Lecture:03: Calculus and Analytical Geometry
Chapter 01: Before Calculus

Quadratic inequalities:
a)

$$
\begin{aligned}
& \sqrt{a^{2}}=|x| \\
& x^{2}=2 \\
& x=\sqrt{2}
\end{aligned}
$$

(b)

$$
\begin{gathered}
4 \leq x^{2} \\
\pm 2 \leq x \\
\frac{2 \leq x}{1} y \\
\frac{1}{9}<x^{2}<\frac{1}{4} \\
\frac{1}{3}< \pm x<\frac{1}{2}
\end{gathered}
$$

$$
I=(\infty,-2] \cup[0, \infty)
$$

$$
\begin{aligned}
& \pm 2 \leq x \\
& 2 \leq x,-2 \leq x
\end{aligned}
$$

(3)

$$
\frac{1}{3}<x<\frac{1}{2}
$$

$$
R=(, \infty, \infty)
$$

$(2,-)$

Even and Odd Function:

$$
\frac{1}{3}<-x<\frac{1}{2}<x<-\frac{1}{2}
$$

$$
3, x^{-5}, x^{2}+1, x^{2}+x, x^{3}+x, x^{4}+3 x^{2}+1, \frac{1}{x^{2}-1}, \frac{x}{x^{2}-1},\left|t^{3}\right|, 2|t|+1
$$

a.)

$$
\begin{aligned}
& f(x)=3 \\
& f(x)=3=f(x) \\
& f(-x)=f(x) \\
& f(x) \text { is even }
\end{aligned}
$$

(b)

$$
\begin{aligned}
f(x) & =x^{2}+1 \\
f(-x) & =1-x]^{2}+1 \\
f(-x) & =[-1][x)^{2}+1 \\
& =x^{2}+1
\end{aligned}
$$

$$
f(-x]=f(x)
$$

$\Longrightarrow f(\mu \mathrm{cl}$ is avens
(c)

$$
\begin{aligned}
f(x) & =x^{3}+x \\
f(x) & =\left(-x^{3}\right)^{3}+(-x) \\
& =(-1)^{3} x^{3}-x \\
& =-x^{3}-x \\
& =-\left(x^{3}+x\right)
\end{aligned}
$$

$$
\begin{aligned}
& x^{2}<2 \\
& |x|<\sqrt{2} \\
& -\sqrt{2}<x<\sqrt{2} \\
& I=(-\sqrt{2}, \sqrt{2})
\end{aligned}
$$

$$
\begin{aligned}
& f(t)=\left|t^{3}\right| \\
& f(t)=\left|L+t^{3}\right|=\left|-t^{3}\right|=\left|t^{3}\right|
\end{aligned}
$$

$f(7)$ is ewen

$$
f(t)=2|t|+1
$$

- Greatest integer function

The function whose value at any number x is the smallest greater of equal to x is called greatest integer function.

$$
(x])[[x]], y=[[x]]
$$

$$
\begin{aligned}
& {[2]=82} \\
& {[2.4]=2} \\
& {[3.6]=3} \\
& {[-2]=-2}
\end{aligned}
$$

- Piece wise defined functions: diff. funds \Rightarrow diff alomoin
$\stackrel{\text { En }}{=} \cdot y=f(x)=\left\{\begin{array}{l}x, \\ 2 x-1 \frac{\sqrt{0} \leq x \leq 1}{1<x \leqq 2}\end{array} \quad \quad \quad \leq x<1\right.$

x	$f(x)=x$	
0	0	x 1
		$f(x)=2 x-1$
	0	$2(x)-1=1$

$$
f(x)= \begin{cases}\frac{1}{x}, \sqrt{x<0} \\ x, \frac{1}{y} \rightarrow \infty \\ f(x)=\frac{1}{x} & f(x)=x\end{cases}
$$

$$
x<0
$$

x	$f(01]=\frac{1}{x}$	x	$f(x)$
$\left[\begin{array}{l}-1 \\ -4 \\ -1\end{array}\right]$	-1 -0.25 -0.333	0	0

$y=\frac{1}{x}$

- Function:

Function is the set of rules that assign a unique value

$$
\begin{aligned}
& f(x)=x \\
& f(11=1
\end{aligned}
$$

- Domain:

All possible input values are called domain

- Range:

All possible output values are called domain
(1)

$$
\begin{array}{ll}
\text { Remembering point to find domain } \\
f(x)=p o l y n o m \mid a l & f[x]=x^{2}+1 \\
\text { Domain }=(-\infty, \infty) & D=-\infty, \infty
\end{array}
$$

(I)

$$
\begin{array}{lc}
f(x)=\frac{1}{p o l y w m i a l ~} & \frac{1}{0} \\
\text { Donpuin }=\text { poly } \neq 0 & f(x)=\frac{1}{x} \\
f(x)=\frac{1}{(x-1)} ; \frac{1}{0} & D=0
\end{array}
$$

$$
x-1 \neq 0
$$

$$
x \neq 1
$$

(2)

$$
\begin{aligned}
& f(x]=s q u p 0^{t} \\
& D: \Rightarrow f(x) \geqslant 0
\end{aligned}
$$

Range

$$
\begin{aligned}
& f(x)=x \quad 0 \leq x=1 \\
& D=[0,1]
\end{aligned}
$$

$$
(3) f(M)=\frac{1}{\sqrt{f(x)}}
$$

$$
f(D)>0
$$

