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The Feynman Calculus

In this chapter, we begin the quantitative formulation of elementary particle dynamics,
which amounts, in practice, to the calculation of decay rates (I') and scattering cross
sections (o). The procedure involves two distinct parts: (1) evaluation of the relevant
Feynman diagrams to determine the ‘amplitude’ (.4') for the process in question and
(2) insertion of A into Fermi’s ‘Golden Rule’ to compute I' or o, as the case may be. To
avoid distracting algebraic complications, I introduce here a simplified model. Realistic
theories — QED, QCD, and GWS — are developed in succeeding chapters. If you like,
Chapter 6 can be read immediately after Chapter 3. Study it with scrupulous care, or
what follows will be unintelligible.

6.1
Decays and Scattering

As 1 mentioned in the Introduction, we have three experimental probes of
elementary particle interactions: bound states, decays, and scattering. Nonrela-
tivistic quantum mechanics (in Schrodinger’s formulation) is particularly well
adapted to handle bound states, which is why we used it, as far as possible,
in Chapter 5. By contrast, the relativistic theory (in Feynman’s formulation) is
especially well suited to describe decays and scattering. In this chapter I'll in-
troduce the basic ideas and strategies of the Feynman ‘calculus’; in subsequent
chapters we will use it to develop the theories of strong, electromagnetic, and weak
interactions.

6.1.1
Decay Rates

To begin with, we must decide what physical quantities we would like to calculate.
In the case of decays, the item of greatest interest is the lifetime of the particle
in question. What precisely do we mean by the lifetime of, say, the muon? We
have in mind, of course, a muon at rest; a moving muon lasts longer (from our
perspective) because of time dilation. But even stationary muons don’t all last the
same amount of time, for there is an intrinsically random element in the decay
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process. We cannot hope to calculate the lifetime of any particular muon; rather,
what we are after is the average (or ‘mean’) lifetime, 7, of the muons in any large
sample.

Now, elementary particles have no memories, so the probability of a given muon
decaying in the next microsecond is independent of how long ago that muon was
created. (It’s quite different in biological systems: an 80-year-old man is much more
likely to die in the next year than is a 20-year-old, and his body shows the signs
of eight decades of wear and tear. But all muons are identical, regardless of when
they were produced; from an actuarial point of view they’re all on an equal footing.)
The critical parameter, then, is the decay rate, I, the probability per unit time that
any given muon will disintegrate. If we had a large collection of muons, say, N(t),
at time ¢, then NI'dt of them would decay in the next instant dt. This would, of
course, decrease the number remaining:

dN =-TNdt (6.1)
It follows that
N(t) = N(0)e™* (6.2)

Evidently, the number of particles left decreases exponentially with time. As you
can check for yourself (Problem 6.1), the mean lifetime is simply the reciprocal of
the decay rate:

T == 6.3

= (63

Actually, most particles can decay by several different routes. The 7 *, for instance,
usually decays to u™ + v, but sometimes one goes to et + v,; occasionally, a 7T
decays to u™ + v, + y, and they have even been known to go to et + v, + 7. In
such circumstances, the total decay rate is the sum of the individual decay rates:

n
Tt = » T (6.4)
i=1

and the lifetime of the particle is the reciprocal of Ty

1

T =
Iﬁtot

(6.5)

In addition to 7, we want to calculate the various branching ratios, that is, the
fraction of all particles of the given type that decay by each mode. Branching ratios
are determined by the decay rates:

Branching ratio for ith decay mode = T';/ I (6.6)

For decays, then, the essential problem is to calculate the decay rate I'; for each
mode; from there it is an easy matter to obtain the lifetime and branching ratios.
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6.1.2
Cross Sections

How about scattering® What quantity should the experimentalist measure and
the theorist calculate? If we were talking about an archer aiming at a ‘bull’s-eye’,
the parameter of interest would be the size of the target or, more precisely, the
cross-sectional area it presents to a stream of incoming arrows. In a crude sense,
the same goes for elementary particle scattering: if you fire a stream of electrons
into a tank of hydrogen (which is essentially a collection of protons), the parameter
of interest is the size of the proton — the cross-sectional area o it presents to the
incident beam. The situation is more complicated than in archery, however, for
several reasons. First of all the target is ‘soft’; it’s not a simple case of ‘hit-or-miss’,
but rather ‘the closer you come the greater the deflection’. Nevertheless, it is still
possible to define an ‘effective’ cross section; I'll show you how in a moment. Sec-
ondly, the cross section depends on the nature of the ‘arrow’ as well as the structure
of the ‘target’. Electrons scatter off hydrogen more sharply than neutrinos and less
so than pions, because different interactions are involved. It depends, too, on the
outgoing particles; if the energy is high enough we can have not only elastic scattering
(e +p — e+ p), butalso a variety of inelastic processes, suchase+p—e+p+y,
ore + p+ 7% oreven, inprinciple, v, + A. Each one of these has its own (‘exclusive’)
scattering cross section, o; (for process i). In some experiments, however, the final
products are not examined, and we are interested only in the total (‘inclusive’) cross
section:

n
Otot = ZO’;’ (67)
=1

Finally, each cross section typically depends on the velocity of the incident particle.
At the most naive level we might expect the cross section to be proportional to the
amount of time the incident particle spends in the vicinity of the target, which is to
say that o should be inversely proportional to v. But this behavior is dramatically
altered in the neighborhood of a ‘resonance’ — a special energy at which the
particles involved ‘like’ to interact, forming a short-lived semibound state before
breaking apart. Such ‘bumps’ in the graph of o versus v (o, as it is more commonly
plotted, o versus E) are in fact the principal means by which short-lived particles
are discovered (see Figure 4.6). So, unlike the archer’s target, there’s a lot of physics
in an elementary particle cross section.

Let’s go back, now, to the question of what we mean by a ‘cross section’ when
the target is soft. Suppose a particle (maybe an electron) comes along, encounters
some kind of potential (perhaps the Coulomb potential of a stationary proton), and
scatters off at an angle 6. This scattering angle is a function of the impact parameter b,
the distance by which the incident particle would have missed the scattering center,
had it continued on its original trajectory (Figure 6.1). Ordinarily, the smaller the
impact parameter, the larger the deflection, but the actual functional form of 8(b)
depends on the particular potential involved.
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Scattering center

Fig. 6.1 Scattering from a fixed potential: 8 is the scattering
angle and b is the impact parameter.

Example 6.1 Hard-sphere Scattering Suppose the particle bounces elastically off a
sphere of radius R. From Figure 6.2, we have

b = Rsing, 204+60=m
Thus,

sino = sin(/2 — 6/2) = cos(6/2)
and hence

b= Rcos(@/2) or & =2cos '(b/R)

This is the relation between 0 and b for classical hard-sphere scattering.

Fig. 6.2 Hard-sphere scattering.
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do

Fig. 6.3 Particle incident in area do scatters into solid angle dQ.

If the particle comes in with an impact parameter between b and b + db, it will
emerge with a scattering angle between 6 and 6 + df. More generally, if it passes
through an infinitesimal area do, it will scatter into a corresponding solid angle
dQ (Figure 6.3). Naturally, the larger we make do, the larger dQ will be. The
proportionality factor is called the differential (scattering) cross section, D:*

do = D(F) dQ (6.8)
The name is poorly chosen; it’s not a differential, or even a derivative, in the
mathematical sense. The words would apply more naturally to do thantodo /d2. ..

but I'm afraid we're stuck with it.
Now, from Figure 6.3 we see that

do =|bdbdg|, dQ = |sin6 do dg| (6.9)

(Areas and solid angles are intrinsically positive, hence the absolute value signs.)
Accordingly,
b (b 6.10
sind \ do (.10

Example 6.2 In the case of hard-sphere scattering, Example 6.1, we find

a =~ 2%\ 2

* In principle D can depend on the azimuthal angle ¢; however, most potentials of interest are
spherically symmetrical, in which case the differential cross section depends only on 8 (or, if
you prefer, on b). By the way, the notation (D) is my own; most people just write do/d€2, and in
the rest of the book I'll do the same.

do

D) = 35 =
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and hence

D(6) = Rbsin(/2)  R*cos(6/2)sin(f/2) R’

2sinf 2 siné 4

Finally, the total cross section is the integral of do over all solid angles:

o= /da =/D(0) dQ (6.11)

Example 6.3  For hard-sphere scattering,
RZ
o= / — dQ =nR?
4

which is, of course, the total cross section the sphere presents to an incoming
beam: any particles within this area will scatter, and any outside will pass by
unaffected.

As Example 6.3 indicates, the formalism developed here is consistent with our
naive sense of the term ‘cross section’, in the case of a ‘hard’ target; its virtue is
that it applies as well to ‘soft’ targets, which do not have sharp edges.

Example 6.4 Rutherford Scattering A particle of charge g; scatters off a stationary
particle of charge g;. In classical mechanics, the formula relating the impact
parameter to the scattering angle is [1]

_ 1
b= 5 cot(6/2)

where E is the initial kinetic energy of the incident charge. The differential cross
section is therefore

2
_ 9192
pie) = (412 sinz(Q/Z))

In this case, the total cross section is actually infinite:*

2.1 1
UZZN(M> / ——4—_'——511’19(19:00
4E o sin*(6/2)

Suppose we have a beam of incoming particles, with uniform luminosity £ (L is
the number of particles passing down the line per unit time, per unit area). Then

* This is related to the fact that the Coulomb potential has infinite range (see footnote in
Section 1.3).
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Detector

de

L P ©
Incident beam Target

Fig. 6.4 Scattering of a beam with luminosity L.

dN = £ do is the number of particles per unit time passing through area do, and
hence also the number per unit time scattered into solid angle dQ:

dN = £ do = LD(9) dQ (6.12)

Suppose I set up a detector that subtends a solid angle d2 with respect to
the collision point (Figure 6.4). I count the number of particles per unit time
(dN) reaching my detector — what an experimentalist would call the event rate.
Equation 6.12 says that the event rate is equal to the luminosity times the differential
cross section times the solid angle. Whoever is operating the accelerator controls
the luminosity; whoever set up the detector determined the solid angle. With these
parameters established, the differential cross section can be measured by simply
counting the number of particles entering the detector:

do dN

o= Tdo (6.13)

If the detector completely surrounds the target, then N = o L; as accelerator
physicists like to say, ‘the event rate is the cross section times the luminosity’.*

6.2
The Golden Rule

In Section 6.1 I introduced the physical quantities we need to calculate: decay rates
and cross sections. In both cases there are two ingredients in the recipe: (i) the
amplitude (#) for the process and (ii) the phase space available.T The amplitude
contains all the dynamical information; we calculate it by evaluating the relevant
Feynman diagrams, using the Feynman rules appropriate to the interaction in

* In this discussion, I have assumed that the in the identity of the participants during the
target itself is stationary and that the incident scattering process (in the reaction 7~ + p* —
particle is simply deflected as it passes through ~ K+ + X7, for example, d might represent
the scattering potential. My purpose was to the solid angle into which the KT scatters).
introduce the essential ideas in the simplest 1| The amplitude is also called the matrix ele-
possible context. But in Section 6.2 the for- ment; the phase space is sometimes called the
malism is completely general; it includes the density of final states.

recoil of the target, and allows for a change
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question. The phase space factor is purely kinematic; it depends on the masses,
energies, and momenta of the participants, and reflects the fact that a given process
is more likely to occur the more ‘room to maneuver’ there is in the final state. For
example, the decay of a heavy particle into light secondaries involves a large phase
space factor, for there are many different ways to apportion the available energy.
By contrast, the decay of the neutron (n — p + e + V), in which there is almost
no extra mass to spare, is tightly constrained and the phase space factor is very
small.*

The ritual for calculating reaction rates was dubbed the Golden Rule by Enrico
Fermi. In essence, Fermi’s Golden Rule says that a transition rate is given by
the product of the phase space and the (absolute) square of the amplitude. You
may have encountered the nonrelativistic version, in the context of time-dependent
perturbation theory [2]. We need the relativistic version, which comes from quantum
field theory [3]. I can’t derive it here; what I will do is state the Golden Rule and try
to make it plausible. Actually, I'll do it twice: once in a form appropriate to decays
and again in a form suitable for scattering.

6.2.1
Golden Rule for Decays

Suppose particle 1 (at rest)T decays into several other particles 2, 3,4, ..., n:
1524344+ +n (6.14)

The decay rate is given by the formula

S
2 ﬁml

n d4p
x [T2ns <pj2 - mjzc2> 9 (p}’) J (6.15)
=2

I' =

/ | (2m)*8* (p1 — p2 — p3- — Pn)

(2m)*

where m; is the mass of the ith particle and p; is its four-momentum. S is a
statistical factor that corrects for double-counting when there are identical particles
in the final state: for each such group of s particles, S gets a factor of (1/s!). For
instance, if a - b+ b+c+c+c, then S = (1/2!)(1/3!) = 1/12. If there are no
identical particles in the final state (the most common circumstance), then S = 1.

Remember: The dynamics of the process is contained in the amplitude, .# (p1,
P2, - .-, Pa), Which is a function of the various momenta; we’ll calculate it (later)

* For a more extreme case, consider the (kinematically forbidden) decay 2~ — E~ + X°. Since
the final products weigh more than the €, there is no phase space available at all and the decay
rate is zero.

T There is no loss of generality in assuming particle 1 is at rest; this is simply an astute choice of
reference frame.
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by evaluating the appropriate Feynman diagrams. The rest is phase space; it tells us
to integrate over all outgoing four-momenta, subject to three kinematical constraints:

1. Each outgoing particle lies on its mass shell: pf = m?c?
(which is to say, Ef — pjc* = mjc*). This is enforced by the

delta function § <pJ2 - mjzcz>, which is zero unless its
argument vanishes.*

2. Each outgoing energy is positive: pj(.) = E;/c > 0. Hence the 0
function.”

3. Energy and momentum must be conserved: py = p, +p3 - - -

+ py. This is ensured by the factor 5* (p1 —p2 —P3 - —DPn)-

The Golden Rule (Equation 6.15) may look forbidding, but what it actually says
could hardly be simpler: all outcomes consistent with the three natural kinematic
constraints are a priori equally likely. To be sure, the dynamics (contained in .#)
may favor some combinations of momenta over others, but with that modulation
you just add up all the possibilities. How about all those factors of 27 ? These are easy
to keep track of if you adhere scrupulously to the following rule:*

Every § gets (27); every d gets 1/(2r). (6.16)
Four-dimensional ‘volume’ elements can be split into spatial and temporal parts:
d*p = dp® &’p (6.17)

(I'll drop the subscript j, for simplicity — this argument applies to each of the
outgoing momenta). The p° integrals! can be performed immediately, by exploiting
the delta function

§ (p* — m?c?) =8 [(°)* — p* — m*¢?] (6.18)
Now

§(x* —a®) = 2—16; [b(x—a)+8(x+a)] (a>0) (6.19)

If you are unfamiliar with the Dirac delta function, you must study Appendix A carefully before
proceeding.

" §(x) is the (Heaviside) step function: 0 if x < 0 and 1if x > 0 (see Appendix A).

I Some of these factors eventually cancel out, and you might wonder if there is a more efficient
way to manage them. I don’t think so. Feynman is supposed to have shouted in exasperation
(at a graduate student who ‘couldn’t be bothered with such trivial matters’) ‘If you can’t get the
2m’s right, you don’t know nothing!’

§ The integral sign in Equation 6.15 actually stands for 4(n — 1) integrations — one for each com-
ponent of the n — 1 outgoing momenta.
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(see Problem A.7), so
1
0 (%) 8 [(°)* — p* — m?c? =_3(°— 2+m202) 6.20
(") 8 [(")* = p* = m*c’] Wl Gl (6.20)

(the theta function kills the spike at p® = —/p? +m2c?, and it's 1 at p° =
/p? + m?c?). Thus Equation 6.15 reduces to

s

h 2ﬁm1
r 1 d’*p;

x By (6.21)

g 2 /pjz + mjzcz (27T)3

r / | 22r)*5* (51 — 2 — Py — )

with

pj(.) — /pj2 -+ mjzcz (6.22)

wherever it appears (in .# and in the remaining delta function). This is a
more useful way to express the Golden Rule, though it obscures the physical
content.”

6.2.1.1 Two-particle Decays
In particular, if there are only two particles in the final state

s 541 — p2 —
Vo /[/{12 i 2l ) N L (6.23)
w2 himy \/p% N mgcz\/pg + mc?

The four-dimensional delta function is a product of temporal and spatial parts:
8 (pr —p2 — p3) =6 (11 — P2 — 15) 6’ (P1 — P2 — P3) (6.24)

But particle 1 is at rest, so p; = 0 and p{ = myc. Meanwhile, p and pJ have been
replaced (Equation 6.22), sof

(mlc — \/p% + mic? — \/p§ + m%cz>

8
: ./
r=—> [
2
327 ihm \/p% +m§cz\/p% + mic?

x 8* (p2 +ps3) d’p, d’p, (6.25)

* You might recognize the quantity /pj2 + mjzc2 as Ej/c, and many books write it this way. It’s
dangerous notation: p; is an integration variable, so E; is not some constant you can take out-
side the integral. Use it as shorthand, if you like, but remember that E; is a function of p;, not
an independent variable.

We can drop the minus sign in the final delta function, since §(—x) = §(x).
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The p; integral is now trivial: in view of the final delta function it simply makes the

replacement
p3 = —p2 (6.26)
leaving
LS f(”"lc—\/p%m%cz—\/p%+m%cz) -
= m/ ] \/p% N m%cz\/p% i P,  (6.27)

For the remaining integral we adopt spherical coordinates, p, — (v, 6, ¢),
d*py — r?sin@drd@ d¢ (this is momentum space, of course: r = |pa).

b) (mlc — \/rz + mact — \/rz + m%cz)

S / 2
= ——— | ||
2
327 fum \/rz + m%cz\/r2 + mic?

x r* sin6 drd6 d¢ (6.28)

Now, .# was originally a function of the four-momenta p1, p;, and p3, but p; =
(mc, 0) is a constant (as far as the integration is concerned), and the integrals already
performed have made the replacements p§ — ,/p3 + m3c2, p) — /p3 + mic?, and
p3 — —Pa2, 50 by now .# depends only on p,. As we shall see, however, amplitudes
must be scalars, and the only scalar you can make out of a vector is the dot product
with itself:* p; - p2 = r?. At this stage, then, . is a function only of r (not of 6 or
¢). That being the case we can do the angular integrals
27

/ sin6 do = 2, dp = 27 (6.29)
0 0

and there remains only the r integral:

8 <mlc — \/rz + m%c2 — \/rz + m%cz)

S /OO 2 2
= | A ()| rtdr  (6.30)
8mhimy Jo \/rz + m%cz\/r2 + m2c?
To simplify the argument of the delta function, let
2 3

* If the particles carry spin, then .# might depend also on (p;-S;) and (S;S;). However, since ex-
periments rarely measure the spin orientation, we almost always work with the spin-averaged
amplitude. In that case, and of course in the case of spin 0, the only vector in sight is p, and
the only scalar variable is (p,)?.
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S0
du ur
v _ (6.32)
dr \/rz + m%cz\/r2 + m%c2
Then
S o0 5 r
= [ A (r)|°8 (e — u) — du (6.33)
8T Fimy J(my+ms)c u
The last integral sends* u to mic, and hence r to
c \/ 4 4 4 2.2 2.2 2.2
ro = ———4/M] + My + M5 — 2mimy — 2mims — 2moms (6.34)
2m1

(Problem 6.5). Remember that r was short for the variable |p,|; ro is the particular
value of [p,| that is consistent with conservation of energy, and Equation 6.25
simply reproduces the result we obtained back in Chapter 3 (Problem 3.19). In
more comprehensible notation, then,

Sip|

= 2 6.35
Snﬁm%c[///l ( )

where [p| is the magnitude of either outgoing momentum, given in terms of the
three masses by Equation 6.34, and .# is evaluated at the momenta dictated by
the conservation laws. The various substitutions (Equations 6.22, 6.26, and 6.34)
have systematically enforced these conservation laws — hardly a surprise, since they
were built into the Golden Rule.

The two-body decay formula (Equation 6.35) is surprisingly simple; we were
able to carry out all the integrals without ever knowing the functional form of !
Mathematically, there were just enough delta functions to cover all the variables;
physically, two-body decays are kinematically determined: the particles have to come
out back-to-back with opposite three-momenta — the direction of this axis is not
fixed, but since the initial state was symmetric, it doesn’t matter. We will use
Equation 6.35 frequently. Unfortunately, when there are three or more particles in
the final state, the integrals cannot be done until we know the specific functional
form of .# . In such cases (of which we shall encounter mercifully few), you have
to go back to the Golden Rule and work it out from scratch.

6.2.2
Golden Rule for Scattering

Suppose particles 1 and 2 collide, producing particles 3,4, ..., n:
142> 3+4+ - +n (6.36)
* This assumes my > (m;y + m;); otherwise the delta function spike is outside the domain of

integration and we get I = 0, recording the fact that a particle cannot decay into heavier
secondaries.
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The scattering cross section is given by the formula

Sh? f
o= |41 (27)* 6% (o1 + p2 — p3 -+ — pu)
4/ (p1-p2)? — (mamac?)?
n d4p'
2 2.2 0 J
x [J2ns <pj —mle ) 9 (pj> T (6.37)
j=3

where p; is the four-momentum of particle i (mass m;) and the statistical factor
(S) is the same as before (Equation 6.15). The phase space is essentially the same
as before: integrate over all outgoing momenta, subject to the three kinematical
constraints (every outgoing particle is on its mass shell, every outgoing energy is
positive, and energy and momentum are conserved), which are enforced by the
delta and theta functions. Once again, we can simplify matters by performing the
pj(.) integrals:

SH?
o =
4/(p1 - p2)* — (Mmamac?

<1 ! By (6.38)

j=}, 2 /p} + mjzcz (27t)3

72 ] | > 27)*8* (p1 + p2 — p3 -+ — )

with
pjo o p.z -+ m.zcz (6'39)

J J

wherever it occurs in .4 and the delta function.

6.2.2.1 Two-body Scattering in the CM Frame
Consider the process

1+2—>3+4 (6.40)

in the CM frame, p, = —p, (Figure 6.5), where

Jo1 - p2)? — (mmac?)? = (1 + E)lpy /e (6.41)

(Problem 6.7). In this case, Equation 6.38 reduces to

Shc 81 +p2 —p3 —
o= aE T E ) e T ELdp (04
! 2)ip1 \/P3+m352\/P4+m452
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P+ P2 AN
— 6 <—— e - L ___.

Before / After

Fig. 6.5 Two-body scattering in the CM frame.

As before, we begin by rewriting the delta function:*

Ei+ F
8*(pr+p2—p3 —pa) =8 (—C— o P2> 8*(p3 + p4) (6.43)

Next we insert Equation 6.39 and carry out the p, integral (which sends p, —

—p3):
B \2 Sc
preeed B _— %2
d <8n) <E1+Ez)fp11/1 |

8 [(El + Ep)/fe— \Jp+ mdct - Jp} + micz]
X ’p, (6.44)
P} -+ mict [p3 + mic?

This time, however, |.#|* depends on the direction of p; as well as its magnitude,’
so we cannot carry out the angular integration. But that’s all right - we didn’t
really want o in the first place; what we're after is do /d2. Adopting spherical
coordinates, as before,

d’*p, =t drde (6.45)

(where r is shorthand for |p;| and dQ2 = sin 8 dé d¢), we obtain

2 o0
d_a = (i) __SL__/ | |?
dQ 8t ) (E1+ E)lpyl Jo

8 [(El + Ey)/c — \/,,2 + mic? — \/rz + mﬁcz}
X r* dr (6.46)
\/,,2 + m%cz\/r2 + mic?

* Observe that p; and p, are fixed vectors (re- p, = —P; and p, = —p;, 80 it remains
lated by our choice of reference frame: p, = a function only of p; and p; (assuming
~p,), but at this stage p, and p, are integra- again that spin does not come into it).
tion variables. It is only after the p, integra- From these vectors we can construct three
tion that they are restricted (p, = —p5), and scalars: p;-p; = [py1%, pyps = Ipsl% and
after the |ps| integration that they are deter- P1P3 = |p1lIpslcosd. But p, is fixed, so the
mined by the scattering angle 4. only integration variables on which |.#|? can
T In general, |.#|* depends on all depend are |p;| and 6.

four-momenta. However, in this case
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The integral over r is the same as in Equation 6.30, with my; — m4 and m; —
(Ey + E)/c*. Quoting our previous result (Equation 6.35), I conclude that

= il (6.47)

do (ﬁc>2 S|.#1*  1pyl
(E1 + E2)* Ipy]

where |py| is the magnitude of either outgoing momentum and |p;| is the magnitude
of either incoming momentum.

As in the case of decays, the two-body final state is peculiarly simple, in the sense
that we are able to carry the calculation through to the end without knowing the
explicit functional form of .. We will be using Equation 6.47 frequently in later
chapters.

By the way, lifetimes obviously carry the dimensions of time (seconds); decay
rates (I" = 1/7), therefore, are measured in inverse seconds. Cross sections have
dimensions of area — cm?, or, more conveniently, ‘barns’:

1b=10"%* cm? (6.48)

Differential cross sections, do /d€2, are given in barns per steradian or simply barns
(steradians, like radians, being dimensionless). The amplitude, .#/, has units that
depend on the number of particles involved: if there are n external lines (incoming
plus outgoing), the dimensions of .# are those of momentum raised to the power
4 —n

Dimensions of .# = (mc)*™" (6.49)

For example, in a three-body process (A — B+ C), .# has dimensions of
momentum; in a four-body process (A— B+ C+ DorA+ B— C+ D), # is
dimensionless. You can check for yourself that the two Golden Rules then yield the
correct units for I' and o.

6.3
Feynman Rules for a Toy Theory

In Section 6.2, we learned how to calculate decay rates and scattering cross sections,
in terms of the amplitude ./ for the process in question. Now I'll show you how to
determine ./ itself, using the ‘Feynman rules’ to evaluate the relevant diagrams.
We could go straight to a ‘real-life’ system, such as quantum electrodynamics, with
electrons and photons interacting via the primitive vertex:
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This is the original, the most important, and the best understood application
of Feynman’s technique. Unfortunately, it involves diverting complications (the
electron has spin 3, the photon is massless and carries spin 1), which have nothing
to do with the Feynman calculus as such. In Chapter 7, I'll show you how to handle
particles with spin, but for the moment I don’t want to confuse the issue, so I'm
going to introduce a ‘toy’ theory, which does not pretend to represent the real world,
but will serve to illustrate the method, with a minimum of extraneous baggage [4].

Imagine a world in which there are just three kinds of particles — call them A,
B, and C — with masses my, mp, and m¢. They all have spin 0 and each is its own
antiparticle (so we don’t need arrows on the lines). There is one primitive vertex,
by which the three particles interact:

I shall assume that A is the heaviest of the three and in fact weighs more than B and
C combined, so that it can decay into B + C. The lowest-order diagram describing
this disintegration is the primitive vertex itself; to this there are (small) third-order
corrections:

and even smaller ones of higher order. Our first project will be to calculate the
lifetime of the A, to lowest order. After that, we’ll look at various scattering
processes, suchas A+ A — B+ B:

A+ B— A+ B:

and so on.
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Po [ \ Ps
_.__._1*"“—"' —
AN / \
P3 - Pe

Fig. 6.6 A generic Feynman diagram, with external lines labeled (internal lines not shown).

Our problem is to find the amplitude .# associated with a given Feynman

diagram. The ritual is as follows [5]:
1. Notation: Label the incoming and outgoing four-momenta
P1, P2, - - - » Pn (Figure 6.6). Label the internal momenta g;,
g2, - - - Put an arrow beside each line, to keep track of the
‘positive’ direction (forward in time for external lines,
arbitrary for internal lines).
2. Vertex factors: For each vertex, write down a factor

—lg

g is called the coupling constant; it specifies the strength of the
interaction between A, B, and C. In this toy theory, g has the
dimensions of momentum; in the ‘real-world’ theories, we
shall encounter later on, the coupling constant is always
dimensionless.

3. Propagators: For each internal line, write a factor

i
2 2
g = mic’

where g; is the four-momentum of the line and m; is the
mass of the particle the line describes. (Note that qu # m?c?,
because a virtual particle does not lie on its mass shell.)

4, Conservation of energy and momentum: For each vertex, write a

delta function of the form
Q2m)*8* (k1 + ka + ka)

where the k’s are the three four-momenta coming into the
vertex (if the arrow leads outward, then k is minus the
four-momentum of that line). This factor imposes
conservation of energy and momentum at each vertex, since
the delta function is zero unless the sum of the incoming
momenta equals the sum of the outgoing momenta.
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Fig. 6.7 Lowest-order contribution to A — B+ C.

5. Integration over internal momenta: For each internal line,
write down a factor®
1
— d*a
@yt © 0
and integrate over all internal momenta.
6. Cancel the delta function: The result will include a delta
function

(2m)*8*(pr+p2+ - = pa)

reflecting overall conservation of energy and momentum.
Erase this factor” and multiply by i. The result is ..

6.3.1
Lifetime of the A

The simplest possible diagram, representing the lowest-order contribution to
A — B+ C, has no internal lines at all (Figure 6.7). There is one vertex, at which
we pick up a factor of —ig (Rule 2) and a delta function

(27)*8% (1 = P2 — p3)
(Rule 4), which we promptly discard (Rule 6). Multiplying by i, we get
M =g (6.50)

This is the amplitude (to lowest order); the decay rate is found by plugging .# into
Equation 6.35:

2
= Lplz (6.51)
8w himsc

* Notice (again) that every § gets a factor of (27) and every d gets a factor of 1/(27).

T Of course, the Golden Rule immediately puts this factor back in Equations 6.15 and 6.37, and
you might wonder why we don’t just keep it in .#. The problem is that |.2Z|?, not .#, comes
into the Golden Rule and the square of a delta function is undefined. So you have to remove it
here, even though you'll be putting it back at the next stage.
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where |p| (the magnitude of either outgoing momentum) is

¢
Ipl = 2—\/’”2 + mb + mé — 2mimd — 2mim — 2mimk (6.52)
ma

The lifetime of the A, then, is

1 _ 8 ﬁmic

T = — =
r gIpl

(6.53)

You should check for yourself that r comes out with the correct units.

6.3.2
A+ A — B+ B Scattering

The lowest-order contribution to the process A + A — B + Bis shown in Figure 6.8
In this case, there are two vertices (hence two factors of —ig), one internal line,
with the propagator

j
q? — méc?

two delta functions:
(2n)*6* (1 —ps —q) and  (27)*8*(p2 +q — p4)
and one integration:

I
e

Rules 1-5, then, yield
, 1
—i(2m)*g? / ————5 81 —ps — 9 8* (2 +q—pa) d'q
g> — mgc
Doing the integral, the second delta function sends g — p4 — p2, and we have

(27)*8*(p1 + p2 — p3 — p4)

Fig. 6.8 Lowest-order contribution to A+ A — B+ B.
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P2

=

Fig. 6.9 Second diagram contributing in lowest order to A+ A — B+ B.

As promised, there is one remaining delta function, reflecting overall conservation
of energy and momentum. Erasing it and multiplying by i (Rule 6), we are left with

2

g
w= (p+ — p2)? — m¢c? o

But that’s not the whole story, for there is another diagram of order g2, obtained
by ‘twisting’ the B lines (Figure 6.9).* Since this differs from Figure 6.8 only by
the interchange ps; <> pa, there is no need to compute it from scratch; quoting
Equation 6.54, we can write down immediately the total amplitude (to order g?) for
the process A+ A — B+ B:

2 2

g g
M = + 6.55
(ps — p2)? — mec?  (p3 — p2)? — mec? (623

Notice, incidentally, that .# is a Lorentz-invariant (scalar) quantity. This is always
the case; it is built into the Feynman rules.

Suppose we are interested in the differential cross section (do/dQ) for this
process, in the CM system (Figure 6.10). Say, for simplicity, that ms = mp = m and

mc = 0. Then
(p4 — p2)* — mic = pi + pj — 2p2 - ps = —2p*(1 — cos6) (6.56)
(p3 — p2)* — mic* = p + p — 2p3 - po = —2p*(1 + cos6) (6.57)

(where p is the incident momentum of particle 1), and hence
2
g
M= ——=—— 6.58
p?sin?6 (6.58)
According to Equation 6.47, then,
AR < g )2 (6.59)
d2 2 \16xEp?sin®6 .

(there are two identical particles in the final state, so S = 1/2). As in the case of
Rutherford scattering (Example 6.4), the total cross section is infinite.

* You don’t get yet another new diagram by twisting the A lines; the only choice here is whether
gety g y g y
p3 connects to p; or to p;.
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Fig. 6.10 A+ A — B+ B in the CM frame.
6.3.3

Higher-order Diagrams

So far we have looked only at lowest-order (‘tree level’) Feynman diagrams; in the
case of A+ A — B+ B, for instance, we considered the graph:

This diagram has two vertices, so .# is proportional to g?. But there are eight
diagrams with four vertices (and eight more with the external B lines ‘twisted’):
o five ‘self-energy’ diagrams, in which one of the lines sprouts
a loop:

e and one ‘box’ diagram:
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(Disconnected diagrams, such as

don’t count.)

I am certainly not going to evaluate all these ‘one-loop’ diagrams (or even think
about two-loop diagrams), but I would like to take a closer look at one of them — the
one with a bubble on the virtual C line:

Applying Feynman rules 1-5, we obtain

2

g{/54@1—QI*Pﬂ5ﬂQ1—qz-Qﬁ54mz+Q3—QM5ﬂ%r+Pz—Pﬂ
(42 — m&c?) (g5 — mic?) (@5 — mpe?)(gg — mec?)

xd*qy d*qy d*gs d*gs (6.60)

Integration over gy, using the first delta function, replaces g; by (p1 — p3); integration
over qa, using the last delta function, replaces g4 by (p4 — p2):

4

g
[(p1 — p3)? — mE[(pa — p2)? — mec?]
/“%*W-%—%ﬁ@+%—m+m
X d
(45 — m5c?)(q5 — mgc?)

‘g d*qs  (6.61)

Here, the first delta function sends g — p1 — p3 — ¢3, and the second delta function
becomes

8*(p1 + pa — p3 — pa)

which, by Rule 6, we erase, leaving

_i(£) ! - ‘
M= L(Zn) ;1 — p3)? — mzccz]2 ,/ (b1 —p3 —9)% — micz}(qz - m%cz)

(6.62)

(I drop the subscript on g3 at this point.)
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You can try calculating this integral, if you've got the energy, but I'll tell you
right now you're going to hit a snag. The four-dimensional volume element
could be written as d*q = ¢*> dqg dQ' (where dQ’ stands for the angular part), just
as in two-dimensional polar coordinates the element of area is r dr d¢ and in
three-dimensional spherical coordinates the volume element is r* dr sin 8 d@ d¢.
At large q the integrand is essentially just 1/q*, so the g integral has the form

* 1
/ E(f dg=1Ing|* = o0 (6.63)

The integral is logarithmically divergent at large g. This disaster, in one form
or another, held up the development of quantum electrodynamics for nearly two
decades, until, through the combined efforts of many great physicists — from
Dirac, Pauli, Kramers, Weisskopf, and Bethe through Tomonaga, Schwinger, and
Feynman — systematic methods were developed for ‘sweeping the infinities under
the rug’. The first step is to regularize the integral, using a suitable cutoff procedure
that renders it finite without spoiling other desirable features (such as Lorentz
invariance). In the case of Equation 6.62, this can be accomplished by introducing
a factor

M2
=) (6.64)
under the integral sign. The cutoff mass M is assumed to be very large, and will be
taken to infinity at the end of the calculation (note that the ‘fudge factor’, Equation
6.64, goes to 1 as M — c0).* The integral can now be calculated [6] and separated
into two parts: a finite term, independent of M, and a term involving (in this case)
the logarithm of M, which blows up as M — oc.

At this point, a miraculous thing happens: all the divergent, M-dependent terms
appear in the final answer in the form of additions to the masses and the coupling
constant. If we take this seriously, it means that the physical masses and couplings

* No one would deny that this procedure is artificial. Still, it can be argued that the inclusion of
Equation 6.64 merely confesses our ignorance of the high-energy (short distance) behavior of
quantum field theory. Perhaps the Feynman propagators are not quite right in this regime, and
M is simply a crude way of accounting for the unknown modification. (This would be the case,
for example, if the ‘particles’ have substructure that becomes relevant at extremely close range.)
Dirac said, of renormalization,

It’s just a stop-gap procedure. There must be some fundamental
change in our ideas, probably a change just as fundamental as the
passage from Bohr’s orbit theory to quantum mechanics. When
you get a number turning out to be infinite which ought to be
finite, you should admit that there is something wrong with your
equations, and not hope that you can get a good theory just by
doctoring up that number.

P. Buckley and F. D. Peat, A Question of Physics (Toronto: University of Toronto Press, 1979),
page 39.
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are not the m’s and g’s that appeared in the original Feynman rules, but rather the
‘renormalized’ ones, containing these extra factors:

Mphysical = M + dm;  gphysical = g + g (6.65)

The fact that §m and 8g are infinite (in the limit M — o0) is disturbing, but not
catastrophic, for we never measure them anyway; all we ever see in the laboratory
are the physical values, and these are (obviously) finite (evidently the unmeasurable
‘bare’ masses and couplings, m and g, contain compensating infinities).” As a
practical matter, we take account of the infinities by using the physical values of
m and g in the Feynman rules, and then systematically ignoring the divergent
contributions from higher-order diagrams.

Meanwhile, there remain the finite (M-independent) contributions from the loop
diagrams. They, too, lead to modifications in m and g (perfectly calculable ones, in
this case) — which, however, are functions of the four-momentum of the line in
which the loop is inserted (p; — p3 in the example). This means that the effective
masses and coupling constants actually depend on the energies of the particles
involved; we call them ‘running’ masses and ‘running’ coupling constants. The
dependence is typically rather slight, at low energies, and can ordinarily be ignored,
but it does have observable consequences, in the form of the Lamb shift (in QED)
and asymptotic freedom (in QCD)."

* In case it is some comfort, essentially the same thing occurs in classical electrodynamics: the
electrostatic energy of a point charge is infinite, and makes an infinite contribution (via E =
me?) to the particle’s mass. Perhaps this means that there are no true point charges, in classi-
cal electrodynamics; perhaps that's what it means in quantum field theory, too. In neither case,
however, do we know how to avoid the point particle as a theoretical construct.

" A physical interpretation of the running coupling constant in QED and QCD was suggested in
Chapter 2, Section 2.3. A nice explanation of mass renormalization is given by P. Nelson in
American Scientist, 73, 66 (1985):

According to renormalization theory, not only the strengths

of the various interactions but the masses of the participating
particles appear to vary on differing length scales. To get a

feel for this seemingly paradoxical statement, imagine firing a
cannon underwater. Even neglecting friction, the trajectory will
be very different from the corresponding one on land, since the
cannonball must now drag with it a considerable amount of
water, modifying its apparent, or “effective,” mass. We can ex-
perimentally measure the cannonball’s effective mass by shaking
it to and fro at a rate w, computing the mass from F = ma.
(This is how astronauts “weigh” themselves in space.) Hav-
ing found the effective mass, we can now replace the difficult
problem of underwater ballistics by a simplified approximation:
we ignore the water altogether, but in Newton’s equations we
simply replace the true cannonball mass by the effective mass.
The complicated details of the interaction with the medium are
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The procedure I have sketched in the last three paragraphs is called renor-
malization [7]. If all the infinities arising from higher-order diagrams can be
accommodated in this way, we say that the theory is renormalizable. ABC the-
ory and quantum electrodynamics are renormalizable. In the early 1970s, 't Hooft
showed that all gauge theories, including chromodynamics and the electroweak the-
ory of Glashow, Weinberg, and Salam, are renormalizable. This was a profoundly
important discovery, because, beyond lowest-order calculations, a nonrenormaliz-
able theory yields answers that are cutoff-dependent and, therefore, really, quite
meaningless.
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