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Primes and Greatest 

Common Divisors 

T
his chapter introduces a central concept of number theory, namely, that of a prime

number. A prime is an integer with precisely two positive integer divisors. Prime 

numbers were studied extensively by the ancient Greeks, who discovered many of their 

basic properties. In the past three centuries, mathematicians have devoted countless hours 

to exploring the world of primes. They have discovered many fascinating properties, 

formulated diverse conjectures, and proved interesting and surprising results. Research 

into questions involving primes continues today, partly driven by the importance of 

primes in modem cryptography. Open questions about primes stimulate new research. 

There are also tens of thousands of people trying to enter the record books by finding 

the largest prime yet known. 

In this chapter, we will show that there are infinitely many primes. The proof we 

will give dates back to ancient times. We will also show how to find all the primes not 

exceeding a given integer, using the sieve of Eratosthenes, also dating back to antiquity. 

We will discuss the distribution of primes, and state the famous prime number theorem 

that was proved at the end of the nineteenth century. This theorem provides an accurate 

estimate for the number of primes not exceeding a given integer. Many questions about 

primes remain open despite attention from mathematicians over hundreds of years; we 

will discuss a selection of such problems, including two of the best known, the twin 

prime conjecture and Goldbach's conjecture. 

This chapter also shows that every positive integer can be written uniquely as the 

product of primes (when the primes are written in increasing order of size). This result 

is known as the fundamental theorem of arithmetic. To prove this theorem, we will use 

the concept of the greatest common divisor of two integers. We will establish many 

important properties of the greatest common divisor in this chapter, such as the fact 

that it is the smallest positive linear combination of these integers. We will describe the 

Euclidean algorithm that can be used for finding the greatest common divisor of two 

integers, and analyze its computational complexity. We will discuss methods used to 

find the factorization of integers into products of primes, and discuss the complexity 

of these methods. Numbers of special form are often studied in number theory; in this 

chapter, we will introduce the Fermat numbers, which are integers of the form 22n + 1. 
(Fermat conjectured that they are all prime but this turns out not to be true.) 

Finally, we will introduce the concept of a diophantine equation, which is an equa­

tion where only solutions in integers are sought. We will show how greatest common 

divisors can be used to help solve linear diophantine equations. Unlike many other dio­

phantine equations, linear diophantine equations can be solved easily and systematically. 
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3.1 

G 

Primes and Greatest Common Divisors 

Prime Numbers 

The positive integer 1 has just one positive divisor. Every other positive integer has at 

least two positive divisors, because it is divisible by 1 and by itself. Integers with exactly 

two positive divisors are of great importance in number theory; they are called primes. 

Definition. A prime is an integer greater than 1 that is divisible by no positive integers 

other than 1 and itself. 

Example 3.1. The integers 2, 3, 5, 13, 101, and 163 are primes. 

Definition. An integer greater than 1 that is not prime is called composite. 

Example 3.2. The integers 4 = 2 · 2, 8 = 4 · 2, 33 = 3 · 11, 111=3 · 37, and 1001 =

7 · 11 · 13 are composite. <11111 

The primes are the multiplicative building blocks of the integers. Later, we will show 

that every positive integer can be written uniquely as the product of primes. 

In this section, we will discuss the distribution of prime numbers among the set of 

positive integers, and prove some elementary properties about this distribution. We will 

also discuss more powerful results about the distribution of primes. The theorems we 

will introduce include some of the most famous results in number theory. 

You can find all primes less than 10,000 in Table E.1 at the end of the book. 

The Infinitude of Primes We start by showing that there are infinitely many primes, 

for which the following lemma is needed. 

Lemma 3.1. Every integer greater than 1 has a prime divisor. 

Proof We prove the lemma by contradiction; we assume that there is a positive integer 

greater than 1 having no prime divisors. Then, since the set of positive integers greater 

than 1 with no prime divisors is nonempty, the well-ordering property tells us that there 

is a least positive integer n greater than 1 with no prime divisors. Because n has no prime 

divisors and n divides n, we see that n is not prime. Hence, we can write n =ab with 

1 < a < n and 1 < b < n. Because a < n, a must have a prime divisor. By Theorem 1.8, 

any divisor of a is also a divisor of n, son must have a prime divisor, contradicting the 

fact that n has no prime divisors. We can conclude that every positive integer greater 

than 1 has at least one prime divisor. • 

We now show that there are infinitely many primes, a wondrous result known by 

the ancient Greeks. This is one of the key theorems in number theory that can be proved 

in a variety of ways. The proof we will provide was presented by Euclid in his book 

the Elements (Book IX, 20). This simple yet elegant proof is considered by many to be 

particularly beautiful. It is not surprising that the very first proof found in the book Proofs 
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from THE BOOK [AiZilO], a collection of particularly insightful and clever proofs, 
begins with this proof found in Euclid. Moreover, this book presents six quite different 
proofs of the infinitude of primes. (Here, THE BOOK refers to the imagined collection 
of perfect proofs that Paul Erdos claimed is maintained by God.) We will introduce 
a variety of different proofs that there are infinitely many primes later in this chapter. 
(See Exercise 8 at the end of this section, the exercise sets in Sections 3.3 and 3.5, and 
Section 3.6.) 

Theorem 3.1. There are infinitely many primes. 

Proof Suppose that there are only finitely many primes, Pi. p2, • • •  Pn• where n is a 
positive integer. Consider the integer Qn, obtained by multiplying these primes together 
and adding one, that is, 

Qn = P1P2 · · · Pn + L 

By Lemma 3.1, Q has at least one prime divisor, say, q. We obtain a contradiction by 
showing that q is not one of the primes listed. (These supposedly formed a complete list of 
all primes.) If q = p j for some integer j with 1 � j � n. then since Qn - P1P2 · · · Pn = 1, 

because q divides both terms on the left-hand side of this equation, by Theorem 1.9 it 
follows that q I 1. This is impossible because no prime divides 1.  Consequently, q must be 
a prime we have not listed. This contradiction shows that there are infinity many primes . 

• 

The proof of Theorem 3.1 is nonconstructive because the integer we have con­
structed in the proof, Qn, which is one more than the product of the first n primes. may 
or may not be prime (see Exercise 11 ). Consequently, in the proof we have not found a 
new prime, but we know that one exists. 

Finding Primes In later chapters, we will be interested in finding and using extremely 
large primes. Tests distinguishing between primes and composite integers will be crucial; 
such tests are called primality tests. The most basic primality test is trial division, which 
tells us that the integer n is prime if and only if it is not divisible by any prime not 
exceeding Jn. We now prove that this test can be used to determine whether n is prime. 

Theorem 3.2. If n is a composite integer, then n has a prime factor not exceeding Jn. 

Proof Because n is composite, we can write n = ab, where a and b are integers with 
1 <a� b < n. We must havea �Jn, since otherwiseb �a> Jn andab >Jn· Jn= 
n. Now, by Lemma 3.1, a must have a prime divisor, which by Theorem 1.8 is also a
divisor of n and which is clearly less than or equal to Jn. • 

We can use Theorem 3.2 to find all the primes less than or equal to a given positive 
integer n. This procedure is called the sieve of Eratosthenes, since it was invented by 
the ancient Greek mathematician Eratosthenes. We illustrate its use in Figure 3.1 by 
finding all primes less than 100. We first note that every composite integer less than 100 

must have a prime factor less than JIOO = 10. Because the only primes less than 10 are 

2, 3, 5, and 7, we only need to check each integer less than 100 for divisibility by these 
primes. We first cross out, with a horizontal line (-), all multiples of 2 greater than 2. 
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Next, we cross out with a slash (/) those integers remaining that are multiples of 3, other
than 3 itself. Then all multiples of 5, other than 5, that remain are crossed out with a 

backslash (\). Finally, all multiples of 7, other than 7, that are left are crossed out with a 

vertical stroke (I). All remaining integers (other than l ,  which we cross out using an x) 
must be prime (and are shown in boldface in the figure). 

)l( 2 3 -4- 5 -6- 7 -8- J)' -10-

11 H. 13 -14- 2 -16- 17 -18- 19 � 

2r � 23 * � * .21' � 29 -39-

31 * -33' -34- � -36- 37 -38- -39' -49-

41 � 43 44- M 46- 47 -48- 4P -59-

,Sr M. 53 -54- '§ -56- $1 -58- 59 -69-

61 &- -63' -64- '6S_ -66- 67 -68- HJ' -19-

71 -1!}. 73 -14 ;pj -16- 7tT -18- 79 -8G-

M -st 83 -84- � -86- M -88- 89 -99-

�1 * J)3' -94- '%_ -96- 97 -98- -99' -100 

Figure3.1 Using the sieve of Eratosthenes to find the primes less than JOO. 

Although the sieve of Eratosthenes produces all primes less than or equal to a fixed 
integer, to determine in this manner whether a particular integer n is prime it is necessary 
to check n for divisibility by all primes not exceeding .Jii. This is quite inefficient; later,

we will give better methods for deciding whether or not an integer is prime. 

We now introduce a function that counts the primes not exceeding a specified 
number. 

Definition. The function n-(x), where x is a positive real number, denotes the number 
of primes not exceeding x. 

ERATOSTHENES (c. 276-194 B.C.E.) was born in Cyrene, which was a Greek 

colony west of Egypt. It is known that he spent some time studying at Plato's 
school in Athens. King Ptolemy II invited Eratosthenes to Alexandria to tutor 
bis son. Later, Eratosthenes became the chief librarian of the famous library 
at Alexandria, which was a central repository of ancient works of literature, 
art, and science. He was an extremely versatile scholar, having written on 
mathematics, geography, astronomy, history, philosophy, and literature. Besides 
his work in mathematics, Eratosthenes was most noted for his chronology of 

ancient history and for his geographical measurements, including bis famous measurement of the 

size of the earth. 
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Example 3.3. From our illustration of the sieve of Eratosthenes, we see that 1r (10) = 4 

and ir(lOO) = 25. <11111 

Primes in Arithmetic Progressions Every odd integer is either of the form 4n + 1 
or the form 4n + 3. Are there infinitely many primes in both these forms? The primes 
5, 13, 17, 29, 37, 41, ... are of the form 4n + I, and the primes 3, 7, 11, 19, 23, 31, 

43, . . . are of the form 4n + 3. Looking at this evidence hints that there are infinitely 
many primes in both these progressions. What about other arithmetic progressions such 
as 3n + l, 7n + 4, 8n + 7, and so on? Does each of these contain in.finitely many primes? 
German mathematician G. Lejeune Dirichlet settled this question in 1837, when he used 
methods from complex analysis to prove the following theorem. 

Theorem 3.3. Diriehlet's Theorem on Primes in Arithmetk Progressions. Suppose 
that a and b are relatively prime positive integers. Then the arithmetic progression 
an + b, n = l, 2, 3, ... , contains infinitely many primes. 

No simple proof of Dirichlet's theorem on primes in arithmetic progressions is 
known. (Dirichlet's original proof used complex variables. In the 19 50s, elementary but 
complicated proofs were found by Erd6s and by Selberg.) However, special cases of 
Dirichlet's theorem can be proved quite easily. We will illustrate this in Section 3.5, by 
showing that there are infinitely many primes of the form 4n + 3. 

The Largest Known Primes For hundreds if not thousands of years, professional and 
amateur mathematicians have been motivated to find a prime larger than any currently 
known. The person who discovers such a prime becomes famous, at least for a time, 
and has his or her name entered into the record books. Because there are in.finitely many 
prime numbers, there is always a prime larger than the current record. Looking for new 
primes is done somewhat systematically; rather than checking randomly, people examine 
numbers that have a special form. For example, in Chapter 7 we will discuss primes of 
the form 2P - 1, where p is prime; such numbers are called Mersenne primes. We will 
see that there is a special test that makes it possible to determine whether 2P - 1 is 

G. LEJEUNE DIRICHLET (1805-1859) was born into a French family living 
in the vicinity of Cologne, Germany. He studied at the University of Paris when 
this was an important world center of mathematics. He held positions at the 
University of Breslau and the University of Berlin, and in 1855 was chosen 
to succeed Gauss at the University of GOttingen. Dirichlet is said to be the 
first person to master Gauss's Disquisitiones Arithmeticae, which had appeared 
20 years earlier. He is said to have kept a copy of this book at bis side even 
when he traveled. His book on number theory, Vorlesungen uber Zahlentheorie, 

helped make Gauss's discoveries accessible to other mathematicians. Besides bis fundamental work 
in number theory, Dirichlet made many important contributions to analysis. His famous "drawer 
principle," also called the pigeonhole principle, is used extensively in combinatorics and in number 
theory. 
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prime without performing trial divisions. The largest known prime number has been a 
Mersenne prime for most of the past hundred years. Currently, the world record for the 
largest prime known is 243• 11

2
• 609 - 1.

Formulas for Primes Is there a formula that generates only primes? This is another 
question that has interested mathematicians for many years. No polynomial in one 
variable has this property, as Exercise 23 demonstrates. It is also the case that no 
polynomial inn variables, where n is a positive integer, generates only primes (a result 
that is beyond the scope of this book). There are several impractical formulas that 
generate only primes. For example, Mills has shown that there is a constant 8 such 
that the function f (n) = [83n] generates only primes. Here the value of 8 is known only
approximately, with e � 1.3064. This formula is impractical for generating primes not 
only because the exact value of 8 is not known, but also because to compute 8 you must 
know the primes that f (n) generates (see [Mi47] for details). 

If no useful formula can be used to generate large primes, how can they be generated? 
In Chapter 6, we will learn how to generate large primes using what are known as 
probabilistic primality tests. 

Primality Proofs 

If someone presents you with a positive integer n and claims that n is prime, how can you 
be sure that n really is prime? We already know that we can determine whether n is prime 
by performing trial divisions of n by the primes not exceeding ,Jn. If n is not divisible 
by any of these primes, it itself is prime. Consequently, once we have determined that 
n is not divisible by any prime not exceeding its square root, we have produced a proof 
that n is prime. Such a proof is also known as a certificate of primality. 

Unfortunately, using trial division to produce a certificate of primality is extremely 
inefficient. To see this, we estimate the number of bit operations used by this test. Using 
the prime number theorem, we can estimate the number of bit operations needed to show 
that an integer n is prime by trial divisions of n by all primes not exceeding ,Jn. The prime 
number theorem tells us that there are approximately ,Jn/ log ,Jn = 2,Ji /log n primes 
not exceeding ,Jn. To divide n by an integer m takes 0 (Iog2 n · log2 m) bit operations.
Therefore, the number of bit operations needed to show that n is prime by this method is 
at least (2,Ji/log n)(c log2 n) = c,Jn (where we have ignored the log2 m term because it 
is at least 1, even though it sometimes is as large as (log2 n) /2). This method of showing 
that an integer n is prime is very inefficient, for it is necessary not only to know all the 
primes not larger than ,Ji, but to do at least a constant multiple of ,Jn bit operations. 

To input an integer into a computer program, we input the binary digits of the integer. 
Consequently, the computational complexity of algorithms for determining whether an 
integer is prime is measured in terms of the number of binary digits in the integer. By 
Exercise 11 in Section 2.3, we know that a positive integer n has [log2 n] + 1 binary 
digits. Consequently, a big-0 estimate for the computational complexity of an algorithm 
in terms of number of binary digits of n translates to the same big-0 estimate in terms of 
log2 n, and vice versa. Note that the algorithm using trial divisions to determine whether 
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an integer n is prime is exponential in terms of the number of binary digits of n, or 

in terms of log2 n, because .JTi, = 210g2 n/2. That is, this algorithm has exponential time

complexity, measured in terms of the number of binary digits inn. As n gets large, 
an algorithm with exponential complexity quickly becomes impractical. Determining 
whether a number with 200 digits is prime using trial division still takes billions of years 

on the fastest computers. 

Mathematicians have looked for efficient primality tests for many years. In par­
ticular, they have searched for an algorithm that produces a certificate of primality in 

polynomial time, measured in terms of the number of binary digits of the integer input. 

In 197 5, G. L. Miller developed an algorithm that can prove that an integer is prime 
using 0 ((log n )5) bit operations, assuming the validity of a hypothesis called the gener­

alized Riemann hypothesis. Unfortunately, the generalized Riemann hypothesis remains 
an open conjecture. In 1983, Leonard Adleman, Carl Pomerance, and Robert Rumely 

developed an algorithm that can prove an integer is prime using (log n )clog log log n bit 

operations, where c is a constant. Although their algorithm does not run in polynomial 

time, it runs in close to polynomial time because the function log log log n grows so 

slowly. To use their algorithm with an up-to-date PC to determine whether a 100-digit 
integer is prime requires just a few milliseconds, determining whether a 400-digit inte­

ger is prime requires less than a second, and determining whether a 1000-digit integer is 

prime takes less than an hour. (For more information about their test, see [AdPoRu83] 

and [Ru83].) 

A Polynomial Time Algorithm for Prime Certificates Until 2002, no one was able 
to find a polynomial time algorithm for proving that a positive integer is prime. In 2002, 

M. Agrawal, N. Kayal, and N. Saxena, an Indian computer science professor and two 
of his undergraduate students, announced that they had found an algorithm that can 

produce a certificate of primality for an integer n using O((log n) 12) bit operations.
Their discovery of a polynomial time algorithm for proving that a positive integer is 
prime surprised the mathematical community. Their announcement stated that "PRIMES 
is in P ." Here, computer scientists denote by PRIMES the problem of determining 

whether a given integer n is prime, and P denotes the class of problems that can be 

solved in polynomial time. Consequently, PRIMES is in P means that one can determine 

whether n is prime using an algorithm that has computational complexity bounded by 
a polynomial in the number of binary digits in n, or equivalently, in log n. Their proof 

can be found in [AgKaSa02] and can be understood by undergraduate students who have 

studied number theory and abstract algebra. In this paper, they also show that under the 
assumption of a widely believed conjecture about the density of Sophie Germain primes 
(see Chapter 13 for a biography of the French mathematician Sophie Germain) 1 (primes

p for which 2p + 1 is also prime), their algorithm uses only O((log n)6) bit operations.

Other mathematicians have also improved on Agrawal, Kayal, and Saxena's result. In 

particular, H. Lenstra and C. Pomerance have reduced the exponent 12 in the original 
estimate to 6 + E, where E is any positive real number. 

1 Both the first name and last name of Sophie Germain are used to describe primes p for which 2p + 1 is also 

prime. This type of terminology is rarely used when the names of other mathematicians are used as adjectives. 
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It is important to note that in our discussion of primality tests, we have only addressed 

deterministic algorithms, that is, algorithms that decide with certainty whether an integer 

is prime. In Chapter 6, we will introduce the notion of probabilistic primality tests, that 

is, tests that tell us that there is a high probability, but not a certainty, that an integer is 

pnme. 

3.1 EXERCISES 

1. Determine which of the following integers are primes.

a) 101 c) 107 e) 113
b) 1 03 d) 111 f) 1 21

2. Determine which of the following integers are primes.

a) 201 c) 207 e) 213
b) 203 d) 211 f) 221

3. Use the sieve of Eratosthenes to find all primes less than 150.

4. Use the sieve of Eratosthenes to find all primes less than 200.

5. Find all primes that are the difference of the fourth powers of two integers.

6. Show that no integer of the form n3 + 1 is a prime, other than 2 = 13 + 1.

7. Show that if a and n are positive integers with n > 1 and an - 1 is prime, then a = 2 and n is

prime. (Hint: Use the identity akl - 1 = (ak - l)(ak(l-l) + ak(l-2) + ... + ak + 1).) 

8. (This exercise constructs another proof of the infinitude of primes.) Show that the integer
Qn = n ! + 1, where n is a positive integer, has a prime divisor greater than n. Conclude that
there are infinitely many primes.

9. Can you show that there are infinitely many primes by looking at the integers Sn = n ! - 1,
where n is a positive integer?

10. Using Euclid's proof that there are infinitely many primes, show that the nth prime Pn does

not exceed 22n-
l 

whenever n is a positive integer. Conclude that when n is a positive integer,

there are at least n + 1 primes less than 22n.

11. Let Qn = p1p2 . . •  Pn + 1, where Pi. p2, • • .  , Pn are the n smallest primes. Determine the
smallest prime factor of Qn forn = 1, 2, 3, 4, 5, and6. Do you think that Qn is prime infinitely 
often? (Note: This is an unresolved question.) 

12. Show that if Pk is the kth prime, where k is a positive integer, then Pn ,:'.S p1p2 • • •  Pn-l + 1
for all integers n with n � 3. 

13. Show that if the smallest prime factor p of the positive integer n exceeds ffe, then n / p must
be prime or 1.

14. Show that if p is a prime in the arithmetic progression 3n + 1, n = 1, 2, 3, ... , then it is also
in the arithmetic progression 6n + 1, n = 1, 2, 3, .... 

15. Find the smallest prime in the arithmetic progression an + b, for these values of a and b:

a) a= 3, b = 1 b) a= 5, b = 4 c) a= 11, b = 16

16. Find the smallest prime in the arithmetic progression an + b, for these values of a and b:

a) a= 5, b = 1 b) a= 7, b = 2 c) a= 23, b = 13
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17. Use Dirichlet's theorem to show that there are infinitely many primes whose decimal expan­
sion ends with a 1.

18. Use Dirichlet's theorem to show that there are infinitely many primes whose decimal expan­
sion ends with the two digits 23.

19. Use Dirichlet's theorem to show that there are infinitely many primes whose decimal expan­
sion ends with the three digits 1 23.

20. Show that for every positive integer n there is a prime whose decimal expansion ends with at
least n ls.

* 21. Show that for every positive integer n there is a prime whose decimal expansion contains n 
consecutive ls and whose final digit is 3. 

* 22. Show that for every positive integer n there is a prime whose decimal expansion contains n 
consecutive 2s and whose final digit is 7. 

23. Use the second principle of mathematical induction to prove that every integer greater than
1 is either prime or the product of two or more primes.

* 24. Use the principle of inclusion-exclusion (Exercise 16 of Appendix B) to show that 

n(n) = (n(�) - 1) + n - ([;J + [;J + .. · + [;J) 
([ n ] [ n ] [ n ]) 

+ - + - + . .  ·+ 
P1P2 P1P3 Pr-lPr 

([ n ] [ n ] [ n ]) - + + .. ·+ + ... 
P1P2P3 P1P2P4 Pr-2Pr-1Pr 

, 

where Pi. p2, ... , Pr are the primes less than or equal to ,Jn (with r = n(.../ll)). (Hint: Let 
property Pi be the property that an integer is divisible by Pi.)

25. Use Exercise 24 to find n(250).

26. Show that x2 - x + 41 is prime for all integers x with 0 ::; x ::; 40. Show, however, that it is 
composite for x = 41. 

27. Show that 2n2 + 11 is prime for all integers n with 0 ::; n ::; 10, but is composite for n = 11. 

28. Show that 2n2 + 29 is prime for all integers n with 0::; n::; 28, but is composite for n = 29. 

* 29. Show that if f (x) = anxn + an_ 1xn-l + · · · + a1x + a0, where n '.:': 1 and the coefficients are
integers, then there is a positive integer y such that f (y) is composite. (Hint: Assume that 
f(x) =p is prime, and show that p divides f (x + kp) for all integers k. Conclude that there 
is an integer y such that f (y) is composite from the fact that a polynomial of degree n, n > 1, 
takes on each value at most n times.) 

The lucky numbers are generated by the following sieving process: Start with the positive integers. 
Begin the process by crossing out every second integer in the list, starting your count with the 
integer 1. Other than 1, the smallest integer not crossed out is 3, so we continue by crossing out 
every third integer left, starting the count with the integer 1. The next integer left is 7, so we cross 
out every seventh integer left. Continue this process, where at each stage we cross out every kth 
integer left, where k is the smallest integer not crossed out, other than 1, not yet used in the sieving 
process. The integers that remain are the lucky numbers. 
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30. Find all lucky numbers less than 100.

31. Show that there are infinitely many lucky numbers.

32. Suppose that tk is the smallest prime greater than Qk = p1p2 • • • Pk + 1, where p j is the jth
prime number. 

a) Show that tk - Qk + 1 is not divisible by p j for j = 1, 2, ... , k.

b) R. F. Fortune conjectured that tk - Qk + 1 is prime for all positive integers k. Show that
this conjecture is true for all positive integers k with k ::; 5.

Computations and Explorations 

1. Find the nth prime, where n is each of the following integers.

a) 1,000,000 b) 333,333,333 c) 1,000,000,000

2. Find the smallest prime greater than each of the following integers.

a) 1,000,000 b) 100,000,000 c) 100,000,000,000

3. Plot the nth prime as a function of n for 1 ::; n ::; 100.

4. Plot :rr(x) for 1::; x ::; 1000.

5. Find the smallest prime factor of n ! + 1 for all positive integers n not exceeding 20.

6. Find the smallest prime factor of p1p2 • • • Pk + 1, where Pi. p2, • • •  , Pk are the kth smallest
primes for all positive integers k not exceeding 100. Which of these numbers are prime? For
which of those that are not prime is Pk+ 1 the smallest prime divisor of this number?

7. Find the smallest prime factor of p1p2 • • ·Pk - 1, where Pi. p2, • • •  , Pk are the kth smallest
primes for all positive integers k not exceeding 100. Which the numbers are primes? For
which of those that are not prime is Pk+ 1 the smallest prime divisor of this number?

8. The Euler-Mullin sequence qi. q2, • • •  , qko ... is defined by taking q1 = 2 and defining qk+l
to be the smallest prime factor of q1q2 • • • qk + 1 whenever k is a positive integer. Find as many
terms of this sequence as you can. It has been conjectured that this sequence is a reordering
of the list of prime numbers.

9. Use the sieve of Eratosthenes to find all primes less than 10,000.

10. Use the result given in Exercise 18 to find :rr(l0,000), the number of primes not exceeding
10,000. 

11. A famous unsettled conjecture of Hardy and Littlewood, now generally believed to be false,
asserts that :rr (x + y) ::; :rr (x) + :rr (y) for all integers x and y both greater than 1. Explore this
conjecture by examining :rr(x + y) - (:rr(x) + :rr(y)) for various values of x and y.

12. Verify R. F. Fortune's conjecture that tk - Qk + 1 is prime for all positive integers k, where

tk is the smallest prime greater than Qk = n�=l p j + 1 for as many k as you can.

13. Find all lucky numbers (as defined in the preamble to Exercise 30) not exceeding 10,000.

Programming Projects 

1. Given a positive integer n, determine whether it is prime using trial division of the integer by
all primes not exceeding its square root.

* 2. Given a positive integer n, use the sieve of Eratosthenes to find all primes not exceeding it. 
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* 3. Given a positive integer n, use Exercise 24 to find n(n}. 

4. Given positive integers a and b not divisible by the same prime, find the smallest prime
number in the arithmetic progression an+ b, where n is a positive integer.

* 5. Given a positive integer n, find the lucky numbers less than n (see the preamble to Exercise 
30}. 

3.2 The Distribution of Primes 

G 

c 

We know that there are infinitely many primes, but can we estimate how many primes 

there are less than a positive real number x? One of the most famous theorems of number 

theory, and of all mathematics, is the prime number theorem, which answers this question. 

Mathematicians in the late eighteenth century examined tables of prime numbers 

created using hand calculations. Using these values, they looked for functions that 

estimated rr (x ). In 1798, French mathematician Adrien-Marie Legendre (see Chapter 11 
for a biography) used tables of primes up to 400,031, computed by Jurij Vega, to note 

that Ir(x) could be approximated by the function 

x 

log x - 1.08366 

The great German mathematician Karl Friedrich Gauss (see Chapter 4 for a biography) 
conjectured that Jr (x) increases at the same rate as the functions 

1x dt
x/log x and Li(x)= -

2 log t 

(where f; 1:: 1 represents the area under the curve y = 1/ log t and above the t-axis from

t = 2 to t = x ). (The name Li is an abbreviation of logarithmic integral.) 

Neither Legendre nor Gauss managed to prove that these functions approximated 
Ir(x) closely for large values of x. By 1811, a table of all primes up to 1,020,000 had been 

produced (by Chemac), which could be used to provide evidence for these conjectures. 

The first substantial result showing that Jr (x) could be approximated by x /log x was 
established in 1850 by Russian mathematician Pafnuty Lvovich Chebyshev. He showed 

that there are positive real numbers C1 and C2, with C1 < 1 < C2, such that 

C1(x/ log x) < Ir(x) < C2(x/ log x) 

for sufficiently large values of x. (In particular, he showed that this result holds with 

C1 = 0.929 and C2 = 1.1.) He also demonstrated that if the ratio of rr(x) and x/log x 

approaches a limit as x increases, then this limit must be 1.  

The prime number theorem, which states that the ratio of rr(x) and x/log x ap­

proaches 1 as x grows without bound, was finally proved in 1896, when French 

mathematician Jacques Hadamard and Belgian mathematician Charles-Jean-Gustave­
Nicholas de la Vallee-Poussin produced independent proofs. Their proofs were based 
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on results from the theory of complex analysis. They used ideas developed in 1859 by 
German mathematician Bernhard Riemann, which related :Jr(x) to the behavior of the 
function 

00 1 
�(s) = "­

L..,, ns 
n=l 

in the complex plane. (The function r (s) is known as the Riemann zeta function.) The 
connection between the Riemann zeta function and the prime numbers comes from the 
identity 

co 1 1 �<s> = " - = TI<1- ->-1,L..,, n' p' 
n=l P 

where the product on the right-hand side of the equation extends over all primes p. We 
will explain why this identity is true in Section 3.5. (For information about the famous 
Riemann hypothesis, a conjecture about the roots of the zeta function, see the boxed note 
later in this section.) 

PAFNUTY LVOVICH CHEBYSHEV (1821-1894) was born on the estate 
of his parents in Okatovo, Russia. His father was a retired army officer. In 
1832, Chebyshev's family moved to Moscow. where he completed his secondary 
education with study at home. In 1837, Chebysbev entered Moscow University. 
graduating in 1841. While still an undergraduate, be made his first original 
contribution, a new method for approximating roots of equations. Chebyshev 
joined the faculty of St. Petersburg University in 1843, where he remained until 
1882. His doctoral thesis. written in 1849. was long used as a number theory 

textbook at Russian universities. Cbebyshev made contributions to many areas of mathematics besides

number theory, including probability theory, numerical analysis, and real analysis. He worked in
theoretical and applied mechanics. and had a bent for constructing mechanisms, including linkages 
and hinges. He was a popular teacher, and had a strong influence on the development of Russian 
mathematics. 

JACQUES HADAMARD (1865-1963) was born in Versailles, France. His 
father was a Latin teacher and his mother a distinguished piano teacher. After 
completing his undergraduate studies, he taught at a Paris secondary school. 
After receiving his doctorate in 1892, he became lecturer at the Faculte des
Sciences of Bordeaux. He subsequently served on the faculties of the Sorbonne, 
the College de France, the Ecole Polytechnique, and the Ecole Centrale des Arts 
et Manufactures. Hadamard made important contributions to complex analysis, 
functional analysis, and mathematical physics. His proof of the prime number 

theorem was based on his work in complex analysis. Hadamard was a famous teacher; he wrote 
numerous articles about elementary mathematics that were used in French schools. and his text on 
elementary geometry was used for many years. 
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In addition to proving the prime number theore� de la Vallee-Poussin showed that 
thefunctionLi(x) is a closer approximation ton(x) than x/(log x - a) for all values of 
the constant a. 

The proofs of the prime number theorem found by Hadamard and de la Vall� 
Poussin depend on complex analysis, though the theorem itself does not involve complex 
numbers. This left open the challenge of finding a proof that did not use the theory of 
complex variables. It surprised the mathematical community when, in 1949, Norwegian 
mathematician Atle Selberg and Hungarian mathematician Paul ErdOs independently 
found elementary proofs of the prime number theorem. Their proofs, though elementary 

(meaning that they do not use the theory of complex variables), are quite complicated 
and difficult. 

We now formally state the prime number theorem. 

Theorem 3.4. The Prime Number Theorem. The ratio of tr (x) to x/log x approaches 
1 as x grows without bound. (Here, log x denot.es the natural logarithm of x, and in the 
language of limits, we have lim.%-+oo n(x)/(x/log x) = 1.) 

CHARLES-JEAN-GUSTAVE-NICHOLAS DE LA VALLEE-POUSSIN 
(1866-1962), the son of a geology professor, was born at Louvain, Belgium. 
He studied at the Jesuit College at Mons. first studying philosophy. later turn­
ing to engineering. After receiving his degree. instead of pursuing a career in 
engineering. he devoted himself to mathematics. De la ValleC-Poussin's most 
significant contribution to mathematics was his proof of the prime number theo­

rem. Extending this work, he established results about the distribution of primes 
in arithmetic progressions and the distribution of primes represented by qua­

dratic forms. Furthermore, he refined the prime number theorem to include error estimates. He made 

important contributions to differential equations, approximation theory, and analysis. His textbook. 
Cours d' analyse, had a strong impact on mathematical thought in the first half of the twentieth century. 

ATLE SELBERG (1917-2007), born in Langesund, Nmway. became inter­
ested in mathematics as a schoolboy. He was inspired by Ramanujan's writing, 
both by the mathematics and the "air of mystery .. surrounding Ramanujan's per­

sonality. Selberg received his doctorate in 1943 from the University of Oslo. He 

remained at the university until 1947, when he married and took a position at the 

Institute for Advanced Study in Princeton. After a brief stay at Syracuse Uni­
versity, he returned to the lnstimte for Advanced Study, where he was appointed 
a permanent member in 1949; he became a professor at Princeton University in 

1951. Selberg received the Fields Medal, the most prestigious award in mathematics. for bis work on 
sieve methods and on the properties of the set of zeros of the Riemann zeta function. He is also well 
known for bis elementary proofs of the prime number theorem (also done by Paul Erd5s), Dirichlet's 
theorem on primes in arithmetic progressions, and the generalization of the prime number theorem 
for primes in arithmetic progressions. 
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x 

103 

1<>4 

u>5 
106 

107 

108 

1e>9 

1010 

1011 

1012 

1013 

1014 

Remark. A concise way to state the prime number theorem is to write n (x) - x / log x. 
Here, the symbol - denotes ''is asymptotic to.u We write a(x) - b(x) to denote that 
limx-+oo a(x)/b(x) = 1, and we say that a(x) is asymptotic to b(x). 

n(x) x/logx 1r(x)/ 1o:.r Li(x) n(x)/Li(x) 

168 144.8 1.160 178 0.9438202 

1229 1085.7 1.132 1246 0.9863563 

9592 8685.9 1.104 9630 0.9960540 

78498 72382.4 1.085 78628 0.9983466 

664579 620420.7 1.071 664918 0.9998944 

5761455 5428681.0 1.061 5762209 0.9998691 

50847534 48254942.4 1.054 50849235 0.9999665 

455052512 434294481.9 1.048 455055614 0.9999932 

4118054813 3948131663. 7 1.043 4118165401 0.9999731 

37607912018 36191206825.3 1.039 37607950281 0.9999990 

346065536839 334072678387.1 1.036 346065645810 0.9999997 

3204941750802 3102103442166.0 1.033 3204942065692 0.9999999 

Table 3.1 Approximations to 7r(x). 

PAUL ERDOS (1913-1996), born in Budapest, Hungary, was the son of high
school mathematics teachers. When be was three years old. he could multiply 
�digit numbers in his head. and when he was four, he discovered negative 
numbers on his own. At 17, be entered EOtvos University, graduating in four 
years with a Ph.D. in mathematics. After graduating, he spent four years at 
Manchest.er University, England, as a postdoctoral fellow. In 1938, he came 

to the United States because of the difficult political situation in Hungary, 
especially for Jews. 

Erdtis made many significant contributions to combinatorics and to number theory. One of the 
discoveries of which he was most proud was his elementary proof of the prime number theorem. 

He also participated in the modern development of Ramsey theory, a part of combinatorics. ErdOs 
traveled extensively throughout the world to work with other mathematicians. He traveled from one 
mathematician or group of mathematicians to the next, proclaiming, "My brain is open:• Erdtis offered 
monetary rewards for the solutions of problems he found particularly interesting. Erd6s wrote more 
than 1500 papers, with almost 500 coauthors. These coauthors are said to have Erd6s number one. 
Otherwise, a mathematician's Erdtis number is k + 1 if the smallest Erd6s number of his or her 

coauthors is k. TWo fascinating biographies ([Sc98] and [Ho99]) and the film.N is a Number [Cs07] 
give further details on his life and work. 
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The prime number theorem tells us that the ratio between x /log x and rr (x) is close 

to 1 when x is large. However, there are functions for which the ratio between these 

functions and n(x) approaches 1 more rapidly than it does for x/log x. In particular, it 

has been shown thatLi(x) is an even better approximation. In Table 3.1, we see evidence 

for the prime number theorem and that Li(x) is an excellent approximation of n (x). (Note 

that the values of Li(x) have been rounded to the nearest integer.) 

The Riemann Hypothesis 
Many mathematicians consider the Riemann hypothesis, a conjecture about the zeros of 

the zeta function, the most important open problem in pure mathematics. For more than 

100 years, number theorists have struggled to solve this problem. Interest in it has spread, 

perhaps because a prize of one million dollars for a proof (if it is indeed true) has been 

offered by the Clay Mathematics Institute. Recently, many general-interest books about the 

Riemann hypothesis, such as [De03], [Sa03a], and [Sa03b ], have appeared, even though the 

hypothesis involves sophisticated notions from complex analysis. We will briefly describe 

the Riemann hypothesis for the benefit of readers familiar with complex analysis, as well 

as for the general appreciation of others. 

We have defined the Riemann zeta function as s (s) = E: 
1 

n11 • This definition is valid

for all complex numbers s with Re(s) > 1, where Re(s) is the real part of the complex 

number s. Riemann was able to extend the function defined by the infinite series to a function 

in the entire complex plane with a pole at s = 1. In his famous 1859 paper [Ri59], Riemann 

connected the zeta function with the distribution of prime numbers. He derived a formula for 

H(x) in terms of the zeros of s(s). The more we understand about the location of the zeros 

of the zeta function, the more we know about the distribution of the primes. The Riemann 

hypothesis is a statement about the location of the zeros of this function. Before stating 

the hypothesis, we first note that the reta function has zeros at the negative even integers 

-2, -4, -6, . . . , called the trivial zeros. The Riemann hypothesis is the assertion that 

the nontrivial reros of s (s) all have real part equal to 1/2. Note that there is an equivalent 

formulation of the Riemann hypothesis in terms of the error introduced when Li(x) is used

to estimate H(x); this alternative formulation does not involve complex variables. In 1901,

von Koch showed that the Riemann hypothesis is equivalent to the statement that the error 

that occurs when :rr(x) is estimated by Li(x) is O(x112 log x). 
Many mathematicians believe the Riemann hypothesis is true, particularly because of 

the wealth of evidence supporting it. First, a vast amount of numerical evidence has been 

found. We now know that the first 2.5 x 1011 zeros (in order of increasing imaginary parts)

have real part equal to 1/2. (These computations were done by Sebastian Wedeniwski, who 

has set up a distributed computing project to carry them out called ZetaGrid). Second, we 

know that at least 40% of the nontrivial zeros of the zeta function are simple and have real 

part equal to 1/2. Third, we know that if there are exceptions to the Riemann hypothesis, 

they must be rare as we move away from the line Re (s) = 1/2. Of course, it is still possible 

that this evidence is misleading us and that the Riemann hypothesis is not true. Perhaps this 

famous problem will be resolved in the next few years, or maybe it will resist all attacks 

for hundreds of years into the future. For more information about the Riemann hypothesis, 

consult [EdO 1] and the online essay by Enrico Bombieri on the Web site for the Clay Institute 

Millenium Prize Problems. 
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It is not necessary to find all primes not exceeding x to compute n(x). One way to 
evaluate Jr (x) without finding all the primes less than x is to use a counting argument 
based on the sieve of Eratosthenes (see Exercise 18 in Section 3.1). Efficient ways of 
computing Jr (x) requiring only 0 (x C3/S)+E) bit operations have been devised by Lagarias 
and Odlyzko [La0d82]. The world record is currently held by Tomas Oliveira e Silva, 
who was able to compute n(l023) = 1,925,320,391,606,803,968,923 in 2008. 

How big is the nth prime? From the prime number theorem, we know that that 
n = n(pn) ""'Pnl log Pn· Because taking logarithms of both sides of an asymptotic 
formula maintains the asymptotic relationship, we find that log n ""' log(pn/ log Pn) = 

log Pn - log log Pn ""'log Pn- Consequently, Pn ""'n log Pn ""'n log n. We state this fact 
as a corollary. 

Corollary 3.4.1. Let Pn be the nth prime, where n is a positive integer. Then Pn ""' 
n log n. That is, the nth prime is asymptotic to log n. 

What is the probability that a randomly selected positive integer is prime? Given that 
there are approximately x / log x primes not exceeding x, the probability that x is prime 
is approximately (x / log x) / x = 1/ log x. For example, the probability that an integer 
near 101000 is prime is approximately 1/log 101000 R:: 1/2302. Suppose that you want to 
find a prime with 1000 digits; what is the expected number of integers you must select 
before you find a prime? The answer is that you must select roughly 1/(1/2302) = 2302 
integers of this size before one of them will be a prime. Of course, you will need to check 
each one to determine whether it is prime. In Chapter 6, we will discuss how this can be 
done efficiently. 

Gaps in the Distribution of Primes We have shown that there are infinitely many 
primes and we have discussed the abundance of primes below a given bound x, but we 
have yet to discuss how regularly primes are distributed throughout the positive integers. 
We first give a result that shows that there are arbitrarily long runs of integers containing 
no pnmes. 

One of the Largest Numbers Ever Appearing Naturally in a Proof 
Using the data in Table 3.1, we can show that for all x in the table, the difference Li(x) -

n(x) is positive and increases as x grows. Gauss, who only had access to the data in the 

first few rows of this table, believed this trend held for all positive integers x. However, 

in 1914, the English mathematician J.E. Littlewood showed that Li(x) - n(x) changes 

sign infinitely many times. In his proof, Littlewood did not establish a lower bound for 

the first time that Li(x) - n(x) changes from positive to negative. This was done in 1933 

by Samuel Skewes, a student of Littlewood's, who managed to show that Li(x) - n(x) 

changes signs for at least one x with x < 10101034
, a humongous number. This number, 

known as Skewes' constant, became famous as the largest number to appear naturally in a 

mathematical proof. Fortunately, in the past seven decades, considerable progress has been 

made in reducing this bound. The best current results show that Li(x) - n (x) changes sign 

near x = 1.39822 x 10316.
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0 

0 

and 3, because 2 is the only even prime. However, many pairs of primes differ by two;
these pairs of primes are called twin primes. Examples are the pairs 3, 5 and 7, 11 and
13, 101 and 103, and 4967 and 4969. 

Evidence seems to indicate that there are infinitely many pairs of twin primes. There 
are 35 pairs of twin primes less than 103; 8169 pairs less than 106; 3,424,506 pairs less
than 109; and 1,870,585,220 pairs less than 1012• This leads to the following conjecture.

Twin Prime Conjecture. There are infinitely many pairs of prim.es p and p + 2. 

In 1966, Chinese mathematician J. R. Chen showed, using sophisticated sieve
methods, that there are infinitely many primes p such that p + 2 has at most two prime
factors. An active competition is under way to produce new largest pairs of twin primes. 
The current record for the largest pair of twin prim.es is 2,003,663,613 · 2195.000 ± 1, a
pair of primes with 58, 711 digits each discovered in 2007. 

The twin prime conjecture asserts that in.finitely many primes occur as pairs of 
consecutive odd numbers. However, consecutive primes may be far apart A consequence 
of the prime number theorem is that as n grows, the average gap between the consecutive 
primes Pn and Pn+t is log Pn· Number theorists have worked hard to prove results
that show that the gaps between consecutive primes are much smaller than average 
for infinitely many prim.es. In 2005, a breakthrough was made by Daniel Goldston,
Janos Pintz, and Cem Ytldrim. They showed that for every positive number c, there 
are infinitely many pairs of consecutive primes Pn and Pn+ 1 that differ less than c times
log Pn, the average distance between consecutive primes. They also showed that under 
the assumption of a conjecture known as the Elliott-Halberstam conjectures, there are 
infinitely pairs of primes within 16 of each other.

Viggo Bron showed that the sum :Eprlmes 
P 

with p+2 pdme � = (1/3 + 1/5) + 
(1/5 + 1/7) + (1/11+1/13) + · · · converges to a constant calledBrun'sconstant, which
is approximately equal to 1.9021605824. Surprisingly, the computation of Bron's con­
stant has played a role in discovering flaws in Intel's original Pentium chip. In 1994, 
Thomas Nicely at Lynchburg College in Virginia computed Bron's constant in two dif­
ferent ways using different methods on a Pentium PC and came up with different answers. 
He traced the error back to a flaw in the Pentium chip and he alerted Intel to this problem. 
(See the box on page 89 for more information about Nicety's discovery.)

JING RUN CHEN (1933-1996) was a student of the prominent Chinese num­
ber theorist Loo Kcng Hua. Chen was ahnost entirely devoted to mathematical 

research. During the Cultural Revolution in ChiD.at he continued his research, 
working almost all day and night in a tiny room with no electric lights, no table or 

chairs, only a small bed, and his books and papers. It was during this period that
he made his most important discoveries concerning twin primes and Goldbach's
conjecture. Although he was a mathematical prodigy, Chen was considered to 
be next to hopeless in other aspects of life. He died in 1996 after a long illness. 
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The Erdos Conjecture on Arithmetic Progreuions of Primes. For every positive 
integer n > 3, there is an arithmetic progression of primes of length n. 

This conjecture most likely dates back more than a century; it was discussed by 
Paul Erd6s in the 1930s. Although much numerical evidence was found to support this 
conjecture, it remained unsettled for many years. 

Example 3.5. The sequence S, 11, 17, 23, 29 is an arithmetic progression of five primes 
and the sequencel99,409,619,829,1039,1249,14S9,1669,1879,2089isan arithmetic 
progression of ten primes, as the reader should verify. <11111 

The Dutch mathematician Johannes van der Corput (1890--1971) made some 
progress on this conjecture when he showed in 1939 that there are infinitely many arith­
metic progressions of three primes. In a major breakthrough, Ben Green and Terrence 

Tao were able to prove this conjecture in 2006. They began by attempting to show that 
there are infinitely many arithmetic progressions of four primes, but were able to prove 
the full conjecture, which is now known as the Green-Tao Theorem. Their proof, con­
sidered to be a mathematical tour de force, is a nonconstructive existence proof that 
combines ideas from several different areas of mathematics, including analytic number 
theory and ergodic theory. Because it is nonconstructive, it cannot be used to construct 

TERRENCE TAO (bom 1975) was born in Australia; His parents im.m.igrat.ed 
there from Hong Kong. His father is a pediatrician and his mother taught 
mathematics at a Hong Kong secondary school. Tao was a child prodigy. He 
taught himself arithmetic at the age of two. At 10, he became the youngest 
contestant at the International Mathematics Olympiad (IMO), later winning 
an IMO gold medal when he was 13. At 17, Tao received his bachelors and 

mast.ers degrees and began graduate studies at Princeton University, receiving 
his Ph.D. in three years. In 1996, he became a faculty member at the University 

of California, Los Angeles, where he continues to work. 
Tao is an exttemely versatile mathematician who enjoys working on problems in diverse areas, 

including harmonic analysis, partial differential equations, number theory, and combinatorics. You can 
follow his work by reading his blog, which discusses progress on various problems. His most famous 
result is the Green-Tao T heorem, which tells that there are arbitrarily long arithmetic progressions 
of primes. Besides working in pure mathematics, Tao has made important contributions to the 
applications of mathematics. For example, he has made key contributions to the area of compressive 
sampling, which involves the reconstmction of digital images using the least possible information. 

Tao has an amazing reputation among mathematicians; he has become aMr. Fix-It for researchers 
in mathematics. The well-known mathematician Charles Fefferman, him.self a child prodigy, has said, 

'1f you're stuck on a problem, then one way out is to interest Terence Tao." In 2006, Tao was awarded 
a Fields Medal, the most prestigious award for mathematicians under the age of 40. He was also 
awarded a MacArthur Fellowship in 2006, and in 2008 he received the Allan T. Waterman award, 
which came with a $500,000 cash prize to support research work of scientists early in their career. 

Tao's wife, Laura, is an engineer at the Jet Propulsion Laboratory. 
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examples of arithmetic progressions of specified length. The Green-Tao theorem estab­
lishes a special case of a more general conjecture that Paul Erdos made in the 1930s, 
namely, that if the sum of the reciprocals of the elements of a set A of positive integers 
diverges, then A contains arbitrarily long arithmetic progressions. This more general 
conjecture remains unsettled. 

We now discuss perhaps the most notorious conjecture about primes. 

Goldbach's Conjecture. Every even positive integer greater than 2 can be written as the 
sum of two primes. 

Example 3.6. The integers 10, 24, and 100 can be written as the sum of two primes in 
the following ways: 

10 = 3 + 7 = 5 + 5, 

24 = 5 + 19 = 7 + 17 = 11 + 13, 

100 = 3 + 97 = 11+89 = 17 + 83 

= 29 + 71=41+59 = 47 + 53. 

G This conjecture was stated by Christian Goldbach in a letter to Leonhard Euler in 
1742. It has been verified by a distributed computing effort for all even integers less 
than 1018, with this limit increasing as computers become more powerful. Usually, there
are many ways to write a particular even integer as the sum of primes, as Example 3.5 
illustrates. However, a proof that there is always at least one way has not yet been found. 
The best result known to date is due to J. R. Chen, who showed (in 1966), using powerful 
sieve methods, that all sufficiently large integers are the sum of a prime and the product 

of at most two primes. 

There are many conjectures concerning the number of primes of various forms, such 
as the following conjecture. 

The n2 + 1 Conjecture. There are infinitely many primes of the form n2 + 1, where n
is a positive integer. 

The smallest primes of the form n2 + 1 are 2=12 + 12, 5 = 22 + 1, 17 = 42 + 1,
37 = 62 + l, 101=10 2 + l, 197 = 142 + l, 257 = 162 + l, and 401=20 2 + 1. The best

CHRISTIAN GOLDBACH (1690-1764) was born in Konigsberg, Prussia (the city noted 

in mathematical circles for its famous bridge problem). He became professor of mathematics 

at the Imperial Academy of St. Petersburg in 1725. In 1728, Goldbach went to Moscow to 

tutor Tsarevich Peter II. In 1742, he entered the Russian Ministry of Foreign Affairs as a staff 

member. Goldbach is most noted for his correspondence with eminent mathematicians, in 

particular Leonhard Euler and Daniel Bernoulli. Besides his well-known conjectures that 

every even positive integer greater than 2 is the sum of two primes and that every odd 

positive integer greater than 5 is the sum of three primes, Goldbach made several notable 

contributions to analysis. 
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result known to date is that there are infinitely many integers n for which n2 + 1 is 

either a prime or the product of two primes. This was shown by Henryk Iwaniec in 

1973. Conjectures such as the n2 + 1 conjecture may be easy to state, but are sometimes 

extremely difficult to resolve (see [Ri96] for more information). 

We have discussed three of the four problems about primes described as "unattack­

able by the present state of science" in 1912 by the famous number theorist Edmund 

Landau in his address at the International Congress of Mathematicians. These four prob­

lems, known collectively as Landau's problems, are Goldbach's conjecture, the twin 

prime conjecture, the existence of infinitely many primes of the form n2 + 1, and this 

conjecture of Legendre: 

The Legendre Conjecture. There is a prime between every two pairs of consecutive 

squares of integers. 

Pentium Chip Flaw

The story behind the Pentium chip flaw encountered by Thomas Nicely shows that answers 

produced by computers should not always be trusted. A surprising number of hardware and 

software problems arise that lead to incorrect computational results. This story also shows 

that companies risk serious problems when they hide errors in their products. In June 1994, 

testers at Intel discovered that Pentium chips did not always carry out computations cor­

rectly. However, Intel decided not to make public information about this problem. Instead, 

they concluded that because the error would not affect many users, it was unnecessary to 

alert the millions of owners of Pentium computers. The Pentium flaw involved an incor­

rect implementation of an algorithm for floating-point division. Although the probability 

is low that divisions of numbers affected by this error come up in a computation, such di­

visions arise in many computations in mathematics, science, and engineering, and even in 

spreadsheets running business applications. 

Later in that same month, Nicely came up with two different results when he used a 

Pentium computer to compute Brun's constant in different ways. In October 1994, after 

checking all possible sources of computational error, Nicely contacted Intel customer sup­

port. They duplicated his computations and verified the existence of an error. Furthermore, 

they told him that this error had not been previously reported. After not hearing any addi­

tional information from Intel, Nicely sent e-mail to a few people telling them about this. 

These people forwarded the message to other interested parties, and within a few days, in­

formation about the bug was posted on an Internet newsgroup. By late November, this story 

was reported by CNN, the New York Times, and the Associated Press. 

Surprised by the bad publicity, Intel offered to replace Pentium chips, but only for users 

running applications determined by Intel to be vulnerable to the Pentium division flaw. This 

offer did not mollify the Pentium user community. All the bad publicity drove Intel stock 

down several dollars a share and Intel became the object of many jokes, such as: "At Intel,

quality is job 0.999999998." Finally, in December 1994, Intel decided to offer a replacement

Pentium chip upon request. They set aside almost half a billion dollars to cover costs, and 

they hired hundreds of extra employees to handle customer requests. Nevertheless, this story 

does have a happy ending for Intel. Their corrected and improved version of the Pentium 

chip was extremely successful. 
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This conjecture was proposed by the French mathematician Adrien-Marie Legendre 

(see Chapter 11 for his biography). Numerical evidence for this conjecture shows that 

there is a prime between n2 and (n + 1)2 for all n:::: 1018. Note that Ingham has shown

that for sufficiently large n, there is a prime between n3 and (n + 1)3
. 

Although all four unsettled conjectures described by Landau in 1912 remain open, 

partial progress has been made on each . We may see one or more of them settled in the 

next few years. However, it may still be the case that all remain unsettled a century from 

now. 

3.2 EXERCISES 

1. Find the smallest five consecutive composite integers.

2. Find one million consecutive composite integers.

3. Show that there are no "prime triplets," that is, primes p, p + 2, and p + 4, other than 3, 5 ,
and 7.

4. Find the smallest four sets of prime triplets of the form p, p + 2, p + 6.

5. Find the smallest four sets of prime triplets of the form p, p + 4, p + 6.

6. Find the smallest prime between n and 2n for these values of n.

a) 3 b) 5 c) 19 d) 31 

7. Find the smallest prime between n and 2n for these values of n.

a)4 b)6 c)23 d)47 

8. Find the smallest prime between n2 and (n + 1)2 for all positive integers n with n � 10.

9. Find the smallest prime between n2 and (n + 1)2 for all positive integers n with 11 � n � 20.

* 10. Show that there are infinitely many primes that are not one of the primes in a pair of twin 
primes. (Hint: Apply Dirichlet's theorem.) 

* 11. Show that there are infinitely many primes that are not part of a prime triple of the form p, 
p + 2, p + 6. (Hint: Apply Dirichlet's theorem.) 

12. Verify Goldbach's conjecture for each of the following values of n.

a) 50 c) 102 e) 200

b) 98 d) 144 f) 222

13. Goldbach also conjectured that every odd positive integer greater than 5 is the sum of three
primes. Verify this conjecture for each of the following odd integers.

a)7 c)27 e)lOl 

b) 17 d) 97 f) 199 

14. Show that every integer greater than 11 is the sum of two composite integers.

15. Show that Goldbach's conjecture that every even integer greater than 2 is the sum of two
primes is equivalent to the conjecture that every integer greater than 5 is the sum of three
primes.

16. Let G (n) denote the number of ways to write the even integer n as the sum p + q, where p
and q are primes with p � q. Goldbach' s conjecture asserts that G (n) :=::: 1 for all even integers
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n with n > 2. A stronger conjecture asserts that G(n) tends to infinity as the even integer n
grows without bound. 

a) Find G(n) for all even integers n with 4:::; n :::; 30.

b) Find G(158). c) Find G(188).

* 17. Show that if n and k are positive integers with n > 1 and all n positive integers a, a + 
k, ... , a+ (n - l)k are odd primes, then k is divisible by every prime less than n. 

Use Exercise 17 to help you solve Exercises 18-21. 

18. Find an arithmetic progression of length six that begins with the integer 7 and where every 
term is a prime.

19. Find the smallest possible minimum difference for an arithmetic progression that contains
four terms and where every term is a prime.

20. Find the smallest possible minimum difference for an arithmetic progression that contains
five terms and where every term is a prime.

* 21. Find the smallest possible minimum difference for an arithmetic progression that contains 
six terms and where every term is a prime. 

22. a) In 1848, A. de Polignac conjectured that every odd positive integer is the sum of a
prime and a power of two. Show that this conjecture is false by showing that 509 is a 
counterexample. 

b) Find the next smallest counterexample after 509.

* 23. A prime power is an integer of the form pn, where p is prime and n is a positive integer greater
than 1. Find all pairs of prime powers that differ by 1. Prove that your answer is correct. 

* 24. Let n be a positive integer greater than 1 and let Pi. p2, . . .  ,pt be the primes not exceeding
n. Show that P1P2 ···Pt< 4n.

* 25. Let n be a positive integer greater than 3 and let p be a prime such that 2n/3 < p:::; n. Show

that p does not divide the binomial coefficient ( �n) .
* * 26. Use Exercises 24 and 25 to show that if n is a positive integer, then there exists a prime p 

such that n < p < 2n. (This is Bertrand's conjecture.)

27. Use Exercise 26 to show that if Pn is the nth prime, then Pn:::; 2n.
28. Use Bertrand's conjecture to show that every positive integer n with n ::=: 7 is the sum of

distinct primes.

29. Use Bertrand's postulate to show that � + n�l + · · · + n�m does not equal an integer when

n and m are positive integers.

* 30. In this exercise, we show that if n is an integer with n ::=: 4, then Pn+l < p1p2 · · · Pn• where
Pk is the kth prime. This result is known as Bonse's inequality.

a) Let k be a positive integer. Show that none of the integers p1p2 · · · Pk-1 · 1 - 1,

P1P2 · · · Pk-1 · 2 - 1, ... , P1P2 · · · Pk-1 ·Pk - 1 is divisible by one of the first k - 1

primes and that if a prime p divides one of these integers, then it cannot divide another 
of these integers. 

b) Conclude from part (a) that if n - k + 1 < Pt- then there is an integer among those listed
in part (a) not divisible by Pj for j = 1, ... , n. (Hint: Use the pigeonhole principle.)

c) Use part (b) to show that if n - k + 1 <Pt- then Pn+l < p1p2 ···Pk· Fix n and suppose
that k is the least positive integer such that n - k + 1 <Pk· Show that n - k ::=: Pk-l - 2
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and that Pk-I - 2 :'.:::: k when k :'.:::: 5 and that if n :'.:::: 10, then k :'.:::: 5. Conclude that if n :'.:::: 20, 
then P(n+l) < p2p2 • · · Pk for some k with n -k :'.:::: k. Use this to derive Bonse's inequality 
when n :'.:::: 10. 

d) Check the cases when 4 :::; n < 10 to finish the proof.

31. Show that 30 is the largest integer n with the property that if k < n and there is no prime p
that divides both k and n, then k is prime. (Hint: Show that if n has this property and n:::::: p

2 

where p is prime, then p In. Conclude that if n:::::: 7
2

, then n must be divisible by 2, 3, 5, 
and 7. Apply Bonse's inequality to show that such an n must be divisible by every prime, a
contradiction. Show that 30 has the desired property, but no n with 30 < n < 49 does.)

* 32. Show that Pn+lPn+z < p1 · p2 • • • Pn• wherepk is thekth prime whenever n is an integer with
n:::::: 4. (Hint: Use Bertrand's postulate and the work done in part (c) of the proof of Bonse's 
inequality.) 

33. Show that p; < Pn-IPn-ZPn-3, where Pk is the kth prime number and n :'.:::: 6. Also, show
that inequality does not hold when n = 3, 4, or 5. (Hint: Use Bertrand's postulate to obtain
Pn < 2Pn-I and Pn-1 < 2Pn-2·)

34. Show that for every positive integer N there is an even number K so that there are more than
N pairs of successive primes such that K is the difference between these successive primes.
(Hint: Use the prime number theorem.)

35. Use Corollary 3.4.1 to estimate the millionth prime.

Computations and Explorations 

1. Verify as much of the information given in Table 3.1 as you can.

2. Find as many terms as you can of the sequence of prime gaps dn, n = 1, 2, ....

3. Find as many tuples of primes of the form p, p + 2, and p + 6 as you can.

4. Verify Goldbach's conjecture for all even positive integers less than 10,000.

5. Find all twin primes less than 10,000.

6. Find the first pair of twin primes greater than each of the integers in Computation 1.

7. Plotn2(x), the number of twin primes not exceeding x, for 1:::; x :::; 1000and1:::; x :::; 10,000.

8. Hardy and Littlewood conjectured that n2(x), the number of twin primes not exceeding x,

is asymptotic to 2C2x/(log x)
2 

where C2 = CTp>z(1 - (p�l)2 ) . The constant C2 is approx­

imately equal to 0.66016. Determine how accurate this asymptotic formula for n2(x) is for
values of x as large as you can compute.

9. Compute Bron's constant with as much accuracy as possible.

10. Explore the conjecture that G(n), the number of ways the even integer n is the sump+ q,
of primes p :::; q, satisfies G (n) :::::: 10 for all even integers n :::::: 188.

11. An unsettled conjecture asserts that for every positive integer n, there is an arithmetic pro­
gression of length n consisting of n consecutive prime numbers. The longest such arithmetic
progression currently known consists of 22 consecutive primes. Find arithmetic progressions
consisting of three consecutive primes with all primes less than 100 and four consecutive
primes with all primes less than 500.

12. Show that all terms of the arithmetic progression of length five that begins with 1,464,481
and has common difference 210 are prime.
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13. Show that all terms of the arithmetic progression of length twelve that begins with 23,143
and has common difference 30,030 are prime.

14. Find an arithmetic progression containing ten primes that begins with 199.

15. Andrica's conjecture, named after Dorin Adrica, claims that An= ,JP;;+i_ - ,.JP;;,< 1 for all
positive integers n, where Pn denotes the nth prime. Gather evidence for this conjecture by
computing An for as many positive integers n as you can. From your work, make a conjecture
about the largest value of An.

16. Verify Legendre's conjecture for n = 1000, n = 10,000, n = 100,000, and n = 1,000,000.

17. Explore the conjecture that every even integer is the sum of two, not necessarily distinct,
lucky numbers. Continue by exploring the conjecture that given a positive integer k, there is
a positive integer n that can be expressed as the sum of two lucky numbers in exactly k ways.

Programming Projects 

1. Given a positive integer n, verify Goldbach's conjecture for all even integers less than n.

2. Given a positive integer n, find all twin primes less than n.

3. Given a positive integer m, find the first m primes of the form n2 + 1, where n is a positive
integer.

4. Given an even positive integer n, find G(n), the number of ways to write n as the sump+ q, 
where p and q are primes with p :::; q.

5. Given a positive integer n, find as many arithmetic progressions of length n, where every
term is a prime.

3.3 Greatest Common Divisors and their Properties 

We introduced the concept of the greatest common divisor of two integers in Section 1 .5. 
Recall that the greatest common divisor of two integers a and b not both 0, denoted by 
(a, b ), is the largest integer that divides both a and b. We also specified that (0, 0) = 0 to 
ensure that results we prove about greatest common divisors hold in all cases. In Section 
1.5, we stated that two integers are called relatively prime if they share no common 
divisor greater than 1. 

Note that since the divisors of -a are the same as the divisors of a, it follows that 
(a, b) = (lal, lhl) (where lal denotes the absolute value of a, which equals a if a 2: 0 
and -a if a < 0). Hence, we can restrict our attention to the greatest common divisors 
of pairs of positive integers. 

In Example 1.37, we noted that (15, 81) = 3. lf we divide 15 and 81 by (15, 81) = 3, 
we obtain two relatively prime integers, 5 and 27. This is no surprise, because we have 
removed all common factors. This illustrates the following theorem, which tells us that 
we obtain two relatively prime integers when we divide each of two original integers by 
their greatest common divisor. 
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Theorem 3.6. If a and b be integers with (a, b) = d, then (a/d, b/d) = 1. (In other 

words, a/d and b/d are relatively prime.) 

Proof. Let a and b be integers with (a, b) = d. We will show that a/d and b/d have 

no common positive divisors other than 1. Assume that e is a positive integer such that 

e I (a/d) and e I (b/d). Then there are integers k and l with a/d = ke and b/d =le, 

so that a= dek and b = del. Hence, de is a common divisor of a and b. Because d 

is the greatest common divisor of a and b, de::::: d, so that e must be 1. Consequently, 

(a/d, b/d) = 1. • 

A fraction p / q where (p, q) = 1 is said to be in lowest terms. The following corollary 

tells us that every fraction equals a fraction in lowest terms. 

Corollary 3.6.1. If a and b ¥=- 0 are integers, then a/ b = p / q for some integers p and 

q ¥=- 0 where (p, q) = 1. • 

Proof. Suppose that a and b ¥=- 0 are integers. Set p = a/ d and q = b / d where d = 

(a, b). Then p/q = (a/d)/(b/d) = a/b. Theorem 3.6 tells us that (p, q) = 1, proving 

the corollary. 

We do not change the greatest common divisor of two integers when we add a 

multiple of one of the integers to the other. In Example 3.6, we showed that ( 24, 84) = 1 2. 

When we add any multiple of 24 to 84, the greatest common divisor of 24 and the resulting 

number is still 12. For example, since 2 · 24 = 48 and (-3) · 24 = -7 2, we see that

( 24, 84 + 48) = ( 24, 132) = 1 2  and (24, 84 + (-7 2)) = ( 24, 1 2) = 12. The reason for 

this is that the common divisors of 24 and 84 are the same as the common divisors of 

24 and the integer that results when a multiple of 24 is added to 84. The proof of the 

following theorem justifies this reasoning. 

Theorem 3.7. Let a, b, and c be integers. Then (a+ cb, b) =(a, b). 

Proof. Let a, b, and c be integers. We will show that the common divisors of a and 

b are exactly the same as the common divisors of a+ cb and b. This will show that 

(a+ cb, b) =(a, b). Let e be a common divisor of a and b. By Theorem 1.9, we see that 

e I (a+ cb), so that e is a common divisor of a+ cb and b. If f is a common divisor of 

a+ cb and b, then by Theorem 1.9, we see that f divides (a+ cb) - cb =a, so that f 

is a common divisor of a and b. Hence, (a+ cb, b) =(a, b). • 

We will show that the greatest common divisor of the integers a and b, not both 0, 

can be written as a sum of multiples of a and b. To phrase this more succinctly, we use 

the following definition. 

Definition. If a and b are integers, then a linear combination of a and b is a sum of 

the form ma + nb, where both m and n are integers. 

Example 3.7. What are the linear combinations 9m + 15n, where m and n are both in­

tegers? Among these combinations are -6 = 1 · 9 + ( -1) · 15; -3 = ( -2)9 + 1 · 15; 0 =

0 · 9 + 0 · 15; 3 = 2 · 9 + ( -1) · 15; 6 = ( -1) · 9 + 1 · 15; and so on. It can be shown that

the set ofall linear combinations of9 andl5is the set{ . . .  , -1 2, - 9, -6, -3, 0, 3, 6, 9, 
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12, ... }, as the reader should verify after reading the proofs of the following two theo­

rems. ..,... 

In Example 3.8, we found that (9, 15) = 3 appears as the smallest positive linear 

combination with integer coefficients of 9 and 15. This is no accident, as the following 

theorem demonstrates. 

Theorem 3.8. The greatest coininon divisor of the integers a and b, not both 0, is the 

least positive integer that is a linear combination of a and b. 

Proof. Let d be the least positive integer that is a linear combination of a and b. (There 

is a least such positive integer, using the well-ordering property, since at least one of two 

linear combinations 1 ·a + 0 · b and (-l)a + 0 · b, where a =f=. 0, is positive.) We write 

(3.1) d =ma +nb, 

where m and n are integers. We will show that d I a and d I b. 

By the division algorithm, we have 

a = dq + r, 0 ::::: r < d.

From this equation and (3 .1 ), we see that 

r =a - dq =a -q(ma + nb) = (1- qm)a -qnb. 

This shows that the integer r is a linear combination of a and b. Because 0 ::::: r < d, and 

d is the least positive linear combination of a and b, we conclude that r = 0, and hence 

d I a. In a similar manner, we can show that d I b. 

We have shown that d, the least positive integer that is a linear combination of 

a and b, is a cointnon divisor of a and b. What remains to be shown is that it is the 

greatest common divisor of a and b. To show this, all we need show is that any coininon 

divisor c of a and b must divide d, since any proper positive divisor of d is less than d. 

Because d =ma+ nb, if c I a and c I b, Theorem 1.9 tells us that c Id, so that d � c. 
This concludes the proof. • 

From Theorem 3.8, we iininediately see that the greatest coininon divisor of two 

integers a and b can be written as a linear combination of these integers. (Note that 

the theorem tells us not only that (a, b) can be written as a linear combination of these 

numbers, but also that it is the least such positive integer. Because this is such an important 

fact, we state it explicitly as a corollary. 

Corollary 3.8.1 Bezout's Theorem. If a and b are integers, then there are integers m 
and n such that ma+ nb =(a, b). 

Corollary 3.8.1 is called Bezout's theorem after Etienne Bezout, a French mathe­

matician of the eighteenth century who proved a more general result about polynomials. 

Even though this corollary is known as Bezout's theorem, it had been established for in­

tegers many years earlier by Claude Gaspar Bachet (see Chapter 13 for his biography). 

The equation ma+ nb =(a, b) is known as Bezaut's identity, and any integers m and n 
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that solve this equation for given integers a and b are called Bezout coefficients or Bezout 

numbers of the pair of integers a and b. 

Example 3.8. Note that (4, 10) = 2 because 1 and 2 are the only positive common 
divisors of 4and10. The equation (-2) · 4 + 1·10 = 2 shows that -2and1 are Bezout
coefficients of 4 and 10. Because 8 · 4 + (-3) · 10 = 2, we see that 8 and -3 are also
Bezout coefficients of 4 and 10. In fact , there are infinitely many different Bezout 
coefficients for 4 and 10 because -2 + 10t and 1 + (-4)t are Bezout coefficients of 
4 and 10 for every integer t. <11111 

Because we will often need to apply Corollary 3.8.1 in the case where a and b 

are relatively prime integers, we call out this special case as a second corollary of 
Theorem 3.8. 

Corollary 3.8.2. The integers a and b are relatively prime integers if and only if there 
are integers m and n such that ma + nb = 1. 

Proof. To prove this corollary, note that if a and b are relatively prime, then (a, b) = 1. 
Consequently , by Theorem 3.8, 1 is the least positive integer that is a linear combination 
of a and b. It follows that there are integers m and n such that ma + nb = 1. Conversely, 
if there are integers m and n with ma + nb = l, then by Theorem 3.8, it immediately 

ETIENNE BEZOUT (1730-1783) was born in Nemours, France, where his fa­
ther was a magistrate. His parents wanted him to follow in his father's footsteps. 
However, he was enticed to become a mathematician by reading the writings of 
the great mathematician Leonhard Euler. B6zout published a series of research 
papers beginning in 1756, including several on integration. In 1758, he was ap­
pointed to a position at the Academic des Sciences in Paris; in 1763, he was 
appointed examiner of the Gardes de la Marine, where he was assigned the task 
of writing mathematics textbooks. This assignment lead to a four-volume text­

book completed in 1767. In 1768, Bezout was appointed examiner of the Corps d' Arti.lleri.e; he was 
promoted to higher positions in 1768 and in 1770. He is well known for his six-volume comprehen­
sive textbook on mathematics published between 1770 and 1782. Bezout's textbooks were extremely 
popular. In particular, his textbooks were studied by several generations of students who hoped to 
enter the Ecole Polytechnique. the famous engineering and science school founded in 1794. These 
books were translated into English and used in North America, including at Harvard.

His most important original work was published in 1779 in the book Theorie geMrale des 
equations algebriques, where he introduced important methods for solving simultaneous polynomial 
equations in many unknowns. The most well-known result in this book is now called Bezout's 
Theorem, which in its general form tells us that the number of common points on two-plane algebraic 
curves equals the product of the degrees of these curves. Bezout is also credited with inventing 
the determinant (which was called the Bezoutian by the great English mathematician James Joseph 
Sylvester). 

Bezout was considered to be a kind person with a wann heart, although he had a reserved and 
somber personality. He was happily married and a father. 
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follows that (a, b) = 1. This follows because not both a and b are zero and 1 is clearly 

the least positive integer that is a linear combination of a and b. • 

Theorem 3.8 is valuable: We can obtain results about the greatest common divisor 

of two integers using the fact that the greatest common divisor is the least positive linear 

combination of these integers. Having different representations of the greatest common 

divisor of two integers allows us to choose the one that is most useful for a particular 

purpose. This is illustrated in the proof of the following theorem. 

Theorem 3.9. If a and b are positive integers, then the set of linear combinations of a 

and b is the set of integer multiples of (a, b). 

Proof. Suppose that d =(a, b). We first show that every linear combination of a and b 

must also be a multiple of d. First note that by the definition of greatest common divisor, 

we know that d I a and d I b. Now every linear combination of a and b is of the form 

ma+ nb, where m and n are integers. By Theorem 1.9, it follows that whenever m and 

mare integers, d divides ma+ nb. That is, ma+ nb is a multiple of d. 

We now show that every multiple of d is also a linear combination of a and b. By 

Theorem 3.8, we know that there are integers rands such that (a, b) = ra +sh. The 

multiples of d are the integers of the form jd, where j is an integer. Multiplying both 

sides of the equation d = ra + s b by j ,  we see that j d = (j r )a + (j s )b. Consequently, 

every multiple of d is a linear combination of a and b. This completes the proof. • 

We have defined greatest common divisors using the notion that the integers are 

ordered. That is, given two distinct integers, one is larger than the other. However, we 

can define the greatest common divisor of two integers without relying on this notion of 

order, as we do in Theorem 3.10. This characterization of the greatest common divisor of 

two integers not depending on ordering is generalized in the study of algebraic number 

theory to apply to what are known as algebraic number fields. 

Theorem 3.10. If a and b are integers, not both 0, then a positive integer d is the 

greatest common divisor of a and b if and only if 

(i) d I a and d I b, and 

(ii) if c is an integer with c I a and c I b, then c Id. 

Proof. We will first show that the greatest common divisor of a and b has these two 

properties. Suppose that d =(a, b). By the definition of common divisor, we know that 

d I a andd I b. ByTheorem3.8, weknow thatd =ma+ nb, wherem andn are integers. 

Consequently, if c I a and c I b, then by Theorem 1.9, c Id = ma+ nb. We have now 

shown that if d =(a, b), then properties (i) and (ii) hold. 

Now assume that properties (i) and (ii) hold. Then we know that d is a common 

divisor of a and b. Furthermore, by property (ii), we know that if c is a common divisor 

of a and b, then c Id, so that d =ck for some integer k. Hence, c = d/ k ::::= d. (We 

have used the fact that a positive integer divided by any nonzero integer is less than that 

integer.) This shows that a positive integer satisfying (i) and (ii) must be the greatest 

common divisor of a and b. • 
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Note that Theorem 3.10 tells us that the greatest common divisor of two integers a 

and b, not both 0, is the positive common divisor of these integers that is divisible by all 

other common divisors. 

We have shown that the greatest common divisor of a and b, not both 0, is a 

linear combination of a and b. However, we have not explained how to find a particular 

linear combination of a and b that equals (a, b). In the next section, we will provide an 

algorithm that finds a particular linear combination of a and b that equals (a, b). 

We can also define the greatest common divisor of more than two integers. 

Definition. Let ai. a2, . . .  , an be integers, not all 0. The greatest common divisor of 

these integers is the largest integer that is a divisor of all of the integers in the set. The 

greatest common divisor of ai. a2, . . .  , an is denoted by (ai. a2, . . .  , an). (Note that the 

order in which the a/s appear does not affect the result.) 

Example 3.9. We easily see that (12, 18, 30) = 6 and (10, 15, 25) = 5. 

We can use the following lemma to find the greatest common divisor of a set of more 

than two integers. 

Lemma 3.2. If ai. a2, . . .  , an are integers, not all 0, then (ai. a2, . . .  , an-1' an)= 

(ai. a2, ... , an-2• (an-1' an)). 

Proof Any common divisor of  then integers ai. a2, . . .  , an-1' an is, in particular, a 

divisor of an-l and an, and therefore a divisor of (an-1' an). Also, any common divisor 

of then - 1 integers ai. a2, . . .  , an-2' and (an-1' an) must be a common divisor of all 

n integers, for if it divides (an-1' an), then it must divide both an-l and an. Because the 

set of n integers and the set of the first n - 2 integers together with the greatest common 

divisor of the last two integers have exactly the same divisors, their greatest common 

divisors are equal. • 

Example 3.10. To find the greatest common divisor of the three integers 105, 140, and 

350, we use Lemma 3.2 to see that (105, 140, 350) = (105, (140, 350)) = (105, 70) = 

35. ..... 

Example 3.11. Consider the integers 15, 21, and 35. We find that the greatest common 

divisor of these three integers is 1 using the following steps: 

(15, 21, 35) = (15, (21, 35)) = (15, 7) = 1. 

Each pair among these integers has a common factor greater than 1, because (15, 21) = 3, 

(15, 35) = 5, and (21, 35) = 7. ..,.. 

Example 3.11 motivates the following definition. 

Definition. We say that the integers ai. a2, . . .  , an are mutually relatively prime if 

(ai. a2, ... , an)= 1. These integers are called pairwise relatively prime if, for each pair 
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of integers ai and a j with i i=- j from the set, (ai, a j) = 1; that is, if each pair of integers 

from the set is relatively prime. 

The concept of pairwise relatively prime is used much more often than the concept 

of mutually relatively prime. Also, note that pairwise relatively prime integers must be 

mutually relatively prime, but that the converse is false (as the integers 15, 21, and 35 in 

Example 3.11 show). 

3.3 EXERCISES 

1. Find the greatest common divisor of each of the following pairs of integers.

a) 15, 35 c) -12, 18 e) 11, 121

b) 0, 111 d) 99, 100 f )  100, 102 

2. Find the greatest common divisor of each of the following pairs of integers.

a) 5, 15 c) -27, -45 e) 100, 121

b) 0, 100 d) -90, 100 f )  1001, 289 

3. Let a be a positive integer. What is the greatest common divisor of a and 2a?

4. Let a be a positive integer. What is the greatest common divisor of a and a2?

5. Let a be a positive integer. What is the greatest common divisor of a and a + 1? 

6. Let a be a positive integer. What is the greatest common divisor of a and a + 2?

7. Show that the greatest common divisor of two even numbers is even.

8. Show that the greatest common divisor of an even number and an odd number is odd.

9. Show that if a and b are integers, not both 0, and c is a nonzero integer, then (ca, cb) =
lcl(a, b).

10. Show that if a and bare integers with (a, b) = 1, then (a+ b, a - b) = 1or2.

11. What is (a2 + b2, a+ b), where a and bare relatively prime integers that are not both O?

12. Show that if a and bare both even integers that are not both 0, then (a, b) = 2(a/2, b/2).

13. Show that if a is an even integer and bis an odd integer, then (a, b) = (a/2, b).

14. Show that if a, b, andc are integers such that (a, b) = 1 andc I (a+ b), then (c, a)= (c, b) =
1.

15. Show that if a, b, and c are mutually relatively prime nonzero integers, then (a, be)=
(a, b)(a, c). 

> 16. a) Show that if a, b, and c are integers with (a, b) =(a, c) = 1, then (a, be)= 1. 

b) Use mathematical induction to show that if av a2, • • •  , an are integers, and b is another 
integer such that (ai. b) = (a2, b) =· ··=(an, b) = 1, then (a1a2 ··· an, b) = 1.

17. Find a set of three integers that are mutually relatively prime, but any two of which are not
relatively prime. Do not use examples from the text.

18. Find four integers that are mutually relatively prime such that any three of these integers are
not mutually relatively prime.
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