Def:
Given function f and g , the composition function of f with g , denoted by $f \circ g$
Is a function defined by $(\underline{f \circ g})(x)=f(g(x))$ or $(g \circ f)(x]=g(f(x))$
Example 01: find ${ }^{\infty 1}(f \circ g)(x)$ and ${ }^{\text {b }}(g \circ f)(x)$

$$
f(x)=x^{2}+3 \quad g(x)=\sqrt{x}
$$

a) $(\mathrm{flOg}(x)=f(\mathrm{~g}(x))$

$$
=f(\sqrt{x})
$$

$$
\begin{aligned}
& f(x)=x^{2}+3 \\
& f(\sqrt{x})=[\sqrt{x}]^{3}+3
\end{aligned}
$$

$$
x_{g(x)}^{\left.\left(y^{0 g}\right)\right]}
$$

$$
=[\sqrt{x}]^{2}+3
$$

(b)

$$
=x+3
$$

b)

$$
7 \circ 9](x)=x+3
$$

$$
\text { Domain }=(-\infty) \infty]
$$

$$
\log \neq g^{f} f
$$

Compositions can also be defined for three or more functions $($ fogoh $)(x)=f(g(h \in(l)))$
Example:02 $f(x)=\sqrt{x}, g(x)=\frac{1}{x}, \quad \mathrm{~h}(\mathrm{x})=x^{3}$

$$
\begin{aligned}
(f \circ g \circ h)(x) & =f(g(h(x)]) \\
& =f\left(g\left(x^{3}\right)\right) \\
& =f\left(\frac{1}{x^{3}}\right)=\sqrt{\frac{1}{x^{3}}}=\frac{1}{x^{3 / 2}}=\frac{1}{\sqrt{x^{3}}}
\end{aligned}
$$

$$
\left(\frac{1}{x^{3}}\right)^{1 / 2}=\frac{11^{3 / 2}}{x^{3 / 2}}=\frac{1}{x^{1 / 2}}
$$

$$
\begin{aligned}
\text { Domain } & =x^{9}>0 \\
& =x \geqslant 0
\end{aligned}
$$

Example:03 Express $\sin \left(x^{3}\right)$ as a composition of two functions.

$$
\begin{aligned}
& f(x)=? \quad g(x)=? \quad \begin{array}{l}
f(x)=\sin x ; g(x)=x^{3} \\
f(g(x))=f(x) \\
=\sin (x) \\
=\sin (x)
\end{array}
\end{aligned}
$$

$$
\begin{aligned}
& \lg _{\mathrm{g}} f(x)=g(f(x)) \\
& =g\left(x^{2}+3\right) \\
& =\sqrt{x^{2}+3} \\
& {[\mathrm{~g} 04](x)=\sqrt{x^{2}+3}} \\
& \begin{array}{ll}
\text { Domain } & x^{2}+a \geqslant 3 \\
& x^{2} \geqslant-3
\end{array}
\end{aligned}
$$

$$
\begin{aligned}
& 9 \cdot\left(x^{2}+1\right)^{10}=f(g 1019) \\
& \text { c):- } \tan x 5 \\
& f(x)=x^{n 0} ; g[x]=x^{2}+1 \\
& \begin{aligned}
f(g(x)) & =7\left(x^{2}+1\right) \\
& =\left[x^{2}+1\right]^{10}
\end{aligned} \\
& f(x)=8+x \\
& =\left[x^{2}+1\right]^{10} \\
& [f]\}(x)=\pi\left[\begin{array}{ll}
{[x]} \\
{[x+1}
\end{array}\right. \\
& \begin{aligned}
f(\sin (x)] & =f[\sqrt{x}] \\
& =8+\sqrt{-x}
\end{aligned} \\
& \underset{f(x)}{T} \longrightarrow y \\
& f(x)=\frac{1}{x} ; \quad g(x)=x+1 \\
& f(j(x))=f(x+1) \\
& =\frac{1}{3+1} \\
& a:-8+\sqrt{x}=[f \circ g][x] \\
& \text { g(x) }=\sqrt{x} x^{2}
\end{aligned}
$$

Shifting graph:

$$
1=[1)^{2}
$$

$$
4=[2]^{2}
$$

$$
\begin{aligned}
& y=|x|=f(x) \\
& f(x|=|21|
\end{aligned}
$$

