LAB SESSION 2 GENERATION OF SIGNALS USING MATLAB

OBJECTIVE

To generate signals using MATLAB and visualize the characteristics of signals by changing parameters

REQUIREMENTS

- ➤ Intel based computer
- > MATLAB

THEORY

The MATLAB signal processing toolbox has a large variety of functions for generating signals, most of which require that we begin with a vector representation of time t to n. To generate a vector t of time values with a sampling interval t of 1 ms on the interval from 0 to 1s, for example, we use the command: T = 0: .001:1;

PROCEDURE

Generating sinusoidal waveforms

Consider first the generation of a square wave of amplitude A, fundamental frequency w0 {measured in radians per second), and duty cycle (d). That is, rho is the fraction of each period for which the signal is positive. To generate such a signal, we use the basic command:

Matlab Code:

```
t = 0:0.001:0.3;
y = square(2*pi*10*t);
figure(1)
plot (t,y)
title('Square Wave With 10 Hz Frequency')
```


y = square(2*pi*10*t, 20); % with 20 percent Duty cycle

Generating sinusoidal waveforms

close all

clear all

% generating sinusoidal waveform for continuous time

w0 = 10.8 % rad/sec

t = -0.5:0.01:0.5;

 $f = 3.17*\cos(w0*t+pi/6);$

figure(1)

plot (t,f)

grid

%to change the amplitude to a convergent form

$$W0 = 10.8$$
 % rad/sec

$$t = -0.5:0.01:0.5;$$

$$f = 3.17*exp(1.3*t).*cos(W0*t+pi/6);$$

figure(2)

plot (t,f)

grid

LAB WORK

Task 1

$$f = \sin 20te^{-t}$$

For the function f(t), write the MATLAB code to plot f(t) and place the plot in Figure 2.1

COMMENTS & DISCUSSION				