MINORS:
The minor of an element in a determinant of order n is the determinant of order ni obtained by removing the row and the column which contain the given element. For example, the minor of a_{32} in the th order determinant

is obtained by crossing out the row and column containing a as 2 and shown, and writing the resulting determinant of order 3, namely

$$
\left|\begin{array}{lll}
q_{11} & q_{13} & 9_{11} \\
q_{21} & 9.23 & 0.04 \\
q_{41} & 0.43 & q_{44}
\end{array}\right|_{3 \times 7}
$$

$$
\begin{aligned}
& n=4 \\
& n-1=4-1=3
\end{aligned}
$$

The minor of an element is denoted by capital letters
 $P J$ A

VALUE OF A DETERMINANT OF ORDER n

The value of a determinant may be obtained in terms of minors as follows:
(1) Choose any row (or column). M32
(2)Multiply each element in the row (or column) by its corresponding minor preceded by $\left((-1)^{i+j}\right.$ where $\underline{i+j}$ is the sum of the row number i and column number j. The minor of an element with the attached sign is called the cofactor of the element.

$$
A_{32}=(-1)^{1+]} M_{32}=(-1)^{3+2} M_{32}
$$

(3) Add algebraically the products obtained in

$$
n=3,4,5
$$

For example, let us expand the determinant

Write the minor and corresponding cofactor of the element in the second row, third column for the determinant
$R=2$
$c=3$

$$
\begin{aligned}
M_{23} & =\left|\begin{array}{ccc}
2 & -2 & 0 \\
1 & -2 & -1 \\
2 & 1 & -9
\end{array}\right|=15 \\
C_{23} & =\left(-13 M_{23}\right. \\
& =-1\left|\begin{array}{ccc}
2 & -2 & 1 \\
1 & -2 & -1 \\
2 & 1 & -2
\end{array}\right| \\
& =(-11(15) \\
C_{23} & =-15 \\
C_{23} & \approx 923
\end{aligned}
$$

Write the minor and corresponding cofactor of the element in the determinant

$$
\frac{5 n:-R=4}{-3,-3,-4,1\}}
$$

$$
\begin{aligned}
& M_{41}=\left|\begin{array}{ccc}
-2 & 4 & 2 \\
1 & 5 & -3 \\
5 & -2 & 2
\end{array}\right| \\
& M_{42}=\left|\begin{array}{ccc}
3 & 4 & 2 \\
2 & 5 & -3 \\
1 & -2 & 2
\end{array}\right| \\
& M_{n 3}=\left|\begin{array}{ccc}
3 & -2 & 2 \\
2 & 1 & -3 \\
1 & 5 & 2
\end{array}\right| \\
& C_{43}=(-1)^{4+3} M_{42} \\
& =(-1)\left|\begin{array}{ccc}
3 & -2 & 2 \\
2 & 5 & -2 \\
1 & & 2
\end{array}\right| \\
& \left.M_{4} 4=\begin{array}{ccc}
3 & -2 & 4 \\
2 & 1 & 5 \\
1 & 5 & 2
\end{array} \right\rvert\, \\
& \left.\begin{array}{rl}
C_{42} & =(-1)^{4+2} M_{42} \\
& =[1)^{3} 4 \\
2 & 2 \\
2 & 5 \\
1 & -2 \\
2 & 22
\end{array} \right\rvert\, \\
& C_{44}=(-1)^{4.4} M_{4 n} \\
& =(1)\left|\begin{array}{ccc}
3 & -2 & 4 \\
2 & 1 & 5 \\
1 & 5 & 7
\end{array}\right|
\end{aligned}
$$

$$
\left|\begin{array}{ccc}
1 & -2 & 3 \\
-2 & 3 & 1 \\
4 & -3 & 2
\end{array}\right|
$$

5ol:-

$$
\begin{aligned}
& |A|=\begin{array}{|c|c|}
\hline \begin{array}{ll}
5 & 1 \\
-A & 1 \\
4 & -1 \\
4
\end{array} & 2
\end{array} \\
& |A|=a_{11} C_{11}+a_{12} C_{12}+a_{13} C_{13} \rightarrow \\
& c_{i j}=(-1)^{1+j} M_{i j} \\
& |A|=a_{11}(-1)^{1+1} M_{11}+a_{12}(-1)^{1+2} M_{12}+a_{13}(-1)^{1+3} M_{13} \\
& =a_{11} M_{11}-a_{12} M_{12}+a_{13} M_{13} \\
& =1\left|\begin{array}{ll}
1 & 1 \\
-3 & 1
\end{array}\right|-(-2)\left|\begin{array}{cc}
-2 & 1 \\
4 & 2
\end{array}\right|+\left[37\left|\begin{array}{cc}
-2 & 3 \\
4 & -3
\end{array}\right|\right. \\
& =(6-6-32)+2(-4-4)+3(6-17) \\
& =(6+3)+2(-4-18) \times 316-12) \\
& |A|=25
\end{aligned}
$$

