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Learning Objectives

1. Investigate and analyze process capability using control charts, histograms, and
probability plots

2. Understand the difference between process capability and process potential

3. Calculate and properly interpret process capability ratios

4. Understand the role of the normal distribution in interpreting most process capa-
bility ratios

5. Calculate confidence intervals on process capability ratios

6. Know how to conduct and analyze a measurement systems capability (or gauge
R & R) experiment

7. Know how to estimate the components of variability in a measurement system

8. Know how to set specifications on components in a system involving interaction
components to ensure that overall system requirements are met

9. Estimate the natural limits of a process from a sample of data from that
process
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Process Capability

Process capability refers to the uniformity of the process. Obviously, the variability
of critical-to-quality characteristics in the process 1s a measure of the uniformity of out-
put. There are two ways to think of this variability:

1. The natural or inherent variability in a critical-to-quality characteristic at a spec-
ified time: that 1s, “instantaneous™ variability

2. The vanability in a critical-to-quality characteristic over time

Natural tolerance limits are defined as follows:

UNTL=u+30
LNTL = u-30 D 0.00135

0.00135

- 'u |
LNTL 3o 3o UNTL

Process mean

BFIGURE 8.1 Upper and lower natural tolerance
limits in the normal distribution.
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We define process capability analysis as an engineering study to estimate process capa-
bility. The estimate of process capability may be in the form of a probability distribution
having a specified shape, center (mean). and spread (standard deviation). For example, we
may determine that the process output is normally distributed with mean ¢ = 1.0 cm and
standard deviation ¢ = 0.001 cm. In this sense, a process capability analysis may be per-
formed without regard to specifications on the quality characteristic. Alternatively, we
may express process capability as a percentage outside of specifications. However, speci-
fications are not necessary to process capability analysis.

Uses of process capability data:

Predicting how well the process will hold the tolerances

Assisting product developers/designers 1n selecting or modifying a process
Assisting in establishing an interval between sampling for process monitoring
Specifving performance requirements for new equipment

n e W b e

Selecting between competing suppliers and other aspects of supply chain
management

6. Planning the sequence of production processes when there is an interactive effect
of processes on tolerances

7. Reducing the variability in a manufacturing process

Chapter 8 Statistical Quality Control, 7th Edition by Douglas C. Montgomery.
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Reasons for Poor Process Capability

LSL u USL LSL u USL
(a) (5)

B FIGURE 8.3 Some reasons for poor process capability. (@) Poor process centering. (#) Excess process

variability.

Process may have
good potential
capability
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8.2 Process Capability Analysis Using a Histogram or a Probability Plot

8.2.1 Using the Histogram

The histogram can be helpful in estimating process capability. Alternatively, a stem-and-leaf
plot may be substituted for the histogram. At least 100 or more observations should be avail-
able for the histogram (or the stem-and-leaf plot) to be moderately stable so that a reasonably
reliable estimate of process capability may be obtained. If the quality engineer has access to
the process and can control the data-collection effort, the following steps should be followed
prior to data collection:

1.

3.

4.

Choose the machine or machines to be used. If the results based on one (or a few)
machines are to be extended to a larger population of machines, the machine selected
should be representative of those in the population. Furthermore, if the machine has
multiple workstations or heads, it may be important to collect the data so that head-
to-head variability can be isolated. This may imply that designed experiments should be
used.

Select the process operating conditions. Carefully define conditions, such as cutting
speeds, feed rates, and temperatures, for future reference. It may be important to study
the effects of varying these factors on process capability.

Select a representative operator. In some studies, it may be important to estimate oper-
ator variability. In these cases, the operators should be selected at random from the pop-
ulation of operators.

Carefully monitor the data-collection process, and record the time order in which each
unit is produced.

The histogram, along with the sample average ¥ and sample standard deviation s,

provides information about process capability. You may wish to review the guidelines for
constructing histograms in Chapter 3.

Chapter 8
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:
/,EXAM o]l = : 3 [ Estimating Process Capability with a Histogram

Figure 8.2 presents a histogram of the bursting strength of 100
glass containers. The data are shown in Table 8.1. What is the
capability of the process?

SOLUTI'DN

Analysis of the 100 observations gives Furthermore, the shape of the histogram implies that the
distribution of bursting strength is approximately normal.
Thus, we can estimate that approximately 99.73% of the bot-

X =264.06 §=32.02

Consequently, the process capability would be estimated as tles manufactured by this process will burst between 168 and
360 psi. Note that we can estimate process capability indepen-
Tt3s dently of the specifications on bursting strength.

or

264.06 £3(32.02)= 264 £ 96 psi

= TABLE 8.1
40 Bursting Strengths for 100 Glass Containers

265 197 346 280 265 200 221 265 261 278
205 286 317 242 254 235 176 262 248 250
263 274 242 200 281 246 248 271 260 265
307 243 258 321 294 328 263 245 274 270
220 231 276 228 223 296 231 301 337 298
268 267 300 250 260 276 334 280 250 257
260 281 208 299 308 264 280 274 278 210
234 265 187 258 235 269 265 253 254 280
299 214 264 267 283 235 272 287 274 269
215 38 271 293 277 290 283 258 275 231

Frequency
w
=]

]
(==}

10

170 190 210 230 250 270 290 210 330 350
Bursting strength (psi)

BFIGURE 8.2 Histogram for the bursting-
strength data.

\_ P
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8.2.2 Probability Plotting

Probability plotting is an alternative to the histogram that can be used to determine the shape,
center, and spread of the distribution. It has the advantage that it is unnecessary to divide the
range of the variable into class intervals, and it often produces reasonable results for moder-
ately small samples (which the histogram will not). Generally, a probability plot is a graph of
the ranked data versus the sample cumulative frequency on special paper with a vertical scale
chosen so that the cumulative distribution of the assumed type is a straight line. In Chapter 3
we discussed and illustrated normal probability plots. These plots are very useful in process
capability studies.

To illustrate the use of a normal probability plot in a process capability study, consider
the following 20 observations on glass container bursting strength: 197, 200, 215, 221, 231,
242,245, 258, 265, 265, 271, 275, 277, 278, 280, 283, 290, 301, 318, and 346. Figure 8.4 is
the normal probability plot of strength. Note that the data lie nearly along a straight line,
implying that the distribution of bursting strength is normal. Recall from Chapter 4 that the
mean of the normal distribution is the fiftieth percentile, which we may estimate from
Fig. 8.4 as approximately 265 psi, and the standard deviation of the distribution is the slope
of the straight line. It is convenient to estimate the standard deviation as the difference
between the eighty-fourth and the fiftieth percentiles. For the strength data shown above and
using Fig. 8.4, we find that

0 = 84th percentile — 50th percentile = 298 — 265 psi = 33 psi

Note that fi = 265 psi and & = 33 psi are not far from the sample average x = 264.06 and stan-
dard deviation s = 32.02.

Chapter 8 Statistical Quality Control, 7th Edition by Douglas C. Montgomery.
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Probability Plotting

99.9

Cumulative percent

0.1 | | |
190 230 270 310 350
Container strength

BFIGURE 8.4 Normal probability plot of the container-
strength data.
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Care should be exercised in using probability plots. If the data do not come from the
assumed distribution. inferences about process capability drawn from the plot may be seri-
ously in error. Figure 7-5 presents a normal probability plot of times to failure (in hours)
of a valve in a chemical plant. From examining this plot, we can see that the distribution
of failure time is not normal.

An obvious disadvantage of probability plotting is that it 1s not an objective procedure.
It 1s possible for two analysts to arrive at different conclusions using the same data. For
this reason, it is often desirable to supplement probability plots with more formal statisti-
cally based goodness-of-fit tests. A good mtroduction to these tests 1s in Shapiro (1980).
Augmenting the interpretation of a normal probability plot with the Shapiro—Wilk test for
normality can make the procedure much more powerful and objective.

e The distribution may not be normal; other types of
probability plots can be useful in determining the
appropriate distribution.

Chapter 8 Statistical Quality Control, 7th Edition by Douglas C. Montgomery.
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8.3 Process Capability Ratios

Chapter 8

8.3.1 Use and Interpretation of C,

It is frequently convenient to have a simple, quantitative way to express process capability.
One way to do so is through the process capability ratio (PCR) C, first introduced in
Chapter 6. Recall that

_ USL-LSL
oo

C

o (8.4)

where USL and LSL are the upper and lower specification limits, respectively. C,, and other
process capability ratios are used extensively in industry. They are also widely misused. We
will point out some of the more common abuses of process capability ratios. An excellent
recent book on process capability ratios that is highly recommended is Kotz and Lovelace
(1998). There is also extensive technical literature on process capability analysis and process
capability ratios. The review paper by Kotz and Johnson (2002) and the bibliography (papers)
by Spiring. Leong, Cheng, and Yeung (2003) and Yum and Kim (2011) are excellent sources.

In a practical application, the process standard deviation @ is almost always unknown
and must be replaced by an estimate 0. To estimate ¢ we typically use either the sample stan-
dard deviation s or R/d» (when variables control charts are used in the capability study). This
results in an estimate of C,—say.

& - USL - LSL

= (8.5)
P 60

Statistical Quality Control, 7th Edition by Douglas C. Montgomery.
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To illustrate the calculation of C,, recall the semiconductor hard-bake process first ana-
lyzed in Example 6.1 using x and R charts. The specifications on flow width are USL = 1.00
microns and LSL = 2.00 microns, and from the R chart we estimated 0 = E/dz = 0.1398. Thus,
our estimate of the PCR C,, is

~ USL-LSL 2.00-1.00
C, = —— == =
: 66 6(0.1398)

[.192

i

In Chapter 6, we assumed that flow width is approximately normally distributed (a rea-
sonable assumption, based on the histogram in I'ig. 8.7) and the cumulative normal distribu-
tion table in the Appendix was used to estimate that the process produces approximately 350
ppm (parts per million) defective.

Chapter 8 Statistical Quality Control, 7th Edition by Douglas C. Montgomery. 12
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The PCR C,, in equation 8.4 has a useful practical interpretation—namely,

(1
P={—]l[}[} (8.6)
CP

This is the percentage of the specification band used up by the process.

For the hard bake process:

P

(L]l 00 = 83.89
1.192

Chapter 8 Statistical Quality Control, 7th Edition by Douglas C. Montgomery.
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One-Sided PCR

Cpi = % (upper specification only)
Cp = ,u;i (lower specification only)
o

(8.7)

(8.8)

Chapter 8
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Interpretation of the PCR

= TABLE 8.2

Values of the Process Capability Ratio (C,) and Associated Process
Fallout for a Normally Distributed Process (in Defective ppm) That
Is in Statistical Control

Process Fallout (in defective ppm)
PCR One-Sided Specifications Two-Sided Specifications

0.25 226,628 453,255
0.50 66,807 133,614
0.60 35,931 71,861
0.70 17,865 35,729
0.80 8,198 16,395
0.90 3.467 6,934
1.00 1,350 2,700
1.10 484 967
1.20 159 318
1.30 48 96
1.40 14 27
1.50 - 7
1.60 1 2
1.70 0.17 0.34
1.80 0.03 0.06
2.00 0.0009 0.0018

Chapter 8 Statistical Quality Control, 7th Edition by Douglas C. Montgomery.
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Assumptions for Interpretation of
Numbers in Table 8.2

1. The quality characteristic has a normal distribution.
2. The process 1s n statistical control.

3. In the case of two-sided specifications, the process mean is centered between
the lower and upper specification limits.

 Violation of these assumptions can lead to big trouble in using the
data in Table 8.2.

Chapter 8 Statistical Quality Control, 7th Edition by Douglas C. Montgomery. 16
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= TABLE 8.3
Recommended Minimum Values of the Process Capability Ratio

Two-Sided One-Sided
Specifications Specifications
Existing processes 1.33 1.25
New processes 1.50 1.45
Safety, strength, or critical 1.50 1.45
parameter, existing process
Safety, strength, or critical 1.67 1.60

parameter, new process

Chapter 8 Statistical Quality Control, 7th Edition by Douglas C. Montgomery.
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LSL UsL

* (,does not take /|\<=2 c,=2.0
. C,=2.0

process centering “” | | .

1into account

.
e Itis a measure ®) AL e
Of pOtential 38 44 50 56 b2
capability, not o= E)(R G20
actual capability © L

C. =20
F=2 P
Coe=0
(d)
I I |
C,=2.0
T = Ehﬁm:‘D.E
(e) | | | e

38 Ll 50 b6 62 65
BFIGURE 8.8 Relationship of Cp and Cp.
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A Measure of Actual Capability

C,. =min(C,,.C,] (8.9)

Note that C,; is simply the one-sided PCR for the specification limit nearest to the process
average. For the process shown in Figure 8.85, we would have

C, = min(C,,.C,)

r
=mjn(CH=USL_‘u,CJ,=‘u_LSLJ
P 3o r 30
- -3
=mjn(Cu=62 53=1.5,C]r=M=2.5
T3 32

=15

Generally. if C, = Cp. the process is centered at the midpoint of the specifications, and when
Cpi < C, the process is off center.

Chapter 8 Statistical Quality Control, 7th Edition by Douglas C. Montgomery.
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Normality and Process Capability
Ratios

e The assumption of normality is critical to the
usual interpretation of these ratios (such as

Table 8.2)

 For non-normal data, options are

1. Transform non-normal data to normal

2. Extend the usual definitions of PCRs to handle
non-normal data

3. Modity the definitions of PCRs for general
families of distributions

Chapter 8 Statistical Quality Control, 7th Edition by Douglas C. Montgomery. 20
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Chapter 8

8.3.5 Confidence Intervals and Tests on Process Capability Ratios

Confidence Intervals on Process Capability Ratios. Much of the industrial use
of process capability ratios focuses on computing and interpreting the point estimate of the
desired quantity. It is easy to forget that C, or Cy (for examples) are simply point estimates,
and, as such, are subject to statistical fluctuation. An alternative that should become standard
practice is to report confidence intervals for process capability ratios.

It is easy to find a confidence interval for the “first generation” ratio C,. If we replace
o by s in the equation for C,, we produce the usual point estimator C If the qu*tllt}.r charac-
teristic follows a normal distrlbutmn then a 100(1 — &)% Cl on C,, is Dbtamed from

| 2 2
O Vo on-1 P O Y on-1 '
or
~ lxl—mln | 2 Ixﬂ:_n 1
< C <C . |— .
P\l n—1 P\ i (8.20)

where ;{2| _a.n—1 and fwl,, _ are the lower 0/2 and upper /2 percentage points of the
chi-square distribution with n — 1 degrees of freedom. These percentage points are tabulated
in Appendix Table III.

Statistical Quality Control, 7th Edition by Douglas C. Montgomery.
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/EXAMPLE 8.4

Suppose that a stable process has upper and lower specifica-
tions at USL = 62 and LSL = 38. A sample of size n = 20
from this process reveals that the process mean is centered

approximately at the midpoint of the specification interval and
that the sample standard deviation s=1.75. Find a 95% ClI on C,,.

SOLUTION

A point estimate of C,, is

¢, - USL-LSL _62-38 _, o
65 6(1.75)

The 95% confidence interval on C, is found from equation
8.20 as follows:

2 2
- ’Z]—u.uﬁ n-1 ’Zu.nz:‘-.n—l
C./——————=C, =< L
p n—1 p P n—1
8.91 0 ||32.85
19

229 |— 2
01

1A
14

1

¢
5 <Gs2
1.57<C, <3

1M
I

Chapter 8

where fg_g?_:,_ 19=8.91 and xl.;,_uﬁ 19 = 32.85 were taken from
Appendix Table IIL

Statistical Quality Control, 7th Edition by Douglas C. Montgomery.
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For more complicated ratios such as C,; and C,,, various authors have developed
approximate confidence intervals; for example, see Zhang, Stenback, and Wardrop (1990),
Bissell (1990), Kushler and Hurley (1992), and Pearn et al. (1992). If the quality charac-
teristic is normally distributed, then an approximate 100(1 — a)% CI on Cp; is given as

follows.

5 jl 1
C.l1-Z ,
pk af2
\

| + : <C
2 = p
9nCoy  2(n—1) " 7

P ]

<C,, l+Z,n [—=+
P{ ﬂl\l@nﬂﬁk 2(n-1)

(8.21)

Kotz and Lovelace (1998) give an extensive summary of confidence intervals for various
PCRs.
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(EXAMPLE <3y A Confidence Interval on Cpy

A sample of size n = 20 from a stable process is used to esti-
mate C,, with the result that f‘pk = 1.33. Find an approximate
95% Cl on Cpy.

SOLUTION

Using equation 8.21. an approximate 95% CI on C,; is

= 1 1
Copl 1=7Z ’—,+—
P{ /2 9nC2, 2(::—1)}
se et ez, | e b
TP TR o T 2(n—1)
1.33(1-1.96 : —
' Ty 9(20)(1.33)*  2(19)

i I
<c, 51.33[1 +I.96J9(20}(1,33)2 . 2(19)]

or

0.88=Cp =1.78

This is an extremely wide confidence interval. Based on the Thus, we have learned very little about actual process capability,
sample data, the ratio Cp,; could be less than 1 (a very bad situa- because C, is very imprecisely estimated. The reason for this, of
tion), or it could be as large as 1.78 (a reasonably good situation). course, is that a very small sample (n = 20) has been used.

N _

Chapter 8 Statistical Quality Control, 7th Edition by Douglas C. Montgomery.
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= TABLE 8.5
Glass Container Strength Data (psi)

Process Capability _—————————
Analysis using Control Sample Data ¥ K
Charts 1 265 205 263 307 220 252.0 102
. 268 260 234 299 215 255.2 84
3 197 286 274 243 231 246.2 89
4 267 281 265 214 318 269.0 104
5 346 317 242 258 276 287.8 104
6 300 208 187 264 271 246.0 113
7 280 242 260 321 228 266.2 93
8 250 299 258 267 293 2734 49
9 265 254 281 204 223 2634 71
10 260 308 235 283 277 272.6 73
11 200 235 246 328 296 261.0 128
12 276 264 269 235 290 266.8 55
13 221 176 248 263 231 227.8 87
14 334 280 265 272 283 286.8 69
15 265 262 271 245 301 268.8 56
16 280 274 253 287 258 2704 34
17 261 248 260 274 337 276.0 89
18 250 278 254 274 275 266.2 28
19 278 250 265 270 298 27222 48
20 257 210 280 269 251 2534 70
¥=26406 R=713
Chapter 8 Statistical Quality Control, 7th Edition by Douglas C. Montgomery.
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5

BFIGURE 8.12

data.

Chapter 8

_\.,/")\ WA Ao
I I I
10 15 20

Sample number

X and R charts for the bottle-strength

-

U=x=264.00

. R 713

6=—=—""=3323
d, 2326

Since LSL =200

C R
Y 3(33.23)

Statistical Quality Control, 7th Edition by Douglas C. Montgomery.
Copyright (c) 2013 John Wiley & Sons, Inc.

s (U —LSL _ 264.06- 200 064

26



7.8 Gauge and Measurement Systems
Capability Studies

e Determine how much of the observed
variability 1s due to the gauge or measurement
system

 Isolate the components of variability in the
measurement system

e Assess whether the gauge 1s capable (suitable
for the intended application)

Chapter 8 Statistical Quality Control, 7th Edition by Douglas C. Montgomery.
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To introduce some of the basic ideas of measurement systems analysis (MSA), consider
a simple but reasonable model for measurement system capability studies

y=Xt+& (8.23)
where y is the total observed measurement, x is the true value of the measurement on a unit
of product, and £ is the measurement error. We will assume that x and £ are normally and inde-
pendently distributed random variables with means ¢ and 0 and variances (op) and (g%augc)1
respectively. The variance of the total observed measurement, v, is then

2 2 2
OTotal = Op +{TGaugc (8.24)

Control charts and other statistical methods can be used to separate these components of vari-
ance, as well as to give an assessment of gauge capability.

Chapter 8 Statistical Quality Control, 7th Edition by Douglas C. Montgomery.
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_EXAMPLE 8.7

An instrument is to be used as part of a proposed SPC imple-
mentation. The quality-improvement team involved in design-
ing the SPC system would like to get an assessment of gauge
capability. Twenty units of the product are obtained, and the

SDLUTIDN

process operator who will actually take the measurements for
the control chart uses the instrument to measure each unit of
product twice. The data are shown in Table 8.6.

Figure 8.14 shows the X and R charts for these data. Note that
the x chart exhibits many out-of-control points. This is to be
expected, because in this situation the X chart has an interpre-
tation that is somewhat different from the usual interpretation.
The x chart in this example shows the discriminating power
of the instrument—Iliterally, the ability of the gauge to distin-
guish between units of product. The R chart directly shows
the magnitude of measurement error, or the gauge capability.
The R values represent the difference between measurements
made on the same unit using the same instrument. In this exam-
ple, the R chart is in control. This indicates that the operator is

Chapter 8

having no difficulty in making consistent measurements. Out-of-
control points on the R chart could indicate that the operator is
having difficulty using the instrument.

The standard deviation of measurement error, Ggyye.. Can
be estimated as follows:

R 1.0
a =—=——=0.887
G T g T 1128
The distribution of measurement error is usually well approxi-
mated by the normal. Thus, 6. is a good estimate of gauge
capability.

Statistical Quality Control, 7th Edition by Douglas C. Montgomery.
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mn TABLE 8.6
Parts Measurement Data
|
Part Measurements
Number 1 2 X R
1 21 20 20.5 1
2 24 23 23.5 1
3 20 21 20.5 1 30
4 27 27 27.0 0
5 19 18 18.5 1 T oop | ﬂ UcL=24.2 '
6 23 21 22.0 2
Al AT
7 22 21 21.5 1
8 19 17 18.0 2 20~ ‘\ ~
0 24 23 23.5 1 LCL = 20.42
10 25 23 24.0 2 15 : 0 5 20
11 21 20 20.5 1
12 18 19 18.5 1 A
13 23 25 24.0 2 UCL =3.267
14 24 24 24.0 0 R ,
15 29 30 29.5 1 B
16 26 26 26.0 0 Ries WﬂA A
| V. W
17 20 20 20.0 0 0 5 10 T
18 19 2l 200 2 BFIGURE 8.14 Control
19 25 26 25.5 1 charts for the gauge capability analysis
20 19 19 19.0 0 in Example 8.7.
X=223 R=10
|
N Vs
Chapter 8 Statistical Quality Control, 7th Edition by Douglas C. Montgomery.
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The £/7ratio:

kﬁG uage

= 25
PIT USL - LSL (8-5)

In equation 8.25. popular choices for the constant k are k= 5.15 and k = 6. The value k= 5.15
corresponds to the limiting value of the number of standard deviations between bounds of a
95% tolerance interval that contains at least 99% of a normal population, and k = 6 corre-
sponds to the number of standard deviations between the usual natural tolerance limits of a
normal population.

The part used in Example 8.7 has USL = 60 and LSL = 5. Therefore, taking k = 6 in
equation 8.25, an estimate of the P/T ratio 1s

6(0.887) 5.32
60-5 55

P|T = = 0.097

Chapter 8 Statistical Quality Control, 7th Edition by Douglas C. Montgomery.
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Valucs of the estimated ratio P/T of 0.1 or less often arc taken to imply adcquate gauge capa-
bility. This is based on the generally used rule that requires a measurement device to be cali-
brated in units one-tenth as large as the accuracy required in the final measurement. However,
we should use caution in accepting this general rule of thumb in all cases. A gauge must be
sutficiently capable to measure product accurately enough and precisely enough so that the
analyst can make the correct decision. This may not necessarily require that P/T"'< 0.1.

Chapter 8 Statistical Quality Control, 7th Edition by Douglas C. Montgomery.
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Estimating the Variance Components

Ot = 5~ = (3.17)% = 10.05
Since from equation (8.24) we have

.
O-"zl'nlal =0p+ G(zjaugc

. a2 2 . . .
and because we have an estimate of OGauge = (0.887)" = 0.79. we can obtain an estimate of
Op as

~ ~ ) )
67 = 7o — Odaue = 10.05 — 0.79 = 9.26
Therefore, an estimate of the standard deviation of the product characteristic is

&,=\9.26 = 3.04

Chapter 8 Statistical Quality Control, 7th Edition by Douglas C. Montgomery. 33
Copyright (c) 2013 John Wiley & Sons, Inc.



There are other measures of gauge capability that have been proposed. One of these is the
ratio of process (part) variability to total variability:

;
op

pp=— (8.26)
C'-Tnlul

and another is the ratio of measurement system variability to total variability:

2
O-G:ulgi.t oA
="y (8.27)

OTotal

Obviously, pp = 1 — py,. For the situation in Example 8.7 we can calculate an estimate of py,
as follows:

)
. O-Guu-__*c 0.79

Pyv=" =
Glow 1003

= 0.0786

Thus the variance of the measuring instrument contributes about 7.86% of the total observed
variance of the measurements.
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Another measure of measurement system adequacy is defined by the AIAG (1995)
[note that there is also on updated edition of this manual, ATAG (2002)] as the signal-to-noise
ratio (SNVR):

|Il 2,
SNR = |7
N1 -pp

(8.28)

ATAG defined the SNR as the number of distinct levels or categories that can be reli-
ably obtained from the measurements. A value of five or greater is recommended, and a value
of less than two indicates inadequate gauge capability. For Example 8.7 we have p,, = 0.0786,
and using pp =1 — pyy we find thatpp = 1 — py; = 1 — 0.0786 = 0.9214, so an estimate of the
SNR in equation (8.28) is

F— I
F2pp [2009214)

SNR = | =4 | -
Ni—p, Vi-09214

The gauge 1s not capable by this criterion
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Discrimination Ratio

(8.29)

Some authors have suggested that for a gauge to be capable the DR must exceed four.
This is a very arbitrary requirement. For the situation in Example 8.7, we would calculate an
estimate of the discrimination ratio as

A ltpp 1409214

DR = = = 24.45
[ —pp 1-09214
Clearly by this measure, the gauge 1s capable.
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Accuracy and Precision

- ﬁi\

| 9

@ > ==
| [N

BFIGURE 8.15 The concepts of accuracy and precision.

{a) The gauge is accurate and precise. () The gauge is accurate but not
precise. (c) The gauge is not accurate but it is precise. (d) The gauge is
neither accurate nor precise.
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Gauge R&R Studies

It 1s also possible to design measurement systems capability studies to investigate two
components of measurement error, commonly called the repeatability and the reproducibility
of the gauge. We define reproducibility as the variability due to different operators using the
gauge (or different time periods, or different environments, or in general, different conditions)
and repeatability as reflecting the basic inherent precision of the gauge itself. That is,

2 " _ 2 2
O Measurement Error — GGaugc - GRCpEﬂtﬂhilil_‘,-' + Gchrcducibility (830)

The experiment used to measure the components of UE;E.UEE is usually called a gauge R
& R study, for the two components of U%augc- We now show how to analyze gauge R & R
experiments.
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Gauge R&R Studies Are Usually Conducted
with a Factorial Experiment

If there are @ randomly selected parts and » randomly selected operators, and each oper-
ator measures every part n times, then the measurements (i = part, j = operator, k = measure-
ment) could be represented by the model

i=1.2,..., p
Vik =M+ P+ O;+ (PO); + € J=1,2,..., 0
k=1,2.....n

where the model parameters P;, O;. (PO);;. and € are all independent random variables that
represent the effects of parts, operators, the interaction or joint effects of parts and operators,
and random error. This is a random effects model analysis of variance (ANOVA). It is also
sometimes called the standard model for a gauge R & R experiment. We assume that the ran-
dom variables P;, O;. (PO);;. and g;; are normally distributed with mean zero and variances
given by V(P;) = 0’,20. V(O;) = O'?). VI(PO);] = O'sz(). and V(&) = o”. Therefore, the variance of
any observation is

V(i) = Op + G+ Opp + O (8.31)

2 2 2 . . :
and Op. 0p. Opp. and 0~ are the variance components. We want to estimate the variance
components.
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= TABLE 8.7
Thermal Impedance Data ("C/W x 100) for the Gauge R & R Experiment

Part Inspector 1 Inspector 2 Inspector 3
Number  Test 1 Test 2 Test3d Test1l Test2 Testd Test1 Test 2  Test 3
| 37 38 37 41 41 40 41 42 41
2 42 41 43 42 42 42 43 42 43
3 30 31 31 31 31 31 29 30 28
4 42 43 42 43 43 43 42 42 42
3 28 30 29 29 30 29 31 29 29
6 42 42 43 45 45 45 4= 46 45
7 25 26 27 28 28 30 29 27 27
8 40 40 40 43 42 42 43 43 41
9 25 25 25 27 29 28 26 26 26
10 35 34 RE 35 35 34 35 M 35

This is a two-factor factorial experiment

ANOVA methods are used to analyze the data and yo estimate the
variance components
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S8 otal = SSpans +55¢ +88pxp + 55

Iperators Error (8.32)
MSp = SSparts E t ‘MSP) =0°+ ﬁgf’o +bn Uf-’
{{_ ] E(MSy) =07 +n0py +ancp
R ‘S‘S(}pcr:uorrc . 7 2
MS, = p— E(MSpp) =0~ +n0pp
MSp,, = >Opx0
(p—1)0—-1)
S5 o
MS.. = ?].um : MY Tl D
" E(MSg)=0
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Chapter 8

O = :Lf-g E
L MSpy— MS,

Opo = p
> MSp—MSpg
Op =
pil
. ‘_.’1/_{'5' ' I ;.’1/_:‘{'5' 3
63 = —1 PO
o
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= TABLE 8.8

ANOVA: Thermal Impedance versus Part Number, Operator

Factor Type Levels Values
Part Num random 10 1 2 3 4 5 6 7
B 9 18

Operator random 3 1 2 3
Analysis of Variance for Thermal

Source DF 55 M5 F P
Part Num 9 3,935.96 437.33 162.27 D.000
Operator 2 39.27 19.63 7.28 B.0a5
Part Num*Operator 18 48.51 2.70 5.27 0.000
Error 60 30.67 B.51
Total 89 4,054.40

Source Variance Error Expected Mean Square for Each

component term Term (using unrestricted model)

1 Part Num 48.2926 3 (4) + 3(3) + 9(1)

2 Operator B.5646 3 (4) + 3(3) + 30(2)

3 Part Num*Operator B.7280 4 (4 + 3(3)

4 Error P.5111 (4)
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Chapter 8

-3 19{13—27"0 -
Op= _ _ =(.56

)
> 2.70-0.51
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e Negative estimates of a variance component

would lead to filling a reduced model, such as,

for example:

=U+01+0;+&,

!.-"L
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Typically we think of ¢~ as the repeatability variance component, and the gauge
reproducibility as the sum of the operator and the part x operator variance components,

(T]_{crlrw.iucil"-ilil_ﬁ =0p T 0pg
Therefore

Bl Bl T
J{jmlgc = (T]{qﬁrmhmilﬁiIilj. +(TRC|"'CLIl:l|."i|il_"'.'
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For this Example

-7 ~ 7 2 ~

U{inugc =0~ + (TG +(TPL}'
=0.514+056+0.73
=1.80

The lower and upper specifications on this power module are LSL = 18 and USL = 58.
Therefore the P/ 7 ratio for the gauge i1s estimated as

ﬁd-(inugc _ (7{]3—” i

o
PIT = = A2
USL—LSL 58—18

.27

By the standard measures of gauge capability, this gauge would not be considered capable
because the estimate of the P/T ratio exceeds 0.10.
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Important Terms and Concepts

ANOVA approach to a gauge R & R experiment
Components of gauge error

Components of measurement error

Confidence intervals for gauge R & R studies

Discrimination ratio (DR) for a gauge
Estimating variance components

Factorial experiment

Gauge R & R experiment

Graphical methods for process capability analysis
Measurement systems capability analysis
Natural tolerance limits for a normal distribution
Natural tolerance limits of a process
Nonparametric tolerance limits

Normal distribution and process capability ratios
One-sided process-capability ratios

Confidence intervals on process capability ratios
Consumer’s risk or missed fault for a gauge
Control charts and process capability analysis
Delta method

PCR Cpp,

Precision and accuracy of a gauge
Precision-to-tolerance (P/T) ratio
Process capability

Process capability analysis

Process performance indices P, and P,
Producer’s risk or false failure for a gauge
Product characterization

Random effects model ANOVA
Signal-to-noise ratio (SNR) for a gauge
Tolerance stack-up problems

PCR G, Transmission of error formula
PCR Cpy
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