EXERCISE

Discuss the continuity of the following functions at the indicated points sets (Problems 1-7):

1. $f(x)=|x-3| \quad$ at $x=3$
2. $f(x)= \begin{cases}\frac{x^{2}-9}{x-3} & \text { if } x \neq 3 \\ 0 & \text { if } x=3\end{cases}$
at $x=3$
3. $f(x)= \begin{cases}x-4 & \text { if }-1<x \leq 2 \\ x^{2}-6 & \text { if } 2<x<5\end{cases}$
at $x=2$
4. $f(x)= \begin{cases}\frac{x^{3}-27}{x^{2}-9} & \text { if } x \neq 3 \\ 6 & \text { if } x=3\end{cases}$
at $x=3$
5. $f(x)= \begin{cases}\sin \left(\frac{1}{x}\right) & \text { if } x \neq 0 \\ 0 & \text { if } x=0\end{cases}$ at $x=0$
6. $f(x)=\sin x$ for all $x \in \mathbf{R}$.
7. $f(x)= \begin{cases}\frac{x^{2}}{a}-a & \text { if } 0<x<a \\ 0 & \text { if } x=a \\ a-\frac{a^{2}}{x} & \text { if } x>a\end{cases}$ at $x=a$
8y Determine the points of continuity of the function $f(x)=x-[x]$ for all $x \in \mathbf{R}$.
8. Discuss the continuity of $x-|x|$ at $x=1$.
9. Show that the function $f: \mathbf{R} \longrightarrow \mathbf{R}$ defined by

$$
f(x)= \begin{cases}x & \text { if } x \text { is irrational } \\ 1-x & \text { if } x \text { is rational }\end{cases}
$$

is contipuous at $x=\frac{1}{2}$.
11. Show that the function $f:] 0,1] \longrightarrow \mathbf{R}$. defined by

$$
f(x)=\frac{1}{x}
$$

is continuous on] 0,1]. Is $f(x)$ bounded on this interval ? Explain.
12. Let $f(x)= \begin{cases}\cos \left(\frac{1}{x}\right) & \text { if } x \neq 0 \\ 2 & \text { if } x=0\end{cases}$

Is f continuous at $x=0$?
13. Let $f(x)= \begin{cases}(x-a) \sin \left(\frac{1}{x-a}\right) & \text { if } \neq p x \neq a \\ 0 & \text { if } x \neq 0 \\ 0 & x=2\end{cases}$

Discuss the continuity of f at $x=a$
14. Let $f(x)= \begin{cases}x \cos \left(\frac{1}{x}\right) & \text { if } x \neq 0 \\ 0 & \text { if } x=0\end{cases}$

Show that f is continuous at $x=0$
15. Let $f(x)= \begin{cases}x^{2} \sin \left(\frac{1}{x}\right) & \text { if } x \neq 0 \\ 0 & \text { if } x=0\end{cases}$

Discuss the continuity of f at $x=0$.
16. Let $f(x)=\left\{\begin{array}{ll}x \sin \left(\frac{|x|}{x}\right) & \text { if } x \neq 0 \\ 0 & \text { if } x=0\end{array}\right.$.

Discuss the continuity of f at $x=0$
17. Find c such that the function

$$
f(x)= \begin{cases}\frac{1-\sqrt{x}}{x-1} & \text { if } 0 \leq x<1 \\ c & \text { if } x=1\end{cases}
$$

is continuous for all $x \in[0,1]$
In Problems 18-20, find the points of discontinuity of the given function
18. $f(x)= \begin{cases}x+4 & \text { if }-6 \leq x<-2 \\ x & \text { if }-2 \leq x<2 \\ x-4 & \text { if } 2 \leq x \leq 6\end{cases}$
19. $\quad g(x)= \begin{cases}x^{3} & \text { if } x<1 \\ -4, x^{2} & \text { if } 1 \leq x \leq 10 \\ 6 x^{2}+46 & \text { if } x>10\end{cases}$
20. $f(x)= \begin{cases}x+2 & \text { if } 0 \leq x<1 \\ x & \text { if } 1 \leq x<2 \\ x+5 & \text { if } 2 \leq x<3\end{cases}$
21. Find constants a and b such that the function f defined by

$$
f(x)= \begin{cases}x^{3} & \text { if } x<-1 \\ a x+b & \text { if }-1 \leq x<1 \\ x^{2}+2 & \text { if } x \geq 1\end{cases}
$$

is continuous for all x.

Find the interval on which the given function is continuous. points where it is discontinuous. (Problems 22-26) :
22. $f(x)=\frac{x^{2}-5}{x-1}$
24. $f(x)=\frac{\sin x}{x}$
26. $f(x)= \begin{cases}\sin x & \text { if } x \leq \pi / 4 \\ \cos x & \text { if } x>\pi / 4\end{cases}$

In Problems 27-34, examine whether the given function is continuous at $x=0$
27. $f(x)= \begin{cases}(1+3 x)^{1 / x} & \text { if } x \neq 0 \\ e^{2} & \text { if } x=0\end{cases}$
28. $f(x)= \begin{cases}(1+x)^{1 / x} & \text { if } x \neq 0 \\ 1 & \text { if } x=0\end{cases}$
29. $f(x)= \begin{cases}(1+2 x)^{1 / x} & \text { if } x \neq 0 \\ e^{2} & \text { if } x=0\end{cases}$
30. $f(x)= \begin{cases}e^{-1 / x^{2}} & \text { if } x \neq 0 \\ 1 & \text { if } x=0\end{cases}$
31. $f(x)= \begin{cases}\frac{e^{\dagger^{1 / x}}}{1+e^{1 / x}} & \text { if } x \neq 0 \\ 1 & \text { if } x=0\end{cases}$
32. $f(x)= \begin{cases}\frac{e^{y_{x 2}}}{e^{1 / x 2}-1} & \text { if } x \neq 0 \\ 1 & \text { if } x=0\end{cases}$
33. $f(x)= \begin{cases}\frac{\sin 2 x}{x} & \text { if } x \neq 0 \\ 1 & \text { if } x=0\end{cases}$

य. $f(x)= \begin{cases}\frac{\sin 3 x}{\sin 2 x} & \text { if } x \neq 0 \\ \frac{2}{3} & \text { if } x=0\end{cases}$
35. Let $f(x)=x^{2}$ and

$$
g(x)= \begin{cases}-4 & \text { if } x \leq 0 \\ |x-4| & \text { if } x>0\end{cases}
$$

Determine whether fog and gof are continuous at $x=0$.

Continuity
A function $y=f(x)$ is Said to be Continuous at a point $x=a \in D_{f}$
if (i) $f(x)$ is defined at $x=a$

$$
\text { ii L.H. } \underset{x \rightarrow a}{\mathcal{L}} \underset{0}{f}(x)=\underset{x \rightarrow a}{R . H} \operatorname{Lim}_{x \rightarrow(x)}
$$

i.e Limit of $f(x)$ cohen $x \rightarrow a$ is Exist
(iii) $\operatorname{xta}_{x \rightarrow a} f(x)=f(a)$
Q_{1}

$$
\begin{gathered}
f(x)=|x-3| \rightarrow \\
\text { at } x=3
\end{gathered}
$$

V Glue

$$
\begin{gathered}
f(x)=|x-3| \\
\text { put } x=3
\end{gathered}
$$

$$
f(3)=|3-3|
$$

$$
=101
$$

RH-L

$$
=0 \rightarrow \dot{x}
$$

(ii. , (in) ${ }^{8}$ iv,

Value $=R H \cdot L=L H \cdot L$
$f(x)$ is (ont: at $x=3$

$$
\begin{aligned}
& \begin{aligned}
& x^{L} \rightarrow 3+0 \\
& \text { Put } x=3+h
\end{aligned} \\
& =h_{h \rightarrow 0}^{4}|3+h-3| \\
& \left.=0 \longrightarrow(i)^{\prime} i\right) \\
& \lim _{x \rightarrow 3-0} f(x)=\operatorname{lot}_{x \rightarrow 3-0}|x-3| \\
& \text { Put } x=3-h \\
& =\int_{h \rightarrow 0} 3-h-3 \mid \\
& =0 \rightarrow i v
\end{aligned}
$$

Q(2, $f(x)=\frac{x^{2}-9}{x-3}$ if $x \neq 3$

$$
=0 \quad \text { of } \quad x=3
$$

Value at $x=3$ is given

$$
f(3)=0 \quad \rightarrow \therefore
$$

$$
x^{\operatorname{L}} \rightarrow 3 \frac{x^{2}-9}{x-3}=\lim _{x \rightarrow 3} \frac{(x-3)(x+3)}{(x-3)}
$$

$$
=x^{<_{\rightarrow}}(x+3)
$$

$$
=6
$$

$i \quad i!$

$$
f(3) \neq \operatorname{lot}_{x \rightarrow 3} f(x)
$$

$f(x)$ i Dis-cont: at $x=3$.
(3)

$$
f(x)=\left\{\begin{array}{ll}
x-4 & \text { if }-1<x \leqslant 2 \\
x^{2}-6 & \text { if } 2<x<5
\end{array} \quad \text { at } x=2\right.
$$

Value

$$
\begin{aligned}
& f(x)=x-4 \text { at } x=2 \\
& f(2)=2-4=-2
\end{aligned}
$$

$$
\begin{aligned}
& f(2)=2-4=-2 \rightarrow=2
\end{aligned}
$$

$$
\begin{aligned}
\text { RH.L }{\underset{x \rightarrow 2+0}{ }} f(x) & =\mathcal{L}_{x \rightarrow 2+0}\left(x^{2}-6\right) \quad \text { fut } x=2+h \\
& =h_{\rightarrow 0} \rightarrow\left[(2+h)^{2}-6\right]=(2+0)^{2}-6=4-6
\end{aligned}
$$

\qquad

$$
\begin{aligned}
& \operatorname{Lith}_{x \rightarrow 2-0} f(x)=\operatorname{Lit}_{x \rightarrow 2-0}(x-4) \\
& =h_{h \rightarrow 0}(2-h-4) \text { fut } x=2-h \\
& =(2-0-4)=-2 \rightarrow \text { iii. } \\
& \text { (i), 分. and (in) }
\end{aligned}
$$

$\Rightarrow f(x)$ is continuer at $x=2$
（b）

$$
\begin{aligned}
& f(x)= \begin{cases}\frac{x^{3}-27}{x^{2}-9} & \text { y } x \neq 3 \\
6 & \text { if } x=3\end{cases} \\
& \text { at } x=3
\end{aligned}
$$

Value at $x=3$ is given and is 6 $f(3)=6 \longrightarrow i$
Limit

$$
\begin{aligned}
& =\operatorname{Lit}_{x \rightarrow 3} \frac{x^{3}-3^{3}}{x^{2}-3^{2}} \\
& =\operatorname{Lin}_{3} \frac{(x-3)\left(x^{2}+9+3 x\right)}{(x-3)(x+3)} \\
& =\frac{3^{2}+9+3(3)}{3+3}=\frac{27}{6}=\frac{9}{2}
\end{aligned}
$$

i a ad ii．
$f(3) \neq x^{\alpha} \rightarrow+3(x)$
$\Rightarrow f(x)$ is discontionon at $x=3$
$Q_{5} f(x)=\left\{\begin{array}{ll}\sin \left(\frac{1}{x}\right) & \text { if } x \neq 0 \\ 2 & \text { if } x=0\end{array}\right.$ at $x=0$
$\underbrace{2}_{\text {Ex，2 } 2,11 \text { Page（4）Limit }}$
$x \rightarrow 0 f(x)$ does not exit．
Hence the given function is not Contmuous at $x=0$

Q（6）$f(x)=\sin x \quad \forall x \in R$
Sol
let $a \in P$ are discuss
the Continuity at $x=a$
\because given that $x \in R$
Value $f(x)=\operatorname{Sin} x \quad \operatorname{Rut} x=a$
$R_{H \cdot L}$

$$
\operatorname{Lit}_{x \rightarrow a+0} f(x)=x_{x \rightarrow a+0} \operatorname{Sin} x \text { Put }
$$

LH．L
（i．，iii，and（iii，
$f(x)$ is Continuous at $x=a \in R$
But：as＇a ，is arbitary heal number．So f is Contion at all $x \in R$ ．
（7）

$$
f(x)=\left\{\begin{array}{lll}
\frac{x^{2}}{a}-a & \dot{y} & <x<a \\
0 & \dot{y} & x=a \\
a-\frac{a^{2}}{x} & \text { if } & x>a
\end{array}\right.
$$

Sol：

$$
\frac{\text { sol }}{\therefore} f(a)=O \text { (given) }
$$

$f(x)$ is defined at $x=a$ il LHLimk Pox） $\operatorname{Lit}_{x \rightarrow a-h}\left(\frac{x^{2}}{a}-a\right)$

$$
\begin{aligned}
& =h_{h \rightarrow 0}^{\infty} \operatorname{Sin}^{(a-h)} \quad \begin{aligned}
x=a-h
\end{aligned} \\
& =\operatorname{Sin}^{\prime} a \rightarrow i j
\end{aligned}
$$

$$
\begin{aligned}
& f(a)=\sin a-x \text { : } \\
& =\operatorname{Lim}_{h \rightarrow 0} \operatorname{Sin}(a+h) \\
& =\operatorname{Sin}(a+0)=\operatorname{Sin} a \rightarrow(i)
\end{aligned}
$$

$$
\begin{aligned}
& \neq \lim _{h \rightarrow 0}\left[\frac{(a-h)^{2}}{a}-a\right] \\
& =\frac{a^{2}}{a}-a=0
\end{aligned}
$$

RH. Limit $f(x) \operatorname{Lim}_{x \rightarrow a}=\underset{h \rightarrow 0}{ }\left(a-\frac{a^{2}}{x}\right)$

$$
\begin{aligned}
& h \rightarrow 0 \\
&=h_{h \rightarrow 0}\left(a-\frac{a^{2}}{a+h}\right) \\
&=a-\frac{a^{2}}{a}=0 \\
& \Rightarrow L_{H \rightarrow a} \operatorname{Lim}_{x} f(x)=R H \cdot d \operatorname{lin} f(x)=0 \\
& \Rightarrow x \rightarrow a \\
& \Rightarrow x_{0} \rightarrow f(x)=0
\end{aligned}
$$

Lina't of $f(x)$ exists at $x=0$ iii. $\operatorname{lic}_{x \rightarrow c} f(x)=f(a)=0$

All three Cons, are Ratified
$\because f(x)$ is Cont: at $\alpha=0$
QL)
Determine the points of Continuity of the function $f(x)=x-[x]$ for all $x \in R$.
Note $y=[x]$ is called Bracket in (Greatest integral value of x
But not greater than x ($f x$ is Decimal)
Case-I Let $x=2.5$ (Take Fractional Value $\in R$)

$$
\text { then } f(2.5)=2.5-[2.5]
$$

$$
=2.5-2=5 \rightarrow i
$$

$$
\begin{align*}
& \operatorname{and}_{x \rightarrow 2.5} f(x)^{x}=\operatorname{Li}_{x \rightarrow 2.5} x-[x] \\
& \\
& =2.5-[2.5] \tag{2}\\
& \\
& =2.5-2=.5
\end{align*}
$$

Fin (1) and (2)/weged

$$
f(2.5)=x^{2 \rightarrow 2.5} f(x)=.5
$$

on: is Cont: at any fractional value of $x \in R$
Ase-I
When ${ }^{c}$, is Integer either the or -he
Suppose that $x=c=5$
Then $f(x)=x-[x]$ will
Then $f(5)=5-[5]=5-5=0$
ad $\underset{x \rightarrow 5 \rightarrow 0}{ } f(x)=\operatorname{Lix}_{x \rightarrow 5-0}(x-[x]$

$$
\begin{aligned}
& =5-[5-0] \\
& =5-4=1
\end{aligned}
$$

$$
\begin{aligned}
{\underset{x \rightarrow 5+0}{\alpha}}_{\alpha} f(x) & ={\underset{x}{x} \rightarrow 5+0}^{\alpha_{0}}(x-[x] \\
& =5-[5+0] \\
& =5-5=0
\end{aligned}
$$

$$
\operatorname{lx}_{x \rightarrow 5-0} f(x) \neq \operatorname{lit}_{x \rightarrow 5+0} f(x)
$$

Limit does not Exit at $x=C=S \in R$.
i.e for axy the or-ve Integral i.

Value of $x \in R$ fri: does not exist. Implies that f_{n} : is dis continom for all Integnal values of x Howerner it is Cextinous at anvy other heal valverofx
$f_{n}: s$ cont: for all decimal values.
(9) $f(x)=x-|x|$ at $x=1$

$$
\begin{aligned}
& f(1)=1-|1|=1-1=0 \\
& L_{x \rightarrow 1}+0 f(x)=x^{L} \rightarrow 1-0 x-|x| \\
&=1-1=0 \\
& \alpha_{x \rightarrow 1+0} f(x)=x_{x \rightarrow 1+0} x-|x| \\
&=1-1 \\
&=0 \\
& \because L_{x \rightarrow 1-0} f(x)=x \rightarrow 1+0^{f(x)}=f(1) \\
& \text { Ln: is cont: }+x=1
\end{aligned}
$$

(10) Show that the fn: $f: R-R$ defined by

$$
f(x)= \begin{cases}x & \text { if } x \text { is isration } 0 \\ 1-x & \text { if } x \text { is \&ational }\end{cases}
$$

b cont: at $x=\frac{1}{2}$
\because Note The numbers these can be written to the form of p / q, P and q ase intega chen $q \neq 0$ i called Rationd No:
11) Show that the $\left.\left.f_{n:}: f:\right] 0,1\right] \rightarrow R$ defined by $f(x)=\frac{1}{x}$
is Cont: on $] 0,1]$. Is $f(x)$ bounded on this interval? Explain
Sol:
Let a is an arbitsay kealno belonging to J0, 1]

- value.
$f(a)=\frac{1}{a} \in R$
Limit

$$
\begin{aligned}
& =\lim _{h \rightarrow 0}\left(\frac{1}{a-h}\right)^{x=a-h} \\
& =\frac{1}{a}
\end{aligned}
$$

$$
\begin{aligned}
& =\underset{h \rightarrow 0}{ } \frac{1}{a+h}=\frac{1}{a}
\end{aligned}
$$

Limit Exit
iii. $f(a)=x \xrightarrow{\perp} a f(x)=\frac{1}{a}$
a is arbitral heal $n 0 \in(0,1]$

$$
f(x) \text { is cove: on (0, 1] }
$$

Explain $x \rightarrow$ any value $\in J 0,1$] we Seeltat $f(x)=1$ when $x=1$ $x=1$ is its Lower bound.

But value of x become decreases from 1. The. Value of $f(x) \rightarrow \infty\left(\operatorname{sis}_{x \rightarrow 0}\right)$
So f_{n} : has not upper bound. Thus f_{n} : $f(x)$ is not bounded above. Hence $f(x)$ is unbounded.

$$
\operatorname{Let} f(x)=\left\{\begin{array}{l}
\cos \left(\frac{1}{x}\right) \\
x \neq 0 \\
0 \\
x=0
\end{array}\right.
$$ f is cunt. at $x=0$

Value $f(0)=0$ (given)
Limit

$$
{\underset{x \rightarrow 0+0}{ } f(x) \neq \underset{x \rightarrow 0-0}{ } f(x), ~ f(x)}^{x \rightarrow 0}
$$

$\because \operatorname{Cos} \frac{1}{x}$ (ming be any
value $b / \omega[-1,1]$
Limit does not encelue.
\Rightarrow Limiest does not Exit
$f(x)$ is dis cont; at $\alpha=0$

$$
f(x)=\left\{\begin{array}{cl}
(x-a) \operatorname{si}\left(\frac{1}{x-a}\right) & x \neq a \\
0 & x=a
\end{array}\right.
$$

Cont: at $x=0$
Sol:
$f(a)=0 \quad$ (given)

$$
\operatorname{LH.Lix}_{x \rightarrow a} f(x)=\operatorname{Lit}_{\substack{x \rightarrow a-h \\ h \rightarrow 0}}(x-a) \operatorname{Su} \cdot\left(\frac{1}{x-a}\right)
$$

$$
=\operatorname{lix}_{h \rightarrow 0}(\phi-h-d) S_{n} \cdot\left(\frac{1}{(\alpha-h-h}\right)
$$

$$
-\lim _{h \rightarrow 0} \operatorname{Sin}\left(-\frac{1}{h}\right)=\operatorname{Lox}_{h \rightarrow 0} \operatorname{Sin}^{2} \operatorname{Sin}
$$

$=0 X$ any values $[-1,1]=0$

$=1^{(a+h-a)} \operatorname{S} \cdot\left(\frac{1}{a+1}\right)$

Limi't Expit
iif $x^{\alpha} \leftrightarrows$ f $(x)=f(9)=0$
$f(x)$ is Cont: at $x=a$
Same $Q 14,15$ as 13
©

$$
\text { (16) } f(x)=\left\{\begin{array}{cc}
x \sin \frac{|x|}{x} & \text { if } x \neq 0 \\
0 & x=0
\end{array}\right.
$$

Given that $f(x)$ is Continom at $x=1$

usif is fil

$$
C=-\frac{1}{2} \cdot A_{m}
$$

(18) Find the paints of discontinui'y of tic gime ρ_{n}.
(1) Value $f(0)=0$ given

Piant

$$
\begin{aligned}
& \underset{x \rightarrow 0^{+}}{ } f(x)=\underset{x \rightarrow 0}{\rightarrow} x \sin 1 \\
& =0 \times \sin 1=0 \\
& \operatorname{Lit}_{x \rightarrow 0}^{-} f(x)={\underset{x \rightarrow 0}{ } x \sin (-1)}_{x} \\
& =0 \times \sin (-1)=0 \\
& \operatorname{Lx}_{x \rightarrow 0^{+}} f(x)=\operatorname{LeQ}_{x \rightarrow 0} f(x)=0 \\
& \lim _{x \rightarrow 0} f(x)=0
\end{aligned}
$$

(9) $x_{x \rightarrow 0} \underset{\sim}{x} 0 f(x)=f(0)$
fn: is cont: at $x=0$
(17) Find C s.t the in

$$
f(x)=\left\{\begin{array}{l}
\frac{1-\sqrt{x}}{x-1} \text { po } \leq x<1 \\
e \text { if } x=1
\end{array}\right.
$$

$$
\begin{align*}
& f(1)= C \rightarrow(i) \tag{i}\\
&{\underset{x \rightarrow 1}{L} \rightarrow f(x)}^{L}=x^{\alpha} \rightarrow \frac{1-\sqrt{x}}{x-1} \\
&=\frac{-(\sqrt{x}-1)}{(\sqrt{x}-1)(\sqrt{x}+1)} \\
&={ }_{x \rightarrow 1},
\end{align*}
$$

\because Continui'y of $n \mathrm{fr}$:
at the Chayis pt $x=-2,2$.

$$
A \in \Rightarrow x=-2
$$

$$
\begin{aligned}
& \text { i. } f(-2)=(-2)=-2 \\
& \text { ii } x_{x \rightarrow-2}^{\alpha+} f(x)=x^{\alpha \rightarrow-2}(x)
\end{aligned}
$$

$$
=(-2)=-2
$$

$$
\begin{aligned}
\operatorname{Lt}_{x \rightarrow-2}-f(x) & =x_{x \rightarrow-2}^{+}(x+4) \\
& =-2+4=2 \\
\operatorname{Lt}_{x \rightarrow-2^{+}} f(x) & \neq x^{\alpha} \rightarrow-2^{-} f(x)
\end{aligned}
$$

$f(x)$ is dicont: at $x--2$

$$
\begin{aligned}
& A+\Rightarrow x=2 \\
& f(2)=2-4=-2 \\
& x^{4} \rightarrow 2^{+} f(x)=x^{2} \rightarrow_{2}(x-4)=2-4=-2 \\
& x \rightarrow 2 f(x)=x^{2} \rightarrow 2(x)=2 \\
& x^{4} \rightarrow \pm f(x) \neq x \rightarrow 2 f(x)
\end{aligned}
$$

$f(x)$ is dicad: at $x=2$
Thus the pt: of discmt; at $x=2,-2$

$$
\begin{aligned}
& \text { (21) } f(x)= \begin{cases}x^{3} & \text { if } x<-1 \\
a x+b & \text { if }-1 \leqslant x<1 \\
x^{2}+2 & \text { if } x \geqslant 1\end{cases} \\
& \text { is cont: for all } x .
\end{aligned}
$$

$(19)=\left\{\begin{array}{ccc}x^{3} & \text { if } & x<1 \\ -4-x^{2} & \text { if } & 1 \leq x \leq 10 \\ 6 x^{2}+46 & \text { if } & x>10\end{array}\right.$
At $x=1 \quad g(1)=-4-(1)^{2}=-4-1$

$$
\operatorname{Lx}_{x \rightarrow 1}-g(x)=\operatorname{Lx}_{x \rightarrow 1}\left(x^{3}\right)=(1)^{3}=1
$$

$$
\begin{aligned}
x \rightarrow++g(x)=x \rightarrow 1,-4-x^{3} & =-4-(1)^{3} \\
x \rightarrow 1 & =-5
\end{aligned}
$$

$$
=-5
$$

$$
x^{\alpha+1}-\dot{f}(x) \neq x_{x \rightarrow 1}^{4} f_{(x)}
$$

$f(x)$ is dis Cont: at $x=1$
At $x=10 \quad g(10)=-4-(10)^{2}$

$$
\begin{aligned}
& =-4-100 \\
& =-104
\end{aligned}
$$

$$
\begin{aligned}
\operatorname{Lt}_{x \rightarrow 10}^{-q} q(x) & =x \rightarrow 10-4-x^{2} \\
& =-4-(10)^{2} \\
& =-104 \\
\alpha \rightarrow 1+g(x) & =x \rightarrow 10^{+} 6(10)^{2}+46 \\
& =6(100)+46 \\
& =600+46 \\
& =646
\end{aligned}
$$

$$
\begin{array}{cc}
\operatorname{Li}_{x \rightarrow 10^{+}} g(x) & =646 \\
x \rightarrow 10^{-} g(x)
\end{array}
$$

$g(x)$ is also discont: at $x=10$
Same $Q: 20$
Check dis: it $x=1,2$.

Since fn: is Ent:- Cgivens The i, ii! fili
$a+\dot{b}=3$

$$
\begin{align*}
& f(-1)=a(-1)+b=-a+b \\
& \alpha_{x \rightarrow-1} f(x)=x_{x \rightarrow-1}(x)^{3}=(-1)^{3} \\
&=-1 \\
& \alpha_{1}+f(x)=x \rightarrow a x+b \\
& x \rightarrow-1 \\
&=(a)(-1)+b=-a+b
\end{align*}
$$

Phi. it. faii

$$
\begin{equation*}
-a+b=-1 \tag{2}
\end{equation*}
$$

Addny (1)
$-a+b=-1$
$a+b=3$

$$
2 b=2 \Rightarrow b=1
$$

usy (1)

$$
\begin{aligned}
& a+1=3 \\
& a=2
\end{aligned}
$$

Find the interval on cohich. The given function is Continous. Also find points cohere it is Discontinuous $(22-26)$
(22) $f(x)=\frac{x^{2}-5}{x-1}$

Clearly at $x=1$, The
Value of $f(x)$ does not Exit
$f(x)$ is not. Continons at $x=1$
and Continom for all

$$
x \in \mathbb{R}-\{1\}
$$

(23)

$$
f(x)=\frac{x}{|x|}
$$

As functici b not defined at $x=0$
So is discontinues at $x=0$
The funnclis is cont: at Every value of x when $x \in \mathbb{R}-\{0\}$
(24) $f(x)=\frac{\sin x}{x}$
$f(x)$ is not defined at $x=0$ (Disont:pt)
Every value of $\sin x$ and x is continua when $x \neq 0$

$$
\begin{aligned}
& \because e x \neq 0 \\
& \therefore=\{0\}
\end{aligned}
$$

(23) $f(x)=\tan x$

Since

$$
\tan (2 n+1) \frac{\pi}{2}=\infty
$$

Value of $\tan x$ at $x=(2 x+1) \frac{\pi}{2}$ does not Exist, Therefore $f(x)$ is discontinuous at $x=(2 x+1) \frac{\pi}{2}$
$f(x)$ is cont: for all

$$
x \in P-\left\{(2 n+1) \frac{\pi}{2}\right\}
$$

(26)

$$
\begin{aligned}
f(x) & =\operatorname{Sin} x \quad x \leqslant \frac{\pi}{4} \\
& =\operatorname{Cos} x \quad
\end{aligned} \quad x>\frac{\pi}{4}
$$

(1) $f\left(\frac{\pi}{4}\right)=\sin \frac{\pi}{4}=\frac{1}{\sqrt{2}}$
ii. $\operatorname{Lt}_{x \rightarrow \frac{\pi}{4}_{4}^{+}} f(x)=\operatorname{Lix}_{x \rightarrow \frac{\pi}{4}} \quad \operatorname{Cos} x=\cos \frac{\pi}{4}=\frac{1}{\sqrt{2}}$

$$
\operatorname{x\rightarrow 木}_{x \rightarrow \frac{\pi}{4}}-f(x)=\operatorname{Lix}_{x \rightarrow \frac{\pi}{4}} S x=S_{\frac{\pi}{4}}=\frac{1}{2}
$$

$$
\operatorname{xix}_{x \rightarrow \frac{\pi}{4}} f(x)={\underset{x}{x} \frac{\pi}{4}}^{x}(x)
$$

ii! $\quad f\left(\frac{\pi}{4}\right)=x \rightarrow \frac{x}{4} f(x)$
$f(x)$ is Cat: at $x=\frac{\pi}{4}$
both $\sin x+\cos x$ are condinon at
Every value of $x \in R$. Hence $\overline{f(x)}$.
\therefore Examine Cohether the given Function is Continuous

Value $f(0)=e^{2} \rightarrow$:
Limit

$$
\begin{aligned}
\operatorname{limint}_{x \rightarrow 0} \operatorname{le}_{x \rightarrow}(x) & =\lim _{x \rightarrow 0}(1+3 x)^{\frac{1}{x}} \\
& =\left[\lim _{x \rightarrow 0}(1+3 x)^{\frac{1}{3 x}}\right]^{3} \\
& =e^{3}-\rightarrow i j
\end{aligned}
$$

i, and ii.
$f(x)$ is not Conticens, at $x=0$

$$
f(x)=\left\{\begin{array}{cc}
(1+x)^{1 / x} & \dot{y} x \neq 0 \\
1 & \dot{f} x=0
\end{array}\right.
$$

Value

$$
\xrightarrow{\text { Value }} f(0)=1 \rightarrow i
$$

Limit

$$
\begin{aligned}
\operatorname{Limit}_{x \rightarrow 0} t(x) & =\operatorname{Lix}_{x \rightarrow 0}(1+x)^{1 / x} \\
& =e \rightarrow i
\end{aligned}
$$

fires $i: f i \pi$
Fungi $f(x)$ is discontinuous $d x=0$.
(2.9)

$$
\begin{aligned}
f(x) & =(1+2 x)^{1 / x} \quad x \neq 0 \\
& =e^{2} \quad f^{\prime} x=0
\end{aligned}
$$

Value $f(0)=e^{2} \rightarrow$ i;
init $\operatorname{lig}_{x \rightarrow 0} f(x)=x_{x \rightarrow 0}(1+2 x)^{\frac{1}{x}}$
$\begin{aligned} &-\left[\operatorname{Lim}_{x \rightarrow 0}(1+2 x)^{\frac{1}{2 x}}\right]^{2}=e^{2} \\ & \rightarrow i \prime\end{aligned}$
fiction i
$f(x)$ is Continuous at
$x=0$

$$
\begin{array}{rl}
f(30) & =e^{-4 x^{2}} \\
=1 & x \neq 0 \\
& =1
\end{array} \quad \text { of } x=0
$$

Value
at $x=0^{\circ}$ is given and is a

$$
f(0)=1 \longrightarrow \therefore .
$$

Limit

$$
\begin{aligned}
\stackrel{\lim _{n} \mid}{x \rightarrow 0} f(x) & =\operatorname{Lx}_{x \rightarrow 0} e^{-1 / x^{2}} \\
& =x_{x \rightarrow 0} \frac{1}{e^{1-x^{2}}}
\end{aligned}=\frac{1}{e^{\infty}}=\frac{1}{\infty}=0 .
$$

$\mathrm{LH} \cdot \mathrm{L}$

$$
=0
$$

$f(x)$ is discontimuousat $x=0$.

$$
\begin{array}{rlrl}
f(x) & =\frac{e^{-1 / x}}{1+e^{1 / x}} \quad \text { i } x & \neq 0 \\
& =1 \quad \text { i } x=0
\end{array}
$$

Since $f(\theta)=1$ (given)

$$
\operatorname{Lit}_{x \rightarrow 0} f(x)=\alpha_{x \rightarrow 0} \frac{e^{-1 / x}}{1+e^{1 / x}}
$$

$$
\begin{aligned}
& x \rightarrow 0-0=\operatorname{Lit}_{x \rightarrow 0-0} e^{-1 / x^{2}} \operatorname{lut}
\end{aligned}
$$

$$
\begin{aligned}
& =h_{h_{0}} \frac{1}{e^{\left(\frac{1}{0+\infty}\right)^{2}}}=\frac{1}{e^{-\infty}}=\frac{1}{\infty}
\end{aligned}
$$

$$
\begin{aligned}
& =x \rightarrow 0 \frac{1 / e^{1 / x}}{1+e^{1 / x}} \\
& =\frac{1}{x_{x \rightarrow 0} e^{1 / x}\left(1+e^{1 / x}\right)} \\
& =\frac{1}{e^{1 / 0}\left(1+e^{1 / 0}\right)}=\frac{1}{\infty}=0
\end{aligned}
$$

Since

$$
f(0) \nRightarrow x \rightarrow 0 \rightarrow_{0} f(x)
$$

function is rot Continuous

$$
\text { at } x=0
$$

Note
(32)

$$
\begin{aligned}
f(x) & =\frac{e^{1 / x^{2}}}{\frac{1}{x^{2}}}-1 & \text { if } x \neq 0 \\
& =1 & \text { if } x=0
\end{aligned}
$$

Value $f(0)=1$
$\operatorname{Linci}_{x \rightarrow 0} f(x)=\alpha_{x \rightarrow 0} \frac{e^{\frac{1}{x_{2}}}}{e^{1 x^{2}}-1}$
(34)

33

$$
\begin{array}{rlrl}
f(x) & =\frac{\text { Sin } 2 x}{x} & \text { if } x \neq 0 \\
& =1 & & \text { of } x=0
\end{array}
$$

$\stackrel{\text { Value }}{=} f(0)=1$

$$
\begin{aligned}
\operatorname{Lim}_{x \rightarrow 0} f(x) & =\alpha_{x \rightarrow 0} \frac{\sin 2 x}{x} \\
& =2\left[\frac{\sin 2 x}{L_{x \rightarrow 0}^{2 x}}\right] \\
& =2(1)=2
\end{aligned}
$$

$$
\operatorname{Lo}_{x \rightarrow 0} f(x) \neq f(0)
$$

$f(x)$ is not cont:
at $x=0$.

$$
f(x)=\left\{\begin{array}{cc}
\frac{\sin 3 x}{\sin 2 x} & \text { if } x \neq 0 \\
\frac{2}{3} & \text { of } x=0
\end{array}\right.
$$

$\stackrel{\text { value }}{=} f(0)=2 / 3$

$$
\begin{aligned}
& =\frac{e^{\frac{1}{x^{2}}}}{\lim _{x \rightarrow 0}^{1 / x^{2}}\left[1-\frac{1}{e^{1 / x^{2}}}\right]} \\
& =\frac{1}{e_{x \rightarrow 0}^{\alpha}} \frac{1}{1-\frac{1}{e^{1 / x^{2}}}}=\frac{1}{1-0} \\
& =1
\end{aligned}
$$

$\xrightarrow{\text { Limit }} \alpha_{x \rightarrow 0} \frac{\operatorname{Si} 3 x}{\operatorname{Sin} 2 x}$

$$
\begin{aligned}
& =x^{\operatorname{L}} \rightarrow 0 \frac{\sin 3 x}{3 x} \cdot \frac{3 x}{1} \cdot \frac{1}{\sin 2 x} \cdot \frac{1}{2 x} \\
& =x \rightarrow 0 \\
& =\frac{3}{2 x}(1) \cdot \frac{1}{(1)} \\
& =3 / 2
\end{aligned}
$$

$$
\begin{aligned}
&=1-0=x_{x \rightarrow 0} \frac{3}{2}(1) \cdot \frac{1}{(1)} \frac{\sin 2 x}{2 x} \cdot \frac{1}{2 x} \\
&=1 \\
&=\frac{3}{2}
\end{aligned}
$$

$$
\begin{aligned}
& \text { Pct } x=0-h=\frac{e^{\frac{1}{\hbar}}}{\frac{e^{1 / t}+1}{1 / e^{\frac{1}{\hbar}}}}=\frac{e^{\frac{2}{x}}}{1+e^{1 / \epsilon}} \\
& \begin{array}{l}
L_{x \rightarrow 0+0}=\infty \quad=\infty \quad \frac{e^{-4 / t}}{1+e^{1 / t}}=\frac{1}{e^{3 / 2}\left(1+e^{-1 / t)}\right)} \\
x=0+k
\end{array} \\
& x=0 \text { th } \quad=0
\end{aligned}
$$

$$
f(1) \neq x^{\prime} \rightarrow 0 f(x)
$$

fin: is discount: of $x=0$
(35) Let $f(x)=x^{2}$ and

$$
g(x)=\left\{\begin{array}{cc}
-4 & \text { if } x \leqslant 0 \\
|x-4| & \text { if } x>0
\end{array}\right.
$$

Determine whether fog and oof are Continuous at $x=0$

$$
\begin{aligned}
f \circ g(x) & =f(g(x) \\
& =\left\{\begin{array}{l}
f(-4)=(-4)^{2}=16 \text { of } x \leqslant 0 \\
f(x-4)=\left(t(x-4)^{2}=(x-4)^{2} \dot{)^{2}} x>0\right.
\end{array}\right.
\end{aligned}
$$

Limit

$$
\begin{aligned}
\operatorname{Lt}_{x \rightarrow 0} & =|0-4|=4 \\
& =x \rightarrow 0(-4) \\
& =-4
\end{aligned}
$$

$g \circ f(x)$ is discount:

$$
a t x=0
$$

Value

$$
\begin{aligned}
f \circ g(0) & =f(g(0) \\
& =f(-4) \\
& =(-4)^{2}=16
\end{aligned}
$$

$O R$

$$
f \circ g(0)=16 \text { given }
$$

$$
\begin{array}{rl}
\alpha_{x \rightarrow 0}^{\alpha} f \circ g(x) & =x^{\alpha}(x-4)^{2} \\
& =(0-4)^{2}=16 \\
x^{\alpha} \rightarrow 0^{-} f \circ g(x) & =x^{\alpha} \rightarrow 016=16 \\
x^{\alpha} \rightarrow 0 & f \circ g(x)
\end{array}=f \circ g(0)
$$

$f \circ g(x)$ is Continuous at $x=0$

$$
g \circ f(x)=g\left(f(x)=\left\{\begin{array}{l}
g\left(f(x)=g\left(\left(x^{2}\right)=-4 \text { if } x^{2} \leq 0\right.\right. \\
g[f(x)]=f\left(x^{2}\right)=\left|x^{2}-4\right| \dot{y} x^{2}>0
\end{array}\right.\right.
$$

