
4 Congruences 

4.1 

c 

T
he language of congruences was invented by the great German mathematician

Gauss. It allows us to work with divisibility relationships in much the same way 

as we work with equalities. We will develop the basic properties of congruences in this 

chapter, describe how to do arithmetic with congruences, and study congruences involv

ing unknowns, such as linear congruences. An example leading to a linear congruence is 

the problem of finding all integers x such that when 7x is divided by 11, the remainder 

is 3. We will also study systems of linear congruences that arise from such problems as 

the ancient Chinese puzzle that asks for a number that leaves a remainder of 2, 3, and 2, 
when divided by 3, 5, and 7, respectively. We will learn how to solve systems of linear 

congruences in one unknown, such as the system that results from this puzzle, using a 

famous method known as the Chinese remainder theorem. We will also learn how to 

solve polynomial congruences. Finally, we will introduce a factoring method, known as 

the Pollard rho method, which we use congruences to specify. 

Introduction to Congruences 

The special language of congruences that we introduce in this chapter, which is extremely 

useful in number theory, was developed at the beginning of the nineteenth century by 

Karl Friedrich Gauss, one of the most famous mathematicians in history. 

The language of congruences makes it possible to work with divisibility relation

ships much as we work with equalities. Prior to the introduction of congruences, the 

notation used for divisibility relationships was awkward and difficult to work with. The 

introduction of a convenient notation helped accelerate the development of number the

ory. 

Definition. Let m be a positive integer. If a and b are integers, we say that a is congruent 

to b modulo m if m I (a - b) . 

If a is congruent to b modulo m, we write a= b (mod m). If ml (a - b), we write 

a ¢= b (mod m ), and say that a and b are incongruent modulo m. The integer m is called 

the modulus of the congruence. The plural of modulus is moduli. 

Example 4.1. We have 22- 4 (mod 9), because 91 (22 - 4) = 18. Likewise, 3 - -6 

(mod 9) and 200 = 2 (mod 9). On the other hand, 13 ¢= 5 (mod 9) because 

9 l (13 - 5) = 8. .... 

145 
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Congruences often arise in everyday life. For instance, clocks work either modulo 
12 or 24 for hours and modulo 60 for minutes and seconds; calendars work modulo 7 for 
days of the week and modulo 12 for months. Utility meters often operate modulo 1000, 
and odometers usually work modulo 100,000. 

In working with congruences, we will sometimes need to translate them into equal
ities. The following theorem helps us to do this. 

Theorem 4.1. If a and b are integers, then a = b (mod m) if and only if there is an 
integer k such that a = b + km. 

Proof. If a= b (mod m), then m I (a - b). This means that there is an integer k with 

km =a - b, so that a = b +km. 

Conversely, if there is an integer k with a = b + km, then km = a - b. Hence, 
m I (a - b), and consequently, a= b (mod m). • 

Example 4.2. We have 19 = -2 (mod 7) and 19 = -2 + 3 · 7. 

We now show that congruence satisfy a number of important properties. 

Theorem 4.2. Let m be a positive integer. Congruences modulo m satisfy the following 

properties: 

(i) Reflexive property. If a is an integer, then a = a (mod m ) . 

KARL FRIEDRICH GAUSS (1777-1855) was the son of a bricklayer. It was 
quickly apparent that he was a prodigy. In fact. at the age of 3, he corrected 
an error in his father's payroll. In bis first arithmetic class, the teacher gave 
an assignment designed to keep the class busy, namely, to find the sum of the 
first 100 positive integers. Gauss, who was 8 at the time, realized that this 
sum is 50 • 101=5050, because the terms can be grouped as 1+100=101. 
2+ 99= 101, ... ,49+52=101, and 50+51=101.In 1796,Gaussm.adean 
important discovery in an area of geometry that had not progressed since ancient 

times. In particular, he showed that a regular heptadecagon (17-sided polygon) could be drawn using 
just a ruler and a compass. In 1799, he presented the first rigorous proof of the fundamental theorem 
of algebra. which states that a polynomial of degree n with real coefficients has exactly n roots. Gauss 
made fundamental contributions to astronomy, including calculating the orbit of the ast.eroid Ceres. On 

the basis of this calculation, Gauss was appointed director of the Gottingen Observatory. He laid the 
foundations of modem number theory with his book Disquisitiones Arithmeticae in 1801. Gauss was 
called "Princeps Mathematicorum" (the Prince of Mathematicians) by his contemporaries. Although 
Gauss is noted for bis many discoveries in geometry, algebra, analysis, astronomy, and mathematical 
physics, he bad a special interest in number theory. This can be seen from his statement; "Mathematics 
is the queen of sciences, and the theory of numbers is the queen of mathematics." Gauss made most of 
his important discoveries early in his life, and spent his later years refining them. Gauss made several 
fundamental discoveries that he did not reveal. Mathematicians making the same discoveries were 
often surprised to find that Gauss had described the results years earlier in his unpublished notes. 
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(ii) Sy mmetric property. If a and b are integers such that a= b (mod m), then 

b =a (modm). 

(iii) Transitive property. If a, b, and c are integers with a = b (mod m) and b = 

c (mod m), then a = c (mod m). 

Proof. 

(i) We see that a = a (mod m), because m I (a - a)= 0. 

(ii) If a = b (mod m ), then m I (a - b ). Hence, there is an integer k such that km = 

a - b. This shows that (-k)m = b - a, so that m I (b - a). Consequently, 

b =a (modm). 

(iii) If a= b (modm) and b = c (modm), thenm I (a - b) andm I (b- c).Hence, 

there are integers k and l such that km = a - b and lm = b - c. Therefore, 

a - c =(a - b) + (b - c) =km+ lm = (k + l)m. It follows that m I (a - c) 

and a = c (mod m). • 

By Theorem 4.2, we see that the set of integers is divided into m different sets called 

congruence classes modulo m, each containing integers that are mutually congruent 

modulo m. Note that when m = 2, this gives us the two classes of even and odd integers. 

If you are familiar with the notion of relations on a set, Theorem 4.2 shows that 

congruence modulo m, where m is a positive integer, is an equivalence relation and the 

congruence classes modulo m are the equivalence classes of the equivalence relation 

defined by this relation. 

Example 4.3. The four congruence classes modulo 4 are given by 

... =-8=-4=0=4= 8= ... (mod4) 

... =- 7=-3=1=5= 9= ... (mod4) 

... =-6=- 2=2=6=10= ... (mod4) 

... = -5 = -1 = 3 = 7 = 11 = ... (mod 4). 

Suppose that m is a positive integer. Given an integer a, by the division algorithm 

we have a = bm + r, where 0 � r � m - 1. We call r the least nonnegative residue of a 

modulo m. We say that r is the result of reducing a modulo m. Similarly, when we know 

that a is not divisible by m, we call r the least positive residue of a modulo m. 

Another commonly used notation, especially in computer science, is a mod m = r, 

which denotes that r is the remainder obtained when a is divided by m. For example, 17 

mod 5 = 2 and -8 mod 7 = 6. Note that mod m is a function from the set of integers to 

the set of {O, 1, 2, ... , m - 1}. 

The relationship between these two different notations is clarified by the next 

theorem, whose proof is left to the reader as Exercises 10 and 11 at the end of this 

section. 

Theorem 4.3. If a and b are integers and m is a positive integer, then a = b (mod m) 

if and only if a mod m = b mod m. 
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Now note that from the equation a = bm + r, it follows that a = r (mod m). Hence, 

every integer is congruent modulo m to one of the integers 0, 1, ... , m - 1, namely, the 

remainder when it is divided by m. Because no two of the integers 0, 1, ... , m -1 are 

congruent modulo m, we have m integers such that every integer is congruent to exactly 

one of these m integers. 

Definition. A complete system of residues modulo m is a set of integers such that every 

integer is congruent modulo m to exactly one integer of the set. 

Example 4.4. The division algorithm shows that the set of integers 0, 1, 2, ... , m -1 

is a complete system of residues modulo m. This is called the set of least nonnegative 

residues modulo m. <111111 

Example 4.5. Let m be an odd positive integer. Then the set of integers 

{ m - 1 m-3 m-3 m - 1}
-

2 
' -

2 
' ... ' - l, O, l, ... ' 

2 
'

2 
' 

the set of absolute least residues modulo m, is a complete system of residues. 

We will often do arithmetic with congruences, which is called modular arithmetic. 

Congruences have many of the same properties that equalities do. First, we show that 

an addition, subtraction, or multiplication to both sides of a congruence preserves the 

congruence. 

Theorem 4.4. If a, b, c, and m are integers, with m > 0, such that a = b (mod m ), then 

(i) a+ c = b + c (mod m), 

(ii) a - c = b - c (mod m), 

(iii) ac =be (mod m). 

Proof Because a= b (modm), we know thatm I (a -b).From the identity (a+ c) -

(b + c) =a - b, we see that m I ((a+ c) - (b + c)), so that (i) follows. Likewise, (ii) 

follows from the fact that (a - c) - (b - c) =a - b. To show that (iii) holds, note 

that ac - be= c(a - b). Because m I (a - b), it follows that m I c(a - b), and hence, 

ac =be (mod m). • 

Example 4.6. Because 19 = 3 (mod 8), it follows from Theorem 4.4 that 26 = 19 + 

7 = 3 + 7 = 10 (mod 8), 15 = 19 - 4 = 3 - 4 = -1(mod8), and 38 = 19 · 2 = 3 · 2 =

6 (mod 8). <111111 

What happens when both sides of a congruence are divided by an integer? Consider 

the following example. 

Example 4.7. We have 14 = 7 · 2 = 4 · 2 = 8 (mod 6). But we cannot cancel the com

mon factor of 2, because 7 ¢=. 4 (mod 6). <111111 
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This example shows that it is not necessarily true that we preserve a congruence 

when we divide both sides by the same integer. However, the following theorem gives a 

valid congruence when both sides of a congruence are divided by the same integer. 

Theorem 4.5. If a, b, e, and m are integers such that m > 0, d = (e, m), and ae = 

be (mod m), then a= b (mod m/d). 

Proof If ae =be (mod m), we know that m I (ae - be)= e(a - b). Hence, there is 

an integer k with e(a - b) =km. By dividing both sides by d, we have (e/d)(a - b) = 

k(m/d). Because (m/d, e/d) = 1, by Lemma 3.4 it follows that m/d I (a - b). Hence, 

a= b (mod m/d). • 

Example 4.8. Because 50 = 20 (mod 15) and (10, 15) = 5, we see that 50/10 = 

20/10 (mod 15/5), or 5 = 2 (mod 3). <11111

The following corollary, which is a special case of Theorem 4.5, is used often; it 

allows us to cancel numbers that are relatively prime to the modulus m in congruences 

modulo m. 

Corollary 4.5.1. If a, b, e, and m are integers such that m > 0, (e, m) = 1, and 

ae =be (mod m), then a= b (mod m). 

Example 4.9. Because 42 = 7 (mod 5) and (5, 7) = 1, we can conclude that 42/7 = 

7 /7 (mod 5), or that 6 = 1 (mod 5). <11111 

The following theorem, which is more general than Theorem 4.4, is also useful. Its 

proof is similar to the proof of Theorem 4.4. 

Theorem 4.6. If a, b, e, d, and m are integers such that m > 0, a= b (mod m), and 

e = d (mod m), then 

(i) a+ e = b + d (mod m), 

(ii) a - e = b - d (mod m), 

(iii) ae = bd (mod m). 

Proof Because a= b (mod m) and e = d (mod m), we know that m I (a - b) and 

m I (e - d). Hence, there are integers k and l with km= a - b and lm = e - d. 

To prove (i), note that (a+ e) - (b + d) =(a - b) + (e - d) =km+ lm 

(k + l)m. Hence, m I [(a+ e) - (b + d)]. Therefore, a+ e = b + d (mod m). 

To prove (ii), note that (a - e) - (b - d) =(a - b) - (e - d) =km - lm 

(k - l)m. Hence, ml[(a - e) - (b - d)], so that a - e = b - d (mod m). 

To prove (iii), note that ae - bd = ae - be+ be - bd = e(a - b) + b(e - d) = 

ekm + blm = m(ek +bl). Hence, m I (ae - bd). Therefore, ae = bd (mod m). • 
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Example 4.10. Because 13 = 3 (mod 5) and 7 = 2 (mod 5), using Theorem 4.6 we 

see that 20 = 13 + 7 = 3 + 2 = 5 (mod 5), 6 = 13 - 7 = 3 - 2 = 1(mod5), and 91 = 

13 · 7 = 3 · 2 = 6 (mod 5). <11111 

The following lemma helps us to determine whether a set of m numbers forms a 

complete set of residues modulo m. 

Lemma 4.1. A set of m incongruent integers modulo m forms a complete set of residues 

modulom. 

Proof. Suppose that a set of m incongruent integers modulo m does not form a complete 

set of residues modulo m. This implies that at least one integer a is not congruent to any 

of the integers in the set. Hence, there is no integer in the set congruent modulo m to 

the remainder of a when it is divided by m. Hence, there can be at most m -1 different 

remainders of the integers when they are divided by m. It follows (by the pigeonhole 

principle, which says that if more than n objects are distributed into n boxes, at least two 

objects are in the same box) that at least two integers in the set have the same remainder 

modulo m. This is impossible, because these integers are incongruent modulo m. Hence, 

any m incongruent integers modulo m form a complete system of residues modulo m . 

• 

Theorem 4.7. If ri. ri, ... , rm is a complete system of residues modulo m, and if a 

is a positive integer with (a, m) = 1, then 

ar1 + b, ar2 + b, ... , arm + b 

is a complete system of residues modulo m for any integer b. 

Proof. First, we show that no two of the integers 

ar1 + b, ar2 + b, ... , arm + b 

are congruent modulo m. To see this, note that if 

arj + b =ark+ b (modm),

then, by (ii) of Theorem 4.4, we know that 

arj =ark (mod m).

Because (a, m) = 1, Corollary 4.5.1 shows that 

rj = rk (mod m).

Given that rj ¢. rk (mod m) if j =j:. k, we conclude that j = k.

By Lemma 4.1, because the set of integers in question consists of m incongruent 

integers modulo m, these integers form a complete system of residues modulo m. • 

The following theorem shows that a congruence is preserved when both sides are 

raised to the same positive integral power. 
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Theorem 4.8. If a, b, k, andm are integers such thatk > 0, m > 0, and a= b (mod m), 

then ak =bk (mod m). 

Proof Because a= b (mod m), we have m I (a -b), and because 

a
k 

-b
k
= (a -b)(ak-1 + ak-2b + ... + ab

k-2 + bk-1), 

we see that (a -b) I (ak -bk). Therefore, by Theorem 1.8 it follows that m I (ak -bk). 

Hence, ak = bk (mod m). • 

Example 4.11. Because 7 = 2 (mod 5), Theorem 4.8 tells us that 343 = 73 = 23 = 

8 (mod 5). .,.. 

The following result shows how to combine congruences of two numbers to different 

moduli. 

Theorem 4.9. If a= b (mod m1), a= b (mod m2), ... , a= b (mod mk), where a, b, 

mi. m2, ... , mk are integers with mi. m2, ... , mk positive, then 

where [mi. m2, ... , mk] denotes the least common multiple of mi. m2, ... , mk. 

Proof The hypothesis a = b (mod m 1), a = b (mod m2), ... , a = b (mod m k), means 

that m1 I (a -b), m2 I (a -b), ... , mk I (a -b). By Exercise 39 of Section 3.5, we see 

that 

Consequently, 

• 

The following result is an immediate and useful consequence of this theorem. 

Corollary 4.9.1. If a= b (mod m1), a= b (mod m2), ... , a= b (mod mk), where a 

and b are integers and mi. m2, ... , mk are pairwise relatively prime positive integers, 

then 

a= b (mod mlm2 · · · mk). 

Proof Because mi. m2, ... , mk are pairwise relatively prime, Exercise 64 of Section 

3.5 tells us that 

Hence, by Theorem 4.9, we know that 

a= b (mod mlm2 · · · mk)· • 

Fast Modular Exponentiation 

In our subsequent studies, we will be working with congruences involving large powers 

of integers. For example, we will want to find the least positive residue of 2644 modulo 
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645. If we attempt to find this least positive residue by first computing 2
644

, we would
have an integer with 194 decimal digits, a most undesirable thought. Instead, to find 2644

modulo 645 we first express the exponent 644 in binary notation: 

(644)10 = ( 1010000100)i. 

Next, we compute the least positive residues of 2, 22, 24, 28, ... , 2512 by successively
squaring and reducing modulo 645. This gives us the congruences 

2 _ 2 (mod 645) 

22 - 4 (mod 645) 

24 - 16 (mod 645)

2s 
= 256 (mod 645)

216 
= 391 (mod 645) 

232 - 16 (mod 645) 

264 
= 256 (mod 645) 

2128
= 391 (mod 645) 

225
6 

= 16 (mod 645) 

2512 = 256 (mod 645). 

We can now compute 2
644 modulo 645 by multiplying the least positive residues of the

appropriate powers of 2. This gives 

2
644 

= 2s12+12s+4
= 2

5122128
2

4 
= 256. 391 . 16 = 1,601, 536 = 1 (mod 645).

We have just illustrated a general procedure for modular exponentiation, that is, for 
computing bN modulo m, where b, m, and N are positive integers. We first express the 
exponent N in binary notation, as N = (akak- l . . .  a1a0)i. We then find the least positive
residues of b, b2, b

4
, . . .  , b2k modulo m, by successively squaring and reducing modulo

m. Finally, we multiply the least positive residues modulo m of b2i for those j with a j = 1, 
reducing modulo m after each multiplication. 

In our subsequent discussions, we will need an estimate for the number of bit opera
tions needed for modular exponentiation. This is provided by the following proposition. 

Theorem 4.10. Let b, m, and N be positive integers such that b < m. Then the 
least positive residue of bN modulo m can be computed using 0 ( (log

2 
m )2 log

2 
N) bit 

operations. 

Proof To find the least positive residue of bN modulo m, we can use the algorithm 
just described. First, we find the least positive residues of b, b2, b

4
, ... , b2k modulo m,

where 2k ::::: N < 2k+ 1, by successively squaring and reducing modulo m. This requires a 
total of 0 ( (log

2 
m )2 log

2 
N) bit operations, because we perform k = [log

2 
N] squarings 

modulo m, each requiring O ((log
2 

m)2) bit operations. Next, we multiply together the 

least positive residues of the integers b2i corresponding to the binary digits of N that
are equal to 1, and we reduce modulo m after each multiplication. This also requires 
0 ( (log

2 
m )2 log

2 
N) bit operations, because there are at most log

2 
N multiplications, 
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each requiring 0 ( (log2 m )
2

) bit operations. Therefore, a total of 0 ( (log2 m )
2 

log2 N) 

bit operations is needed. • 

4.1 EXERCISES 

1. Show that each of the following congruences holds.

a) 13 = 1(mod 2) d) 69 = 62 (mod 7) g) 111 = -9 (mod 40)
b) 22 = 7 (mod 5) e) -2 = 1(mod 3) h) 666 = 0 (mod 37)
c) 91=0 (mod 13) f) -3 = 30 (mod 11) 

2. For each of these pairs of integers, determine whether they are congruent modulo 7.

a) 1, 15 c) 2, 99 e) -9, 5
b) 0, 42 d) -1, 8 f) -1, 699

3. For which positive integers m is each of the following statements true?

a) 27 = 5 (mod m) b) 1000 = 1 (mod m) c) 1331=0 (mod m)

4. Show that if a is an even integer, then a2 = 0 (mod 4), and if a is an odd integer, then
a2 = 1 (mod 4).

> 5. Show that if a is an odd integer, then a2 = 1(mod 8).

6. Find the least nonnegative residue modulo 13 of each of the following integers.

a) 22 c) 1001 e) -100
b) 100 d) -1 f) -1000

7. Find the least nonnegative residue modulo 28 of each of the following integers.

a) 99 c) 12,345 e) -1000
b) 1100 d) -1 f) -54,321

8. Find the least positive residue of 1 ! + 2! + 3! + · · · + 10! modulo each of the following
integers.

a) 3 b) 11 c) 4 d) 23 

9. Find the least positive residue of 1! + 2! + 3! + · · · + 100! modulo each of the following
integers.

a) 2 b) 7 c)l2 d) 25

10. Show that if a, b, and m are integers with m > 0 and a = b (mod m ), then a mod m = b
modm.

11. Show that if a, b, and m are integers with m > 0 and a mod m = b mod m, then a= b
(modm).

12. Show that if a, b, m, and n are integers such that m > 0, n > 0, n Im, and a= b (mod m),
then a= b (mod n).

13. Show that if a, b, e, and m are integers such that e > 0, m > 0, and a= b (mod m), then
ae =be (mod me).

14. Show that if a, b, and e are integers with e> 0 such that a= b(mod e), then (a, e) = (b, e).

15. Show that if aj =bi (mod m) for j = 1, 2, ... , n, where m is a positive integer and aj, bi,
j = 1, 2, ... , n, are integers, then
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n n n n 

b) n aj = n bj (modm).
j=l j=l j=l j=l

16. Find a counterexample to the statement that if m is an integer with m > 2, then (a + b) mod
m = a mod m + b mod m for all integers a and b.

17. Find a counterexample to the statement that if m is an integer with m > 2, then (ab) mod
m =(a mod m)(b mod m) for all integers a and b.

18. Show that if m is a positive integer with m > 2, then (a + b) mod m = (a mod m + b mod
m) mod m for all integers a and b.

19. Show that if m is a positive integer with m > 2, then (ab) mod m = ((a mod m) (b mod m))
mod m for all integers a and b.

In Exercises 20-22, construct tables for arithmetic modulo 6 using the least nonnegative residues 
modulo 6 to represent the congruence classes. 

20. Construct a table for addition modulo 6.

21. Construct a table for subtraction modulo 6.

22. Construct a table for multiplication modulo 6.

23. What time does a 1 2-hour clock read

a) 29 hours after it reads 11 o'clock? c) 50 hours before it reads 6 o'clock?
b) 100 hours after it reads 2 o'clock?

24. Which decimal digits occur as the final digit of a fourth power of an integer?

25. What can you conclude if a2 = b2 (mod p), where a and b are integers and p is prime?

26. Show that if ak =bk (mod m) and ak+l = bk+l (mod m), where a, b, k, and m are integers
with k > 0 and m > 0 such that (a, m) = 1, then a= b (mod m). lf the condition (a, m) = 1
is dropped, is the conclusion that a= b (mod m) still valid?

27. Show that if n is an odd positive integer, then

1 + 2 + 3 + · · · + (n - 1) = 0 (mod n). 

Is this statement true if n is even? 

28. Show that if n is an odd positive integer or if n is a positive integer divisible by 4, then

13 + 23 + 33 + · · · 
+ (n - 1)3 = 0 (mod n).

Is this statement true if n is even but not divisible by 4? 

29. For which positive integers n is it true that

12 + 22 + 32 + · · · + (n - 1)2 = 0 (mod n)?

30. Show by mathematical induction that if n is a positive integer, then 4n = 1+3n (mod 9).

31. Show by mathematical induction that if n is a positive integer, then 5n = 1+4n (mod 16).

32. Give a complete system of residues modulo 13 consisting entirely of odd integers.

33. Show that if n = 3 (mod 4), then n cannot be the sum of the squares of two integers.
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34. Show that if p is prime, then the only solutions of the congruence x2 
= x (mod p) are those 

integers x such that x = 0 or 1 (mod p). 

35. Show that if p is prime and k is a positive integer, then the only solutions of x2 
= x (mod pk) 

are those integers x such that x = 0 or 1 (mod pk). 

36. Find the least positive residues modulo 4 7 of each of the following integers. 

a) 23 2 
b) 241 c) 2

200 

37. Let mi. m2, . • .  , mk be pairwise relatively prime positive integers. Let M = m1m2 • • • mk 
and Mi= M/m i for j = 1, 2, ... , k. Show that 

M1a1 + M2a2 + · · · + Mkak 

runs through a complete system of residues modulo M when ai. a2, . • .  , ak run through 
complete systems of residues modulo mi. m2, • . • , mk> respectively. 

38. Explain how to find the sum u + v from the least positive residue of u + v modulo m, where 
u and v are positive integers less than m. (Hint: Assume that u:::; v, and consider separately 
the cases where the least positive residue of u +v is less than u, and where it is greater than 
v.) 

39. On a computer with word size w, multiplication modulo n where n < w /2 can be performed 

as outlined. Let T =[,Jn, + 1/2], and t = T2 -n. For each computation, show that all the 
required computer arithmetic can be done without exceeding the word size. (This method 
was described by Head [He80]). 

a) Show that 0 < t :::; T. 
b) Show that if x and y are nonnegative integers less than n, then 

x = aT + b, y = cT + d, 

where a, b, c, and d are integers such that 0:::; a:::; T, 0:::; b < T, 0:::; c:::; T, and 
O:::;d < T. 

c) Let z = ad + be (mod n), such that 0:::; z < n. Show that 

xy =act+ zT + bd (mod n). 

d) Let ac = eT + f, where e and f are integers with 0 :::; e :::; T and 0 :::; f < T. Show that 

xy = (z + et)T +ft+ bd (mod n). 

e) Let v = z +et (mod n), such that 0:::; v < n. Show that we can write 

v= gT +h, 

where g and h are integers with 0 :::; g :::; T, 0 :::; h < T, and such that 

xy = hT + (f + g)t + bd (mod n). 

f )  Show that the right-hand side of the congruence of part (e) can be computed without 
exceeding the word size, by first finding j such that 

j = (f + g)t (modn) 
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