
1 The Integers 

I 
n the most general sense, number theory deals with the properties of different sets of 

numbers. In this chapter, we will discuss some particularly important sets of numbers, 

including the integers, the rational numbers, and the algebraic numbers. We will briefly 

introduce the notion of approximating real numbers by rational numbers. We will also 

introduce the concept of a sequence, and particular sequences of integers, including some 

figurate numbers studied in ancient Greece. A common problem is the identification of 

a particular integer sequence from its initial terms; we will briefly discuss how to attack 

such problems. 

Using the concept of a sequence, we will define countable sets and show that the set 

of rational numbers is countable. We will also introduce notations for sums and products, 

and establish some useful summation formulas. 

One of the most important proof techniques in number theory (and in much of 

mathematics) is mathematical induction. We will discuss the two forms of mathematical 

induction, illustrate how they can be used to prove various results, and explain why 

mathematical induction is a valid proof technique. 

Continuing, we will introduce the intriguing sequence of Fibonacci numbers, and 

describe the original problem from which they arose. We will establish some identities 

and inequalities involving the Fibonacci numbers, using mathematical induction for 

some of our proofs. 

The final section of this chapter deals with a fundamental notion in number theory, 

that of divisibility. We will establish some of the basic properties of division of integers, 

including the "division algorithm." We will show how the quotient and remainder of a 

division of one integer by another can be expressed using values of the greatest integer 

function (we will describe a few of the many useful properties of this function, as well). 

1.1 Numbers and Sequences 

In this section, we introduce basic material that will be used throughout the text. In 

particular, we cover the important sets of numbers studied in number theory, the concept 

of integer sequences, and summations and products. 
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Numbers 

To begin, we will introduce several different types of numbers. The integers are the

numbers in the set 

{ ... ' -3, -2, -1, 0, 1, 2, 3, ... }. 

The integers play center stage in the study of number theory. One property of the positive 

integers deserves special mention. 

The Well-Ordering Property Every nonempty set of positive integers has a least 

element. 

The well-ordering property may seem obvious, but it is the basic principle that allows 

us to prove many results about sets of integers, as we will see in Section 1.3. 

The well-ordering property can be taken as one of the axioms defining the set of 

positive integers or it may be derived from a set of axioms in which it is not included. 

(See Appendix A for axioms for the set of integers.) We say that the set of positive 

integers is well ordered. However, the set of all integers (positive, negative, and zero) 

is not well ordered, as there are sets of integers without a smallest element, such as the 

set of negative integers, the set of even integers less than 100, and the set of all integers 

itself. 

Another important class of numbers in the study of number theory is the set of 

numbers that can be written as a ratio of integers. 

Definition. The real number r is rational if there are integers p and q, with q i=- 0, 

such that r = p / q. If r is not rational, it is said to be irrational. 

Example 1.1. The numbers -22/7, 0 = 0/1, 2/17, and 1111/41 are rational numbers . 

.... 

Note that every integer n is a rational number, because n = n / 1. Examples of irrational 

numbers are ,JZ, rr, and e. We can use the well-ordering property of the set of positive 

integers to show that ,J2 is irrational. The proof that we provide, although quite clever, 

is not the simplest proof that ,J2 is irrational. You may prefer the proof that we will give 

in Chapter 4, which depends on concepts developed in that chapter. (The proof that e is 

irrational is left as Exercise 44. We refer the reader to [HaWr08] for a proof that rr is 

irrational. It is not easy.) 

Theorem 1.1. ,J2 is irrational. 

Proof. Suppose that ,J2 were rational. Then there would exist positive integers a and b 
such that ,J2 = a/b. Consequently, the set S = {k.J2 I k and k.J2 are positive integers}

is a nonempty set of positive integers (it is nonempty because a = b,J2 is a member 

of S). Therefore, by the well-ordering property, S has a smallest element, say, s = t ,J2. 
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We have s,./2 - s = s,./2 - t,./2 = (s - t),./2. Because s,./2 = 2t ands are both 

integers, s,./2 - s = s,./2 - t,./2 = (s - t),./2 must also be an integer. Furthermore, it 

is positive, because s ,J2 - s = s ( ,J2 - 1) and ,J2 > 1. It is less than s, because ,J2 < 2 
so that ,J2 - 1 < 1. This contradicts the choice of s as the smallest positive integer in S.

It follows that ,J2 is irrational. • 

The sets of integers, positive integers, rational numbers, and real numbers are 

traditionally denoted by Z, z+, Q, and R, respectively. Also, we write x E S to indicate 

that x belongs to the set S. Such notation will be used occasionally in this book. 

We briefly mention several other types of numbers here, though we do not return to 

them until Chapter 12. 

Definition. A number a is algebraic if it is the root of a polynomial with integer 

coefficients; that is, a is algebraic if there exist integers a0, a1, ... , an such that an a
n +

an_ 1an- l + · · · + a0 = 0. The number a is called transcendental if it is not algebraic.

Example 1.2. The irrational number ,J2 is algebraic, because it is a root of the 

polynomial x2 - 2. <Ill

Note that every rational number is algebraic. This follows from the fact that the number 

a/b, where a and b are integers and b =j:. 0, is the root of bx - a. In Chapter 12, 
we will give an example of a transcendental number. The numbers e and rr are also 

transcendental, but the proofs of these facts (which can be found in [Ha W r08]) are beyond 

the scope of this book. 

The Greatest Integer Function 

In number theory, a special notation is used for the largest integer that is less than or 

equal to a particular real number. 

Definition. The greatest integer in a real number x, denoted by [x ], is the largest integer 

less than or equal to x. That is, [ x] is the integer satisfying

[x] � x < [x] + 1.

Example 1.3. We have [5/2] = 2, [-5/2] = -3, [rr] = 3, [-2] = -2, and [O] = 0. <Ill

Remark. The greatest integer function is also known as the floor function. Instead of 

using the notation [x] for this function, computer scientists usually use the notation Lx J.

The ceiling function is a related function often used by computer scientists. The ceiling 

function of a real number x' denoted by r x l , is the smallest integer greater than or equal 

to x. For example, r5/21 = 3 and r -5/21 = -2. 

The greatest integer function arises in many contexts. Besides being important in 

number theory, as we will see throughout this book, it plays an important role in the 

analysis of algorithms, a branch of computer science. The following example establishes 
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a useful property of this function. Additional properties of the greatest integer function 
are found in the exercises at the end of this section and in [GrKnPa94]. 

Example 1.4. Show that if n is an integer, then [x + n] = [x] + n whenever x is a 
real number. To show that this property holds, let [x] = m, so that m is an integer. This 
implies that m ::::; x < m + 1. We can add n to this inequality to obtain m + n ::::; x + n < 

m + n + 1. This shows that m + n = [x] + n is the greatest integer less than or equal to 
x + n. Hence, [x + n] = [x] + n. ..._. 

Definition. The fractional part of a real number x, denoted by { x}, is the difference 
between x and the largest integer less than or equal to x, namely, [x]. That is, {x} = 

x - [x]. 

Because [x]::::; x < [x] + 1, it follows that 0::::; {x} = x - [x] < 1 for every real 
number x. The greatest integer in x is also called the integral part of x because x = 

[x]+{x}. 

Example 1.5. We have {5/4} = 5/4 - [5/4] = 5/4 - 1 = 1/4 and {-2/3} = -2/3 -

[-2/3] = -2/3 - (-1) = 1/3. .... 

Diophantine Approximation 

We know that the distance of a real number to the integer closest to it is at most 1/2. 

But can we show that one of the first k multiples of a real number must be much closer 
to an integer? An important part of number theory called diophantine approximation 

studies questions such as this. In particular, it concentrates on questions that involve 
the approximation of real numbers by rational numbers. (The adjective diophantine 
comes from the Greek mathematician Diophantus, whose biography can be found in 

Section 13.1.) 

Here we will show that among the first n multiples of a real number a, there must 
be at least one at a distance less than 1/ n from the integer nearest it. The proof will 
depend on the famous pigeonhole principle, introduced by the German mathematician 
Dirichlet.1 Informally, this principle tells us if we have more objects than boxes, when
these objects are placed in the boxes, at least two must end up in the same box. Although 
this seems like a particularly simple idea, it turns out to be extremely useful in number 
theory and combinatorics. We now state and prove this important fact, which is known 
as the pigeonhole principle, because if you have more pigeons than roosts, two pigeons 
must end up in the same roost. 

Theorem 1.2. The Pigeonhole Principle. H k + 1 or more objects are placed into k 
boxes, then at least one box contains two or more of the objects. 

1 Instead of calling Theorem 1.2 the pigeonhole principle, Dirichlet called it the Schubf achprinzip in German, 
which translates to the drawer principle in English. A biography of Dirichlet can be found in Section 3 .1.
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Proof If none of the k boxes contains more than one object, then the total number of 

objects would be at most k. This contradiction shows that one of the boxes contains at 

least two or more of the objects. • 

We now state and prove the approximation theorem, which guarantees that one of 

the first n multiples of a real number must be within 1/ n of an integer. The proof we 

give illustrates the utility of the pigeonhole principle. (See [Ro07] for more applications 

of the pigeonhole principle.) (Note that in the proof we make use of the absolute value 
function. Recall that Ix I, the absolute value of x, equals x if x '.'.:'.: 0 and -x if x < 0. Also 

recall that Ix - yl gives the distance between x and y.) 

Theorem 1.3. Dirichlet's Approximation Theorem. If a is a real number and n is a 

positive integer, then there exist integers a and b with 1 ::::: a ::::: n such that laa - b I < 1/ n. 

Proof Consider the n + 1 numbers 0, {a}, { 2a}, ... , {na}. These n + 1 numbers 

are the fractional parts of the numbers ja, j = 0, 1, ... , n, so that 0 ::=:: {ja} < 1 for

j = 0, 1, ... , n. Each of these n + 1 numbers lies in one of the n disjoint intervals

0 ::=:: x < 1/n, 1/n ::=:: x < 2/n, ... , (j - l)/n ::=:: x < j /n, ... , (n - l)/n ::=:: x < 1. Be
cause there are n + 1 numbers under consideration, but only n intervals, the pigeonhole 

principle tells us that at least two of these numbers lie in the same interval. Because each 

of these intervals has length 1/ n and does not include its right endpoint, we know that 

the distance between two numbers that lie in the same interval is less than 1/ n. It follows 

that there exist integers j and k with 0::::: j < k::::: n such that l{ka} - {ja}I < 1/n. We

will now show that when a = k - j, the product aa is within 1/ n of an integer, namely,

the integer b = [ka] - [ja]. To see this, note that

laa - bl= l(k - j)a - ([ka] - [ja])I 

= l(ka - [ka]) - (ja - [ja])I 

= l{ka} - {ja}I < 1/n.

Furthermore, note that because 0 ::::: j < k ::::: n, we have 1 ::::: a = k - j ::::: n. Conse

quently, we have found integers a and b with 1 ::=::a::=:: n and laa - bl < 1/n, as desired . 

• 

Example 1.6. Suppose that a= ,J2 and n = 6. We find that 1·,J2�1.41 4, 2 · ,J2 � 
2.8 28, 3 · ,J2 � 4.2 43, 4 · ,J2 � 5.657, 5 · ,J2 � 7.071, and 6 · ,J2 � 8.485. Among these 

numbers 5 · ,J2 has the smallest fractional part. We see that 15 · ,J2 - 71 � 17 .071  - 71 = 

0.071::::: 1/6. It follows that when a= ,J2 and n = 6, we can take a= 5 and b = 7 to 

make laa - bl < 1/n. ..,.. 

Our proof of Theorem 1.3 follows Dirichlet's original 1834 proof. Proving a stronger 

version of Theorem 1.3 with 1/ (n + 1) replacing 1/ n in the approximation is not diffi

cult (see Exercise 32). Furthermore, in Exercise 34 we show how to use the Dirichlet 

approximation theorem to show that, given an irrational number a, there are infinitely 

many different rational numbers p / q such that la - p / q I < 1/ q2, an important result in

the theory of diophantine approximation. We will return to this topic in Chapter 1 2. 
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Sequences 

A seque nce {an} is a list of numbers ai. a2, a3, .... We will consider many particular

integer sequences in our study of number theory. We introduce several useful sequences 

in the following examples. 

Example 1.7. The sequence {an}, where an= n2, begins with the terms 1, 4, 9, 16, 25,

36, 49, 64, .... This is the sequence ofthe squares ofintegers. The sequence{bn}, where 

bn = 2
n

, begins with the terms 2, 4, 8, 16, 32, 64, 128, 256, .... This is the sequence of 

powers of 2. The sequence {en}, where cn = 0 if n is odd and cn = 1 if n is even, begins 

with the terms 0, 1, 0, 1, 0, 1, 0, 1, . . . . <11111 

There are many sequences in which each successive term is obtained from the 

previous term by multiplying by a common factor. For example, each term in the 

sequence of powers of 2 is 2 times the previous term. This leads to the following 

definition. 

Definition. A g e ome tric progression is a sequence of the form a, ar, ar2, ar3, ... ,

ark, ... , where a, the initial term, and r, the common ratio, are real numbers.

Example 1.8. The sequence {an}, where an= 3 · 5
n

, n = 0, 1, 2, ... , is a geometric 

sequence with initial term 3 and common ratio 5. (Note that we have started the sequence 

with the term a0• We can start the index of the terms of a sequence with 0 or any other 

integer that we choose.) <11111 

A common problem in number theory is finding a formula or rule for constructing 

the terms of a sequence, even when only a few terms are known (such as trying to find 

a formula for the nth triangular number 1+2 + 3 + · · · + n). Even though the initial

terms of a sequence do not determine the sequence, knowing the first few terms can lead 

to a conjecture for a formula or rule for the terms. Consider the following examples. 

Example 1.9. Conjecture a formula for an, where the first eight terms of {an} are 

4, 11, 18, 25, 32, 39, 46, 53. We note that each term, starting with the second, is obtained 

by adding 7 to the previous term. Consequently, the nth term could be the initial term 

plus 7(n - 1). A reasonable conjecture is that an= 4 + 7(n - 1) = 7n - 3. <11111 

The sequence proposed in Example 1.9 is an arithme tic progression, that is, a 

sequence of the form a, a + d, a + 2d, ... , a + nd, .... The particular sequence in 

Example 1.9 has a= 4 and d = 7. 

Example 1.10. Conjecture a formula for an, where the first eight terms of the sequence 

{an} are 5, 11, 29, 83, 245, 731, 2189, 6563. We note that each term is approximately 3 

times the previous term, suggesting a formula for an in terms of 3
n

. The integers 3
n 

for 

n = 1, 2, 3, ... are 3, 9, 27, 81, 243, 729, 2187, 6561. Looking at these two sequences 

together, we find that the formula an = 3
n 

+ 2 produces these terms. <11111 
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Example 1.11. Conjecture a formula for an, where the first ten terms of the sequence 

{an} are 1, 1, 2, 3, 5,  8, 13 , 21, 34, 55. After examining this sequence from different 

perspectives, we notice that each term of this sequence, after the first two terms, is the 

sum of the two preceding terms. That is, we see that an= an-l + an_2 for 3:::; n:::; 10. 

This is an example of a recursive definition of a sequence, discussed in Section 1.3. The 

terms listed in this example are the initial terms of the Fibonacci sequence, which is 

discussed in Section 1.4. <lillll 

Integer sequences arise in many contexts in number theory. Among the sequences 

we will study are the Fibonacci numbers, the prime numbers (covered in Chapter 3), and 

the perfect numbers (introduced in Section 7 .3). Integer sequences appear in an amazing 

range of subjects besides number theory. Neil Sloane has amassed a fantastically diverse 

collection of more than 170,000 integer sequences (as of early 2010) in his On-Line 
Encyclopedia of Integer Sequences. This collection is available on the Web. (Note that 

in early 2010, the OEIS Foundation took over maintenance of this collection.) (The 

book [S1Pl95] is an earlier printed version containing only a small percentage of the 

current contents of the encyclopdia.) This site provides a program for finding sequences 

that match initial terms provided as input. You may find this a valuable resource as you 

continue your study of number theory (as well as other subjects). 

We now define what it means for a set to be countable, and show that a set is countable 

if and only if its elements can be listed as the terms of a sequence. 

Definition. A set is countable if it is finite or it is infinite and there exists a one-to

one correspondence between the set of positive integers and the set. A set that is not 

countable is called uncountable. 

An infinite set is countable if and only if its elements can be listed as the terms of a 

sequence indexed by the set of positive integers. To see this, simply note that a one-to

one correspondence f from the set of positive integers to a set S is exactly the same as 

a listing of the elements of the set in a sequence a., a2, • • •  , an, ... , where a;= f(i). 

Example 1.12. The set of integers is countable, because the integers can be listed 

starting with 0, followed by 1 and -1, followed by 2 and -2, and so on. This produces 

the sequence 0 ,  1, -1, 2, -2, 3, -3, ... , where a1 = 0, a2n = n, and a2n+l = -n for 

n = 1, 2,.... <lillll 

Is the set of rational numbers countable? At first glance, it may seem unlikely that 

there would be a one-to-one correspondence between the set of positive integers and the 

set of all rational numbers. However, there is such a correspondence, as the following 

theorem shows. 

Theorem 1.4. The set of rational numbers is countable. 

Proof. We can list the rational numbers as the terms of a sequence, as follows. First, we 

arrange all the rational numbers in a two-dimensional array, as shown in Figure 1.1. We 

put all fractions with a denominator of 1 in the first row. We arrange these by placing the 

fraction with a particular numerator in the position this numerator occupies in the list of 
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4. Find as many terms as you can of the spectrum sequence of rr. (See the preamble to Exercise 3 8

for the definition of spectrum.)

5. Find the first 1000 Ulam numbers.

6. How many pairs of consecutive integers can you find where both are Ulam numbers?

7. Can the sum of any two consecutive Ulam numbers, other than 1 and 2, be another Ulam
number? If so, how many examples can you find?

8. How large are the gaps between consecutive Ulam numbers? Do you think that these gaps
can be arbitrarily long?

9. What conjectures can you make about the number of Ulam numbers less than an integer n?
Do your computations support these conjectures?

Programming Projects 

1. Given a number a, find rational numbers p / q such that la - p / q I ::=:: 1/ q2
•

2. Given a number a, find its spectrum sequence.

3. Find the first n Ulam numbers, where n is a positive integer.

1.2 Sums and Products 

Because summations and products arise so often in the study of number theory, we now 

introduce notation for summations and products. The following notation represents the 

sum of the numbers ai. a2, ... , an:

n 

L ak = al + a2 + ... + an.
k=l

The letter k, the index of summation, is a "dummy variable" and can be replaced by any

letter. For instance, 

n n n 
L ak = L aj = L ai, and so forth.
k=l j=l i=l

Examplel.13. We see that I:�=l j = 1+2 + 3+ 4 + 5 = 15, L�=12 = 2 + 2 + 2 + 
2 + 2 = 10, and I:�=12j = 2 + 22 + 23 + 24 + 25 = 62. 

We also note that, in summation notation, the index of summation may range 

between any two integers, as long as the lower limit does not exceed the upper limit. 

If m and n are integers such that m :::; n, then L�=m ak = am + am+ 1 + · · · + an- For

instance, we have I:i=3 k2 = 32 + 42 + 52 = 50, I:i=o 3k = 3° + 31 + 32 = 13, and

I:!=-2 k3 = (-2)3 + (-1)3 + 03 + 13 = -8. ....
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We will often need to consider sums in which the index of summation ranges over 

all those integers that possess a particular property. We can use summation notation to 

specify the particular property or properties the index must have for a term with that index 

to be included in the sum. This use of notation is illustrated in the following example. 

Example 1.14. We see that 

I: 11u + 1) = 111 + 112 + 1;5 + 1110 = 9/5,
j�lO 

jE{n21nEZ} 

because the terms in the sum are all those for which j is an integer not exceeding 10 that 

is a perfect square. ..,.. 

The following three properties for summations are often useful. We leave their proofs 

to the reader. 

(1.1) 

n 

(1.2) 
j=m 

(1.3) 

n n 

L cai =c Lai 
j=m j=m 

n 

j=m 

n 

j=m 

Next, we develop several useful summation formulas. We often need to evaluate 

sums of consecutive terms of a geometric series. The following example shows how a 

formula for such sums can be derived. 

Example 1.15. To evaluate 

the sum of the first n + 1 terms of the geometric series a, ar, ... , ark, .. . , we multiply

both sides by r and manipulate the resulting sum to find:
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n 
rS=r L: ari

j=O 
n 

= L ari+l

j=O 

n+l 
= L: ark

k=l 
n 

(shifting the index of sum mation, taking k = j + 1) 

=L ark+ (arn+l - a) (re moving the term with k = n + 1
from the set and a dding the term with k = 0) k=O 

= S + (arn+l - a).

It follows that 

rS - S = (arn+l - a).

Solving for S shows that when r =f=. 1, 

arn+l _a 
S= ---

r -1 

Note that when r = 1, we have LJ =O ari = LJ =O a = (n + l)a.

Example 1.16. Talcing a = 3, r = -5, and n = 6 in the formula found in Example 1.15,

th "6 3( 5)i - 3<-5)7-3 - 39 063 we see at L...j=O - - -5-l - , · ..,...

The following example shows that the sum of the first n consecutive powers of 2 is 

1 less than the next power of 2. 

Example 1.17. Let n be a positive integer . To find the sum

n 
I: 2k = 1 + 2 + 22 + ... + 2n.
k=O 

we use Example 1.15, with a= 1andr=2, to obtain 

2n+l 1 
1 + 2 + 22 + · · · + 2n = 

-
= 2n+ 1 -1. 

2-1 

A summation of the form I:j =1(aj - aj_1), wherea0, ai. a2, ... , an is a sequence

of numbers, is said to be telescoping. Telescoping sums are easily evaluated because

n 

L aj - aj-l = (a1 - a0) + (a2 - a1) +···+(an - an_1)
j=l 
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The ancient Greeks were interested in sequences of numbers that can be represented 

by regular arrangements of equally spaced points. The following example illustrates one 

such sequence of numbers. 

Example 1.18. The triangular numbers ti. t2, t3, ... , tk> ... is the sequence where tk 

is the number of dots in the triangular array of k rows with j dots in the jth row. <11111 

Figure 1.2 illustrates that tk counts the dots in successively larger regular triangles 

fork = 1, 2, 3, 4, and 5 . 

• 

1 3 6 10 15 

Figure 1.2 The Triangular Numbers. 

Next, we will determine an explicit formula for the nth triangular number tn. 

Example 1.19. How can we find a formula for the nth triangular number? One approach 

is to use the identity (k + 1)2 - k2 = 2k + 1. When we isolate the factor k, we find

that k = ( (k + 1)2 - k2) /2 - 1/2. When we sum this expression for k over the values

k = 1, 2, ... , n, we obtain 
n 

tn= L:k

k=l 

= ( t((k + 1)2- k2)/2 )- t 1/2 (replacing k with (((k + 1)2 - k2)/2) - 1/2)

k=l k=l 

= ((n + 1)2 /2 - 1/2) - n/2

= (n2 + 2n)/2 - n/2

= (n2 + n)/2

= n(n + 1)/2. 

(simplifying a telescoping sum) 

The second equality here follows by the formula for the sum of a telescoping series with 

ak = (k + 1)2 - k2. We conclude that the nth triangular number tn = n(n + 1)/2. (See

Exercise 7 for another way to find tn.) <11111 

We also define a notation for products, analogous to that for summations. The 

product of the numbers ai. a2, ... , an is denoted by 
n 

n aj=a1a2···an.

j=l 
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The letter j above is a "dummy variable," and can be replaced arbitrarily. 

Example 1.20. To illustrate the notation for products, we have 

5 
n j = 1 . 2 . 3 . 4 . s = 120. 
j=l 
5 

n 2 = 2 . 2 . 2 . 2 . 2 = 25 
= 32, and

j=l 

5 
n 2j

= 2 . 22 . 23 . 24 . 25 
= 215. 

j=l 

The factorial fanction arises throughout number theory. 

Definition. Let n be a positive integer. Then n ! (read as "n factorial") is the product of
the integers 1, 2, . . . , n. We also specify that O! = 1. In terms of product notation, we
have n!= flj=1 j.

Example 1.21. We have 1!  = 1, 4! = 1·2·3·4 = 24, and 12! =1·2·3·4 · 5 · 6 · 7 · 

8 . 9. 10 . 11 · 12 = 479,001,600. ..... 

1.2 EXERCISES 

1. Find each of the following sums.

a) L�=l j2 b) L�=l(-3) c) L�=l 1/(j + 1)
2. Find each of the following sums.

a) I:;=O 3 b) I:;=0(j - 3) c) I:;=0(j + l)/(j + 2)
3. Find each of the following sums.

a) L�=l 2j b) L�=l 5(-3)j c) L�=l 3(-1/2)j
4. Find each of the following sums. 

a) I:��o 8 · 3j b) I:��0(-2)H1 
c) I:��0(1/3)j

* 5. Find and prove a formula for L�=1[.Jk] in terms of n and [Jn]. (Hint: Use the formula

I:�=1 k2 = t(t + 1)(2t + 1)/6.) 
6. By putting together two triangular arrays, one with n rows and one with n - 1 rows, to form

a square (as illustrated for n = 4), show that tn-l + tn = n2, where tn is the nth triangular
number. 
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7. By putting together two triangular arrays, each with n rows, to form a rectangular array of
dots of sizen by n + 1 ( as illustratedforn = 4), show that2tn = n(n + 1). From this, conclude
that tn = n(n + 1)/2 .

8. Show that 3tn + tn-l = t2n, where tn is the nth triangular number.

9. Show that t;+l - t; = (n + 1)3
, where tn is the nth triangular number.

The pentagonal numbers Pi. p2, p3, ... , Pb ... , are the integers that count the number of dots
in k nested pentagons, as shown in the following figure. 

• 0 
1 5 12 22 

> 10. Show that p1 = 1 and Pk= Pk-l + (3k -2) fork 2: 2 .  Conclude that Pn = L�=l (3k - 2) and
evaluate this sum to find a simple formula for Pn. 

> 11. Prove that the sum of the (n - l)st triangular number and the nth square number is the nth 
pentagonal number. 

12. a) Define the hexagonal numbers hn for n = 1, 2, ... in a manner analogous to the definitions
of triangular, square, and pentagonal numbers. (Recall that a hexagon is a six-sided 
polygon.) 

b) Find a closed formula for hexagonal numbers.

13. a) Define the heptagonal numbers in a manner analogous to the definitions of triangular, 
square, and pentagonal numbers. (Recall that a heptagon is a seven-sided polygon.) 

b) Find a closed formula for heptagonal numbers.

14. Show that hn = t2n-l for all positive integers n where hn is the nth hexagonal number, defined
in Exercise 12, and t2n-l is the (2n - l)st triangular number.

15. Show that Pn = t3n_if3 where Pn is the nth pentagonal number and t3n-l is the (3n - l)st
triangular number.

The tetrahedral numbers Ti. T2, T3, ... , Tb ... , are the integers that count the number of dots
on the faces of k nested tetrahedra, as shown in the following figure. 
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• 

1 4 10 20 

16. Show that the nth tetrahedral number is the sum of the first n triangular numbers.

17. Find and prove a closed formula for the nth tetrahedral number. 

18. Find n ! for n equal to each of the first ten positive integers.

19. List the integers 100!, 100100, 2100, and (50!)
2 

in order of increasing size. Justify your answer. 

20. Express each of the following products in terms of 07=1 ai, where k is a constant.

a) 07=1 kai b) 07=1 iai c) 07=1 af
21. Use the identity k(k�l) = t - k!l to evaluate L�=l k(k�l). 
22. Use the identity kL 1 = � ( k� 1 - k! 1) to evaluate L�=2 kL 1.

23. Find a formula for L�=l k2 
using a technique analogous to that in Example 1.21 and the

formula found there.

24. Find a formula for L�=l k3 using a technique analogous to that in Example 1. 19, and the
results of that example and Exercise 21.

25. Without multiplying all the terms, verify these equalities.

a) 10!= 6!7! b) 10!=7!5!3! c) 16!= 1 4!5!2! d) 9!=7!3!3!2!

26 L b 
.. . 

L b-(' ' ') 1 d -' ' ' • et ai. a2, . . .  , an e positive mtegers. et - a1. a2 .... an. - , an c -a1. a2 .... an .. 
Show that c! = a1! a1! ···an !b!. 

27. Find all positive integers x, y, and z such that x ! + y ! = z !.

28. Find the values of the following products.

a) o;=2(1- 1/j) b) o;=2(1- 1/j2)

Computations and Explorations 

1. What are the largest values of n for which n ! has fewer than 100 decimal digits, fewer than
1000 decimal digits, and fewer than 10,000 decimal digits? 

2. Find as many triangular numbers that are perfect squares as you can. (We will study this
question in the Exercises in Section 13.4.)

3. Find as many tetrahedral numbers that are perfect squares as you can.

Programming Projects 

1. Given the terms of a sequence ai. a2, ... , an, compute L:;=l aj and O;=l aj.

2. Given the terms of a geometric progression, find the sum of its terms.
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3. Given a positive integer n, find the nth triangular number, the nth perfect square, the nth 
pentagonal number, and the nth tetrahedral number. 

1.3 Mathematical Induction 

0 

By examining the sums of the first n odd positive integers for small values of n, we can 
conjecture a formula for this sum. We have 

1= 1, 
l+ 3=4, 

1+ 3+ 5 = 9, 

1 + 3 + 5 + 7 = 16, 

1 + 3 + 5 + 7 + 9 = 25, 
1 + 3 + 5 + 7 + 9 + 11 = 36. 

From these values, we conjecture that Ej=1 (2j - 1) = 1 + 3 + S + 7 + · · · + 2n - 1 = 

n2 for every positive integer n.

How can we prove that this formula holds for all positive integers n? 

The principle of mathematical induction is a valuable tool for proving results 
about the integers-such as the formula just conjectured for the sum of the first n odd 
positive integers. First, we will state this principle, and then we will show how it is 
used. Subsequently, we will use the well-ordering principle to show that mathematical 
induction is a valid proof technique. We will use the principle of mathematical induction, 
and the well-ordering property, many times in our study of number theory. 

We must accomplish two things to prove by mathematical induction that a particular 
statement holds for every positive integer. Letting S be the set of positive integers for 
which we claim the statement to be true, we must show that 1 belongs to S; that is, that 
the statement is tme for the integer 1. This is called the basis step. 

Second, we must show, for each positive integer n, that n + 1 belongs to S if n does; 
that is, that the statement is tme for n + 1 if it is true for n. 1bis is called the inductive step. 
Once these two steps are completed, we can conclude by the principle of mathematical 
induction that the statement is true for all positive integers. 

Theorem 1.S. The Principle of Mathematical Induction. A set of positive integers 
that contains the integer l, and that has the property that, if it contains the integer k, then 
it also contains k + l, must be the set of all positive integers. 

We illustrate the use of mathematical induction by several examples; first, we prove 
the conjecture made at the start of this section. 
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0 

Example 1.22. We will use mathematical induction to show that 

n 
L (2j - 1) = 1 + 3 + · · · + (2n - 1) = n2

j=l 

for every positive integer n. (By the way, if our conjecture for the value of this sum was 

incorrect, mathematical induction would fail to produce a proof!) 

We begin with the basis step, which follows because 

1 
I:<2j - 1) = 2 . 1- 1=1=12.
j=l 

For the inductive step, we assume the inductive hypothesis that the formula holds 

for n; that is, we assume that L�=1(2j - 1) = n2• Using the inductive hypothesis, we

have 

n+l n 
L(2j - 1) = L(2j - 1) + (2(n + 1) - 1) (splitting off the term with j = n + 1)
j=l j=l 

= n2 + 2(n + 1) - 1 (using the inductive hypothesis) 

=n2+2n+ 1

= (n + 1)2.

Because both the basis and the inductive steps have been completed, we know that the 

result holds. <11111 

Next, we prove an inequality via mathematical induction. 

Example 1.23. We can show by mathematical induction that n ! � nn for every positive

integer n. The basis step, namely, the case where n = l, holds because 1 ! = 1 � 11 = 1.
Now, assume that n ! � nn; this is the inductive hypothesis. To complete the proof, we

must show, under the assumption that the inductive hypothesis is true, that (n + 1) ! � 

(n + l)n+l. Using the inductive hypothesis, we have

The Origin of Mathematical Induction 
The first known use of mathematical induction appears in the work of the sixteenth-century 

mathematician Francesco Maurolico (1494-1575). In his book Arithmeticorum Libri Duo, 

Maurolico presented various properties of the integers, together with proofs. He devised the 

method of mathematical induction so that he could complete some of the proofs. The first 

use of mathematical induction in his book was in the proof that the sum of the first n odd 

positive integers equals n2. 
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(n + 1) ! = (n + 1) · n !

::S (n + l)nn 

< (n + l)(n + l)n 

::S (n + l)n+l. 

This completes both the inductive step and the proof. 

We now show that the principle of mathematical induction follows from the well

ordering principle. 

Proof. Let S be a set of positive integers containing the integer 1, and the integer n + 1 
whenever it contains n. Assume (for the sake of contradiction) that S is not the set of 

all positive integers. Therefore, there are some positive integers not contained in S. By 

the well-ordering property, because the set of positive integers not contained in S is 

nonempty, there is a least positive integer n that is not in S. Note that n i=- 1, because 1 
is in S. 

Now, because n > 1 (as there is no positive integer n with n < 1), the integer n - 1 
is a positive integer smaller than n, and hence must be in S. But because S contains 

n - 1, it must also contain (n - 1) + 1 = n, which is a contradiction, as n is supposedly 

the smallest positive integer not in S. This shows that S must be the set of all positive 

integers. • 

A slight variant of the principle of mathematical induction is also sometimes useful 

in proofs. 

Theorem 1.6. The Second Principle of Mathematical Induction. A set of positive 

integers that contains the integer 1, and that has the property that, for every positive 

integer n, if it contains all the positive integers 1, 2, ... , n, then it also contains the 

integer n + 1, must be the set of all positive integers. 

The second principle of mathematical induction is sometimes called strong induc

tion to distinguish it from the principle of mathematical induction, which is also called 

weak induction. 

Before proving that the second principle of mathematical induction is valid, we will 

give an example to illustrate its use. 

Example 1.24. We will show that any amount of postage more than one cent can be 

formed using just two-cent and three-cent stamps. For the basis step, note that postage 

of two cents can be formed using one two-cent stamp and postage of three cents can be 

formed using one three-cent stamp. 

For the inductive step, assume that every amount of postage not exceeding n cents, 

n � 3, can be formed using two-cent and three-cent stamps. Then a postage amount of 

n + 1 cents can be formed by taking stamps of n - 1 cents together with a two-cent 

stamp. This completes the proof. .,.. 
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We will now show that the second principle of mathematical induction is a valid 

technique. 

Proof Let T be a set of integers containing 1 and such that for every positive integer n, 

if it contains 1, 2, ... , n, it also contains n + 1. Let S be the set of all positive integers 

n such that all the positive integers less than or equal to n are in T. Then 1 is in S, and 

by the hypotheses, we see that if n is in S, then n + 1 is in S. Hence, by the principle 

of mathematical induction, S must be the set of all positive integers, so clearly T is also 

the set of all positive integers, because S is a subset of T. • 

Recursive Definitions 

The principle of mathematical induction provides a method for defining the values of 

functions at positive integers. Instead of explicitly specifying the value of the function 

at n, we give the value of the function at 1 and give a rule for finding, for each positive 

integer n, the value of the function at n + 1 from the value of the function at n. 

Definition. We say that the function f is defined recursively if the value off at 1 is 

specified and if for each positive integer n a rule is provided for determining f (n + 1) 

from f(n). 

The principle of mathematical induction can be used to show that a function that is 

defined recursively is defined uniquely at each positive integer (see Exercise 25 at the 

end of this section). We illustrate how to define a function recursively with the following 

definition. 

Example 1.25. We will recursively define the factorial function f (n) = n !. First, we 

specify that 

f (1) = 1. 

Then we give a rule for finding f (n + 1) from f (n) for each positive integer, namely, 

f (n + 1) = (n + 1) 
· 

f (n).

These two statements uniquely define n ! for the set of positive integers. 

To find the value of f ( 6) = 6 ! from the recursive definition, use the second property 

successively, as follows: 

f (6) = 6. f (5) = 6. 5. f (4) = 6. 5. 4. f (3) = 6. 5. 4. 3. f (2) = 6. 5. 4. 3. 2. f (1). 

Then use the first statement of the definition to replace f (1) by its stated value 1, to 

conclude that 

6! = 6 . 5 . 4 . 3 . 2 . 1 = 720. 

The second principle of mathematical induction also serves as a basis for recursive 

definitions. We can define a function whose domain is the set of positive integers by 

specifying its value at 1 and giving a rule, for each positive integer n, for finding f (n) 
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from the values f (j) for each integer j with 1 :'.S j :'.S n - 1. This will be the basis for the
definition of the sequence of Fibonacci numbers discussed in Section 1.4. 

1.3 EXERCISES 

1. Use mathematical induction to prove that n < 2n whenever n is a positive integer.

2. Conjecture a formula for the sum of the first n even positive integers. Prove your result using
mathematical induction.

3. Use mathematical induction to prove that L�= 1 k
12 = A + J2 + · · · + n

12 :'.S 2 - � whenever
n is a positive integer.

4. Conjecture a formula for L�=l k(k�l) = 1�2 + 2\ + · · · + n(n�I) from the value of this sum
for small integers n. Prove that your conjecture is correct using mathematical induction.
(Compare this to Exercise 17 in Section 1.2.)

5. Conjecture a formula for An where A = ( � � ) . Prove your conjecture using mathematical

induction.

6. Use mathematical induction to prove that LJ=l j = 1+2 + 3 + · · · + n = n(n + 1)/2 for
every positive integer n. (Compare this to Example 1.19 in Section 1.2.)

7. Use mathematical induction to prove that LJ=l j2 = 12 + 22 + 32 + ... + n2 = 

n(n + 1)(2n + 1)/6 for every positive integer n.
8. Use mathematical induction to prove that LJ=l j3 = 13 + 23 + 33 + · ·. + n3 = 

[n(n + 1)/2]2 for every positive integer n.
9. Use mathematical induction to prove that LJ=l j (j + 1) = 1 · 2 + 2 · 3 + · · · + n· 

(n + 1) = n(n + l)(n + 2)/3 for every positive integer n.
10. Use mathematical induction to prove that L::j=1(-l)i-1j2 = 12 - 22 + 32 - ... +

(-l)n-1n2 = (-l)n-ln (n + 1) /2 for every positive integer n.
11. Find a formula for 0j=1 2i.

12. Show that LJ=l j · j! = 1 ·1! + 2 · 2! + · · · + n · n! = (n + l)! - 1 for every positive inte
ger n.

13. Show that any amount of postage that is an integer number of cents greater than 1 1  cents can
be formed using just 4-cent and 5-cent stamps.

14. Show that any amount of postage that is an integer number of cents greater than 53 cents can
be formed using just 7-cent and 10-cent stamps.

Let Hn be the nth partial sum of the harmonic series, that is, Hn = LJ=l 1/ j. 
* 15. Use mathematical induction to show that H2n :::: 1 + n/2.
* 16. Use mathematical induction to show that H2n :'.S 1 + n.

17. Show by mathematical induction that if n is a positive integer, then (2n) ! < 22n (n !)2•
18. Use mathematical induction to prove that x - y is a factor of xn - yn, where x and y are

variables.
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> 19. Use the principle of mathematical induction to show that a set of integers that contains the 
integer k, such that this set contains n + 1 whenever it contains n, contains the set of integers
that are greater than or equal to k. 

20. Use mathematical induction to prove that 2n < n! for n =:::: 4.

21. Use mathematical induction to prove that n2 < n ! for n ::::: 4.

22. Show by mathematical induction that if h =:::: -1, then 1 + nh ::= ( 1 + h )n for all nonnegative
integers n.

23. A jigsaw puzzle is solved by putting its pieces together in the correct way. Show that exactly
n - 1 moves are required to solve a jigsaw puzzle with n pieces, where a move consists of
putting together two blocks of pieces, with a block consisting of one or more assembled
pieces. (Hint: Use the second principle of mathematical induction.)

24. Explain what is wrong with the following proof by mathematical induction that all horses are
the same color: Clearly all horses in any set of 1 horse are all the same color. This completes
the basis step. Now assume that all horses in any set of n horses are the same color. Consider
a set of n + 1 horses, labeled with the integers 1, 2, ... , n + 1. By the induction hypothesis,
horses 1, 2, ... , n are all the same color, as are horses 2, 3, ... , n, n + 1. Because these two
sets of horses have common members, namely, horses 2, 3, 4, ... , n, all n + 1 horses must
be the same color. This completes the induction argument.

25. Use the principle of mathematical induction to show that the value at each positive integer of
a function defined recursively is uniquely determined.

26. What function f (n) is defined recursively by /(1) = 2 and f(n + 1) = 2/ (n) for n =:::: 1?
Prove your answer using mathematical induction.

27. If g is defined recursively by g(l) = 2 and g(n) = 2g(n-l) for n =:::: 2, what is g(4)?

28. Use the second principle of mathematical induction to show that if /(1) is specified and a
rule for finding f(n + 1) from the values off at the first n positive integers is given, then
f(n) is wriquely determined for every positive integer n.

29. We define a function recursively for all positive integers n by f (l) = 1, f (2) = 5, and
for n::::: 2, f(n + 1) = f(n) + 2/(n - 1). Show that f(n) = 2n + (-l)n, using the second
principle of mathematical induction.

30. Show that 2n > n2 whenever n is an integer greater than 4.

31. Supposethata0= 1,a1=3,a2 =9,anda
n 

=a
n-l +a

n
_2 +an_3forn::::: 3.Showthatan ::= 3n

for every nonnegative integer n. 

0 32. The tower of Hanoi was a popular puzzle of the late nineteenth century. The puzzle includes
three pegs and eight rings of different sizes placed in order of size, with the largest on the 
bottom, on one of the pegs. The goal of the puzzle is to move all of the rings, one at a time, 
without ever placing a larger ring on top of a smaller ring, from the first peg to the second, 
using the third as an auxiliary peg. 

a) Use mathematical induction to show that the minimum number of moves to transfer n
rings from one peg to another, with the rules we have described, is 2n - 1. 

b) An ancient legend tells of the monks in a tower with 64 gold rings and 3 diamond pegs.
They started moving the rings, one move per second, when the world was created. When
they finish transferring the rings to the second peg, the world will end. How long will the
world last?
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* 33. The arithmetic mean and the geometric mean of the positive real numbers ai. a2, . • .  , a
n 

are A= (a1 + a2 + · · · + a
n
)/n and G = (a1a2 · · · a

n
)lfn, respectively. Use mathematical 

induction to prove that A � G for every finite sequence of positive real numbers. When does 
equality hold? 

34. Use mathematical induction to show that a 2n x 2n chessboard with one square missing can
be covered with L-shaped pieces, where each L-shaped piece covers three squares.

* 35. A unit fraction is a fraction of the form 1/n, where n is a positive integer. Because the 
ancient Egyptians represented fractions as sums of distinct unit fractions, such sums are called 
Egyptian fractions. Show that every rational number p / q, where p and q are integers with 
0 < p < q, can be written as a sum of distinct unit fractions, that is, as an Egyptian fraction. 
(Hint: Use strong induction on the numerator p to show that the greedy algorithm that adds 
the largest possible unit fraction at each stage always terminates. For example, running this 
algorithm shows that 5/7 = 1/2 + 1/5 + 1/70.) 

36. Using the algorithm in Exercise 35, write each of these numbers as Egyptian fractions.

a) 2/3 b) 5/8 c) 1 1/17 d) 44/101

Computations and Explorations 

1. Complete the basis and inductive steps, using both numerical and symbolic computation, to
prove that LJ=l j = n(n + 1)/2 for all positive integers n.

2. Complete the basis and inductive steps, using both numerical and symbolic computation, to

prove that LJ=l j2 
= n(n + 1)(2n + 1)/6 for all positive integers n.

3. Complete the basis and inductive steps, using both numerical and symbolic computation, to

prove that LJ=l j3 
= (n(n + 1)/2)

2 
for all positive integers n.

4. Use the values LJ=l j4 for n = 1, 2, 3, 4, 5, 6 to conjecture a formula for this sum that is a

polynomial of degree 5 in n . Attempt to prove your conjecture via mathematical induction
using numerical and symbolic computation.

5. Paul Erdos and E. Strauss have conjectured that the fraction 4/ n can be written as the sum
of three unit fractions, that is, 4/n = l/x + l/y + l/z, where x, y, and z are distinct positive
integers for all integers n with n > 1. Find such representation for as many positive integers
n as you can.

6. It is conjectured that the rational number p / q, where p and q are integers with 0 < p < q

and q is odd, can be expressed as an Egyptian fraction that is the sum of unit fractions
with odd denominators. Explore this conjecture using the greedy algorithm that successively
adds the unit fraction with the least positive odd denominator q at each stage. (For example,
2/7 = 1/5 + 1/1 3 + 1/1 1 5  + 1/10,465.)

Programming Projects 

* 1. List the moves in the tower of Hanoi puzzle (see Exercise 32). If you can, animate these 
moves. 

* * 2. Cover a 2n x 2n chessboard that is missing one square using L-shaped pieces (see Exercise
34). 
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3. Given a rational number p / q, express p / q as an Egyptian fraction using the algorithm
described in Exercise 35.

1.4 The Fibonacci Numbers 

V In his book Liber Abaci, written in 1202, the mathematician Fibonacci posed a problem
concerning the growth of the number of rabbits in a certain area. This problem can be 

phrased as follows: A young pair of rabbits, one of each sex, is placed on an island . 
Assuming that rabbits do not breed until they are two months old and after they are two 

months old, each pair of rabbits produces another pair each month, how many pairs are 
there after n months? 

Let In be the number of pairs of rabbits after n months. We have /1 = 1 because 
only the original pair is on the island after one month. As this pair does not breed during 

the second month, h = 1. To find the number of pairs after n months, add the number 

on the island the previous month , fn-11 to the number of newborn pairs, which equals 
fn_2, because each newborn pair comes from a pair at least two months old. This leads
to the following definition. 

G Definition. The Fibonacci sequence is defined recursively by /1 = 1, /2 = 1, and
In= fn-1 + fn-2for n > 3. The termsoftbis sequenceare called theFibonaccinumbers. 

The mathematician Edouard Lucas named this sequence after Fibonacci in the 
nineteenth century when he established many of its properties. The answer to Fibonacci's 
question is that there are f,. rabbits on the island after n months. 

Examining the initial terms of the Fibonacci sequence will be useful as we study 
their properties. 

Example 1.26. We compute the first ten Fibonacci numbers as follows: 

FIBONACCI (c. 1180-1228) (short for filus Bonacci, son of Bonacci), also 

known as Leonardo of Pisa, was born in the Italian commercial center of Pisa. 
Fibonacci was a merchant who traveled extensively throughout the Mideast, 
where he came into contact with mathematical works from the Arabic world. 

In bis Liber Abaci Fibonacci introduced Arabic notation for numerals and their 
algorithms for arithmetic into the European world. It was in this book that bis 
famous rabbit problem appeared. Fibonacci also wrote Practica geometriae, 
a treatise on geometry and trigonometry, and Liber quadratorwn, a book on 

diophantine equations. 
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h = h + /1 = 1 + 1 = 2,

f4 = h + h = 2 + 1 = 3, 

fs = /4 + h = 3 + 2 = 5,

16 = fs + /4 = 5 + 3 = 8,

h = 16 + fs = 8 + 5 = 13, 
fs = h + f 6 = 13 + 8 = 21,

Jg = f 8 + h = 21 + 13 = 34,

!10 = Jg + fs = 34 + 21 = 55.

We can define the value of fo = 0, so that h = Ji + f0. We can also define fn where
n is a negative number so that the equality in the recursive definition is satisfied (see 
Exercise 37). 

C The Fibonacci numbers occur in an amazing variety of applications. For example, 
in botany the number of spirals in plants with a pattern known as phyllotaxis is always 
a Fibonacci number. They occur in the solution of a tremendous variety of counting 
problems, such as counting the number of bit strings with no two consecutive ls (see 

[Ro07]). 

The Fibonacci numbers also satisfy an extremely large number of identities. For 
example, we can easily find an identity for the sum of the first n consecutive Fibonacci 
numbers. 

Example 1.27. The sum of the first n Fibonacci numbers for 3 � n � 8 equals l, 2, 4, 
7, 12, 20, 33, and 54. Looking at these numbers, we see that they are all just 1 less than
the Fibonacci number fn+2. This leads us to the conjecture that

n 
L fk = fn+2 -1. 
k=l 

Can we prove this identity for all positive integers n? 

We will show, in two different ways, that this identity does hold for all integers n. 

We provide two different demonstrations, to show that there is often more than one way 

to prove that an identity is true. 

First, we use the fact that fn = fn-l + fn-2 for n = 2, 3, ... to see that fk = 
A+2 -A+1fork=1, 2, 3, .... This means that

n n 
L fk = I:<A+2-A+1). 
k=l k=l 

We can easily evaluate this sum because it is telescoping. Using the formula for a 
telescoping sum found in Section 1.2, we have 

n 
L f k = fn+2 -h = fn+2 -1. 
k=l 
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This proves the result. 

We can also prove this identity using mathematical induction. The basis step holds 

because Lk=l fk = 1 and this equals fi+2 - 1 = h - 1=2 - 1=1. The inductive
hypothesis is 

n 

I: A = 1n+2 - i. 
k=l 

We must show that, under this assumption, 

n+l 

I: A = In+3 - i. 
k=l 

To prove this, note that by the inductive hypothesis we have 

n+l ( n ) 
I: 1k = I: A + In+l
k=l k=l 

= (fn+2 - 1) + fn+l
= (fn+l + fn+2) - 1

= fn+3 - 1. 

The exercise set at the end of this section asks you to prove many other identities of 

the Fibonacci numbers. 

How Fast Do the Fibonacci Numbers Grow? 

The following inequality, which shows that the Fibonacci numbers grow faster than a 

geometric series with common ratio a= (1 + ,JS)/2, will be used in Chapter 3. 

Example 1.28. We can use the second principle of mathematical induction to prove 

that fn > an-2 for n � 3 where a= (1 + ,JS)/2. The basis step consists of verifying this

inequality for n = 3 and n = 4. We have a < 2 = f3, so the theorem is true for n = 3. 
Because a2 = (3 + ,JS) /2 < 3 = f4, the theorem is true for n = 4.

The inductive hypothesis consists of assuming that ak-2 < fk for all integers k with

k.::::: n. Because a= (1 + ,JS)/2 is a solution of x2 - x - 1=0, we have a2 =a+ 1. 
Hence, 

By the inductive hypothesis, we have the inequalities 

n 2 + n-3 + a - <Jn • a < Jn-1· 

By adding these two inequalities, we conclude that 

This finishes the proof. 

an-l < fn + fn-1 = fn+l·
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We conclude this section with an explicit formula for the nth Fibonacci number. We 
will not provide a proof in the text, but Exercises 41 and 42 at the end of this section
outline how this formula can be found using linear homogeneous recurrence relations 
and generating functions, respectively. Furthermore, Exercise 40 asks that you prove this 
identity by showing that the terms satisfy the same recursive definition as the Fibonacci 
numbers do, and Exercise 45 asks for a proof via mathematical induction. The advantage
of the first two approaches is that they can be used to find the formula, while the second 
two approaches cannot. 

Theorem 1.7. Let n be a positive integer and let a= I+j5 and {J = 1-;'5. Then the
nth Fibonacci number fn is given by 

+ 1 n n Jn= v'S(a - {J ).

We have presented a few important results involving the Fibonacci numbers. There 
is a vast literature concerning these numbers and their many applications to botany, 
computer science, geography, physics, and other areas (see [Va89]). There is even a 
scholarly journal, The Fibonacci Quarterly, devoted to their study. 

EXERCISES

1. Find the following Fibonacci numbers.

a) /10 c) /15 e) ho
b) /n d) /is f) hs

2. Find each of the following Fibonacci numbers.

a) /12 c) /24 e) h2
b) /16 d) ho f) h6

3. Prove that ln+3 + fn = 2fn+2 whenever n is a positive integer.

4. Prove that ln+3 - fn = 2/n+l whenever n is a positive integer.

5. Prove that f2n = f; + 2fn-ifn whenever n is a positive integer. (Recall that /o = 0.)
6. Prove that fn-2 + fn+2 = 3/n whenever n is an integer with n � 2. (Recall that /0 = 0.) 
7. Find and prove a simple formula for the sum of the first n Fibonacci numbers with odd indices

when n is a positive integer. That is, find a simple formula for /1 + h + · · · + f2n-l· 
8. Find and prove a simple formula for the sum of the first n Fibonacci numbers with even 

indices when n is a positive integer. That is, find a simple formula for h + /4 + · · · + f2n· 
9. Find and prove a simple formula for the expression fn - fn-l + fn-2 - • · · + (-l)n+l /1

when n is a positive integer.

10. Prove that 12n+l = t;+l + J; whenever n is a positive integer.

11. Prove that f2n = t;+l - 1;_1 whenever n is a positive integer. (Recall that /o = 0.) 

12. Prove that In+ fn-1+fn-2+2/n-3 + 4/n-4 + 8fn-s + · · · + 2n-3 = 2"-1 
whenever n is

an integer with n � 3.
13. Prove that L:j=1 !f = ff + !f + · · · + 1; = fnfn+i for every positive integer n.
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