$$
\begin{aligned}
& \text { Uptsem of Eqs } R\left[\begin{array}{l}
g x_{1}+b \sqrt{x}=c \\
d x_{1}+f x_{2}
\end{array}=g\right.
\end{aligned}
$$

- System of linear Equation
dquorle
Mothes

$$
\sqrt{\left[\begin{array}{ll}
a & b \\
d & f
\end{array}\right]\left[\begin{array}{l}
x_{1} \\
x_{2}
\end{array}\right]}=\left[\begin{array}{l}
c \\
g
\end{array}\right]
$$

unknown $\begin{aligned} & x=\text { ? } \\ & y=2\end{aligned}$

$$
\left.\begin{array}{c}
(2 x+1 y=5 \\
1 x-1 y=1
\end{array}\right]=\left[\begin{array}{cc}
A x= \\
\left.\begin{array}{cc}
2 & 1 \\
1 & -1
\end{array}\right]\left[\begin{array}{c}
x
\end{array}\right]=\left[\begin{array}{l}
5 \\
1
\end{array}\right]
\end{array}\right.
$$

, a) ELIMINATION METHOD
b) SUBSTITUTION METHOD b) CRAMER'S RULE

ELIMINATION METHOD

$$
F_{x_{1}+2 x_{2}=4} \longrightarrow \text { (1) }
$$

$$
\begin{aligned}
& x_{1}+2 x_{2}=4 \longrightarrow \text { (1) } \\
& 2 x_{1}+4 x_{2}=12 \longrightarrow \text { (2) }
\end{aligned}
$$

$$
2 \times\left(x_{1}+2 x_{2}\right)=4 \times 2
$$

$$
\begin{aligned}
& 2 x_{1}+4 y_{2}=8 \\
& 2 x_{2}=112
\end{aligned}
$$

$$
\frac{ \pm 2 x_{1} \pm 4 n_{2}^{2}}{0}= \pm 12
$$

system of linayeq $\{1,2\}$

En年:-

$$
\begin{aligned}
& 2 x_{1}+5 x_{2}=2 \rightarrow 0 \\
& x_{1}+2 x_{2}=4 \rightarrow 2] \\
& 2 \times e q_{1}\left(x_{1}\right. \\
& 2\left(x_{1}+2 x_{2}\right]=2 \times 4 \\
& 2 x_{1}+4 x_{2}=8 \rightarrow 0]
\end{aligned}
$$

©q(2)

$$
\begin{aligned}
x_{1}+2 x_{2} & =4 \\
x_{1}+2(-6) & =4 \\
x_{1}-12 & =4 \\
x_{1} & =4+12 \\
x_{1} & =16
\end{aligned}
$$

$$
\begin{aligned}
& \text { (1) } \left.\begin{array}{l}
3 x_{1}-x_{2}=1 \\
x_{1}+x_{2}=3
\end{array}\right] \rightarrow \text { (2) } \\
& \text { equ } 0+2 q^{2} \\
& \begin{aligned}
3 x_{1}-x_{2} & =1 \\
+x_{1}+x_{2} & =3 \\
\hdashline 4 x_{1} & =4
\end{aligned} \\
& \text { Qqe } 2 \text {] } \\
& \begin{aligned}
x_{1}+x_{2} & =3 \\
\text { put } x_{1} & =1 \\
1+x_{2} & =3 \\
x_{2} & =3-1
\end{aligned} \\
& \begin{aligned}
x_{1}+x_{2} & =3 \\
\text { put } x_{1} & =1 \\
1+x_{2} & =3 \\
x_{2} & =3-1
\end{aligned} \\
& \begin{aligned}
x_{1}+x_{2} & =3 \\
\text { put } x_{1} & =1 \\
1+x_{2} & =3 \\
x_{2} & =3-1
\end{aligned} \\
& E \cdot \mathrm{P}= \\
& x_{1}=\frac{\psi 1}{Y} \\
& x_{1}=1 \\
& x_{z}=2
\end{aligned}
$$

$$
\begin{aligned}
\text { Exp } \quad 7 x_{1}-x_{2} & =1-1 \\
x_{1}+x_{2} & =3-2 \\
\Rightarrow \operatorname{seq}(2) \quad x_{1}+x_{2} & =3 \\
x_{1} & =3-x_{2}
\end{aligned}
$$

$$
=78 r^{r_{1}}
$$

$$
\begin{gathered}
3 x_{1}-x_{2}=1 \\
3\left(3-x_{2}\right) x_{2}=1 \\
9-3 x_{2}-x_{2}=1 \\
-4 x_{2}=1-9 \\
-4 x_{2}=-8 \\
x_{2}=x^{2} /-4 \\
x_{2}=2
\end{gathered}
$$

$$
\operatorname{acc}(2) \quad 211+2=3
$$

$$
\begin{array}{r}
\frac{x_{1}=3-2}{1 x_{1}=1} \\
\{172\}=\text { solution }
\end{array}
$$

(3) Cromps's pule:-

$$
\begin{aligned}
& x_{1} x_{2}=\text { ? } \\
& x, y=\text { ? } \\
& x=\frac{D x}{D} ; y=\frac{D y}{D} \\
& x_{1}=\frac{D x_{1}}{D} \quad \text { if } x_{2}=\frac{D \mu_{2}}{D}
\end{aligned}
$$

2) $x_{1}+2 x_{2}=4$

$$
2 x_{2}+x_{2}=10
$$

$$
\left.e q v^{14}\right]
$$

$$
\begin{aligned}
& 11) \\
& x_{1}+2 x_{2}=4
\end{aligned}
$$

$$
x_{1}=4-2 x_{2}
$$

$$
e c^{(1)}
$$

$$
\begin{gathered}
4-2 x_{2}+2 x_{2}=4 \\
4=4
\end{gathered}
$$

$$
u^{\prime}=u
$$

nas no solutien

Exp:- $\left\{\begin{array}{l}2 x+3 y=8 \\ x-2 y=-3\end{array}\right.$
Comener's RNe:-

$$
\begin{gathered}
x=? \quad y=? \\
A x=B \\
{\left[\begin{array}{cc}
2 & 3 \\
1 & -2
\end{array}\right]\left[\begin{array}{l}
x \\
y
\end{array}\right]=\left[\begin{array}{c}
8 \\
-3
\end{array}\right]}
\end{gathered}
$$

solve the system

$$
2 x+3 y=8
$$

$$
x=\frac{D_{y}}{D v}
$$

$$
B=\left[\begin{array}{c}
8 \\
-3
\end{array}\right]
$$

$$
x-2 y=-3
$$

$$
y=\frac{04}{10}
$$

yoni-

$$
D_{x}=\left[\frac{2}{2}<\right.
$$

$$
D=-7
$$

$$
\begin{aligned}
D_{x} & =8[-2]-(3][-3) \\
& =-16-(-9) \\
& =-16+9 \\
D_{x} & =-7
\end{aligned}
$$

$$
\begin{aligned}
& \underline{C \cdot R} \\
& x=\frac{D x}{D}=\frac{-7}{-7}=1 \quad\{x, y\}=\{1,2\} \\
& y=\frac{D y}{D}=\frac{-x^{2}}{-x}=2
\end{aligned}
$$

DETERMINANTS OF THIRD ORDER

consisting of nine numbers arranged in three rows and three columns is called a determinant of third order. By definition, the value of this determinant is given by
is called the expansion of the determinant

