3
Relativistic Kinematics

In this chapter, I summarize the basic principles, notation, and terminology of relativistic
kinematics. This is material you must know cold in order to understand Chapters 6
through 10 (it is not needed for Chapters 4 and 5, however, and if you prefer you can read
them first). Although the treatment is reasonably self-contained, I do assume that you
have encountered special relativity before — if not, you should pause here and read the
appropriate chapter in any introductory physics text before proceeding. If you are already
quite familiar with relativity, this chapter will be an easy review — but read through it
anyway because some of the notation may be new to you.

3.1
Lorentz Transformations

According to the special theory of relativity [1], the laws of physics apply just as
well in a reference system moving at constant velocity as they do in one at rest. An
embarrassing implication of this is that there’s no way of telling which system (if
any) is at rest, and hence there is no way of knowing what ‘the’ velocity of any other
system might be. So perhaps I had better start over. Ahem.

According to the special theory of relativity [1], the laws of physics are equally valid
in all inertial reference systems. An inertial system is one in which Newton’s first law
(thelaw of inertia) is obeyed: objects keep moving in straight lines at constant speeds
unless acted upon by some force.* It’s easy to see that any two inertial systems must
be moving at constant velocity with respect to one another, and conversely, that any
system moving at constant velocity with respect to an inertial system is itself inertial.

Imagine, then, that we have two inertial frames, S and ', with §' moving at
uniform velocity v (magnitude v) with respect to S (S, then, is moving at velocity
—v with respect to §’). We may as well lay out our coordinates in such a way that
the motion is along the common x/x axis (Figure 3.1), and set the master clocks at
the origin in each system so that both read zero at the instant the two coincide (that
is, t =t = 0 when x = x’ = 0). Suppose, now, that some event occurs at position

* If you are wondering whether a freely falling system in a uniform gravitational field is ‘inertial’,
you know more than is good for you. Let’s just keep gravity out of it.
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Fig. 3.1 The inertial systems S and §'.

(x,y, z) and time t in S. Question: What are the space-time coordinates (¥, y/, ') and
¢ of this same event in S'? The answer is provided by the Lorentz transformations:

L& =y(x—ut)

ii. yy=y
i, 2 =z (3.1)
. ' v
.t =y <t— —C-2-x>
where
1
y = (3.2)

V1—v%/c?

The inverse transformations, which take us back from S’ to S, are obtained by
simply changing the sign of v (see Problem 3.1):

i x =y +vt)

i, y=y
(3.3)

iii’. z=2

v
. t=y (t’ + —ix/)
C

The Lorentz transformations have a number of immediate consequences, of
which I mention briefly the most important:
1. The relativity of simultaneity: If two events occur at the same
time in S, but at different locations, then they do not occur at
the same time in S'. Specifically, if t4 = tp, then

Yu
t, =1tp+ —CZ_(xB — Xa) (3.4)
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(see Problem 3.2). Events that are simultaneous in one
inertial system, then, are not simultaneous in others.

2. Lorentz contraction: Suppose a stick lies on the x” axis, at rest
in S'. Say one end is at the origin (¥’ = 0) and the other is at
L’ (soits length in S is L'). What is its length as measured in
S? Since the stick is moving with respect to S, we must be
careful to record the positions of its two ends at the same
instant, say t = 0. At that moment, the left end is at x = 0 and
the right end, according to Equation (i), is at x = L'/y. Thus
the length of the stick is L = L'/y, in S. Notice that y is
always greater than or equal to 1. It follows that a moving
object is shortened by a factor of y, as compared with its length
in the system in which it is at rest. Notice that Lorentz
contraction only applies to lengths along the direction of
motion; perpendicular dimensions are not affected.

3. Time dilation: Suppose the clock at the origin in S ticks off
an interval T’; for simplicity, say it runs from ¢ = 0tot' = T".
How long is this period as measured in S»? Well, it begins
when t = 0, and it ends when t' = T" at ¥’ = 0, so (according
to Equation (iv')) t = y T". Evidently the clocks in S tick off a
longer interval, T = y T’, by that same factor of y; or, put it
the other way around: moving clocks run slow.

Unlike Lorentz contraction, which is only indirectly
relevant to elementary particle physics, time dilation is a
commonplace in the laboratory. For, in a sense, every
unstable particle has a built-in clock: whatever it is that tells
the particle when its time is up. And these internal clocks do
indeed run slow when the particle is moving. That is to say, a
moving particle lasts longer (by a factor of ) than it would at
rest.* (The tabulated lifetimes are, of course, for particles at
rest.) In fact, the cosmic ray muons produced in the upper
atmosphere would never make it to ground level were it not
for time dilation (see Problem 3.4).

4. Velocity addition: Suppose a particle is moving in the x
direction at speed ', with respect to §'. What is its speed, u,
with respect to S? Well, it travels a distance Ax = y (Ax’ + v
At)in a time At = y[At + (v/c?)Ax'], so

Ax A +vAY (AX/AY) 4o
At AY 4 (v/A)AX T 1+ (v/)(AX /A

* Actually, the disintegration of an individual particle is a random process; when we speak of a
‘lifetime’ we really mean the average lifetime of that particle type. When I say that a moving par-
ticle lasts longer, I really mean that the average lifetime of a group of moving particles is longer.
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But Ax/At=u, and Ax'/At = u/, so

w4+

T /) .

Notice that if w = ¢, then u = c also: the speed of light is the same in all inertial
systems.

It can sometimes be confusing to figure out in a particular context, which
numbers should be primed and what signs attach to the velocities, so I personally
remember three rules: moving sticks are short (by a factor of y), moving clocks
are slow (by a factor of y) — so put the y (which, remember, is greater than 1) on
whichever side of the equation you need to achieve these results, — and

VAR -+ VBC (3.6)

Vac =
4 1+ (vapvgc/c?)

where v p (for instance) means the velocity of A with respectto B. The numerator is
the classical result (the so-called ‘Galilean velocity addition rule’); the denominator
is Finstein’s correction — it is very close to 1 unless the velocities are close to c.

3.2
Four-vectors

It is convenient at this point to introduce some simplifying notation. We define the
position-time four-vector x*, u = 0, 1, 2, 3, as follows:

%0 =ct, X =X, X" =Y, X =2z (3.7)

In terms of x*, the Lorentz transformations take on a more symmetrical appear-
ance:

x =y — p)

=y = px)

X = x? (3.8)
x3/ — x3
where
B = v 39
= - (39)

More compactly:

3
W =3 Ak (1=10,1,2,3) (3.10)
=0
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The coefficients A} may be regarded as the elements of a matrix A:

y —yB 0 0

-y v 0 O
A = 3.11
0 0 1 0 (3-11)

0 0 0 1

(ie. A=Al =y; Al = AY = —yB; A2 = A3 = 1; and all the rest are zero). To
avoid writing lots of £’s, we shall follow Einstein’s ‘summation convention’, which
says that repeated Greek indices (one as subscript, one as superscript) are to be
summed from 0 to 3. Thus Equation 3.10 becomes, finally,*

X = Alx (3.12)

A special virtue of this tidy notation is that the same form describes Lorentz
transformations that are not along the x direction; in fact, the S and S’ axes need not
even be parallel; the A matrix is more complicated, naturally, but Equation 3.12 still
holds. (On the other hand, there is no real loss of generality in using Equation 3.11,
since we are always free to choose parallel axes, and to align the x axis along the
direction of v.)

Although the individual coordinates of an event change, in accordance with
Equation 3.12, when we go from S to S/, there is a particular combination of them
that remains the same (Problem 3.8):

1= (02 — (x1)? = ()2 — () = ()2 — (V)% — (&%) — («*)? (3.13)

Such a quantity, which has the same value in any inertial system, is called an
invariant. (In the same sense, the quantity r? = x? + y* + 2? is invariant under
rotations.) Now, I would like to write this invariant in the form of a sum: ¥ izox“x“,
but unfortunately there are those three irritating minus signs. To keep track of
them, we introduce the metric, g,,, whose components can be displayed as a

matrix g:

T 0 0 0
0 -1 0 0
= 3.14
=10 0o -1 o0 G-14)
0 O 0 -1
* In an expression such as this the Greek o

0.0 0.1 0,2 0.3
.. . x' = Agx Aix A5x Asx
letter used for the summation index, v, is 0%+ AXT A+ AT+ A

of course completely arbitrary. The same

o = AL+ Al AL ALY
goes for the ‘hanging’ index u, although 0 1 2 3

it mu.st match on the‘two sides of the. 2 = A%xo 4 A%xl 4 A%xz n A§x3
equation. Thus Equation (3.12) could just
as well be written x' = AXx*. Either expres- W = Ang + Aixl + A%xz + A§x3

sion stands for the set of four equations:
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(i.e. goo = 1; g11 = g22 = g33 = —1; all the rest are zero).* With the help of g, the
invariant I can be written as a double sum:

3 3

= Y Y s’ = gt o3

=0 v=0

Carrying things a step further, we define the covariant four-vector x, (index down)
as follows:

Xy = Guvx” (3.16)

(i.e. xo = x0, 1 = —x!, x; = —x2, x3 = —x*). To emphasize the distinction we call
the ‘original’ four-vector x* (index up) a contravariant four-vector. The invariant I
can then be written in its cleanest form:

I=x,x" (3.17)

(o1, equivalently, x*x,). All this will no doubt seem like monstrous notational
overkill, just to keep track of three pesky minus signs, but it’s actually very simple,
once you get used to it. (What’s more, it generalizes nicely to non-Cartesian
coordinate systems and to the curved spaces encountered in general relativity,
though neither of these is relevant to us here.)

The position-time four-vector x* is the archetype for all four-vectors. We define
a four-vector, a*, as a four-component object that transforms in the same way x*
does when we go from one inertial system to another, to wit:

!
@ = At (3.18)
with the same coefficients A}. To each such (contravariant) four-vector we associate
a covariant four-vector a,, obtained by simply changing the signs of the spatial

components, or, more formally
0y = guvo’ (3.19)

Of course, we can go back from covariant to contravariant by reversing the signs
again:

at — g’“’a,v (3.20)

where gi¥ are technically the elements in the matrix g~! (however, since our metric
is its own inverse, g*¥ is the same as g,,,). Given any two four-vectors, a* and b*,
the quantity

a"b, =a,b" = a®° — a'p! — @b — APY? (3.21)

* 1 should warn you that some physicists define the metric with the opposite signs (-1, 1, 1, 1). It
doesn’t matter much — if I is an invariant, so too is —I. But it does mean that you must be on
the lookout for unfamiliar signs. Fortunately, most particle physicists nowadays use the conven-
tion in Equation 3.14.
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is invariant (the same number in any inertial system). We shall refer to it as the
scalar product of a and b; it is the four-dimensional analog to the dot product of two
three-vectors (there is no four-vector analog to the cross product).*

If you get tired of writing indices, feel free to use the dot notation:

a-b=a,b" (3.22)

However, you will then need a way to distinguish this four-dimensional scalar
product from the ordinary dot product of two three-vectors. The best way is to
be scrupulously careful to put an arrow over all three-vectors (except perhaps the
velocity, v, which, since it is not part of a four-vector, is not subject to ambiguity).
In this book, I use boldface for three-vectors. Thus

a-b=a"—a-b (3.23)
We also use the notation a? for the scalar product of a* with itself:T
> =a-a= "% -a (3.24)

Notice, however, that a? need not be positive. Indeed, we can classify all four-vectors
according to the sign of a?:

Ifa? >0, at is called timelike
Ifa’ <0, at is called spacelike (3.25)
Ifa? =0, at is called lightlike

From vectors it is a short step to tensors: a second-rank tensor, s*¥, carries two
indices, has 4% = 16 components, and transforms with two factors of A:

S = ANV SO (3.26)

a third-rank tensor, #"*, has three indices, 4°> = 64 components, and transforms
with three factors of A:

t/uzk/ — AfjA(‘;A};tkat (3.27)

* The closest thing is (¢"b” — a"b*), but this is

a second-rank tensor, not a four-vector (see be-

low).

T On its face, this is dangerously ambiguous
notation, since a? could also be the second
spatial component of a*. But in practice we
so seldom refer to individual components
that this causes no problems (if you really
mean the component, better say so explic-
itly). More serious is the potential confusion

between a? and the square of the magnitude
of the three-vector part of a*. I personally
write the latter in bold face, to avoid any pos-
sible misunderstanding: a® = a - a. This is
not standard notation, however, and if you
prefer some other device, that’s fine. But I
do urge you to find a clear way to distinguish
a? from a?, or you are asking for real trouble
down the road.
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and so on. In this hierarchy, a vector is a tensor of rank one, and a scalar (invariant)
is a tensor of rank zero. We construct covariant and ‘mixed’ tensors by lowering
indices (at the cost of a minus sign for each spatial index), for example

Sﬂv = gvksuk; Spuv = g;mgvks’d (328)

and so on. Notice that the product of two tensors is itself a tensor: (a*b") is a tensor
of second rank; (a#1"*) is a tensor of fourth rank; and so on. Finally, we can obtain
from any tensor of rank n + 2 a ‘contracted’ tensor of rank n, by summing like upper
and lower indices. Thus s*, is a scalar; £,""" is a vector; a,, ##** is a second-rank tensor.

3.3
Energy and Momentum

Suppose you're driving down the highway, and pretend for the sake of argument
that you're going at close to the speed of light. You might want to keep an eye
on two different ‘times’: if you're worried about making an appointment in San
Francisco, you should check the stationary clocks posted now and then along the
side of the road. But if you're wondering when would be an appropriate time to
stop for a bite to eat, it would be more sensible to look at the watch on your wrist.
For, according to relativity, the moving clock (in this case, your watch) is running
slow (relative to the ‘stationary’ clocks on the ground), and so too is your heart
rate, your metabolism, your speech and thought, everything. Specifically, while the
‘ground’ time advances by an infinitesimal amount dt, your own (or proper) time
advances by the smaller amount dr:

ar = & (3.29)

4

At normal driving speeds, of course, y is so close to 1 that dt and dr are essentially
identical, but in elementary particle physics the distinction between laboratory
time (read off the clock on the wall) and particle time (as it would appear on the
particle’s watch) is crucial. Although we can always get from one to the other, using
Equation 3.29, in practice it is usually most convenient to work with proper time,
because T is invariant — all observers can read the particle’s watch, and at any given
moment they must all agree on what it says, even though their own clocks may
differ from it and from one another.

When we speak of the ‘velocity’ of a particle (with respect to the laboratory), we
mean, of course, the distance it travels (measured in the lab frame) divided by the
time it takes (measured on the lab clock):

_ &
Tdt

v (3.30)

But in view of what has just been said, it is also useful to introduce the proper
velocity, n, which is the distance traveled (again, measured in the lab frame) divided
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by the proper time:*

g

n (3.31)

According to Equation 3.29, the two velocities are related by a factor of y:
N =7yv (3.32)

However, 1 is much easier to work with, for if we want to go from the lab system, S,
to a moving system, S, both the numerator and the denominator in Equation 3.30 must
be transformed — leading to the cumbersome velocity addition rule Equation 3.5 —
whereas in Equation 3.31 only the numerator transforms; dr, as we have seen, is
invariant. In fact, proper velocity is part of a four-vector:

= dac” 3.33
- dr ( : )
whose zeroth component is
o dx®  d(e) . 334
TS0 Tama 7 (3-34)
Thus
n* = y(c, vy, vy, vg) (3.35)
Incidentally, n,,n* should be invariant, and it is:
nunt =y — v~ v}z, —v2) =yl —v¥/t)y =7 (3.36)

They don’t make ’em more invariant than that!

Classically, momentum is mass times velocity. We would like to carry this over in
relativity, but the question arises: which velocity should we use — ordinary velocity
or proper velocity? Classical considerations offer no clue, for the two are equal in the
nonrelativistic limit. In a sense, it’s just a matter of definition, but there is a subtle
and compelling reason why ordinary velocity would be a bad choice, whereas proper
velocity is a good choice. The point is this: if we defined momentum as mv, then
the law of conservation of momentum would be inconsistent with the principle
of relativity (if it held in one inertial system, it would not hold in other inertial

* Proper velocity is a hybrid quantity, in the its velocity is zero. If my terminology disturbs
sense that distance is measured in the lab you, call n the “four-velocity’. I should add
frame, whereas time is measured in the par- that although proper velocity is the more con-
ticle frame. Some people object to the adjec- venient quantity to calculate with, ordinary ve-
tive ‘proper’ in this context, holding that this locity is still the more natural quantity from
should be reserved for quantities measured the point of view of an observer watching a

entirely in the particle frame. Of course, in its ~ particle fly past.
own frame the particle never moves at all -
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systems). But, if we define momentum as mn, then conservation of momentum
is consistent with the principle of relativity (if it holds in one inertial system, it
automatically holds in all inertial systems). I'll let you prove this for yourself in
Problem 3.12. Mind you, this doesn’t guarantee that momentum is conserved —
that’s a matter for experiments to decide. But it does say that if we’re hoping to
extend momentum conservation to the relativistic domain, we had better not define
momentum as mv, whereas mu is perfectly acceptable.

That’s a tricky argument, and if you didn’t follow it, try reading that last paragraph
again. The upshot is that in relativity, momentum is defined as mass times proper
velocity:

p=mn (3.37)
Since proper velocity is part of a four-vector, the same goes for momentum:
pr = mn* (3.38)

The spatial components of p* constitute the (relativistic) momentum three-vector:

lad (3.39)
= ymV e — .
P V1 —v?/c?
Meanwhile, the ‘temporal’ component is
P’ =yme (3.40)

For reasons that will appear in a moment, we define the relativistic energy, E, as

WLCZ

JV1—v2/c?

The zeroth component of p#, then, is E/c. Thus, energy and momentum together
make up a four-vector — the energy—momentum four-vector (or four-momentum)

E=ymd = (3.41)

p“=<5p pp) (3.42)
C’ X Y:Z .

Incidentally, from Equations 3.36 and 3.38 we have

;L__E_Z_ 2 22
pup” = 2 p-=mc (3.43)

which, again, is manifestly invariant.

The relativistic momentum (Equation 3.37) reduces to the classical expression
in the nonrelativistic regime (v « c¢), but the same cannot be said for relativistic
energy (Equation 3.41). To see how this quantity comes to be called ‘energy,” we
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expand the radical in a Taylor series:
4

+.‘.)_m62+lmv2+§ml+... (3.44)
B 2 8 2 '

v? 30t
E = mcz (1 + %;‘2“ '8‘ 6_4
Notice that the second term here corresponds to the classical kinetic energy,
while the leading term (mc?) is a constant. Now you may recall that in classical
mechanics only changes in energy are physically significant — you can add a
constant with impunity. In this sense, the relativistic formula is consistent with
the classical one, in the limit v <« ¢ where the higher terms in the expansion are
negligible. The constant term, which survives even when v = 0, is called the rest
energy;

R = mc? (3.45)

the remainder, which is energy attributable to the motion of the particle, is the
relativistic kinetic energy:

U4

T=mcy —1) = L ST M (3.46)
2 8 2

In classical mechanics, there is no such thing as a massless particle; its momen-
tum (mv) would be zero, its kinetic energy (3mv?) would be zero, it could sustain
no force, since F = ma, and hence (by Newton’s third law) it could not exert a
force on anything else — it would be a dynamical ghost. At first glance you might
suppose that the same would be true in relativity, but a careful inspection of the
formulas

mv mc?

E= — (3.47)

PE A v JSi—va

reveals a loophole: when m = 0, the numerators are zero, but if v = ¢, the de-
nominators also vanish, and these equations are indeterminate (0/0). So it is just
possible that we could allow m = 0, provided the particle always travels at the speed
of light. In this case, Equation 3.47 will not serve to define E and p; nevertheless,
Equation 3.43 still holds:

v=¢, E = lplc (for massless particles) (3.48)
Personally, I would regard this ‘argument’ as a joke, were it not for the fact that

massless particles (photons) are known to exist in nature, they do travel at the speed
of light, and their energy and momentum are related by Equation 3.48. So we have

* Notice that I have never mentioned ‘relativis- by a factor of ¢*. Whatever can be said about
tic mass’ in all this. It is a superfluous quan- My could just as well be said about E. For in-
tity that serves no useful function. In case you  stance, the ‘conservation of relativistic mass’
encounter it, the definition is m,y = ym; it is nothing but conservation of energy, with a

has died out because it differs from E only factor of ¢? divided out.
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to take the loophole seriously. You may well ask: if Equation 3.47 doesn’t define
p and E, what does determine the momentum and energy of a massless particle?
Not the mass (that’s zero by assumption); not the speed (that’s always c). How,
then, does a photon with an energy of 2 eV differ from a photon with an energy of
3eV? Relativity offers no answer to this question, but curiously enough quantum
mechanics does, in the form of Planck’s formula:

E=hv (3.49)

It is the frequency of the photon that determines its energy and momentum: the
2-eV photon is red, and the 3-eV photon is purple !

3.4
Collisions

So far, relativistic energy and momentum are nothing but definitions; the physics
resides in the empirical fact that these quantities are conserved. In relativity, as in
classical mechanics, the cleanest application of the conservation laws is to collisions.
Imagine first a classical collision, in which object A hits object B (perhaps they are
both carts on an air table), producing objects C and D (Figure 3.2). Of course, C
and D might be the same as A and B; but we may as well allow that some paint
(or whatever) rubs off A onto B, so that the final masses are not the same as the
original ones. (We do assume, however, that A, B, C, and D are the only actors
in the drama; if some wreckage, W, is left at the scene, then we would be talking
about a more complicated process: A + B— C + D+ W.) By its nature, a collision
is something that happens so fast that no external force, such as gravity, or friction
with the track, has an appreciable influence. Classically, mass and momentum are
always conserved in such a process; kinetic energy may or may not be conserved.

3.4.1
Classical Collisions

1. Mass is conserved: my + mp = mc + mp.
2. Momentum is conserved: pa + ps = pc + Po-
3. Kinetic energy may or may not be conserved.

co”
A \3 D\

B

Before After
Fig. 3.2 A collision in which A+ B — C + D.
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I like to distinguish three types of collisions: ‘sticky’ ones, in which the kinetic
energy decreases (typically, it is converted into heat); ‘explosive’ ones, in which the
kinetic energy increases (for example, suppose A has a compressed spring on its
front bumper, and the catch is released in the course of the collision so that spring
energy is converted into kinetic energy); and elastic ones, in which the kinetic
energy is conserved.

(a) Sticky (kinetic energy decreases): To + Tp > Tc + Tp.
(b) Explosive (kinetic energy increases): T4 + Tp < T¢c + Tp.
(c) Elastic (kinetic energy conserved): Ta + Tp = T¢c + Tp.

In the extreme case of type (a), the two particles stick together, and there is really
only one final object: A + B — C. In the extreme case of type (b), a single object
breaks in two: A — C + D (in the language of particle physics, A decays into
C + D).

34.2
Relativistic Collisions

In a relativistic collision, energy and momentum are always conserved. In other words,
all four components of the energy—momentum four-vector are conserved. As in
the classical case, kinetic energy may or may not be conserved.

1. Energy is conserved: E4 + Ep = Ec + Ep.

2. Momentum is conserved: p4 + ps = Pc + Pp-

3. Kinetic energy may or may not be conserved.

(The first two can be combined into a single expression: ply + pj = p¢ + pp.)
Again, we can classify collisions as sticky, explosive, or elastic, depending on
whether the kinetic energy decreases, increases, or remains the same. Since the
total energy (rest plus kinetic) is always conserved, it follows that rest energy (and
hence also mass) increases in a sticky collision, decreases in an explosive collision,
and is unchanged in an elastic collision.
(a) Sticky (kinetic energy decreases): rest energy and mass
increase.
(b) Explosive (kinetic energy increases): rest energy and mass
decrease.
(c) Elastic (kinetic energy is conserved): rest energy and mass
are conserved.

Please note: except in elastic collisions, mass is not conserved.” For example, in the
decay 7% — y + y the initial mass was 135 MeV/c?, but the final mass is zero.

* In the old terminology, we would say that relativistic mass is conserved, but rest mass is not.
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Here rest energy was converted into kinetic energy (or, in the absurd language of
the popular press, infuriating to anyone with the slightest respect for dimensional
consistency, ‘mass was converted into energy’). Conversely, if mass is conserved,
then the collision was elastic. In elementary particle physics, there is only one
way this ever happens: the same particles come out as went in*— electron—proton
scattering (e + p — e + p), for example.

In spite of a certain structural similarity between the classical and relativistic
analyses, there is a striking difference in the interpretation of inelastic collisions.
In the classical case, we say that energy is converted from kinetic form to some
‘internal’ form (thermal energy, spring energy, etc.), or vice versa. In the relativistic
analysis, we say that it goes from kinetic energy to rest energy or vice versa. How
can these possibly be consistent? After all, relativistic mechanics is supposed to
reduce to classical mechanics in the limit v < ¢. The answer is that all ‘internal’
forms of energy are reflected in the rest energy of an object. A hot potato weighs
more than a cold potato; a compressed spring weighs more than a relaxed spring.
On the macroscopic scale, rest energies are enormously greater than internal
energies, so these mass differences are utterly negligible in everyday life, and very
small even at the atomic level. Only in nuclear and particle physics are typical
internal energies comparable to typical rest energies. Nevertheless, in principle,
whenever you weigh an object, you are measuring not only the rest energies
(masses) of its constituent parts, but all of their kinetic and interaction energies
as well.

3.5
Examples and Applications

Solving problems in relativistic kinematics is as much an art as a science. Although
the physics involved is minimal — nothing but conservation of energy and conser-
vation of momentum — the algebra can be formidable. Whether a given problem
takes two lines or seven pages depends a lot on how skillful and experienced you
are at manipulating the tools and the tricks of the trade. I now propose to work a
few examples, pointing out as I go along some of the labor-saving devices that are
available to you [2].

Example 3.1 Two lumps of clay, each of mass m, collide head-on at %c (Figure 3.3).
They stick together. Question: What is the mass M of the final composite lump?

Solution: Conservation of energy says E; + E, = E)s. Conservation of momentum
says p1 + p2 = pu. In this case, conservation of momentum is trivial: p; = —p,, so
the final lump is at rest (which was obvious from the start). The initial energies are

* In principle, if there existed two distinct pairs of particles (A, B and C, D) that happened to add
up to the same total mass, then I suppose the reaction A + B — C + D might be considered
‘elastic’, but in reality there are no such coincidences, so to a particle physicist the word ‘elastic’
has come to mean that the same particles come out as went in.
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Fig. 3.3 Sticky collision of two equal masses (Example 3.1).

equal, so conservation of energy yields

2mc? 5
M = 2By = ——e = ~(2me?)

J1T= (3/5)

Conclusion: M = 3m. Notice that this is greater than the sum of the initial masses;
in sticky collisions kinetic energy is converted into rest energy, so the mass
increases.

Example 3.2 A particle of mass M, initially at rest, decays into two pieces, each of
mass m (Figure 3.4). Question: What is the speed of each piece as it flies off?

Solution: This is, of course, the reverse of the process in Example 3.1 Conservation
of momentum just says that the two lumps fly off in opposite directions at equal
speeds. Conservation of energy requires that

m
M= ———, so v=c¢/1—(2m/M)?
V1 —v2/c?

This answer makes no sense unless M exceeds 2m: there has to be at least enough
rest energy available to cover the rest energies in the final state (any extra is fine;
it can be soaked up in the form of kinetic energy). We say that M = 2m is the
threshold for the process M — 2m to occur. The deuteron, for example, is below
the threshold for decay into proton plus neutron (m; = 1875.6 Mev/c%; my, + m,, =
1877.9 MeV/c?), and therefore is stable. A deuteron can be pulled apart, but only by
pumping enough energy into the system to make up the difference. (If it puzzles
you that a bound state of p and n should weigh less than the sum of its parts, the
point is that the binding energy of the deuteron — which, like all internal energy,
is reflected in its rest mass — is negative. Indeed, for any stable bound state the
binding energy must be negative; if the composite particle weighs more than the
sum of its constituents, it will spontaneously disintegrate.)

Example 3.3 A pion at rest decays into a muon plus a neutrino (Figure 3.5).
Question: What is the speed of the muon?

v v
M m m
Before After

Fig. 3.4 A particle decays into two equal pieces. (Example 3.2).
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Fig. 3.5 Decay of the charged pion (Example 3.3).

Solution: Conservation of energy requires E, = E, + E,. Conservation of mo-
mentum gives p, = p, + pv; but pr = 0, so p, = —p,. Thus the muon and the
neutrino fly off back-to-back, with equal and opposite momenta. To proceed, we
need a formula relating the energy of a particle to its momentum; Equation 3.43
does the job.*

Suggestion 1. To get the energy of a particle, when you know its
momentum (or vice versa), use the invariant

E? — p?c? = m?ct (3.50)
In the present case, then:

E, = m,c*

E, = c,/mlc® +pl

E, = |pvlc = [pulc
Putting these into the equation for conservation of energy, we have
2
My c™ =c,/mic? +pZ + [pulc
or
(¢ — |pul)* = mic* + pj,

Solving for [p,|,

2 2
M, —m,
ppl = ——c¢
2m,

Meanwhile, the energy of the muon (from Equation 3.50) is

2 2
_Ma M,
” 2m,

* You might be inclined to solve Equation 3.39 for the velocity, and plug the result into
Equation 3.41, but that would be a very poor strategy. In general, velocity is a bad parameter
to work with, in relativity. Better to use Equation 3.43, which takes you directly back and forth
between E and p.
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Once we know the energy and momentum of a particle, it is easy to find its
velocity. If E = ymc? and p = ymv, dividing gives

p/E:V/c2

Suggestion 2. If you know the energy and momentum of a par-
ticle, and you want to determine its velocity, use

v =pc/E (3.51)

So the answer to our problem is

2 2
. oy —my
) 2

My +my

Putting in the actual masses, I get v, = 0.271c. 1l

There is nothing wrong with that calculation; it was a straightforward and
systematic exploitation of the conservation laws. But I want to show you now a
faster way to get the energy and momentum of the muon, by using four-vector
notation. (I should put a superscript & on all the four-vectors, but I don’t
want you to confuse the space-time index p with the particle identifier u, so
here, and often in the future, I will suppress the space-time indices, and use
a dot to indicate the scalar product.) Conservation of energy and momentum
requires

br =Pu+pv, O Pv=DPg —Pu
Taking the scalar product of each side with itself, we obtain
P2 =P+ 1, = 2prpu

But

, E, E

2 . 2 2.2 2 2.2, 22
pv=0, P =m0, p, =m0 and p”'pﬂZT—ZmﬁEﬂ

Therefore
2.2 2.2
0=myc" +m;c” —2mzE,

from which E,, follows immediately.
By the same token

Pu = Pr — Pv

Squaring yields

2.2

mi,ct = m,z(c2 — 2my E,
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But E, = |pvlc = |pulc, so
2my |pul = (mjzr — mi)c

which gives us |p,|. In this case, the problem was simple enough that the savings
afforded by four-vector notation are meager, but in more complicated problems the
benefits can be enormous.

Suggestion 3. Use four-vector notation, and exploit the invari-
ant dot product. Remember that p? = m?c? (Equation 3.43)
for any (real) particle.

One reason why the use of invariants is so powerful in this business is that we
are free to evaluate them in any inertial system we like. Frequently, the laboratory
frame is not the simplest one to work with. In a typical scattering experiment, for
instance, a beam of particles is fired at a stationary target. The reaction under study
might be, say, p + p— whatever, but in the laboratory the situation is asymmetrical,
since one proton is moving and the other is at rest. Kinematically, the process is
much simpler when viewed from a system in which the two protons approach
one another with equal speeds. We call this the center-of-momentum (CM) frame,
because in this system the total (three-vector) momentum is zero.

Example 3.4 The Bevatron at Berkeley was built with the idea of producing
antiprotons, by the reaction p + p — p + p + p + p. That is, a high-energy proton
strikes a proton at rest, creating (in addition to the original particles) a proton-—
antiproton pair. Question: What is the threshold energy for this reaction (i.e. the
minimum energy of the incident proton)?

Solution: In the laboratory the process looks like Figure 3.6a; in the CM frame,
it looks like Figure 3.6b. Now, what is the condition for threshold? Answer: Just
barely enough incident energy to create the two extra particles. In the lab frame, it
is hard to see how we would formulate this condition, but in the CM it is easy: all
four final particles must be at rest, with nothing ‘wasted’ in the form of kinetic energy.
(We can’t have that in the lab frame, of course, since conservation of momentum
requires that there be some residual motion.)

Let plor be the total energy—momentum four-vector in the lab; it is conserved,
so it doesn’t matter whether we evaluate it before or after the collision. We’ll do it
before:

E + mc?
p%OT = <_C—’ Ipl, 0, 0)

where E and p are the energy and momentum of the incident proton, and m is
the proton mass. Let ., be the total energy—momentum four-vector in the CM.
Again, we can evaluate it before or after the collision; this time we’ll do it after:

Pror = (4mc,0,0,0)
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Fig.36 p+p — p+p+p+p. (a) In the lab frame; (b) in the CM frame.

since (at threshold) all four particles are at rest. Now pfor # P?ml’ obviously, but
the invariant products p,rorPror and purorPror @€ equal:

E 2
(; + mc) — p* = (4me)?

Using the standard invariant (Equation 3.50) to eliminate p?, and solving for E, we
find

E = 7mc*

Evidently, the incident proton must carry a kinetic energy at least six times its rest
energy, for this process to occur. (And in fact the first antiprotons were discovered
when the machine reached about 6000 MeV.) i
This is perhaps a good place to emphasize the distinction between a conserved
quantity and an invariant quantity. Energy is conserved — the same value after the
collision as before — but it is not invariant. Mass is invariant — the same in all
inertial systems — but it is not conserved. Some quantities are both invariant and
conserved (e.g. electric charge); many are neither (speed, for instance). As Example
3.4 indicates, the clever exploitation of conserved and invariant quantities can save
you a lot of messy algebra. It also demonstrates that some problems are easier to
analyze in the CM system, whereas others may be simpler in the lab frame.

Suggestion 4. If a problem seems cumbersome in the lab frame,
try analyzing it in the CM system.

Even if you're dealing with something more complicated than a collision of two
identical particles, the CM (in which pror = 0) is still a useful reference frame, for
in this system conservation of momentum is trivial: zero before, zero after. But you
might wonder whether there is always a CM frame. In other words, given a swarm
of particles with masses mq, my, mas, ..., and velocities vy, v3, v3,..., does there
necessarily exist an inertial system in which their total (three-vector) momentum
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is zero? The answer is yes; I will prove it by finding the velocity of that frame and
demonstrating that this velocity is less than c. The total energy and momentum in
the lab frame (S) are

Eror = Y _yimic’;  Pror = ) yimivi (3.52)
/ i

12

Since pior is a four-vector, we can use the Lorentz transformations to get the
momentum in system S', moving in the direction of pror with speed v

Eror
IPTorl =¥ (IPTOT] —F—
In particular, this momentum is zero if v is chosen such that

v Iprotle _ |2 vimuvil
¢ Eror > vimic

Now, the length of the sum of three-vectors cannot exceed the sum of their lengths
(this geometrically evident fact is known as the triangle inequality), so

> vimi(vi/c)
Yy

and since v; < ¢, we can be sure that v < ¢.* Thus the CM system always exists,
and its velocity relative to the lab frame is given by

v
-~
c

2
vou = 2L (3.53)

Eror

It seems odd, looking back at the answer to Example 3.4, that it takes an incident
kinetic energy six times the proton rest energy to produce a p/p pair. After all, we're
only creating 2mc? of new rest energy. This example illustrates the inefficiency of
scattering off a stationary target; conservation of momentum forces you to waste a
lot of energy as kinetic energy in the final state. Suppose we could have fired the
two protons at one another, making the laboratory itself the CM system. Then it
would suffice to give each proton a kinetic energy of only mc?, one-sixth of what
the stationary-target experiment requires. This realization led, in the early 1970s,
to the development of colliding-beam machines (see Figure 3.7). Today, virtually
every new machine in high-energy physics is a collider.

Example 3.5 Suppose two identical particles, each with mass m and kinetic energy
T, collide head-on. Question: What is their relative kinetic energy, T’ (i.e. the kinetic
energy of one in the rest system of the other)?

* 1 am tacitly assuming that at least one of the particles is massive. If all of them are massless,
we may obtain v = ¢, in which case there is no CM system. For example, there is no CM frame
for a single photon.
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Fig. 3.7 Two experimental arrangements: (a) Colliding beams; (b) fixed target.

Solution: There are many ways to do this one. A quick method is to write down the
total four-momentum in the CM and in the lab

“ 2E w E +mc*
Pror = 7,0 v Pror = . P

set (prot)* = (pror’)%:

2E Z_W E +mc\’ 2
c/) c P
use Equation 3.50 to eliminate p’
2E% = mc*(E' 4 mc?)

and express the answer in terms of T = E — mc? and T' = E' — mc?

T
T =4T |1 3.54
( * 2mc2> (3:54)

The classical answer would have been T’ = 4T, to which this reduces when T < mc?.
(In the rest system of B, Ahas, classically, twice the velocity, and hence four times as
much kinetic energy, as in the CM.) Now, a factor of 4 is some benefit, to be sure, but
the relativistic gain can be greater by far. Colliding electrons with a laboratory kinetic
energy of 1 GeV, for example, would have a relative kinetic energy of 4000 GeV! i
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Problems

3.1 Solve Equation 3.1 for x, y, z, t in terms of «/, ¥/, 2, t/, and check that you recover
Equation 3.3.
3.2 (a) Derive Equation 3.4.
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