Chapter: 02: Quadratic Equation

EQUATIONS:
An equation is a statement of equality between two expressions called members.

$$
\begin{aligned}
& 5 x=9 \\
& 6 a x+b=0
\end{aligned}
$$

$$
\begin{aligned}
L \cdot H \cdot S & =R \cdot H 5 \\
\exp & =\operatorname{extp}
\end{aligned}
$$

(1) CONDITIONAL EQUATION OR SIMPLY AN EQUATION:

An equation which is true for only certain values of the variables (or unknowns) involved is called a conditional equation or simply an equation
(2)LINEAR EQUATION:
A linear equation in the variable x can be written as $a x^{1}+b=0 ; a \neq a, b=c \mathrm{mf}$ ant

$$
\text { as } a x^{1}+b=0 ; a \neq 0 ;
$$

Expi-5x=0
sol: Linear Eq

$$
a=5 ; b=0
$$

$$
a \neq 5
$$

$$
\begin{aligned}
& 0 x+5=6 \\
& a=0 \\
& \text { not aineoy }
\end{aligned}
$$

(3) OUADRATIC EOUATION

A quadratic equation in the variable x has the form $a x^{2}+b x+c=0$ where a, b, and c are constants and $a \neq 0$. It is also called $2^{\text {nd }}$ degree polynomial

$$
\begin{aligned}
& a=0 \\
& a\left(x^{2}\right)+b x+c=0 \\
& \quad \sqrt{b x+c=0} \text { Lineal } \quad a x^{2}+b x+c=0
\end{aligned}
$$

Examples
i. $x^{2}-7 x+10=0$; Ruadratio; $a=1, b=-7 ; c=10$

1. $62 x+x-15=0 ; a=6 ; b=1, c=-15 ;$ [quadratic fag.
iii. $4 x^{2}+5 x+3=0 ; \quad a=4, b=5 ; c=3$, Quadranticeqs

$$
\begin{aligned}
& 0 \sqrt{2}+b y=[\quad E x p \quad 5 x=6 \rightarrow 1 \\
& x=\text { ? } \quad x=6 / 5 \\
& y=? \\
& 8(6 / 5)=6 \\
& G=f \\
& L \cdot H \cdot S=R \cdot H
\end{aligned}
$$

$$
\begin{gathered}
a x^{2}+b x+c=0 \\
\text { iv. } 3 x^{2}-x=0 ; \quad a=3, b=-1 ; c=0 ; \quad \text { Quadratic Ea l } \\
\text { v. } x^{2}=4 ; \quad x^{2}-4=0 ; a=1 ; b=0 ; \quad c=-4 ; \text { Guodration }
\end{gathered}
$$

AN INCOMPLETE QUADRATIC EQUATION:
If $b=0$ nd $c=0$ n quadratic equation is called incomplete quadratic equation. th=0;

Example:
i. $3 x=0 \Rightarrow a=3, b=0, x=0$ incomplete quadratic eq s
ii. $7 x^{2}-2 x=0 \Rightarrow a=7 ; b=-2, c=0$
iii.
iv.
(ZEROS)OR ROOTS OF THE EQUATION:
To solve $a x^{2}+b x+c=0$. is to find the value of x which satisfy the equation, these value of x is called zero or root of the equation. Or the solution of an
equation is called root),

$$
x_{1}, x_{2}, x_{3}
$$

Example:

$$
\begin{aligned}
& 1 . x^{2}-9=0 \\
& \sqrt{x_{1}=?} \\
& x_{2}=?
\end{aligned}
$$

$$
\begin{aligned}
& x=3 \\
& (3)^{2}=9 \\
& 9=9 \\
& \text { L.H.S R.H.H } \\
& \frac{x=-3}{(-3)^{2}=q \Rightarrow 9=9}
\end{aligned}
$$

METHODS OF SOLVING QUADRATIC EQUATIONS
There are three basic technique to solving a quadratic equation
U) By factorization
2) By completing square
(3) By quadratic formula
(1) SOLUTION BY FACTORIZATION:

It involves factoring the polynomial $a x^{2}+b x+c=0$, it makes use of the fact that if $a b=0$ hen $a=0$ r $\quad b=0$

$$
\begin{array}{lc}
\left.\left.\frac{a}{[x-2}\right) c^{2}-3\right]=0 & \\
a=0 & \text { or } \\
(x,-7]=0 & {[2-3]=0} \\
x=2 & x=3
\end{array}
$$

Expat:- $x^{2}-7 x+10=0$
No l :

$$
x^{2}-7 x+10=0
$$

(1)

$$
x^{2}-5 x-2 x+19=0
$$

(2) $x[x-5)-2(x-5)=0$
(3) $(x-2)(x-5)=0$
if $a b=0 ; a=0, b=0$
(4) $\begin{array}{cc}x-2=0 ; & (x-5)=0 \\ 2=2 & \sqrt{x_{2}}=5\end{array}$

$$
\operatorname{Root}=\{2 ; 5\}
$$

b)

$$
\begin{aligned}
& \frac{7 x^{2}-5 x}{b}=0 \\
& x(7 x-5)=0 \\
& x=0 ; 7 x-5=0 \\
& x=7 x=5 \\
& x=517
\end{aligned}
$$

cheek:-

$$
\begin{gathered}
x^{2}-7 x+10=0 \\
x=2 \\
(2)^{2}-7(2)+10=0 \\
4-14+10=0 \\
14-14=0 \\
0=0
\end{gathered}
$$

$\frac{x=5}{(5)^{2}-7[5)+10=0}$
$25-35+10=0$
$35-35=0$
$0=0$

For $x=0$

$$
\begin{gathered}
7(0)^{2}-y(0)=8 \\
0=0
\end{gathered}
$$

$$
\text { for } x=5 / 7
$$

$$
\text { T(}\left(\frac{5}{7}\right)^{2}-5(5 / 7)=0
$$

$$
\frac{25}{7}-\frac{25}{7}=0
$$

$$
D=
$$

$\operatorname{Root}=\{0,517\}$
(${ }^{(a)}$
For completing square:-
(1) $(a+b)^{2}=a^{2}+b^{2}+2 a b b^{2}$
(2) $(a-b)^{2}=a^{2}+b^{2}-2 a b$

Exp:- $x^{2}+4 x-437=0$
써욷
(1)

$$
\begin{array}{rlrl}
r & 2 & =x^{2}+(2)^{2}+2 \cdot x(2) \\
x^{2}+4 x-437 & =0 & {[x+2]} & =\left(x^{2}\right)+4+4 x \\
x^{2} \underline{+4 x} & =437 & &
\end{array}
$$

(3)

$$
\begin{aligned}
x^{2}+4 x+4 & =437+4 \\
(x+2)^{2} & =441 \\
\sqrt{(x+2)^{2}} & =\sqrt{441} \\
x+2 & = \pm 21
\end{aligned}
$$

(3)
(4)

$$
\operatorname{Root}\{[19,-23\}
$$

(2) $x^{2}-6 x-2=0$
(1)

$$
\begin{aligned}
x^{2}-(6 x & =2 \\
x^{2}-6 x+(3)^{2} & =2+(3)^{3} \\
(x-3)^{2} & =2+9 \\
(x-3)^{2} & =11 \\
\sqrt{(x-3)^{2}} & =\sqrt{11} \\
\left(x-\frac{2}{3}\right) & = \pm \sqrt{11} \\
(x-2 & =\sqrt{11}
\end{aligned}
$$

$$
\begin{aligned}
& x-\frac{3}{3} \\
& x-3=\sqrt{11} \text { or } x-3=-\sqrt{11}
\end{aligned}
$$

$$
\begin{aligned}
& x+2=21 \text { br } x+2=-21 \\
& x=21-2 \\
& x=14
\end{aligned}
$$

