MANGANESE - Bacterial oxidation of Mn²+ occurs in both soil and sediments. - The chemical oxidation of Mn occurs only above pH 8. - Oxidation of Mn in the environment at neutral or acidic concentrations must, therefore, be microbiologically mediated. - A number of soil bacteria and fungi can oxidize manganese e.g. *Arthrobacter* which does so by enzymes, and *Leptothrix* which oxidizes Mn²⁺ to Mn⁴⁺ and accumulate MnO₂ in its sheath and filaments. - Manganese oxidizing bacteria can be responsible for manganese deficiency symptoms in plants which may cause disease e.g. gray speck disease in oat. - Under certain soil conditions, the rhizosphere bacteria oxidize Mn²⁺ to Mn⁴⁺ and deposit black precipitate of MnO₂ on the outside of roots. - Most microorganisms that reduce Fe³⁺ also reduce Mn⁴⁺. - Furthermore, Fe²⁺ reduces Mn⁴⁺ nonenzymatically, so Fe³⁺ reducers indirectly reduce Mn. - Mn4+ reduction may serve to: - i) assist in the oxidation of organic matter in waters or sediments, - ii) release dissolved Mn into ground waters and sediments, and - iii) release trace metals bound to Mn oxides. - Geobacter metallireducens, Shewanells putrefaciens, and Desulfovibrio acetooxidans are among the many Mn reducers.