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The knowledge of the survival of inoculated fungal and bacterial strains in field and the effects of their release on the indigenous
microbial communities has been of great interest since the practical use of selected natural or genetically modified microorganisms
has been developed. Soil inoculation or seed bacterization may lead to changes in the structure of the indigenous microbial
communities, which is important with regard to the safety of introduction of microbes into the environment. Many reports
indicate that application of microbial inoculants can influence, at least temporarily, the resident microbial communities. However,
the major concern remains regarding how the impact on taxonomic groups can be related to effects on functional capabilities
of the soil microbial communities. These changes could be the result of direct effects resulting from trophic competitions and
antagonistic/synergic interactions with the resident microbial populations, or indirect effects mediated by enhanced root growth
and exudation. Combination of inoculants will not necessarily produce an additive or synergic effect, but rather a competitive
process. The extent of the inoculation impact on the subsequent crops in relation to the buffering capacity of the plant-soil-biota is
still not well documented and should be the focus of future research.

1. Introduction

The application of inoculants is seen as being very attractive
since it would substantially reduce the use of chemical fertil-
izers and pesticides, and there are now an increasing number
of inoculants being commercialized for various crops [1].
Microorganisms play an important role in agricultural sys-
tems, particularly plant growth-promoting microorganisms
(PGPMs). Plant growth benefits may be attributed mainly to
three mechanisms as follow. (i) PGPMs acting as biofertilizers
(such as nitrogen-fixing bacteria and phosphate-solubilizing
bacteria) assist plant nutrient uptake by providing fixed nitro-
gen or other nutrients [2]. (ii) Phytostimulators (microbes
expressing phytohormones such as Azospirillum) can directly
promote the growth of plants, usually by producing plant
hormones [3, 4]. (iii) Biological control agents (such as Tri-
choderma, Pseudomonas, and Bacillus) protect plants against
phytopathogenic organisms [5-7]. Several reviews have dis-
cussed various aspects of growth promotion by PGPMs [8-
10]. However, the potential environmental impacts related to

inoculation were always neglected. Since inoculation consists
in supplying high densities of viable and efficient microbes for
a rapid colonization of the host rhizosphere, it would induce
at least a transient perturbation of the equilibrium of soil
microbial communities. Changes in microbial composition
may be undesirable if important native species are lost, thus
affecting subsequent crops. However, a modification in the
bacterial community structure caused by inoculation could
be buffered by ecosystem resilience, which is driven by the
level of diversity and interactions of the plant-soil-biota
[11]. The loss of certain bacterial species may however not
change the functioning of the system because of the bacterial
redundancy, since different bacterial species may carry out
the same functions [11, 12].

Soil microbial community is complex and dynamic and
varies in composition between different compartments and
levels, which represents a real challenge in soil ecology. One
of the crucial problems to face in this type of studies is
the representativeness of the sampling. Number of replicates,
sample size, whether sampling is randomized or at regular



intervals, spatial scaling, and microsite variation remain
major concerns. Most researchers used rhizospheric soil, but
even in this case it is practically very difficult to define it
precisely. However, the side-distance effect on bulk soil would
be more reliable to address a more generalized response.
Time-course studies would be also necessary to monitor
inoculation effect in relation to the buffering capacity of the
ecosystem. Nevertheless, the techniques used to investigate
soil microbial communities at taxonomic and functional
levels are laborious and limit the use of exhaustive samplings.
In the culture-dependent methods, the analysis is usually
confined to restricted samples, and a biased image is drawn.
However, the culture-independent methods do not usually
permit unambiguous identification of taxonomic groups
[13]. Besides the bias induced by DNA extraction and PCR
amplification, the culture-independent methods represent
also some inherent limitations (Table 1).

The high-throughput sequencing techniques, even being
more informative [31, 32], are still not economically afford-
able for inoculation impact analysis, because of the high
number of samples and replicates involved. There is a growing
interest in the recent years in genes and transcripts coding
for metabolic enzymes. Besides questions addressing redun-
dancy and diversity, more and more attention is given to
the abundance of specific DNA and mRNA in the different
habitats [33].

2. The Rhizosphere: The Unrevealed World

The rhizosphere represents one of the most diverse habitats
on the planet and is central to ecosystem functioning. Infinite
dynamic interactions between root exudates, microbial activ-
ity, genetic exchange, nutrient transformation, and gradient
diffusion are most likely the factors shaping this below-
ground world (for review, please see [34]). Consequently,
there is an increasing need to understand its functioning
to effectively manage ecosystem and harness its potential
benefits. In particular, manipulation of the rhizosphere is
now considered as a key mechanism for solving critical
issues facing the planet, including agricultural and forest
sustainability, improving water quality, mitigation of climate
change, and preservation of biodiversity. To face the range
of biotic and abiotic stresses, plants interact with different
members of the soil microbial community in many ways and
in a complex range of trophic cascades [35]. These relations
involve positive and negative feedbacks between soil organ-
isms and plants and their chemical environment. Rhizobacte-
ria communicate within species using diffused chemicals. N-
acylhomoserine lactones (N-AHLs) are common signals for
bacterial communications in various Gram-negative bacteria
[36]. Plant-Microbe interactions are generally regulated by
quorum sensing (QS) in a population-dependent manner
[37]. Crépin et al. [38] showed that the rhizosphere bacterium
Rhodococcus erythropolis catabolizes the N-AHLs produced
by the pathogenic bacterium Pectobacterium atrosepticum,
thus attenuating its virulence, which suggests a tritrophic
belowground chemical interaction. Pathogens exploit QS
using N-AHLs to form microcolonies (and biofilm) in the
rhizosphere to inflict pathogenicity in the host. By contrast,
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beneficial or nonpathogenic microbes biosynthesize N-AHLs
degrading lactonases to disrupt QS by quorum-quenching
[39]. The presence of biostimulating molecules or QS-mimics
may also establish microbes that degrade N-AHLs in the rhi-
zosphere, thus reducing the virulence of pathogens. Another
example shows that root volatiles may serve as foraging
cues for parasitic entomopathogenic nematodes [40], and,
then, poorly available organic phosphorus could be made
avajlable through the grazing by nematodes of phytase-
producing bacteria [41]. There may be also a synergistic effect
of root volatiles and CO, as attractants for nematodes [42].
Kawasaki et al. [43] showed that some legumes respond to
certain contaminants in a systemic manner by utilizing root-
colonizing microorganisms to protect themselves, and they
may actively stimulate such microorganisms in the rhizo-
sphere by manipulation of exudates flux and composition.
Surfactant-active compounds in the root exudates increase
the solubility of the contaminant and make it more bioavail-
able to root-colonizing microorganisms [44]. The production
of plant growth regulators such as auxin, cytokinin, and
gibberellin by PGPMs may also interfere on soil microbial
communities through an enhanced root growth and an
increased exudation rate [45], without excluding the possi-
bility of a direct effect on the microbial equilibrium leading
to the selection of beneficial populations. These few examples
illustrate the complexity of the rhizospheric interactions and
prove that our knowledge about the plant-soil-biota is just
beginning.

3. Inoculation Impact Analysis

Different soil microorganisms had been extensively used
as inoculants, including rhizobia, Azospirillum, mycorrhizal
fungi, and biocontrol agents. The most significant studies
reporting the effect of these inoculants on soil microbial
communities are summarized in Table 2.

3.1. Rhizobia Inoculants. Rhizobia are reported to influence
crop growth, yield, and nutrient uptake by different mech-
anisms. They fix nitrogen, help in promoting free-living
nitrogen-fixing bacteria, increase supply of other nutrients,
such as phosphorus and iron, produce plant hormones,
enhance other beneficial bacteria or fungi, control bacterial
and fungal diseases, and help in controlling insect pests [8,
10].

Field release of a Rhizobium etli strain containing
genes encoding trifolitoxin (an antibiotic peptide active
against members of a specific group of a-proteobacteria
that enhances the ability to compete trifolitoxin-sensitive
strains) strongly reduced the diversity of trifolitoxin-sensitive
members of a-proteobacteria in bean rhizosphere as shown
by ribosomal intergenic spacer analysis (RISA), with little
apparent effect on most microbes [48]. Using a cultivation-
dependent approach and a cultivation-independent
PCR-single-strand conformation polymorphism (SSCP),
Schwieger and Tebbe [14] showed that field release of
Sinorhizobium meliloti strain L33 affected bacterial diversity
in the rhizosphere of alfalfa by reducing the number
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TABLE 2: The most significant studies addressing the impact of inoculation on soil microbial communities.

Inoculant type Species

Techniques Major results

The bacterial diversity in the rhizosphere of Medicago sativa was qualitatively

S. meliloti L33 SSCP  and quantitatively affected. While the number of members of y-proteobacteria  [14]
decreased, the number of members of a-proteobacteria increased.
Cocktail of Ensifer Field inoculation showed a significant increase of total bacterial diversity due
strains DGGE  to seasonal changes, but no effect of rhizobial inoculation was observed. [17]
DGGE oftered little information about bacterial communities.
S, meliloti The persistence of certain y-proteobacterial populations in the rhizosphere of
Rhizobia MA'L 01/M403 TGGE  alfalfa could be affected. TGGE proved to be better for identifying specific (18]
M403-dependent changes.
Field inoculation showed significant effects on bacterial structure and
R oallicum 8a3 diversity in the bulk soil of common bean. Both «- and y-proteobacteria
B ’ "i eliloti AHI41 T-RFLP  together with Firmicutes and Actinobacteria were enhanced, including [22, 23]
’ beneficial bacterial communities with PGPM potentialities. Dual inoculation
was less effective than simple inoculation and induced distinct effects.
The bacterial genes involved in nitrogen turnover were affected by
S. meliloti $26/0S6 qPCR 1n'oculat1on.. The effectlvenes§ of 1nocu1at10'n was related to the abundapce of [26]
nif H genes in the late flowering phase. A higher number of amoA copies were
observed during flowering.
. DGGE  Field inoculation showed no prominent effects on bacterial communities of
A. brasilense Cd/Sp245 RISA  maize in two different soils and in different growth systems. (211
Field inoculation of maize increased the intersample variability of the
Azospirillum A. lipoferum CRTI RISA  bacterial community between individual plants and sampling times without  [19, 20]
modifying the total number of root bacteria.
A. brasilense CLPPs Inoculation changed the community-level physiological profiles of the [29]
40M/42M cultivable microbial communities associated with rice roots.
Inoculation affected the composition of the rhizosphere bacterial community
of pea. Four to five specific bands were suppressed. Before flowering, the AMF
. . decreased rhizosphere respiration and number of protozoa, but it did not
G. intraradices DGGE affect bacterial number. During flowering and pod formation, the AMF [46]
AMF stimulated rhizosphere respiration and the negative effect on protozoa
decreased.
G. mossede Inoculation significantly modified the rhizosphere bacterial composition of
; . DGGE tomato. The two AMFs had had similar bacterial communities; however, [47]
G. intraradices . .
specific species-dependent effects were observed.
T-RELP Inoculation induced a transient effect on fungal community in the
P. fluorescens 2P24 DGGE rhizosphere of cucumber suggesting that this biocontrol agent has a limited [25]
. validity. DGGE and T-RFLP showed similar results.
Biocontrol
agents Inoculation induced shifts in fatty acid methyl ester profiles of cultivable
P. chlororaphis IDV1 FAME bacteria fractions, as well as total microbial communities in the rhizosphere of [27]
P. putida RA2 maize. The rhizosphere composition shifted from a Gram-positive-dominated
community to more Gram-negative populations.
Inoculation induced a significant modification in the bacterial community
Pseudomonas spp. DGGE  Structure. The type of PGPM consortium had more impact on the bacterial [15]
AMF community structure than the presence of AME A synergistic effect of
coinoculation was observed.
Coi lati Inoculation with the biocontrol agent did not show significant effects on
otnoculation B. subtilis 101 DGGE fungal (18S rRNA) and bacterial (16S rRNA) communities in the rhizosphere [16]
A. brasilense Sp245 of tomato. Combination of the two rhizobacteria had no synergistic or
comparable effects on plant biomass, with respect to their single applications.
A brasilense T-RELP Iqoculatlon did not show s%gmﬁcant impact on cultn{able communities and
nif H T-RFLP-patterns of diazotrophic bacteria associated with rice roots. A [24]
P. fluorescens CLPPs

synergistic effect of coinoculation was found.
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of y-proteobacteria and increasing the number of «-
proteobacteria. The shift was interpreted as a replacement
of more general bacteria (Acinetobacter calcoaceticus
and Pseudomonas sp.) by specialists (rhizobia). The
indigenous microbial populations in the rhizosphere of
alfalfa inoculated with S. meliloti strain M403 (a strain
with enhanced competitiveness for nodule occupancy
constructed by introducing an extra copy of a modified
proline dehydrogenase gene) or strain M40l (a control
strain carrying the same plasmid without the modified
gene) were evaluated by comparing restriction fragment
length polymorphism (RFLP) and temperature-gradient
gel electrophoresis fingerprints (TGGE) of 16S rDNA genes
directly amplified from soil DNA [18]. Seasonal changes
were observed in RFLP patterns only when primers specific
for - and/or y-proteobacteria were used. RFLP analysis
showed that inoculation permitted certain y-proteobacterial
populations to be maintained longer and persist in the
rhizosphere of alfalfa. Seasonal changes were also detected
by TGGE performed with a-proteobacterial primers but
not with B-proteobacterial primers [18]. Therefore, in the
TGGE patterns appeared two bands specifically correlated
to inoculation with M403, showing sequence similarity,
respectively, to Rahnella aquatilis and Kluyvera georgiana.
The seasonal fluctuations induced by environment and alfalfa
plants showed much stronger influence on the microbial
community than the inoculation-dependent effects.

The quantification of bacterial genes encoding the nitro-
genase reductase (nif H), ammonia monooxygenase (anmoA),
and nitrite reductase (nirK and nirS), as well as archaeal
amoA genes within the nitrogen cycle, was performed in
alfalfa rhizosphere inoculated with S. meliloti strains S26 and
OS6 [26]. At the late flowering phase, a clear correlation was
demonstrated between effectiveness of inoculation, as evalu-
ated by nitrogen and carbon contents, and the abundance of
nif H genes. Moreover, the number of archaeal amoA copies
increased upon the more effective strain inoculation.

The effects of growth stage, intercropping, and rhizo-
bial inoculation on diversity of soybean endophytic bacte-
ria were demonstrated by the cluster analysis of terminal
restriction fragments and the redundancy analysis [49]. The
relative abundance in roots was enhanced for Bradyrhizobium
liaoningense and decreased for Sinorhizobium americanum,
demonstrating that the endophytic Sinorhizobium might
be suppressed by competition from the introduced strain.
The difference in abundance of endophytic Sinorhizobium,
Bradyrhizobium, and Rhizobium in the soybean roots could
be correlated to the nodulation autoregulation system of
legumes, which is capable of sensing and responding to
the presence of inefficient rhizobia by applying sanctions to
inactive strains via active control of the permeability of root
cortical cells to oxygen, thus limiting the growth of inefficient
nodules [20]. A 517bp TRF assigned to Comamonadaceae
and Burkholderiales showed a higher abundance in inocu-
lated soybeans [49]. The abundance of rhizosphere Coma-
monadaceae bacteria has been previously reported to be
associated with mycorrhization [50], and, on the other hand,
the latter could be stimulated by the rhizobial inoculation of
soybean [51].

In our lab, the effect of on-field inoculation of Phaseolus
vulgaris with two local rhizobial strains was addressed by
exploring community structure and diversity using similarity
analysis of T-RFLP profiles. Effects on bacterial community
structure and diversity were clearly observed in the bulk soil
in the neighborhood of 25 cm of the roots [22]. Both «- and -
proteobacteria together with Firmicutes and Actinobacteria
were enhanced by inoculation. The mono- and dual inocula-
tion with Rhizobium gallicum strain 8a3 and Ensifer meliloti
strain 4H41 induced the proliferation of bacterial communi-
ties that had been frequently reported as PGPMs, like Rah-
nella, Bacillus, Azospirillum, Mesorhizobium, Pseudomonas,
Streptomyces, and Sinorhizobium, among others [23]. The
extent of these changes was also seen in the next rotation crop
as indicated by the 32% increase observed in potato yield, and
also by the 56% decrease in potato wireworm infestation [23].
The number of TRFs is significantly higher in the inoculated
treatments than that in the nitrogen-fertilized treatment
during flowering and harvesting stages. Similarly, there was
a clear trend of increase in intersample heterogeneity of
bacterial communities in the inoculated treatment up to the
harvesting stage. These data suggest that the perturbation of
the community due to inoculation with a rhizobial strain
is higher than that due to chemical fertilization and that
the evolution of the community in response to inoculants is
someway more stochastic, suggesting that the introduction of
exogenous bacteria in a community is likely to produce more
long-term unpredictable effects than organic nitrogen supply.

3.2. Azospirillum Inoculants. The agronomic benefits of
Azospirillum are well documented [52, 53]. Several modes
of action are implicated [45], especially the synthesis of
phytohormones such as indole-3-acetic acid [3, 54]. Since
Azospirillum inoculation can have a great effect on root
development and exudation [53, 55], it is likely that the use of
these phytostimulatory PGPMs will also modity the resident
microbial community structure of the rhizosphere. Using
the automated ribosomal intergenic spacer analysis (ARISA),
inoculation of maize with Azospirillum lipoferum CRT1 was
seen to increase the variability in the genetic diversity of the
rhizobacterial communities between individual field-grown
maize plants and between sampling times without modifying
the total number of root bacteria [19, 20]. In other studies, the
plant growth development was improved with Azospirillum
brasilense Sp245 by production of auxins, cytokinins, and gib-
berellins [56]. Root physiology and architecture changed, and
root surface area increased through production of more root
hairs, leading to an increase in mineral uptake. However, no
prominent effects were observed on bacterial communities of
maize grown in two different soils and in different growth
systems as indicated by DGGE and ARISA [21]. Naiman et
al. [28] showed also that inoculation with Azospirillum and
Pseudomonas may exert different effects on the number of
specific subgroups of cultivable bacteria in the rhizosphere
of wheat. Inoculation changed the profiles of carbon source
(CS) utilization of the soil microflora at tillering and grain-
filling stages. The CS utilization is related on one hand to the
number of microorganisms which are able to use each CS
as a sole carbon supply. on the other hand, the importance



of growth is a reflection of the functional potential of the
community.

Inoculation with two A. brasilense strains (40M and 42M)
isolated from maize roots changed also the community-level
physiological profiles (CLPPs) of the cultivable microbial
communities associated with rice [29]. Although the average
values of absorbance for arginine showed that the microbial
communities associated with inoculated and control plants
had significant differences in ability to use arginine, a mod-
erate effect on the physiological and genetic characteristics of
microbial communities associated with certain rice cultivars
was found under field conditions [24]. The nifH T-RFLP-
patterns of diazotrophic communities associated with rice
roots showed that some of the restriction fragments per-
mitted differentiation of inoculation treatments, such as the
66 bp fragment that could correspond to Methylogaea oryzae
which is a methanotrophic bacterium associated with rice
[24]. These data suggest that the hormonal effect exercised
by Azospirillum improves the efficiency of the nitrogen
absorption leading to superior yields of biomass. The overall
rhizosphere diversity, mainly of specific functional groups,
is most likely influenced by the change in residual nitrogen
rather than the direct effect of inoculation. However, the
specific mechanisms causing these changes are still not clear
and need to be extensively studied.

3.3. Mycorrhizal Fungi Inoculants. Arbuscular mycorrhizal
fungi (AMF), grouped into the phylum Glomeromycota [57],
have the ability to form mutualistic symbiosis with most land
plants and colonize a wider soil volume. They receive carbon
from their host, benefiting plant growth through their ability
to exploit resources and delivering minerals and water back
[58]. AMF affect the soil microorganisms associated with
their extraradical mycelium, leading to the formation of a
specific zone of soil called the mycorrhizosphere [59, 60].
In the mycorrhizosphere, the AMF might affect negatively
[61], positively [62], or may have no effect [63] on microbial
biomass and growth of specific microbial taxa [64]. Many
studies have shown that some bacterial species respond to the
presence of certain AMF [59, 65], suggesting a high degree of
specificity between bacteria associated with AMF. Thus, the
specific bacteria together with AMF may create more indirect
synergism for plant growth [66] including nutrient acqui-
sition [67] and enhancement of root branching [68]. AMF
may inhibit pathogen proliferation through the formation of
a bacterial community that limits the pathogen invasion [69,
70]. Glomus intraradices has been shown to affect positively
the bacterial and saprotrophic fungal biomass in a root-free
sand environment [62]. Using DGGE of 16S rRNA amplicons
from total DNA extracts of pea rhizosphere, Wamberg
et al. [46] showed that DGGE profiles were relatively
similar between AMF-inoculated and AMF-uninoculated
treatments. However, G. intraradices-inoculated treatments
showed suppression of four to five specific bright bands.
These types of changes were also studied in the extreme
conditions characteristic of mine tailings [71]. Canonical
correspondence analysis of DGGE profiles showed that AMF
inoculation significantly influenced the development of both
fungal and bacterial rhizosphere community structures after
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two months. It was reported that the changes observed in
the mesquite rhizosphere microbial community structure
may be either a direct or an indirect effect of the AMF
used. One type of direct interaction between the AMF and
bacterial populations in the rhizosphere is the stimulation or
suppression of one or more susceptible populations [72]. It
was shown that the exudates of the extraradical mycelium
of G. intraradices could significantly inhibit the conidial
germination of the plant pathogen Fusarium oxysporum in
transformed carrot roots [73]. By contrast, the PGPM Pseu-
domonas chlororaphis was strongly stimulated. One type of
indirect effects of G. intraradices is the induction of systemic
resistance against the parasitic nematodes Radopholus similis
and Pratylenchus coffeae in banana plants [74]. Lioussanne
et al. [47] showed that direct root colonization with either G.
mosseae or G. intraradices significantly modified the DGGE
bacterial community structure of tomato rhizosphere. The
two AMF species had similar bacterial communities after
four weeks. The bacterial taxa associated with the rhizosphere
of tomato plants inoculated with G. mosseae were identified
as Pseudomonas, Herbaspirillum, and Acidobacterium, while
a Bacillus simplex (clone TR03) was found to be affiliated
only with G. intraradices. One clone (TR2) that was ambigu-
ously identified as Pseudomonas entomophila, Pseudomonas
plecoglossicida, or Pseudomonas putida has been associated
with both G. intraradices and G. mosseae. Taken together,
all these works showed that AMF can support modification
in microbial community structure within mycorrhizosphere.
The identification of key microbial populations that are
correlated with improved biomass production will help to
understand the role of the microbial community in support-
ing plant growth, suppressing plant pathogen invasion, and
other AMF functional abilities.

3.4. Biocontrol Inoculants. Most of the commercial rhizobac-
terial products have been marketed for biological control
of plant diseases rather than augmenting plant nutrition
or minimizing abiotic stress impacts [1]. A number of
microorganisms such as Trichoderma harzianum [5, 75],
Pseudomonas fluorescens (6], and Bacillus subtilis [7] have
demonstrated antagonism against diseases caused by Fusar-
ium spp., Pythium spp., Rhizoctonia spp., Sclerotium spp., and
so forth, leading to enhancement in plant growth or yield. It
has been established also that application of B. subtilis [75],
Pochonia chlamydosporia 76, 771, and P. fluorescens [78-80]
can effectively control the diseases caused by nematodes.
Two species of Pseudomonas showing antagonistic
activity against the tomato pathogen Ralstonia solanacearum
[27] were assessed for their impacts on the rhizosphere
microbial community structure of maize. Shifts in fatty acid
methyl ester (FAME) profiles of cultivable bacteria fractions,
as well as total rhizosphere microbial communities, were
determined in answer to inoculation. The introduced P.
chlororaphis IDV1 and P. putida RA2 showed good survival
in the maize rhizosphere. However, both inoculants revealed
a small growth-reducing effect towards maize, probably
due to changes in the indigenous rhizosphere communities.
The community structure transitorily shifted following
domination of specific slow-growing bacterial classes.
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The cultivable fraction of bacteria was represented by high
biomass of Gram-positives (i.e., Bacillus and Arthrobacter)
as indicated by the contents of branched FAMEs (especially
iso/anteiso 15:0/17:0). During the later growth stage of
maize, this group was disturbed by the introduced strains.
Actinomycetes, as indicated by fatty acids with a methyl
group at carbon 10 of the chain [81], could be supported
by young roots of maize, but this effect was inhibited by
inoculation [27]. Both P. chlororaphis IDV1 and P. putida RA2
survived at relatively high density after release, suggesting
their direct impact on community structure. In addition, the
inoculation shift from Gram-positive-dominated community
to more Gram-negative populations might be indicative of a
progressive change from oligotrophic to more copiotrophic
conditions [82], which could be due to the treatment effect
(i.e., nutrients released from dead cells) [27].

To assess the impact of intentionally applied microor-
ganisms on several key ecological aspects of the microbial
decomposer community in plant litter, wheat straw on pans
of soil was inoculated with either the fungus Limonomyces
roseipellis or the bacterium P. fluorescens strain Pf-5, biocon-
trol agents for Pyrenophora tritici-repentis [83]. Pseudomonas
fluorescens had insignificant effect, but L. roseipellis had
measurable effects on some aspects of microbial community
structure and function. Limonomyces roseipellis altered the
frequency distribution of fungal taxa on straw by increasing
yeasts and decreasing saprophytic fungi such as Alternaria
and Cladosporium. Compared with nontreated straw, res-
piration under conditions of adequate moisture (0.1 MPa)
was increased by L. roseipellis, but it was unaffected at
water potential of —7 MPa. The spectrum of sole carbon
sources utilized by the straw microflora was slightly altered
in Limonomyces-treated straw [83]. This change in metabolic
capabilities is attributed to changes in microbial community.

The effects of Douglas fir (Pseudotsuga menziesii) co-
inoculation with the mycorrhiza helper bacterial strain P.
fluorescens BBc6R8 and/or the fungal strain Laccaria bicolor
S238N on the indigenous bacterial and ectomycorrhizal
communities were assessed using quantitative and qualitative
approaches [84]. The inoculated bacterial strain BBc6R8 was
not detected after 4 years in any of the treatments where it
was speculated that the lack of bacterial effect on seedling
growth was due to the nonpersistence of the inoculated
bacteria. When P fluorescens BBc6R8 was introduced at
sowing, Frey-Klett et al. [85] showed a positive effect of
bacterial inoculation on the Douglas fir-L. bicolor symbiosis
despite the bacteria only surviving for up to 19 weeks in the
glasshouse and field soil. Heinonsalo et al. [84] suggested that
the absence of positive bacterial effect could be due to the too
late inoculation of bacteria on already mycorrhized seedlings
and that the mycorrhiza helper bacteria promoted the pre-
symbiotic survival of the fungus in the soil. Transient effects
on soil microbial communities were found following the
inoculation with biocontrol agents, such as P. fluorescens [86],
Streptomyces melanosporofaciens [87], and Corynebacterium
glutamicumin [88]. In a recent work, the effect of P. fluorescens
2P24 on soil fungal community in cucumber rhizosphere was
detected with T-RFLP and DGGE [25]. The results showed
that inoculation had a transient significant effect on soil

fungal community, indicating that the period of validity of the
biocontrol agent may be limited. All of these results suggest
that inoculation with biocontrol agents breaks the original
ecological balance of soil microbial community; however,
a progressive recovery is commonly observed following
fading of the released strain. The effects on soil microbial
communities seem more pronounced and more maintained
in case of biofertilizers and phytostimulators having direct
effects on plants. It is likely that plants amplify and contribute
in maintaining the observed effect. Root colonization is
certainly a key step in this process.

4. Coinoculation versus Monoinoculation

Most inoculants often rely on application of a single strain
which might partially account for the recorded inconsis-
tencies in field. A way to overcome this problem is to
include different species or strains of beneficial microbes
in the same microbial formulation. Coinoculation would
combine different mechanisms without the need for genetic
engineering [89], increase plant performance, and enhance
the efficacy and reliability of healthy effects on crops [90].

Roesti et al. [15] analyzed the effects of PGPR/AMF
inoculations on bacterial community structure of wheat
rhizosphere. DGGE analysis showed that inoculants induced
a significant modification in the bacterial community struc-
ture. However, the type of PGPR consortium had more
impact on the bacterial community structure (28.3% of the
variance) than the presence of AMF (10.6% of the variance).
Even though the PGPR strains used produce the antibiotic
2.4-diacetylphloroglucinol, which is known for its antifungal
properties, the AMF growth was not affected, and a synergis-
tic effect of PGPR/AMF coinoculation was observed.

The effect of inoculation of Pinus pinea with Bacillus
licheniformis CECT 5106 and Bacillus pumilus CECT 5105 was
evaluated [91]. Both Bacillus strains promoted the growth of P.
pinea seedlings (probably by gibberellin production), but this
biological effect was absent when both strains were coinocu-
lated, indicating a competition effect. The phospholipid fatty
acids composition was also altered, despite the low levels of
inoculants found at the end of the assay [91].

Also, the combination of B. subtilis and A. brasilense
did not show synergistic or comparable effects on tomato
growth comparing with their single applications. Rather, the
mutual presence of these microorganisms, other than reduc-
ing plant growth, could cause root-architectural alterations
[16]. Our results showed also [23] a reduced efficacy of
dual inoculation comparing with single inoculations with
two rhizobial strains. TRF composition was more diverse in
the case of single inoculations. Some of these differentiating
TRFs could be affiliated to the genera known as anaerobic
nitrogen-fixing consortia and phytohormone producers (i.e.,
Clostridium, Bacillus, Stenotrophomonas, and Xanthomonas),
which may explain the difference in plant growth. Therefore,
combination of inoculants will not necessarily produce an
additive or synergic effect, but rather a competitive process,
and, hence, growth enhancement could be reduced or even-
tually disappear. Consequently, the effects on soil microbial
communities will be also unpredictable.



5. Conclusion

Microbial inoculation may cause tremendous changes in the
number and composition of the taxonomic groups. However,
the observed impacts depend largely on the techniques used
to address the dynamics of soil microbial communities. Some
works showed no effect or a transient effect; however, others
evidenced a long-term effect. These changes may influence
plant and soil and thereby induce unpredictable feedback
reactions. Effects on plant growth and protection are not
necessarily resulting from a direct effect of the inoculated
strain and may be related to induction or repression of
resident microbial populations. There may be also synergis-
tic/antagonistic interactions between target and nontarget
effects. These changes could well lead to changes in beneficial
soil functions such as nitrogen fixation or N-cycling bacteria.
The extent of these changes on soil biology is still not well
documented and needs to be further assessed. The major
concern remains regarding how the impact on taxonomic
groups can be related to effects on functional capabilities of
the soil microbial communities. The dynamics of these effects
in relation to the host crop, the side-distance effect, the mid-
term and long-term effects, the crop-rotation effect, and site
variation are still not understood and need to be further
investigated. Undesirable growing conditions, such as biotic
and abiotic stresses, most likely contribute to inconstancy of
results and further complicate the problem, but they should
be expected as a normal functioning of agriculture. With
the evolution of the DNA-sequencing techniques and their
accessibility for many working groups, more light will be shed
on the complexity of the metabolic potentials of soil microbial
communities and their importance to soil ecosystem.
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