
131

Chapter

9
 9 DOMAIN MODELS

It’s all very well in practice, but it will never work in theory.

—anonymous management maxim

Introduction

more advanced
domain modeling
p. 507

A domain model is the most important—and classic—model in OO analysis.1 It
illustrates noteworthy concepts in a domain. It can act as a source of inspiration
for designing some software objects and will be an input to several artifacts
explored in the case studies. This chapter also shows the value of OOA/D knowl-
edge over UML notation; the basic notation is trivial, but there are subtle mod-
eling guidelines for a useful model—expertise can take weeks or months. This
chapter explores basic skills in creating domain models.

Objectives
● Identify conceptual classes related to the current iteration.

● Create an initial domain model.

● Model appropriate attributes and associations.

1. Use cases are an important requirements analysis artifact, but are not object-oriented.
They emphasize an activity view.

Domain
Modeling

System Sequence
Diagrams

Operation
Contracts

What’s Next?

Iteration 1
Requirements

Having scoped the work for iteration-1, this chapter explores a partial
domain model. The next examines the specific operations upon the system
that are implied in the use case scenarios under design for this iteration.

Other
Requirements

domain model 1.fm Page 131 Tuesday, November 30, 2004 6:14 PM

9 – DOMAIN MODELS

132

Figure 9.1 Sample UP artifact influence.

domain layer
p. 136

As with all things in an agile modeling and UP spirit, a domain model is
optional. UP artifact influence emphasizing a domain model is shown in Figure
9.1. Bounded by the use case scenarios under development for the current itera-
tion, the domain model can be evolved to show related noteworthy concepts. The
related use case concepts and insight of experts will be input to its creation. The
model can in turn influence operation contracts, a glossary, and the Design
Model, especially the software objects in the domain layer of the Design Model.

Process Sale

1. Customer arrives
...
2. ...
3. Cashier enters
item identifier.
4....

Use Case Text

Operation: enterItem(…)

Post-conditions:
- . . .

Operation Contracts

Sale

date
. . .

Sales
LineItem

quantity

1..*1 . . .

. . .

the domain objects,
attributes, and associations
that undergo state changes

Domain Model

Use-Case Model

Design Model

: Register

enterItem
(itemID, quantity)

: ProductCatalog

spec = getProductSpec(itemID)

addLineItem(spec, quantity)

: Sale

. . .

conceptual
classes in
the
domain
inspire the
names of
some
software
classes in
the design

conceptual classes –
terms, concepts
attributes, associations

Cashier: …
Item ID: …
...

Glossary

elaboration of
some terms in
the domain
model

Require-
ments

Business
Modeling

Design

Sample UP Artifact Relationships

domain model 1.fm Page 132 Tuesday, November 30, 2004 6:14 PM

133

EXAMPLE

9.1 Example

Figure 9.2 shows a partial domain model drawn with UML class diagram
notation. It illustrates that the conceptual classes of Payment and Sale are
significant in this domain, that a Payment is related to a Sale in a way that is
meaningful to note, and that a Sale has a date and time, information attributes
we care about.

Figure 9.2 Partial domain model—a visual dictionary.

conceptual
perspective p. 12

Applying the UML class diagram notation for a domain model yields a concep-
tual perspective model.

Identifying a rich set of conceptual classes is at the heart of OO analysis. If it is
done with skill and short time investment (say, no more than a few hours in each
early iteration), it usually pays off during design, when it supports better under-
standing and communication.

Register

Item

Store

address
name

Sale

date
time

Payment

amount

Sales
LineItem

quantity

Stocked-in

*

Houses

1..*

Contained-in

1..*

Records-sale-of

0..1

Paid-by

1

1

1

1

1

1

0..1

1

Captured-on 4

concept
or domain
object

association

attributes

Guideline

Avoid a waterfall-mindset big-modeling effort to make a thorough or “cor-
rect” domain model—it won’t ever be either, and such over-modeling efforts
lead to analysis paralysis, with little or no return on the investment.

domain model 1.fm Page 133 Tuesday, November 30, 2004 6:14 PM

9 – DOMAIN MODELS

134

9.2 What is a Domain Model?

The quintessential object-oriented analysis step is the decomposition of a
domain into noteworthy concepts or objects.

A domain model is a visual representation of conceptual classes or real-situa-
tion objects in a domain [MO95, Fowler96]. Domain models have also been
called conceptual models (the term used in the first edition of this book),
domain object models, and analysis object models.2

The UP defines the Domain Model3 as one of the artifacts that may be created in
the Business Modeling discipline. More precisely, the UP Domain Model is a
specialization of the UP Business Object Model (BOM) “focusing on explain-
ing ‘things’ and products important to a business domain” [RUP]. That is, a
Domain Model focuses on one domain, such as POS related things. The more
broad BOM, not covered in this introductory text and not something I encourage
creating (because it can lead to too much up-front modeling), is an expanded,
often very large and difficult to create, multi-domain model that covers the
entire business and all its sub-domains.

Applying UML notation, a domain model is illustrated with a set of class dia-
grams in which no operations (method signatures) are defined. It provides a
conceptual perspective. It may show:

■ domain objects or conceptual classes

■ associations between conceptual classes

■ attributes of conceptual classes

Definition: Why Call a Domain Model a “Visual Dictionary”?

Please reflect on Figure 9.2 for a moment. See how it visualizes and relates
words or concepts in the domain. It also shows an abstraction of the conceptual

Definition

In the UP, the term “Domain Model” means a representation of real-situation
conceptual classes, not of software objects. The term does not mean a set of
diagrams describing software classes, the domain layer of a software architec-
ture, or software objects with responsibilities.

2. They are also related to conceptual entity relationship models, which are capable of
showing purely conceptual views of domains, but that have been widely re-interpreted
as data models for database design. Domain models are not data models.

3. Capitalization of “Domain Model” or terms is used to emphasize it as an official model
name defined in the UP, versus the general well-known concept of “domain models.”

domain model 1.fm Page 134 Tuesday, November 30, 2004 6:14 PM

135

WHAT IS A DOMAIN MODEL?

classes, because there are many other things one could communicate about reg-
isters, sales, and so forth.

The information it illustrates (using UML notation) could alternatively have
been expressed in plain text (in the UP Glossary). But it’s easy to understand
the terms and especially their relationships in a visual language, since our
brains are good at understanding visual elements and line connections.

Therefore, the domain model is a visual dictionary of the noteworthy abstrac-
tions, domain vocabulary, and information content of the domain.

Definition: Is a Domain Model a Picture of Software Business Objects?

A UP Domain Model, as shown in Figure 9.3, is a visualization of things in a
real-situation domain of interest, not of software objects such as Java or C#
classes, or software objects with responsibilities (see Figure 9.4). Therefore, the
following elements are not suitable in a domain model:

■ Software artifacts, such as a window or a database, unless the domain being
modeled is of software concepts, such as a model of graphical user interfaces.

■ Responsibilities or methods.4

Figure 9.3 A domain model shows real-situation conceptual classes, not
software classes.

Figure 9.4 A domain model does not show software artifacts or classes.

4. In object modeling, we usually speak of responsibilities related to software objects.
And methods are purely a software concept. But, the domain model describes real-sit-
uation concepts, not software objects. Considering object responsibilities during design
work is very important; it is just not part of this model.

Sale

dateTime

visualization of a real-world concept in
the domain of interest

it is a not a picture of a software class

SalesDatabase software artifact; not part
of domain modelavoid

software class; not part
of domain model

Sale

date
time

print()

avoid

domain model 1.fm Page 135 Tuesday, November 30, 2004 6:14 PM

9 – DOMAIN MODELS

136

Definition: What are Two Traditional Meanings of “Domain Model”?

In the UP and thus this chapter, “Domain Model” is a conceptual perspective of
objects in a real situation of the world, not a software perspective. But the term
is overloaded; it also has been used (especially in the Smalltalk community
where I did most of my early OO development work in the 1980s) to mean “the
domain layer of software objects.” That is, the layer of software objects below the
presentation or UI layer that is composed of domain objects—software objects
that represent things in the problem domain space with related “business logic”
or “domain logic” methods. For example, a Board software class with a
getSquare method.

Which definition is correct? Well, all of them! The term has long established
uses in different communities to mean different things.

I’ve seen lots of confusion generated by people using the term in different ways,
without explaining which meaning they intend, and without recognizing that
others may be using it differently.

In this book, I’ll usually write domain layer to indicate the second software-
oriented meaning of domain model, as that’s quite common.

Definition: What are Conceptual Classes?

The domain model illustrates conceptual classes or vocabulary in the domain.
Informally, a conceptual class is an idea, thing, or object. More formally, a con-
ceptual class may be considered in terms of its symbol, intension, and extension
[MO95] (see Figure 9.5).

■ Symbol—words or images representing a conceptual class.

■ Intension—the definition of a conceptual class.

■ Extension—the set of examples to which the conceptual class applies.

For example, consider the conceptual class for the event of a purchase transac-
tion. I may choose to name it by the (English) symbol Sale. The intension of a
Sale may state that it “represents the event of a purchase transaction, and has a
date and time.” The extension of Sale is all the examples of sales; in other words,
the set of all sale instances in the universe.

Definition: Are Domain and Data Models the Same Thing?

A domain model is not a data model (which by definition shows persistent data
to be stored somewhere), so do not exclude a class simply because the require-
ments don’t indicate any obvious need to remember information about it (a crite-
rion common in data modeling for relational database design, but not relevant
to domain modeling) or because the conceptual class has no attributes. For
example, it’s valid to have attributeless conceptual classes, or conceptual classes
that have a purely behavioral role in the domain instead of an information role.

domain model 1.fm Page 136 Tuesday, November 30, 2004 6:14 PM

137

MOTIVATION: WHY CREATE A DOMAIN MODEL?

Figure 9.5 A conceptual class has a symbol, intension, and extension.

9.3 Motivation: Why Create a Domain Model?

I’ll share a story that I’ve experienced many times in OO consulting and coach-
ing. In the early 1990s I was working with a group developing a funeral services
business system in Smalltalk, in Vancouver (you should see the domain model!).
Now, I knew almost nothing about this business, so one reason to create a
domain model was so that I could start to understand their key concepts and
vocabulary.

domain layer
p. 206

We also wanted to create a domain layer of Smalltalk objects representing
business objects and logic. So, we spent perhaps one hour sketching a UML-ish
(actually OMT-ish, whose notation inspired UML) domain model, not worrying
about software, but simply identifying the key terms. Then, those terms we
sketched in the domain model, such as Service (like flowers in the funeral room,
or playing “You Can’t Always Get What You Want”), were also used as the
names of key software classes in our domain layer implemented in Smalltalk.

This similarity of naming between the domain model and the domain layer (a
real “service” and a Smalltalk Service) supported a lower gap between the soft-
ware representation and our mental model of the domain.

Sale

date
time

concept's symbol

"A sale represents the event
of a purchase transaction. It
has a date and time."

concept's intension

sale-1

sale-3
sale-2

sale-4

concept's extension

domain model 1.fm Page 137 Tuesday, November 30, 2004 6:14 PM

9 – DOMAIN MODELS

138

Motivation: Lower Representational Gap with OO Modeling

This is a key idea in OO: Use software class names in the domain layer inspired
from names in the domain model, with objects having domain-familiar informa-
tion and responsibilities. Figure 9.6 illustrates the idea. This supports a low
representational gap between our mental and software models. And that’s
not just a philosophical nicety—it has a practical time-and-money impact. For
example, here’s a source-code payroll program written in 1953:

1000010101000111101010101010001010101010101111010101 …

As computer science people, we know it runs, but the gap between this software
representation and our mental model of the payroll domain is huge; that pro-
foundly affects comprehension (and modification) of the software. OO modeling
can lower that gap.

Of course, object technology is also of value because it can support the design of
elegant, loosely coupled systems that scale and extend easily, as will be explored
in the remainder of the book. A lowered representational gap is useful, but argu-
ably secondary to the advantage objects have in supporting ease of change and
extension, and managing and hiding complexity.

Figure 9.6 Lower representational gap with OO modeling.

Payment

amount

Sale

date
time

Pays-for

Payment

amount: Money

getBalance(): Money

Sale

date: Date
startTime: Time

getTotal(): Money
. . .

Pays-for

UP Domain Model
Stakeholder's view of the noteworthy concepts in the domain.

UP Design Model
The object-oriented developer has taken inspiration from the real world domain
in creating software classes.

Therefore, the representational gap between how stakeholders conceive the
domain, and its representation in software, has been lowered.

1 1

1 1

A Payment in the Domain Model
is a concept, but a Payment in
the Design Model is a software
class. They are not the same
thing, but the former inspired the
naming and definition of the
latter.

This reduces the representational
gap.

This is one of the big ideas in
object technology.

inspires
objects

and
names in

domain model 1.fm Page 138 Tuesday, November 30, 2004 6:14 PM

139

GUIDELINE: HOW TO CREATE A DOMAIN MODEL?

9.4 Guideline: How to Create a Domain Model?

Bounded by the current iteration requirements under design:

1. Find the conceptual classes (see a following guideline).

2. Draw them as classes in a UML class diagram.

3. Add associations and attributes. See p. 149 and p. 158.

9.5 Guideline: How to Find Conceptual Classes?

Since a domain model shows conceptual classes, a central question is: How do I
find them?

What are Three Strategies to Find Conceptual Classes?

1. Reuse or modify existing models. This is the first, best, and usually easiest
approach, and where I will start if I can. There are published, well-crafted
domain models and data models (which can be modified into domain models)
for many common domains, such as inventory, finance, health, and so forth.
Example books that I’ll turn to include Analysis Patterns by Martin Fowler,
Data Model Patterns by David Hay, and the Data Model Resource Book (vol-
umes 1 and 2) by Len Silverston.

2. Use a category list.

3. Identify noun phrases.

Reusing existing models is excellent, but outside our scope. The second method,
using a category list, is also useful.

Method 2: Use a Category List

We can kick-start the creation of a domain model by making a list of candidate
conceptual classes. Table 9.1 contains many common categories that are usually
worth considering, with an emphasis on business information system needs. The
guidelines also suggest some priorities in the analysis. Examples are drawn
from the 1) POS, 2) Monopoly, and 3) airline reservation domains.

domain model 1.fm Page 139 Tuesday, November 30, 2004 6:14 PM

9 – DOMAIN MODELS

140

Conceptual Class Category Examples

business transactions

Guideline: These are critical (they involve
money), so start with transactions.

Sale, Payment

Reservation

transaction line items

Guideline: Transactions often come with related
line items, so consider these next.

SalesLineItem

product or service related to a transaction
or transaction line item

Guideline: Transactions are for something (a
product or service). Consider these next.

Item

Flight, Seat, Meal

where is the transaction recorded?

Guideline: Important.

Register, Ledger

FlightManifest

roles of people or organizations related to
the transaction; actors in the use case

Guideline: We usually need to know about the
parties involved in a transaction.

Cashier, Customer, Store
MonopolyPlayer
Passenger, Airline

place of transaction; place of service Store

Airport, Plane, Seat

noteworthy events, often with a time or
place we need to remember

Sale, Payment
MonopolyGame
Flight

physical objects

Guideline: This is especially relevant when cre-
ating device-control software, or simulations.

Item, Register
Board, Piece, Die
Airplane

descriptions of things

Guideline: See p. 147 for discussion.

ProductDescription

FlightDescription

domain model 1.fm Page 140 Tuesday, November 30, 2004 6:14 PM

141

GUIDELINE: HOW TO FIND CONCEPTUAL CLASSES?

Table 9.1 Conceptual Class Category List.

Method 3: Finding Conceptual Classes with Noun Phrase Identification

Another useful technique (because of its simplicity) suggested in [Abbot83] is
linguistic analysis: Identify the nouns and noun phrases in textual descrip-
tions of a domain, and consider them as candidate conceptual classes or
attributes.5

catalogs

Guideline: Descriptions are often in a catalog.

ProductCatalog

FlightCatalog

containers of things (physical or informa-
tion)

Store, Bin
Board
Airplane

things in a container Item
Square (in a Board)
Passenger

other collaborating systems CreditAuthorizationSystem

AirTrafficControl

records of finance, work, contracts, legal
matters

Receipt, Ledger

MaintenanceLog

financial instruments Cash, Check, LineOfCredit

TicketCredit

schedules, manuals, documents that are
regularly referred to in order to perform
work

DailyPriceChangeList

RepairSchedule

Conceptual Class Category Examples

Guideline

Care must be applied with this method; a mechanical noun-to-class mapping
isn’t possible, and words in natural languages are ambiguous.

5. Linguistic analysis has become more sophisticated; it also goes by the name natural
language modeling. See [Moreno97] for example.

domain model 1.fm Page 141 Tuesday, November 30, 2004 6:14 PM

9 – DOMAIN MODELS

142

Nevertheless, linguistic analysis is another source of inspiration. The fully
dressed use cases are an excellent description to draw from for this analysis. For
example, the current scenario of the Process Sale use case can be used.

The domain model is a visualization of noteworthy domain concepts and vocabu-
lary. Where are those terms found? Some are in the use cases. Others are in
other documents, or the minds of experts. In any event, use cases are one rich
source to mine for noun phrase identification.

Some of these noun phrases are candidate conceptual classes, some may refer to
conceptual classes that are ignored in this iteration (for example, “Accounting”
and “commissions”), and some may be simply attributes of conceptual classes.
See p. 160 for advice on distinguishing between the two.

A weakness of this approach is the imprecision of natural language; different
noun phrases may represent the same conceptual class or attribute, among
other ambiguities. Nevertheless, it is recommended in combination with the
Conceptual Class Category List technique.

Main Success Scenario (or Basic Flow):
1. Customer arrives at a POS checkout with goods and/or services to purchase.
2. Cashier starts a new sale.
3. Cashier enters item identifier.
4. System records sale line item and presents item description, price, and running

total. Price calculated from a set of price rules.
Cashier repeats steps 2-3 until indicates done.
5. System presents total with taxes calculated.
6. Cashier tells Customer the total, and asks for payment.
7. Customer pays and System handles payment.
8. System logs the completed sale and sends sale and payment information to the

external Accounting (for accounting and commissions) and Inventory systems (to
update inventory).

9. System presents receipt.
10.Customer leaves with receipt and goods (if any).

Extensions (or Alternative Flows):
. . .
7a. Paying by cash:

1. Cashier enters the cash amount tendered.
2. System presents the balance due, and releases the cash drawer.
3. Cashier deposits cash tendered and returns balance in cash to Customer.
4. System records the cash payment.

domain model 1.fm Page 142 Tuesday, November 30, 2004 6:14 PM

143

EXAMPLE: FIND AND DRAW CONCEPTUAL CLASSES

9.6 Example: Find and Draw Conceptual Classes

Case Study: POS Domain

iteration-1
requirements
p. 124

From the category list and noun phrase analysis, a list is generated of candidate
conceptual classes for the domain. Since this is a business information system,
I’ll focus first on the category list guidelines that emphasize business transac-
tions and their relationship with other things. The list is constrained to the
requirements and simplifications currently under consideration for iteration-1,
the basic cash-only scenario of Process Sale.

There is no such thing as a “correct” list. It is a somewhat arbitrary collection of
abstractions and domain vocabulary that the modelers consider noteworthy.
Nevertheless, by following the identification strategies, different modelers will
produce similar lists.

In practice, I don’t create a text list first, but immediately draw a UML class
diagram of the conceptual classes as we uncover them. See Figure 9.7.

Figure 9.7 Initial POS domain model.

Adding the associations and attributes is covered in later sections.

Sale

CashPayment

SalesLineItem

Item

Register

Ledger

Cashier

Customer

Store

ProductDescription

ProductCatalog

StoreRegister SaleItem

Cash
Payment

Sales
LineItem Cashier Customer

Product
Catalog

Product
Description

Ledger

domain model 1.fm Page 143 Tuesday, November 30, 2004 6:14 PM

9 – DOMAIN MODELS

144

Case Study: Monopoly Domain

iteration-1
requirements
p. 124

From the Category List and noun phrase analysis, I generate a list of candidate
conceptual classes for the iteration-1 simplified scenario of Play a Monopoly
Game (see Figure 9.8). Since this is a simulation, I emphasize the noteworthy
tangible, physical objects in the domain.

Figure 9.8 Initial Monopoly domain model.

9.7 Guideline: Agile Modeling—Sketching a Class Diagram

Notice the sketching style in the UML class diagram of Figure 9.8—keeping the
bottom and right sides of the class boxes open. This makes it easier to grow the
classes as we discover new elements. And although I’ve grouped the class boxes
for compactness in this book diagram, on a whiteboard I’ll spread them out.

9.8 Guideline: Agile Modeling—Maintain the Model in a Tool?

It’s normal to miss significant conceptual classes during early domain modeling,
and to discover them later during design sketching or programming. If you are
taking an agile modeling approach, the purpose of creating a domain model is to
quickly understand and communicate a rough approximation of the key con-
cepts. Perfection is not the goal, and agile models are usually discarded shortly
after creation (although if you’ve used a whiteboard, I recommend taking a digi-
tal snapshot). From this viewpoint, there is no motivation to maintain or update
the model. But that doesn’t mean it’s wrong to update the model.

If someone wants the model maintained and updated with new discoveries,
that’s a good reason to redraw the whiteboard sketch within a UML CASE tool,
or to originally do the drawing with a tool and a computer projector (for others to

domain model 1.fm Page 144 Tuesday, November 30, 2004 6:14 PM

145

GUIDELINE: REPORT OBJECTS—INCLUDE ‘RECEIPT’ IN THE MODEL?

see the diagram easily). But, ask yourself: Who is going to use the updated
model, and why? If there isn’t a practical reason, don’t bother. Often, the evolv-
ing domain layer of the software hints at most of the noteworthy terms, and a
long-life OO analysis domain model doesn’t add value.

9.9 Guideline: Report Objects—Include ‘Receipt’ in the Model?

Receipt is a noteworthy term in the POS domain. But perhaps it’s only a report
of a sale and payment, and thus duplicate information. Should it be in the
domain model?

Here are some factors to consider:

■ In general, showing a report of other information in a domain model is not
useful since all its information is derived or duplicated from other sources.
This is a reason to exclude it.

■ On the other hand, it has a special role in terms of the business rules: It
usually confers the right to the bearer of the (paper) receipt to return bought
items. This is a reason to show it in the model.

Since item returns are not being considered in this iteration, Receipt will be
excluded. During the iteration that tackles the Handle Returns use case, we
would be justified to include it.

9.10 Guideline: Think Like a Mapmaker; Use Domain Terms

The mapmaker strategy applies to both maps and domain models.

The principle is similar to the Use the Domain Vocabulary strategy [Coad95].

Guideline

Make a domain model in the spirit of how a cartographer or mapmaker
works:

■ Use the existing names in the territory. For example, if developing a
model for a library, name the customer a “Borrower” or “Patron”—the
terms used by the library staff.

■ Exclude irrelevant or out-of-scope features. For example, in the Monopoly
domain model for iteration-1, cards (such as the “Get out of Jail Free”
card) are not used, so don’t show a Card in the model this iteration.

■ Do not add things that are not there.

domain model 1.fm Page 145 Tuesday, November 30, 2004 6:14 PM

9 – DOMAIN MODELS

146

9.11 Guideline: How to Model the Unreal World?

Some software systems are for domains that find very little analogy in natural
or business domains; software for telecommunications is an example. Yet it is
still possible to create a domain model in these domains. It requires a high
degree of abstraction, stepping back from familiar non-OO designs, and listen-
ing carefully to the core vocabulary and concepts that domain experts use.

For example, here are candidate conceptual classes related to the domain of a
telecommunication switch: Message, Connection, Port, Dialog, Route, Protocol.

9.12 Guideline: A Common Mistake with Attributes vs. Classes

Perhaps the most common mistake when creating a domain model is to repre-
sent something as an attribute when it should have been a conceptual class. A
rule of thumb to help prevent this mistake is:

As an example, should store be an attribute of Sale, or a separate conceptual
class Store?

In the real world, a store is not considered a number or text—the term suggests
a legal entity, an organization, and something that occupies space. Therefore,
Store should be a conceptual class.

As another example, consider the domain of airline reservations. Should desti-
nation be an attribute of Flight, or a separate conceptual class Airport?

In the real world, a destination airport is not considered a number or text—it is
a massive thing that occupies space. Therefore, Airport should be a concept.

Guideline

If we do not think of some conceptual class X as a number or text in the real
world, X is probably a conceptual class, not an attribute.

Sale Store

phoneNumber

Sale

store
or... ?

Flight Airport

name

Flight

destination
or... ?

domain model 1.fm Page 146 Tuesday, November 30, 2004 6:14 PM

147

GUIDELINE: WHEN TO MODEL WITH ‘DESCRIPTION’ CLASSES?

9.13 Guideline: When to Model with ‘Description’ Classes?

A description class contains information that describes something else. For
example, a ProductDescription that records the price, picture, and text descrip-
tion of an Item. This was first named the Item-Descriptor pattern in [Coad92].

Motivation: Why Use ‘Description’ Classes?

The following discussion may at first seem related to a rare, highly specialized
issue. However, it turns out that the need for description classes is common in
many domain models.

Assume the following:

■ An Item instance represents a physical item in a store; as such, it may even
have a serial number.

■ An Item has a description, price, and itemID, which are not recorded any-
where else.

■ Everyone working in the store has amnesia.

■ Every time a real physical item is sold, a corresponding software instance of
Item is deleted from “software land.”

With these assumptions, what happens in the following scenario?

There is strong demand for the popular new vegetarian burger—ObjectBurger.
The store sells out, implying that all Item instances of ObjectBurgers are
deleted from computer memory.

Now, here is one problem: If someone asks, “How much do ObjectBurgers cost?”,
no one can answer, because the memory of their price was attached to invento-
ried instances, which were deleted as they were sold.

Here are some related problems: The model, if implemented in software similar
to the domain model, has duplicate data, is space-inefficient, and error-prone
(due to replicated information) because the description, price, and itemID are
duplicated for every Item instance of the same product.

The preceding problem illustrates the need for objects that are descriptions
(sometimes called specifications) of other things. To solve the Item problem,
what is needed is a ProductDescription class that records information about
items. A ProductDescription does not represent an Item, it represents a descrip-
tion of information about items. See Figure 9.9.

A particular Item may have a serial number; it represents a physical instance. A
ProductDescription wouldn’t have a serial number.

Switching from a conceptual to a software perspective, note that even if all
inventoried items are sold and their corresponding Item software instances are
deleted, the ProductDescription still remains.

domain model 1.fm Page 147 Tuesday, November 30, 2004 6:14 PM

9 – DOMAIN MODELS

148

The need for description classes is common in sales, product, and service
domains. It is also common in manufacturing, which requires a description of a
manufactured thing that is distinct from the thing itself.

Figure 9.9 Descriptions about other things. The * means a multiplicity of
“many.” It indicates that one ProductDescription may describe many (*) Items.

Guideline: When Are Description Classes Useful?

Example: Descriptions in the Airline Domain

As another example, consider an airline company that suffers a fatal crash of
one of its planes. Assume that all the flights are cancelled for six months pend-
ing completion of an investigation. Also assume that when flights are cancelled,
their corresponding Flight software objects are deleted from computer memory.
Therefore, after the crash, all Flight software objects are deleted.

Item

description
price
serial number
itemID

ProductDescription

description
price
itemID

Item

serial number
Describes Better

Worse

1 *

Guideline

Add a description class (for example, ProductDescription) when:

■ There needs to be a description about an item or service, independent of
the current existence of any examples of those items or services.

■ Deleting instances of things they describe (for example, Item) results in a
loss of information that needs to be maintained, but was incorrectly asso-
ciated with the deleted thing.

■ It reduces redundant or duplicated information.

domain model 1.fm Page 148 Tuesday, November 30, 2004 6:14 PM

149

ASSOCIATIONS

If the only record of what airport a flight goes to is in the Flight software
instances, which represent specific flights for a particular date and time, then
there is no longer a record of what flight routes the airline has.

The problem can be solved, both from a purely conceptual perspective in a
domain model and from a software perspective in the software designs, with a
FlightDescription that describes a flight and its route, even when a particular
flight is not scheduled (see Figure 9.10).

Figure 9.10 Descriptions about other things.

Note that the prior example is about a service (a flight) rather than a good (such
as a veggieburger). Descriptions of services or service plans are commonly
needed.

As another example, a mobile phone company sells packages such as “bronze,”
“gold,” and so forth. It is necessary to have the concept of a description of the
package (a kind of service plan describing rates per minute, wireless Internet
content, the cost, and so forth) separate from the concept of an actual sold pack-
age (such as “gold package sold to Craig Larman on Jan. 1, 2047 at $55 per
month”). Marketing needs to define and record this service plan or MobileCom-
municationsPackageDescription before any are sold.

9.14 Associations

It’s useful to find and show associations that are needed to satisfy the informa-
tion requirements of the current scenarios under development, and which aid in

Worse

Flight

date
time

FlightDescription

number

Airport

name

Describes-flights-to

Described-by

Flight

date
number
time

Airport

name

Flies-to

Better

1*

1*

1

*

domain model 1.fm Page 149 Tuesday, November 30, 2004 6:14 PM

9 – DOMAIN MODELS

150

understanding the domain.

An association is a relationship between classes (more precisely, instances of
those classes) that indicates some meaningful and interesting connection (see
Figure 9.11).

In the UML, associations are defined as “the semantic relationship between two
or more classifiers that involve connections among their instances.”

Figure 9.11 Associations.

Guideline: When to Show an Association?

Associations worth noting usually imply knowledge of a relationship that needs
to be preserved for some duration—it could be milliseconds or years, depending
on context. In other words, between what objects do we need some memory of a
relationship?

For example, do we need to remember what SalesLineItem instances are associ-
ated with a Sale instance? Definitely, otherwise it would not be possible to
reconstruct a sale, print a receipt, or calculate a sale total.

And we need to remember completed Sales in a Ledger, for accounting and legal
purposes.

Because the domain model is a conceptual perspective, these statements about
the need to remember refer to a need in a real situation of the world, not a soft-
ware need, although during implementation many of the same needs will arise.

In the monopoly domain, we need to remember what Square a Piece (or Player)
is on—the game doesn’t work if that isn’t remembered. Likewise, we need to
remember what Piece is owned by a particular Player. We need to remember
what Squares are part of a particular Board.

But on the other hand, there is no need to remember that the Die (or the plural,
“dice”) total indicates the Square to move to. It’s true, but we don’t need to have
an ongoing memory of that fact, after the move has been made. Likewise, a
Cashier may look up ProductDescriptions, but there is no need to remember the
fact of a particular Cashier looking up particular ProductDescriptions.

SaleRegister
Records-current

1 1

association

domain model 1.fm Page 150 Tuesday, November 30, 2004 6:14 PM

151

ASSOCIATIONS

Guideline: Why Should We Avoid Adding Many Associations?

We need to avoid adding too many associations to a domain model. Digging back
into our discrete mathematics studies, you may recall that in a graph with n
nodes, there can be (n·(n-1))/2 associations to other nodes—a potentially very
large number. A domain model with 20 classes could have 190 associations lines!
Many lines on the diagram will obscure it with “visual noise.” Therefore, be par-
simonious about adding association lines. Use the criterion guidelines suggested
in this chapter, and focus on “need-to-remember” associations.

Perspectives: Will the Associations Be Implemented In Software?

During domain modeling, an association is not a statement about data flows,
database foreign key relationships, instance variables, or object connections in a
software solution; it is a statement that a relationship is meaningful in a purely
conceptual perspective—in the real domain.

That said, many of these relationships will be implemented in software as paths
of navigation and visibility (both in the Design Model and Data Model). But the
domain model is not a data model; associations are added to highlight our rough
understanding of noteworthy relationships, not to document object or data
structures.

Applying UML: Association Notation

An association is represented as a line between classes with a capitalized associ-
ation name. See Figure 9.12.

The ends of an association may contain a multiplicity expression indicating the
numerical relationship between instances of the classes.

The association is inherently bidirectional, meaning that from instances of
either class, logical traversal to the other is possible. This traversal is purely
abstract; it is not a statement about connections between software entities.

Guideline

Consider including the following associations in a domain model:

■ Associations for which knowledge of the relationship needs to be
preserved for some duration (“need-to-remember” associations).

■ Associations derived from the Common Associations List.

domain model 1.fm Page 151 Tuesday, November 30, 2004 6:14 PM

9 – DOMAIN MODELS

152

Figure 9.12 The UML notation for associations.

An optional “reading direction arrow” indicates the direction to read the associa-
tion name; it does not indicate direction of visibility or navigation. If the arrow
is not present, the convention is to read the association from left to right or top
to bottom, although the UML does not make this a rule (see Figure 9.12).

Guideline: How to Name an Association in UML?

Simple association names such as “Has” or “Uses” are usually poor, as they sel-
dom enhance our understanding of the domain.

For example,

■ Sale Paid-by CashPayment

❍ bad example (doesn’t enhance meaning): Sale Uses CashPayment

■ Player Is-on Square

❍ bad example (doesn’t enhance meaning): Player Has Square

Caution

The reading direction arrow has no meaning in terms of the model; it is only
an aid to the reader of the diagram.

Guideline

Name an association based on a ClassName-VerbPhrase-ClassName format
where the verb phrase creates a sequence that is readable and meaningful.

SaleRegister Records-current 4
0..11

association name multiplicity

-"reading direction arrow"
-it has no meaning except to indicate direction of
 reading the association label
-often excluded

domain model 1.fm Page 152 Tuesday, November 30, 2004 6:14 PM

153

ASSOCIATIONS

Association names should start with a capital letter, since an association repre-
sents a classifier of links between instances; in the UML, classifiers should start
with a capital letter. Two common and equally legal formats for a compound
association name are:

■ Records-current

■ RecordsCurrent

Applying UML: Roles

Each end of an association is called a role. Roles may optionally have:

■ multiplicity expression

■ name

■ navigability

Multiplicity is examined next.

Applying UML: Multiplicity

Multiplicity defines how many instances of a class A can be associated with
one instance of a class B (see Figure 9.13).

Figure 9.13 Multiplicity on an association.

For example, a single instance of a Store can be associated with “many” (zero or
more, indicated by the *) Item instances.

Some examples of multiplicity expressions are shown in Figure 9.14.

The multiplicity value communicates how many instances can be validly associ-
ated with another, at a particular moment, rather than over a span of time. For
example, it is possible that a used car could be repeatedly sold back to used car
dealers over time. But at any particular moment, the car is only Stocked-by one
dealer. The car is not Stocked-by many dealers at any particular moment. Simi-
larly, in countries with monogamy laws, a person can be Married-to only one
other person at any particular moment, even though over a span of time, that
same person may be married to many persons.

ItemStore Stocks

*

multiplicity of the role

1

domain model 1.fm Page 153 Tuesday, November 30, 2004 6:14 PM

9 – DOMAIN MODELS

154

Figure 9.14 Multiplicity values.

The multiplicity value is dependent on our interest as a modeler and software
developer, because it communicates a domain constraint that will be (or could
be) reflected in software. See Figure 9.15 for an example and explanation.

Figure 9.15 Multiplicity is context dependent.

Rumbaugh gives another example of Person and Company in the Works-for asso-
ciation [Rumbaugh91]. Indicating if a Person instance works for one or many
Company instances is dependent on the context of the model; the tax depart-

zero or more;
"many"

one or more

one to 40

exactly 5

T

T

T

T

*

1..*

1..40

5

T
3, 5, 8

exactly 3, 5, or 8

ItemStore Stocks 4

1
or 0..1

Multiplicity should "1" or "0..1"?

The answer depends on our interest in using the model. Typically and practically, the muliplicity communicates a
domain constraint that we care about being able to check in software, if this relationship was implemented or reflected
in software objects or a database. For example, a particular item may become sold or discarded, and thus no longer
stocked in the store. From this viewpoint, "0..1" is logical, but ...

Do we care about that viewpoint? If this relationship was implemented in software, we would probably want to ensure
that an Item software instance would always be related to 1 particular Store instance, otherwise it indicates a fault or
corruption in the software elements or data.

This partial domain model does not represent software objects, but the multiplicities record constraints whose practical
value is usually related to our interest in building software or databases (that reflect our real-world domain) with validity
checks. From this viewpoint, "1" may be the desired value.

*

domain model 1.fm Page 154 Tuesday, November 30, 2004 6:14 PM

155

ASSOCIATIONS

ment is interested in many; a union probably only one. The choice usually
depends on why we are building the software.

Applying UML: Multiple Associations Between Two Classes

Two classes may have multiple associations between them in a UML class dia-
gram; this is not uncommon. There is no outstanding example in the POS or
Monopoly case study, but an example from the domain of the airline is the rela-
tionships between a Flight (or perhaps more precisely, a FlightLeg) and an Air-
port (see Figure 9.16); the flying-to and flying-from associations are distinctly
different relationships, which should be shown separately.

Figure 9.16 Multiple associations.

Guideline: How to Find Associations with a Common Associations List

Start the addition of associations by using the list in Table 9.2. It contains com-
mon categories that are worth considering, especially for business information
systems. Examples are drawn from the 1) POS, 2) Monopoly, and 3) airline res-
ervation domains.

Flight Airport

Flies-to

Flies-from

*

* 1

1

Category Examples

A is a transaction related to another
transaction B

CashPayment—Sale

Cancellation—Reservation

A is a line item of a transaction B SalesLineItem—Sale

A is a product or service for a transac-
tion (or line item) B

Item—SalesLineItem (or Sale)

Flight—Reservation

A is a role related to a transaction B Customer—Payment

Passenger—Ticket

A is a physical or logical part of B Drawer—Register
Square—Board
Seat—Airplane

domain model 1.fm Page 155 Tuesday, November 30, 2004 6:14 PM

Table 9.2 Common Associations List.

9.15 Example: Associations in the Domain Models

Case Study: NextGen POS

The domain model in Figure 9.17 shows a set of conceptual classes and associa-
tions that are candidates for our POS domain model. The associations are pri-
marily derived from the “need-to-remember” criteria of this iteration
requirements, and the Common Association List. Reading the list and mapping
the examples to the diagram should explain the choices. For example:

■ Transactions related to another transaction—Sale Paid-by CashPay-
ment.

■ Line items of a transaction—Sale Contains SalesLineItem.

A is physically or logically contained
in/on B

Register—Store, Item—Shelf
Square—Board
Passenger—Airplane

A is a description for B ProductDescription—Item

FlightDescription—Flight

A is known/logged/recorded/reported/
captured in B

Sale—Register
Piece—Square
Reservation—FlightManifest

A is a member of B Cashier—Store
Player—MonopolyGame
Pilot—Airline

A is an organizational subunit of B Department—Store

Maintenance—Airline

A uses or manages or owns B Cashier—Register
Player—Piece
Pilot—Airplane

A is next to B SalesLineItem—SalesLineItem
Square—Square
City—City

Category Examples

domain model 1.fm Page 156 Tuesday, November 30, 2004 6:14 PM

157

EXAMPLE: ASSOCIATIONS IN THE DOMAIN MODELS

■ Product for a transaction (or line item)—SalesLineItem Records-sale-of
Item.

Figure 9.17 NextGen POS partial domain model.

Case Study: Monopoly

See Figure 9.18. Again, the associations are primarily derived from the “need-to-
remember” criteria of this iteration requirements, and the Common Association
List. For example:

■ A is contained in or on B—Board Contains Square.

■ A owns B—Players Owns Piece.

■ A is known in/on B—Piece Is-on Square.

■ A is member of B—Player Member-of (or Plays) MonopolyGame.

Register

ItemStore

Sale

CashPayment

Sales
LineItem

CashierCustomer

Product
Catalog

Product
Description

Stocks

*

Houses

1..*

Used-by

*

Contains
1..*

Describes

*

Captured-on

Contained-in

1..*

Records-sale-of

0..1

Paid-by Is-for

Logs-
completed

*

3 Works-on

1
1

1

1 1..*

1

1

1

1

1

1

1

0..1 1

1

Ledger

Records-
accounts-

for

1

1

domain model 1.fm Page 157 Tuesday, November 30, 2004 6:14 PM

9 – DOMAIN MODELS

158

Figure 9.18 Monopoly partial domain model.

9.16 Attributes

It is useful to identify those attributes of conceptual classes that are needed to
satisfy the information requirements of the current scenarios under develop-
ment. An attribute is a logical data value of an object.

Guideline: When to Show Attributes?

Include attributes that the requirements (for example, use cases) suggest or
imply a need to remember information.

For example, a receipt (which reports the information of a sale) in the Process
Sale use case normally includes a date and time, the store name and address,
and the cashier ID, among many other things.

Therefore,

■ Sale needs a dateTime attribute.

■ Store needs a name and address.

■ Cashier needs an ID.

domain model 1.fm Page 158 Tuesday, November 30, 2004 6:14 PM

159

ATTRIBUTES

Applying UML: Attribute Notation

Attributes are shown in the second compartment of the class box (see Figure
9.19). Their type and other information may optionally be shown.

Figure 9.19 Class and attributes.

More Notation

detailed UML class
diagram notation
p. 249, and also on
the back inside
cover of the book

The full syntax for an attribute in the UML is:

visibility name : type multiplicity = default {property-string}

Some common examples are shown in Figure 9.20.

Figure 9.20 Attribute notation in UML.

As a convention, most modelers will assume attributes have private visibility (-)
unless shown otherwise, so I don’t usually draw an explicit visibility symbol.

{readOnly} is probably the most common property string for attributes.

Multiplicity can be used to indicate the optional presence of a value, or the num-
ber of objects that can fill a (collection) attribute. For example, many domains
require that a first and last name be known for a person, but that a middle
name is optional. The expression middleName : [0..1] indicates an optional
value—0 or 1 values are present.

Guideline: Where to Record Attribute Requirements?

Notice that, subtly, middleName : [0..1] is a requirement or domain rule, embed-
ded in the domain model. Although this is just a conceptual-perspective domain
model, it probably implies that the software perspective should allow a missing

Sale

dateTime
/ total : Money

attributes

derived
attribute

Sale

- dateTime : Date
- / total : Money

Private visibility
attributes

Math

+ pi : Real = 3.14 {readOnly}

Public visibility readonly
attribute with initialization

Person

firstName
middleName : [0..1]
lastName

Optional value

domain model 1.fm Page 159 Tuesday, November 30, 2004 6:14 PM

9 – DOMAIN MODELS

160

value for middleName in the UI, the objects, and the database. Some modellers
accept leaving such specifications only in the domain model, but I find this
error-prone and scattered, as people tend to not look at the domain model in
detail, or for requirements guidance. Nor do they usually maintain the domain
model.

Instead, I suggest placing all such attribute requirements in the UP Glossary,
which serves as a data dictionary. Perhaps I’ve spent an hour sketching a
domain model with a domain expert; afterwards, I can spend 15 minutes looking
through it and transferring implied attribute requirements into the Glossary.

Another alternative is to use a tool that integrates UML models with a data dic-
tionary; then all attributes will automatically show up as dictionary elements.

Derived Attributes

The total attribute in the Sale can be calculated or derived from the information
in the SalesLineItems. When we want to communicate that 1) this is a notewor-
thy attribute, but 2) it is derivable, we use the UML convention: a / symbol
before the attribute name.

As another example, a cashier can receive a group of like items (for example, six
tofu packages), enter the itemID once, and then enter a quantity (for example,
six). Consequently, an individual SalesLineItem can be associated with more
than one instance of an item.

The quantity that is entered by the cashier may be recorded as an attribute of
the SalesLineItem (Figure 9.21). However, the quantity can be calculated from
the actual multiplicity value of the association, so it may be characterized as a
derived attribute—one that may be derived from other information.

Guideline: What are Suitable Attribute Types?

Focus on Data Type Attributes in the Domain Model

Informally, most attribute types should be what are often thought of as “primi-
tive” data types, such as numbers and booleans. The type of an attribute should
not normally be a complex domain concept, such as a Sale or Airport.

For example, the currentRegister attribute in the Cashier class in Figure 9.22 is
undesirable because its type is meant to be a Register, which is not a simple data
type (such as Number or String). The most useful way to express that a Cashier
uses a Register is with an association, not with an attribute.

domain model 1.fm Page 160 Tuesday, November 30, 2004 6:14 PM

161

ATTRIBUTES

Figure 9.21 Recording the quantity of items sold in a line item.

To repeat an earlier example, a common confusion is modeling a complex
domain concept as an attribute. To illustrate, a destination airport is not really
a string; it is a complex thing that occupies many square kilometers of space.
Therefore, Flight should be related to Airport via an association, not with an
attribute, as shown in Figure 9.23.

Guideline

The attributes in a domain model should preferably be data types. Very com-
mon data types include: Boolean, Date (or DateTime), Number, Character,
String (Text), Time.

Other common types include: Address, Color, Geometrics (Point, Rectangle),
Phone Number, Social Security Number, Universal Product Code (UPC), SKU,
ZIP or postal codes, enumerated types

SalesLineItem Item
Records-sale-of 10..1

SalesLineItem Item
Records-sale-of0..1 1..*

Each line item records a
separate item sale.
For example, 1 tofu package.

Each line item can record a
group of the same kind of items.
For example, 6 tofu packages.

SalesLineItem

/quantity

Item
Records-sale-of0..1 1..*

derived attribute from
the multiplicity value

Guideline

Relate conceptual classes with an association, not with an attribute.

domain model 1.fm Page 161 Tuesday, November 30, 2004 6:14 PM

9 – DOMAIN MODELS

162

Figure 9.22 Relate with associations, not attributes.

Figure 9.23 Don’t show complex concepts as attributes; use associations.

Data Types

As said, attributes in the domain model should generally be data types; infor-
mally these are “primitive” types such as number, boolean, character, string, and
enumerations (such as Size = {small, large}). More precisely, this is a UML term
that implies a set of values for which unique identity is not meaningful (in the
context of our model or system) [RJB99]. Said another way, equality tests are
not based on identity, but instead on value.6 For example, it is not (usually)
meaningful to distinguish between:

■ Separate instances of the Integer 5.

■ Separate instances of the String ‘cat’.

■ Separate instance of the Date “Nov. 13, 1990”.

By contrast, it is meaningful to distinguish (by object identity) between two sep-
arate Person instances whose names are both “Jill Smith” because the two
instances can represent separate individuals with the same name.

Also, data type values are usually immutable. For example, the instance ‘5’ of
Integer is immutable; the instance “Nov. 13, 1990” of Date is probably immuta-
ble. On the other hand, a Person instance may have its lastName changed for
various reasons.

6. In Java, for example, a value test is done with the equals method, and an identity test
with the == operator.

Cashier

name
currentRegister

Cashier

name

Register

number
Uses

Worse

Better

not a "data type" attribute

1 1

Flight

Flight

destination
Worse

Better
Flies-to Airport1 1

destination is a complex
concept

domain model 1.fm Page 162 Tuesday, November 30, 2004 6:14 PM

163

ATTRIBUTES

From a software perspective, there are few situations where one would compare
the memory addresses (identity) of instances of Integer or Date; only value-
based comparisons are relevant. On the other hand, the memory addresses of
Person instances could conceivably be compared and distinguished, even if they
had the same attribute values, because their unique identity is important.

Some OO and UML modeling books also speak of value objects, which are very
similar to data types, but with minor variations. However, I found the distinc-
tions rather fuzzy and subtle, and don’t stress it.

Perspectives: What About Attributes in Code?

The recommendation that attributes in the domain model be mainly data types
does not imply that C# or Java attributes must only be of simple, primitive data
types. The domain model is a conceptual perspective, not a software one. In the
Design Model, attributes may be of any type.

Guideline: When to Define New Data Type Classes?

In the NextGen POS system an itemID attribute is needed; it is probably an
attribute of an Item or ProductDescription. Casually, it seems like just a number
or perhaps a string. For example, itemID : Integer or itemID : String.

But it is more than that (item identifiers have subparts), and in fact it is useful
to have a class named ItemID (or ItemIdentifier) in the domain model, and des-
ignate the type of the attribute as such. For example, itemID : ItemIdentifier.

Table 9.3 provides guidelines when it’s useful to model with data types.

Applying these guidelines to the POS domain model attributes yields the follow-
ing analysis:

■ The item identifier is an abstraction of various common coding schemes,
including UPC-A, UPC-E, and the family of EAN schemes. These numeric
coding schemes have subparts identifying the manufacturer, product, coun-
try (for EAN), and a check-sum digit for validation. Therefore, there should
be a data type ItemID class, because it satisfies many of the guidelines
above.

■ The price and amount attributes should be a data type Money class because
they are quantities in a unit of currency.

■ The address attribute should be a data type Address class because it has
separate sections.

domain model 1.fm Page 163 Tuesday, November 30, 2004 6:14 PM

9 – DOMAIN MODELS

164

Table 9.3 Guidelines for modeling data types.

Applying UML: Where to Illustrate These Data Type Classes?

Should the ItemID class be shown as a separate class in a domain model? It
depends on what you want to emphasize in the diagram. Since ItemID is a data
type (unique identity of instances is not used for equality testing), it may be
shown only in the attribute compartment of the class box, as shown in Figure
9.24. On the other hand, if ItemID is a new type with its own attributes and
associations, showing it as a conceptual class in its own box may be informative.
There is no correct answer; resolution depends on how the domain model is
being used as a tool of communication, and the significance of the concept in the
domain.

Guideline

Represent what may initially be considered a number or string as a new data
type class in the domain model if:

■ It is composed of separate sections.

❍ phone number, name of person

■ There are operations associated with it, such as parsing or validation.

❍ social security number

■ It has other attributes.

❍ promotional price could have a start (effective) date and end
date

■ It is a quantity with a unit.

❍ payment amount has a unit of currency

■ It is an abstraction of one or more types with some of these qualities.

❍ item identifier in the sales domain is a generalization of types
such as Universal Product Code (UPC) and European Article
Number (EAN)

domain model 1.fm Page 164 Tuesday, November 30, 2004 6:14 PM

165

ATTRIBUTES

Figure 9.24 Two ways to indicate a data type property of an object.

Guideline: No Attributes Representing Foreign Keys

Attributes should not be used to relate conceptual classes in the domain model.
The most common violation of this principle is to add a kind of foreign key
attribute, as is typically done in relational database designs, in order to associ-
ate two types. For example, in Figure 9.25 the currentRegisterNumber attribute
in the Cashier class is undesirable because its purpose is to relate the Cashier to
a Register object. The better way to express that a Cashier uses a Register is
with an association, not with a foreign key attribute. Once again, relate types
with an association, not with an attribute.

There are many ways to relate objects—foreign keys being one—and we will
defer how to implement the relation until design to avoid design creep.

Figure 9.25 Do not use attributes as foreign keys.

Guideline: Modeling Quantities and Units

Most numeric quantities should not be represented as plain numbers. Consider
price or weight. Saying “the price was 13” or “the weight was 37” doesn’t say
much. Euros? Kilograms?

OK

OK

Product
Description

Product
Description

itemId : ItemID

1
Store

Store

address : Address

11 1
ItemID

id
manufacturerCode
countryCode

Address

street1
street2
cityName
...

Cashier

name
currentRegisterNumber

Cashier

name

Register

number
Works-on

Worse

Better

a "simple" attribute, but being
used as a foreign key to relate to
another object

1 1

domain model 1.fm Page 165 Tuesday, November 30, 2004 6:14 PM

9 – DOMAIN MODELS

166

These are quantities with associated units, and it is common to require knowl-
edge of the unit to support conversions. The NextGen POS software is for an
international market and needs to support prices in multiple currencies. The
domain model (and the software) should model quantities skillfully.

In the general case, the solution is to represent Quantity as a distinct class, with
an associated Unit [Fowler96]. It is also common to show Quantity specializa-
tions. Money is a kind of quantity whose units are currencies. Weight is a quan-
tity with units such as kilograms or pounds. See Figure 9.26.

Figure 9.26 Modeling quantities.

9.17 Example: Attributes in the Domain Models

Case Study: NextGen POS

See Figure 9.27. The attributes chosen reflect the information requirements for
this iteration—the Process Sale cash-only scenarios of this iteration. For exam-
ple:

Payment

amount : Number

Payment Quantity

amount : Number

Unit

...

Payment

amount : Quantity

Has-amount4
1*

Is-in4
1*

not useful

quantities are pure data
values, so are suitable to
show in attribute section better

Payment

amount : Money

variation: Money is a
specialized Quantity whose
unit is a currency

CashPayment amountTendered—To determine if sufficient payment was
provided, and to calculate change, an amount (also known as
“amount tendered”) must be captured.

Product-
Description

description—To show the description on a display or receipt.

itemId—To look up a ProductDescription.

price—To calculate the sales total, and show the line item
price.

domain model 1.fm Page 166 Tuesday, November 30, 2004 6:14 PM

167

EXAMPLE: ATTRIBUTES IN THE DOMAIN MODELS

Figure 9.27 NextGen POS partial domain model.

Sale dateTime—A receipt normally shows date and time of sale,
and this is useful for sales analysis.

SalesLineItem quantity—To record the quantity entered, when there is more
than one item in a line item sale (for example, five packages
of tofu).

Store address, name—The receipt requires the name and address
of the store.

Register

id

ItemStore

name
address

Sale

dateTime
/ total

CashPayment

amountTendered

Sales
LineItem

quantity

Cashier

id

Customer

Product
Catalog

Product
Description

itemID
description
price

Stocks

*

Houses
1..*

Used-by

*

Contains
1..*

Describes

*

Captured-on

Contained-in

1..*

Records-sale-of

0..1

Paid-by Is-for

Logs-
completed

*

3 Works-on

1
1

1

1 1..*

1

1

1

1

1

1

1

0..1 1

1

Ledger

Records-
accounts-

for

1

1

domain model 1.fm Page 167 Tuesday, November 30, 2004 6:14 PM

9 – DOMAIN MODELS

168

Case Study: Monopoly

See Figure 9.28. The attributes chosen reflect the information requirements for
this iteration—the simplified Play Monopoly Game scenario of this iteration. For
example:

Figure 9.28 Monopoly partial domain model.

9.18 Conclusion: Is the Domain Model Correct?

There is no such thing as a single correct domain model. All models are approxi-
mations of the domain we are attempting to understand; the domain model is
primarily a tool of understanding and communication among a particular group.
A useful domain model captures the essential abstractions and information
required to understand the domain in the context of the current requirements,
and aids people in understanding the domain—its concepts, terminology, and
relationships.

Die faceValue—After rolling the dice, needed to calcu-
late the distance of a move.

Square name—To print the desired trace output.

domain model 1.fm Page 168 Tuesday, November 30, 2004 6:14 PM

169

PROCESS: ITERATIVE AND EVOLUTIONARY DOMAIN MODELING

9.19 Process: Iterative and Evolutionary Domain Modeling

Although paradoxically a significant number of pages were devoted to explain-
ing domain modeling, in experienced hands the development of a (partial, evolu-
tionary) model in each iteration may take only 30 minutes. This is further
shortened by the use of predefined analysis patterns.

In iterative development, we incrementally evolve a domain model over several
iterations. In each, the domain model is limited to the prior and current scenar-
ios under consideration, rather than expanding to a “big bang” waterfall-style
model that early on attempts to capture all possible conceptual classes and rela-
tionships. For example, this POS iteration is limited to a simplified cash-only
Process Sale scenario; therefore, a partial domain model will be created to
reflect just that—not more.

And to reiterate advice from the start of this chapter:

Domain Models Within the UP

elaboration phase
p. 33

As suggested in the example of Table 9.4, the UP Domain Model is usually both
started and completed in the elaboration phase.

Table 9.4 Sample UP artifacts and timing. s - start; r - refine

Guideline

Avoid a waterfall-mindset big-modeling effort to make a thorough or “cor-
rect” domain model—it won’t ever be either, and such over-modeling efforts
lead to analysis paralysis, with little or no return on the investment.

Limit domain modeling to no more than a few hours per iteration.

Discipline Artifact Incep. Elab. Const. Trans.
Iteration➜ I1 E1..En C1..Cn T1..T2

Business Modeling Domain Model s
Requirements Use-Case Model (SSDs) s r

Vision s r
Supplementary Specification s r
Glossary s r

Design Design Model s r
SW Architecture Document s
Data Model s r

domain model 1.fm Page 169 Tuesday, November 30, 2004 6:14 PM

9 – DOMAIN MODELS

170

Inception

Domain models are not strongly motivated in inception, since inception’s pur-
pose is not to do a serious investigation, but rather to decide if the project is
worth deeper investigation in an elaboration phase.

Elaboration

The Domain Model is primarily created during elaboration iterations, when the
need is highest to understand the noteworthy concepts and map some to soft-
ware classes during design work.

The UP Business Object Model vs. Domain Model

The UP Domain Model is an official variation of the less common UP Business
Object Model (BOM). The UP BOM—not to be confused with the many other
definitions of a BOM—is a kind of enterprise model that describes the entire
business. It may be used when doing business process engineering or reengi-
neering, independent of any one software application (such as the NextGen
POS). To quote:

[The UP BOM] serves as an abstraction of how business workers
and business entities need to be related and how they need to
collaborate in order to perform the business. [RUP]

The BOM is represented with several different diagrams (class, activity, and
sequence) that illustrate how the entire enterprise runs (or should run). It is
most useful if doing enterprise-wide business process engineering, but that is a
less common activity than creating a single software application.

Consequently, the UP defines the Domain Model as the more commonly created
subset artifact or specialization of the BOM. To quote:

You can choose to develop an “incomplete” business object model,
focusing on explaining “things” and products important to a
domain. […] This is often referred to as a domain model. [RUP]

9.20 Recommended Resources

Odell’s Object-Oriented Methods: A Foundation provides a solid introduction to
conceptual domain modeling. Cook and Daniel’s Designing Object Systems is
also useful.

Fowler’s Analysis Patterns offers worthwhile patterns in domain models and is
definitely recommended. Another good book that describes patterns in domain
models is Hay’s Data Model Patterns: Conventions of Thought. Advice from data
modeling experts who understand the distinction between pure conceptual mod-

domain model 1.fm Page 170 Tuesday, November 30, 2004 6:14 PM

171

RECOMMENDED RESOURCES

els and database schema models can be very useful for domain object modeling.

Java Modeling in Color with UML [CDL99] has much more relevant domain
modeling advice than the title suggests. The authors identify common patterns
in related types and their associations; the color aspect is really a visualization
of the common categories of these types, such as descriptions (blue), roles (yel-
low), and moment-intervals (pink). Color is used to aid in seeing the patterns.

domain model 1.fm Page 171 Tuesday, November 30, 2004 6:14 PM

