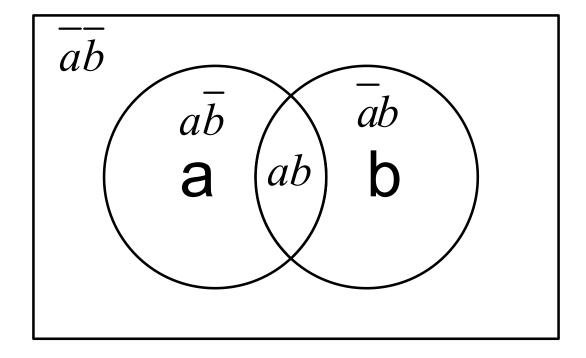
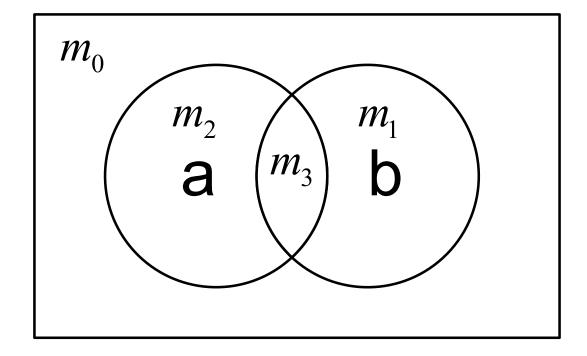
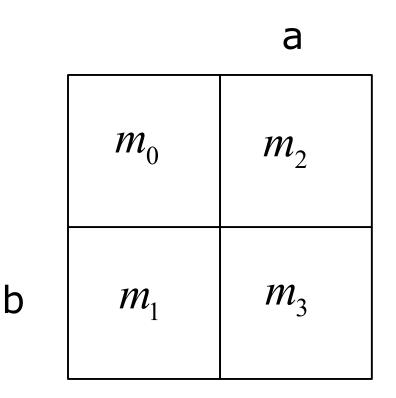
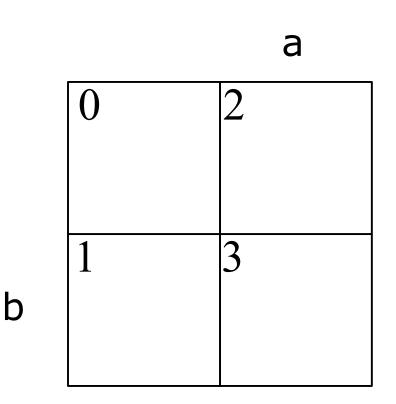
Karnaugh Maps (K-Map)

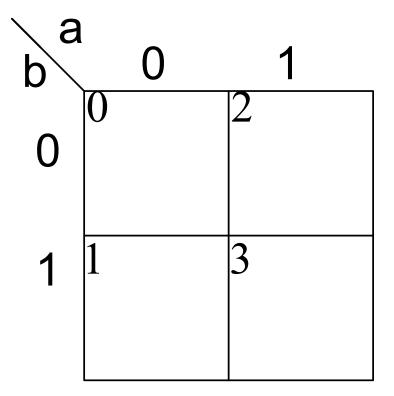
A K-Map is a graphical representation of a logic function's truth table



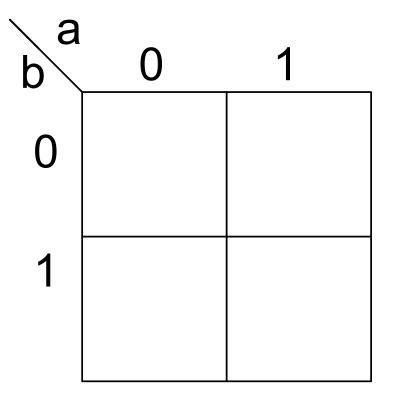




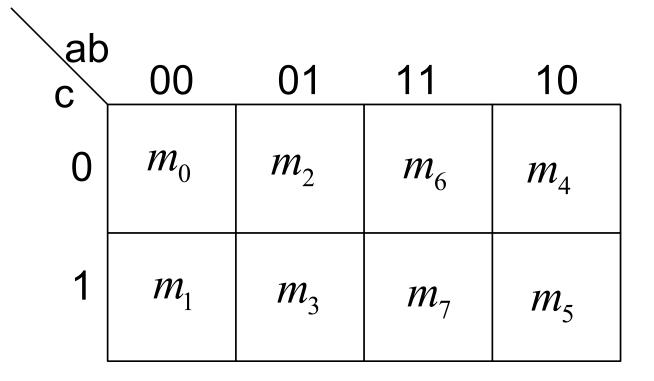




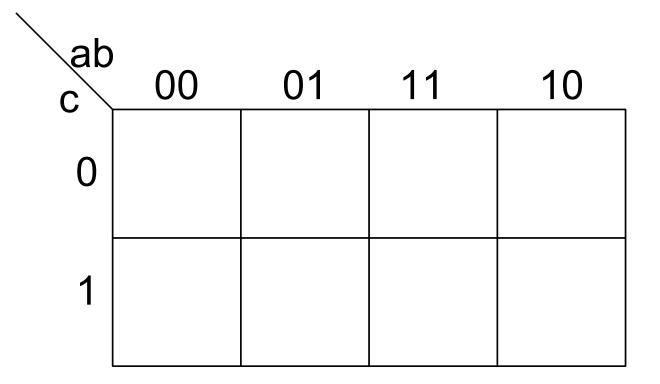
Two-Variable K-Map



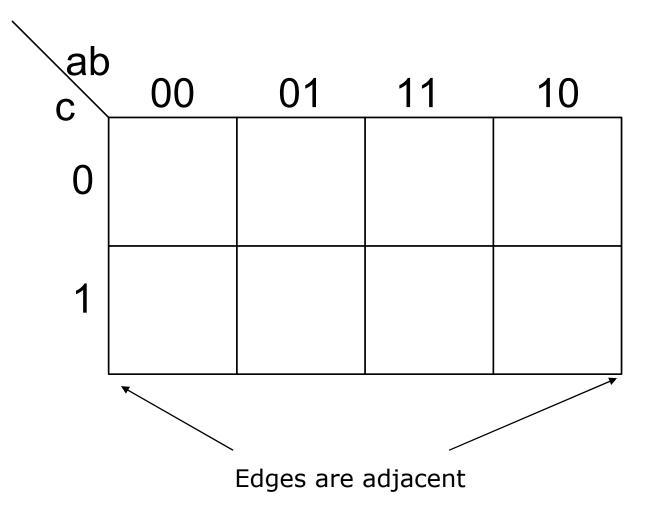
Three-Variable K-Map



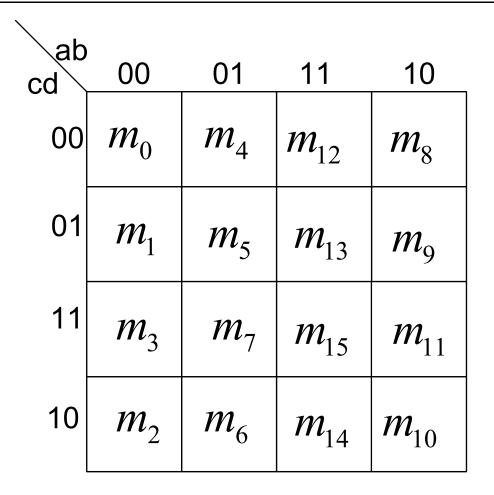
Three-Variable K-Map



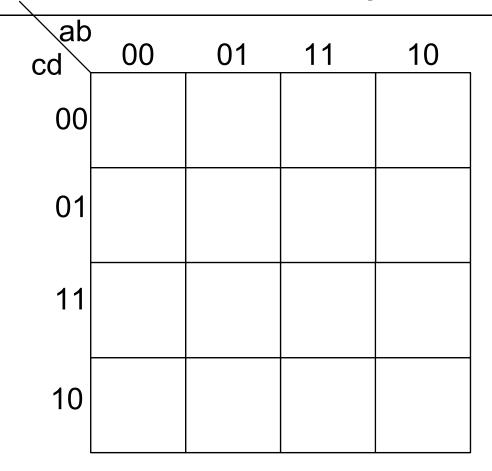
Three-Variable K-Map



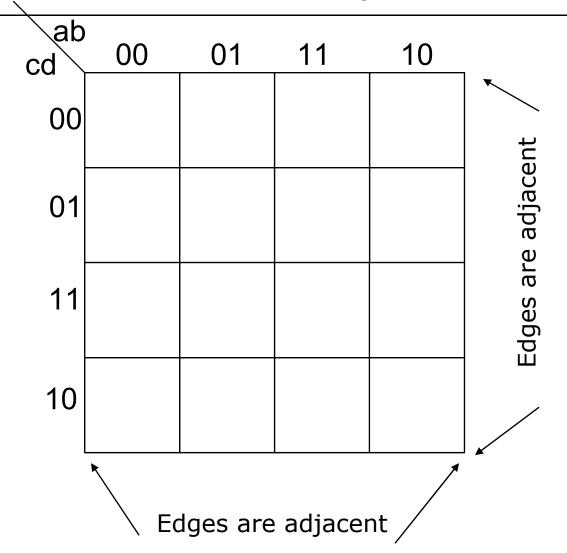
Four-variable K-Map



Four-variable K-Map



Four-variable K-Map



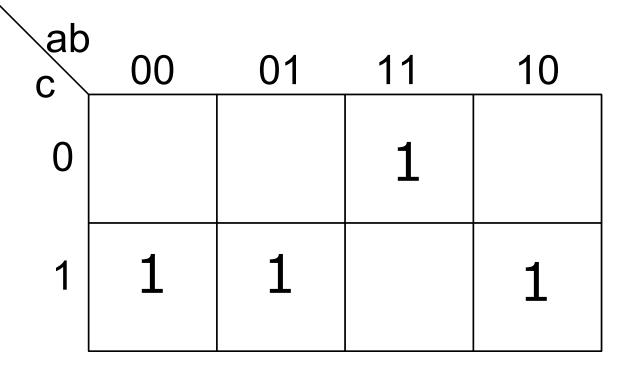
Plotting Functions on the K-map

SOP Form

Canonical SOP Form

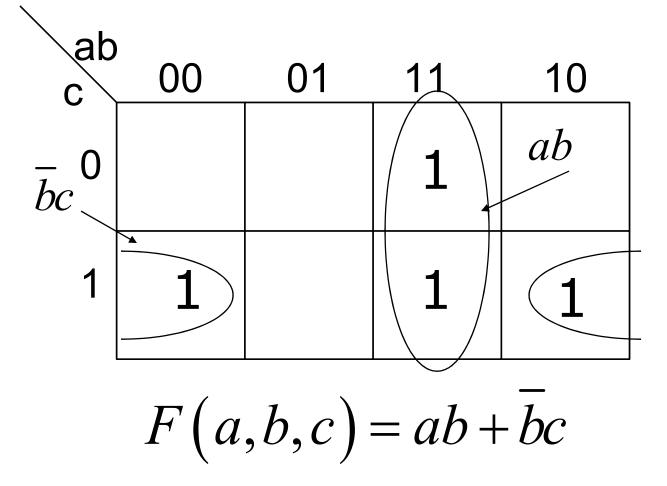
Three Variable Example F = ABC + ABC + ABC + ABCusing shorthand notation $F = m_6 + m_3 + m_1 + m_5$ $F(A,B,C) = \sum m(1,3,5,6)$

Plot 1's (minterms) of switching function

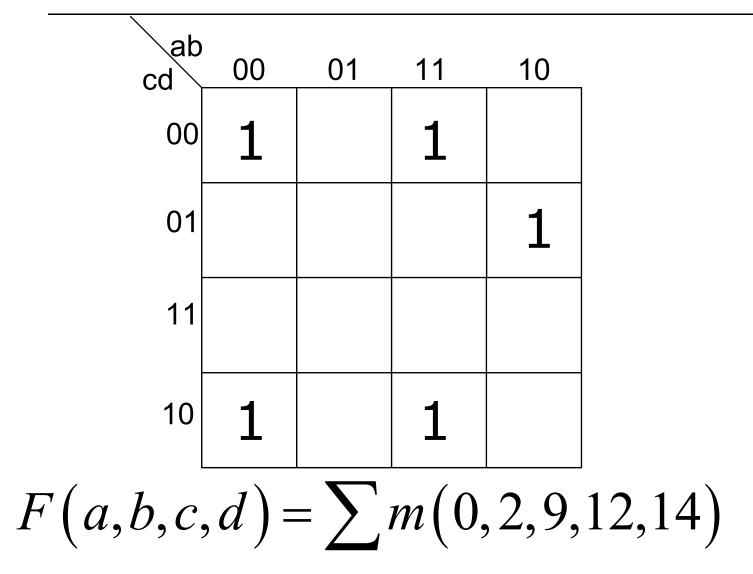


 $F(a,b,c) = \sum m(1,3,5,6)$

Plot 1's (minterms) of switching function



Four-variable K-Map Example



Karnaugh Maps (K-Map)

Simplification of Switching Functions using K-MAPS

Terminology/Definition

Literal

• A variable or its complement

Logically adjacent terms

- Two minterms are logically adjacent if they differ in only one variable position
- Ex:

abc and abcm6 and m2 are logically adjacent Note: abc + abc = (a + a)bc = bcOr, logically adjacent terms can be combined

Terminology/Definition

Implicant

- Product term that could be used to cover minterms of a function
- Prime Implicant
 - An implicant that is not part of another implicant
- Essential Prime Implicant
 - An implicant that covers at least one minterm that is not contained in another prime implicant
- o Cover
 - A minterm that has been used in at least one group

Guidelines for Simplifying Functions

- Each square on a K-map of n variables has n logically adjacent squares. (i.e. differing in exactly one variable)
- When combing squares, always group in powers of 2^m, where m=0,1,2,....
- In general, grouping 2^m variables eliminates m variables.

Guidelines for Simplifying Functions

- Group as many squares as possible.
 This eliminates the most variables.
- Make as few groups as possible.
 Each group represents a separate product term.
- You must cover each minterm at least once. However, it may be covered more than once.

K-map Simplification Procedure

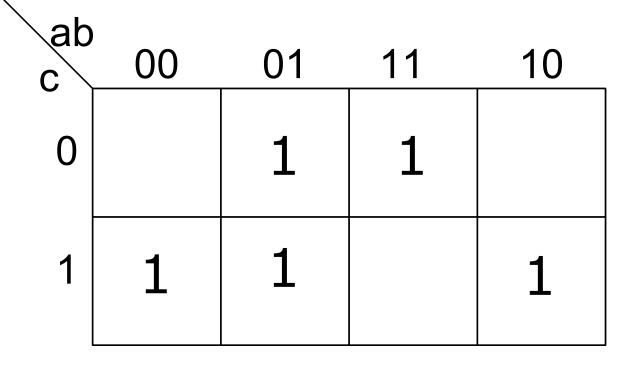
Plot the K-map

- Circle <u>all</u> prime implicants on the Kmap
- Identify and select all essential prime implicants for the cover.
- Select a minimum subset of the remaining prime implicants to complete the cover.
- Read the K-map

 Use a K-Map to simplify the following Boolean expression

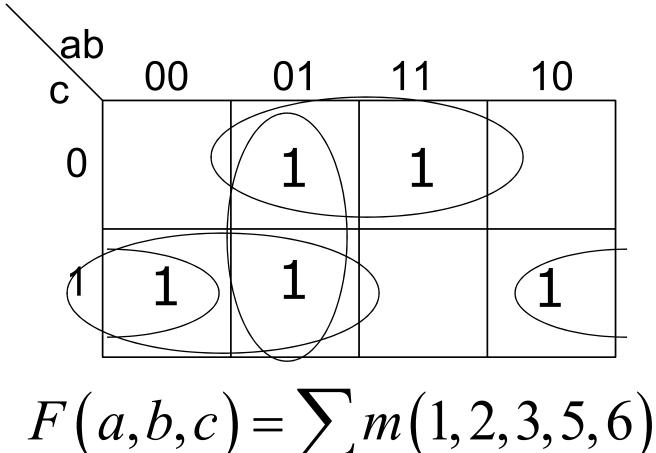
$$F(a,b,c) = \sum m(1,2,3,5,6)$$

Three-Variable K-Map Example Step 1: Plot the K-map

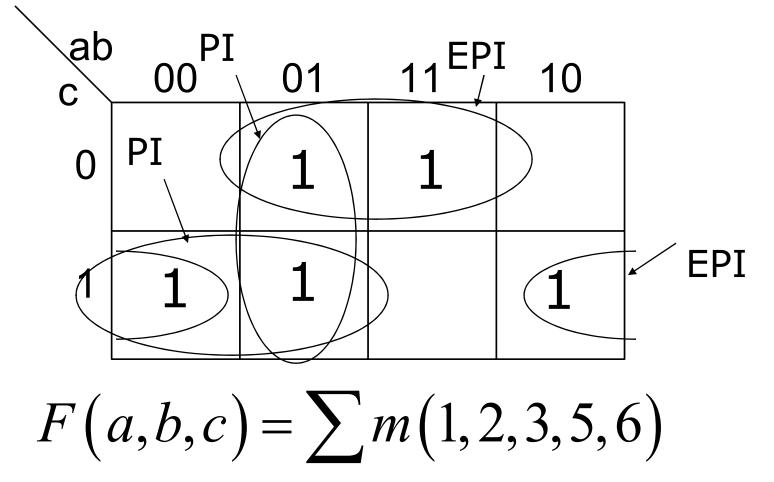


 $F(a,b,c) = \sum m(1,2,3,5,6)$

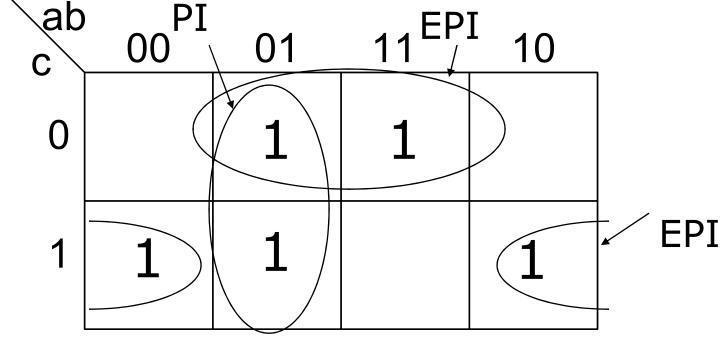
Step 2: Circle **ALL** Prime Implicants



Step 3: Identify Essential Prime Implicants

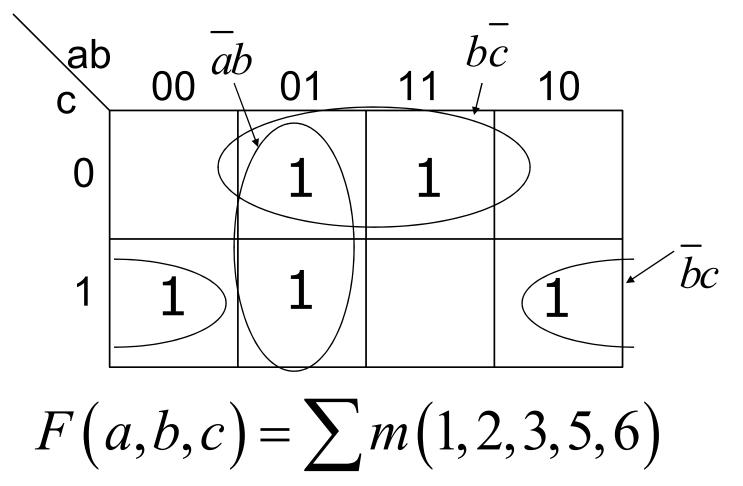


Step 4: Select minimum subset of remaining Rrime Implicants to complete the cover.



 $F(a,b,c) = \sum m(1,2,3,5,6)$

Step 5: Read the map.



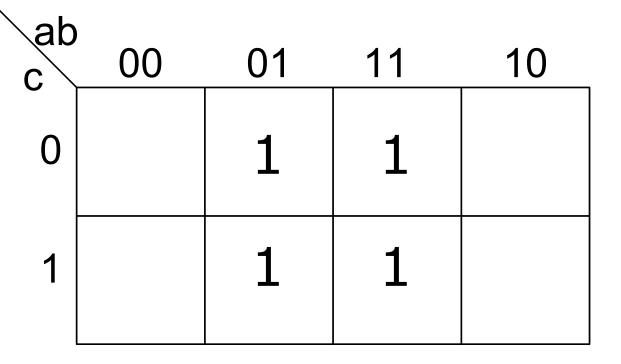
Solution

$F(a,b,c) = \overline{ab} + b\overline{c} + \overline{bc} = \overline{ab} + b \oplus c$

 Use a K-Map to simplify the following Boolean expression

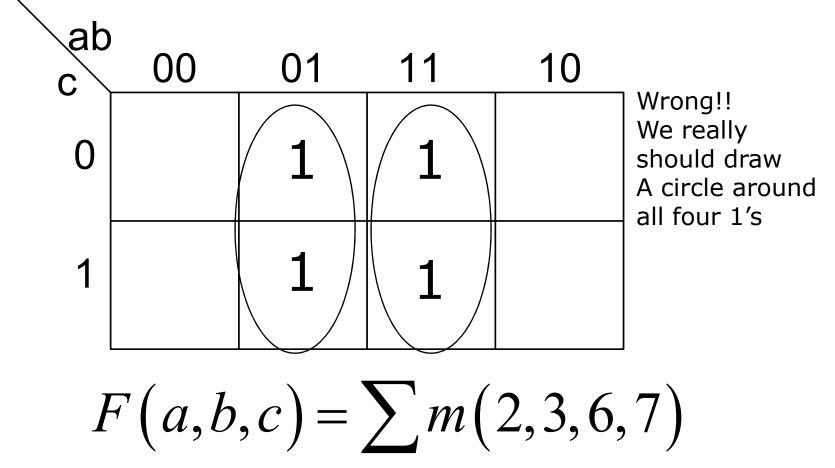
$$F(a,b,c) = \sum m(2,3,6,7)$$

Three-Variable K-Map Example Step 1: Plot the K-map

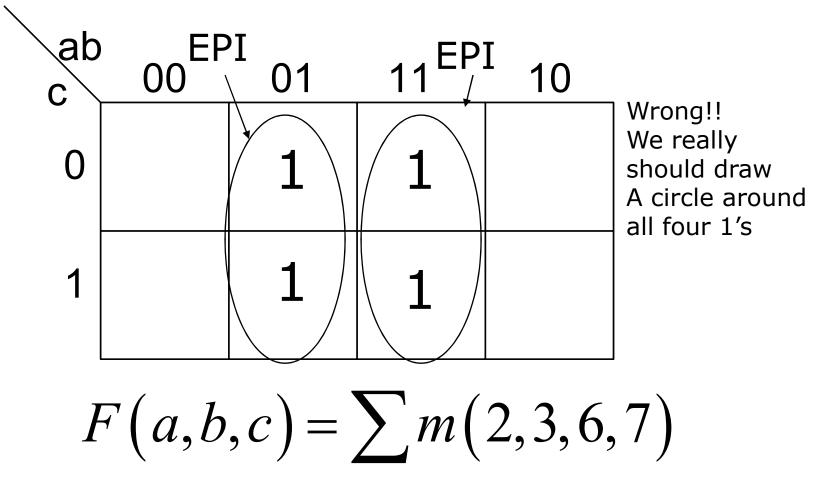


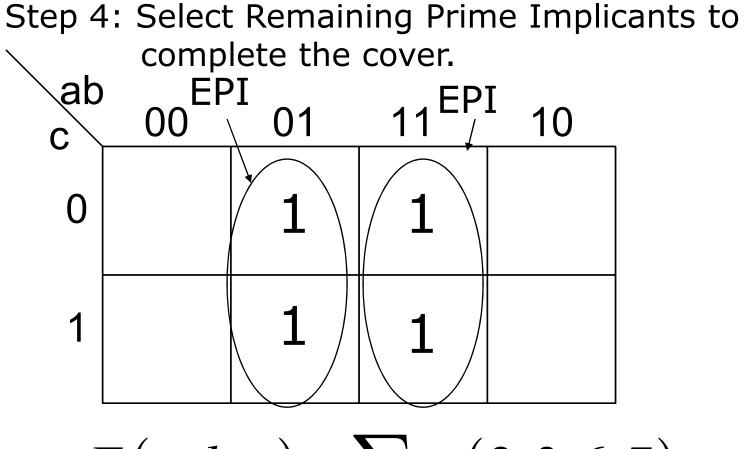
 $F(a,b,c) = \sum m(2,4,5,7)$

Step 2: Circle Prime Implicants



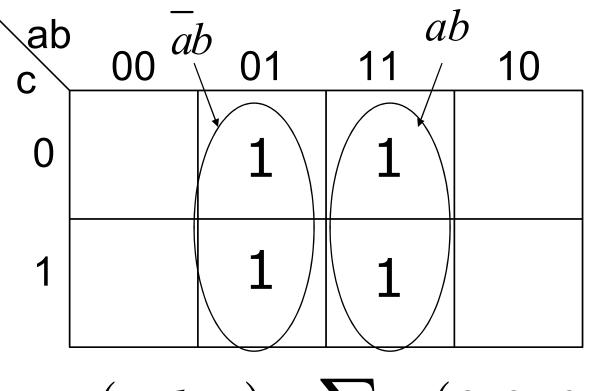
Step 3: Identify Essential Prime Implicants





 $F(a,b,c) = \sum m(2,3,6,7)$

Step 5: Read the map.

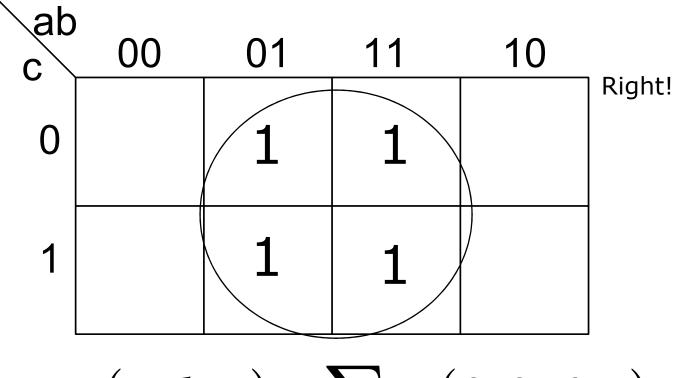


Solution

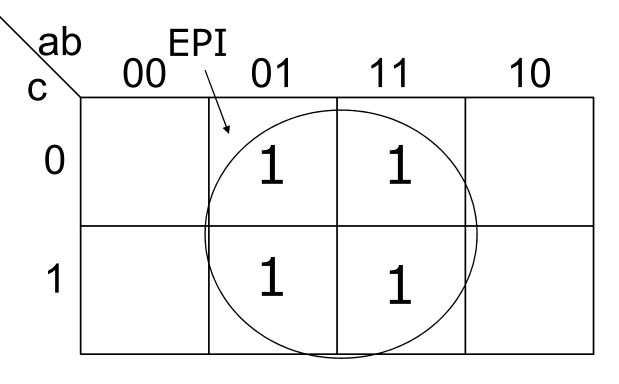
F(a,b,c) = ab + ab = b

Since we can still simplify the function this means we did not use the largest possible groupings.

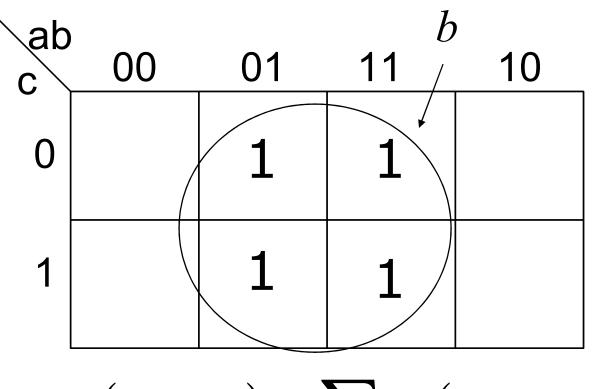
Step 2: Circle Prime Implicants



Step 3: Identify Essential Prime Implicants



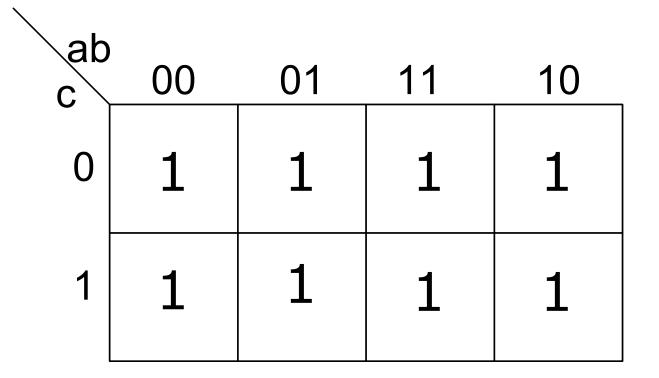
Step 5: Read the map.



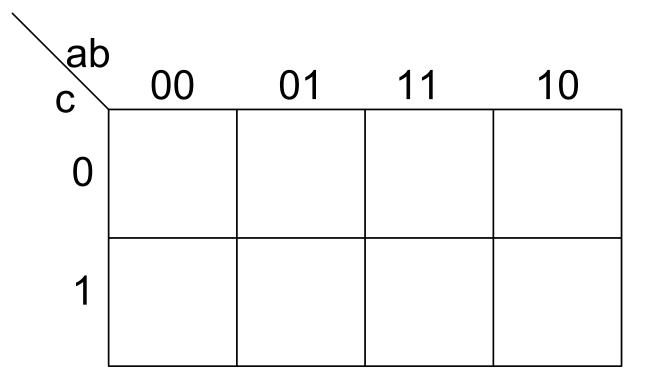
Solution

F(a,b,c) = b

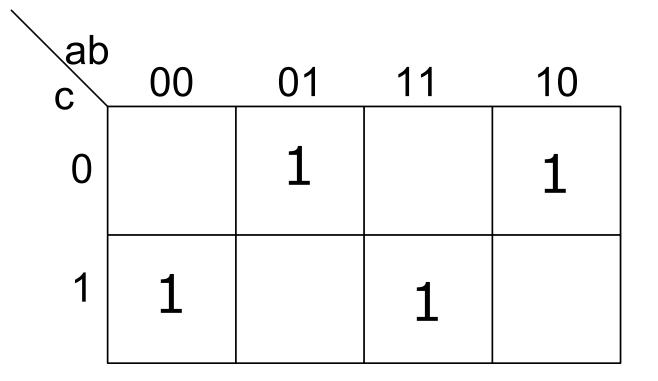
Special Cases



F(a,b,c)=1



F(a,b,c)=0

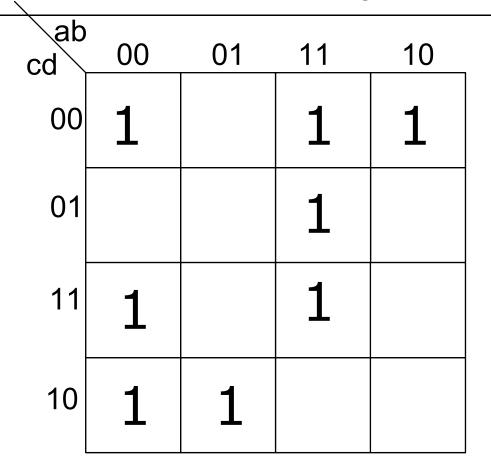


 $F(a,b,c) = a \oplus b \oplus c$

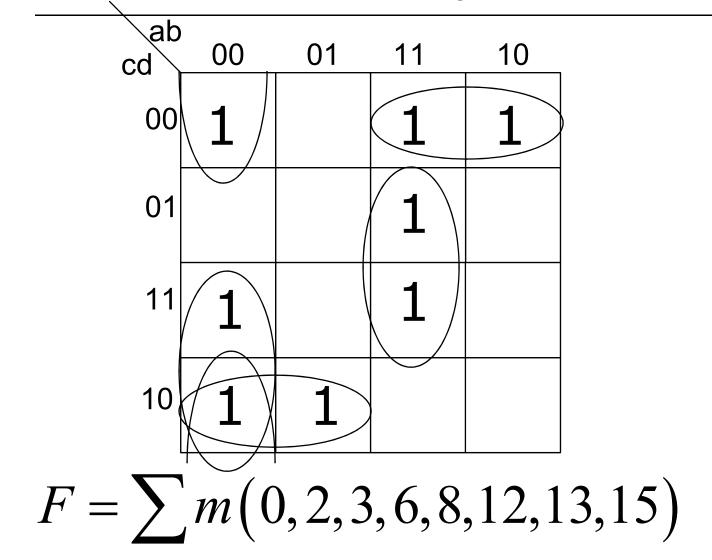
Four Variable Examples

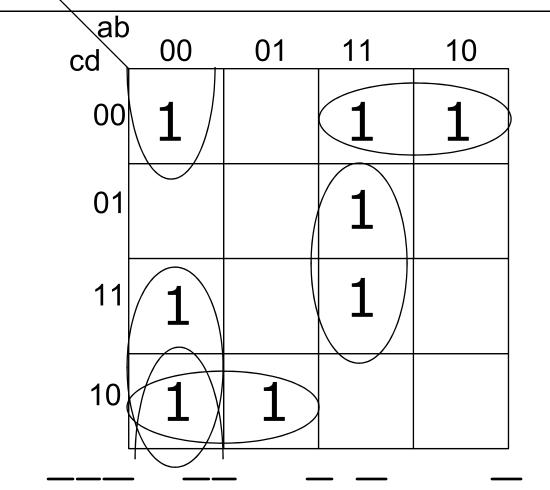
 Use a K-Map to simplify the following Boolean expression

 $F(a,b,c,d) = \sum m(0,2,3,6,8,12,13,15)$



 $F(a,b,c,d) = \sum m(0,2,3,6,8,12,13,15)$





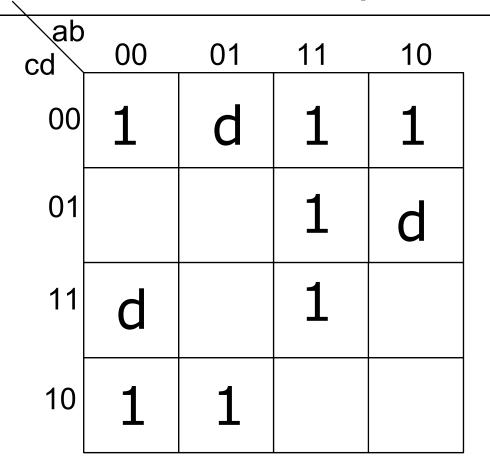
F = abd + abc + acd + abd + acd

Example

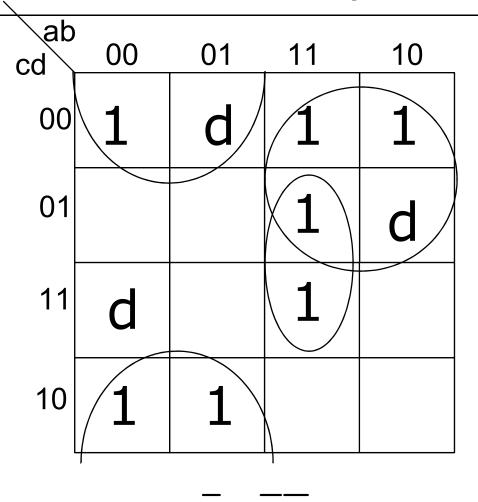
 Use a K-Map to simplify the following Boolean expression

$$F(a,b,c,d) = \sum m(0,2,6,8,12,13,15) + d(3,9,10)$$

D=Don't care (i.e. either 1 or 0)



 $F(a,b,c,d) = \sum m(0,2,6,8,12,13,15) + d(3,4,9)$



F = ac + ad + abd

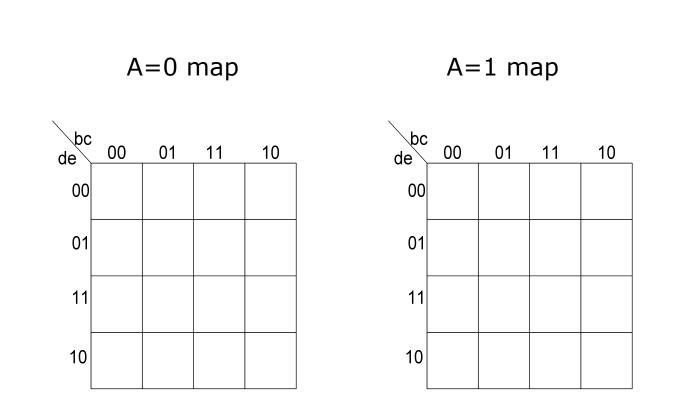
Five Variable K-Maps

F(a,b,c,d,e)

Five variable K-map

Use two four variable K-maps

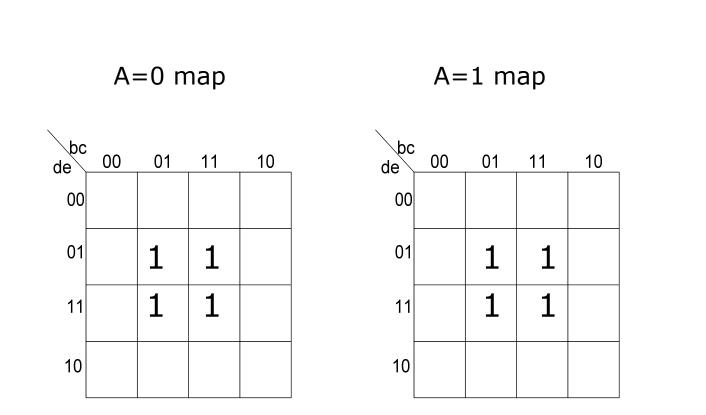
Use Two Four-variable K-Maps



Five variable example

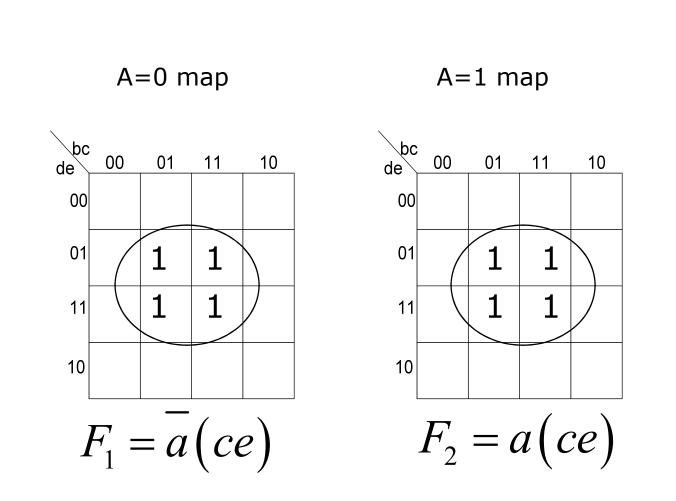
$F(a,b,c,d,e) = \sum m(5,7,13,15,21,23,29,31)$

Use Two Four-variable K-Maps



 $F(a,b,c,d,e) = \sum m(5,7,13,15,21,23,29,31)$

Use Two Four-variable K-Maps



Five variable example

$F = F_1 + F_2 = \overline{a}(ce) + a(ce) = ce$

Plotting POS Functions

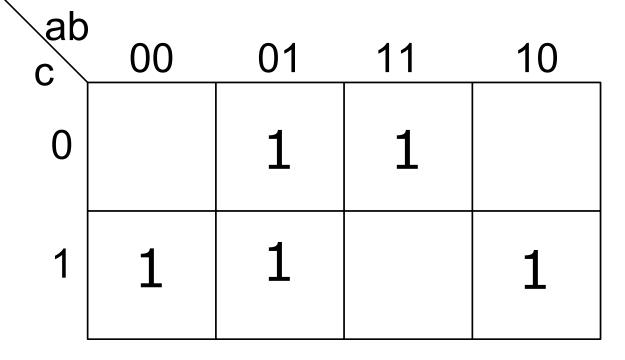
K-map Simplification Procedure

- Plot the K-map for the function F
- Circle <u>all</u> prime implicants on the K-map
- Identify and select all essential prime implicants for the cover.
- Select a minimum subset of the remaining prime implicants to complete the cover.
- Read the K-map
- Use DeMorgan's theorem to convert F to F in POS form

 Use a K-Map to simplify the following Boolean expression

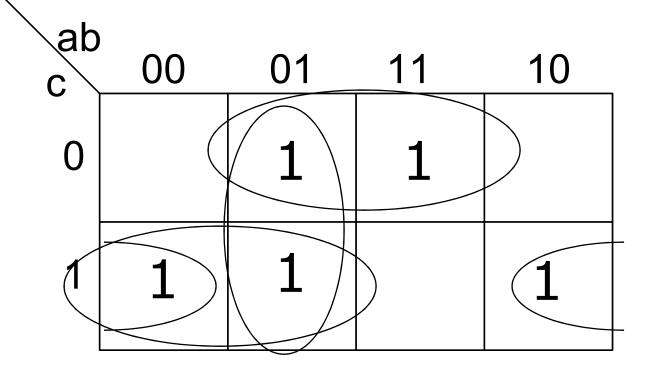
$F(a,b,c) = \prod M(1,2,3,5,6)$

Three-Variable K-Map Example Step 1: Plot the K-map of F

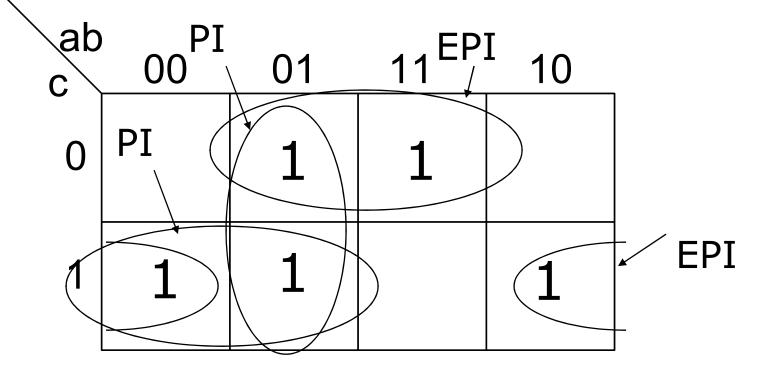


 $F(a,b,c) = \prod M(1,2,3,5,6)$

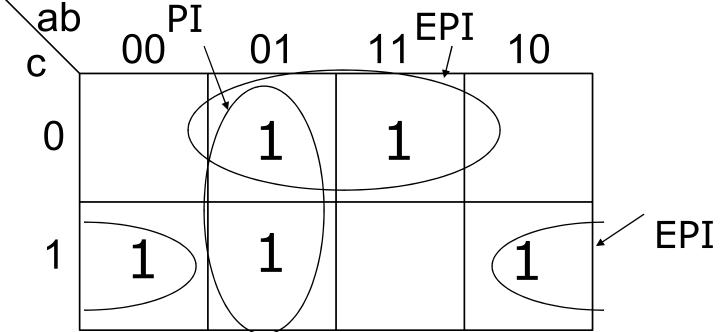
Step 2: Circle **ALL** Prime Implicants



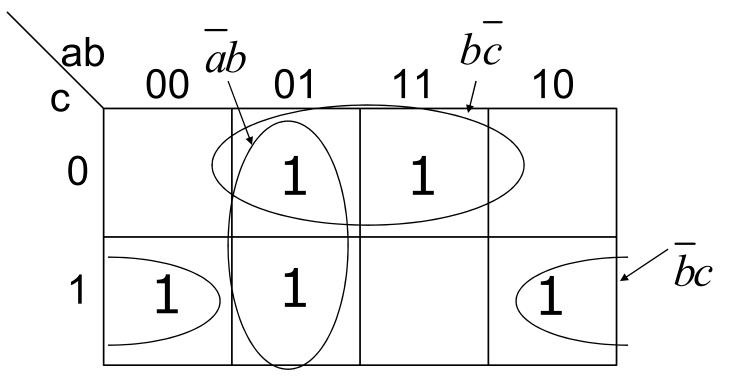
Step 3: Identify Essential Prime Implicants



Step 4: Select minimum subset of remaining Rrime Implicants to complete the cover.



Step 5: Read the map.



Solution

$$\overline{F} = \overline{ab} + b\overline{c} + \overline{bc}$$

$$F = \overline{ab} + b\overline{c} + \overline{bc}$$

$$= (a + \overline{b})(\overline{b} + c)(b + \overline{c})$$

$$F(a,b,c) = \prod M(1,2,3,5,6)$$

