
Course Title: Calculus and Analytical Geometry (Math -101)

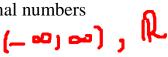
Course Instructor: Nida Ibrar

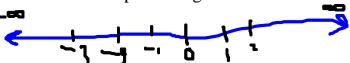
- study of continuous change

- Algebra
- **Probability**
- Geometry

Gottfried Wilhelm Leibniz

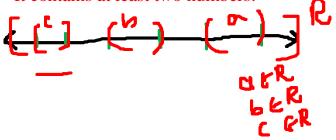
Chapter 01: Preliminaries

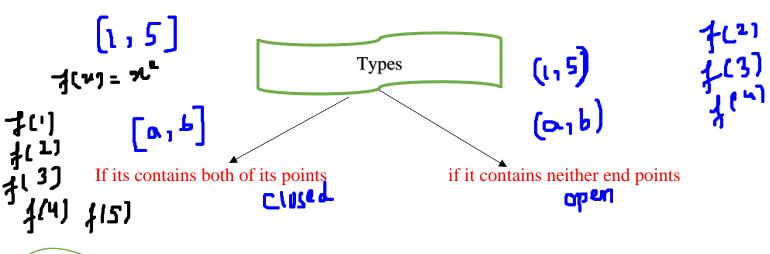

• Real Numbers:


Union of Rational and irrational numbers

Square is positive number

Real Lines:


Real numbers can be representing in lines is called Real lines

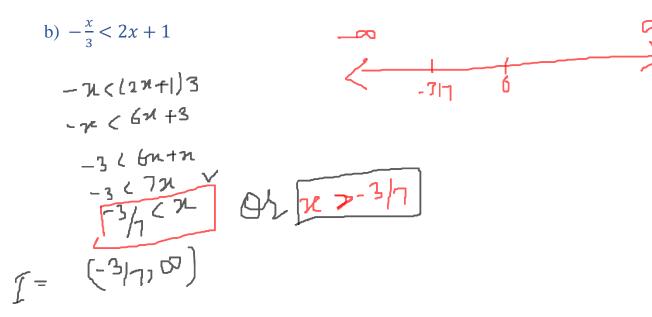


A subset of the real lines is called interval

It contains at least two numbers:

Example: 01

Solve the following inequalities and show their solution set on the real lines:


a)
$$2x-1 < x+3$$

$$2x-x < 3+1$$

$$x < 4$$

$$T = (-x), 4$$

$$T = ($$

$$|SL-|=0$$

$$|SL-$$

$$\frac{d}{dx} = 1$$

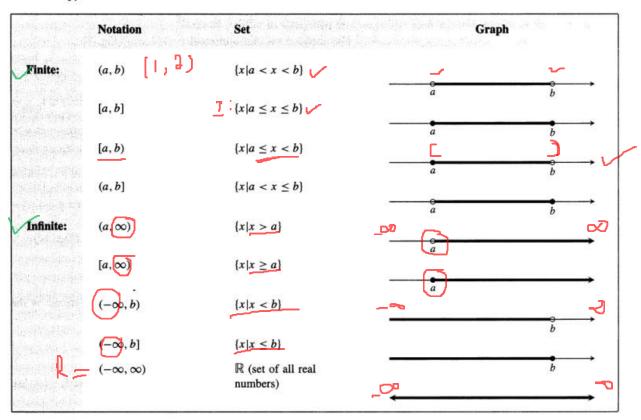
$$\sum_{i=1}^{n} = (-\infty, 1) \cup (1)$$

• Absolute values:

The absolute rature of a number denoted by [71] is defined by

X-|=D

$$|x| = |x|$$


$$\begin{bmatrix} 2xp : 3 \\ 2y \end{bmatrix} = \sqrt{(3)^2} = \sqrt{9} = 3$$

$$|0| = \sqrt{0^1} = 0$$

$$-5$$
 $|-5| = \sqrt{(-5)^2} = \sqrt{35} = 5$

Exp: Adving Egs with absolute values. (0) |3n-3|=7Q Q : IX-3 = ±7 Jn-3 = 7 Jn-3 = 7 2-4/1 x=5 (C) 122-3 | 5 | SS= {21,1 22 }= {5) -2 } -1 { In-3 4 | 2 < 2× 24 1 < 21 5 & (b) $5 - \frac{2}{8}$ | < | $-1<\frac{5-\frac{2}{2}}{2}<\frac{1}{2}$ 26 [17 a] (0) | 276-3 | 7/ 3 < \frac{1}{24} < 9 1 2 74 5 1 26 (13, 13)V (--11) U [1,2] U[2, -2) (-011] U[2,00) [2, 🕫]

Table 1 Types of intervals

Exercises 1

Decimal Representations

- 1. Express 1/9 as a repeating decimal, using a bar to indicate the repeating digits. What are the decimal representations of 2/9? 3/9?
- 2. Express 1/11 as a repeating decimal, using a bar to indicate the repeating digits. What are the decimal representations of 2/11? 3/11? 9/11?

Inequalities

- 3. If 2 < x < 6, which of the following statements about x are necessarily true, and which are not necessarily true?
 - a) 0 < x < 4

- h) -6 < -x < -2
- **4.** If -1 < y 5 < 1, which of the following statements about y are necessarily true, and which are not necessarily true?
 - a) 4 < y < 6
- **b)** -6 < y < -4
- c) y > 4
- e) 0 < y 4 < 2
- f) $2 < \frac{y}{2} < 3$
- g) $\frac{1}{6} < \frac{1}{v} < \frac{1}{4}$
- **h**) |y-5| < 1

Absolute Value

Solve the equations in Exercises 13-18.

13.
$$|y| = 3$$

14.
$$|y-3|=7$$

15.
$$|2t + 5| = 4$$

16.
$$|1-t|=1$$

17.
$$|8-3s|=\frac{9}{2}$$

18.
$$\left| \frac{s}{2} - 1 \right| = 1$$

Solve the inequalities in Exercises 19-34, expressing the solution sets as intervals or unions of intervals. Also, graph each solution set on the real line.

- 19. |x| < 2
- **20.** $|x| \leq 2$
- **21.** $|t-1| \le 3$

- 22. |t+2| < 1
- **23.** |3y 7| < 4

- **29.** $|2s| \ge 4$

- **32.** |2-3x|>5

Quadratic Inequalities

Solve the inequalities in Exercises 35-42. Express the solution sets as intervals or unions of intervals and graph them. Use the result $\sqrt{a^2} = |a|$ as appropriate.

35.
$$x^2 < 2$$

36.
$$4 \le x^2$$

37.
$$4 < x^2 < 9$$