 xz implies 
y 5 z, and yx 5 zx implies y 5 z). Assume that for every a in S the 
set {an | n 5 1, 2, 3, . . .} is finite. Must S be a group?

 32. Let H1, H2, H3, . . . be a sequence of subgroups of a group with the 
property that H1 # H2 # H3 . . . . Prove that the union of the se-
quence is a subgroup.

 33. Let n be an integer greater than 1. Find a noncyclic subgroup of  
U (4n) of order 4 that contains the element 2n 2 1.

 34. Let G be an Abelian group and H 5 {x [ G | xn 5 e for some odd 
integer n (n may vary with x)}. Prove that H is a subgroup of G. Is H  
a subgroup if “odd” is replaced by “even”?

 35. Let H 5 {A [ GL(2, R) | det A is rational}. Prove or disprove that 
H is a subgroup of GL(2, R). What if “rational” is replaced by “an 
integer”?

 36. Suppose that G is a group that has exactly one nontrivial proper 
subgroup. Prove that G is cyclic and |G| 5 p2, where p is prime.

 37. Suppose that G is a group and G has exactly two nontrivial proper 
subgroups. Prove that G is cyclic and |G| 5 pq, where p and q are 
distinct primes, or that G is cyclic and |G| 5 p3, where p is prime.
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98 Groups

 38. If |a2| 5 |b2|, prove or disprove that |a| 5 |b|.
 39. (1995 Putnam Competition) Let S be a set of real numbers that is 

closed under multiplication. Let T and U be disjoint subsets of S 
whose union is S. Given that the product of any three (not neces-
sarily distinct) elements of T is in T and that the product of any 
three elements of U is in U, show that at least one of the two sub-
sets T and U is closed under multiplication.

 40. If p is an odd prime, prove that there is no group that has exactly p 
elements of order p.

 41. Give an example of a group G with infinitely many distinct sub-
groups H1, H2, H3, . . . such that H1 , H2 , H3 . . .

 .
 42. Suppose a and b are group elements and b 2 e. If a21ba 5 b2 and  

|a| 5 3, find |b|. What is |b|, if |a| 5 5? What can you say about |b| 
in the case where |a| 5 k?

 43. Let a and b belong to a group G. Show that there is an element g in 
G such that g21 abg 5 ba.

 44. Suppose G is a group and x3y3 5 y3x3 for every x and y in G. Let  
H 5 {x [ G | |x| is relatively prime to 3}. Prove that elements of H 
commute with each other and that H is a subgroup of G. Is your 
 argument valid if 3 is replaced by an arbitrary positive integer n? 
Explain why or why not.

 45. Let G be a finite group and let S be a subset of G that contains 
more than half of the elements of G. Show that every element of G 
can be expressed in the form s1s2 where s1 and s2 belong to S.

 46. Let G be a group and let f be a function from G to some set. Show 
that H 5 {g [ G | f (xg) 5 f (x) for all x [ G} is a subgroup of G. In 
the case that G is the group of real numbers under addition and  
f (x) 5 sin x, describe H.

 47. Let G be a cyclic group of order n and let H be the subgroup of 
 order d. Show that H 5 {x [ G | |x| divides d}.

 48. Let a be an element of maximum order from a finite Abelian group 
G. Prove that for any element b in G, |b| divides |a|. Show by 
 example that this need not be true for finite non-Abelian groups.

 49. Define an operation * on the set of integers by a * b � a � b � 1. 
Show that the set of integers under this operation is a cyclic group.

 50. Let n be an integer greater than 1. Find a noncyclic subgroup of 
U 14n2  of order 4 that contains the element 2n � 1.
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Permutation Groups

Wigner’s discovery about the electron permutation group was just the 
beginning. He and others found many similar applications and nowadays 
group theoretical methods—especially those involving characters and 
representations—pervade all branches of quantum mechanics.

george mackey, Proceedings of the  
American Philosophical Society

5

 Definition and Notation
In this chapter, we study certain groups of functions, called permutation 
groups, from a set A to itself. In the early and mid-19th century, groups 
of permutations were the only groups investigated by mathematicians. 
It was not until around 1850 that the notion of an abstract group was 
introduced by Cayley, and it took another quarter century before the 
idea firmly took hold.

Definitions Permutation of A, Permutation Group of A
A permutation of a set A is a function from A to A that is both one- 
to-one and onto. A permutation group of a set A is a set of permuta-
tions of A that forms a group under function composition.

Although groups of permutations of any nonempty set A of objects 
exist, we will focus on the case where A is finite. Furthermore, it is 
customary, as well as convenient, to take A to be a set of the form 
{1, 2, 3, . . . , n} for some positive integer n. Unlike in calculus, where 
most functions are defined on infinite sets and are given by formulas, 
in algebra, permutations of finite sets are usually given by an explicit 
listing of each element of the domain and its corresponding functional 
value. For example, we define a permutation a of the set {1, 2, 3, 4} by 
specifying

a(1) 5 2,    a(2) 5 3,    a(3) 5 1,    a(4) 5 4.
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100 Groups

gs 5 £1 2 3 4 5

5 4 1 2 3

§  £1 2 3 4 5

2 4 3 5 1

§  5 c1 2 3 4 5

4 2 1 3 5
d

A more convenient way to express this correspondence is to write a in 
array form as

a � c1 2 3 4

2 3 1 4
d .

Here a( j) is placed directly below j for each j. Similarly, the permuta-
tion b of the set {1, 2, 3, 4, 5, 6} given by

b(1) 5 5,  b(2) 5 3,  b(3) 5 1,  b(4) 5 6,  b(5) 5 2,  b(6) 5 4

is expressed in array form as

b � c1 2 3 4 5 6

5 3 1 6 2 4
d .

Composition of permutations expressed in array notation is carried 
out from right to left by going from top to bottom, then again from top 
to bottom. For example, let

s � c1 2 3 4 5

2 4 3 5 1
d

and

g � c1 2 3 4 5

5 4 1 2 3
d ;

then

On the right we have 4 under 1, since (gs)(1) 5 g(s(1)) 5 g(2) 5 4, 
so gs sends 1 to 4. The remainder of the bottom row gs is obtained in 
a similar fashion.

We are now ready to give some examples of permutation groups.

 EXAMPLE 1 Symmetric Group S3 Let S3 denote the set of all 
  one-to-one functions from {1, 2, 3} to itself. Then S3, under function 
composition, is a group with six elements. The six elements are

e � c1 2 3

1 2 3
d ,    a � c1 2 3

2 3 1
d ,    a2 � c1 2 3

3 1 2
d ,
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5 | Permutation Groups 101

b � c1 2 3

1 3 2
d ,    ab � c1 2 3

2 1 3
d ,    a2b � c1 2 3

3 2 1
d .

Note that ba 5 c1 2 3

3 2 1
d  5 a2b 2 ab, so that S3 is non-Abelian. 

The relation ba 5 a2b can be used to compute other products in S3 
without resorting to the arrays. For example, ba2 5 (ba)a 5 (a2b)a 5 
a2(ba) 5 a2(a2b) 5 a4b 5 ab.

Example 1 can be generalized as follows.

 EXAMPLE 2 Symmetric Group Sn Let A 5 {1, 2, . . . , n}. The set 
of all permutations of A is called the symmetric group of degree n and is 
denoted by Sn. Elements of Sn have the form

a � c 1 2 p n

a(1) a(2) p a(n)
d .

It is easy to compute the order of Sn. There are n choices of a(1). Once 
a(1) has been determined, there are n 2 1 possibilities for a(2) [since  
a is one-to-one, we must have a(1) 2 a(2)]. After choosing a(2), there 
are exactly n 2 2 possibilities for a(3). Continuing along in this fashion, 
we see that Sn has n(n 2 1) ? ? ? 3 ? 2 ? 1 5 n! elements. We leave it to the 
reader to prove that Sn is non-Abelian when n $ 3 (Exercise 45).     

The symmetric groups are rich in subgroups. The group S4 has 30 
subgroups, and S5 has well over 100 subgroups.

 EXAMPLE 3 Symmetries of a Square As a third example, we 
 associate each motion in D4 with the permutation of the locations of each 
of the four corners of a square. For example, if we label the four corner 
positions as in the figure below and keep these labels fixed for reference, 
we may describe a 90°  counterclockwise rotation by the permutation

3

4

2

1

r � c1 2 3 4

2 3 4 1
d ,
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102 Groups

whereas a reflection across a horizontal axis yields

f � c1 2 3 4

2 1 4 3
d .

These two elements generate the entire group (that is, every element is 
some combination of the r’s and f’s). 

When D4 is represented in this way, we see that it is a subgroup  
of S4.     

Cycle Notation
There is another notation commonly used to specify permutations. It is 
called cycle notation and was first introduced by the great French math-
ematician Cauchy in 1815. Cycle notation has theoretical advantages in 
that certain important properties of the permutation can be readily de-
termined when cycle notation is used.

As an illustration of cycle notation, let us consider the permu tation

a � c1 2 3 4 5 6

2 1 4 6 5 3
d .

This assignment of values could be presented schematically as follows.

2

1

α α

α α

α α

6

3 5

4

Although mathematically satisfactory, such diagrams are cumber-
some. Instead, we leave out the arrows and simply write a 5 (1, 2) 
(3, 4, 6)(5). As a second example, consider

b � c1 2 3 4 5 6

5 3 1 6 2 4
d .

In cycle notation, b can be written (2, 3, 1, 5)(6, 4) or (4, 6)(3, 1, 5, 2), 
since both of these unambiguously specify the function b. An expres-
sion of the form (a1, a2, . . . , am) is called a cycle of length m or an  
m-cycle.
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5 | Permutation Groups 103

A multiplication of cycles can be introduced by thinking of a cycle 
as a permutation that fixes any symbol not appearing in the cycle. 
Thus, the cycle (4, 6) can be thought of as representing the 

permutation c1 2 3 4 5 6

1 2 3 6 5 4
d . In this way, we can multiply cycles

by thinking of them as permutations given in array form. Consider the 
following example from S8. Let a 5 (13)(27)(456)(8) and b 5  
(1237)(648)(5). (When the domain consists of single-digit integers, it is 
common practice to omit the commas between the digits.) What  
is the cycle form of ab? Of course, one could say that ab 5  
(13)(27)(456)(8)(1237)(648)(5), but it is usually more desirable to ex-
press a permutation in a disjoint cycle form (that is, the various cycles 
have no number in common). Well, keeping in mind that function com-
position is done from right to left and that each cycle that does not con-
tain a symbol fixes the symbol, we observe that (5) fixes 1; (648) fixes 1; 
(1237) sends 1 to 2; (8) fixes 2; (456) fixes 2; (27) sends 2 to 7; and (13) 
fixes 7. So the net effect of ab is to send 1 to 7. Thus, we begin  
ab 5 (17 ? ? ?) ? ? ? . Now, repeating the entire process beginning with 7, 
we have, cycle by cycle, right to left, 

7 → 7 → 7 → 1 → 1 → 1 → 1 → 3, 

so that ab 5 (173 ? ? ?) ? ? ? . Ultimately, we have ab 5 (1732)(48)(56). 
The important thing to bear in mind when multiplying cycles is to “keep 
moving” from one cycle to the next from right to left. (Warning: Some authors 
compose cycles from left to right. When reading another text, be sure to 
determine which convention is being used.)

To be sure you understand how to switch from one notation to the 
other and how to multiply permutations, we will do one more example 
of each.

If array notations for a and b, respectively, arec1 2 3 4 5

2 1 3 5 4
d     and    c1 2 3 4 5

5 4 1 2 3
d ,

then, in cycle notation, a 5 (12)(3)(45), b 5 (153)(24), and ab 5  
(12)(3)(45)(153)(24).

To put ab in disjoint cycle form, observe that (24) fixes 1; (153) 
sends 1 to 5; (45) sends 5 to 4; and (3) and (12) both fix 4. So, ab sends 
1 to 4. Continuing in this way we obtain ab 5 (14)(253).

One can convert ab back to array form without converting each 
cycle of ab into array form by simply observing that (14) means 1 goes 
to 4 and 4 goes to 1; (253) means 2 → 5, 5 → 3, 3 → 2.
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104 Groups

One final remark about cycle notation: Mathematicians prefer not to 
write cycles that have only one entry. In this case, it is understood that any 
missing element is mapped to itself. With this convention, the permutation 
a above can be written as (12)(45). Similarly,

a � c1 2 3 4 5

3 2 4 1 5
d

can be written a 5 (134). Of course, the identity permutation consists 
only of cycles with one entry, so we cannot omit all of these! In this 
case, one usually writes just one cycle. For example,

e � c1 2 3 4 5

1 2 3 4 5
d

can be written as e 5 (5) or e 5 (1). Just remember that missing 
 elements are mapped to themselves.

Properties of Permutations
We are now ready to state several theorems about permutations and 
 cycles. The proof of the first theorem is implicit in our discussion of 
writing permutations in cycle form.

 Theorem 5.1 Products of Disjoint Cycles

Every permutation of a finite set can be written as a cycle or as a 

product of disjoint cycles.

PROOF Let a be a permutation on A 5 {1, 2, . . . , n}. To write a in 
 disjoint cycle form, we start by choosing any member of A, say a1, and let

a2 5 a(a1),    a3 5 a(a(a1)) 5 a2(a1),

and so on, until we arrive at a1 5 am(a1) for some m. We know that such 
an m exists because the sequence a1, a(a1), a

2(a1), ? ? ? must be finite; 
so there must eventually be a repetition, say a i(a1) 5 a j(a1) for some 
i and j with i , j. Then a1 5 am(a1), where m 5 j 2 i. We express this 
relationship among a1, a2, . . . , am as

a 5 (a1, a2, . . . , am) ? ? ? .

The three dots at the end indicate the possibility that we may not have 
exhausted the set A in this process. In such a case, we merely choose 
any element b1 of A not appearing in the first cycle and proceed to  
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5 | Permutation Groups 105

create a new cycle as before. That is, we let b2 5 a(b1), b3 5 a2(b1), and 
so on, until we reach b1 5 ak(b1) for some k. This new cycle will have 
no elements in common with the previously constructed cycle. For, if 
so, then a i(a1) 5 a j(b1) for some i and j. But then a i2j(a1) 5 b1, and 
therefore b1 5 at for some t. This contradicts the way b1 was chosen. 
Continuing this process until we run out of elements of A, our permuta-
tion will appear as

a 5 (a1, a2, . . . , am)(b1, b2, . . . , bk) ? ? ? (c1, c2, . . . , cs).

In this way, we see that every permutation can be written as a product 
of disjoint cycles.     

 Theorem 5.2 Disjoint Cycles Commute

If the pair of cycles a 5 (a1, a2, . . . , am
) and b 5 (b1,b2, . . . , bn

)  

have no entries in common, then ab 5 ba.

PROOF For definiteness, let us say that a and b are permutations of 
the set

S 5 {a1, a2, . . . , am, b1, b2, . . . , bn, c1, c2, . . . , ck},

where the c’s are the members of S left fixed by both a and b (there 
may not be any c’s). To prove that ab 5 ba, we must show that (ab)(x) 5 
(ba)(x) for all x in S. If x is one of the a elements, say ai, then

(ab)(ai) 5 a(b(ai)) 5 a(ai) 5 ai11,

since b fixes all a elements. (We interpret ai11 as a1 if i 5 m.) For the 
same reason,

(ba)(ai) 5 b(a (ai)) 5 b(ai11) 5 ai11.

Hence, the functions of ab and ba agree on the a elements. A similar 
argument shows that ab and ba agree on the b elements as well. 
 Finally, suppose that x is a c element, say ci. Then, since both a and b 
fix c elements, we have

(ab)(ci) 5 a(b(ci)) 5 a(ci) 5 ci

and

(ba)(ci) 5 b(a(ci)) 5 b(ci) 5 ci.

This completes the proof.     
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106 Groups

In demonstrating how to multiply cycles, we showed that the  product 
(13)(27)(456)(8)(1237)(648)(5) can be written in disjoint  cycle form as 
(1732)(48)(56). Is economy in expression the only advantage to writ-
ing a permutation in disjoint cycle form? No. The next theorem shows 
that the disjoint cycle form has the enormous advantage of  allowing us 
to “eyeball” the order of the permutation.

 Theorem 5.3 Order of a Permutation (Ruffini, 1799)

The order of a permutation of a finite set written in disjoint cycle 

form is the least common multiple of the lengths of the cycles.

PROOF First, observe that a cycle of length n has order n. (Verify this 
yourself.) Next, suppose that a and b are disjoint cycles of lengths m 
and n, and let k be the least common multiple of m and n. It follows from 
Theorem 4.1 that both ak and bk are the identity permutation e and, since 
a and b commute, (ab)k 5 akbk is also the identity. Thus, we know by 
Corollary 2 to Theorem 4.1 (ak 5 e implies that |a| divides k) that the 
order of ab—let us call it t—must divide k. But then (ab)t 5 atb t 5 e, 
so that at 5 b2t. However, it is clear that if a and b have no common 
symbol, the same is true for a t and b2t, since raising a cycle to a power 
does not introduce new symbols. But, if a t and b2t are equal and have 
no common symbol, they must both be the identity, because every sym-
bol in a t is fixed by b2t and vice versa (remember that a symbol not ap- 
pearing in a permutation is fixed by the permutation). It follows, then, 
that both m and n must divide t. This means that k, the least common 
multiple of m and n, divides t also. This shows that k 5 t.

Thus far, we have proved that the theorem is true in the cases 
where the permutation is a single cycle or a product of two disjoint 
cycles. The general case involving more than two cycles can be han-
dled in an analogous way. 

Theorem 5.3 is an enomously powerful tool for calculating the or-
ders of permutations and the number of permutations of a particular 
order. We demonstrate this in the next two examples.

 EXAMPLE 4 To determine the orders of the 7! 5 5040 elements of 
S7, we need only consider the possible disjoint cycle structures of the 
 elements of S7. For convenience, we denote an n-cycle by (n). Then,  
arranging all possible disjoint cycle structures of elements of S7 
 according to longest cycle lengths left to right, we have
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5 | Permutation Groups 107

(7)
(6) (1)
(5) (2)
(5) (1) (1)
(4) (3)
(4) (2) (1)
(4) (1) (1) (1)
(3) (3) (1)
(3) (2) (2)
(3) (2) (1) (1)
(3) (1) (1) (1) (1)
(2) (2) (2) (1)
(2) (2) (1) (1) (1)
(2) (1) (1) (1) (1) (1)
(1) (1) (1) (1) (1) (1) (1). 

Now, from Theorem 5.3 we see that the orders of the elements of S7 
are 7, 6, 10, 5, 12, 4, 3, 2, and 1. To do the same for the 10! 5 3628800 
elements of S10 would be nearly as simple. 

 EXAMPLE 5 We determine the number of elements of S7 of order 3. 
By Theorem 5.3, we need only count the number of permutations of 
the forms (a1a2a3) and (a1a2a3) (a4a5a6). In the first case consider the 
triple a1a2a3. Clearly there are 7 ? 6 ? 5 such triples. But this product 
counts the permutation (a1a2a3) three times (for example, it counts 134, 
341, 413 as distinct triples whereas the cycles (134), (341), and (413) 
are the same group element). Thus, the number of permutations in S7 for 
the form (a1a2a3) is (7 ? 6 ? 5)/3 5 70. For elements of S7 of the form 
(a1a2a3) (a4a5a6) there are (7 ? 6 ? 5)/3 ways to create the first cycle and 
(4 ? 3 ? 2)/3 to create the second cycle but the product of (7 ? 6 ? 5)/3 and 
(4 ? 3 ? 2)/3) counts (a1a2a3) (a4a5a6) and (a4a5a6)(a3a2a1) as distinct when 
they are equal group elements. Thus, the number of elements in S7 for the 
form (a1a2a3) (a4a5a6) is (7 ? 6 ? 5)(4 ? 3 ? 2)/(3 ? 3 ? 2) 5 280. This gives 
us 350 elements of order 3 in S7. 

As we will soon see, it is often greatly advantageous to write a per-
mutation as a product of cycles of length 2—that is, as permutations of 
the form (ab) where a 2 b. Many authors call these permutations trans-
positions, since the effect of (ab) is to interchange or transpose a and b.

Example 6 and Theorem 5.4 show how this can always be done.
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108 Groups

 EXAMPLE 6

 (12345) 5 (15)(14)(13)(12)
 (1632)(457) 5 (12)(13)(16)(47)(45) 

 Theorem 5.4 Product of 2-Cycles

Every permutation in S
n
, n . 1, is a product of 2-cycles.

PROOF First, note that the identity can be expressed as (12)(12), and 
so it is a product of 2-cycles. By Theorem 5.1, we know that every per-
mutation can be written in the form

(a1a2 ? ? ? ak)(b1b2 ? ? ? bt) ? ? ? (c1c2 ? ? ? cs).

A direct computation shows that this is the same as

(a1ak)(a1ak21) ? ? ? (a1a2)(b1bt)(b1bt21) ? ? ? (b1b2) 
 ? ? ? (c1cs)(c1cs21) ? ? ? (c1c2).

This completes the proof.     

The decomposition of a permutation into a product of 2-cycles given 
in Example 6 and in the proof of Theorem 5.4 is not the only way a per-
mutation can be written as a product of 2-cycles. Although the next  
example shows that even the number of 2-cycles may vary from one 
decomposition to another, we will prove in Theorem 5.5 (first proved by 
Cauchy) that there is one aspect of a decomposition that never varies.

 EXAMPLE 7

 (12345) 5 (54)(53)(52)(51)
 (12345) 5 (54)(52)(21)(25)(23)(13) 

We isolate a special case of Theorem 5.5 as a lemma.

 Lemma  

If e 5 b1b2 ? ? ? br
, where the b’s are 2-cycles, then r is even.

PROOF Clearly, r 2 1, since a 2-cycle is not the identity. If r 5 2, we 
are done. So, we suppose that r . 2, and we proceed by induction. 
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5 | Permutation Groups 109

Suppose that the rightmost 2-cycle is (ab). Then, since (ij) 5 ( ji), the 
product br21br can be expressed in one of the following forms shown 
on the right:

e 5 (ab)(ab),
(ab)(bc) 5 (ac)(ab),

 (ac)(cb )  5 (bc)(ab),
(ab)(cd) 5 (cd)(ab).

If the first case occurs, we may delete br21br from the original product 
to obtain e 5 b1b2 ? ? ? br22, and therefore, by the Second Principle of 
Mathematical Induction, r 2 2 is even. In the other three cases, we 
 replace the form of br21br on the right by its counterpart on the left to 
obtain a new product of r 2-cycles that is still the identity, but where 
the rightmost occurrence of the integer a is in the second-from-the-
rightmost 2-cycle of the product instead of the rightmost 2-cycle. We now 
repeat the procedure just described with br22br21, and, as be fore, we  
obtain a product of (r 2 2) 2-cycles equal to the identity or a new  product 
of r 2-cycles, where the rightmost occurrence of a is in the third 2-cycle 
from the right. Continuing this process, we must ob tain a product of  
(r 2 2) 2-cycles equal to the identity, because otherwise we have a prod-
uct equal to the identity in which the only occurrence of the integer a is in the 
leftmost 2-cycle, and such a product does not fix a, whereas the identity 
does. Hence, by the Second Principle of Mathematical Induction, r 2 2 is 
even, and r is even as well.     

 Theorem 5.5 Always Even or Always Odd

If a permutation a can be expressed as a product of an even (odd) 

number of 2-cycles, then every decomposition of a into a product of 

2-cycles must have an even (odd) number of 2-cycles. In symbols, if

a 5 b1b2 ? ? ? br    and    a 5 g1g2 ? ? ? gs,

where the b’s and the g’s are 2-cycles, then r and s are both even or 

both odd.

PROOF Observe that b1b2 ? ? ? br 5 g1g2 ? ? ? gs implies

e 5 g1g2 ? ? ? gsbr
21 ? ? ? b2

21b1
21

     5 g1g2 ? ? ? gsbr ? ? ? b2b1,

since a 2-cycle is its own inverse. Thus, the lemma on page 108 guar- 
antees that s 1 r is even. It follows that r and s are both even or both 
odd. 
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110 Groups

Definition Even and Odd Permutations
A permutation that can be expressed as a product of an even number 
of 2-cycles is called an even permutation. A permutation that can  
be expressed as a product of an odd number of 2-cycles is called an 
odd permutation.

Theorems 5.4 and 5.5 together show that every permutation can be 
unambiguously classified as either even or odd. The significance of  
this observation is given in Theorem 5.6.

 Theorem 5.6 Even Permutations Form a Group

The set of even permutations in S
n
 forms a subgroup of S

n
.

PROOF This proof is left to the reader (Exercise 17).     

The subgroup of even permutations in Sn arises so often that we give 
it a special name and notation.

Definition Alternating Group of Degree n
The group of even permutations of n symbols is denoted by A

n
 and is 

called the alternating group of degree n.

The next result shows that exactly half of the elements of Sn(n . 1) 
are even permutations.

 Theorem 5.7

For n . 1, A
n
 has order n!/2.

PROOF For each odd permutation a, the permutation (12)a is even and, 
by the cancellation property in groups, (12)a 2 (12)b when a 2 b. Thus, 
there are at least as many even permutations as there are odd ones. On the 
other hand, for each even permutation a, the permutation (12)a is odd and 
(12)a 2 (12)b when a 2 b. Thus, there are at least as many odd permuta-
tions as there are even ones. It follows that there are equal numbers of 
even and odd permutations. Since |Sn| 5 n!, we have |An| 5 n!/2. 

The names for the symmetric group and the alternating group of  degree 
n come from the study of polynomials over n variables. A symmetric 
polynomial in the variables x1, x2, . . . , xn is one that is  unchanged under 
any transposition of two of the variables. An alternating polynomial is 
one that changes signs under any transposition of two of the variables. For 
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5 | Permutation Groups 111

Table 5.1  The Alternating Group A4 of Even Permutations of {1, 2, 3, 4}

(In this table, the permutations of A4 are designated as a1, a2, . . . , a12 and an entry k inside  
the table represents ak. For example, a3 a8 5 a6.)

  a1 a2 a3 a4 a5 a6 a7 a8 a9 a10 a11 a12

 (1) 5 a1 1 2 3 4 5 6 7 8 9 10 11 12
 (12)(34) 5 a2 2 1 4 3 6 5 8 7 10 9 12 11
 (13)(24) 5 a3 3 4 1 2 7 8 5 6 11 12 9 10
 (14)(23) 5 a4 4 3 2 1 8 7 6 5 12 11 10 9
 (123) 5 a5 5 8 6 7 9 12 10 11 1 4 2 3
 (243) 5 a6 6 7 5 8 10 11 9 12 2 3 1 4
 (142) 5 a7 7 6 8 5 11 10 12 9 3 2 4 1
 (134) 5 a8 8 5 7 6 12 9 11 10 4 1 3 2
 (132) 5 a9 9 11 12 10 1 3 4 2 5 7 8 6
 (143) 5 a10 10 12 11 9 2 4 3 1 6 8 7 5
 (234) 5 a11 11 9 10 12 3 1 2 4 7 5 6 8
 (124) 5 a12 12 10 9 11 4 2 1 3 8 6 5 7

example, the polynomial x1x2x3 is unchanged by any transposition of two 
of the three variables, whereas the polynomial (x12x2)(x12x3)(x22x3) 
changes signs when any two of the variables are transposed. Since every 
member of the symmetric group is the product of transpositions, the sym-
metric polynomials are those that are unchanged by members of the sym-
metric group. Likewise, since any member of the alternating group is the 
product of an even number of transpositions, the alternating polynomials 
are those that are unchanged by members of the alternating group.

The alternating groups are among the most important examples of 
groups. The groups A4 and A5 will arise on several occasions in later 
chapters. In particular, A5 has great historical significance.

A geometric interpretation of A4 is given in Example 8, and a multi-
plication table for A4 is given as Table 5.1.

 EXAMPLE 8 Rotations of a Tetrahedron
The 12 rotations of a regular tetrahedron can be conveniently described 
with the  elements of A4. The top row of Figure 5.1 illustrates the identity 
and three 180° “edge” rotations about axes joining midpoints of two 
edges. The second row consists of 120° “face” rotations about axes joining 
a vertex to the center of the opposite face. The third row consists of 2120° 
(or 240°) “face” rotations. Notice that the four rotations in the second row 
can be obtained from those in the first row by left-multiplying the four in 
the first row by the rotation (123), whereas those in the third row can be 
obtained from those in the first row by left-multiplying the ones in the first 
row by (132). 
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112 Groups

Many molecules with chemical formulas of the form AB4, such as 
methane (CH4) and carbon tetrachloride (CCl4), have A4 as their sym-
metry group. Figure 5.2 shows the form of one such molecule.

Many games and puzzles can be analyzed using permutations.

Figure 5.2 A tetrahedral AB4 molecule.
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Figure 5.1 Rotations of a regular tetrahedron.

99708_ch05_ptg01_hr_099-126.indd   112 06/06/12   9:24 AM

Copyright 2012 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights,
some third party content may be suppressed from the eBook and/or eChapter(s). Editorial review has deemed that any suppressed content does not materially
affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.



5 | Permutation Groups 113

 EXAMPLE 9 (Loren Larson) A Sliding Disk Puzzle
Consider the puzzle shown below (the space in the middle is empty).

1

2

3

4

5

6

By sliding disks from one position to another along the lines indicated 
without lifting or jumping them, can we obtain the following arrangement?

3

5

2

4

6

1

To answer this question, we view the positions as numbered in the 
first figure above and consider two basic operations. Let r denote the 
following operation: Move the disk in position 1 to the center position, 
then move the disk in position 6 to position 1, the disk in position 5 to 
position 6, the disk in position 4 to position 5, the disk in position 3 to 
position 4, then the disk in the middle position to position 3. Let s 
 denote the operation: Move the disk in position 1 to the center position, 
then move the disk in position 2 to position 1, then move the disk in po- 
sition 3 to position 2, and finally move the disk in the center to position 3. 
In permutation notation, we have r 5 (13456) and s 5 (132). The 
 permutation for the arrangement we seek is (16523). Clearly, if we can 
express (16523) as a string of r’s and s’s, we can achieve the desired 
arangement. Rather than attempt to find an appropriate combination of 
r’s and s’s by hand, it is easier to employ computer software that is de-
signed for this kind of problem. One such software program is GAP (see 
Suggested Software at the end of this chapter). With GAP, all we need to 
do is use the following commands:

gap. G :5 SymmetricGroup(6);
gap. r :5 (1,3,4,5,6); s :5 (1, 3, 2);
gap. K :5 Subgroup(G,[r,s]);
gap. Factorization(K,(1,6,5,2,3));
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114 Groups

The first three lines inform the computer that our group is the 
 subgroup of S6 generated by r 5 (13456) and s 5 (132). The fourth  
line requests that (16523) be expressed in terms of r and s. If we in-
clude the command  

gap. Size (K)

we would find that the order of the subgroup generated by r and s is 360. 
Then, observing that r and s are even permutations and that |A6| 5 360, 
we deduce that r and s can achieve any arrangement that corresponds to 
an even permutation. 

 Rubik's Cube  

The Rubik’s Cube made from 48 cubes called “facets” is the quintes-
sential example of a group theory puzzle. It was invented in 1974 by the 
Hungarian Erró́  Rubik. By 2009 more than 350 million Rubik’s Cubes 
had been sold. The current record time for solving it is under 7 seconds; 
under 31 seconds blindfolded. Although it was proved in 1995 that 
there was a starting configuration that required at least 20 moves to 
solve, it was not until 2010 that it was determined that every cube could 
be solved in at most 20 moves. This computer calculation utilized about 
35 CPU-years donated by Google to complete. In early discussions 
about the minimum number of moves to solve the cube in the worst 
possible case, someone called it “God’s number,” and the name stuck. 
A history of the quest to find God’s number is given at the website at 
http://www.cube20.org/.

The set of all configuration of the Rubik’s Cube form a group of 
permutations of order 43,252,003,274,489,856,00. This order can be 
computed using GAP by labeling the faces of the cube as shown here.
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The group of permutations of the cube is generated by the following 
rotations of the six layers.

top 5 (1,3,8,6)(2,5,7,4)(9,33,25,17)(10,34,26,18)(11,35,27,19)
left 5 (9,11,16,14)(10,13,15,12)(1,17,41,40)(4,20,44,37)(6,22,46,35)
front 5 (17,19,24,22)(18,21,23,20)(6,25,43,16)(7,28,42,13)(8,30,41,11)
right 5 (25,27,32,30)(26,29,31,28)(3,38,43,19)(5,36,45,21)(8,33,48,24)
rear 5 (33,35,40,38)(34,37,39,36)(3,9,46,32)(2,12,47,29)(1,14,48,27)
bottom 5  (41,43,48,46)(42,45,47,44)(14,22,30,38)(15,23,31,39) 

(16,24,32,40)

A Check-Digit Scheme Based on D5

In Chapter 0, we presented several schemes for appending a check digit 
to an identification number. Among these schemes, only the Interna-
tional Standard Book Number method was capable of detecting all 
 single-digit errors and all transposition errors involving adjacent digits. 
However, recall that this success was achieved by introducing the al-
phabetical character X to handle the case where 10 was required to 
make the dot product 0 modulo 11.

In contrast, in 1969, J. Verhoeff [2] devised a method utilizing the 
dihedral group of order 10 that detects all single-digit errors and all 
transposition errors involving adjacent digits without the necessity of 
avoiding certain numbers or introducing a new character. To describe 
this method, consider the permutation s 5 (01589427)(36) and the di-
hedral group of order 10 as represented in Table 5.2. (Here we use 0 
through 4 for the rotations, 5 through 9 for the reflections, and p for the 
operation of D5.)

Table 5.2 Multiplication for D5

 * 0 1 2 3 4 5 6 7 8 9

 0 0 1 2 3 4 5 6 7 8 9
 1 1 2 3 4 0 6 7 8 9 5
 2 2 3 4 0 1 7 8 9 5 6
 3 3 4 0 1 2 8 9 5 6 7
 4 4 0 1 2 3 9 5 6 7 8
 5 5 9 8 7 6 0 4 3 2 1
 6 6 5 9 8 7 1 0 4 3 2
 7 7 6 5 9 8 2 1 0 4 3
 8 8 7 6 5 9 3 2 1 0 4
 9 9 8 7 6 5 4 3 2 1 0
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Verhoeff’s idea was to view the digits 0 through 9 as the elements of 
the group D5 and to replace ordinary addition with calculations done in 
D5. In particular, to any string of digits a1a2 . . . an21, we append the 
check digit an so that s(a1) p s2(a2) p ? ? ? p sn22(an22) p sn21(an21) p  
s n (an) 5 0. [Here s2(x) 5 s(s(x)), s3(x) 5 s(s2(x)), and so on.] 
Since s has the property that s i(a) 2 s i(b) if a 2 b, all single-digit er-
rors are detected. Also, because

 a p s(b) 2 b p s(a)    if a 2 b, (1)

as can be checked on a case-by-case basis (see Exercise 67), it follows 
that all transposition errors involving adjacent digits are detected [since 
Equation (1) implies that s i(a) p s i11(b) 2 si(b) p s i11(a) if a 2 b].

From 1990 until 2002, the German government used a minor modi-
fication of Verhoeff’s check-digit scheme to append a check digit to the 
serial numbers on German banknotes. Table 5.3 gives the values of the 
functions s, s2, . . . , s10 needed for the computations. [The functional 
value s i( j) appears in the row labeled with s i and the column labeled j.] 
Since the serial numbers on the banknotes use 10 letters of the alphabet in 
addition to the 10 decimal digits, it is necessary to assign numerical val-
ues to the letters to compute the check digit. This assignment is shown in 
Table 5.4.

Table 5.3 Powers of s

  0 1 2 3 4 5 6 7 8 9

 s 1 5 7 6 2 8 3 0 9 4
 s2 5 8 0 3 7 9 6 1 4 2
 s3 8 9 1 6 0 4 3 5 2 7
 s4 9 4 5 3 1 2 6 8 7 0
 s5 4 2 8 6 5 7 3 9 0 1
 s6 2 7 9 3 8 0 6 4 1 5
 s7 7 0 4 6 9 1 3 2 5 8
 s8 0 1 2 3 4 5 6 7 8 9
 s9 1 5 7 6 2 8 3 0 9 4
 s10 5 8 0 3 7 9 6 1 4 2

Table 5.4 Letter Values

 A D G K L N S U Y Z

 0 1 2 3 4 5 6 7 8 9
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5 | Permutation Groups 117

To any string of digits a1a2 . . . a10 corresponding to a banknote serial 
number, the check digit a11 is chosen such that s (a1) p s 2(a2) p ? ? ? p 

s9(a9) p s10(a10) p a11 5 0 [instead of s(a1) p s2(a2) p ? ? ? p s10(a10) p 
s11(a11) 5 0 as in the Verhoeff scheme].

To trace through a specific example, consider the banknote (featur-
ing the mathematician Gauss) shown in Figure 5.3 with the number 
AG8536827U7. To verify that 7 is the appropriate check digit, we ob-
serve that s(0) p s2(2) p s3(8) p s 4(5) p s 5(3) p s 6(6) p s7(8) p 
s 8(2) p s9(7) p s10(7) p 7 5 1 p 0 p 2 p 2 p 6 p 6 p 5 p 2 p 0 p 1 p  
7 5 0, as it should be. [To illustrate how to use the multiplication table 
for D5, we compute 1 p 0 p 2 p 2 5 (1 p 0) p 2 p 2 5 1 p 2 p 2 5  
(1 p 2) p 2 5 3 p 2 5 0.]

 Figure 5.3 German banknote with serial number AG8536827U and check digit 7.

One shortcoming of the German banknote scheme is that it does not 
distinguish between a letter and its assigned numerical value. Thus, a 
substitution of 7 for U (or vice versa) and the transposition of 7 and U 
are not detected by the check digit. Moreover, the banknote scheme 
does not detect all transpositions of adjacent characters involving the 
check digit itself. For example, the transposition of D and 8 in posi-
tions 10 and 11 is not detected. Both of these defects can be avoided by 
using the Verhoeff method with D18, the dihedral group of order 36, to 
assign every letter and digit a distinct value together with an appropri-
ate function s [1]. Using this method to append a check character, all 
single-position errors and all transposition errors involving adjacent 
digits will be detected.
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Exercises 

When you feel how depressingly
slowly you climb,
it’s well to remember that
Things Take Time.

piet hein, “t. t. t.,” Grooks (1966)†*

  1. Let

a 5 c1 2 3 4 5 6

2 1 3 5 4 6
d   and  b � c1 2 3 4 5 6

6 1 2 4 3 5
d .

  Compute each of the following.
 a. a21

 b. ba
 c. ab

  2. Let

 a 5 c1 2 3 4 5 6 7 8

2 3 4 5 1 7 8 6
d  and b 5 c1 2 3 4 5 6 7 8

1 3 8 7 6 5 2 4
d.

  Write a, b, and ab as
 a. products of disjoint cycles;
 b. products of 2-cycles.
  3. Write each of the following permutations as a product of disjoint 

cycles.
 a. (1235)(413)
 b. (13256)(23)(46512)
 c. (12)(13)(23)(142)
  4. Find the order of each of the following permutations.
 a. (14)
 b. (147)
 c. (14762)
 d. (a1a2 

. . . ak)
  5. What is the order of each of the following permutations?
 a. (124)(357)
 b. (124)(3567)
 c. (124)(35)
 d. (124)(357869)
 e. (1235)(24567)
 f. (345)(245)

†Hein is a Danish engineer and poet and is the inventor of the game Hex.

*Piet Hein, “T.T.T.,” Grooks (1966) Copyright © Piet Hein Grooks. Reprinted with 
kind permission from Piet Hein a/s, DK-5500 Middelfart, Denmark.
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5 | Permutation Groups 119

  6. What is the order of each of the following permutations?

 a. c1 2 3 4 5 6

2 1 5 4 6 3
d

 b. c1 2 3 4 5 6 7

7 6 1 2 3 4 5
d

  7. What is the order of the product of a pair of disjoint cycles of 
lengths 4 and 6?

  8. Show that A8 contains an element of order 15.
  9. What are the possible orders for the elements of S6 and A6? What 

about A7? (This exercise is referred to in Chapter 25.)
 10. What is the maximum order of any element in A10?
 11. Determine whether the following permutations are even or odd.
 a. (135)
 b. (1356)
 c. (13567)
 d. (12)(134)(152)
 e. (1243)(3521)
 12. Show that a function from a finite set S to itself is one-to-one if and 

only if it is onto. Is this true when S is infinite? (This exercise is re-
ferred to in Chapter 6.)

 13. Suppose that a is a mapping from a set S to itself and a(a(x)) 5 x 
for all x in S. Prove that a is one-to-one and onto.

 14. Find eight elements in S6 that commute with (12)(34)(56). Do they 
form a subgroup of S6?

 15. Let n be a positive integer. If n is odd, is an n-cycle an odd or an 
even permutation? If n is even, is an n-cycle an odd or an even per-
mutation?

 16. If a is even, prove that a21 is even. If a is odd, prove that a21 is odd.
 17. Prove Theorem 5.6.
 18. In Sn, let a be an r-cycle, b an s-cycle, and g a t-cycle. Complete 

the following statements: ab is even if and only if r 1 s is . . . ; 
abg is even if and only if r 1 s 1 t is . . . .

 19. Let a and b belong to Sn. Prove that ab is even if and only if a 
and b are both even or both odd.

 20. Associate an even permutation with the number 11 and an odd 
permutation with the number 21. Draw an analogy between the 
result of multiplying two permutations and the result of multiply-
ing their corresponding numbers 11 or 21.
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 21. Let s be the permutation of the letters A through Z that takes each 
letter to the one directly below it in the display following. Write s 
in cycle form.

A B C D E F G H I J K L MN O P Q R S T U V WX Y Z
H D B G J E C M I L O N P F K R U S A W Q T V Z X Y

 22. If a and b are distinct 2-cycles, what are the possibilities for |ab|?
 23. Show that if H is a subgroup of Sn, then either every member of H 

is an even permutation or exactly half of the members are even. 
(This exercise is referred to in Chapter 25.)

 24. Suppose that H is a subgroup of Sn of odd order. Prove that H is a 
subgroup of An.

 25. Give two reasons why the set of odd permutations in Sn is not a 
subgroup.

 26. Let a and b belong to Sn. Prove that a21b21ab is an even 
 permutation.

 27. Use Table 5.1 to compute the following.
 a. The centralizer of a3 5 (13)(24)
 b. The centralizer of a12 5 (124)
 28. How many elements of order 5 are in S7?
 29. How many elements of order 4 does S6 have? How many elements 

of order 2 does S6 have?
 30. Prove that (1234) is not the product of 3-cycles.
 31. Let b [ S7 and suppose b 4 5 (2143567). Find b. What are the 

possibilities for b if b [ S9?
 32. Let b 5 (123)(145). Write b99 in disjoint cycle form.
 33. Find three elements s in S9 with the property that s 3 5  

(157)(283)(469).
 34. What cycle is (a1a2 ? ? ? an)

21?
 35. Let G be a group of permutations on a set X. Let a [ X and define 

stab(a) 5 {a [ G | a(a) 5 a}. We call stab(a) the stabilizer of a in 
G (since it consists of all members of G that leave a fixed). Prove 
that stab(a) is a subgroup of G. (This subgroup was introduced by 
Galois in 1832.) This exercise is referred to in Chapter 7.

 36. Let b 5 (1,3,5,7,9,8,6)(2,4,10). What is the smallest positive inte-
ger n for which bn 5 b25?

 37. Let a 5 (1,3,5,7,9)(2,4,6)(8,10). If am is a 5-cycle, what can you 
say about m?

 38. Let H 5 {b [ S5 | b(1) 5 1 and b(3) 5 3}. Prove that H is a  sub- 
group of S5. How many elements are in H? Is your argument valid 
when S5 is replaced by Sn for n $ 3? How many elements are in H 
when S5 is replaced by An for n $ 4?
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5 | Permutation Groups 121

 39. How many elements of order 5 are there in A6?
 40. In S4, find a cyclic subgroup of order 4 and a noncyclic subgroup 

of order 4.
 41. Suppose that b is a 10-cycle. For which integers i between 2 and 

10 is bi also a 10-cycle?
 42. In S3, find elements a and b such that |a| 5 2, |b| 5 2, and |ab| 5 3.
 43. Find group elements a and b in S5 such that |a| 5 3, |b| 5 3, and  

|ab| 5 5.
 44. Represent the symmetry group of an equilateral triangle as a group 

of permutations of its vertices (see Example 3).
 45. Prove that Sn is non-Abelian for all n $ 3.
 46. Prove that An is non-Abelian for all n $ 4.
 47. For n $ 3, let H 5 {b [ Sn | b(1) 5 1 or 2 and b(2) 5 1 or 2}. 

Prove that H is a subgroup of Sn. Determine |H|.
 48. Show that in S7, the equation x2 5 (1234) has no solutions but the 

equation x3 5 (1234) has at least two.
 49. If (ab) and (cd) are distinct 2-cycles in Sn, prove that (ab) and (cd) 

commute if and only if they are disjoint.
 50. Let a be a 2-cycle and b be a t-cycle in Sn. Prove that aba is a  

t-cycle.
 51. Use the previous exercise to prove that, if a and b belong to Sn and 

b is the product of k-cycles of lengths n1, n2, . . . , nk, then aba21 is 
the product of k-cycles of lengths n1, n2, . . . nk.

 52. Let a and b belong to Sn. Prove that bab21 and a are both even or 
both odd.

 53. What is the smallest positive  integer n such that Sn  has an element 
of order greater than 2n?

 54. Let n be an even positive integer. Prove that An has an element of 
order greater than n if and only if n $ 8.

 55. Let n be an odd positive integer. Prove that An has an element of 
order greater than 2n if and only if n $ 13.

 56. Let n be an even positive integer. Prove that An has an element of 
order greater than 2n if and only if n $ 14.

 57. Viewing the members of D4 as a group of permutations of a square 
labeled 1, 2, 3, 4 as described in Example 3, which geometric sym-
metries correspond to even permutations?

 58. Viewing the members of D5 as a group of permutations of a regular  
pentagon with consecutive vertices labeled 1, 2, 3, 4, 5, what geo-
metric symmetry corresponds to the permutation (14253)? Which 
symmetry corresponds to the permutation (25)(34)?
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 59. Let n be an odd integer greater than 1. Viewing Dn as a group of 
permutations of a regular n-gon with consecutive vertices labeled 
1, 2, . . . , n, explain why the rotation subgroup of Dn is a sub-
group of An.

 60. Let n be an integer greater than 1. Viewing Dn as a group of permu-
tations of a regular n-gon with consecutive vertices labeled 1, 2, . . . , 
n, determine for which n all the permutations corresponding to re-
flections in Dn are even permutations. Hint: Consider the fours 
cases for n mod 4.

 61. Show that A5 has 24 elements of order 5, 20 elements of order 3, and 
15 elements of order 2. (This exercise is referred to in Chapter 25.)

 62. Find a cyclic subgroup of A8 that has order 4.
 63. Find a noncyclic subgroup of A8 that has order 4.
 64. Compute the order of each member of A4. What arithmetic rela-

tionship do these orders have with the order of A4?
 65. Show that every element in An for n $ 3 can be expressed as a  

3-cycle or a product of 3-cycle.
 66. Show that for n $ 3, Z(Sn) 5 {e}.
 67. Verify the statement made in the discussion of the Verhoeff check 

digit scheme based on D5 that a * s(b) 2 b * s(a) for distinct a and 
b. Use this to prove that si(a) * si11(b) 2 si(b) * si11(a) for all i. 
Prove that this implies that all transposition errors involving adjacent 
digits are detected.

 68. Use the Verhoeff check-digit scheme based on D5 to append a 
check digit to 45723.

 69. Prove that every element of Sn (n . 1)  can be written as a product 
of elements of the form (1k).

 70. (Indiana College Mathematics Competition) A card-shuffling ma-
chine always rearranges cards in the same way relative to the order 
in which they were given to it. All of the hearts arranged in order 
from ace to king were put into the machine, and then the shuffled 
cards were put into the machine again to be shuffled. If the cards 
emerged in the order 10, 9, Q, 8, K, 3, 4, A, 5, J, 6, 2, 7, in what 
order were the cards after the first shuffle?

 71. Show that a permutation with odd order must be an even permutation.
 72. Let G be a group. Prove or disprove that H 5 {g2 | g [ G} is a sub-

group of G. (Compare with Example 5 in Chapter 3.)
 73. Let H 5 {a2 | a [ S4} and K 5 {a2 | a [ S5}. Prove H 5 A4 and  

K 5 A5.
 74. Let H 5 {a2 | a [ S6}. Prove H Z A6.

99708_ch05_ptg01_hr_099-126.indd   122 06/06/12   9:24 AM

Copyright 2012 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights,
some third party content may be suppressed from the eBook and/or eChapter(s). Editorial review has deemed that any suppressed content does not materially
affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.



5 | Permutation Groups 123

 75. Determine integers n for which H � {a [ An | a
2 � e} is a sub-

group of An.
 76. Given that b and g are in S4 with bg � 114322, gb � 112432, and 

b112 � 4, determine b and g.
 77. Why does the fact that the orders of the elements of A4 are 1, 2, and 

3 imply that |Z(A4)| 5 1?
 78. Find five subgroups of S5 of order 24.
 79. Find six subgroups of order 60 in S6.
 80. For n . 1, let H  be the set of all permutations in Sn that can be 

expressed as a product of a multiple of four transpositions. Show 
that H 5 An.

 81. Shown below are four tire rotation patterns recommended by the 
Dunlop Tire Company. Explain how these patterns can be repre-
sented as permutations in S4 and find the smallest subgroup of S4 
that contains these four patterns. Is the subgroup Abelian?

FRONT

Modified 
X

Rear Wheel Drive
Vehicles

4 Wheel Drive
Vehicles

FRONT

Modified X

X Tires to
the Driven Axle

Front Wheel Drive
Vehicles

Alternate Pattern

FRONT

 X

FRONT

Normal

 82. Label the four locations of tires on an automobile with the labels 
1, 2, 3, and 4, clockwise. Let a represent the operation of switching 
the tires in positions 1 and 3 and switching the tires in positions 
2 and 4. Let b represent the operation of rotating the tires in posi-
tions 2, 3, and 4 clockwise and leaving the tire in position 1 as is. 
Let G be the group of all possible combinations of a and b. How 
many elements are in G? 

 83. What would be wrong with using the 2-cycle notation (11) instead 
of the 1-cycle (1) to indicate that a cycle sends 1 to 1?
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Computer Exercises

Computer exercises for this chapter are available at the website:

http://www.d.umn.edu/~jgallian
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This article explains some card tricks that are based on permutation 
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In this article, permutation groups are used to analyze various sorts of 
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Chapter 3 of this book discusses several interesting applications of permu-
tations to games.

Douglas Hofstadter, “The Magic Cube’s Cubies Are Twiddled by Cubists and 
Solved by Cubemeisters,” Scientific American 244 (1981): 20–39.

This article, written by a Pulitzer Prize recipient, discusses the group the-
ory involved in the solution of the Magic (Rubik’s) Cube. In particular, 
permutation groups, subgroups, conjugates (elements of the form xyx21), 
commutators (elements of the form xyx21y21), and the “always even or 
 always odd” theorem (Theorem 5.5) are prominently mentioned. At one 
point, Hofstadter says, “It is this kind of marvelously concrete illustration 
of an abstract notion of group theory that makes the Magic Cube one of 
the most amazing things ever invented for teaching mathematical ideas.”
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Group Theory to Solve Them, Washington, D.C.: Mathematical Association  
of  America, 2003.

This book and the software that comes with it present the user with an array 
of computerized puzzles, plus tools to vary them in thousands of ways. The 
book provides the background needed to use the puzzle  software to its fullest 
potential, and also gives the reader a gentle,  not-too-technical introduction to 
the theory of permutation groups that is a prerequisite to a full understanding 
of how to solve puzzles of this type. The website http://www-instruct.nmu 
.edu/math_cs/kiltinen/web/mathpuzzles/ provides resources that expand 
upon the book. It also has news about puzzle software—modules that add 
functionality and fun to  puzzles.

Vladimir Dubrovsky, “Portrait of Three Puzzle Graces,” Quantum, Nov./Dec. 
1991: 63–66.

The author uses permutation groups to analyze solutions to the 15 puzzle, 
Rubik’s Cube, and Rubik’s Clock.

A. White and R. Wilson, “The Hunting Group,” Mathematical Gazette 79 
(1995): 5–16.

This article explains how permutation groups are used in bell ringing.

S. Winters, “Error-Detecting Schemes Using Dihedral Groups,” UMAP 
 Journal 11, no. 4 (1990): 299–308.

This article discusses error-detection schemes based on Dn for odd n. 
Schemes for both one and two check digits are analyzed.

Suggested Software

GAP is free for downloading. Versions are available for Unix, Windows, 
and Macintosh at:

http://www.gap-system.org
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Augustin Cauchy

You see that little young  
man? Well! He will supplant  
all of us in so far as we are  
mathematicians.

Spoken by Lagrange  
to Laplace about the  

11-year-old Cauchy

Augustin Louis Cauchy was born on 
 August 21, 1789, in Paris. By the time  
he was 11, both Laplace and Lagrange had 
recognized Cauchy’s extraordinary talent 
for mathematics. In school he won prizes for 
Greek, Latin, and the humanities. At the age 
of 21, he was given a commission in  
Napoleon’s army as a civil engineer. For the 
next few years, Cauchy attended to his engi-
neering duties while carrying out brilliant 
mathematical research on the side.

In 1815, at the age of 26, Cauchy was 
made Professor of Mathematics at the École 
Polytechnique and was recognized as the 
leading mathematician in France. Cauchy 
and his contemporary Gauss were among 
the last mathematicians to know the whole 
of mathematics as known at their time, and 
both made important contributions to nearly 

every branch, both pure and applied, as well 
as to physics and astronomy.

Cauchy introduced a new level of rigor 
into mathematical analysis. We owe our 
contemporary notions of limit and continu-
ity to him. He gave the first proof of the 
Fundamental Theorem of Calculus. Cauchy 
was the founder of complex function theory 
and a pioneer in the theory of permutation 
groups and determinants. His total written 
output of mathematics fills 24 large volumes. 
He wrote more than 500 research  papers 
 after the age of 50. Cauchy died at the age of 
67 on May 23, 1857.

For more information about Cauchy, 
visit:

http://www–groups.dcs 
.st-and.ac.uk/~history/

This stamp was issued by France  
in Cauchy’s honor.
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6 Isomorphisms

The basis for poetry and scientific discovery is the ability to comprehend 
the unlike in the like and the like in the unlike.

jacob bronowski

Motivation
Suppose an American and a German are asked to count a handful of ob-
jects. The American says, “One, two, three, four, five, . . . ,” whereas the 
German says, “Eins, zwei, drei, vier, fünf, . . . .” Are the two doing differ-
ent things? No. They are both counting the objects, but they are using dif-
ferent terminology to do so. Similarly, when one person says, “Two plus 
three is five” and another says, “Zwei und drei ist fünf,” the two are in 
agreement on the concept they are describing, but they are using different 
terminology to describe the concept. An analogous situation often occurs 
with groups; the same group is described with different terminology. We 
have seen two examples of this so far. In Chapter 1, we described the sym-
metries of a square in geometric terms (e.g., R90), whereas in Chapter 5 we 
described the same group by way of permutations of the corners. In both 
cases, the underlying group was the symmetries of a square. In Chapter 4, 
we observed that when we have a cyclic group of order n generated by a, 
the operation turns out to be essentially that of addition modulo n, since 
aras 5 ak, where k 5 (r 1 s) mod n. For example, each of U(43) and U(49)  
is cyclic of order 42. So, each has the form kal, where aras 5 a (r 1 s)mod 42.

Definition and Examples
In this chapter, we give a formal method for determining whether two 
groups defined in different terms are really the same. When this is the 
case, we say that there is an isomorphism between the two groups. This 
notion was first introduced by Galois about 180 years ago. The term 
isomorphism is derived from the Greek words isos, meaning “same” or 
“equal,” and morphe, meaning “form.” R. Allenby has colorfully 
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128 Groups

 defined an algebraist as “a person who can’t tell the difference between 
isomorphic systems.”

Definition Group Isomorphism
An isomorphism f from a group G to a group G is a one-to-one map-
ping (or function) from G onto G that preserves the group operation. 
That is,

f(ab) 5 f(a)f(b)    for all a, b in G.

If there is an isomorphism from G onto G, we say that G and G are 
 isomorphic and write G < G.

This definition can be visualized as shown in Figure 6.1. The pairs 
of dashed arrows represent the group operations.

a

b

ab

(a)

(b)

G G
φ

φ

φ
φ

φ

φφ (a)  (b)

Figure 6.1 

It is implicit in the definition of isomorphism that isomorphic  
groups have the same order. It is also implicit in the definition of  
isomorphism that the operation on the left side of the equal sign is that 
of G, whereas the operation on the right side is that of G. The four 
cases involving ? and 1 are shown in Table 6.1.

Table 6.1

G Operation G Operation Operation Preservation

 ? ? f(a ? b) 5 f(a) ? f(b)
 ? 1 f(a ? b) 5 f(a) 1 f(b)
 1 ? f(a 1 b) 5 f(a) ? f(b)
 1 1 f(a 1 b) 5 f(a) 1 f(b)  

There are four separate steps involved in proving that a group G is 
isomorphic to a group G.

Step 1 “Mapping.” Define a candidate for the isomorphism; that is, de-
fine a function f from G to G.

Step 2 “1–1.” Prove that f is one-to-one; that is, assume that f(a) 5 
f(b) and prove that a 5 b.
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6 | Isomorphisms 129

Step 3 “Onto.” Prove that f is onto; that is, for any element g in G, 
find an element g in G such that f(g) 5 g.

Step 4 “O.P.” Prove that f is operation-preserving; that is, show that 
f(ab) 5 f(a)f(b) for all a and b in G.

None of these steps is unfamiliar to you. The only one that may appear 
novel is the fourth one. It requires that one be able to obtain the same 
result by combining two elements and then mapping, or by mapping 
two elements and then combining them. Roughly speaking, this says 
that the two processes—operating and mapping—can be done in either 
order without affecting the result. This same concept arises in calculus 
when we say

lim
 xSa
1f 1x2 . g1x2 2 � lim

xSa
 f 1x2 lim

xSa
 g1x2

or

�
b

a

1f � g2 dx � �
b

a

f dx � �
b

a

g dx.

Before going any further, let’s consider some examples.

 EXAMPLE 1 Let G be the real numbers under addition and let G be 
the positive real numbers under multiplication. Then G and G are iso-
morphic under the mapping f(x) 5 2x. Certainly, f is a function from 
G to G. To prove that it is one-to-one, suppose that 2x 5 2y. Then log2 2

x 5 
log2 2

y, and therefore x 5 y. For “onto,” we must find for any positive 
real number y some real number x such that f(x) 5 y; that is, 2x 5 y. 
Well, solving for x gives log2 y. Finally,

f(x 1 y) 5 2x1y 5 2x ? 2y 5 f(x)f(y)

for all x and y in G, so that f is operation-preserving as well. 

  EXAMPLE 2 Any infinite cyclic group is isomorphic to Z. Indeed,  if 
a is a generator of the cyclic group, the mapping ak → k is an  
isomorphism. Any finite cyclic group kal of order n is isomorphic  
to Zn under the mapping ak → k mod n. That these correspondences are 
functions and are one-to-one is the essence of Theorem 4.1. Obviously, 
the mappings are onto. That the mappings are operation-preserving 
 follows from Exercise 9 in Chapter 0 in the finite case and from the 
 definitions in the infinite case. 
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130 Groups

 EXAMPLE 3 The mapping from R under addition to itself given by 
f(x) 5 x3 is not an isomorphism. Although f is one-to-one and onto, it 
is not operation-preserving, since it is not true that (x 1 y)3 5 x3 1 y3 
for all x and y. 

 EXAMPLE 4 U(10) < Z4 and U(5) < Z4. To verify this, one need 
only observe that both U(10) and U(5) are cyclic of order 4. Then ap-
peal to Example 2. 

 EXAMPLE 5 U(10) ] U(12). This is a bit trickier to prove. First, 
note that x2 5 1 for all x in U(12). Now, suppose that f is an isomor-
phism from U(10) onto U(12). Then,

f(9) 5 f(3 ? 3) 5 f(3)f(3) 5 1

and

f(1) 5 f(1 ? 1) 5 f(1)f(1) 5 1.

Thus, f(9) 5 f(1), but 9 2 1, which contradicts the assumption that   
f is one-to-one. 

 EXAMPLE 6 There is no isomorphism from Q, the group of rational 
numbers under addition, to Q*, the group of nonzero rational numbers 
under multiplication. If f were such a mapping, there would be a ra-
tional number a such that f(a) 5 21. But then

21 5 f(a) 5 f(1
2a 1 12a) 5 f(1

2a)f(1
2a) 5 [f(1

2a)]2.

However, no rational number squared is 21. 

 EXAMPLE 7 Let G 5 SL(2, R), the group of 2 3 2 real matrices 
with determinant 1. Let M be any 2 3 2 real matrix with determinant 1. 
Then we can define a mapping from G to G itself by fM(A) 5 MAM21 
for all A in G. To verify that fM is an isomorphism, we carry out the 
four steps.

Step 1 fM is a function from G to G. Here, we must show that fM(A) is 
indeed an element of G whenever A is. This follows from properties of 
determinants:

det (MAM21) 5 (det M)(det A)(det M)21 5 1 ? 1 ? 121 5 1.

Thus, MAM21 is in G.

Step 2 fM is one-to-one. Suppose that fM(A) 5 fM(B). Then MAM21 5 
MBM21 and, by left and right cancellation, A 5 B.
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6 | Isomorphisms 131

Step 3 fM is onto. Let B belong to G. We must find a matrix A in G 
such that fM(A) 5 B. How shall we do this? If such a matrix A is to ex-
ist, it must have the property that MAM21 5 B. But this tells us exactly 
what A must be! For we can solve for A to obtain A 5 M21BM and 
 verify that fM(A) 5 MAM21 5 M(M21BM)M21 5 B.

Step 4 fM is operation-preserving. Let A and B belong to G. Then,

 fM(AB) 5 M(AB)M21 5 MA(M21M)BM21

5 (MAM21)(MBM21) 5 fM(A)fM(B).

The mapping fM is called conjugation by M. 

Cayley’s Theorem
Our first theorem is a classic result of Cayley. An important generaliza-
tion of it will be given in Chapter 25.

 Theorem 6.1 Cayley’s Theorem (1854)

Every group is isomorphic to a group of permutations.

PROOF To prove this, let G be any group. We must find a group G of 
permutations that we believe is isomorphic to G. Since G is all we have 
to work with, we will have to use it to construct G. For any g in G, 
 define a function Tg from G to G by

Tg(x) 5 gx    for all x in G.

(In words, Tg is just multiplication by g on the left.) We leave it as an 
exercise (Exercise 33) to prove that Tg is a permutation on the set of 
 elements of G. Now, let G 5 {Tg | g [ G}. Then, G is a group under  
the operation of function composition. To verify this, we first observe 
that for any g and h in G we have TgTh(x) 5 Tg(Th(x)) 5 Tg(hx) 5 g(hx) 5 
(gh)x 5 Tgh(x), so that TgTh 5 Tgh. From this it follows that Te is the 
identity and (Tg)

21 5 Tg21 (see Exercise 9). Since function composition 
is associative, we have verified all the conditions for G to be a group.

The isomorphism f between G and G is now ready-made. For every 
g in G, define f(g) 5 Tg. If Tg 5 Th, then Tg(e) 5 Th(e) or ge 5 he. 
Thus, g 5 h and f is one-to-one. By the way G was constructed, we 
see that f is onto. The only condition that remains to be checked is that 
f is operation-preserving. To this end, let a and b belong to G. Then

 f(ab) 5 Tab 5 TaTb 5 f(a)f(b). 
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132 Groups

The group G constructed previously is called the left regular repre-
sentation of G.

 EXAMPLE 8 For concreteness, let us calculate the left regular repre-
sentation U1122 for U(12) 5 {1, 5, 7, 11}. Writing the permutations of 
U(12) in array form, we have (remember, Tx is just multiplication by x)

T1 � c1 5 7 11

1 5 7 11
d ,

    
T5 � c1 5 7 11

5 1 11 7
d ,

T7 � c1 5 7 11

7 11 1 5
d ,

    
T11 � c 1 5 7 11

11 7 5 1
d .

It is instructive to compare the Cayley tables for U(12) and its left regu-
lar representation U1122.

U1122 T1 T5 T7 T11

 T1 T1 T5 T7 T11
 T5 T5 T1 T11 T7
 T7 T7 T11 T1 T5
 T11 T11 T7 T5 T1

U(12) 1 5 7 11

 1 1 5 7 11
 5 5 1 11 7
 7 7 11 1 5
 11 11 7 5 1

It should be abundantly clear from these tables that U(12) and U1122 
are only notationally different. 

Cayley’s Theorem is important for two contrasting reasons. One is 
that it allows us to represent an abstract group in a concrete way. A sec-
ond is that it shows that the present-day set of axioms we have adopted 
for a group is the correct abstraction of its much earlier predecessor—a 
group of permutations. Indeed, Cayley’s Theorem tells us that abstract 
groups are not different from permutation groups. Rather, it is the 
viewpoint that is different. It is this difference of viewpoint that has 
stimulated the tremendous progress in group theory and many other 
branches of mathematics in the 20th century.

It is sometimes very difficult to prove or disprove, whichever the 
case may be, that two particular groups are isomorphic. For example, it 
requires somewhat sophisticated techniques to prove the surprising fact 
that the group of real numbers under addition is isomorphic to the 
group of complex numbers under addition. Likewise, it is not easy to 
prove the fact that the group of nonzero complex numbers under  
multiplication is isomorphic to the group of complex numbers with ab-
solute value of 1 under multiplication. In geometric terms, this says that, 
as groups, the punctured plane and the unit circle are isomorphic [1]. 
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6 | Isomorphisms 133

PROOF We will restrict ourselves to proving only properties 1, 2, and 4, 
but observe that property 5 follows from properties 1 and 2, property 6 
follows from property 2, and property 7 follows from property 5. For 
convenience, let us denote the identity in G by e and the identity in G 
by e. Then, since e 5 ee, we have

f(e) 5 f(ee) 5 f(e)f(e).

Also, because f(e) [ G, we have f(e) 5 ef (e), as well. Thus, by can-
cellation, e 5 f(e). This proves property 1.

For positive integers, property 2 follows from the definition of an 
isomorphism and mathematical induction. If n is negative, then 2n is 
positive, and we have from property 1 and the observation about the 
positive integer case that e 5 f(e) 5 f(gng2n) 5 f(gn)f(g2n) 5  
f(gn)(f(g))2n. Thus, multiplying both sides on the right by (f(g))n, we 
have (f(g))n 5 f(gn). Property 1 takes care of the case n 5 0.

To prove property 4, let G 5 kal and note that, by closure, kf(a)l # 
G. Because f is onto, for any element b in G, there is an element ak in 
G such that f(ak) 5 b. Thus, b 5 (f(a))k and so b [ kf(a)l. This 
proves that G 5 kf(a)l.

Now suppose that G 5 kf(a)l. Clearly, kal # G. For any element  
b in G, we have f(b) [ kf(a)l. So, for some integer k we have  

Properties of Isomorphisms
Our next two theorems give a catalog of properties of isomorphisms 
and isomorphic groups.

 Theorem 6.2 Properties of Isomorphisms Acting on Elements

Suppose that f is an isomorphism from a group G onto a group G. 
Then

 1. f carries the identity of G to the identity of G.

 2.  For every integer n and for every group element a in G, f(an) 5 

[f(a)]n.

 3.  For any elements a and b in G, a and b commute if and only if 

f(a) and f(b) commute.

 4. G 5 kal if and only if  G 5 kf(a)l.
 5. |a| 5 |f(a)| for all a in G (isomorphisms preserve orders).

 6.  For a fixed integer k and a fixed group element b in G, the 

equation xk 5 b has the same number of solutions in G as does 

the equation xk 5 f(b) in G.

 7.  If G is finite, then G and G have exactly the same number of 

 elements of every order.
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f(b) 5 (f(a))k 5 f(ak). Because f is one-to-one, b 5 ak. This proves 
that kal 5 G. 

When the group operation is addition, property 2 of Theorem 6.2 is 
f(na) 5 nf(a); property 4 says that an isomorphism between two  
cyclic groups takes a generator to a generator.

Property 6 is quite useful for showing that two groups are not iso-
morphic. Often b is picked to be the identity. For example, consider C* 
and R*. Because the equation x4 5 1 has four solutions in C* but only 
two in R*, no matter how one attempts to define an isomorphism from 
C* to R*, property 6 cannot hold.

 Theorem 6.3 Properties of Isomorphisms Acting on Groups

Suppose that f is an isomorphism from a group G onto a group G. 
Then

 1. f21 is an isomorphism from G onto G.

 2. G is Abelian if and only if G is Abelian.

 3. G is cyclic if and only if G is cyclic.

 4.  If K is a subgroup of G, then f(K) 5 {f(k) | k [ K} is a 

 subgroup of G.

 5.  If K is a subgroup of G, then f21 (K) 5 {g [ G | f(g) [ K} is 

a subgroup of G.

 6. f(Z(G)) 5 Z(G).

PROOF Properties 1 and 4 are left as exercises (Exercises 31 and 32). 
Properties 2 and 6 are a direct consequence of property 3 of Theorem 6.2. 
Property 3 follows from property 4 of Theorem 6.2 and property 1 of 
Theorem 6.3. Property 5 follows from properties 1 and 4. 

Theorems 6.2 and 6.3 show that isomorphic groups have many prop-
erties in common. Actually, the definition is precisely formulated so 
that isomorphic groups have all group theoretic properties in common. 
By this we mean that if two groups are isomorphic, then any property 
that can be expressed in the language of group theory is true for one if 
and only if it is true for the other. This is why algebraists speak of iso-
morphic groups as “equal” or “the same.” Admittedly, calling such 
groups equivalent, rather than the same, might be more appropriate, but 
we bow to long-standing tradition.

Automorphisms
Certain kinds of isomorphisms are referred to so often that they have 
been given special names.
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6 | Isomorphisms 135

Definition Automorphism
An isomorphism from a group G onto itself is called an automorphism 

of G.

The isomorphism in Example 7 is an automorphism of SL(2, R). 
Two more examples follow.

 EXAMPLE 9 The function f from C to C given by f(a 1 bi) 5  
a 2 bi is an automorphism of the group of complex numbers under 
 addition. The restriction of f to C* is also an automorphism of the 
group of nonzero complex numbers under multiplication. (See   
Exercise 35.) 

 EXAMPLE 10 Let R2 5 {(a, b) | a, b [ R}. Then f(a, b) 5 (b, a) 
is an automorphism of the group R2 under componentwise addition. 
Geometrically, f reflects each point in the plane across the line y 5 x. 
More generally, any reflection across a line passing through the  
 origin or any rotation of the plane about the origin is an automor-
phism of R2. 

The isomorphism in Example 7 is a particular instance of an auto-
morphism that arises often enough to warrant a name and notation of 
its own.

Definition Inner Automorphism Induced by a
Let G be a group, and let a [ G. The function f

a
 defined by f

a
(x) 5 

axa21 for all x in G is called the inner automorphism of G induced by a.

We leave it for the reader to show that fa is actually an automor-
phism of G. (Use Example 7 as a model.)

 EXAMPLE 11 The action of the inner automorphism of D4 induced 
by R90 is given in the following table.

 x 
fR90→  R90 x R90

–1

 R0 → R90R0R90
–1 5 R0

 R90 → R90R90R90
21 5 R90

 R180 → R90R180R90
21 5 R180

 R270 → R90R270R90
21 5 R270

 H → R90HR90
21 5 V

 V → R90VR90
21 5 H

 D → R90DR90
21 5 D9

 D9 → R90D9R90
21 5 D 
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When G is a group, we use Aut(G) to denote the set of all auto- 
morphisms of G and Inn(G) to denote the set of all inner automor-
phisms of G. The reason these sets are noteworthy is demonstrated by 
the next theorem.

 Theorem 6.4 Aut(G) and Inn(G) Are Groups†

The set of automorphisms of a group and the set of inner 

automorphisms of a group are both groups under the operation of 

function composition.

PROOF The proof of Theorem 6.4 is left as an exercise (Exercise 15).    
 

The determination of Inn(G) is routine. If G 5 {e, a, b, c. . . .}, then 
Inn(G) 5 {fe, fa, fb, fc, . . .}. This latter list may have duplications, 
however, since fa may be equal to fb even though a 2 b (see Exercise 
43). Thus, the only work involved in determining Inn(G) is deciding 
which distinct elements give the distinct automorphisms. On the other 
hand, the determination of Aut(G) is, in general, quite involved.

 EXAMPLE 12 Inn(D4)
To determine Inn(D4), we first observe that the complete list of inner 
automorphisms is fR0

, fR90
, fR180

, fR270
, fH, fV, fD, and fD9. Our job is 

to determine the repetitions in this list. Since R180 [ Z(D4), we have 
fR180

(x) 5 R180xR180
21 5 x, so that fR180

 5 fR0
. Also, fR270

(x) 5 
R270xR270

21 5 R90R180xR180
21R90

21 5 R90xR90
21 5 fR90

(x). Similarly, 
since H 5 R180V and D9 5 R180D, we have fH 5 fV and fD 5 fD9.  
This proves that the previous list can be pared down to fR0

, fR90
, fH, 

and fD. We leave it to the reader to show that these are distinct   
(Exercise 13). 

 EXAMPLE 13 Aut(Z10)
To compute Aut(Z10), we try to discover enough information about an 
element a of Aut(Z10) to determine how a must be defined. Because Z10 
is so simple, this is not difficult to do. To begin with, observe that once 
we know a(1), we know a(k) for any k, because

†The group Aut(G) was first studied by O. Hölder in 1893 and, independently, by E. H. 
Moore in 1894.
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6 | Isomorphisms 137

 a(k) 5 a(1 1 1 1 ? ? ? 1 1)
 

k terms
 5 a(1) 1 a(1) 1 ? ? ? 1 a(1) 5 ka(1).

 
k terms

So, we need only determine the choices for a(1) that make a an 
 automorphism of Z10. Since property 5 of Theorem 6.2 tells us that 
|a(1)| 5 10, there are four candidates for a(1):

a(1) 5 1,    a(1) 5 3,    a(1) 5 7,    a(1) 5 9.

To distinguish among the four possibilities, we refine our notation by 
denoting the mapping that sends 1 to 1 by a1, 1 to 3 by a3, 1 to 7 by a7, 
and 1 to 9 by a9. So the only possibilities for Aut(Z10) are a1, a3, a7, and 
a9. But are all these automorphisms? Clearly, a1 is the identity. Let us 
check a3. Since x mod 10 5 y mod 10 implies 3x mod 10 5 3y mod 10,  
a3 is well defined. Moreover, because a3112 � 3 is a generator of Z10, it 
follows that a3 is onto (and, by Exercise 12 in Chapter 5, it is also one-  
to-one). Finally, since a3(a 1 b) 5 3(a 1 b) 5 3a 1 3b 5 a3(a) 1 a3(b), 
we see that a3 is operation-preserving as well. Thus, a3 [ Aut(Z10). The 
same argument shows that a7 and a9 are also automorphisms.

This gives us the elements of Aut(Z10) but not the structure. For in-
stance, what is a3a3? Well, (a3a3)(1) 5 a3(3) 5 3 ? 3 5 9 5 a9(1), so 
a3a3 5 a9. Similar calculations show that a3

3 5 a7 and a3
4 5 a1, so 

that |a3| 5 4. Thus, Aut(Z10) is cyclic. Actually, the following Cayley 
tables reveal that Aut(Z10) is isomorphic to U(10). 

U(10) 1 3 7 9

1 1 3 7 9
3 3 9 1 7
7 7 1 9 3
9 9 7 3 1

Aut(Z10) a1 a3 a7 a9

 a1 a1 a3 a7 a9
 a3 a3 a9 a1 a7
 a7 a7 a1 a9 a3
 a9 a9 a7 a3 a1

With Example 13 as a guide, we are now ready to tackle the group 
Aut(Zn). The result is particularly nice, since it relates the two kinds of 
groups we have most frequently encountered thus far—the cyclic 
groups Zn and the U-groups U(n).

 Theorem 6.5 Aut(Zn) < U(n)

For every positive integer n, Aut(Z
n
) is isomorphic to U(n).
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PROOF As in Example 13, any automorphism a is determined by the 
value of a(1), and a(1) [ U(n). Now consider the correspondence 
from Aut(Zn) to U(n) given by T: a → a(1). The fact that a(k) 5 ka(1) 
(see Example 13) implies that T is a one-to-one mapping. For if a and 
b belong to Aut(Zn) and a(1) 5 b(1), then a(k) 5 ka(1) 5 kb(1) 5 
b(k) for all k in Zn, and therefore a 5 b.

To prove that T is onto, let r [ U(n) and consider the mapping a 
 from Zn to Zn defined by a(s) 5 sr (mod n) for all s in Zn. We leave it as  
an exercise to verify that a is an automorphism of Zn (see Exercise 27). 
Then, since T(a) 5 a(1) 5 r, T is onto U(n).

Finally, we establish the fact that T is operation-preserving. Let a,  
b [ Aut(Zn). We then have

T(ab) 5 (ab)(1) 5 a(b(1)) 5 a(1 1 1 1 ? ? ? 1 1)
 

 b(1)

 5 a(1) 1 a(1) 1 ? ? ? 1 a(1) 5 a(1)b(1)
 

 b(1)
 5 T(a)T(b).

This completes the proof.  

Exercises

Being a mathematician is a bit like being a manic depressive: you spend 
your life alternating between giddy elation and black despair.

steven g. krantz, A Primer of Mathematical Writing

  1. Find an isomorphism from the group of integers under addition to 
the group of even integers under addition.

  2. Find Aut(Z).
  3. Let R1 be the group of positive real numbers under multiplication. 

Show that the mapping f(x) 5 2x is an automorphism of R1.
  4. Show that U(8) is not isomorphic to U(10).
  5. Show that U(8) is isomorphic to U(12).
  6. Prove that isomorphism is an equivalence relation. That is, for any 

groups G, H, and K, G < G, G < H implies H < G, and G < H and 
H < K implies G < K.

  7. Prove that S4 is not isomorphic to D12.
  8. Show that the mapping a → log10 a is an isomorphism from R+ 

 under multiplication to R under addition.
  9. In the notation of Theorem 6.1, prove that Te is the identity and  

that (Tg)
21 5 Tg21.
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6 | Isomorphisms 139

 10. Let G be a group. Prove that the mapping a(g) 5 g21 for all g in G 
is an automorphism if and only if G is Abelian.

 11. If g and h are elements from a group, prove that fgfh 5 fgh.
 12. Find two groups G and H such that G ] H, but Aut(G) < Aut(H).
 13. Prove the assertion in Example 12 that the inner automorphisms 

fR0
, fR90

, fH, and fD of D4 are distinct.
 14. Find Aut(Z6).
 15. If G is a group, prove that Aut(G) and Inn(G) are groups.
 16. If a group G is isomorphic to H, prove that Aut(G) is isomorphic to 

Aut(H).
 17. Suppose f belongs to Aut(Zn) and a is relatively prime to n.  

If f(a) 5 b, determine a formula for f(x).
 18. Let H be the subgroup of all rotations in Dn and let f be an auto-

morphism of Dn. Prove that f(H) 5 H. (In words, an automor-
phism of Dn carries rotations to rotations.)

 19. Let H 5 {b [ S5 | b(1) 5 1} and K 5 {b [ S5 | b(2) 5 2}. Prove 
that H is isomorphic to K. Is the same true if S5 is replaced by Sn, 
where n $ 3?

 20. Show that Z has infinitely many subgroups isomorphic to Z.
 21. Let n be an even integer greater than 2 and let f be an automor-

phism of Dn. Determine f(R180).
 22. Let f be an automorphism of a group G. Prove that H 5 {x [ G | 

f(x) 5 x} is a subgroup of G.
 23. Give an example of a cyclic group of smallest order that contains a 

subgroup isomorphic to Z12 and a subgroup isomorphic to Z20. No 
need to prove anything, but explain your reasoning.

 24. Suppose that f: Z20 S Z20 is an automorphism and f(5) 5 5. What 
are the possibilities for f(x)?

 25. Identify a group G that has subgroups isomorphic to Zn for all pos-
itive integers n.

 26. Prove that the mapping from U(16) to itself given by x → x3 is an 
automorphism. What about x → x5 and x → x7? Generalize.

 27. Let r [ U(n). Prove that the mapping a: Zn → Zn defined by a(s) 5  
sr mod n for all s in Zn is an automorphism of Zn. (This exercise is 
 referred to in this chapter.)

 28. The group e c1 a

0 1
d ` a [ Z f  is isomorphic to what familiar 

group? What if Z is replaced by R?
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140 Groups

 29.    If f and g are isomorphisms from the cyclic group HaI to some 
group and f1a2 � g1a2, prove that f � g.

 30. Suppose that f: Z50S Z50 is an automorphism with f1112 � 13. 
Determine a formula for f1x2.

 31. Prove property 1 of Theorem 6.3.
 32. Prove property 4 of Theorem 6.3.
 33. Referring to Theorem 6.1, prove that Tg is indeed a permutation on 

the set G.
 34. Prove or disprove that U(20) and U(24) are isomorphic.
 35. Show that the mapping f(a 1 bi) 5 a 2 bi is an automorphism of 

the group of complex numbers under addition. Show that f pre-
serves complex multiplication as well—that is, f(xy) 5 f(x)f(y) 
for all x and y in C. (This exercise is referred to in Chapter 15.)

 36. Let

G 5 {a 1 b22 | a, b are rational}

  and

H 5 e ca 2b

b a
d ` a, b are rational f .

  Show that G and H are isomorphic under addition. Prove that G 
and H are closed under multiplication. Does your isomorphism 
preserve multiplication as well as addition? (G and H are examples 
of rings—a topic we will take up in Part 3.)

 37. Prove that Z under addition is not isomorphic to Q under addition.
 38. Prove that the quaternion group (see Exercise 4, Supplementary Exer-

cises for Chapters 1–4) is not isomorphic to the dihedral group D4.
 39. Let C be the complex numbers and

M 5  e ca �b

b a
d `  a, b [ R f .

  Prove that C and M are isomorphic under addition and that C* and 
M*, the nonzero elements of M, are isomorphic under multiplication.

 40. Let Rn 5 {(a1, a2, . . . , an) | ai [ R}. Show that the mapping f: 
(a1, a2, . . . , an) → (2a1, 2a2, . . . , 2an) is an automorphism of  
the group Rn under componentwise addition. This automorphism 
is called inversion. Describe the action of f geometrically.

 41. Consider the following statement: The order of a subgroup divides 
the order of the group. Suppose you could prove this for finite 
permuta tion groups. Would the statement then be true for all finite 
groups? Explain.
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6 | Isomorphisms 141

 42. Suppose that G is a finite Abelian group and G has no element of 
order 2. Show that the mapping g → g2 is an automorphism of G. 
Show, by example, that there is an infinite Abelian group for which 
the mapping g S g2 is one-to-one and operation-preserving but not 
an automorphism.

 43. Let G be a group and let g [ G. If z [ Z(G), show that the inner 
 automorphism induced by g is the same as the inner automorphism 
induced by zg (that is, that the mappings fg and fzg are equal).

 44. Show that the mapping a → log10 a is an isomorphism from R+ 
 under multiplication to R under addition.

 45. Suppose that g and h induce the same inner automorphism of a 
group G. Prove that h21g [ Z(G).

 46. Combine the results of Exercises 43 and 45 into a single “if and 
only if” theorem.

 47. If x and y are elements in Sn (n $ 3), prove that fx 5 fy implies  
x 5 y. (Here, fx is the inner automorphism of Sn induced by x.)

 48. Let f be an isomorphism from a group G to a group G and let a 
belong to G. Prove that f(C(a)) 5 C(f(a)).

 49. Suppose the f and g are isomorphisms of some group G to the 
same group. Prove that H 5 {g [ G | f(g) 5 g(g)} is a subgroup 
of G.

 50. Suppose that b is an automorphism of a group G. Prove that H 5 
{g [ G | b2 (g) 5 g} is a subgroup of G. Generalize.

 51. Suppose that G is an Abelian group and f is an automorphism of 
G. Prove that H 5 {x [ G | f(x) 5 x21} is a subgroup of G.

 52. Given a group G, define a new group G* that has the same  
elements as G with the operation * defines by a * b 5 ba for all  
a and b in G*. Prove that the mapping from G to G* defined by  
f(x) 5 x21 for all x in G is an isomorphism from G onto G*.

 53. Let a belong to a group G and let |a| be finite. Let fa be the auto-
morphism of G given by fa(x) 5 axa21. Show that |fa| divides |a|. 
Exhibit an element a from a group for which 1 , |fa| , |a|.

 54. Let G 5 {0, 62, 64, 66, . . .} and H 5 {0, 63, 66, 69, . . .}. 
Show that G and H are isomorphic groups under addition. Does 
your isomorphism preserve multiplication? Generalize to the case 
when G � kml and H � knl, where m and n are integers.

 55. Suppose that f is an automorphism of D4 such that f1R902 � R270 
and f1V2 � V . Determine f1D2 and f1H2.

 56. In Aut(Z9), let ai denote the automorphism that sends 1 to i where 
gcd(i, 9) 5 1. Write a5 and a8 as permutations of {0, 1, . . . , 8} in 
disjoint cycle form. [For example, a2 5 (0)(124875)(36).]
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142 Groups

 57. Write the permutation corresponding to R90 in the left regular rep-
resentation of D4 in cycle form.

 58. Show that every automorphism f of the rational numbers Q under 
addition to itself has the form f(x) 5 xf(1).

 59. Prove that Q1, the group of positive rational numbers under multi-
plication, is isomorphic to a proper subgroup.

 60. Prove that Q, the group of rational numbers under addition, is not 
 isomorphic to a proper subgroup of itself.

 61. Prove that every automorphism of R*, the group of nonzero real 
numbers under multiplication, maps positive numbers to positive 
numbers and negative numbers to negative numbers.

 62. Let G be a finite group. Show that in the disjoint cycle form of the 
right regular representation Tg1x2 � xg of G, each cycle has  
length 0 g 0 .

 63. Give a group theoretic proof that Q under addition is not isomor-
phic to R+ under  multiplication.

Reference

 1. J. R. Clay, “The Punctured Plane Is Isomorphic to the Unit 
Circle,” Journal of Number Theory 1 (1969): 500–501.

Computer Exercises

Software for the computer exercise in this chapter is available at the 
website:

http://www.d.umn.edu/~jgallian
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Arthur Cayley

Cayley is forging the weapons for future 
generations of physicists.

peter tait

Arthur Cayley was born on August 16, 
1821, in England. His genius showed itself at 
an early age. He published his first research 
paper while an  undergraduate of 20, and in 
the next year he published eight papers. 
While still in his early 20s, he originated the 
concept of n-dimensional geometry.

After graduating from Trinity College, 
Cambridge, Cayley stayed on for three years 
as a tutor. At the age of 25, he began a 14-
year career as a lawyer. During this period, 
he published approximately 200 mathemati-
cal papers, many of which are now classics.

In 1863, Cayley accepted the newly es-
tablished Sadlerian professorship of mathe-
matics at Cambridge University. He spent 
the rest of his life in that position. One of his 
notable accomplishments was his role in the 
successful effort to have women admitted to 
Cambridge.

Among Cayley’s many innovations in 
mathematics were the notions of an abstract 
group and a group algebra, and the matrix 
concept. He made major contributions to  
geometry and linear algebra. Cayley and his 
lifelong friend and collaborator J. J. Sylvester 
were the founders of the theory of invariants, 
which was later to play an important role in 
the theory of relativity.

Cayley’s collected works comprise 13 
volumes, each about 600 pages in length. 
He died on January 26, 1895.

To find more information about Cayley, 
visit:

http://www-groups.dcs 
.st-and.ac.uk/~history/
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Cosets and Lagrange’s 
Theorem7

Properties of Cosets
In this chapter, we will prove the single most important theorem in finite 
group theory—Lagrange’s Theorem. In his book on abstract algebra,  
I. N. Herstein likened it to the ABC’s for finite groups. But first we in-
troduce a new and powerful tool for analyzing a group—the notion of a 
coset. This notion was invented by Galois in 1830, although the term 
was coined by G. A. Miller in 1910.

Definition Coset of H in G
Let G be a group and let H be a nonempty subset of G. For any a [ G, 
the set {ah | h [ H} is denoted by aH. Analogously, Ha 5 {ha | h [ H} 
and aHa21 5 {aha21 | h [ H}. When H is a subgroup of G, the set aH is 
called the left coset of H in G containing a, whereas Ha is called the right 

coset of H in G containing a. In this case, the element a is called the coset 

 representative of aH (or Ha). We use |aH| to denote the number of ele-
ments in the set aH, and |Ha| to denote the number of elements in Ha.

 EXAMPLE 1 Let G 5 S3 and H 5 {(1), (13)}. Then the left cosets of 
H in G are

 (1)H 5 H,
(12)H 5 {(12), (12)(13)} 5 {(12), (132)} 5 (132)H,

 (13)H 5 {(13), (1)} 5 H,
 (23)H 5 {(23), (23)(13)} 5 {(23), (123)} 5 (123)H. 

It might be difficult , at this point , for students to see the extreme 
importance of this result [Lagrange’s Theorem]. As we penetrate the subject 
more deeply they will become more and more aware of its basic character.

i. n. herstein, Topics in Algebra
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7 | Cosets and Lagrange’s Theorem 145

 EXAMPLE 2 Let _ 5 {R0, R180} in D4, the dihedral group of order 8. 
Then,

 R0_ 5 _,
 R90_ 5 {R90, R270} 5 R270_,
 R180_ 5 {R180, R0} 5 _,
 V_ 5 {V, H} 5 H_,
 D_ 5 {D, D9} 5 D9_. 

 EXAMPLE 3 Let H 5 {0, 3, 6} in Z9 under addition. In the case that 
the group operation is addition, we use the notation a 1 H instead of 
aH. Then the cosets of H in Z9 are

0 1 H 5 {0, 3, 6} 5 3 1 H 5 6 1 H,
1 1 H 5 {1, 4, 7} 5 4 1 H 5 7 1 H,

 2 1 H 5 {2, 5, 8} 5 5 1 H 5 8 1 H. 

The three preceding examples illustrate a few facts about cosets that 
are worthy of our attention. First, cosets are usually not  subgroups. 
Second, aH may be the same as bH, even though a is not the same as b. 
Third, since in Example 1 (12)H 5 {(12), (132)} whereas H(12) 5 
{(12), (123)}, aH need not be the same as Ha.

These examples and observations raise many questions. When does 
aH 5 bH? Do aH and bH have any elements in common? When does  
aH 5 Ha? Which cosets are subgroups? Why are cosets important? The 
next lemma and theorem answer these questions. (Analogous results 
hold for right cosets.)

 Lemma Properties of Cosets

Let H be a subgroup of G, and let a and b belong to G. Then,

 1. a [ aH.

 2. aH 5 H if and only if a [ H.

 3. (ab)H 5 a(bH) and H(ab) 5 (Ha)b.

 4. aH 5 bH if and only if a [ bH.

 5. aH 5 bH or aH > bH 5 [.

 6. aH 5 bH if and only if a21b [ H.

 7. |aH| 5 |bH|.
 8. aH 5 Ha if and only if H 5 aHa21.

 9. aH is a subgroup of G if and only if a [ H.

PROOF

1. a 5 ae [ aH.
2.  To verify property 2, we first suppose that aH 5 H. Then a 5  

ae [ aH 5 H. Next, we assume that a [ H and show that aH # H 
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and H # aH. The first inclusion follows directly from the closure of 
H. To show that H # aH, let h [ H. Then, since a [ H and h [ H, we 
know that a21h [ H. Thus, h 5 eh 5 (aa21)h 5 a(a21h) [ aH.

3.  This follows directly from (ab)h 5 a(bh) and h(ab) 5 (ha)b.
4.  If aH 5 bH, then a 5 ae [ aH 5 bH. Conversely, if a [ bH we have  

a 5 bh where h [ H, and therefore aH 5 (bh)H 5 b(hH) 5  bH.
5.  Property 5 follows directly from property 4, for if there is an ele-

ment c in aH y bH, then cH 5 aH and cH 5 bH.
6.  Observe that aH 5 bH if and only if H 5 a21bH. The result now 

follows from property 2.
7.  To prove that |aH| 5 |bH|, it suffices to define a one-to-one map-

ping from aH onto bH. Obviously, the correspondence ah → bh  
maps aH onto bH. That it is one-to-one follows directly from the 
cancellation property.

8.  Note that aH 5 Ha if and only if (aH)a21 5 (Ha)a21 5 H(aa–1) 5 
H—that is, if and only if aHa21 5 H.

9.  If aH is a subgroup, then it contains the identity e. Thus, aH >  
eH 2 [; and, by property 5, we have aH 5 eH 5 H. Thus, from 
 property 2, we have a [ H. Conversely, if a [ H, then, again by 
property 2, aH 5 H. 

Although most mathematical theorems are written in symbolic form, 
one should also know what they say in words. In the preceding lemma, 
property 1 says simply that the left coset of H containing a does contain a. 
Property 2 says that the H “absorbs” an element if and only if the element 
belongs to H. Property 3 says that the left coset of H created by multiply-
ing H on the left by ab is the same as the one created by multiplying H on 
the left by b then multiplying the resulting coset bH on the left by a (and 
analogously for multiplication on the right by ab). Property 4 shows that a 
left coset of H is uniquely determined by any one of its elements. In par-
ticular, any element of a left coset can be used to represent the coset. 
Property 5 says—and this is very important—that two left cosets of H are 
either identical or disjoint. Thus, a left coset of H is uniquely determined 
by any one of its elements. In particular, any element of a left coset can be 
used to represent the coset. Property 6 shows how we may transfer a ques-
tion about equality of left cosets of H to a question about H itself and vice 
versa. Property 7 says that all left cosets of H have the same size. Property 
8 is analogous to property 6 in that it shows how a question about the 
equality of the left and right cosets of H containing a is equivalent to a 
question about the equality of two subgroups of G. The last property of the 
lemma says that H itself is the only coset of H that is a subgroup of G.

Note that properties 1, 5, and 7 of the lemma guarantee that the 
left cosets of a subgroup H of G partition G into blocks of equal size. 
 Indeed, we may view the cosets of H as a partitioning of G into 
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7 | Cosets and Lagrange’s Theorem 147

equivalence classes under the equivalence relation defined by a , b 
if aH 5 bH (see Theorem 0.7).

In practice, the subgroup H is often chosen so that the cosets parti-
tion the group in some highly desirable fashion. For example, if G is   
3-space R3 and H is a plane through the origin, then the coset (a, b, c) 1 
H (addition is done componentwise) is the plane passing through the 
point (a, b, c) and parallel to H. Thus, the cosets of H constitute a parti-
tion of 3-space into planes parallel to H. If G 5 GL(2, R) and  
H 5 SL(2, R), then for any matrix A in G, the coset AH is the set of all 
2 3 2 matrices with the same determinant as A. Thus,c2 0

0 1
d  H  is the set of all 2 3 2 matrices of determinant 2

and c1 2

2 1
d  H  is the set of all 2 3 2 matrices of determinant 23.

Property 5 of the lemma is useful for actually finding the distinct 
cosets of a subgroup. We illustrate this in the next example.

 EXAMPLE 4 To find the cosets of H 5 {1, 15} in G 5 U(32) 5  
{1, 3, 5, 7, 9, 11, 13, 15, 17, 19, 21, 23, 25, 27, 29, 31}, we begin with  
H 5 {1, 15}. We can find a second coset by choosing any element not 
in H, say 3, as a coset representative. This gives the coset 3H 5 {3, 13}. 
We find our next coset by choosing a representative not already appear-
ing in the two previously chosen cosets, say 5. This gives us the coset 5H 5 
{5, 11}. We continue to form cosets by picking elements from U(32) 
that have not yet appeared in the previous cosets as representatives of 
the cosets until we have accounted for every element of U(32). We then 
have the complete list of all distinct cosets of H. 

Lagrange’s Theorem and Consequences
We are now ready to prove a theorem that has been around for more 
than 200 years—longer than group theory itself! (This theorem was not 
originally stated in group theoretic terms.) At this stage, it should come 
as no surprise.

 Theorem 7.1 Lagrange’s Theorem†: |H| Divides |G|

If G is a finite group and H is a subgroup of G, then |H| divides |G|. 
Moreover, the number of distinct left (right) cosets of H in G is |G| / |H|.

†Lagrange stated his version of this theorem in 1770, but the first complete proof was 
given by Pietro Abbati some 30 years later.
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PROOF Let a1H, a2H, . . . , arH denote the distinct left cosets of H in 
G. Then, for each a in G, we have aH 5 aiH for some i. Also, by prop-
erty 1 of the lemma, a [ aH. Thus, each member of G belongs to one 
of the cosets aiH. In symbols,

G 5 a1H < ? ? ? < arH.

Now, property 5 of the lemma shows that this union is disjoint, so that

|G| 5 |a1H| 1 |a2H| 1 ? ? ? 1 |arH|.

Finally, since |aiH| 5 |H| for each i, we have |G| 5 r|H|. 

We pause to emphasize that Lagrange’s Theorem is a subgroup can-
didate criterion; that is, it provides a list of candidates for the orders of 
the subgroups of a group. Thus, a group of order 12 may have subgroups 
of order 12, 6, 4, 3, 2, 1, but no others. Warning! The converse of La-
grange’s Theorem is false. For example, a group of order 12 need not 
have a subgroup of order 6. We prove this in Example 5.

A special name and notation have been adopted for the number of 
left (or right) cosets of a subgroup in a group. The index of a subgroup 
H in G is the number of distinct left cosets of H in G. This number  
is denoted by |G:H|. As an immediate consequence of the proof of 
 Lagrange’s Theorem, we have the following useful formula for the 
number of distinct left (or right) cosets of H in G.

 Corollary 1 |G:H| 5 |G|/|H|

If G is a finite group and H is a subgroup of G, then |G:H| 5 |G|/|H|.

 Corollary 2 |a| Divides |G|

In a finite group, the order of each element of the group divides the 

order of the group.

PROOF Recall that the order of an element is the order of the  subgroup 
generated by that element. 

 Corollary 3 Groups of Prime Order Are Cyclic

A group of prime order is cyclic.
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7 | Cosets and Lagrange’s Theorem 149

PROOF Suppose that G has prime order. Let a [ G and a 2 e. Then, 
|kal| divides |G| and |kal| 2 1. Thus, |kal| 5 |G| and the corollary 
 follows. 

 Corollary 4 a|G| 5 e

Let G be a finite group, and let a [ G. Then, a|G| 5 e.

PROOF By Corollary 2, |G| 5 |a|k for some positive integer k. Thus, 
a|G| 5 a|a|k 5 ek 5 e. 

 Corollary 5 Fermat’s Little Theorem

For every integer a and every prime p, ap mod p 5 a mod p.

PROOF By the division algorithm, a 5 pm 1 r, where 0 # r , p. 
Thus, a mod p 5 r, and it suffices to prove that rp mod p 5 r. If r 5 0, 
the result is trivial, so we may assume that r [ U(p). [Recall that  
U(p) 5 {1, 2, . . . , p 2 1} under multiplication modulo p.] Then, by the 
preceding corollary, rp21 mod p 5 1 and, therefore, rp mod p 5 r. 

Fermat’s Little Theorem has been used in conjunction with comput-
ers to test for primality of certain numbers. One case concerned the 
number p 5 2257 2 1. If p is prime, then we know from Fermat’s Little 
Theorem that 10 p mod p 5 10 mod p and, therefore, 10 p11 mod p 5 
100 mod p. Using multiple precision and a simple loop, a computer 
was able to calculate 10 p11 mod p 5 102257 mod p in a few seconds. 
The result was not 100, and so p is not prime.

 EXAMPLE 5 The Converse of Lagrange’s Theorem Is False.†  
The group A4 of order 12 has no subgroups of order 6. To verify this,  
recall that A4 has eight elements of order 3 (a5 through a12, in the notation 
of Table 5.1) and suppose that H is a subgroup of order 6. Let a be any 
element of order 3 in A4. If a is not in H, then A4 5 H c aH. But then  
a2 is in H or a2 is in aH. If a2 is in H then so is (a2)2 5 a4 5 a, so this case 
is ruled out. If a2 is in aH, then a2 5 ah for some h in H, but this also im-
plies that a is in H. This argument shows that any subgroup of A4 of order 
6 must contain all eight elements of A4 of order 3, which is absurd. 

†The first counterexample to the converse of Lagrange’s Theorem was given by Paolo 
Ruffini in 1799.
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Lagrange’s Theorem demonstrates that the finiteness of a group im-
poses severe restrictions on the possible orders of subgroups. The next 
theorem also places powerful limits on the existence of certain sub-
groups in finite groups.

 Theorem 7.2 |HK| 5 |H||K|/|H y K|

For two finite subgroups H and K of a group, define the set  
HK 5 {hk | h [ H, k [ K}. Then |HK| 5 |H||K|/|H y K|.

PROOF Although the set HK has |H||K| products, not all of these 
products need represent distinct group elements. That is, we may have 
hk 5 h9k9 where h ? h9 and k ? k9. To determine |HK|, we must find 
the extent to which this happens. For every t in H y K, the product hk 
5 (ht)(t21k), so each group element in HK is represented by at least  
|H y K| products in HK. But hk 5 h9k9 implies t 5 h21h9 5 kk921 [ H 
y K, so that h9 5 ht and k9 5 t21k. Thus, each element in HK is repre-
sented by exactly |H y K| products. So, |HK| 5 |H||K|/| H y K|. 

 EXAMPLE 6 A group of order 75 can have at most one subgroup of 
order 25. (It is shown in Chapter 24 that every group of order 75 has a 
subgroup of order 25). To see that a group of order 75 cannot have two 
subgroups of order 25, suppose H and K are two such subgroups. Since 
|H y K| divides |H| 5 25 and |H y K| 5 1 or 5 results in |HK| 5 
|H||K|/| H y K| 5 25 ? 25/| H y K| 5 625 or 125 elements, we have 
that |H y K| 5 25 and therefore H 5 K. 

For any prime p . 2, we know that Z2p and Dp are nonisomorphic 
groups of order 2p. This naturally raises the question of whether there 
could be other possible groups of these orders. Remarkably, with just 
the simple machinery available to us at this point, we can answer this 
question.

 Theorem 7.3 Classification of Groups of Order 2p

Let G be a group of order 2p, where p is a prime greater than 2. Then 

G is isomorphic to Z2p
 or D

p
.

PROOF We assume that G does not have an element of order 2p and 
show that G < Dp. We begin by first showing that G must have an  
element of order p. By our assumption and Lagrange’s Theorem, any 
nonidentity element of G must have order 2 or p. Thus, to verify our as- 
sertion, we may assume that every nonidentity element of G has order 2.  
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7 | Cosets and Lagrange’s Theorem 151

In this case, we have for all a and b in the group ab 5 (ab)21 5 b21a21 5 ba, 
so that G is Abelian. Then, for any nonidentity elements a, b [ G with 
a 2 b, the set {e, a, b, ab} is closed and therefore is a subgroup of G of 
order 4. Since this contradicts Lagrange’s Theorem, we have proved 
that G must have an element of order p; call it a.

Now let b be any element not in kal. Then by Lagrange’s Theorem 
and our assumption that G does not have an element of order 2p, we 
have that |b| 5 2 or p. Because |kal y kbl| divides |kal| 5 p and kal ? kbl 
we have that |kal y kbl| 5 1. But then |b| 5 2, for otherwise, by Theorem 
7.2 |kalkbl|5|kal||kbl| 5 p2 . 2p 5 |G|, which is impossible. So, any 
element of G not in kal has order 2.

Next consider ab. Since ab o kal, our argument above shows that 
|ab| 5 2. Then ab 5 (ab)21 5 b21a21 5 ba21. Moreover, this relation 
completely determines the multiplication table for G. [For example, 
a3(ba4) 5 a2(ab)a4 5 a2(ba21)a4 5 a(ab)a3 5 a(ba21)a3 5 (ab)a2  5 
(ba21)a2 5 ba.] Since the multiplication table for all noncyclic groups 
of order 2p is uniquely determined by the relation ab 5 ba21, all 
 noncyclic groups of order 2p must be isomorphic to each other. But of 
course, Dp, the dihedral group of order 2p, is one such group. 

As an immediate corollary, we have that the non-Abelian groups S3, 
the symmetric group of degree 3, and GL(2, Z2), the group of 2 3 2 
matrices with nonzero determinants with entries from Z2 (see Example 
19 and Exercise 51 in Chapter 2) are isomorphic to D3.

An Application of Cosets  
to Permutation Groups

Lagrange’s Theorem and its corollaries dramatically demonstrate the 
fruitfulness of the coset concept. We next consider an application of 
cosets to permutation groups.

Definition Stabilizer of a Point
Let G be a group of permutations of a set S. For each i in S, let stab

G
(i) 5 

{f [ G | f(i) 5 i}. We call stab
G
(i) the stabilizer of i in G. 

The student should verify that stabG(i) is a subgroup of G. (See 
 Exercise 35 in Chapter 5.)

Definition Orbit of a Point
Let G be a group of permutations of a set S. For each s in S, let orb

G
(s) 5 

{f(s) | f [ G}. The set orb
G
(s) is a subset of S called the orbit of s 

 under G. We use |orb
G
(s)| to denote the number of elements in orb

G
(s).
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152 Groups

Example 7 should clarify these two definitions.

 EXAMPLE 7 Let

G 5 {(1), (132)(465)(78), (132)(465), (123)(456),

 (123)(456)(78), (78)}.

Then,

orbG(1) 5 {1, 3, 2},    stabG(1) 5 {(1), (78)},
orbG(2) 5 {2, 1, 3},    stabG(2) 5 {(1), (78)},
orbG(4) 5 {4, 6, 5},    stabG(4) 5 {(1), (78)},
orbG(7) 5 {7, 8},      stabG(7) 5 {(1), (132)(465), (123)(456)}. 

 EXAMPLE 8 We may view D4 as a group of permutations of a  
square region. Figure 7.1(a) illustrates the orbit of the point p under D4, 
and Figure 7.1(b) illustrates the orbit of the point q under D4. Observe 
that stabD

4
( p) 5 {R0, D}, whereas stabD

4
(q) 5 {R0}. 

p

(a)       

q

(b)

Figure 7.1

The preceding two examples also illustrate the following theorem.

 Theorem 7.4 Orbit-Stabilizer Theorem

Let G be a finite group of permutations of a set S. Then, for  

any i from S, |G| 5 |orb
G

(i)| |stab
G
(i)|.

PROOF By Lagrange’s Theorem, |G|/|stabG(i)| is the number of dis-
tinct left cosets of stabG(i) in G. Thus, it suffices to establish a one- 
to-one correspondence between the left cosets of stabG(i) and the  
elements in the orbit of i. To do this, we define a correspondence T 
by mapping the coset fstabG(i) to f(i) under T. To show that T is a well-
defined function, we must show that astabG(i) 5 bstabG(i) implies a(i) 5 
b(i). But astabG(i) 5 bstabG(i) implies a21b [ stabG(i), so that  
(a21b) (i) 5 i and, therefore, b(i) 5 a(i). Reversing the argument from 
the last step to the first step shows that T is also one-to-one. We conclude 
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7 | Cosets and Lagrange’s Theorem 153

†“People who don’t count won’t count” (Anatole France).

the proof by showing that T is onto orbG(i). Let j [ orbG(i). Then a(i) 5 j 
for some a [ G and clearly T(astabG(i)) 5 a(i) 5 j, so that T is onto. 

We leave as an exercise the proof of the important fact that the orbits 
of the elements of a set S under a group partition S (Exercise 43).

The Rotation Group of a Cube 
and a Soccer Ball

It cannot be overemphasized that Theorem 7.4 and Lagrange’s Theorem 
(Theorem 7.1) are counting theorems.† They enable us to determine the 
numbers of elements in various sets. To see how Theorem 7.4 works, we 
will determine the order of the rotation group of a cube and a soccer ball. 
That is, we wish to find the number of essentially different ways in  
which we can take a cube or a soccer ball in a certain location in space, 
physically rotate it, and then have it still occupy its original location.

 EXAMPLE 9 Let G be the rotation group of a cube. Label the six 
faces of the cube 1 through 6. Since any rotation of the cube must carry 
each face of the cube to exactly one other face of the cube and different 
rotations induce different permutations of the faces, G can be viewed as 
a group of permutations on the set {1, 2, 3, 4, 5, 6}. Clearly, there is 
some rotation about a central horizontal or vertical axis that carries face 
number 1 to any other face, so that |orbG(1)| 5 6. Next, we consider 
stabG(1). Here, we are asking for all rotations of a cube that leave face 
number 1 where it is. Surely, there are only four such motions— 
rotations of 0°, 90°, 180°, and 270°—about the line perpendicular to 
the face and passing through its center (see Figure 7.2). Thus, by 
Theorem 7.4, |G| 5 |orbG(1)| |stabG(1)| 5 6 ? 4 5 24. 

Figure 7.2 Axis of rotation of a cube.

Now that we know how many rotations a cube has, it is simple to de-
termine the actual structure of the rotation group of a cube. Recall that 
S4 is the symmetric group of degree 4.
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154 Groups

 Theorem 7.5 The Rotation Group of a Cube

The group of rotations of a cube is isomorphic to S4.

PROOF Since the group of rotations of a cube has the same order as 
S4, we need only prove that the group of rotations is isomorphic to a 
subgroup of S4. To this end, observe that a cube has four diagonals and 
that the rotation group induces a group of permutations on the four di-
agonals. But we must be careful not to assume that different rotations 
correspond to different permutations. To see that this is so, all we need 
do is show that all 24 permutations of the diagonals arise from rota-
tions. Labeling the consecutive diagonals 1, 2, 3, and 4, it is obvious 
that there is a 90° rotation that yields the permutation a 5 (1234); an-
other 90° rotation about an axis perpendicular to our first axis yields 
the permutation b 5 (1423). See Figure 7.3. So, the group of permuta-
tions induced by the rotations contains the eight-element subgroup  
{e, a, a2, a3, b2, b2a, b2a2, b2a3} (see Exercise 63) and ab, which has 
order 3. Clearly, then, the rotations yield all 24 permutations, since the 
order of the rotation group must be divisible by both 8 and 3. 

 EXAMPLE 10 A traditional soccer ball has 20 faces that are regular 
hexagons and 12 faces that are regular pentagons. (The technical term  
for this solid is truncated icosahedron.) To determine the number of ro- 
tational symmetries of a soccer ball using Theorem 7.4, we may choose  
our set S to be the 20 hexagons or the 12 pentagons. Let us say that S is 
the set of 12 pentagons. Since any pentagon can be carried to any other

2

2

3

1

3

1

4

4

= (1234)α  

2

2

3

1

3

1

4

4

= (1423)β

Figure 7.3

99708_ch07_ptg01_hr_144-161.indd   154 06/06/12   9:24 AM

Copyright 2012 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights,
some third party content may be suppressed from the eBook and/or eChapter(s). Editorial review has deemed that any suppressed content does not materially
affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.



7 | Cosets and Lagrange’s Theorem 155

pentagon by some rotation, the orbit of any pentagon is S. Also, there 
are five rotations that fix (stabilize) any particular pentagon. Thus, by 
the Orbit-Stabilizer Theorem, there are 12 ? 5 5 60 rotational symme-
tries. (In case you are interested, the rotation group of a soccer ball is 
isomorphic to A5.) 

In 1985, chemists Robert Curl, Richard Smalley, and Harold Kroto 
caused tremendous excitement in the scientific community when they 
created a new form of carbon by using a laser beam to vaporize graphite. 
The structure of the new molecule was composed of 60 carbon atoms  
arranged in the shape of a soccer ball! Because the shape of the new mol-
ecule reminded them of the dome structures built by the architect  
R. Buckminster Fuller, Curl, Smalley, and Kroto named their discovery 
“buckyballs.” Buckyballs are the roundest, most symmetric large mole-
cules known. Group theory has been particularly useful in illuminating 
the properties of buckyballs, since the absorption spectrum of a molecule 
depends on its symmetries and chemists classify various molecular states 
according to their symmetry properties. The buckyball discovery spurred 
a revolution in carbon chemistry. In 1996, Curl, Smalley, and Kroto 
 received the Nobel Prize in chemistry for their discovery.

An Application of Cosets  
to the Rubik’s Cube

Recall from Chapter 5 that in 2010 it was proved via a computer com-
putation, which took 35 CPU-years to complete, that every Rubik’s 
cube could be solved in at most 20 moves. To carry out this effort, the 
research team of Morley Davidson, John Dethridge, Herbert Kociemba, 
and Tomas Rokicki applied a program of Rokicki, which built on early 
work of Kociemba, that checked the elements of the cosets of a sub-
group H of order (8! · 8! · 4!)/2 5 19,508,428,800 to see if each cube in 
a position corresponding to the elements in a coset could be solved 
within 20 moves. In the rare cases where Rokicki’s program did not 
work, an alternate method was employed. Using symmetry consider-
ations, they were able to reduce the approximately 2 billion cosets of H 
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156 Groups

to about 56 million cosets for testing. Cosets played a role in this effort 
because Rokicki’s program could handle the 19.51 billion elements in 
the same coset in about 20 seconds.

Exercises

I don’t know, Marge. Trying is the first step towards failure.
homer simpson

  1. Let H 5 {(1), (12)(34), (13)(24), (14)(23)}. Find the left cosets of 
H in A4 (see Table 5.1 on page 111).

  2. Let H be as in Exercise 1. How many left cosets of H in S4 are 
there? (Determine this without listing them.)

  3. Let H 5 {0, 63, 66, 69, . . .}. Find all the left cosets of H in Z.
  4. Rewrite the condition a21b [ H given in property 5 of the lemma on 

page 145 in additive notation. Assume that the group is Abelian.
  5. Let H be as in Exercise 3. Use Exercise 4 to decide whether or not 

the following cosets of H are the same.
 a. 11 1 H and 17 1 H
 b. 21 1 H and 5 1 H
 c. 7 1 H and 23 1 H
  6. Let n be a positive integer. Let H 5 {0, 6n, 62n, 63n, . . .}. Find 

all left cosets of H in Z. How many are there?
  7. Find all of the left cosets of {1, 11} in U(30).
  8. Suppose that a has order 15. Find all of the left cosets of ka5l in kal.
  9. Let |a| 5 30. How many left cosets of ka4l in kal are there? List them.
 10. Give an example of a group G and subgroups H and K such that 

HK 5 {h [ H, k [ K} is not a subgroup of G.
 11. If H and K are subgroups of G and g belongs to G, show that  

g(H y K) 5 gH y gK.
 12. Let a and b be nonidentity elements of different orders in a group 

G of order 155. Prove that the only subgroup of G that contains  
a and b is G itself.

 13. Let H be a subgroup of R*, the group of nonzero real numbers un-
der multiplication. If R+ # H # R*, prove that H 5 R+ or H 5 R*.

 14. Let C* be the group of nonzero complex numbers under multiplica-
tion and let H 5 {a + bi [ C* | a2 + b2 5 1}. Give a geometric de-
scription of the coset (3 + 4i)H. Give a geometric description of the 
coset (c + di)H.
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7 | Cosets and Lagrange’s Theorem 157

 15. Let G be a group of order 60. What are the possible orders for the 
 subgroups of G?

 16. Suppose that K is a proper subgroup of H and H is a proper sub-
group of G. If |K| 5 42 and |G| 5 420, what are the possible  orders 
of H?

 17. Let G be a group with |G| 5 pq, where p and q are prime. Prove 
that every proper subgroup of G is cyclic.

 18. Recall that, for any integer n greater than 1, f(n) denotes the num-
ber of positive integers less than n and relatively prime to n. Prove 
that if a is any integer relatively prime to n, then af(n) mod n 5 1.

 19. Compute 515 mod 7 and 713 mod 11.
 20. Use Corollary 2 of Lagrange’s Theorem (Theorem 7.1) to prove 

that the order of U(n) is even when n . 2.
 21. Suppose G is a finite group of order n and m is relatively prime to n. 

If g [ G and gm 5 e, prove that g 5 e.
 22. Suppose H and K are subgroups of a group G. If |H| 5 12 and  

|K| 5 35, find |H > K|. Generalize.
 23. Suppose that H is a subgroup of S4 and that H contains (12) and 

(234). Prove that H 5 S4.
 24. Suppose that H and K are subgroups of G and there are elements  

a and b in G such that aH 8 bK. Prove that H 8 K.
 25. Suppose that G is an Abelian group with an odd number of elements. 

Show that the product of all of the elements of G is the identity.
 26. Suppose that G is a group with more than one element and G has 

no proper, nontrivial subgroups. Prove that |G| is prime. (Do not 
assume at the outset that G is finite.)

 27. Let |G| 5 15. If G has only one subgroup of order 3 and only one 
of order 5, prove that G is cyclic. Generalize to |G| 5 pq, where p 
and q are prime.

 28. Let G be a group of order 25. Prove that G is cyclic or g5 5 e for  
all g in G. Generalize to any group of order p2 where p is prime. 
Does your proof work for this generalization?

 29. Let |G| 5 33. What are the possible orders for the elements of G? 
Show that G must have an element of order 3.

 30. Let |G| 5 8. Show that G must have an element of order 2.
 31. Can a group of order 55 have exactly 20 elements of order 11? 

Give a reason for your answer.
 32. Determine all finite subgroups of C*, the group of nonzero com-

plex numbers under multiplication.
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158 Groups

 33. Let H and K be subgroups of a finite group G with H # K # G. 
Prove that |G:H| 5 |G:K| |K:H|.

 34. Suppose that a group contains elements of orders 1 through 10. 
What is the minimum possible order of the group?

 35. Give an example of the dihedral group of smallest order that con-
tains a subgroup isomorphic to Z12 and a subgroup isomorphic to 
Z20. No need to prove anything, but explain your reasoning.

 36. Show that in any group of order 100, either every element has order 
that is a power of a prime or there is an element of order 10.

 37. Suppose that a finite Abelian group G has at least three elements of 
order 3. Prove that 9 divides |G|.

 38. Prove that if G is a finite group, the index of Z(G) cannot be prime.
 39. Find an example of a subgroup H of a group G and elements a and 

b in G such that aH ? Hb and aH y Hb ? f. (Compare with prop-
erty 5 of cosets.)

 40. Prove that a group of order 63 must have an element of order 3.
 41. Let G be a group of order 100 that has a subgroup H of order 25. 

Prove that every element of G of order 5 is in H.
 42. Let G be a group of order n and k be any integer relatively prime to 

n. Show that the mapping from G to G given by g S gk is one-to-
one. If G is also Abelian, show that the mapping given by  
g S gk is an automorphism of G.

 43. Let G be a group of permutations of a set S. Prove that the orbits of 
the members of S constitute a partition of S. (This exercise is re-
ferred to in this chapter and in Chapter 29.)

 44. Prove that every subgroup of Dn of odd order is cyclic.
 45. Let G 5 {(1), (12)(34), (1234)(56), (13)(24), (1432)(56), (56)(13), 

(14)(23), (24)(56)}.
 a. Find the stabilizer of 1 and the orbit of 1.
 b. Find the stabilizer of 3 and the orbit of 3.
 c. Find the stabilizer of 5 and the orbit of 5.
 46. Prove that a group of order 12 must have an element of order 2.
 47. Show that in a group G of odd order, the equation x2 5 a has a 

unique solution for all a in G.
 48. Let G be a group of order pqr, where p, q, and r are distinct primes. 

If H and K are subgroups of G with |H| 5 pq and |K| 5 qr, prove 
that |H > K| 5 q.

 49. Prove that a group that has more than one subgroup of order 5 must 
have order at least 25.

 50. Prove that A5 has a subgroup of order 12.
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7 | Cosets and Lagrange’s Theorem 159

 51. Prove that A5 has no subgroup of order 30.
 52. Prove that A5 has no subgroup of order 15 to 20.
 53. Suppose that a is an element from a permutation group G and one 

of its cycles in disjoint cycle form is (a1a2
…ak). Show that {a1,  

a2, …, ak} # orbG(ai) for 1 5 1, 2, …, k.
 54. Let G be a group and suppose that H is a subgroup of G with the 

property that for any a in G we have aH 5 Ha. (That is, every ele-
ment of the form ah where h is some element of H can be written in 
the form h1a for some h1 [ H.) If a has order 2, prove that the set 
K 5 H c aH is a subgroup of G. Generalize to the case that |a| 5 k.

 55. Prove that A5 is the only subgroup of S5 of order 60.
 56. Why does the fact that A4 has no subgroup of order 6 imply that 

|Z(A4)| 5 1?
 57. Let G 5 GL(2, R) and H 5 SL(2, R). Let A [ G and suppose that 

det A 5 2. Prove that AH is the set of all 2 3 2 matrices in G that 
have determinant 2.

 58. Let G be the group of rotations of a plane about a point P in  
the plane. Thinking of G as a group of permutations of the plane, 
describe the orbit of a point Q in the plane. (This is the motivation 
for the name “orbit.”)

 59. Let G be the rotation group of a cube. Label the faces of the cube  
1 through 6, and let H be the subgroup of elements of G that carry 
face 1 to itself. If s is a rotation that carries face 2 to face 1, give a 
physical description of the coset Hs.

 60. The group D4 acts as a group of permutations of the square regions 
shown below. (The axes of symmetry are drawn for reference pur-
poses.) For each square region, locate the points in the orbit of the 
indicated point under D4. In each case, determine the stabilizer of 
the indicated point.
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160 Groups

 61. Let G 5 GL(2, R), the group of 2 3 2 matrices over R with nonzero 
determinant. Let H be the subgroup of matrices of determinant 61. 
If a, b [ G and aH 5 bH, what can be said about det (a) and 
det  (b)? Prove or disprove the converse. [Determinants have the 
property that det (xy) 5 det (x)det (y).]

 62. Calculate the orders of the following (refer to Figure 27.5 for  
illustrations).

 a.  The group of rotations of a regular tetrahedron (a solid with four 
congruent equilateral triangles as faces)

 b.  The group of rotations of a regular octahedron (a solid with 
eight congruent equilateral triangles as faces)

 c.  The group of rotations of a regular dodecahedron (a solid with 
12 congruent regular pentagons as faces)

 d.  The group of rotations of a regular icosahedron (a solid with  
20 congruent equilateral triangles as faces)

 63. Prove that the eight-element set in the proof of Theorem 7.5 is a 
group.

 64. A soccer ball has 20 faces that are regular hexagons and 12 faces 
that are regular pentagons. Use Theorem 7.4 to explain why a soc-
cer ball cannot have a 60° rotational symmetry about a line through 
the centers of two opposite hexagonal faces.

 65. If G is a finite group with fewer than 100 elements and G has sub-
groups of orders 10 and 25, what is the order of G?

Computer Exercises

A computer exercise for this chapter is available at the website:

http://www.d.umn.edu/~jgallian
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Joseph Lagrange

Joseph Louis Lagrange was born in Italy of 
French ancestry on January 25, 1736. He be-
came captivated by mathematics at an early 
age when he read an essay by Halley on 
Newton’s calculus. At the age of 19, he be-
came a professor of mathematics at the Royal 
Artillery School in Turin. Lagrange made sig-
nificant contributions to many branches of 
mathematics and physics, among them the 
theory of numbers, the theory of equations, 
ordinary and partial differential equations, 
the calculus of variations, analytic geometry, 
fluid dynamics, and celestial mechanics. His 
methods for solving third- and fourth-degree 
polynomial equations by radicals laid the 
groundwork for the group theoretic approach 
to solving polynomials taken by Galois. 
Lagrange was a very careful writer with a 
clear and elegant style.

At the age of 40, Lagrange was appointed 
head of the Berlin Academy, succeeding 
Euler. In offering this appointment, Frederick 
the Great proclaimed that the “greatest king 
in Europe” ought to have the “greatest math-
ematician in Europe” at his court. In 1787, 
Lagrange was invited to Paris by Louis XVI 
and became a good friend of the king and his 
wife, Marie Antoinette. In 1793, Lagrange 
headed a commission, which included 
Laplace and Lavoisier, to devise a new system 

Lagrange is the Lofty Pyramid of the 
Mathematical Sciences.

napoleon bonaparte

This stamp was issued by 
France in Lagrange’s honor 
in 1958.

of weights and measures. Out of this came 
the metric system. Late in his life he was 
made a count by Napoleon. Lagrange died on 
April 10, 1813.

To find more information about Lagrange, 
visit:

http://www-groups.dcs 
.st-and.ac.uk/~history/
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8 External Direct  
Products

The universe is an enormous direct product of representations  
of symmetry groups.

steven weinberg†

Definition and Examples
In this chapter, we show how to piece together groups to make larger 
groups. In Chapter 9, we will show that we can often start with one 
large group and decompose it into a product of smaller groups in much 
the same way as a composite positive integer can be broken down into 
a product of primes. These methods will later be used to give us a sim-
ple way to construct all finite Abelian groups.

Definition External Direct Product
Let G1, G2, . . . , Gn

 be a finite collection of groups. The external direct 

product of G1, G2, . . . , Gn
, written as G1 % G2 % ? ? ? % G

n
, is the set of 

all n-tuples for which the ith component is an element of G
i
 and the 

operation is componentwise.

In symbols,

G1 % G2 % ? ? ? % Gn 5 {(g1, g2, . . . , gn) | gi [ Gi},

where (g1, g2, . . . , gn)(g19, g29, . . . , gn9) is defined to be (g1g19,   
g2g29, . . . , gngn9). It is understood that each product gigi9 is performed 
with the operation of Gi. Note that in the case that each Gi is finite, we 
have by properties of sets that |G1 % G2 % … % Gn | 5 |G1||G2| … |Gn|. 
We leave it to the reader to show that the external direct product of 
groups is itself a group (Exercise 1).

This construction is not new to students who have had linear algebra or 
physics. Indeed, R2 5 R % R and R3 5 R % R % R—the operation being 
componentwise addition. Of course, there is also scalar multiplication, but 

†Weinberg received the 1979 Nobel Prize in physics with Sheldon Glashow and Abdus 
Salam for their construction of a single theory incorporating weak and electromagnetic 
interactions.
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8 | External Direct Products 163

we ignore this for the time being, since we are interested only in the group 
structure at this point.

 EXAMPLE 1

 U(8) %  U(10) 5 {(1, 1), (1, 3), (1, 7), (1, 9), (3, 1), (3, 3),  
                 (3, 7), (3, 9), (5, 1), (5, 3), (5, 7), (5, 9),  

                     (7, 1),(7, 3), (7, 7), (7, 9)}.

The product (3, 7)(7, 9) 5 (5, 3), since the first components are com-
bined by multiplication modulo 8, whereas the second components are 
combined by multiplication modulo 10. 

 EXAMPLE 2

Z2 % Z3 5 {(0, 0), (0, 1), (0, 2), (1, 0), (1, 1), (1, 2)}.

Clearly, this is an Abelian group of order 6. Is this group related to an-
other Abelian group of order 6 that we know, namely, Z6? Consider the 
subgroup of Z2 % Z3 generated by (1, 1). Since the operation in each com-
ponent is addition, we have (1, 1) 5 (1, 1), 2(1, 1) 5 (0, 2), 3(1, 1) 5  
(1, 0), 4(1, 1) 5 (0, 1), 5(1, 1) 5 (1, 2), and 6(1, 1) 5 (0, 0). Hence  
Z2 % Z3 is cyclic. It follows that Z2 % Z3 is isomorphic to Z6. 

In Theorem 7.3 we classified the groups of order 2p where p is an 
odd prime. Now that we have defined Z2 % Z2, it is easy to classify the 
groups of order 4.

 EXAMPLE 3 Classification of Groups of Order 4 
A group of order 4 is isomorphic to Z4 or Z2 % Z2. To verify this, let G 5 
{e, a, b, ab}. If G is not cyclic, then it follows from Lagrange’s Theorem 
that |a | 5 |b | 5 |ab | 5 2. Then the mapping e S (0, 0), a S (1, 0),  
b S (0, 1), and ab S (1, 1) is an isomorphism from G onto Z2 % Z2. 

We see from Examples 2 and 3 that in some cases Zm % Zn is isomor-
phic to Zmn and in some cases it is not. Theorem 8.2 provides a simple 
characterization for when the isomorphism holds.

Properties of External Direct Products
Our first theorem gives a simple method for computing the order of an 
 element in a direct product in terms of the orders of the component  
pieces.
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164 Groups

 Theorem 8.1 Order of an Element in a Direct Product

The order of an element in a direct product of a finite number of 

finite groups is the least common multiple of the orders of the 

components of the element. In symbols,

|(g1, g2, . . . , gn
)| 5 lcm(|g1|, |g2|, . . . , |gn

|).

PROOF Denote the identity of Gi by ei. Let s 5 lcm(|g1|, |g2|, . . . , |gn|) 
and t 5|(g1, g2, . . . , gn)|. Because the fact that s is a multiple of each |gi| 
implies that (g1, g2, . . . , gn)

s 5 (gs
1, g

s
2, . . . , g

s
n) 5 (e1, e2, . . . , en), we know  

that t # s. On the other hand, from (gt
1, g

t
2, . . . , g

t
n) 5 (g1, g2, . . . , gn)

t 5  
(e1, e2, . . . , en) we see that t is a common multiple of |g1|, |g2|, . . . , |gn|. 
Thus, s # t. 

The next two examples are applications of Theorem 8.1.

 EXAMPLE 4 We determine the number of elements of order 5 in  
Z25 % Z5. By Theorem 8.1, we may count the number of elements  
(a, b) in Z25 % Z5 with the property that 5 5 |(a, b)| 5 lcm(|a|, |b|). 
Clearly this requires that either |a| 5 5 and |b| 5 1 or 5, or |b| 5 5 and 
|a| 5 1 or 5. We consider two mutually exclusive cases.

Case 1 |a| 5 5 and |b| 5 1 or 5. Here there are four choices for a 
(namely, 5, 10, 15, and 20) and five choices for b. This gives 20 ele-
ments of order 5.

Case 2 |a| 5 1 and |b| 5 5. This time there is one choice for a and four 
choices for b, so we obtain four more elements of order 5.

Thus, Z25 % Z5 has 24 elements of order 5. 

 EXAMPLE 5 We determine the number of cyclic subgroups of order 
10 in Z100 % Z25. We begin by counting the number of elements (a, b) of 
order 10.

Case 1 |a| 5 10 and |b| 5 1 or 5. Since Z100 has a unique cyclic sub-
group of order 10 and any cyclic group of order 10 has four generators 
(Theorem 4.4), there are four choices for a. Similarly, there are five 
choices for b. This gives 20 possibilities for (a, b).

Case 2 |a| 5 2 and |b| 5 5. Since any finite cyclic group of even  order 
has a unique subgroup of order 2 (Theorem 4.4), there is only one 
choice for a. Obviously, there are four choices for b. So, this case yields 
four more possibilities for (a, b).
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8 | External Direct Products 165

Thus, Z100 % Z25 has 24 elements of order 10. Because each cyclic 
subgroup of order 10 has four elements of order 10 and no two of the 
cyclic subgroups can have an element of order 10 in common, there 
must be 24/4 5 6 cyclic subgroups of order 10. (This method is analo-
gous to determining the number of sheep in a flock by counting legs 
and dividing by 4.) 

The direct product notation is convenient for specifying certain sub-
groups of a direct product.

 EXAMPLE 6 For each divisor r of m and s of n, the group Zm % Zn 
has a subgroup isomorphic to Zr % Zs (see Exercise 19). To find a sub-
group of, say, Z30 % Z12 isomorphic to Z6 % Z4, we observe that k5l is a 
subgroup of Z30 of order 6 and k3l is a subgroup of Z12 of order 4, so  
k5l % k3l is the desired subgroup. 

The next theorem and its first corollary characterize those direct 
products of cyclic groups that are themselves cyclic.

 Theorem 8.2 Criterion for G % H to be Cyclic

Let G and H be finite cyclic groups. Then G % H is cyclic if and only 

if |G| and |H| are relatively prime.

PROOF Let |G| 5 m and |H| 5 n, so that |G % H| 5 mn. To prove the 
first half of the theorem, we assume G % H is cyclic and show that  
m and n are relatively prime. Suppose that gcd(m, n) 5 d and (g, h) is a 
generator of G % H. Since (g, h)mn/d 5 ((gm)n/d, (hn)m/d) 5 (e, e), we 
have mn 5 |(g, h)| # mn/d. Thus, d 5 1.

To prove the other half of the theorem, let G 5 kgl and H 5 khl and sup-
pose gcd(m, n) 5 1. Then, |(g, h)| 5 lcm(m, n) 5 mn 5 |G % H|, so that 
(g, h) is a generator of G % H. 

As a consequence of Theorem 8.2 and an induction argument, we 
obtain the following extension of Theorem 8.2.

 Corollary 1 Criterion for G1 % G2 % ? ? ? % Gn to Be Cyclic

An external direct product G1 % G2 % ? ? ? % G
n
 of a finite number  

of finite cyclic groups is cyclic if and only if |G
i
| and |G

j
| are relatively 

prime when i 2 j.
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166 Groups

 Corollary 2 Criterion for Zn1n2 . . . nk
 < Zn1

 % Zn2
 % . . . % Znk

Let m 5 n1n2 ? ? ? nk
. Then Z

m
 is isomorphic to Z

n1
 % Z

n2 
% ? ? ? %

 
Z

nk 

if and only if n
i
 and n

j
 are relatively prime when i 2 j.

By using the results above in an iterative fashion, one can express 
the same group (up to isomorphism) in many different forms. For ex-
ample, we have

Z2 % Z2 % Z3 % Z5 < Z2 % Z6 % Z5 < Z2 % Z30.

Similarly,

 Z2 % Z2 % Z3 % Z5 < Z2 % Z6 % Z5 

 < Z2 % Z3 % Z2 % Z5 < Z6 % Z10.

Thus, Z2 % Z30 < Z6 % Z10. Note, however, that Z2 % Z30 ] Z60.

The Group of Units Modulo n as  
an External Direct Product

The U-groups provide a convenient way to illustrate the preceding 
ideas. We first introduce some notation. If k is a divisor of n, let

Uk(n) 5 {x [ U(n) | x mod k 5 1}.

For example, U7(105) 5 {1, 8, 22, 29, 43, 64, 71, 92}. It can be readily 
shown that Uk(n) is indeed a subgroup of U(n). (See Exercise 31 in 
Chapter 3.)

 Theorem 8.3 U(n) as an External Direct Product

Suppose s and t are relatively prime. Then U(st) is isomorphic to the 

external direct product of U(s) and U(t). In short,

U(st) < U(s) % U(t).

Moreover, U
s
(st) is isomorphic to U(t) and U

t
(st) is isomorphic to U(s).

PROOF An isomorphism from U(st) to U(s) % U(t) is x S (x mod s, 
x mod t); an isomorphism from Us(st) to U(t) is x S x mod t; an isomor-
phism from Ut(st) to U(s) is x S x mod s. We leave the verification that 
these mappings are operation-preserving, one-to-one, and onto to the 
reader. (See Exercises 9, 17, and 19 in Chapter 0; see also [1].) 

As a consequence of Theorem 8.3, we have the following result.
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8 | External Direct Products 167

Corollary

Let m 5 n1n2 ? ? ? nk 
, where gcd(n

i 
, n

j
) 5 1 for i 2 j. Then,

U(m) < U(n1) % U(n2) % ? ? ? % U(n
k
).

To see how these results work, let’s apply them to U(105). We  obtain

 U(105) < U(7) % U(15),
 U(105) < U(21) % U(5),

U(105) < U(3) % U(5) % U(7).

Moreover,

 U(7) < U15(105) 5 {1, 16, 31, 46, 61, 76},
 U(15) < U7(105) 5 {1, 8, 22, 29, 43, 64, 71, 92},
U(21) < U5(105) 5 {1, 11, 16, 26, 31, 41, 46, 61, 71, 76, 86, 101},
 U(5) < U21(105) 5 {1, 22, 43, 64},
 U(3) < U35(105) 5 {1, 71}.

Among all groups, surely the cyclic groups Zn have the simplest 
structures and, at the same time, are the easiest groups with which to 
compute. Direct products of groups of the form Zn are only slightly 
more complicated in structure and computability. Because of this, alge-
braists endeavor to describe a finite Abelian group as such a direct 
product. Indeed, we shall soon see that every finite Abelian group can 
be so represented. With this goal in mind, let us reexamine the   
U-groups. Using the corollary to Theorem 8.3 and the facts (see  
[2, p. 93]), first proved by Carl Gauss in 1801, that

U(2) < {0},    U(4) < Z2,    U(2n) < Z2 % Z2n22    for n $ 3,

and

U( pn) < Zpn2pn21    for p an odd prime,

we now can write any U-group as an external direct product of cyclic 
groups. For example,

U(105) 5 U(3 ? 5 ? 7) < U(3) % U(5) % U(7)

    < Z2 % Z4 % Z6

and

U(720) 5 U(16 ? 9 ? 5) < U(16) % U(9) % U(5)

 < Z2 % Z4 % Z6 % Z4.
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168 Groups

What is the advantage of expressing a group in this form? Well, for one 
thing, we immediately see that the orders of the elements U(720) can 
only be 1, 2, 3, 4, 6, and 12. This follows from the observations that an 
element from Z2 % Z4 % Z6 % Z4 has the form (a, b, c, d), where  
|a| 5 1 or 2, |b| 5 1, 2, or 4, |c| 5 1, 2, 3, or 6, and |d| 5 1, 2, or 4, and  
that |(a, b, c, d)| 5 lcm(|a|, |b|, |c|, |d|). For another thing, we can read-
ily determine the number of elements of order 12, say, that U(720) has. 
Because U(720) is isomorphic to Z2 % Z4 % Z6 % Z4, it suffices to cal-
culate the number of elements of order 12 in Z2 % Z4 % Z6 % Z4. But 
this is easy. By Theorem 8.1, an element (a, b, c, d) has order 12 if and 
only if lcm(|a|, |b|, |c|, |d|) 5 12. Since |a| 5 1 or 2, it does not matter 
how a is chosen. So, how can we have lcm(|b|, |c|, |d|) 5 12? One way 
is to have |b| 5 4, |c| 5 3 or 6, and d arbitrary. By Theorem 4.4, there 
are two choices for b, four choices for c, and four choices for d. So, in 
this case, we have 2 ? 4 ? 4 5 32 choices. The only other way to have 
lcm(|b|, |c|, |d|) 5 12 is for |d| 5 4, |c| 5 3 or 6, and |b| 5 1 or 2 (we 
exclude |b| 5 4, since this was already accounted for). This gives 2 ? 4 ? 
2 5 16 new choices. Finally, since a can be either of the two elements in 
Z2, we have a total of 2(32 1 16) 5 96 elements of order 12.

These calculations tell us more. Since Aut(Z720) is isomorphic to 
U(720), we also know that there are 96 automorphisms of Z720 of  
 order 12. Imagine trying to deduce this information directly from 
U(720) or, worse yet, from Aut(Z720)! These results beautifully illus-
trate the advantage of being able to represent a finite Abelian group as 
a direct product of cyclic groups. They also show the value of our the-
orems about Aut(Zn) and U(n). After all, theorems are labor- 
saving devices. If you want to convince yourself of this, try to prove 
directly from the definitions that Aut(Z720) has exactly 96 elements of 
or     der 12.

Applications
We conclude this chapter with five applications of the material pre-
sented here—three to cryptography, the science of sending and deci-
phering secret messages, one to genetics, and one to electric circuits.

Data Security

Because computers are built from two-state electronic components, 
it is natural to represent information as strings of 0s and 1s called 
 binary strings. A binary string of length n can naturally be thought of 
as an element of Z2 % Z2 % ? ? ? % Z2 (n copies) where the parenthe-
ses and the commas have been deleted. Thus the binary string 
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8 | External Direct Products 169

11000110 corresponds to the element (1, 1, 0, 0, 0, 1, 1, 0) in Z2 % Z2 % 
Z2 % Z2 % Z2 % Z2 % Z2 % Z2. Similarly, two binary strings a1a2 ? ? ? an 
and b1b2 ? ? ? bn are added componentwise modulo 2 just as their 
 corresponding elements in Z2 % Z2 % ? ? ? % Z2 are. For  example,

 11000111 1 01110110 5 10110001

and

 10011100 1 10011100 5 00000000.

The fact that the sum of two binary sequences a1a2 ? ? ? an 1 b1b2 ? ? ? 
bn 5 00 ? ? ? 0 if and only if the sequences are identical is the basis for 
a data security system used to protect Internet transactions.

Suppose that you want to purchase a compact disc from http://www 
.amazon.com. Need you be concerned that a hacker will intercept  
your credit-card number during the transaction? As you might expect, 
your credit-card number is sent to Amazon in a way that protects the 
data. We explain one way to send credit-card numbers over the Web 
securely. When you place an order with Amazon, the company sends 
your computer a randomly generated string of 0’s and 1’s called a key. 
This key has the same length as the binary string corresponding to 
your credit-card number and the two strings are added (think of this 
process as “locking” the data). The resulting sum is then transmitted 
to Amazon. Amazon in turn adds the same key to the received string, 
which then produces the original string corresponding to your credit-
card number (adding the key a second time “unlocks” the data).

To illustrate the idea, say you want to send an eight-digit binary string 
such as s 5 10101100 to Amazon (actual credit-card numbers have  
very long strings) and Amazon sends your computer the key  
k 5 00111101. Your computer returns the string s 1 k 5 10101100 1 
00111101 5 10010001 to Amazon, and Amazon adds k to this string to 
get 10010001 1 00111101 5 10101100, which is the string represent-
ing your credit-card number. If someone intercepts the number  
s 1 k 5 10010001 during transmission it is no value without knowing k.

The method is secure because the key sent by Amazon is randomly 
generated and used only one time. You can tell when you are using an en-
cryption scheme on a Web transaction by looking to see if the Web ad-
dress begins with “https” rather than the customary “http.” You will also 
see a small padlock in the status bar at the bottom of the browser window.

Public Key Cryptography

Unlike auctions such as those on eBay, where each bid is known by 
everyone, a silent auction is one in which each bid is secret. Suppose 
that you wanted to use your Twitter account to run a silent auction. 
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How could a scheme be devised so that users could post their bids in 
such a way that the amounts are intelligible only to the account holder? 
In the mid-1970s, Ronald Rivest, Adi Shamir, and Leonard Adleman 
devised an ingenious method that permits each person who is to receive 
a secret message to tell publicly how to scramble messages sent to him 
or her. And even though the method used to scramble the message is 
known publicly, only the person for whom it is intended will be able to 
unscramble the message. The idea is based on the fact that there exist 
efficient methods for finding very large prime numbers (say about  
100 digits long) and for multiplying large numbers, but no one knows 
an efficient algorithm for factoring large integers (say about 200 digits 
long). The person who is to receive the message chooses a pair of large 
primes p and q and chooses an integer e (called the encryption expo-
nent) with 1 , e , m, where m 5 lcm (p 2 1, q 2 1), such that e  
is relatively prime to m (any such e will do). This person calculates  
n 5 pq (n is called the key) and announces that a message M is to be 
sent to him or her publicly as Me mod n. Although e, n, and Me are 
available to everyone, only the person who knows how to factor n as pq 
will be able to decipher the message.

To present a simple example that nevertheless illustrates the princi-
pal features of the method, say we wish to send the messages “YES.” 
We convert the message into a string of digits by replacing A by 01, B 
by 02,  . . . , Z by 26, and a blank by 00. So, the message YES becomes 
250519. To keep the numbers involved from becoming too unwieldy, 
we send the message in blocks of four digits and fill in with blanks 
when needed. Thus, the messages YES is represented by the two blocks 
2505 and 1900. The person to whom the message is to be sent has 
picked two primes p and q, say p 5 37 and q 5 73, and a number e that 
has no prime divisors in common with lcm (p 21, q 21) 5 72, say  
e 5 5, and has published n 5 37 ? 73 5 2701 and e 5 5 in  a public 
forum. We will send the “scrambled” numbers (2505)5 mod 2701 and 
(1900)5 mod 2701 rather than 2505 and 1900, and the receiver will un-
scramble them. We show the work involved for us and the receiver only 
for the block 2505. We determine (2505)5 mod 2701 5 2415 by using a 
modular arithmetic calculator such as the one at http://users.wpi 
.edu/~martin/mod.html.†

†Provided that the numbers are not too large, the Google search engine at http://www 
.google.com will do modular arithmetic. For example, entering 2505^2 mod 2701 in 
the search box yields 602. Be careful, however: Entering 2505^5 mod 2701 does not 
return a value, because 25055 is too large. Instead, we can use Google to compute 
smaller powers such as 2505^2 mod 2701 and 2505^3 mod 2701 (which yields 852) 
and then enter (852 3 602) mod 2701.
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8 | External Direct Products 171

Thus, the number 2415 is sent to the receiver. Now the receiver must 
take this number and convert it back to 2505. To do so, the receiver 
takes the two factors of 2701, p 5 37 and q 5 73, and calculates the 
least common multiple of p 2 1 5 36 and q 2 1 5 72, which is 72. 
(This is where the knowledge of p and q is necessary.) Next, the re-
ceiver must find e21 5 d (called the decryption exponent) in U(72)—
that is, solve the equation 5 ? d 5 1 mod 72. This number is 29. See 
http://www.d.umn.edu/~jgallian/msproject06/chap8.html 
#chap8ex5 or use a Google search box to compute 5k for each divisor k 
of |U(72)| 5 f(9) ? f(8) 5 24 starting with 2 until we reach 5k mod 72 
5 1. Doing so, we obtain 56 mod 72 5 1, which implies that 55 mod 72 
5 29 is 521 in U(72).

Then the receiver takes the number received, 2415, and calculates 
(2415)29 mod 2701 5 2505, the encoded number. Thus, the receiver cor-
rectly determines the code for “YE.” On the other hand, without know-
ing how pq factors, one cannot find the modulus (in our case, 72) that is 
needed to determine the decryption exponent d.

The procedure just described is called the RSA public key encryption 
scheme in honor of the three people (Rivest, Shamir, and Adleman) who 
discovered the method. It is widely used in conjunction with web servers 
and browsers, e-mail programs, remote login sessions, and electronic fi- 
nancial transactions. The algorithm is summarized below.

Receiver
1.  Pick very large primes p and q and compute n 5 pq.
2.  Compute the least common multiple of p – 1 and q – 1; let us call  

it m.
3.  Pick e relatively prime to m.
4.  Find d such that ed mod m 5 1.
5.  Publicly announce n and e.

Sender
1.  Convert the message to a string of digits.
2.  Break up the message into uniform blocks of digits; call them M1, 

M2,…, Mk.
3.  Check to see that the greatest common divisor of each Mi and n is 1. 

If not, n can be factored and our code is broken. (In practice, the 
primes p and q are so large that they exceed all Mi, so this step may 
be omitted.)

4.  Calculate and send Ri 5 Mi
e mod n.
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Receiver
1.  For each received message Ri, calculate Ri

d mod n.
2.  Convert the string of digits back to a string of characters.

Why does this method work? Well, we know that U(n) < U(p) % 
U(q) < Zp21 % Zq21. Thus, an element of the form xm in U(n) corre-
sponds under an isomorphism to one of the form (mx1, mx2) in Zp21 % 
Zq21. Since m is the least common multiple of p 2 1 and q 2 1, we may 
write m 5 s(p 2 1) and m 5 t(q 2 1) for some integers s and t. Then 
(mx1, mx2) 5 (s(p 2 1)x1, t(q 2 1)x2) 5 (0, 0) in Zp21 % Zq21, and it 
follows that xm 5 1 for all x in U(n). So, because each message Mi is an 
element of U(n) and e was chosen so that ed 5 1 1 km for some k, we 
have, modulo n,

Ri
d 5 (Mi

e)d 5 Mi
ed 5 Mi 

11km 5 Mi(Mi
m)k 5 Mi1

k 5 Mi.

In 2002, Ronald Rivest, Adi Shamir, and Leonard Adleman received 
the Association for Computing Machinery A. M. Turing Award, which 
is considered the “Nobel Prize of computing,” for their contribution to 
public key cryptography.

An RSA calculator that does all the calculations is provided at http://
www.d.umn.edu/~jgallian/msproject06/chap8.html#chap8ex5. A list 
of primes can be found by searching the Web for “list of primes.”

Digital Signatures

With so many financial transactions now taking place electronically, the 
problem of authenticity is paramount. How is a stockbroker to know that 
an electronic message she receives that tells her to sell one stock and buy 
another actually came from her client? The technique used in public key 
cryptography allows for digital signatures as well. Let us say that person 
A wants to send a secret message to person  B in such a way that only B 
can decode the message and B will know that only A could have sent it. 
Abstractly, let EA and DA denote the algorithms that A uses for encryp-
tion and decryption, respectively, and let EB and DB denote the algo-
rithms that B uses for encryption and decryption, respectively. Here 
we assume that EA and EB are available to the public, whereas DA is 
known only to A and DB is known only to B, and that DBEB and EADA 
applied to any message leaves the message unchanged. Then A sends 
a message M to B as EB (DA(M)) and B decodes the received message 
by applying the function EADB to it to obtain

(EADB) (EB(DA(M)) 5 EA(DBEB)(DA(M)) 5 EA(DA(M)) 5 M.
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8 | External Direct Products 173

Notice that only A can execute the first step (i.e., create DA(M)) and 
only B can implement the last step (i.e., apply EADB to the received 
message).

Transactions using digital signatures became legally binding in the 
United States in October 2000.

Genetics†

The genetic code can be conveniently modeled using elements of Z4 % 

Z4 % ? ? ? % Z4, where we omit the parentheses and the commas and 
just use strings of 0’s, 1’s, 2’s, and 3’s and add componentwise modulo 
4. A DNA molecule is composed of two long strands in the form of a 
double helix. Each strand is made up of strings of the four nitrogen 
bases adenine (A), thymine (T), guanine (G), and cytosine (C). Each 
base on one strand binds to a complementary base on the other strand. 
Adenine always is bound to thymine, and guanine always is bound to 
cytosine. To model this process, we identify A with 0, T with 2, G with 1, 
and C with 3. Thus, the DNA segment ACGTAACAGGA and its com-
plement segment TGCATTGTCCT are denoted by 03120030110 and 
21302212332. Noting that in Z4, 0 1 2 5 2, 2 1 2 5 0, 1 1 2 5 3, and 
3 1 2 5 1, we see that adding 2 to elements of Z4 interchanges 0 and 2 
and 1 and 3. So, for any DNA segment a1a2 ? ? ? an represented by ele-
ments of Z4 % Z4 % ? ? ? % Z4, we see that its complementary segment 
is represented by a1a2 ? ? ? an 1 22 ? ? ? 2.

Electric Circuits

Many homes have light fixtures that are operated by a pair of switches. 
They are wired so that when either switch is thrown, the light changes 
its status (from on to off or vice versa). Suppose the wiring is done so 
that the light is on when both switches are in the up position. We can 
conveniently think of the states of the two switches as being matched 
with the elements of Z2 % Z2, with the two switches in the up position 
corresponding to (0, 0) and the two switches in the down position cor-
responding to (1, 1). Each time a switch is thrown, we add 1 to the 
 corresponding component in the group Z2 % Z2. We then see that the 
lights are on when the switches correspond to the elements of the sub-
group k(1, 1)l and are off when the switches correspond to the elements 
in the coset (1, 0) 1 k(1, 1)l. A similar analysis applies in the case of 
three switches, with the subgroup {(0, 0, 0), (1, 1, 0), (0, 1, 1), (1, 0, 1)} 
corresponding to the lights-on situation.

†This discussion is adapted from [3].
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Exercises

What’s the most difficult aspect of your life as a mathematician, Diane 
Maclagan, an assistant professor at Rutgers, was asked. “Trying to prove 
 theorems,” she said. And the most fun? “Trying to prove theorems.”

  1. Prove that the external direct product of any finite number of 
groups is a group. (This exercise is referred to in this chapter.)

  2. Show that Z2 % Z2 % Z2 has seven subgroups of order 2.
  3. Let G be a group with identity eG and let H be a group with iden - 

tity eH. Prove that G is isomorphic to G % {eH} and that H is iso-
morphic to {eG} % H.

  4. Show that G % H is Abelian if and only if G and H are Abelian. 
State the general case.

  5. Prove or disprove that Z % Z is a cyclic group.
  6. Prove, by comparing orders of elements, that Z8 % Z2 is not iso-

morphic to Z4 % Z4.
  7. Prove that G1 % G2 is isomorphic to G2 % G1. State the general 

case.
  8. Is Z3 % Z9 isomorphic to Z27? Why?
  9. Is Z3 % Z5 isomorphic to Z15? Why?
 10. How many elements of order 9 does Z3 % Z9 have? (Do not do this 

exercise by brute force.)
 11. How many elements of order 4 does Z4 % Z4 have? (Do not do this 

by examining each element.) Explain why Z4 % Z4 has the same 
number of elements of order 4 as does Z8000000 % Z400000. General-
ize to the case Zm % Zn.

 12. Give examples of four groups of order 12, no two of which are 
isomorphic. Give reasons why no two are isomorphic.

 13. For each integer n . 1, give examples of two nonisomorphic 
groups of order n2.

 14. The dihedral group Dn of order 2n (n $ 3) has a subgroup of n ro-
tations and a subgroup of order 2. Explain why Dn cannot be iso-
morphic to the external direct product of two such groups.

 15. Prove that the group of complex numbers under addition is iso-
morphic to R % R.

 16. Suppose that G1 < G2 and H1 < H2. Prove that G1 % H1 < G2 % 
H2. State the general case.

 17. If G % H is cyclic, prove that G and H are cyclic. State the  general 
case.

 18. In Z40 % Z30, find two subgroups of order 12.
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8 | External Direct Products 175

 19. If r is a divisor of m and s is a divisor of n, find a subgroup of Zm % 
Zn that is isomorphic to Zr % Zs.

 20. Find a subgroup of Z12 % Z18 that is isomorphic to Z9 % Z4.
 21. Let G and H be finite groups and (g, h) [ G % H. State a necessary 

and sufficient condition for k(g, h)l 5 kgl % khl.
 22. Determine the number of elements of order 15 and the number of 

cyclic subgroups of order 15 in Z30 % Z20.
 23. What is the order of any nonidentity element of Z3 % Z3 % Z3? 

Generalize.
 24. Let m . 2 be an even integer and let n . 2 be an odd integer. Find 

a formula for the number of elements of order 2 in Dm % Dn.
 25. Let M be the group of all real 2 3 2 matrices under addition. Let  

N 5 R % R % R % R under componentwise addition. Prove that 
M and N are isomorphic. What is the corresponding theorem for 
the group of m 3 n matrices under addition?

 26. The group S3 % Z2 is isomorphic to one of the following groups: 
Z12, Z6 % Z2, A4, D6. Determine which one by elimination.

 27. Let G be a group, and let H 5 {(g, g) | g [ G}. Show that H is a  
subgroup of G % G. (This subgroup is called the diagonal of  
G % G.) When G is the set of real numbers under addition,  
describe G % G and H geometrically.

 28. Find a subgroup of Z4 % Z2 that is not of the form H % K, where H 
is a subgroup of Z4 and K is a subgroup of Z2.

 29. Find all subgroups of order 3 in Z9 % Z3.
 30. Find all subgroups of order 4 in Z4 % Z4.
 31. What is the largest order of any element in Z30 % Z20?
 32. What is the order of the largest cyclic subgroup of Z6 % Z10 % Z15? 

What is the order of the largest cyclic subgroup of Zn1
 % Zn2

 % … 
% Znk

?
 33. Find three cyclic subgroups of maximum possible order in Z6 % 

Z10 % Z15 of the form kal % kbl % kcl, where a [ Z6, b [ Z10, and 
c [ Z15.

 34. How many elements of order 2 are in Z2000000 % Z4000000? Generalize.
 35. Find a subgroup of Z800 % Z200 that is isomorphic to Z2 % Z4.
 36. Find a subgroup of Z12 % Z4 % Z15 that has order 9.
 37. Prove that R* % R* is not isomorphic to C*. (Compare this with 

Exercise 15.)
 38. Let

 H � • £1 a b

0 1 0

0 0 1
t †  a, b [ Z3¶ .
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  (See Exercise 48 in Chapter 2 for the definition of multiplication.) 
Show that H is an Abelian group of order 9. Is H isomorphic to Z9 
or to Z3 % Z3?

 39. Let G 5 {3m6n | m, n [ Z} under multiplication. Prove that G is isomor-
phic to Z % Z. Does your proof remain valid if G 5 {3m9n | m, n [ Z}?

 40. Let (a1, a2, . . . , an) [ G1 % G2 % ? ? ? % Gn. Give a necessary and 
sufficient condition for |(a1, a2, . . . , an)| 5 `.

 41. Prove that D3 % D4 ] D12% Z2.
 42. Determine the number of cyclic subgroups of order 15 in Z90 % Z36.

Provide a generator for each of the subgroups of order 15.
 43. List the elements in the groups U5(35) and U7(35).
 44. Prove or disprove that U(40) % Z6 is isomorphic to U(72) % Z4.
 45. Prove or disprove that C* has a subgroup isomorphic to Z2 % Z2.
 46. Let G be a group isomorphic to Zn1

 % Zn2
 % . . . % Znk. Let x be the 

product of all elements in G. Describe all possibilities for x.
 47. If a group has exactly 24 elements of order 6, how many cyclic 

subgroups of order 6 does it have?
 48. For any Abelian group G and any positive integer n, let Gn 5 {gn | 

g [ G} (see Exercise 17, Supplementary Exercises for Chapters 
1– 4). If H and K are Abelian, show that (H % K)n 5 Hn % Kn.

 49. Express Aut(U(25)) in the form Zm % Zn.
 50. Determine Aut(Z2 % Z2).
 51. Suppose that n1, n2, . . . , nk are positive even integers. How many 

 elements of order 2 does Zn1
 % Zn2

 % . . . % Znk
 have ? How many are 

there if we drop the requirement that n1, n2, . . . , nk must be even?
 52. Is Z10 % Z12 % Z6 ^ Z60 % Z6 % Z2?
 53. Is Z10 % Z12 % Z6 ^ Z15 % Z4 % Z12?
 54. Find an isomorphism from Z12 to Z4 % Z3.
 55. How many isomorphisms are there from Z12 to Z4 % Z3?
 56. Suppose that f is an isomorphism from Z3 % Z5 to Z15 and  

f(2, 3) 5 2. Find the element in Z3 % Z5 that maps to 1.
 57. If f is an isomorphism from Z4 % Z3 to Z12, what is f(2, 0)? What 

are the possibilities for f(1, 0)? Give reasons for your answer.
 58. Prove that Z5 % Z5 has exactly six subgroups of order 5.
 59. Let (a, b) belong to Zm % Zn. Prove that |(a, b)| divides lcm(m, n).
 60. Let G 5 {ax2 1 bx 1 c | a, b, c [ Z3}. Add elements of G as you 

would polynomials with integer coefficients, except use modulo 3 
addition. Prove that G is isomorphic to Z3 % Z3 % Z3. Generalize.
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8 | External Direct Products 177

 61. Determine all cyclic groups that have exactly two generators.
 62. Explain a way that a string of length n of the four nitrogen bases A, 

T, G, and C could be modeled with the external direct product of n 
copies of Z2 % Z2.

 63. Let p be a prime. Prove that Zp % Zp has exactly p 1 1 subgroups 
of order p.

 64. Give an example of an infinite non-Abelian group that has exactly 
six elements of finite order.

 65. Give an example to show that there exists a group with elements a 
and b such that |a| 5 `, |b| 5 `, and |ab| 5 2.

 66. Express U(165) as an external direct product of cyclic groups of 
the form Zn.

 67. Express U(165) as an external direct product of U-groups in four 
different ways.

 68. Without doing any calculations in Aut(Z20), determine how many 
elements of Aut(Z20) have order 4. How many have order 2?

 69. Without doing any calculations in Aut(Z720), determine how many 
elements of Aut(Z720) have order 6.

 70. Without doing any calculations in U(27), decide how many sub-
groups U(27) has.

 71. What is the largest order of any element in U(900)?
 72. Let p and q be odd primes and let m and n be positive integers. 

Explain why U( pm) % U(qn) is not cyclic.
 73. Use the results presented in this chapter to prove that U(55) is 

 isomorphic to U(75).
 74. Use the results presented in this chapter to prove that U(144) is 

 isomorphic to U(140).
 75. For every n . 2, prove that U(n)2 5 {x2 | x [ U(n)} is a proper 

subgroup of U(n).
 76. Show that U(55)3 5 {x3 | x [ U(55)} is U(55).
 77. Find an integer n such that U(n) contains a subgroup isomorphic to  

Z5 % Z5.
 78. Find a subgroup of order 6 in U(700).
 79. Show that there is a U-group containing a subgroup isomorphic  

to Z3 % Z3.
 80. Find an integer n such that U(n) is isomorphic to Z2 % Z4 % Z9.
 81. What is the smallest positive integer k such that xk 5 e for all x in 

U(7 ? 17)? Generalize to U(pq) where p and q are distinct primes.
 82. If k divides m and m divides n, how are Um(n) and Uk(n) related?
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 83. Let p1, p2,…, pk be distinct odd primes and n1, n2,…, nk be  
positive integers. Determine the number of elements of order 2 in 
U(p1

n1 p2
n2… pk

nk). How many are there in U(2np1
n1 p2

n2… pk
nk) where 

n is at least 3?
 84. Show that no U-group has order 14.
 85. Show that there is a U-group containing a subgroup isomorphic  

to Z14.
 86. Show that no U-group is isomorphic to Z4 % Z4.
 87. Show that there is a U-group containing a subgroup isomorphic to  

Z4 % Z4.
 88. Using the RSA scheme with p 5 37, q 5 73, and e 5 5, what num-

ber would be sent for the message “RM”?
 89. Assuming that a message has been sent via the RSA scheme with  

p 5 37, q 5 73, and e 5 5, decode the received message “34.”

Computer Exercises

Computer exercises in this chapter are available at the website:

http://www.d.umn.edu/~jgallian
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Applicable Algebra in Engineering, Communication, and Computing 22 
(2011):109–112.

This article provides a new check-digit system for hexadecimal num-
bers that is based on the use of a suitable automorphism of the group 
Z2 % Z2 % Z2 % Z2. It is able to detect all single errors, adjacent trans-
positions, twin errors, jump transpositions, and jump twin errors.
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Leonard Adleman

Leonard Adleman was born on December 
31, 1945 in San Francisco, California. He re-
ceived a B.A. degree in mathematics in 1968 
and a Ph.D. degree in computer science in 
1976 from the University of California, 
Berkeley. He spent 1976–1980 as professor 
of mathematics at the Massachusetts Institute 
of Technology where he met Ronald Rivest 
and Adi Shamir. Rivest and Shamir were at-
tempting to devise a secure public key cryp-
tosystem and asked Adleman if he could 
break their codes. Eventually, they invented 
what is now known as the RSA code that was 
simple to implement yet secure.

In 1983, Adleman, Shamir, and Rivest 
formed the RSA Data Security company to 
license their algorithm. Their algorithm has 
become the primary cryptosystem used for 
security on the World Wide Web. They sold 
their company for $200 million in 1996.

In the early 1990s, Adleman became in-
terested in trying to find out a way to use 
DNA as a computer. His pioneering work on 
this problem lead to the field now called 
“DNA computing.”

Among his many honors are: the 
Association for Computing Machinery  
A. M. Turing Award, the Kanallakis Award 
for Theory and Practice, and election to the 
National Academy of Engineering, the 
American Academy of Arts and Sciences, 
and the National Academy of Sciences.

Adleman’s current position is the Henry 
Salvatori Distinguished Chair in Computer 
Science and Professor of Computer Science 
and Biological Sciences at the University of 
Southern California, where he has been 
since 1980.

For more information on Adleman, visit:

http://www.wikipedia.com

and

http://www.nytimes.com/1994/12/13/
science/scientist-at-work-leonard-
adleman-hitting-the-high-spots-of-

computer-theory.html? 
pagewanted=all&src=pm

“For their ingenious contribution for making 
public-key cryptography useful in practice.”
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