Chapter :02
Title: LIMITS AND CONTINUITY

AVERAGE RATE OF CHANGE OR SECANT SLOP:
A line joining two point of a curve is a secant to the curve Formula: $\left.P\left(x_{1}\right) y_{1}\right)$ and $Q\left(x_{2}, y_{2}\right)$

$$
A \cdot g=\frac{\Delta y}{\Delta x}
$$

$$
\text { Ing }=\frac{y_{2}-y_{1}}{x_{2}-x_{1}}
$$

Example

$$
\begin{align*}
& \uparrow \\
& \text { 1. } f(x)=x^{3}+1 \text {, } \tag{2,3}\\
& \text { 2. } f(x)=x^{3}+1, \quad[-1,1] \\
& x_{1}=2, x_{2}=3 \\
& x_{1}=-1, x_{2}=1 \\
& f(x)=y \\
& f\left(x_{1}\right]=y_{1} ; f\left(x_{2}\right)=y_{2} \\
& f\left(y_{1}\right)=f(2)=\begin{array}{l}
(2)^{3}+1=8+1=9 \\
y_{1}=9
\end{array} \\
& y_{1}=9 \\
& f\left(a_{2}\right)=f(3)=r 33^{3}+1=27+1=28 \\
& y_{2}=28 \\
& f(-1)=(-1)^{3}+1=-1+1=0 \\
& f(1)=[1)^{3}+1=1+1=2 \\
& \text { Avg }=\frac{y_{2}-y_{1}}{x_{2}-x_{1}} \\
& =\frac{2-0}{1-[-1]}=\frac{2}{2}=1 \\
& \text { Avg }=\frac{y_{2}-y_{1}}{x_{2}-x_{1}}=\frac{28-9}{3-2}=\frac{19}{1}=19 \\
& \text { M}_{\text {secant }}=1
\end{align*}
$$

2. $g(x)=x^{2} ; \quad[-1,1]$
3. $g(x)=x^{2} ; \quad[-2,0]$

BASIC CONCEPT:

$n=4$

$$
\operatorname{Lim}_{n \rightarrow \infty} a \ln ^{n}=\text { (A) }
$$

| x | 1.8 | 1.9 | 1.99 | $1.999 \rightarrow 2$ |
| :--- | :--- | :--- | :--- | :--- | :--- |
| $f(x)$ | 3.8 | 3.9 | 3.94 | 3.997 |

Repl:

x	2.1	2.05	2.001	2.0001	$\rightarrow 2$
$f(x)$	4.1	4.05	4.001	4.0001	$\rightarrow 4$

$f(2]=2^{3}+1=9^{2}$

$$
f(x)=\frac{x^{2}-4}{x-2}
$$

$x=2$
$f(2)$

$f(x)=x+2$ $f(2)=2+2=4$

ONE SIDED LIMIT:
\checkmark RIGHT HAND LIMIT:
A function f is said to have the right-hand limit l as $x \rightarrow a^{+}$

$$
\lim _{x \rightarrow c^{f}} f(x]=L
$$

$$
E=x p \quad \operatorname{lix}_{x \rightarrow 2^{+}}^{E} f(x)=3
$$

EFT HAND LIMIT:
A function f is said to have the right-hand limit l as $x \rightarrow a^{-}$

$$
\lim _{x \rightarrow \bar{a}} f(x)=L
$$

$$
\operatorname{lut}_{x \rightarrow \bar{a}} f(x)=3
$$

$$
x \rightarrow \bar{a}
$$

$$
\underset{x \rightarrow o n}{\operatorname{lon}+1}
$$

If

$$
\begin{aligned}
\operatorname{Lint}_{x \rightarrow \operatorname{m}^{a n}} f(x) & =\operatorname{lint}_{x \rightarrow a} f(x) \\
L & =\operatorname{lint}_{x \rightarrow a} f(x) \\
L & =\operatorname{lint}_{x \rightarrow a} f[x]=L
\end{aligned}
$$

$$
\text { exist } \begin{aligned}
& \text { Lis } \left.\begin{array}{l}
\text { fig }(x)=3 \\
x \rightarrow 0
\end{array}\right]
\end{aligned}
$$

The relationship between one-sided and two-sided limits

Example:

1. $\lim _{x \rightarrow 2} 4=4$

$$
f(x)=4
$$

2. $\lim _{x \rightarrow-13} 4=4$
3.

$$
\begin{gathered}
\lim _{x \rightarrow 3} x=3 \\
f(x)=3 \\
x \times 1,
\end{gathered}
$$

4. $\lim _{x \rightarrow 2}(5 x-3)=5(2)-3=10-3=7$

$$
f(x)=5 x-3
$$

5. $\lim _{x \rightarrow-2} \frac{3 x+4}{x+5}=\frac{3(-2)+4}{-2+5}=\frac{-6+4}{+3}=-2 / 3$

$$
-2+5=+1
$$

LIMITS LAW:

1. Identity function:

If f is the identity function $f(x)=x$, then the limit at point $x=x_{0}$

$$
\lim _{x \rightarrow x_{0}} f(x)=x_{0}
$$

2. Constant function:

If f is the constant function $f(x)=k$, then the limit at point $x=x_{0}$

$$
\operatorname{lin}_{x \rightarrow n_{0}} f(x)=K
$$

3. Sum Rule:

$$
\begin{array}{rl|l}
\text { If } \lim _{x \rightarrow a} f(x)=L \& \lim _{x \rightarrow a} g(x)=M \text { then } \\
\left.\begin{aligned}
\operatorname{lit}_{x \rightarrow a}(f[x)+g(x) & =\operatorname{lit}_{x \rightarrow a} f[x]+\operatorname{lith}_{x \rightarrow+} g(x) \\
& L+M
\end{aligned} \right\rvert\, \begin{array}{ll}
2 \\
3 & 4
\end{array}
\end{array}
$$

4. Difference Rule:

If $\lim _{x \rightarrow a} f(x)=L \& \lim _{x \rightarrow a} g(x)=M$ then

$$
\begin{aligned}
\operatorname{lin}_{x x^{\infty}}[f(x)-a(x)] & =\operatorname{lin}_{x \rightarrow 4}^{x \rightarrow} f(x)-\operatorname{lin}_{x \rightarrow 2} f(x) \\
& =L-M
\end{aligned}
$$

5. Constant Multiple Rule:

If $\lim _{x \rightarrow a} f(x)=L \quad$ then

$$
\begin{aligned}
\lim _{x \rightarrow a} c f(x) & =c \lim _{x \rightarrow a} f(x \mid 1 \\
& =c L
\end{aligned}
$$

6. Quotient Rule:

If $\lim _{x \rightarrow a} f(x)=L \& \lim _{x \rightarrow a} g(x)=M$ then
7. Power rule

If $\lim _{x \rightarrow a} f(x)=L \quad$ then

$$
\begin{aligned}
& \text { If } \lim _{x \rightarrow a} f(x)=L \text { then } r / s \\
& \operatorname{link}_{x \rightarrow a}(f(x))^{r / s}=\left(\operatorname{lin}_{x \rightarrow a}-f|x|\right)^{r / s}=[L]
\end{aligned}
$$

[a)

$$
\begin{aligned}
& \text { Example: } \\
& \lim _{x \rightarrow c}\left[x^{3}+4 x^{2}-3\right]=\lim _{x \rightarrow c} x^{3}+\lim _{x \rightarrow 2} 4 x^{2}-\operatorname{lin}_{4 \rightarrow c} 3 \\
&=c^{3}+4 \operatorname{lin}_{x \rightarrow c} x^{2}-3 \\
&=c^{3}+4 c^{2}-3
\end{aligned}
$$

$$
\text { [c] } \begin{aligned}
& \lim _{x \rightarrow 2}\left(\sqrt{4 x^{2}-3}\right) \\
& =\operatorname{lint}_{x \rightarrow 2}\left(4 x^{2}-3\right)^{-1 / 2} \\
& =\left(\operatorname{lin}_{x \rightarrow 2} 4 t^{21^{2}-3}\right)^{1 / 2} \\
& =\sqrt{13}
\end{aligned}
$$

(b)

$$
\begin{aligned}
& \lim _{x \rightarrow 6} \frac{x^{4}+x^{2}-1}{x^{2}-5} \\
& =\frac{\operatorname{lit}_{x \rightarrow c}\left(x^{4}+x^{2}-1\right)}{\lim _{x \rightarrow c}\left(x^{2}-5\right)}=\frac{1333}{31}
\end{aligned}
$$

