Chapter: 02: Quadratic Equation

EQUATIONS:

An equation is a statement of equality between two expressions called members.

CONDITIONAL EQUATION OR SIMPLY AN EQUATION

An equation which is true for only <u>certain values</u> of the variables (or unknowns) involved is called a conditional equation or <u>simply an equation</u>

A finear equation in the variable x can be written as
$$ax + b = 0$$

$$2x = 6$$

LINEAR EQUATION:

A linear equation in the variable x can be written as $ax + b = 0$

$$2x = 0 \implies 0 = 2$$

$$2x = 3 = 0 \implies 0 = 2$$

$$2x = 3 = 0 \implies 0 = 2$$

LINEAR EQUATION:

$$2x = 0 \implies 0 = 0$$

$$2x = 0 \implies 0 = 2$$

$$2x = 3 = 0 \implies 0 = 2$$

LINEAR EQUATION:

$$2x = 0 \implies 0 = 0$$

$$2x = 0 \implies 0 = 0$$

$$2x = 0 \implies 0 = 0$$

LINEAR EQUATION:

$$2x = 0 \implies 0 = 0$$

$$2x = 0 \implies 0 = 0$$

$$2x = 0 \implies 0 = 0$$

LINEAR EQUATION:

$$2x = 0 \implies 0 = 0$$

$$2x = 0 \implies 0 = 0$$

LINEAR EQUATION:

$$2x = 0 \implies 0 = 0$$

$$2x = 0 \implies 0 = 0$$

LINEAR EQUATION:

$$2x = 0 \implies 0 = 0$$

$$2x = 0 \implies 0 = 0$$

LINEAR EQUATION:

$$2x = 0 \implies 0 = 0$$

$$2x = 0 \implies 0 = 0$$

LINEAR EQUATION:

$$2x = 0 \implies 0 = 0$$

LINEAR EQUATION:

$$2x = 0 \implies 0 = 0$$

$$2x = 0 \implies 0 = 0$$

LINEAR EQUATION:

$$2x = 0 \implies 0 = 0$$

LINEAR EQUATION:

$$2x = 0 \implies 0 = 0$$

LINEAR EQUATION:

$$2x = 0 \implies 0 = 0$$

LINEAR EQUATION:

$$2x = 0 \implies 0 = 0$$

LINEAR EQUATION:

$$2x = 0 \implies 0 = 0$$

LINEAR EQUATION:

$$2x = 0 \implies 0 = 0$$

LINEAR EQUATION:

$$2x = 0 \implies 0 = 0$$

LINEAR EQUATION:

$$2x = 0 \implies 0 = 0$$

LINEAR EQUATION:

$$2x = 0 \implies 0 = 0$$

LINEAR EQUATION:

$$2x = 0 \implies 0 = 0$$

LINEAR EQUATION:

$$2x = 0 \implies 0 = 0$$

LINEAR EQUATION:

$$2x = 0 \implies 0 = 0$$

LINEAR EQUATION:

$$2x = 0 \implies 0 = 0$$

LINEAR EQUATION:

$$2x = 0 \implies 0 = 0$$

LINEAR EQUATION:

$$2x = 0 \implies 0 = 0$$

LINEAR EQUATION:

$$2x = 0 \implies 0 = 0$$

LINEAR EQUATION:

$$2x = 0 \implies 0 = 0$$

LINEAR EQUATION:

$$2x = 0 \implies 0 = 0$$

LINEAR EQUATION:

$$2x = 0 \implies 0 = 0$$

LINEAR EQUATION:

$$2x = 0 \implies 0 = 0$$

LINEAR EQUATION:

$$2x = 0 \implies 0 = 0$$

LINEAR EQUATION:

$$2x = 0 \implies 0 = 0$$

LINEAR EQUATION:

$$2x = 0 \implies 0 = 0$$

LINEAR EQUATION:

$$2x = 0 \implies 0 = 0$$

LINEAR EQUATION:

$$2x = 0 \implies 0 = 0$$

LINEAR EQUATION:

$$2x = 0 \implies 0 = 0$$

LINEAR EQUATION:

$$2x = 0 \implies 0 = 0$$

LINEAR EQUATION:

$$2x = 0 \implies 0 = 0$$

LINEAR EQUATION:

$$2x = 0 \implies 0 = 0$$

LINEAR EQUATION:

$$2x = 0 \implies 0 = 0$$

LINEAR EQUATION:

$$2x = 0 \implies 0 = 0$$

LINEAR EQUATION:

$$2x = 0 \implies 0 = 0$$

LINEAR EQUATION:

$$2x = 0 \implies 0 = 0$$

LINEAR EQUATION:

$$2x = 0 \implies 0 = 0$$

LINEAR EQUATION:

$$2x = 0 \implies 0 = 0$$

LINEAR EQUATION:

$$2x = 0 \implies 0 = 0$$

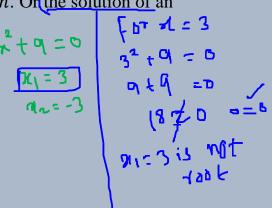
QUADRATIC EQUATION

A quadratic equation in the variable x has the form $ax^2 + bx + c = 0$ where a, b, and c are constants and $a \ne 0$. It is also called 2^{nd} degree polynomial

iv.
$$\frac{3u^2-x=0}{x^2-4}$$
) $0=\frac{1}{1}$ $b=-\frac{1}{1}$) $0=\frac{1}{1}$ $b=-\frac{1}{1}$

AN INCOMPLETE OUADRATIC EQUATION:

If b=0 and c=0 in quadratic equation is called incomplete quadratic equation.


Example:

ample:
i.
$$3n^2 = 0$$
 ; $\alpha = 3$; $b = b$; $c = a$; ii. $n^2 = 4$; $\alpha = 1$; $b = 1$; $c = a$; iii. $7n^2 - 2n = 0$; $\alpha = 1$; $a = 1$

ZEROS OR ROOTS OF THE EQUATION:

To solve $ax^2 + bx + c = 0$, is to find the value of x which satisfy the equation, these value of x is called zero or root of the equation. Or the solution of an equation is called root

Example:

METHODS OF SOLVING QUADRATIC EQUATIONS

There are three basic technique to solving a quadratic equation

- (1) By factorization
- 2) By completing square
- (x2+2+20p) er (x2+2-10p) (x+p), (x-p)
- 3) By quadratic formula

SOLUTION BY FACTORIZATION:

It involves factoring the polynomial $ax^2 + bx + c = 0$ it makes use of the fact that if ab=0 then a=0 or b=0

$$\frac{1}{2} - \frac{5}{2} - \frac{2}{2} + \frac{10}{10} = 0$$

$$\frac{1}{2} - \frac{5}{2} - \frac{1}{2} + \frac{10}{10} = 0$$

$$\frac{1}{2} - \frac{5}{2} - \frac{10}{2} + \frac{10}{2} = 0$$

$$\frac{1}{2} - \frac{5}{2} - \frac{10}{2} + \frac{10}{2} = 0$$

$$\frac{1}{2} - \frac{5}{2} - \frac{10}{2} + \frac{10}{2} = 0$$

$$\frac{1}{2} - \frac{10}{2} - \frac{10}{2} + \frac{10}{2} = 0$$

$$\frac{1}{2} - \frac{10}{2} - \frac{10}{2} + \frac{10}{2} = 0$$

$$\frac{1}{2} - \frac{10}{2} - \frac{10}{2} + \frac{10}{2} = 0$$

$$\frac{1}{2} - \frac{10}{2} - \frac{10}{2} + \frac{10}{2} = 0$$

$$\frac{1}{2} - \frac{10}{2} - \frac{10}{2} + \frac{10}{2} = 0$$

$$3^{2}-1^{4}+10=0$$

$$3^{2}-1^{4}+10=0$$

$$3^{2}-1^{5}+10=0$$

$$3^{2}-3^{5}+10=0$$

$$3^{5}-3^{5}=0$$

$$0=0$$

$$1.4.5=R.4.5$$

$$1.4.5\neq R.4.5$$

Appl SWh