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Programming Projects 

1. Find all of the positive divisors of a positive integer from its prime factorization.

2. Find the greatest common divisor of two positive integers from their prime factorizations.

3. Find the least common multiple of two positive integers from their prime factorizations.

4. Find the number of zeros at the end of the decimal expansion of n !, where n is a positive
integer. 

5. Find the prime factorization of n !, where n is a positive integer. 

6. Find the number of powerful numbers (defined in Exercise 9) less than a positive integer n.

3.6 Factorization Methods and the Fermat Numbers 

By the fundamental theorem of arithmetic, we know that every positive integer can 

be written uniquely as the product of primes. In this section, we discuss the problem 

of determining this factorization, and we introduce several simple factoring methods. 

Factoring integers is an extremely active area of mathematical research, especially 

because it is important in cryptography, as we will see in Chapter 8. In that chapter, 

we will learn that the security of the RSA public-key cryptosystem is based on the 

observation that factoring integers is much, much harder than finding large primes. 

Before we discuss the current status of factoring algorithms, we will consider the 

most direct way to factor integers, called trial division. We will explain why it is not

very efficient. Recall from Theorem 3.2 that n either is prime or has a prime factor not

exceeding ,Jn. Consequently, when we divide n successively by the primes 2, 3, 5, ... ,

not exceeding ,Jn, either we find a prime factor p1 of n or we conclude that n is prime.

If we have located a prime factor p1 of n, we next look for a prime factor of n1 = n/ Pi.
beginning our search with the prime p1, as n1 has no prime factor less than p1, and any

factor of n 1 is also a factor of n.  We continue, if necessary, determining whether any of the

primes not exceeding ,Jfi,1 divide n1. We continue in this manner, proceeding iteratively,

to find the prime factorization of n. 

Example 3.22. Let n = 42,833. We note that n is not divisible by 2, 3, or 5, but that

71 n. We have

42,833 = 7 . 6119. 

Trial divisions show that 6119 is not divisible by any of the primes 7, 11, 13, 17, 19, or 

23. However, we see that

6119 = 29 . 211. 

Because 29 > .J2TI, we know that 211 is prime. We conclude that the prime factorization

of 42,833 is 42,833 = 7 · 29 · 211. .,.. 
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Unfortunately, this method for finding the prime factorization of an integer is 
quite inefficient. To factor an integer N, it may be necessary to perform as many as 
H(../N) divisions (assuming that we a1ready have a list of the primes not exceeding 
JN), altogether requiring on the order of JN log N bit operations because, from the 
prime number theorem, 7r(.,/N) is approximately .,/N/log .JN= 2.,/N/log N, and 
from Theorem 2.7, these divisions take 0 (log2 N) bit operations each. 

Modern Factorization Methods 

Mathematicians have long been fascinated with the problem of factoring integers. In 
the seventeenth century, Pierre de Fermat invented a factorization method based on the 
idea of representing a composite integer as the difference of two squares. This method 
is of theoretical and some practical importance, but is not very efficient in itself. We will 
discuss Fermat's factorization method later in this section. 

Since 1970, many new factorization methods have been invented that make it pos
sible, using powerful modem computers, to factor integers that had previously seemed 
impervious. We will describe several of the simplest of these newer methods. However, 
the most powerful factorization methods currently known are extremely complicated. 
Their description is beyond the scope of this boo� but we will discuss the size of the 
integers that they can factor. 

Among recent factorization methods (developed in the past 30 years) are several 
invented by J.M. Pollard, including the Pollard rho method (discussed in Section 4.6) 
and the Pollard p - 1 method (discussed in Section 6.1). These two methods are generally 
too slow for difficult factoring problems, unless the numbers being factored have special 
properties. In Section 12.5, we will introduce another method for factoring that uses 
continued fractions. A variation of this method, introduced by Morrison and Brillhart, 
was the major method used to factor large integers during the 1970s. This algorithm 
was the first factoring algorithm to run in subexponential time, which means that the 
number of bit operations required to factor an integer n could be written in the form 
n«<n> where a(n) decreases as n increases. A useful notation for describing the number 

PIERRE DE FERMAT (1601-1665) was a lawyer by profession. He was
a noted jurist at the provincial parliament in the French city of Toulouse. 
Fermat was probably the most famous amateur mathematician in history. He 
published almost none of his mathematical discoveries, but did correspond with 
contemporary mathematicians about them. From his correspondents, especially 
the French monk Mersenne (discussed in Chapter 6), the world lea.med about his 
many contributions to mathematics. Fennat was one of the inventors of analytic 
geometry. Furthermore, he laid the foundations of calculus. Fermat, along with 

Pascal, gave a mathematical basis to the concept of probability. Some of Fermat's discoveries come to 
us only because he made notes in the margins of his copy of the work of Diophantus. His son found his 
copy with these notes, and published them so that other mathematicians would be aware of Fermat's 
results and claims. 
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of bit operations required to factor a number by an algorithm running in subexponential 
time is L (a, b), which implies that the number of bit operations used by the algorithm is 
O(exp(b(log n)a(log log n)1-a)). (The precise definition of L(a, b) is somewhat more
complicated.) The variation of the continued fraction algorithm invented by Morrison and 
Brillhart uses L(l/2, .J312) bit operations. Its greatest success was the factorization of 
a 63-digit number in 1970. 

The quadratic sieve, described by Carl Pomerance in 1981, made it possible for 
the first time to factor numbers having more than one hundred digits not of a special 
form. This method, with many enhancements added after its original invention, uses 
L(l/2, 1) bit operations. Its great success was in factoring a 129-digit integer known 
as RSA-129, whose factorization was posed as a challenge by the inventors of the 
RSA cryptosystem discussed in Chapter 8. Currently, the best general-purpose factoring 
algorithm for integers with more than 115 digits is the number field sieve, originally 
suggested by Pollard and improved by Buhler, Lenstra, and Pomerance, which uses 
L ( 1/3, (64/9)113) bit operations. Its greatest success has been the factorization of a 200-
digit integer known as RSA-200 in 2005. For factoring numbers with fewer than 115 
digits, the quadratic sieve still seems to be quicker than the number field sieve. 

An important feature of the number field and quadratic sieves (as well as other meth
ods) is that these algorithms can be run in parallel on many computers (or processors) at 
the same time. This makes it possible for large teams of people to work on factoring the 
same integer. (See the historical note on factoring RSA-129 and other RSA challenge 
numbers, at the end of this subsection.) 

How big will the numbers be that can be factored in the future? The answer depends 
on whether (or, more likely, how soon) more efficient algorithms are invented, as well 
as how quickly computing power advances. A useful and commonly used measure 
for estimating the amount of computing required to factor integers of a certain size is 
millions of instructions per second-years, or MIPS-years. (One MIPS-year represents 
the computing power of the classical DEC VAX l ln80 during one year. It is still 
used as a reference point even though this computer is obsolete. Pentium PCs operate 

at hundreds of MIPS.) Table 3.2 (adapted from information in [0d95]) displays the 
computing power (in terms of MIPS-years, rounded to the nearest power of ten) required 
to factor integers of a given size using the number field sieve. Teams of people can 

Number of Decimal Digits Approximate MIPS-Years Required 

150 104

225 10s

300 1011

450 1016

600 1020

Table 3.2 Computing power required to factor integers using the 
number field sieve. 
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work together, dedicating thousands or even millions of MIPS-years to factor particular 
numbers. Consequently, even without the development of new algorithms, it might not 
be surprising to see the factorization, within the next few years, of integers (not of a 
special form) with 250, or perhaps 300, decimal digits. 

For further information on factoring algorithms, we refer the reader to [Br89], 
[BrOO], [CrPo05], [Di84], [Gu75], [Od95], [Po84], [Po90], [Ri94], [Ru83], [WaSm87], 
and [Wi84]. 

Fermat Factorization We now describe a factorization technique that is interesting, 
although it is not always efficient. This technique, discovered by Fermat, is known as 
Fermat factorization, and is based on the following lemma. 

Lemma 3.9. If n is an odd positive integer, then there is a one-to-one correspondence 
between factorizations of n into two positive integers and differences of two squares that 
equal n. 

Proof Let n be an odd positive integer and let n = ab be a factorization of n into two 
positive integers. Then n can be written as the difference of two squares, because 

n = ab = s2 - t2, 

wheres= (a+ b)/2 and t = (a - b)/2 are both integers because a and bare both odd. 

Conversely, if n is the difference of two squares, say, n = s2 - t2, then we can factor
n by noting that n = (s - t)(s + t).

The RSA Factoring Challenge 
The RSA Factoring Challenge, which ran from 1991 to 2007, was a contest that challenged 
mathematicians to factor certain large integers. Its purpose was to track progress in factor
ization methods, which has important implications for cryptography (see Chapter 8). The 
first RSA challenge made in 1991, first posed in 1977 in Martin Gardner's column in Sci
entific American, was to factor a 129-digit integer, known as RSA-129. A $100 prize was 

offered for the decryption of a message; the message could be decrypted easily when this 
129-digit number was factored, but not otherwise. Seventeen years passed before this chal
lenge was met in 1994. The factorization of RSA-129 using the quadratic sieve method took 
approximately 5000 MIPS-years, and was carried out in eight months by more than 600 

people working together. RSA Labs, a part of RSA Data Security (the company that holds 
the patents for the RSA cryptosystem discussed in Chapter 8), sponsored the challenge, and 
offered cash prizes for the factorization of integers on challenge lists. They awarded awarded 
more than $80,000 for successful factorizations. Factorizations of numbers on their list led 
to world records. For example, in 1996, a team led by Arjen Lenstra used the number field 
sieve to factor RSA-130. This took approximately 750 MIPS-years. In 1999, the number 
field sieve was used to factor RSA-140 and RSA-155, using 2000 and 8000 MIPS-years, 
respectively. The largest number factored as part of this challenge was RSA-200, an integer 
with 200 decimal digits, which was factored in 2005 by a team led by Jens Franke at the 
University of Bonn. 
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We leave it to the reader to show that this is a one-to-one correspondence. • 

To carry out the method of Fermat factorization, we look for solutions of the 

equation n = x2 - y2 by searching for perfect squares of the form x2 - n. Hence, to

find factorizations of n, we search for a square among the sequence of integers 

t2 
- n, (t + 1)2 - n, (t + 2)2 - n, . . .

where t is the smallest integer greater than ,Jn. This procedure is guaranteed to terminate, 

because the trivial factorization n = n · 1 leads to the equation 

Example 3.23. We factor 6077 using the method of Fermat factorization. Because 

77 < ,J6ifFf < 78, we look for a perfect square in the sequence 

782 - 6077 = 7 

792 - 6077 = 164 

802 - 6077 = 323 

812 - 6077 = 484 = 222.

Because 6077 = 812 - 222, we see that 6077 = (81- 22)(81+22) = 59 · 103. 

Unfortunately, Fermat factorization can be very inefficient. To factor n using this 

technique, it may be necessary to check as many as (n + 1) /2 - [ ..jll] integers to 

determine whether they are perfect squares. Fermat factorization works best when it is 

used to factor integers having two factors of similar size. Although Fermat factorization 

is rarely used to factor large integers, its basic idea is the basis for many more powerful 

factorization algorithms used extensively in computer calculations. 

The Fermat Numbers 

The integers Fn = 22n + 1 are called the Fermat numbers. Fermat conjectured that these

integers are all primes. Indeed, the first few are primes, namely, F0 = 3, F1 = 5, F2 = 17, 
F3 = 257, and F4 = 65,537. Unfortunately, F5 = 225 + 1 is composite, as we will now

demonstrate. 

Example 3.24. The Fermat number F5 = 225 
+ 1 is divisible by 641. We can show

that 6411 F5 without actually performing the division, using several not-so-obvious 

observations. Note that 
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Hence, 

225 + 1=232 + 1=24• 228 + 1 = (641- 54)228 + 1 

= 641 . 228 - (5 . 27)4 + 1 = 641 · 228 - (641- 1)4 + 1 

= 641(228 - 6413 + 4 . 6412 - 6 . 641+4). 
Therefore, we see that 6411 F5•

The following result is a valuable aid in the factorization of Fermat numbers. 

Theorem 3.20. Every prime divisor of the Fermat number Fn = 22n + 1 is of the form 
2n+2k + 1. 

The proof of Theorem 3.20 is presented as an exercise in Chapter 11. Here, we 
indicate how Theorem 3.20 is useful in determining the factorization of Fermat numbers. 

Example 3.25. From Theorem 3.20, we know that every prime divisor of F3 = 223 + 
1 = 257 must be of the form 25k + 1 = 32 · k + 1. Because there are no primes of this
form less than or equal to ,./ill, we can conclude that F3 = 257 is prime. <1111 

Example 3.26. When factoring F6 = 226 + 1, we use Theorem 3.20 to see that all of 
its prime factors are of the form 28k + 1=256 · k + 1. Hence, we need only perform
trial divisions of F6 by primes of the form 256 · k + 1 that do not exceed /Ff,. After
considerable computation, we find that a prime divisor is obtained with k = 1071, that 
is, 274,177 = (256 · 1071 + 1) I F6• <1111

Known Factorizations of Fermat Numbers A tremendous amount of effort has been 
(, devoted to the factorization of Fermat numbers. As yet, no new Fermat primes (beyond 

F4) have been found. Many mathematicians believe that no additional Fermat primes 
exist. We will develop a primality test for Fermat numbers in Chapter 11, which has 
been used to show that many Fermat numbers are composite. (When such a test is used, 
it is not necessary to use trial division to show that a number is not divisible by a prime 
not exceeding its square root.) 

As of early 2010, a total of 243 Fermat numbers are known to be composite, but 
the complete factorizations are known for only seven composite Fermat numbers: F5,
F6, F1, F8, F9, F10, and Fu. The Fermat number F9, a number with 155 decimal
digits, was factored in 1990 by Mark Manasse and Arjen Lenstra, using the number field 
sieve, which breaks the problem of factoring an integer into a large number of smaller 
factoring problems that can be done in parallel. Though Manasse and Lenstra farmed out 
computations for the factorization of F9 to hundreds of mathematicians and computer 
scientists, it still took about two months to complete the computations. (For details of 
the factorization of F9, see [Ci90].) 

The prime factorization of Fu was discovered by Richard Brent in 1989, using a 
factorization algorithm known as the elliptic curve method (described in detail in [Br89]). 
There are 617 decimal digits in Fu, and Fu= 319,489 · 974,849 · P21 · P22 · P564, where
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P2i. P22, and P564 are primes with 21, 22, and 564 digits, respectively. It took until 1995 
for Brent to completely factor F10. He discovered, using elliptic curve factorization, that 

F10 = 45,592,577 · 6,487,031,809 · P40 • P252, where P40 and P252 are primes with 40

and 252 digits, respectively. 

Many Fermat numbers are known to be composite because at least one prime factor 
of these numbers has been found, using results such as Theorem 3.20. It is also known that 

Fn is composite for n = 14, 20, 22, and 24, but no factors of these numbers have yet been

found. The largestn for which it isknown that Fn is composite is n = 2,478,782. (F382,447
was the first Fermat number with more than 100,000 digits shown to be composite; it 
was shown to be composite in July 1999.) F33 is the smallest Fermat number that has not 

yet been shown to be composite, if it is indeed composite. Because of steady advances 
in computer software and hardware, we can expect new results on the nature of Fermat 

numbers and their factorizations to be found at a healthy rate. 

The factorization of Fermat numbers is part of the Cunningham project, sponsored 
by the American Mathematical Society. Devoted to building tables of all the known 
factors of integers of the form bn ± 1, where b = 2, 3, 5, 6, 7, 10, 11, and 12, the
project's name refers to A. J. Cunningham, a colonel in the British army, who compiled 
a table of factors of integers of this sort in the early years of the twentieth century. The 
factor tables as of 1988 are contained in [Br88]; the current state of affairs is available 

over the Internet. Numbers of the form bn ± 1 are of special interest because of their
importance in generating pseudorandom numbers (see Chapter 10), their importance in 
abstract algebra, and their significance in number theory. 

In conjunction with the Cunningham project, a list of the ''ten most wanted" integers 

to be factored is kept by Samuel Wagstaff of Purdue University. For example, until it was 
factored in 1990, F9 was on this list. With advances in factoring techniques and computer 

power, increasingly larger numbers are included on the list. In the early 1980s, the largest 
had between 50 and 70 decimal digits; in the early 1990s, they had between 90 and 130 

decimal digits; in the early 2000s, they had between 150 and 200 decimal digits, as of 

early 2010, they had between 185 and 233 decimal digits. 

Using the Fermat Numbers to Prove the Infinitude of Primes It is possible to 

prove that there are infinitely many primes using Fermat numbers. We begin by showing 
that any two distinct Fermat numbers are relatively prime. The following lemma will be 
used. 

Lemma 3.10. Let Fk = 2
2

" + 1 denote the kth Fermat number, where k is a nonnegative
integer. Then for all positive integers n, we have 

Proof. We will prove the lemma using mathematical induction. For n = 1, the identity
reads 

F0 = F1 -2. 
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This is obviously true, because F0 = 3 and F1 = 5. Now, let us assume that the identity 

holds for the positive integer n, so that 

FoF1F2 ... Fn-1 = Fn - 2. 

With this assumption, we can easily show that the identity holds for the integer n + 1, 

because 

FoF1F2 ... Fn-1Fn = (FoF1F2 ... Fn_1)Fn 
2n 2n = (Fn - 2)Fn = (2 - 1)(2 + 1) 

2n 2 2n+l 
= (2 ) - 1 = 2 - 1 = Fn+ 1 - 2. 

This leads to the following theorem. 

• 

Theorem 3.21. Let m and n be distinct nonnegative integers. Then the Fermat numbers 

Fm and Fn are relatively prime. 

Proof. Let us assume that m < n. By Lemma 3.10, we know that

FoF1F2 ... Fm ... Fn-1 = Fn - 2. 

Assume that d is a common divisor of Fm and Fn. Then, Theorem 1.8 tells us that 

d I (Fn - FoF1F2 ···Fm··· Fn-1) = 2.

Hence, either d = 1 ord=2. However, because Fm and Fn are odd, d cannot be 2. 

Consequently, d = 1 and (Fm, Fn) = 1. • 

Using Fermat numbers, we now give another proof that there are infinitely many 

primes. First, we note that by Lemma 3.1 in Section 3.1, every Fermat number Fn has a 

prime divisor Pn. Because (Fm, Fn) = 1, we know that Pm 'I- Pn whenever m 'I- n. Hence,

we can conclude that there are infinitely many primes. 

The Fermat Primes and Geometry The Fermat primes are important in geometry. 

The proof of the following famous theorem of Gauss may be found in [Or88]. 

Theorem 3.22. A regular polygon of n sides can be constructed using a straightedge 

(unmarked ruler) and compass if and only if n is the product of a nonnegative power of 

2 and a nonnegative number of distinct Fermat primes. 

3.6 EXERCISES 

1. Find the prime factorization of each of the following positive integers. 

a) 33,776,925 b) 210,733,237 c) 1,359,170,111

2. Find the prime factorization of each of the following positive integers. 

a) 33,108,075 b) 7,300,977,607 c) 4,165,073,376,607

3. Using the Fermat factorization method, factor each of the following positive integers. 

a) 143 b) 2279 c) 43 d) 11,413
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4. Using the Fermat factorization method, factor each of the following positive integers.

a) 8051 c) 46,009 e) 3,200,399

b) 73 d) 11,021 f )  24,681,023 

5. Show that the last two decimal digits of a perfect square must be one of the following pairs:
00, el, e4, 25, 06, e9, where e stands for any even digit and o stands for any odd digit.
(Hint: Show that n2, (50 + n )2, and (50 - n )2 all have the same final decimal digits, and then
consider those integers n with 0:::; n :::; 25.)

6. Explain how the result of Exercise 5 can be used to speed up Fermat's factorization method.

7. Show that if the smallest prime factor of n is p, then x2 - n will not be a perfect square for
x > (n + p2)/(2p), with the single exception x = (n + 1)/2.

Exercises 8-10 involve the method of Draim factorization. To use this technique to search for a 
factor of the positive integer n = n 1' we start by using the division algorithm, to obtain 

Setting m 1 = n 1' we let 

n1 = 3q1 + ri. 0 :::; r1 < 3. 

We use the division algorithm again, to obtain 

and we let 

n2 = 5q2 + r2, 0:::; r2 < 5,

m3 = m2 - 2q2, n3 = m3 + r1. 

We proceed recursively, using the division algorithm, to write 

and we define 

mk = mk-1 - 2qk-1' nk = mk + rk-1·

We stop when we obtain a remainder rk = 0.

8. Show that nk = kn1 - (2k + l)(q1 + q2 + · · · + qk_1) and that mk = n1 - 2 · (q1 + q2 +

. . . + qk-1).

9. Show that if (2k + 1) In, then(2k + 1) Ink and n = (2k + l)mk+l·

10. Factor 5899 using Draim factorization.

In Exercises 11-13, we develop a factorization technique known as Euler's method. It is applicable 
when the integer being factored is odd and can be written as the sum of two squares in two different 
ways. Let n be odd and let n = a2 + b2 = c2 + d2, where a and c are odd positive integers and b
and d are even positive integers. 

11. Let u =(a - c, b - d). Show that u is even, and that if r =(a - c)/u ands= (d - b)/u,
then (r, s) = 1, r (a + c) = s(d + b), ands I (a+ c).

12. Let sv =a+ c. Show that rv = d + b, v =(a+ c, d + b), and vis even.

13. Conclude that n may be factored as n = [(u/2)2 + (v/2)2](r2 + s2).



136 Primes and Greatest Common Divisors 

14. Use Euler's method to factor each of the following integers.

a) 221 = 102 + 112 = 52 + 142 
b) 2501=502 + 12 = 492 + 102
c) 1,000,009 = 10002 + 32 = 9722 + 2352

15. Show that any number of the form 24n+2 + 1 can be factored easily by the use of the identity

4x4 + 1 = (2x2 + 2x + 1)(2x2 - 2x + 1). Factor 218 + 1 using this identity. 

16. Show that if a is a positive integer and am + 1 is an odd prime, then m = 2n 
for some

nonnegative integer n. (Hint: Recall the identity am+ 1 = (ak + l)(ak(l-I) - ak0-2) + ... -

ak + 1), where m =kl and l is odd.)

17. Show that the last digit in the decimal expansion of Fn = 22n + 1 is 7 if n � 2. (Hint: Using

mathematical induction, show that the last decimal digit of 22n is 6.)

18. Use the fact that every prime divisor of F4 = 224 + 1 = 65,537 is of the form 26k + 1 =
64k + 1 to verify that F4 is prime. (You should need only one trial division.)

19. Use the fact that every prime divisor of F5 = 225 + 1 is of the form 21k + 1 = 128k + 1 to
demonstrate that the prime factorization of F5 is F5 = 641·6,700,417.

20. Find all primes of the form 22n + 5, where n is a nonnegative integer. 

21. Estimate the number of decimal digits in the Fermat number Fn.
* 22. What is the greatest common divisor of n and Fn, where n is a positive integer? Prove that

your answer is correct. 

23. Show that the only integer of the form 2m + 1, where m is a positive integer, that is a power

of a positive integer (i.e., is of the form nk, where n and k are positive integers with k � 2)
occurs when m = 3. 

24. Factoring kn by the Fermat factorization method, where k is a small positive integer, is
sometimes easier than factoring n by this method. Show that to factor 901 by the Fermat
factorization method, it is easier to factor 3 · 901 = 2703 than to factor 901. 

Computations and Explorations 

1. Using trial division, find the prime factorization of several integers of your choice exceeding
10,000. 

2. Factor several integers of your choice exceeding 10,000, using Fermat factorization.

3. Factor the Fermat numbers F6 and F7 using Theorem 3.20.

Programming Projects 

1. Given a positive integer n, find the prime factorization of n. 

2. Given a positive integer n, perform the Fermat factorization method on n. 

3. Given a positive integer n, perform Draim factorization on n (see the preamble to Exercise 8).

4. Check the Fermat number Fn, where n is a positive integer, for prime factors, using Theorem
3.20. 
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3. 7 Linear Diophantine Equations

G 

G 

Consider the following problem: A man wishes to purchase $510 of travelers' checks. 
The checks are available only in denominations of $20 and $50. How many of each 
denomination should he buy? If we let x denote the number of $20 checks and y the 
number of $50 checks that he should buy, then the equation 20x + 50y = 510 must be 
satisfied. To solve this problem, we need to find all solutions of this equation, where both 
x and y are nonnegative integers. 

A related problem arises when a woman wishes to mail a package. The postal clerk 
determines the cost of postage to be 83 cents, but only 6-cent and 15-cent stamps are 

available. Can some combination of these stamps be used to mail the package? To answer 
this, we first let x denote the number of 6-cent stamps and y the number of 15-cent stamps 
to be used. Then we must have 6x + 15y = 83, where both x and y are nonnegative 
integers. 

When we require that solutions of a particular equation come from the set of integers, 
we have a diophantine equation. These equations get their name from the ancient Greek 
mathematician Diophantus, who wrote on equations where solutions are restricted to 
rational numbers. The equation ax+ by= c, where a, b, and c are integers, is called a 
linear diophantine equation in two variables. 

Note that the pair of integers (x, y) is a solution of the linear diophantine equation 
ax + by = c if and only if the (x, y) is a lattice point in the plane that lies on the 
line ax+ by= c. We illustrate this in Figure 3.2 for the linear diophantine equation 
2x +3y =5. 

The first person to describe a general solution of linear diophantine equations was the 
Indian mathematician Brahmagupta, who included it in a book he wrote in the seventh 
century. We now develop the theory for solving such equations. The following theorem 
tells us when such an equation has solutions, and when there are solutions, explicitly 
describes them. 

Theorem 3.23. Leta an.db be integers with d =(a , b). The equation ax+ by= c has 
no integral solutions if d J c. If d I c, then there are infinitely many integral solutions. 

DIOPHANTUS (c. 250) wrote the Arithmetica, which is the earliest known book on 

algebra; it contains the first systematic use of mathematical notation to represent unknowns 

in equations and powers of these unknowns. Almost nothing is known about Diophantus, 

other than that he lived in Alexandria around 250 C.E. The only source of details about his 

life comes from an epigram found in a collection called the Greek Anthology: "Diophantus 

passed one sixth of his life in childhood, one twelfth in youth, and one seventh as a bachelor. 

Five years after his marriage was born a son who died four years before his father, at half 

his father's age." From this the reader can infer that Diophantus lived to the age of 84. 
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Figure 3.2 Solutions of2x + 3y = 5 in integers x and y correspond to the lattice points on the 
line 2x + 3y = 5. 

Moreover, if x = x0, y = Yo is a particular solution of the equation, then all solutions are 

given by 

where n is an integer. 

x = x0 + (b/d)n, y =Yo - (a/d)n, 

Proof. Assume that x and y are integers such that ax + by = c. Then, because d I a 

and d I b, by Theorem 1.9, d I c as well. Hence, if d l c, there are no integral solutions 

of the equation. 

Now assume that d I c. By Theorem 3.8, there are integers sand t with 

(3.3) d =as+ bt. 

Because d I c, there is an integer e with de= c. Multiplying both sides of (3.3) bye, we 

have 

c =de= (as+ bt)e = a(se) + b(te). 

Hence, one solution of the equation is given by x = x0 and y = y0, where x0 = se and 

Yo= te. 
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To show that there are infinitely many solutions, let x = x0 + (b / d)n and y = 

Yo - (a/d)n, where n is an integer. We will first show that any pair (x, y), with x = 

x0 + (b/d)n, y =Yo - (a/d)n, where n is an integer, is a solution; then we will show 

that every solution must have this form. We see that this pair (x, y) is a solution, because 

ax+ by= ax0 + a(b/d)n + by0 - b(a/d)n = ax0 + by0 = c. 

We now show that every solution of the equation ax + by = c must be of the form 

described in the theorem. Suppose that x and y are integers with ax + by = c. Because 

ax0 + by0 = c, 

by subtraction we find that 

(ax+ by) - (axo + byo) = 0, 

which implies that 

a(x - x0) + b(y - Yo)= 0. 

Hence, 

a(x - xo) = b(yo - y). 

Dividing both sides of this last equation by d, we see that 

(a/d)(x - x0) = (b/d)(yo - y). 

By Theorem 3.6, we know that (a/d, b/d) = 1. Using Lemma 3.4, it follows that 

(a/d) I (y0 - y). Hence, there is an integer n with (a/d)n =Yo - y; this means that 

y =Yo - (a/d)n. Now, putting this value of y into the equation a(x - x0) = b(y0 - y), 

we find that a(x - x0) = b(a/d)n, which implies that x = x0 + (b/d)n. • 

The following examples illustrate the use of Theorem 3.23. 

Example 3.27. By Theorem 3.23, there are no integral solutions of the diophantine 

equation 15x + 6y = 7, because (15, 6) = 3 but 3 J 7. <lilll 

BRAHMAGUPTA (598-670), thought to have been born in Ujjain, India, became the 

head of the astronomical observatory there; this observatory was the center of Indian math

ematical studies at that time. Brahmagupta wrote two important books on mathematics 

and astronomy, Brahma-sphuta-siddhanta ("The Opening of the Universe") and Khan
dakhadyaka, written in 628 and 665, respectively. He developed many interesting formulas 

and theorems in planar geometry, and studied arithmetic progressions and quadratic equa

tions. Brahmagupta developed new algebraic notation, and his understanding of the number 

system was advanced for his time. He is considered to be the first person to describe a gen

eral solution of linear diophantine equations. In astronomy, he studied eclipses, positions 

of the planets, and the length of the year. 
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Example 3.28. By Theorem 3.23, there are infinitely many solutions of the diophantine 
equation 21x + 14y = 70, because (21, 14) = 7 and 7170. To find these solutions, note 
that by the Euclidean algorithm, 1·21 + (-1) · 14 = 7, so that 10 · 21+ (-10) · 14 = 70. 
Hence, x0 = 10, Yo = -10 is a particular solution. All solutions are given by x = 10 + 2n, 
y = -10 - 3n, where n is an integer. <11111 

We will now use Theorem 3.23 to solve the two problems described at the beginning 
of the section. 

Example 3.29. Consider the problem of forming 83 cents in postage using only 6- and 
lS-cent stamps. If x denotes the number of 6-cent stamps and y denotes the number 
of lS-cent stamps, we have 6x + lSy = 83. Because (6, lS) = 3 does not divide 83, by 
Theorem 3.23 we know that there are no integral solutions. Hence, no combination of 
6- and lS-cent stamps gives the correct postage. <11111 

Example 3.30. Consider the problem of purchasing $S 10 of travelers' checks, using 
only $20 and $SO checks. How many of each type of check should be used? 

Let x be the number of $20 checks and let y be the number of $SO checks. We have 
the equation 20x + SOy = SlO. Note that the greatest common divisor of 20 and SO is 
(20, SO)= 10. Because 10 I SlO, there are infinitely many integral solutions of this linear 
diophantine equation. Using the Euclidean algorithm, we find that 20(-2) +SO= 10. 
Multiplying both sides by Sl, we obtain 20(-102) + SO(Sl) = SlO. Hence, a particular 
solution is given by x0 = -102 and Yo= SL Theorem 3.23 tells us that all integral 
solutions are of the form x = -102 + Sn and y = S 1 - 2n. Because we want both x and 
y to be nonnegative, we must have -102 +Sn'.'.:'.: 0 and Sl - 2n '.'.:'.: O; thus, n '.'.:'.: 20 2 /S 
and n ::=: 2S 1/2. Because n is an integer, it follows that n = 21, 22, 23, 24, or 2S. Hence, 
we havethefollowing five solutions: (x, y) = (3, 9), (8, 7), (13, S), (18, 3),and (23, 1). 
So the teller can give the customer 3 $20 checks and 9 $SO checks, 8 $20 checks and 7 
$SO checks, 13 $20 checks and S $SO checks, 18 $20 checks and 3 $SO checks, or 23 
$20 checks and 1 $SO check. <11111 

We can extend Theorem 3.23 to cover linear diophantine equations with more than 
two variables, as the following theorem demonstrates. 

Theorem 3.24. If ai. a2, ... , an are nonzero integers, then the equation a1x1 + a2x2 + 
· · · + anxn = c has an integral solution if and only if d = (ai. a2, ... , an) divides c. 

Furthermore, when there is a solution, there are infinitely many solutions. 

Proof. If there are integers xi. X2, ... , Xn such that a1x1 + a1x2 + · · · + anxn = c, then 
because d divides ai for i = 1, 2, . . .  , n, by Theorem 1.9, d also divides c. Hence, if d l c 

there are no integral solutions of the equation. 

We will use mathematical induction to prove that there are infinitely many integral 
solutions when d I c. Note that by Theorem 3.23 this is true when n = 2. 

Now, suppose that there are infinitely many solutions for all equations in n vari
ables satisfying the hypotheses. By Theorem 3.9, the set of linear combinations anxn + 
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an+lxn+l is the same as the set of multiples of (an, an+1). Hence, for every integer y 
there are infinitely many solutions of the linear diophantine equation anxn + an+ 1xn+ 1 = 

(an, an+1)y. It follows that the original equation inn+ 1 variables can be reduced to a 

linear diophantine equation in n variables: 

a1X1 + a2x2 + · · · + an-lXn-1 +(an, an+1)Y = c. 

Note that c is divisible by (ai. a2, ... , an-1' (an, an+l)) because, by Lemma 3.2, this 

greatest common divisor equals (ai. a2, ... , an, an+1). By the inductive hypothesis, this 

equation has infinitely many integer solutions, as it is a linear diophantine equation in n 

variables where the greatest common divisor of the coefficients divides the constant c. 

It follows that there are infinitely many solutions to the original equation. • 

A method for solving linear diophantine equations in more than two variables can 

be found using the reduction in the proof of Theorem 3.24. We leave an application of 

Theorem 3.24 to the exercises. 

3. 7 EXERCISES

1. For each of the following linear diophantine equations, either find all solutions or show that
there are no integral solutions.

a) 2x + 5y = 1 1 c) 21x + 14y = 147 e) 1402x + 1969y = 1

b) 17x + 13y = 100 d) 60x + 18y = 97

2. For each of the following linear diophantine equations, either find all solutions or show that
there are no integral solutions.

a) 3x + 4y = 7 c) 30x + 47y = -11 e) 102x + lOOly = 1

b) 12x + 18y = 50 d) 25x + 95y = 970

3. Japanese businessman returning home from a trip to North America exchanges his U.S. and
Canadian dollars for yen. If he received 9,763 yen, and received 99 yen for each U.S. and 86
yen for each Canadian dollar, how many of each type of currency did he exchange?

4. A student returning from Europe changes her euros and Swiss francs into U.S. money. If she
received $46.58 and received $1.39 for each euro and 91¢ for each Swiss franc, how much
of each type of currency did she exchange?

5. A professor returning home from conferences in Paris and London changes his euros and
pounds into U.S. money. If he received $125.78 and received $1.31 for each euro and $1.61
for each pound, how much of each type of currency did he exchange?

6. The Indian astronomer and mathematician Mahavira, who lived in the ninth century, posed
this puzzle: A band of 23 weary travelers entered a lush forest where they found 63 piles each
containing the same number of plantains and a remaining pile containing seven plantains.
They divided the plantains equally. How many plantains were in each of the 63 piles? Solve
this puzzle.

7. A grocer orders apples and oranges at a total cost of $8.39. If apples cost him 25¢ each and
oranges cost him 18¢ each, how many of each type of fruit did he order?

8. A shopper spends a total of $5.49 for oranges, which cost 18¢ each, and grapefruit, which 
cost 33¢ each. What is the minimum number of pieces of fruit the shopper could have bought?


