Addition
If Matrix A an B have same size or order

$$
m=n
$$

$$
\mathrm{A}+\mathrm{B}=\left[a_{i j}\right]+\left[b_{i j}\right]=\left[a_{i j}+b_{i j}\right]=\left[c_{i j}\right]
$$

Example 01: find the sum $\left[\begin{array}{ccc}2 & 3 & 4 \\ 6 & 0 & -1\end{array}\right] \quad \&\left[\begin{array}{ccc}0 & 3 & -2 \\ -1 & 1 & 2\end{array}\right]$

$$
\left.\begin{array}{l}
A=\left[\begin{array}{lll}
2 & 3 & 4 \\
6 & 0 & -1
\end{array}\right] ; B=\left[\begin{array}{ccc}
2 \times 3 & 3 & -2 \\
-1 & 1 & 2
\end{array}\right]=\left[\begin{array}{ccc}
2 & 6 & 2 \\
2+0 & 3+3 & 4-2 \\
6-1 & 0+1 & -1+2
\end{array}\right]=C \\
5
\end{array} 1 \quad 1\right]=\left[\begin{array}{lll}
2 & 1
\end{array}\right]=\left[\begin{array}{lll}
2 &
\end{array}\right.
$$

If Matrix A an B have same size or order
$\mathrm{A}-\mathrm{B}=\left[a_{i j}\right]-\left[b_{i j}\right]=\left[a_{i j}-b_{i j}\right]=\left[c_{i j}\right]$

$$
A-B=\left[\begin{array}{ccc}
2 & 0 & 5 \\
7 & -1 & -3
\end{array}\right]
$$

Example 02:

$$
A=\left[\begin{array}{lll}
2 & 3 & 4 \\
6 & 0 & -1
\end{array}\right], B=\left[\begin{array}{ccc}
0 & 3 & -2 \\
-1 & 1 & 2
\end{array}\right]
$$

$$
\left[\begin{array}{ccc}
2-0 & 3-3 & 4-[(-2) \\
6-[-1] & a-1 & -1-2
\end{array}\right]^{L}
$$

$$
\begin{aligned}
& -,+\quad= \\
& -7,+ \\
& t,++
\end{aligned}
$$

Multiplication of two matrixes:
If A and B are two matrices, the product of $A B$ is defined as
Number of columns of A is equal to number of row B
$[A]_{m \times n} ;[B]_{m \times n}$

$$
\begin{aligned}
& A=3 \quad B 3 \times 2 \\
& =\sqrt[2]{(3)} \sqrt[3]{3} \times r \\
& A B=p o s i b l e
\end{aligned}
$$

$$
\begin{gathered}
A_{3 \times 2} j^{2} n \times 2 \\
3+2 \sim \neq 2 \\
A B \neq
\end{gathered}
$$

ExP:-

$$
A B=\text { not possible r }
$$

Exp ir

$$
\begin{aligned}
& A=\left[\begin{array}{cc}
-1 & 3 \\
4 & -5 \\
0 & 0
\end{array}\right]_{3 \times 2} ; B=\left[\begin{array}{ll}
1 & 2 \\
0 & 7
\end{array}\right]_{2 \times 2}
\end{aligned}
$$

$$
A B=\left[\begin{array}{cc}
-1+0 & -2+21 \\
4+0 & 8-35 \\
0+0 & 0+0
\end{array}\right]=\left[\begin{array}{cc}
-1 & 19 \\
4 & -27 \\
0 & 0
\end{array}\right]
$$

Exp:-

$$
A=\left[\begin{array}{ccc}
2 & 1 & 1 \\
-1 & -1 & 4
\end{array}\right]_{\sqrt{2}]} ; \quad B=\left[\begin{array}{ccc}
2 & -3 & 4 \\
-3 & 1 & -2
\end{array}\right]_{2 x j}
$$

$$
\begin{aligned}
& \text { a) } A+B \\
& \text { b) } A-B \\
& \text { c] } 3 \mathrm{~A} \\
& \text { d) } 5 A-2 B \\
& A+B=\left[\begin{array}{ccc}
2 & 1 & 1 \\
-1 & -1 & 4
\end{array}\right]+\left[\begin{array}{ccc}
2 & -3 & 4 \\
-3 & 1 & -2
\end{array}\right]=\left[\begin{array}{ccc}
2+2 & 1+[-3) & 1+4 \\
-1+(3] & -1+[1] & 4+[-2]
\end{array}\right] \\
& =\left[\begin{array}{ccc}
4 & -2 & 5 \\
-4 & 0 & 2
\end{array}\right] \\
& \text { c) } 3 A=3\left[\begin{array}{ccc}
2 & 1 & 1 \\
-1 & -1 & 4
\end{array}\right]=\left[\begin{array}{ccc}
3 \times 2 & 3 \times 1 & 3 \times(1) \\
3 \times[-1] & 3 \times(-1) & 3 \times 4
\end{array}\right]=\left[\begin{array}{ccc}
6 & 3 & 3 \\
-3 & -3 & 12
\end{array}\right] \\
& \text { d) } \underset{K}{5} \underset{K}{A-2 B}=5\left[\begin{array}{ccc}
2 & 1 & 1 \\
-1 & -1 & 4
\end{array}\right]-2\left[\begin{array}{ccc}
2 & -3 & 4 \\
-3 & 1 & -2
\end{array}\right]=\left[\begin{array}{ccc}
10 & 5 & 5 \\
-5 & -5 & 20
\end{array}\right]-\left[\begin{array}{ccc}
4 & -6 & 8 \\
-6 & 2 & -4
\end{array}\right] \\
& \left.\begin{array}{rll}
5-b=-1 \\
-5=f \\
-6+t
\end{array}\right]\left[\begin{array}{lll}
+10-4 & 5+64 & 5-8 \\
-5+6 & 50+4 \\
-5-(-6) & -5-2 & 26-(-4)
\end{array}\right]=\left[\begin{array}{ccc}
6 & 11 & -3 \\
1 & -7 & 24
\end{array}\right]
\end{aligned}
$$

