
1

More GRASP Patterns
(from Larman, Ch. 34)

• Note that these “patterns” are really just
very basic OO design principles
– Polymorphism
– Pure Fabrication
– Indirection
– Don’t Talk to Strangers

GRASP Patterns--Polymorphism

• Problem: How to handle alternative
behavior based upon type.

• E.g. Who is responsible for authorizing
different types of payments.

Cash_Payment Credit_Payment Check_Payment

2

Polymorphism--Continued
• Solution: use subclassing. Make subclass

objects responsible for their own behavior
and let proper behavior be invoked
automartically by subclass type.

Payment

CashPayment CreditPayment CheckPayment

Authorize()

Authorize() Authorize() Authorize()

GRASP Pattern--Pure Fabrication
• Problem: Sometimes, during design,

responsibilities need to be assigned that are
not naturally attributable to any of the
conceptual classes.

• Solution: Create an artificial class that does
not represents anything in the problem
domain.

• Note: Most of the GoF patterns involve
fabricating new classes--e.g. observer,
adapter, abstract factory, etc.

3

GRASP Pattern--Indirection

• Problem: To reduce direct couplings with
objects which are subject to change.

• Solution: Use an intermediate object to
mediate between other objects .

• The GoF Proxy, Bridge, and Mediator
patterns utilize indirection.

Indirection--A Simple Example
Consider a CreditAuthorizationService class that needs to
use a Modem

Bad approach: Put low-level calls to the Modem API
directly in the methods of the
CreditAuthorizationClass

Better approach: Add an intermediate Modem class
 that insulates CreditAuthorizationClass
 from the Modem API.

4

Indirection Example--Continued

Modem

dial()
receive()
send()
...

CreditAuthorization
Service

authorize(payment)

Modem
1: dial(phoneNum)

Etc.

Indirection--A More Complex Example
• Consider the implementation of a dialog box for

a GUI.
• The dialog box uses a window to present a series

of widgets, such as buttons, text fields, etc.
• There are many dependencies among widgets--

e.g. a button may be disabled when an associated
text field is empty.

• Different dialog boxes will have different
dependencies.

• Hence, widget classes will have to be
customized for each dialog--e.g. by subclassing

5

Indirection--Using a Mediator

DialogMediator

ShowDialog()
CreateWidgets()
WidgetChanged(Widget)

Widget

Changed()
mediator

TextField

SetText()

ListBox

GetSelection()

FontDialogMediator

CreateWidgets()
WidgetChanged(Widget)

list

field

mediator->WidgetChanged(this)

Note: This is a GoF pattern: Mediator Pattern

GRASP Patterns--Don’t Talk to
Strangers

• Problem: To avoid high coupling.
Specifically, to limit the degree of
knowledge that client objects need to
possess regarding the internal structure and
connections of server objects.

6

Don’t Talk to Strangers (Law of
Demeter)

• Within a method, other methods should be
invoked only upon the following objects:
– The this object (self)
– A parameter of the method
– An attribute of self
– An element of a collection that is an attribute of self
– A local object of the method.

• Intent is avoid coupling a client to indirect
objects or knowledge of the internal structure of
direct objects

Don’t talk to Strangers--Example
Post

paymentAmount():Float
endSale()
enterItem()
makePayment() Sale

Date:Date
isComplete:Boolean
time:Time
becomeComplete()
makeLineItem()
makePayment()
payment():Payment
total():Float

Payment
amountTendered

amountTendered():Float

Captures

Paid_by

1

1

1

1

7

Don’t Talk to Strangers Example--
Continued

:Post

amt := paymentAmount():Float

1: pmt := payment():Payment

:Sale

pmt:Payment

2: amt := amountTendered():Float

Note: This is similar to the notion of “Stamp Coupling” in
our earlier discussion of coupling and cohesion.

Don’t Talk to Strangers Example--
Better Approach

:Post

amt := paymentAmount():Float

1: amt := paymentAmount():Float
:Sale

pmt:Payment 2: amt := amountTendered():Float

Note: In this case :Post delegates the paymentAmount()
method to :Sale. A paymentAmount() method must be added
to the Sale class.

