MANGANESE

- Bacterial oxidation of Mn²+ occurs in both soil and sediments.
- The chemical oxidation of Mn occurs only above pH 8.
- Oxidation of Mn in the environment at neutral or acidic concentrations must, therefore, be microbiologically mediated.

- A number of soil bacteria and fungi can oxidize manganese e.g. *Arthrobacter* which does so by enzymes, and *Leptothrix* which oxidizes Mn²⁺ to Mn⁴⁺ and accumulate MnO₂ in its sheath and filaments.
- Manganese oxidizing bacteria can be responsible for manganese deficiency symptoms in plants which may cause disease e.g. gray speck disease in oat.

- Under certain soil conditions, the rhizosphere bacteria oxidize Mn²⁺ to Mn⁴⁺ and deposit black precipitate of MnO₂ on the outside of roots.
- Most microorganisms that reduce Fe³⁺ also reduce Mn⁴⁺.
- Furthermore, Fe²⁺ reduces Mn⁴⁺ nonenzymatically, so Fe³⁺ reducers indirectly reduce Mn.

- Mn4+ reduction may serve to:
 - i) assist in the oxidation of organic matter in waters or sediments,
 - ii) release dissolved Mn into ground waters and sediments, and
 - iii) release trace metals bound to Mn oxides.
- Geobacter metallireducens, Shewanells putrefaciens, and Desulfovibrio acetooxidans are among the many Mn reducers.