

3: Integer Arithmetic Page 1

3 Integer Arithmetic

3.1 Objectives

After completing this lab, you will:

• Get familiar with the basic MIPS integer arithmetic and logic instructions including:
o Integer addition and subtraction instructions
o Bitwise logic instructions
o Shift instructions

• Learn some useful applications of these instructions.

3.2 Integer Add/Subtract Instructions

The MIPS add/subtract instructions are shown in Table 3.1 below. The R-type add/sub instructions
have three registers where the first register is the destination register while the other two registers
are the two registers to be added. Similarly the I-type add/sub instructions have the first register as
the destination register, while the second register and the constant are the operands to be either
added or subtracted.

Instruction Meaning

add $s1, $s2, $s3 $s1 = $s2 + $s3

addu $s1, $s2, $s3 $s1 = $s2 + $s3

sub $s1, $s2, $s3 $s1 = $s2 – $s3

subu $s1, $s2, $s3 $s1 = $s2 – $s3

addi $s1, $s2, 10 $s1 = $s2 + 10

addiu $s1, $s2, 10 $s1 = $s2 + 10

Table 3.1: Add/Subtract Instructions

The difference between add/sub and addu/subu instructions is that in case of overflow
occurrence, the add/sub instructions will cause an arithmetic exception and the result will not be
written to the destination register. However, for the instructions addu/subu, overflow occurrence
is ignored.

3: Integer Arithmetic Page 2

As an example of using the add/sub instructions, consider the translation of the expression:

f = (g+h) – (i+j)

Assuming that f, g, h, i, and j are allocated registers $s0 thru $s4, the following assembly code
performs the translation:

addu $t0, $s1, $s2 # $t0 = g + h

addu $t1, $s3, $s4 # $t1 = i + j

subu $s0, $t0, $t1 # $s0 = f = (g+h)–(i+j)

To illustrate the use of the addiu instruction with constants, let us assume that variables a, b, and c
are allocated in registers $s0, $s1, $s2. Then,

a = b + 5 is translated as: addiu $s0, $s1, 5

c = b – 1 is translated as: addiu $s2, $s1, -1

3.3 Logical Bitwise Instructions

The MIPS logical instructions are given in Table 3.2. These include the: and, or, nor and xor
instructions. The operands for these instructions follow the same convention as the add/sub
instructions. The immediate value for the andi, ori, and xori logical instructions is treated as
unsigned constant, while it is treated as a signed constant for the addi and addiu instructions.

Instruction Meaning

and $s1, $s2, $s3 $s1 = $s2 & $s3

or $s1, $s2, $s3 $s1 = $s2 | $s3

xor $s1, $s2, $s3 $s1 = $s2 ^ $s3

nor $s1, $s2, $s3 $s1 = ~($s2|$s3)

andi $s1, $s2, 10 $s1 = $s2 & 10

ori $s1, $s2, 10 $s1 = $s2 | 10

xori $s1, $s2, 10 $s1 = $s2 ^ 10

Table 3.2: Logical Instructions

The truth tables of the and, or, xor and nor logical operations are given below:

M Adeel Ijaz
Highlight

3: Integer Arithmetic Page 3

The and instruction is used to clear bits: x and 0 is equal to 0. The or instruction is used to set
bits: x or 1 is equal to 1. The xor instruction is used to toggle bits: x xor 1 is equal to not x. The
nor instruction can be used as a not since nor $s1,$s2,$s2 is equivalent to not $s1,$s2.

As an example of these instructions, assume that $s1 = 0xabcd1234 and $s2 = 0xffff0000.
Then, the following logical instructions produce the shown resulting values in registers $s3 to $s6:

and $s3,$s1,$s2 # $s3 = 0xabcd0000

or $s4,$s1,$s2 # $s4 = 0xffff1234

xor $s5,$s1,$s2 # $s5 = 0x54321234

nor $s6,$s1,$s2 # $s6 = 0x0000edcb

The sample program to run this code is given below and the resulting register content after
executing the program is shown in Figure 3.1.

.text

.globl main

main: # main program

li $s1, 0xabcd1234 # Pseudo instruction to initialize a register

li $s2, 0xffff0000

and $s3,$s1,$s2 # $s3 = 0xabcd0000

or $s4,$s1,$s2 # $s4 = 0xffff1234

xor $s5,$s1,$s2 # $s5 = 0x54321234

nor $s6,$s1,$s2 # $s6 = 0x0000edcb

li $v0, 10 # Exit program

syscall

Arithmetic and logic instructions have many useful applications. For example, to convert a
character in register $s0 from lower case (i.e. 'a' to 'z') to upper case (i.e. 'A' to 'Z'), we could
use any of the following instructions:

subi $s0, $s0, 0x20 # ASCII code of 'a' = 0x61, of 'A' = 0x41

andi $s0, $s0, 0xfd

Similarly, to convert a character in register $s0 from upper case to lower case, we could use any of
the following instructions:

addi $s0, $s0, 0x20

ori $s0, $s0, 0x20

M Adeel Ijaz
Highlight

3: Integer Arithmetic Page 4

Figure 3.1: Register content after sample code execution.

To initialize the content of register $s0 by a 16-bit constant k (i.e., having a value in the range 0 to
215-1), we can use any of the following instructions:

addi $s0, $0, k

ori $s0, $0, k

However, to initialize a register with a 32-bit constant, we need to use the lui instruction.

Suppose that we want to initialize $s1 with the constant 0xAC5165D9 (32-bit constant), then we
can use the following two instructions:

This sequence of instructions is generated by the assembler when we use the pseudo instruction:

li $s1, 0xAC5165D9

3: Integer Arithmetic Page 5

3.4 Shift Instructions

The MIPS shift instructions are given in Table 3.3. The first operand of the shift instructions is the
destination register, the second operand is the register to be shifted while the third operand specifies
the amount of shift. The amount of shift can be specified as a constant value or it can be stored in a
register. For the instructions sll, srl, sra, the shift amount is a 5-bit constant while for the
instructions sllv, srlv, srav, the shift amount is variable and is stored in a register.

Instruction Meaning

sll $s1,$s2,10 $s1 = $s2 << 10

srl $s1,$s2,10 $s1 = $s2>>>10

sra $s1,$s2,10 $s1 = $s2 >> 10

sllv $s1,$s2,$s3 $s1 = $s2 << $s3

srlv $s1,$s2,$s3 $s1 = $s2>>>$s3

srav $s1,$s2,$s3 $s1 = $s2 >> $s3

Table 3.3: Shift Instructions.

Shifting is to move all the bits in a register left or right. sll/srl mean shift left/right logical while
sra means shift right arithmetic for which the sign-bit (rather than 0) is shifted from the left as
illustrated in Figure 3.2.

As an example, let us assume that $s2 = 0xabcd1234 and $s3 = 16. Then, the following shift
instructions produce the shown values in $s1.

sll $s1,$s2,8 $s1 = $s2<<8 $s1 = 0xcd123400

sra $s1,$s2,4 $s1 = $s2>>4 $s1 = 0xfabcd123

srlv $s1,$s2,$s3 $s1 = $s2>>>$s3 $s1 = 0x0000abcd

Figure 3.2: Illustration of shift instructions.

M Adeel Ijaz
Highlight

M Adeel Ijaz
Highlight

M Adeel Ijaz
Highlight

3: Integer Arithmetic Page 6

We can use shift instructions along with either addition or subtraction instructions to multiply the
content of a register by a constant. Shift-left (sll) instruction can be used to perform multiplication
when the multiplier is a power of 2. You can factor any binary number into powers of 2. For
example, to multiply $s1 by 36, factor 36 into (4 + 32) and use distributive property of
multiplication $s2 = $s1*36 = $s1*(4 + 32) = $s1*4 + $s1*32. Thus, this can be
achieved by the following instructions:

sll $t0, $s1, 2 # $t0 = $s1 * 4

sll $t1, $s1, 5 # $t1 = $s1 * 32

addu $s2, $t0, $t1 # $s2 = $s1 * 36

As another example, let us multiply the content of $s1 by 31. We can do that using the following
instructions noting that 31=32-1:

sll $s2, $s1, 5 # $s2 = $s1 * 32

subu $s2, $s2, $s1 # $s2 = $s1 * 31

We can also use the shift right instructions (srl and sra) to divide a number by a power of 2
constant. Shifting register $s0 right by n bits divides its content by 2n. For example, to divide an
unsigned number in register $s0 by 8, we use the instruction srl $s0, 3. However, to divide a
signed number in register $s0 by 8, we use the instruction sra $s0, 3.

3.5 In-Lab Tasks

1. Write a program to ask the user to enter two integers A and B and then display the result of
computing the expression: A + 2B - 5.

2. Assume that $s1 = 0x12345678 and $s2 = 0xffff9a00. Determine the content of registers
$s3 to $s6 after executing the following instructions:

and $s3,$s1,$s2 # $s3 =

or $s4,$s1,$s2 # $s4 =

xor $s5,$s1,$s2 # $s5 =

nor $s6,$s1,$s2 # $s6 =

 Write a program to execute these instructions and verify the content of registers $s3 to $s6.

3: Integer Arithmetic Page 7

3. Assume that $s1 = 0x87654321. Determine the content of registers $s2 to $s4 after executing
the following instructions:

sll $s2,$s1, 16 # $s2 =

srl $s3,$s1, 8 # $s3 =

sra $s4,$s1, 12 # $s4 =

 Write a program to execute these instructions and verify the content of registers $s2 to $s4.

4. Write a program that asks the user to enter an alphabetic character (either lower or upper case)
and change the case of the character from lower to upper and from upper to lower and display it.

5. Write a program that asks the user to enter and integer number and read it. Then ask him to
enter a bit position (between 0 and 31) and display the value of that bit.

6. Write a program that asks the user to enter a signed number and read it. Then display the

content of multiplying this number by 24.5.

7. Write a program that asks the user to enter an unsigned number and read it. Then swap the bits
at odd positions with those at even positions and display the resulting number. For example, if

the user enters the number 9, which has binary representation of 1001, then bit 0 is swapped

with bit 1, and bit 2 is swapped with bit 3, resulting in the binary number 0110. Thus, the

program should display 6.

