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Preface

Changes in this Edition

This book serves as an introduction to the subject of vibration engineering at the undergraduate level. Favorable

reactions by professors and students to the fourth edition have encouraged me to prepare this fifth edition of the

book. I have retained the style of the prior editions, presenting the theory, computational aspects, and applications

of vibration in as simple a manner as possible, and emphasizing computer techniques of analysis. Expanded expla-

nations of the fundamentals are given, emphasizing physical significance and interpretation that build upon previ-

ous experiences in undergraduate mechanics. Numerous examples and problems are used to illustrate principles

and concepts.

In this edition some topics are modified and rewritten, many new topics are added and several new features

have been introduced. Most of the additions and modifications were suggested by users of the text and by reviewers.

Important changes include the following:

1. Chapter outline and learning objectives are stated at the beginning of each chapter.

2. A chapter summary is given at the end of each chapter.

3. The presentation of some of the topics is modified for expanded coverage and better clarity. These topics

include the basic components of vibration spring elements, damping elements and mass or inertia elements,

vibration isolation, and active vibration control.

4. Many new topics are presented in detail with illustrative examples. These include the response of first-order

systems and time constant, graphical representation of characteristic roots and solutions, parameter variations

and root locus representation, stability of systems, transfer-function approach for forced-vibration problems,

Laplace transform approach for the solution of free- and forced-vibration problems, frequency transfer-function

approach, Bode diagram for damped single-degree-of-freedom systems, step response and description of

transient response, and inelastic and elastic impacts.

5. I have added 128 new examples, 160 new problems, 70 new review questions, and 107 new illustrations.

6. The C++ and Fortran program-based examples and problems given at the end of every chapter in the pre-

vious edition have been deleted.

Features of the Book

Each topic in Mechanical Vibrations is self-contained, with all concepts fully explained and the derivations

presented in complete detail.

Computational aspects are emphasized throughout the book. MATLAB-based examples as well as sev-

eral general-purpose MATLAB programs with illustrative examples are given in the last section of every

xi
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chapter. Numerous problems requiring the use of MATLAB or MATLAB programs (given in the text) are

included at the end of every chapter.

Certain topics are presented in a somewhat unconventional manner in particular, the topics of Chapters

9, 10 and 11. Most textbooks discuss isolators, absorbers, and balancing in different chapters. Since one of

the main purposes of the study of vibrations is to control vibration response, all topics related to vibration

control are given in Chapter 9. The vibration-measuring instruments, along with vibration exciters, exper-

imental modal analysis procedure, and machine-condition monitoring, are presented together in Chapter 10.

Similarly, all the numerical integration methods applicable to single- and multidegree-of-freedom systems,

as well as continuous systems, are unified in Chapter 11.

Specific features include the following:

More than 240 illustrative examples are given to accompany most topics.

More than 980 review questions are included to help students in reviewing and testing their understand-

ing of the text material. The review questions are in the form of multiple-choice questions, questions with

brief answers, true-false questions, questions involving matching of related descriptions, and fill-in-the-

blank type questions.

An extensive set of problems in each chapter emphasizes a variety of applications of the material cov-

ered in that chapter. In total there are more than 1150 problems. Solutions are provided in the instruc-

tor s manual.

More than 30 design project-type problems, many with no unique solution, are given at the end of vari-

ous chapters.

More than 25 MATLAB programs are included to aid students in the numerical implementation of the

methods discussed in the text.

Biographical information about 20 scientists and engineers who contributed to the development of the

theory of vibrations is presented on the opening pages of chapters and appendixes.

MATLAB programs given in the book, answers to problems, and answers to review questions can be

found at the Companion Website, www.pearsonhighered.com/rao. The Solutions Manual with solutions

to all problems and hints to design projects is available to instructors who adopt the text for their courses.

Units and Notation
Both the SI and the English system of units are used in the examples and problems. A list of symbols, along with

the associated units in SI and English systems, appears after the Acknowledgments. A brief discussion of SI units

as they apply to the field of vibrations is given in Appendix E. Arrows are used over symbols to denote column

vectors, and square brackets are used to indicate matrices.

Organization of Material
Mechanical Vibrations is organized into 14 chapters and 6 appendixes. Chapters 13 and 14 are provided as down-

loadable files on the Companion Website. The reader is assumed to have a basic knowledge of statics, dynamics,

strength of materials, and differential equations. Although some background in matrix theory and Laplace trans-

form is desirable, an overview of these topics is given in Appendixes C and D, respectively.

Chapter 1 starts with a brief discussion of the history and importance of vibrations. The modeling of practical

systems for vibration analysis along with the various steps involved in vibration analysis are discussed. A description

is given of the elementary parts of a vibrating system stiffness, damping, and mass (inertia). The basic concepts and

xii PREFACE
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terminology used in vibration analysis are introduced. The free-vibration analysis of single-degree-of-freedom

undamped and viscously damped translational and torsional systems is given in Chapter 2. The graphical repre-

sentation of characteristic roots and corresponding solutions, the parameter variations, and root locus representa-

tions are discussed. Although the root locus method is commonly used in control systems, its use in vibration is

illustrated in this chapter. The response under Coulomb and hysteretic damping is also considered. The undamped

and damped responses of single-degree-of-freedom systems to harmonic excitations are considered in Chapter 3.

The concepts of force and displacement transmissibilities and their application in practical systems are outlined.

The transfer-function approach, the Laplace transform solution of forced-vibration problems, the frequency-

response and the Bode diagram are presented.

Chapter 4 is concerned with the response of a single-degree-of-freedom system under general forcing

function. The roles of Fourier series expansion of a periodic function, convolution integral, Laplace trans-

form, and numerical methods are outlined with illustrative examples. The specification of the response of an

underdamped system in terms of peak time, rise time, and settling time is also discussed. The free and forced

vibration of two-degree-of-freedom systems is considered in Chapter 5. The self-excited vibration and sta-

bility of the system are discussed. The transfer-function approach and the Laplace transform solution of

undamped and dampled systems are also presented with illustrative examples. Chapter 6 presents the vibra-

tion analysis of multidegree-of-freedom systems. Matrix methods of analysis are used for presentation of the

theory. The modal analysis procedure is described for the solution of forced-vibration problems in this chap-

ter. Several methods of determining the natural frequencies and mode shapes of discrete systems are outlined

in Chapter 7. The methods of Dunkerley, Rayleigh, Holzer, Jacobi, and matrix iteration are discussed with

numerical examples.

While the equations of motion of discrete systems are in the form of ordinary differential equations, those

of continuous or distributed systems are in the form of partial differential equations. The vibration analysis of

continuous systems, including strings, bars, shafts, beams, and membranes, is given in Chapter 8. The method

of separation of variables is presented for the solution of the partial differential equations associated with con-

tinuous systems. The Rayleigh and Rayleigh-Ritz methods of finding the approximate natural frequencies are

also described with examples. Chapter 9 discusses the various aspects of vibration control, including the prob-

lems of elimination, isolation, and absorption. The vibration nomograph and vibration criteria which indicate

the acceptable levels of vibration are also presented. The balancing of rotating and reciprocating machines and

the whirling of shafts are considered. The active control techniques are also outlined for controlling the response

of vibrating systems. The experimental methods used for vibration-response measurement are considered in

Chapter 10. Vibration-measurement hardware and signal analysis techniques are described. Machine-condition

monitoring and diagnosis techniques are also presented.

Chapter 11 presents several numerical integration techniques for finding the dynamic response of discrete and

continuous systems. The central difference, Runge-Kutta, Houbolt, Wilson, and Newmark methods are discussed

and illustrated. Finite element analysis, with applications involving one-dimensional elements, is discussed in

Chapter 12. Bar, rod, and beam elements are used for the static and dynamic analysis of trusses, rods under tor-

sion, and beams. The use of consistent- and lumped-mass matrices in the vibration analysis is also discussed in

this chapter. Nonlinear vibration problems are governed by nonlinear differential equations and exhibit phenom-

ena that are not predicted or even hinted at by the corresponding linearized problems. An introductory treatment

of nonlinear vibration, including a discussion of subharmonic and superharmonic oscillations, limit cycles, sys-

tems with time-dependent coefficients, and chaos, is given in Chapter 13. The random vibration of linear vibration

systems is considered in Chapter 14. The concepts of random process, stationary process, power spectral density,

autocorrelation, and wide- and narrow-band processes are explained. The random vibration response of single- and

multidegree-of-freedom systems is discussed in this chapter.
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Appendixes A and B focus on mathematical relationships and deflection of beams and plates, respectively.

The basics of matrix theory, Laplace transform, and SI units are presented in Appendixes C, D, and E, respectively.

Finally, Appendix F provides an introduction to MATLAB programming.

Typical Syllabi
The material of the book provides flexible options for different types of vibration courses. Chapters 1 through 5,

Chapter 9, and portions of Chapter 6 constitute a basic course in mechanical vibration. Different emphases/orien-

tations can be given to the course by covering, additionally, different chapters as indicated below:

Chapter 8 for continuous or distributed systems.

Chapters 7 and 11 for numerical solutions.

Chapter 10 for experimental methods and signal analysis.

Chapter 12 for finite element analysis.

Chapter 13 for nonlinear analysis.

Chapter 14 for random vibration.

Alternatively, in Chapters 1 through 14, the text has sufficient material for a one-year sequence of two vibra-

tion courses at the senior or dual level.

Expected Course Outcomes
The material presented in the text helps achieve some of the program outcomes specified by ABET (Accreditation

Board for Engineering and Technology):

Ability to apply knowledge of mathematics, science, and engineering:

The subject of vibration, as presented in the book, applies knowledge of mathematics (differential equa-

tions, matrix algebra, vector methods, and complex numbers) and science (statics and dynamics) to solve

engineering vibration problems.

Ability to identify, formulate, and solve engineering problems:

Numerous illustrative examples, problems for practice, and design projects help the student identify various

types of practical vibration problems and develop mathematical models, analyze, solve to find the response,

and interpret the results.

Ability to use the techniques, skills, and modern engineering tools necessary for engineering practice:

The application of the modern software, MATLAB, for the solution of vibration problems is illustrated

in the last section of each chapter. The basics of MATLAB programming are summarized in Appendix F.

The use of the modern analysis technique, the finite element method, for the solution of vibration prob-

lems is covered in a separate chapter (Chapter 12). The finite element method is a popular technique

used in industry for the modeling, analysis, and solution of complex vibrating systems.

Ability to design and conduct experiments, as well as to analyze and interpret data:

The experimental methods and analysis of data related to vibration are presented in Chapter 10. Discussed

also are the equipment used in conducting vibration experiments, signal analysis and identification of sys-

tem parameters from the data.

xiv PREFACE
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List of Symbols

Symbol Meaning English Units SI Units

constants, lengths

flexibility coefficient in./lb m/N

[a] flexibility matrix in./lb m/N

A area

constants

constants, lengths

constants

balancing weight lb N

c, viscous damping coefficient lb-sec/in.

constants

c wave velocity in./sec m/s

critical viscous damping constant lb-sec/in.

damping constant of i th damper lb-sec/in.

damping coefficient lb-sec/in.

[c] damping matrix lb-sec/in.

constants

d diameter, dimension in. m

D diameter in. m

[D] dynamical matrix

e base of natural logarithms

e eccentricity in. m

unit vectors parallel to x and y directions

E Young s modulus Pa

E[x] expected value of x

f linear frequency Hz Hz

f force per unit length lb/in. N/m

unit impulse lb-sec

force lb N

amplitude of force F(t) lb NF0

F, Fd

N # sf
'
,  f

lb/in2

e
!

x, e
!

y

s2sec2

C, C1, C2, C1, C2

N # s/m

N # s/mcij

N # s/mci

N # s/mcc

c, c0, c1, c2, Á

N # s/mc
'

B
!

B, B1, B2, Á

b, b1, b2, Á

A, A0, A1, Á

m2in2

aij

a, a0, a1, a2, Á
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Symbol Meaning English Units SI Units

force transmitted lb N

force acting on ith mass lb N

force vector lb N

impulse lb-sec

g acceleration due to gravity

g(t) impulse response function

G shear modulus

h hysteresis damping constant lb/in N/m

frequency response function

i

I area moment of inertia

[I] identity matrix

Im() imaginary part of ()

j integer

J polar moment of inertia

mass moment of inertia

k, spring constant lb/in. N/m

spring constant of i th spring lb/in. N/m

torsional spring constant lb-in/rad N-m/rad

stiffness coefficient lb/in. N/m

[k] stiffness matrix lb/in. N/m

length in. m

mass kg

i th mass kg

mass coefficient kg

[m] mass matrix kg

M mass kg

M bending moment lb-in.

torque lb-in.

amplitude of lb-in.

n an integer

n number of degrees of freedom

N normal force lb N

N total number of time steps

p pressure

p(x) probability density function of x

P(x) probability distribution function of x

P force, tension lb N

j th generalized coordinate

vector of generalized displacements

vector of generalized velocities

j th generalized force

r

radius vector in. mr
!

frequency ratio = v/vn

Qj

q
!#

q
!

qj

N/m2lb/in2

N # mMt1t2Mt0

N # mMt, Mt1, Mt2, Á

N # m

lb-sec2/in.

lb-sec2/in.

lb-sec2/in.mij

lb-sec2/in.mi

lb-sec2/in.m, m
'

l, li

kij

kt

ki

k
'

kg # m2lb-in./sec2J, J0, J1, J2, Á

m4in4

m4in4
1-1

H1iv2

N/m2lb/in2

m/s2in./sec2
N # sF

'
, F

F
!

Ft

Ft, FT

LIST OF SYMBOLS xvii
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xviii LIST OF SYMBOLS

Symbol Meaning English Units SI Units

Re( ) real part of ( )

autocorrelation function

R electrical resistance ohm ohm

R Rayleigh s dissipation function lb-in/sec

R Rayleigh s quotient

s root of equation, Laplace variable

acceleration, displacement, velocity spectrum

spectrum of x

t time sec s

ith time station sec s

T torque lb-in N-m

T kinetic energy in.-lb J

kinetic energy of ith mass in.-lb J

displacement, force transmissibility

an element of matrix [U]

axial displacement in. m

U potential energy in.-lb J

unbalanced weight lb N

[U] upper triangular matrix

linear velocity in./sec m/s

V shear force lb N

V potential energy in.-lb J

potential energy of i th spring in.-lb J

transverse deflections in. m

value of w at  in. m

value of at  in./sec m/s

nth mode of vibration

W weight of a mass lb N

W total energy in.-lb J

W transverse deflection in. m

value of W at  in. m

W(x) a function of x

x, y, z cartesian coordinates, displacements in. m

value of x at  in. m

value of at  in./sec m/s

displacement of jth mass in. m

value of x at  in. m

value of at  in./sec m/s

homogeneous part of x(t) in. m

particular part of x(t) in. m

vector of displacements in. m

value of  at  in. m

value of  at  in./sec m/s

value of  at  m/s2in./sec2t = tix
!$

x
!$

i

t = tix
!#

x
!#

i

t = tix
!

x
!

i

x
!

xp

xh

t = tjx
#

x
#

j

t = tjxj

xj

t = 0x
#

x
#

0, x
#
102

t = 0x0, x102

t = tiWi

wn

t = 0w
#

w
#

0

t = 0w0

w, w1, w2, vi

Vi

v, v0

U
!

U, Ui

uij

Td, Tf

Ti

ti

Sx1v2

Sa, Sd, Sv

1/s21/sec2
N # m/s

R1t2
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LIST OF SYMBOLS xix

Symbol Meaning English Units SI Units

i th mode

X amplitude of x(t) in. m

amplitude of in. m

i th modal vector in. m

i th component of j th mode in. m

[X] modal matrix in. m

r th approximation to a mode shape

y base displacement in. m

Y amplitude of y (t) in. m

z relative displacement, in. m

Z amplitude of z (t) in. m

mechanical impedance lb/in. N/m

angle, constant

angle, constant

hysteresis damping constant

specific weight

logarithmic decrement

deflections in. m

static deflection in. m

Kronecker delta

determinant

increment in F lb N

increment in x in. m

increment in time t sec s

energy dissipated in a cycle in.-lb J

a small quantity

strain

damping ratio

constant, angular displacement

ith angular displacement rad rad

value of at  rad rad

value of at  rad/sec rad/s

amplitude of  rad rad

amplitude of  rad rad

transformation matrix

viscosity of a fluid

coefficient of friction

expected value of x

mass density
loss factor

standard deviation of x

stress

period of oscillation, time, time constant sec st

N/m2lb/in2s

sx

h

kg/m3lb-sec2/in4r

mx

m

kg/m # slb-sec/in2m

[l]

s2sec2eigenvalue = 1/v2l

ui1t2i

u1t2

t = 0u
#

u
#

0

t = 0uu0

ui

u

z

e

e

¢W

¢t

¢x

¢F

¢

dij

dst

d1, d2, Á

d

N/m3lb/in3g

b

b

a

Z1iv2

x - y

X
!

r

Xi
1j2

X
!
1i2

xj1t2Xj

x
!
1i2
1t2
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Symbol Meaning English Units SI Units

shear stress

angle, phase angle rad rad

phase angle in ith mode rad rad

frequency of oscillation rad/sec rad/s

ith natural frequency rad/sec rad/s

natural frequency rad/sec rad/s

frequency of damped vibration rad/sec rad/svd

vn

vi

v

fi

f

N/m2lb/in2t

Subscripts

Symbol Meaning

cri critical value

eq equivalent value

i ith value

L left plane

max maximum value

n corresponding to natural frequency

R right plane

0 specific or reference value

t torsional

Operations

Symbol Meaning

1 2
#

d1 2

dt

1 2
$

d
2
1

 
2

dt
2

1 :2
column vector ( )

[ ] matrix

[ ]
-1 inverse of [ ]

[ ]
T transpose of [ ]

¢1 2 increment in ( )

l 1 2 Laplace transform of ( )

l
-1
1

 
2 inverse Laplace transform of ( )

xx LIST OF SYMBOLS
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Galileo Galilei (1564 1642), an Italian astronomer, philosopher, and professor
of mathematics at the Universities of Pisa and Padua, in 1609 became the first
man to point a telescope to the sky. He wrote the first treatise on modern dynam-
ics in 1590. His works on the oscillations of a simple pendulum and the vibration
of strings are of fundamental significance in the theory of vibrations.
(Courtesy of Dirk J. Struik, A Concise History of Mathematics (2nd rev. ed.), Dover
Publications, Inc., New York, 1948.)

C H A P T E R  1

Fundamentals 

of Vibration

1

Chapter Outline

This chapter introduces the subject of vibrations in a relatively simple manner. It begins

with a brief history of the subject and continues with an examination of the importance

of vibration. The basic concepts of degrees of freedom and of discrete and continuous

systems are introduced, along with a description of the elementary parts of vibrating

Chapter Outline 1

Learning Objectives 2

1.1 Preliminary Remarks 2

1.2 Brief History of the Study of Vibration 3

1.3 Importance of the Study of Vibration 10

1.4 Basic Concepts of Vibration 13

1.5 Classification of Vibration 16

1.6 Vibration Analysis Procedure 18

1.7 Spring Elements 22

1.8 Mass or Inertia Elements 40

1.9 Damping Elements 45

1.10 Harmonic Motion 54

1.11 Harmonic Analysis 64

1.12 Examples Using MATLAB 76

1.13 Vibration Literature 80

Chapter Summary 81

References 81

Review Questions 83

Problems 87

Design Projects 120
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2 CHAPTER 1 FUNDAMENTALS OF VIBRATION

systems. The various classifications of vibration namely, free and forced vibration,

undamped and damped vibration, linear and nonlinear vibration, and deterministic and

random vibration are indicated. The various steps involved in vibration analysis of an

engineering system are outlined, and essential definitions and concepts of vibration are

introduced.

The concept of harmonic motion and its representation using vectors and complex

numbers is described. The basic definitions and terminology related to harmonic motion,

such as cycle, amplitude, period, frequency, phase angle, and natural frequency, are given.

Finally, the harmonic analysis, dealing with the representation of any periodic function in

terms of harmonic functions, using Fourier series, is outlined. The concepts of frequency

spectrum, time- and frequency-domain representations of periodic functions, half-range

expansions, and numerical computation of Fourier coefficients are discussed in detail.

Learning Objectives

After completing this chapter, the reader should be able to do the following:

* Describe briefly the history of vibration

* Indicate the importance of study of vibration

* Give various classifications of vibration

* State the steps involved in vibration analysis

* Compute the values of spring constants, masses, and damping constants

* Define harmonic motion and different possible representations of harmonic motion

* Add and subtract harmonic motions

* Conduct Fourier series expansion of given periodic functions

* Determine Fourier coefficients numerically using the MATLAB program

1.1 Preliminary Remarks
The subject of vibration is introduced here in a relatively simple manner. The chapter

begins with a brief history of vibration and continues with an examination of its impor-

tance. The various steps involved in vibration analysis of an engineering system are out-

lined, and essential definitions and concepts of vibration are introduced. We learn here that

all mechanical and structural systems can be modeled as mass-spring-damper systems. In

some systems, such as an automobile, the mass, spring and damper can be identified as

separate components (mass in the form of the body, spring in the form of suspension and

damper in the form of shock absorbers). In some cases, the mass, spring and damper do

not appear as separate components; they are inherent and integral to the system. For exam-

ple, in an airplane wing, the mass of the wing is distributed throughout the wing. Also, due

to its elasticity, the wing undergoes noticeable deformation during flight so that it can be

modeled as a spring. In addition, the deflection of the wing introduces damping due to rel-

ative motion between components such as joints, connections and support as well as inter-

nal friction due to microstructural defects in the material. The chapter describes the
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1.2 BRIEF HISTORY OF THE STUDY OF VIBRATION 3

modeling of spring, mass and damping elements, their characteristics and the combination

of several springs, masses or damping elements appearing in a system. There follows a pre-

sentation of the concept of harmonic analysis, which can be used for the analysis of gen-

eral periodic motions. No attempt at exhaustive treatment of the topics is made in Chapter

1; subsequent chapters will develop many of the ideas in more detail.

1.2 Brief History of the Study of Vibration
1.2.1
Origins of 
the Study of 
Vibration

People became interested in vibration when they created the first musical instruments, proba-

bly whistles or drums. Since then, both musicians and philosophers have sought out the rules

and laws of sound production, used them in improving musical instruments, and passed them

on from generation to generation. As long ago as 4000 B.C. [1.1], music had become highly

developed and was much appreciated by Chinese, Hindus, Japanese, and, perhaps, the

Egyptians. These early peoples observed certain definite rules in connection with the art of

music, although their knowledge did not reach the level of a science. 

Stringed musical instruments probably originated with the hunter s bow, a weapon

favored by the armies of ancient Egypt. One of the most primitive stringed instruments, the

nanga, resembled a harp with three or four strings, each yielding only one note. An exam-

ple dating back to 1500 B.C. can be seen in the British Museum. The Museum also exhibits

an 11-stringed harp with a gold-decorated, bull-headed sounding box, found at Ur in a

royal tomb dating from about 2600 B.C. As early as 3000 B.C., stringed instruments such

as harps were depicted on walls of Egyptian tombs.

Our present system of music is based on ancient Greek civilization. The Greek philoso-

pher and mathematician Pythagoras (582 507 B.C.) is considered to be the first person to

investigate musical sounds on a scientific basis (Fig. 1.1). Among other things, Pythagoras

FIGURE 1.1 Pythagoras. (Reprinted

with permission from L. E. Navia,

Pythagoras: An Annotated Bibliography,

Garland Publishing, Inc., New York, 1990).
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4 CHAPTER 1 FUNDAMENTALS OF VIBRATION

1 2 3

String

Weight

FIGURE 1.2 Monochord.

conducted experiments on a vibrating string by using a simple apparatus called a mono-

chord. In the monochord shown in Fig. 1.2 the wooden bridges labeled 1 and 3 are fixed.

Bridge 2 is made movable while the tension in the string is held constant by the hanging

weight. Pythagoras observed that if two like strings of different lengths are subject to the

same tension, the shorter one emits a higher note; in addition, if the shorter string is half

the length of the longer one, the shorter one will emit a note an octave above the other.

Pythagoras left no written account of his work (Fig. 1.3), but it has been described by oth-

ers. Although the concept of pitch was developed by the time of Pythagoras, the relation

between the pitch and the frequency was not understood until the time of Galileo in the

sixteenth century.

Around 350 B.C., Aristotle wrote treatises on music and sound, making observations

such as the voice is sweeter than the sound of instruments,  and the sound of the flute is

sweeter than that of the lyre.  In 320 B.C., Aristoxenus, a pupil of Aristotle and a musician,

FIGURE 1.3 Pythagoras as a musician. (Reprinted with permission from D. E. Smith, History

of Mathematics, Vol. I, Dover Publications, Inc., New York, 1958.)
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1.2 BRIEF HISTORY OF THE STUDY OF VIBRATION 5

wrote a three-volume work entitled Elements of Harmony. These books are perhaps the old-

est ones available on the subject of music written by the investigators themselves. In about

300 B.C., in a treatise called Introduction to Harmonics, Euclid, wrote briefly about  music

without any reference to the physical nature of sound. No further advances in scientific

knowledge of sound were made by the Greeks. 

It appears that the Romans derived their knowledge of music completely from the

Greeks, except that Vitruvius, a famous Roman architect, wrote in about 20 B.C. on the

acoustic properties of theaters. His treatise, entitled De Architectura Libri Decem, was lost

for many years, to be rediscovered only in the fifteenth century. There appears to have been

no development in the theories of sound and vibration for nearly 16 centuries after the

work of Vitruvius.

China experienced many earthquakes in ancient times. Zhang Heng, who served as a

historian and astronomer in the second century, perceived a need to develop an instrument

to measure earthquakes precisely. In A.D. 132 he invented the world s first seismograph [1.3,

1.4]. It was made of fine cast bronze, had a diameter of eight chi (a chi is equal to 0.237

meter), and was shaped like a wine jar (Fig. 1.4). Inside the jar was a mechanism consist-

ing of pendulums surrounded by a group of eight levers pointing in eight directions. Eight

dragon figures, with a bronze ball in the mouth of each, were arranged on the outside of the

seismograph. Below each dragon was a toad with mouth open upward. A strong earth-

quake in any direction would tilt the pendulum in that direction, triggering the lever in the

dragon head. This opened the mouth of the dragon, thereby releasing its bronze ball,

which fell in the mouth of the toad with a clanging sound. Thus the seismograph enabled

the monitoring personnel to know both the time and direction of occurrence of the earth-

quake.

FIGURE 1.4 The world s first seismograph,
invented in China in A.D. 132. (Reprinted with 

permission from R. Taton (ed.), History of Science,

Basic Books, Inc., New York, 1957.)
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6 CHAPTER 1 FUNDAMENTALS OF VIBRATION

Galileo Galilei (1564 1642) is considered to be the founder of modern experimental sci-

ence. In fact, the seventeenth century is often considered the century of genius  since the

foundations of modern philosophy and science were laid during that period. Galileo was

inspired to study the behavior of a simple pendulum by observing the pendulum move-

ments of a lamp in a church in Pisa. One day, while feeling bored during a sermon, Galileo

was staring at the ceiling of the church. A swinging lamp caught his attention. He started

measuring the period of the pendulum movements of the lamp with his pulse and found to

his amazement that the time period was independent of the amplitude of swings. This led

him to conduct more experiments on the simple pendulum. In Discourses Concerning Two

New Sciences, published in 1638, Galileo discussed vibrating bodies. He described the

dependence of the frequency of vibration on the length of a simple pendulum, along with

the phenomenon of sympathetic vibrations (resonance). Galileo s writings also indicate

that he had a clear understanding of the relationship between the frequency, length, ten-

sion, and density of a vibrating stretched string [1.5]. However, the first correct published

account of the vibration of strings was given by the French mathematician and theologian,

Marin Mersenne (1588 1648) in his book Harmonicorum Liber, published in 1636.

Mersenne also measured, for the first time, the frequency of vibration of a long string and

from that predicted the frequency of a shorter string having the same density and tension.

Mersenne is considered by many the father of acoustics. He is often credited with the dis-

covery of the laws of vibrating strings because he published the results in 1636, two years

before Galileo. However, the credit belongs to Galileo, since the laws were written many

years earlier but their publication was prohibited by the orders of the Inquisitor of Rome

until 1638.

Inspired by the work of Galileo, the Academia del Cimento was founded in Florence

in 1657; this was followed by the formations of the Royal Society of London in 1662 and

the Paris Academie des Sciences in 1666. Later, Robert Hooke (1635 1703) also con-

ducted experiments to find a relation between the pitch and frequency of vibration of a

string. However, it was Joseph Sauveur (1653 1716) who investigated these experiments

thoroughly and coined the word acoustics  for the science of sound [1.6]. Sauveur in

France and John Wallis (1616 1703) in England observed, independently, the phenome-

non of mode shapes, and they found that a vibrating stretched string can have no motion

at certain points and violent motion at intermediate points. Sauveur called the former

points nodes and the latter ones loops. It was found that such vibrations had higher fre-

quencies than that associated with the simple vibration of the string with no nodes. In fact,

the higher frequencies were found to be integral multiples of the frequency of simple

vibration, and Sauveur called the higher frequencies harmonics and the frequency of sim-

ple vibration the fundamental frequency. Sauveur also found that a string can vibrate with

several of its harmonics present at the same time. In addition, he observed the phenome-

non of beats when two organ pipes of slightly different pitches are sounded together. In

1700 Sauveur calculated, by a somewhat dubious method, the frequency of a stretched

string from the measured sag of its middle point.

Sir Isaac Newton (1642 1727) published his monumental work, Philosophiae

Naturalis Principia Mathematica, in 1686, describing the law of universal gravitation as

well as the three laws of motion and other discoveries. Newton s second law of motion is

routinely used in modern books on vibrations to derive the equations of motion of a

1.2.2
From Galileo 
to Rayleigh
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1.2 BRIEF HISTORY OF THE STUDY OF VIBRATION 7

vibrating body. The theoretical (dynamical) solution of the problem of the vibrating string

was found in 1713 by the English mathematician Brook Taylor (1685 1731), who also

presented the famous Taylor s theorem on infinite series. The natural frequency of vibra-

tion obtained from the equation of motion derived by Taylor agreed with the experimen-

tal values observed by Galileo and Mersenne. The procedure adopted by Taylor was

perfected through the introduction of partial derivatives in the equations of motion by

Daniel Bernoulli (1700 1782), Jean D Alembert (1717 1783), and Leonard Euler

(1707 1783).

The possibility of a string vibrating with several of its harmonics present at the same

time (with displacement of any point at any instant being equal to the algebraic sum of dis-

placements for each harmonic) was proved through the dynamic equations of Daniel

Bernoulli in his memoir, published by the Berlin Academy in 1755 [1.7]. This character-

istic was referred to as the principle of the coexistence of small oscillations, which, in

present-day terminology, is the principle of superposition. This principle was proved to be

most valuable in the development of the theory of vibrations and led to the possibility of

expressing any arbitrary function (i.e., any initial shape of the string) using an infinite

series of sines and cosines. Because of this implication, D Alembert and Euler doubted the

validity of this principle. However, the validity of this type of expansion was proved by J.

B. J. Fourier (1768 1830) in his Analytical Theory of Heat in 1822.

The analytical solution of the vibrating string was presented by Joseph Lagrange

(1736 1813) in his memoir published by the Turin Academy in 1759. In his study,

Lagrange assumed that the string was made up of a finite number of equally spaced iden-

tical mass particles, and he established the existence of a number of independent frequen-

cies equal to the number of mass particles. When the number of particles was allowed to

be infinite, the resulting frequencies were found to be the same as the harmonic frequen-

cies of the stretched string. The method of setting up the differential equation of the motion

of a string (called the wave equation), presented in most modern books on vibration the-

ory, was first developed by D Alembert in his memoir published by the Berlin Academy

in 1750. The vibration of thin beams supported and clamped in different ways was first

studied by Euler in 1744 and Daniel Bernoulli in 1751. Their approach has become known

as the Euler-Bernoulli or thin beam theory.

Charles Coulomb did both theoretical and experimental studies in 1784 on the tor-

sional oscillations of a metal cylinder suspended by a wire (Fig. 1.5). By assuming that

the resisting torque of the twisted wire is proportional to the angle of twist, he derived the

equation of motion for the torsional vibration of the suspended cylinder. By integrating

the equation of motion, he found that the period of oscillation is independent of the angle

of twist.

There is an interesting story related to the development of the theory of vibration of

plates [1.8]. In 1802 the German scientist, E. F. F. Chladni (1756 1824) developed the

method of placing sand on a vibrating plate to find its mode shapes and observed the

beauty and intricacy of the modal patterns of the vibrating plates. In 1809 the French

Academy invited Chladni to give a demonstration of his experiments. Napoléon

Bonaparte, who attended the meeting, was very impressed and presented a sum of 3,000

francs to the academy, to be awarded to the first person to give a satisfactory mathemati-

cal theory of the vibration of plates. By the closing date of the competition in October
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8 CHAPTER 1 FUNDAMENTALS OF VIBRATION

1811, only one candidate, Sophie Germain, had entered the contest. But Lagrange, who

was one of the judges, noticed an error in the derivation of her differential equation of

motion. The academy opened the competition again, with a new closing date of October

1813. Sophie Germain again entered the contest, presenting the correct form of the differ-

ential equation. However, the academy did not award the prize to her because the judges

wanted physical justification of the assumptions made in her derivation. The competition

was opened once more. In her third attempt, Sophie Germain was finally awarded the prize

in 1815, although the judges were not completely satisfied with her theory. In fact, it was

later found that her differential equation was correct but the boundary conditions were

erroneous. The correct boundary conditions for the vibration of plates were given in 1850

by G. R. Kirchhoff (1824 1887).

In the meantime, the problem of vibration of a rectangular flexible membrane, which

is important for the understanding of the sound emitted by drums, was solved for the first

time by Simeon Poisson (1781 1840). The vibration of a circular membrane was studied

by R. F. A. Clebsch (1833 1872) in 1862. After this, vibration studies were done on a

number of practical mechanical and structural systems. In 1877 Lord Baron Rayleigh pub-

lished his book on the theory of sound [1.9]; it is considered a classic on the subject of

sound and vibration even today. Notable among the many contributions of Rayleigh is the

method of finding the fundamental frequency of vibration of a conservative system by

making use of the principle of conservation of energy now known as Rayleigh s method.
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FIGURE 1.5 Coulomb s device for tor-
sional vibration tests. (Reprinted with permis-

sion from S. P. Timoshenko, History of Strength

of Materials, McGraw-Hill Book Company, Inc.,

New York, 1953.)
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1.2 BRIEF HISTORY OF THE STUDY OF VIBRATION 9

1.2.3

Recent

Contributions

In 1902 Frahm investigated the importance of torsional vibration study in the design of the

propeller shafts of steamships. The dynamic vibration absorber, which involves the addition

of a secondary spring-mass system to eliminate the vibrations of a main system, was also pro-

posed by Frahm in 1909. Among the modern contributers to the theory of vibrations, the

names of Stodola, De Laval, Timoshenko, and Mindlin are notable. Aurel Stodola

(1859 1943) contributed to the study of vibration of beams, plates, and membranes. He devel-

oped a method for analyzing vibrating beams that is also applicable to turbine blades. Noting

that every major type of prime mover gives rise to vibration problems, C. G. P. De Laval

(1845 1913) presented a practical solution to the problem of vibration of an unbalanced rotat-

ing disk. After noticing failures of steel shafts in high-speed turbines, he used a bamboo fish-

ing rod as a shaft to mount the rotor. He observed that this system not only eliminated the

vibration of the unbalanced rotor but also survived up to speeds as high as 100,000 rpm [1.10].

Stephen Timoshenko (1878 1972), by considering the effects of rotary inertia and

shear deformation, presented an improved theory of vibration of beams, which has

become known as the Timoshenko or thick beam theory. A similar theory was presented

by R. D. Mindlin for the vibration analysis of thick plates by including the effects of

rotary inertia and shear deformation.

It has long been recognized that many basic problems of mechanics, including those

of vibrations, are nonlinear. Although the linear treatments commonly adopted are quite

satisfactory for most purposes, they are not adequate in all cases. In nonlinear systems,

phenonmena may occur that are theoretically impossible in linear systems. The mathe-

matical theory of nonlinear vibrations began to develop in the works of Poincaré and

Lyapunov at the end of the nineteenth century. Poincaré developed the perturbation

method in 1892 in connection with the approximate solution of nonlinear celestial

mechanics problems. In 1892, Lyapunov laid the foundations of modern stability theory,

which is applicable to all types of dynamical systems. After 1920, the studies undertaken

by Duffing and van der Pol brought the first definite solutions into the theory of nonlinear

vibrations and drew attention to its importance in engineering. In the last 40 years, authors

like Minorsky and Stoker have endeavored to collect in monographs the main results con-

cerning nonlinear vibrations. Most practical applications of nonlinear vibration involved

the use of some type of a perturbation-theory approach. The modern methods of perturba-

tion theory were surveyed by Nayfeh [1.11].

Random characteristics are present in diverse phenomena such as earthquakes,

winds, transportation of goods on wheeled vehicles, and rocket and jet engine noise. It

became necessary to devise concepts and methods of vibration analysis for these random

effects. Although Einstein considered Brownian movement, a particular type of random

vibration, as long ago as 1905, no applications were investigated until 1930. The intro-

duction of the correlation function by Taylor in 1920 and of the spectral density by

Wiener and Khinchin in the early 1930s opened new prospects for progress in the theory

of random vibrations. Papers by Lin and Rice, published between 1943 and 1945, paved

This method proved to be a helpful technique for the solution of difficult vibration prob-

lems. An extension of the method, which can be used to find multiple natural frequencies,

is known as the Rayleigh-Ritz method.
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10 CHAPTER 1 FUNDAMENTALS OF VIBRATION

FIGURE 1.6 Finite element idealization of the body of a bus [1.16]. (Reprinted with permission © 1974 Society of

Automotive Engineers, Inc.)

the way for the application of random vibrations to practical engineering problems. The

monographs of Crandall and Mark and of Robson systematized the existing knowledge in

the theory of random vibrations [1.12, 1.13].

Until about 40 years ago, vibration studies, even those dealing with complex engineering

systems, were done by using gross models, with only a few degrees of freedom. However, the

advent of high-speed digital computers in the 1950s made it possible to treat moderately com-

plex systems and to generate approximate solutions in semidefinite form, relying on classical

solution methods but using numerical evaluation of certain terms that cannot be expressed in

closed form. The simultaneous development of the finite element method enabled engineers

to use digital computers to conduct numerically detailed vibration analysis of complex

mechanical, vehicular, and structural systems displaying thousands of degrees of freedom

[1.14]. Although the finite element method was not so named until recently, the concept was

used centuries ago. For example, ancient mathematicians found the circumference of a circle

by approximating it as a polygon, where each side of the polygon, in present-day notation, can

be called a finite element. The finite element method as known today was presented by Turner,

Clough, Martin, and Topp in connection with the analysis of aircraft structures [1.15]. Figure

1.6 shows the finite element idealization of the body of a bus [1.16].

1.3 Importance of the Study of Vibration
Most human activities involve vibration in one form or other. For example, we hear

because our eardrums vibrate and see because light waves undergo vibration. Breathing is

associated with the vibration of lungs and walking involves (periodic) oscillatory motion

of legs and hands. Human speech requires the oscillatory motion of larynges (and tongues)

[1.17]. Early scholars in the field of vibration concentrated their efforts on understand-

ing the natural phenomena and developing mathematical theories to describe the vibration

of physical systems. In recent times, many investigations have been motivated by the
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1.3 IMPORTANCE OF THE STUDY OF VIBRATION 11

engineering applications of vibration, such as the design of machines, foundations, struc-

tures, engines, turbines, and control systems.

Most prime movers have vibrational problems due to the inherent unbalance in the

engines. The unbalance may be due to faulty design or poor manufacture. Imbalance in

diesel engines, for example, can cause ground waves sufficiently powerful to create a nui-

sance in urban areas. The wheels of some locomotives can rise more than a centimeter off

the track at high speeds due to imbalance. In turbines, vibrations cause spectacular mechan-

ical failures. Engineers have not yet been able to prevent the failures that result from blade

and disk vibrations in turbines. Naturally, the structures designed to support heavy cen-

trifugal machines, like motors and turbines, or reciprocating machines, like steam and gas

engines and reciprocating pumps, are also subjected to vibration. In all these situations, the

structure or machine component subjected to vibration can fail because of material fatigue

resulting from the cyclic variation of the induced stress. Furthermore, the vibration causes

more rapid wear of machine parts such as bearings and gears and also creates excessive

noise. In machines, vibration can loosen fasteners such as nuts. In metal cutting processes,

vibration can cause chatter, which leads to a poor surface finish.

Whenever the natural frequency of vibration of a machine or structure coincides with

the frequency of the external excitation, there occurs a phenomenon known as resonance,

which leads to excessive deflections and failure. The literature is full of accounts of sys-

tem failures brought about by resonance and excessive vibration of components and sys-

tems (see Fig. 1.7). Because of the devastating effects that vibrations can have on machines

FIGURE 1.7 Tacoma Narrows bridge during wind-induced vibration. The bridge opened on
July 1, 1940, and collapsed on November 7, 1940. (Farquharson photo, Historical Photography

Collection, University of Washington Libraries.)
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12 CHAPTER 1 FUNDAMENTALS OF VIBRATION

FIGURE 1.8 Vibration testing of the space shuttle Enterprise. (Courtesy of

NASA.)

FIGURE 1.9 Vibratory finishing process. (Reprinted courtesy of the Society of Manufacturing Engineers, © 1964 The

Tool and Manufacturing Engineer.)

and structures, vibration testing [1.18] has become a standard procedure in the design and

development of most engineering systems (see Fig. 1.8).

In many engineering systems, a human being acts as an integral part of the system.

The transmission of vibration to human beings results in discomfort and loss of efficiency.

The vibration and noise generated by engines causes annoyance to people and, sometimes,

damage to property. Vibration of instrument panels can cause their malfunction or diffi-

culty in reading the meters [1.19]. Thus one of the important purposes of vibration study

is to reduce vibration through proper design of machines and their mountings. In this
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1.4 BASIC CONCEPTS OF VIBRATION 13

connection, the mechanical engineer tries to design the engine or machine so as to mini-

mize imbalance, while the structural engineer tries to design the supporting structure so as

to ensure that the effect of the imbalance will not be harmful [1.20].

In spite of its detrimental effects, vibration can be utilized profitably in several consumer

and industrial applications. In fact, the applications of vibratory equipment have increased

considerably in recent years [1.21]. For example, vibration is put to work in vibratory con-

veyors, hoppers, sieves, compactors, washing machines, electric toothbrushes, dentist s

drills, clocks, and electric massaging units. Vibration is also used in pile driving, vibratory

testing of materials, vibratory finishing processes, and electronic circuits to filter out the

unwanted frequencies (see Fig. 1.9). Vibration has been found to improve the efficiency of

certain machining, casting, forging, and welding processes. It is employed to simulate earth-

quakes for geological research and also to conduct studies in the design of nuclear reactors.

1.4 Basic Concepts of Vibration

1.4.1
Vibration

Any motion that repeats itself after an interval of time is called vibration or oscillation.

The swinging of a pendulum and the motion of a plucked string are typical examples of

vibration. The theory of vibration deals with the study of oscillatory motions of bodies and

the forces associated with them.

1.4.2
Elementary Parts
of Vibrating
Systems

A vibratory system, in general, includes a means for storing potential energy (spring or

elasticity), a means for storing kinetic energy (mass or inertia), and a means by which

energy is gradually lost (damper).

The vibration of a system involves the transfer of its potential energy to kinetic energy

and of kinetic energy to potential energy, alternately. If the system is damped, some energy

is dissipated in each cycle of vibration and must be replaced by an external source if a state

of steady vibration is to be maintained.

As an example, consider the vibration of the simple pendulum shown in Fig. 1.10. Let

the bob of mass m be released after being given an angular displacement At position 1

the velocity of the bob and hence its kinetic energy is zero. But it has a potential energy of

magnitude with respect to the datum position 2. Since the gravitational

force mg induces a torque about the point O, the bob starts swinging to the left

from position 1. This gives the bob certain angular acceleration in the clockwise direction,

and by the time it reaches position 2, all of its potential energy will be converted into

kinetic energy. Hence the bob will not stop in position 2 but will continue to swing to posi-

tion 3. However, as it passes the mean position 2, a counterclockwise torque due to grav-

ity starts acting on the bob and causes the bob to decelerate. The velocity of the bob

reduces to zero at the left extreme position. By this time, all the kinetic energy of the bob

will be converted to potential energy. Again due to the gravity torque, the bob continues to

attain a counterclockwise velocity. Hence the bob starts swinging back with progressively

increasing velocity and passes the mean position again. This process keeps repeating, and

the pendulum will have oscillatory motion. However, in practice, the magnitude of oscil-

lation gradually decreases and the pendulum ultimately stops due to the resistance

(damping) offered by the surrounding medium (air). This means that some energy is dis-

sipated in each cycle of vibration due to damping by the air.

(u)

mgl sin u

mgl(1 - cos u)

u.
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FIGURE 1.11 Single-degree-of-freedom systems.

1.4.3
Number of
Degrees 
of Freedom

The minimum number of independent coordinates required to determine completely the

positions of all parts of a system at any instant of time defines the number of degrees of free-

dom of the system. The simple pendulum shown in Fig. 1.10, as well as each of the systems

shown in Fig. 1.11, represents a single-degree-of-freedom system. For example, the motion

of the simple pendulum (Fig. 1.10) can be stated either in terms of the angle or in terms

of the Cartesian coordinates x and y. If the coordinates x and y are used to describe the

motion, it must be recognized that these coordinates are not independent. They are related

to each other through the relation where l is the constant length of the pen-

dulum. Thus any one coordinate can describe the motion of the pendulum. In this example,

we find that the choice of as the independent coordinate will be more convenient than the

choice of x or y. For the slider shown in Fig. 1.11(a), either the angular coordinate or the

coordinate x can be used to describe the motion. In Fig. 1.11(b), the linear coordinate x can

u

u

x
2
+ y

2
= l

2
,

u

O

3 1
m

2

l

Datum

x

mg

y

l (1  cos u)

u

FIGURE 1.10 A simple pendulum.
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FIGURE 1.12 Two-degree-of-freedom systems.

be used to specify the motion. For the torsional system (long bar with a heavy disk at the

end) shown in Fig. 1.11(c), the angular coordinate can be used to describe the motion.

Some examples of two- and three-degree-of-freedom systems are shown in Figs. 1.12

and 1.13, respectively. Figure 1.12(a) shows a two-mass, two-spring system that is described

by the two linear coordinates and Figure 1.12(b) denotes a two-rotor system whose

motion can be specified in terms of and The motion of the system shown in Fig. 1.12(c)

can be described completely either by X and or by x, y, and X. In the latter case, x and y are

constrained as where l is a constant.

For the systems shown in Figs. 1.13(a) and 1.13(c), the coordinates 

and can be used, respectively, to describe the motion. In the case of theui (i = 1, 2, 3)

xi (i = 1, 2, 3)
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FIGURE 1.13 Three degree-of-freedom systems.
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FIGURE 1.14 A cantilever beam
(an infinite-number-of-degrees-of-freedom 

system).

system shown in Fig. 1.13(b), specifies the positions of the masses

An alternate method of describing this system is in terms of and 

but in this case the constraints have to be

considered.

The coordinates necessary to describe the motion of a system constitute a set of

generalized coordinates. These are usually denoted as and may represent

Cartesian and/or non-Cartesian coordinates.

q1, q2, Á

xi
2
+ yi

2
= li

2 (i = 1, 2, 3)yi (i = 1, 2, 3);

ximi (i = 1, 2, 3).

ui (i = 1, 2, 3)

1.4.4
Discrete and
Continuous
Systems

A large number of practical systems can be described using a finite number of degrees of

freedom, such as the simple systems shown in Figs. 1.10 to 1.13. Some systems, especially

those involving continuous elastic members, have an infinite number of degrees of free-

dom. As a simple example, consider the cantilever beam shown in Fig. 1.14. Since the

beam has an infinite number of mass points, we need an infinite number of coordinates to

specify its deflected configuration. The infinite number of coordinates defines its elastic

deflection curve. Thus the cantilever beam has an infinite number of degrees of freedom.

Most structural and machine systems have deformable (elastic) members and therefore

have an infinite number of degrees of freedom.

Systems with a finite number of degrees of freedom are called discrete or lumped

parameter systems, and those with an infinite number of degrees of freedom are called

continuous or distributed systems.

Most of the time, continuous systems are approximated as discrete systems, and solutions

are obtained in a simpler manner. Although treatment of a system as continuous gives exact

results, the analytical methods available for dealing with continuous systems are limited to a

narrow selection of problems, such as uniform beams, slender rods, and thin plates. Hence

most of the practical systems are studied by treating them as finite lumped masses, springs,

and dampers. In general, more accurate results are obtained by increasing the number of

masses, springs, and dampers that is, by increasing the number of degrees of freedom.

1.5 Classification of Vibration
Vibration can be classified in several ways. Some of the important classifications are as

follows.
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1.5.1
Free and Forced
Vibration

Free Vibration. If a system, after an initial disturbance, is left to vibrate on its own, the

ensuing vibration is known as free vibration. No external force acts on the system. The

oscillation of a simple pendulum is an example of free vibration.

Forced Vibration. If a system is subjected to an external force (often, a repeating type

of force), the resulting vibration is known as forced vibration. The oscillation that arises in

machines such as diesel engines is an example of forced vibration.

If the frequency of the external force coincides with one of the natural frequencies of

the system, a condition known as resonance occurs, and the system undergoes dangerously

large oscillations. Failures of such structures as buildings, bridges, turbines, and airplane

wings have been associated with the occurrence of resonance.

1.5.2
Undamped 
and Damped
Vibration

If no energy is lost or dissipated in friction or other resistance during oscillation, the vibra-

tion is known as undamped vibration. If any energy is lost in this way, however, it is called

damped vibration. In many physical systems, the amount of damping is so small that it can

be disregarded for most engineering purposes. However, consideration of damping

becomes extremely important in analyzing vibratory systems near resonance.

1.5.3
Linear 
and Nonlinear
Vibration

If all the basic components of a vibratory system the spring, the mass, and the damper

behave linearly, the resulting vibration is known as linear vibration. If, however, any of the

basic components behave nonlinearly, the vibration is called nonlinear vibration. The dif-

ferential equations that govern the behavior of linear and nonlinear vibratory systems are

linear and nonlinear, respectively. If the vibration is linear, the principle of superposition

holds, and the mathematical techniques of analysis are well developed. For nonlinear

vibration, the superposition principle is not valid, and techniques of analysis are less well

known. Since all vibratory systems tend to behave nonlinearly with increasing amplitude

of oscillation, a knowledge of nonlinear vibration is desirable in dealing with practical

vibratory systems.

If the value or magnitude of the excitation (force or motion) acting on a vibratory system

is known at any given time, the excitation is called deterministic. The resulting vibration

is known as deterministic vibration.

1.5.4
Deterministic
and Random
Vibration In some cases, the excitation is nondeterministic or random; the value of the exci-

tation at a given time cannot be predicted. In these cases, a large collection of records

of the excitation may exhibit some statistical regularity. It is possible to estimate aver-

ages such as the mean and mean square values of the excitation. Examples of random

excitations are wind velocity, road roughness, and ground motion during earthquakes.

If the excitation is random, the resulting vibration is called random vibration. In this

case the vibratory response of the system is also random; it can be described only in

terms of statistical quantities. Figure 1.15 shows examples of deterministic and random

excitations.
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18 CHAPTER 1 FUNDAMENTALS OF VIBRATION

Force

0

(a) A deterministic (periodic) excitation (b) A random excitation

Time

Force

0

Time

FIGURE 1.15 Deterministic and random excitations.

1.6 Vibration Analysis Procedure
A vibratory system is a dynamic one for which the variables such as the excitations

(inputs) and responses (outputs) are time dependent. The response of a vibrating system

generally depends on the initial conditions as well as the external excitations. Most prac-

tical vibrating systems are very complex, and it is impossible to consider all the details for

a mathematical analysis. Only the most important features are considered in the analysis

to predict the behavior of the system under specified input conditions. Often the overall

behavior of the system can be determined by considering even a simple model of the com-

plex physical system. Thus the analysis of a vibrating system usually involves mathemat-

ical modeling, derivation of the governing equations, solution of the equations, and

interpretation of the results.

Step 1: Mathematical Modeling. The purpose of mathematical modeling is to represent

all the important features of the system for the purpose of deriving the mathematical (or

analytical) equations governing the system s behavior. The mathematical model should

include enough details to allow describing the system in terms of equations without mak-

ing it too complex. The mathematical model may be linear or nonlinear, depending on the

behavior of the system s components. Linear models permit quick solutions and are sim-

ple to handle; however, nonlinear models sometimes reveal certain characteristics of the

system that cannot be predicted using linear models. Thus a great deal of engineering judg-

ment is needed to come up with a suitable mathematical model of a vibrating system.

Sometimes the mathematical model is gradually improved to obtain more accurate

results. In this approach, first a very crude or elementary model is used to get a quick

insight into the overall behavior of the system. Subsequently, the model is refined by

including more components and/or details so that the behavior of the system can be

observed more closely. To illustrate the procedure of refinement used in mathematical

modeling, consider the forging hammer shown in Fig. 1.16(a). It consists of a frame, a

falling weight known as the tup, an anvil, and a foundation block. The anvil is a massive

steel block on which material is forged into desired shape by the repeated blows of the tup.

The anvil is usually mounted on an elastic pad to reduce the transmission of vibration to

the foundation block and the frame [1.22]. For a first approximation, the frame, anvil, elas-

tic pad, foundation block, and soil are modeled as a single degree of freedom system as

shown in Fig. 1.16(b). For a refined approximation, the weights of the frame and anvil and
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Tup

Tup

Tup

Frame

Anvil

Elastic pad

Foundation block

Soil

Anvil and
foundation block

x1

Soil damping Soil stiffness

Foundation block

x2

Damping of soil Stiffness of soil 

Anvil

x1

Damping of elastic pad Stiffness of elastic pad

(a)

(b)

(c)

FIGURE 1.16 Modeling of a forging hammer.
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20 CHAPTER 1 FUNDAMENTALS OF VIBRATION

the foundation block are represented separately with a two-degree-of-freedom model as

shown in Fig. 1.16(c). Further refinement of the model can be made by considering

eccentric impacts of the tup, which cause each of the masses shown in Fig. 1.16(c) to

have both vertical and rocking (rotation) motions in the plane of the paper.

Step 2: Derivation of Governing Equations. Once the mathematical model is avail-

able, we use the principles of dynamics and derive the equations that describe the vibra-

tion of the system. The equations of motion can be derived conveniently by drawing the

free-body diagrams of all the masses involved. The free-body diagram of a mass can be

obtained by isolating the mass and indicating all externally applied forces, the reactive

forces, and the inertia forces. The equations of motion of a vibrating system are usually in

the form of a set of ordinary differential equations for a discrete system and partial differ-

ential equations for a continuous system. The equations may be linear or nonlinear,

depending on the behavior of the components of the system. Several approaches are com-

monly used to derive the governing equations. Among them are Newton s second law of

motion, D Alembert s principle, and the principle of conservation of energy.

Step 3: Solution of the Governing Equations. The equations of motion must be solved

to find the response of the vibrating system. Depending on the nature of the problem, we

can use one of the following techniques for finding the solution: standard methods of solv-

ing differential equations, Laplace transform methods, matrix methods,1 and numerical

methods. If the governing equations are nonlinear, they can seldom be solved in closed

form. Furthermore, the solution of partial differential equations is far more involved than

that of ordinary differential equations. Numerical methods involving computers can be

used to solve the equations. However, it will be difficult to draw general conclusions about

the behavior of the system using computer results.

Step 4: Interpretation of the Results. The solution of the governing equations gives the

displacements, velocities, and accelerations of the various masses of the system. These

results must be interpreted with a clear view of the purpose of the analysis and the possi-

ble design implications of the results.

E X A M P L E  1 . 1
Mathematical Model of a Motorcycle

Figure 1.17(a) shows a motorcycle with a rider. Develop a sequence of three mathematical models

of the system for investigating vibration in the vertical direction. Consider the elasticity of the tires,

elasticity and damping of the struts (in the vertical direction), masses of the wheels, and elasticity,

damping, and mass of the rider.

Solution: We start with the simplest model and refine it gradually. When the equivalent values of

the mass, stiffness, and damping of the system are used, we obtain a single-degree-of-freedom model

1The basic definitions and operations of matrix theory are given in Appendix A.
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of the motorcycle with a rider as indicated in Fig. 1.17(b). In this model, the equivalent stiffness

includes the stiffnesses of the tires, struts, and rider. The equivalent damping constant 

includes the damping of the struts and the rider. The equivalent mass includes the masses of the

wheels, vehicle body, and the rider. This model can be refined by representing the masses of wheels,

(ceq)(keq)

Rider

Strut

Strut

Tire

Wheel

keq

meq

m
w

mr

m
w

m
v
*mr

m
v

ceq

cs csks

kt kt

ks

crkr

2m
w

m
v
*mr

2cs2ks

2kt

m
w

m
w

cs csks

kt kt

ks

Subscripts
t : tire
w : wheel
s : strut

v : vehicle
r : rider

eq : equivalent

(a)

(b)

(d) (e)

(c)

FIGURE 1.17 Motorcycle with a rider a physical system and
mathematical model.
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2

(a) (b) (c)

l

l , x

l + x

+F
+F

,F

,F

x

x

1 1 1

2*

2*

FIGURE 1.18 Deformation of a spring.

elasticity of the tires, and elasticity and damping of the struts separately, as shown in Fig. 1.17(c). In

this model, the mass of the vehicle body and the mass of the rider are shown as a single

mass, When the elasticity (as spring constant ) and damping (as damping constant )

of the rider are considered, the refined model shown in Fig. 1.17(d) can be obtained.

Note that the models shown in Figs. 1.17(b) to (d) are not unique. For example, by combining the

spring constants of both tires, the masses of both wheels, and the spring and damping constants of both

struts as single quantities, the model shown in Fig. 1.17(e) can be obtained instead of Fig. 1.17(c).

*

1.7 Spring Elements
A spring is a type of mechanical link, which in most applications is assumed to have negli-

gible mass and damping. The most common type of spring is the helical-coil spring used in

retractable pens and pencils, staplers, and suspensions of freight trucks and other vehicles.

Several other types of springs can be identified in engineering applications. In fact, any elas-

tic or deformable body or member, such as a cable, bar, beam, shaft or plate, can be con-

sidered as a spring. A spring is commonly represented as shown in Fig. 1.18(a). If the free

length of the spring, with no forces acting, is denoted l, it undergoes a change in length

when an axial force is applied. For example, when a tensile force F is applied at its free end

2, the spring undergoes an elongation x as shown in Fig. 1.18(b), while a compressive force

F applied at the free end 2 causes a reduction in length x as shown in Fig. 1.18(c).

A spring is said to be linear if the elongation or reduction in length x is related to the

applied force F as

(1.1)

where k is a constant, known as the spring constant or spring stiffness or spring rate. The

spring constant k is always positive and denotes the force (positive or negative) required to

F = kx

crkrmv + mr.

(mr)(mv)
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1.7 SPRING ELEMENTS 23

cause a unit deflection (elongation or reduction in length) in the spring. When the spring

is stretched (or compressed) under a tensile (or compressive) force F, according to

Newton s third law of motion, a restoring force or reaction of magnitude is

developed opposite to the applied force. This restoring force tries to bring the stretched (or

compressed) spring back to its original unstretched or free length as shown in Fig. 1.18(b)

(or 1.18(c)). If we plot a graph between F and x, the result is a straight line according to

Eq. (1.1). The work done (U) in deforming a spring is stored as strain or potential energy

in the spring, and it is given by

(1.2)U =
1

2
 kx2

-  F(or +F)

1.7.1
Nonlinear
Springs

Most springs used in practical systems exhibit a nonlinear force-deflection relation, par-

ticularly when the deflections are large. If a nonlinear spring undergoes small deflections,

it can be replaced by a linear spring by using the procedure discussed in Section 1.7.2. In

vibration analysis, nonlinear springs whose force-deflection relations are given by

(1.3)

are commonly used. In Eq. (1.3), a denotes the constant associated with the linear part and

b indicates the constant associated with the (cubic) nonlinearity. The spring is said to be

hard if linear if and soft if The force-deflection relations for vari-

ous values of b are shown in Fig. 1.19.

b 6 0.b = 0,b 7 0,

F = ax + bx3;   a 7 0

Force (F)

Linear spring (b * 0)

Soft spring (b + 0)

Hard spring (b , 0)

Deflection (x)
O

FIGURE 1.19 Nonlinear and linear springs.
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Displacement (x)

Spring force (F)

O

O

c1
c2

k2

k1

k1 k2

c1

W

c2

k2(x * c2)

k1(x * c1)

(a)

(b)

+x

FIGURE 1.20 Nonlinear spring force-displacement relation.

Some systems, involving two or more springs, may exhibit a nonlinear force-dis-

placement relationship although the individual springs are linear. Some examples of such

systems are shown in Figs. 1.20 and 1.21. In Fig. 1.20(a), the weight (or force) W travels

F

c

x

Spring force (F)
Weightless
rigid bar

x , 0 corresponds to position
of the bar with no force

Displacement
of force

x

O

O

c

k2

F , k1x + k2(x * c)F , k1x

(b)(a)

k1

2

k1

2

FIGURE 1.21 Nonlinear spring force-displacement relation.
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1.7 SPRING ELEMENTS 25

freely through the clearances and present in the system. Once the weight comes into

contact with a particular spring, after passing through the corresponding clearance, the

spring force increases in proportion to the spring constant of the particular spring (see Fig.

1.20(b)). It can be seen that the resulting force-displacement relation, although piecewise

linear, denotes a nonlinear relationship.

In Fig. 1.21(a), the two springs, with stiffnesses and have different lengths. Note

that the spring with stiffness is shown, for simplicity, in the form of two parallel springs,

each with a stiffness of Spring arrangement models of this type can be used in the

vibration analysis of packages and suspensions used in aircraft landing gears.

When the spring deflects by an amount the second spring starts providing

an additional stiffness to the system. The resulting nonlinear force-displacement rela-

tionship is shown in Fig. 1.21(b).

k2

x = c,k1

k 1/2.

k 1

k2,k1

c2c1

1.7.2
Linearization 
of a Nonlinear
Spring

Actual springs are nonlinear and follow Eq. (1.1) only up to a certain deformation. Beyond

a certain value of deformation (after point A in Fig. 1.22), the stress exceeds the yield point

of the material and the force-deformation relation becomes nonlinear [1.23, 1.24]. In many

practical applications we assume that the deflections are small and make use of the linear

relation in Eq. (1.1). Even, if the force-deflection relation of a spring is nonlinear, as shown

in Fig. 1.23, we often approximate it as a linear one by using a linearization process [1.24,

1.25]. To illustrate the linearization process, let the static equilibrium load F acting on the

spring cause a deflection of If an incremental force is added to F, the spring

deflects by an additional quantity The new spring force can be expressed

using Taylor s series expansion about the static equilibrium position as

(1.4)

For small values of the higher-order derivative terms can be neglected to obtain

(1.5)F + ¢F = F(x*) +
dF

dx
`

x*

 (¢x)

¢x,

 = F(x*) +
dF

dx
`

x*

 (¢x) +
1

2!
 
d2F

dx2
`

x*

 (¢x)2
+ Á

F + ¢F = F(x* + ¢x)

x*

F + ¢F¢x.

¢Fx*.

Stress

Strain

Yield
point, A

Force (F )

Deformation (x)

Yield
point, A

x + x1 * x2

x2 x1

FIGURE 1.22 Nonlinearity beyond proportionality limit.
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F * ,F + F(x* * ,x)

F + F(x*)

F + F(x)

x* * ,xx*

Force (F )

Deformation (x)

k +
dF

dx
x*

FIGURE 1.23 Linearization process.

E X A M P L E  1 . 2
Equivalent Linearized Spring Constant

A precision milling machine, weighing 1000 lb, is supported on a rubber mount. The force-deflec-

tion relationship of the rubber mount is given by

(E.1)

where the force (F) and the deflection (x) are measured in pounds and inches, respectively. Determine

the equivalent linearized spring constant of the rubber mount at its static equilibrium position.

Solution: The static equilibrium position of the rubber mount under the weight of the milling

machine, can be determined from Eq. (E.1):

or

(E.2)200(x*)3 + 2000x* - 1000 = 0

1000 = 2000x* + 200(x*)3

(x*),

F = 2000x + 200x3

Since we can express as

(1.6)

where k is the linearized spring constant at given by

(1.7)

We may use Eq. (1.6) for simplicity, but sometimes the error involved in the approxima-

tion may be very large.

k =
dF

dx
`

x*

x*

¢F = k ¢x

¢FF = F(x*),
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1.7 SPRING ELEMENTS 27

The roots of the cubic equation, (E.2), can be found (for example, using the function roots in

MATLAB) as

The static equilibrium position of the rubber mount is given by the real root of Eq. (E.2):

The equivalent linear spring constant of the rubber mount at its static equilibrium

position can be determined using Eq. (1.7):

Note: The equivalent linear spring constant, predicts the static deflection of

the milling machine as

which is slightly different from the true value of 0.4884 in. The error is due to the truncation of the

higher-order derivative terms in Eq. (1.4).

*

x =
F

keq

=
1000

2143.1207
= 0.4666 in.

keq = 2143.1207 lb/in.,

keq =
dF

dx
`

x*

= 2000 + 600(x*)2
= 2000 + 600(0.48842) = 2143.1207 lb/in.

x* = 0.4884 in.

x* = 0.4884, -0.2442 + 3.1904i, and -0.2442  -   3.1904i

1.7.3
Spring
Constants 
of Elastic
Elements

As stated earlier, any elastic or deformable member (or element) can be considered as a

spring. The equivalent spring constants of simple elastic members such as rods, beams,

and hollow shafts are given on the inside front cover of the book. The procedure of find-

ing the equivalent spring constant of elastic members is illustrated through the following

examples.

E X A M P L E  1 . 3
Spring Constant of a Rod

Find the equivalent spring constant of a uniform rod of length l, cross-sectional area A, and Young s

modulus E subjected to an axial tensile (or compressive) force F as shown in Fig. 1.24(a).

l

F

(a)

(b)

F

d

d

AE

l
k *

FIGURE 1.24 Spring constant of a rod.
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E X A M P L E  1 . 4
Spring Constant of a Cantilever Beam

Find the equivalent spring constant of a cantilever beam subjected to a concentrated load F at its end

as shown in Fig. 1.25(a).

Solution: We assume, for simplicity, that the self weight (or mass) of the beam is negligible and the

concentrated load F is due to the weight of a point mass From strength of materials

[1.26], we know that the end deflection of the beam due to a concentrated load is given by

(E.1)

where E is the Young s modulus and I is the moment of inertia of the cross section of the beam about

the bending or z-axis (i.e., axis perpendicular to the page). Hence the spring constant of the beam is

(Fig. 1.25(b)):

(E.2)k =

W

d
=

3EI

l3

d =

Wl3

3EI

F = W

(W = mg).

Solution: The elongation (or shortening) of the rod under the axial tensile (or compressive) force

F can be expressed as

(E.1)

where is the strain and is the stress induced in the rod. 

Using the definition of the spring constant k, we obtain from Eq. (E.1):

(E.2)

The significance of the equivalent spring constant of the rod is shown in Fig. 1.24(b).

*

k =

force applied

resulting deflection
=

F

d
=

AE

l

s =

force

area
=

F

A
e =

change in length

original length
=

d

l

d =

d

l
 l = el =

s

E
 l =

Fl

AE

d

W * mg

F * W

W

d

x(t)

k *
3EI

l3

(a) Cantilever with end force

l
E, A, I

x(t)

(b) Equivalent spring

FIGURE 1.25 Spring constant of a cantilever beam.
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Notes:

1. It is possible for a cantilever beam to be subjected to concentrated loads in two directions at its

end one in the y direction and the other in the z direction as shown in Fig. 1.26(a).

When the load is applied along the y direction, the beam bends about the z-axis (Fig. 1.26(b))

and hence the equivalent spring constant will be equal to

(E.3)k =

3EIzz

l3

(Fz)(Fy)

dz

dy

dy

z

y

y

d O

Od

Fz

Fz

Fy

Fy

Fy

z

Fz

x

x

xOw

w

k

k

l

(a)

(b)

(c)

dz

FIGURE 1.26 Spring constants of a beam in two directions.

M01_RAO8193_05_SE_C01.QXD  8/21/10  2:06 PM  Page 29
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When the load is applied along the z direction, the beam bends about the y-axis (Fig. 1.26(c))

and hence the equivalent spring constant will be equal to

(E.4)

2. The spring constants of beams with different end conditions can be found in a similar manner

using results from strength of materials. The representative formulas given in Appendix B can

be used to find the spring constants of the indicated beams and plates. For example, to find the

spring constant of a fixed-fixed beam subjected to a concentrated force P at (Case 3 in

Appendix B), first we express the deflection of the beam at the load point using

as

(E.5)

and then find the spring constant (k) as

(E.6)

where 

3. The effect of the self weight (or mass) of the beam can also be included in finding the spring

constant of the beam (see Example 2.9 in Chapter 2).

*

I = Izz.

k =
P

y
=

3EIl3

a2(l - a)2(al - a2)

y =

P(l - a)2a2

6EIl3
 [3al - 3a2

- a(l - a)] =

Pa2(l - a)2(al - a2)

3EIl3

b = l - a,
(x = a),

x = a

k =

3EIyy

l3

1.7.4
Combination of
Springs

In many practical applications, several linear springs are used in combination. These

springs can be combined into a single equivalent spring as indicated below.

Case 1: Springs in Parallel. To derive an expression for the equivalent spring constant

of springs connected in parallel, consider the two springs shown in Fig. 1.27(a). When a

load W is applied, the system undergoes a static deflection as shown in Fig. 1.27(b).

Then the free-body diagram, shown in Fig. 1.27(c), gives the equilibrium equation

(1.8)W = k1dst + k2dst

dst

k1

k1
k1

k2

k2
k2

k1   st

  st

k2   st

W W

(a) (b) (c)

d

d d

FIGURE 1.27 Springs in parallel.
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If denotes the equivalent spring constant of the combination of the two springs, then

for the same static deflection we have

(1.9)

Equations (1.8) and (1.9) give

(1.10)

In general, if we have n springs with spring constants in parallel, then the

equivalent spring constant can be obtained:

(1.11)

Case 2: Springs in Series. Next we derive an expression for the equivalent spring con-

stant of springs connected in series by considering the two springs shown in Fig. 1.28(a).

Under the action of a load W, springs 1 and 2 undergo elongations and respectively,

as shown in Fig. 1.28(b). The total elongation (or static deflection) of the system, is

given by

(1.12)

Since both springs are subjected to the same force W, we have the equilibrium shown in

Fig. 1.28(c):

(1.13)

If denotes the equivalent spring constant, then for the same static deflection,

(1.14)W = keqdst

keq

W = k2d2

W = k1d1

dst = d1 + d2

dst,

d2,d1

keq = k1 + k2 +
Á + kn

keq

k1, k2, Á , kn

keq = k1 + k2

W = keqdst

dst,

keq

k1

k1

k1

k2

k2

k2

W W

W

W
1

st

 W * k1 1

 W * k2 2

1

2

(a) (b) (c)

d
d

d

d

d

d

FIGURE 1.28 Springs in series.
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Equations (1.13) and (1.14) give

or

(1.15)

Substituting these values of and into Eq. (1.12), we obtain

that is,

(1.16)

Equation (1.16) can be generalized to the case of n springs in series:

(1.17)

In certain applications, springs are connected to rigid components such as pulleys, levers,

and gears. In such cases, an equivalent spring constant can be found using energy equiva-

lence, as illustrated in Examples 1.8 and 1.9.

1

keq

=
1

k1
+

1

k2
+ Á +

1

kn

1

keq

=
1

k1
+

1

k2

keqdst

k1
+

keqdst

k2
= dst

d2d1

d1 =

keqdst

k1
 and d2 =

keqdst

k2

k1d1 = k2d2 = keqdst

E X A M P L E  1 . 5
Equivalent k of a Suspension System

Figure 1.29 shows the suspension system of a freight truck with a parallel-spring arrangement. Find

the equivalent spring constant of the suspension if each of the three helical springs is made of steel

with a shear modulus and has five effective turns, mean coil diameter

and wire diameter 

Solution: The stiffness of each helical spring is given by

(See inside front cover for the formula.)

Since the three springs are identical and parallel, the equivalent spring constant of the suspen-

sion system is given by

keq = 3k = 3(40,000.0) = 120,000.0 N/m

k =
d4G

8D3n
=

(0.02)4(80 * 109)

8(0.2)3(5)
= 40,000.0 N/m

d = 2 cm.D = 20 cm,

G = 80 * 109 N/m2
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1.7 SPRING ELEMENTS 33

*

FIGURE 1.29 Parallel arrangement of springs in a freight truck. (Courtesy of Buckeye Steel

Castings Company.)

E X A M P L E  1 . 6
Torsional Spring Constant of a Propeller Shaft

Determine the torsional spring constant of the steel propeller shaft shown in Fig. 1.30.

Solution: We need to consider the segments 12 and 23 of the shaft as springs in combination. From

Fig. 1.30 the torque induced at any cross section of the shaft (such as AA or BB) can be seen to be

0.3 m
0.2 m

2 m

0.25 m
0.15 m

3 m

31 2

A

A

B

B

T

FIGURE 1.30 Propeller shaft.
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34 CHAPTER 1 FUNDAMENTALS OF VIBRATION

equal to the torque applied at the propeller, T. Hence the elasticities (springs) corresponding to the

two segments 12 and 23 are to be considered as series springs. The spring constants of segments 12

and 23 of the shaft ( and ) are given by

Since the springs are in series, Eq. (1.16) gives

*

kteq
=

kt12
kt23

kt12
+ kt23

=

(25.5255 * 106)(8.9012 * 106)

(25.5255 * 106
+ 8.9012 * 106)

= 6.5997 * 106 N-m/rad

 = 8.9012 * 106 N-m/rad

 kt23
=

GJ23

l23
=

Gp(D23
4
- d23

4 )

32l23
=

(80 * 109)p(0.254
- 0.154)

32(3)

 = 25.5255 * 106 N-m/rad

 kt12
=

GJ12

l12
=

Gp(D12
4
- d12

4 )

32l12
=

(80 * 109)p(0.34
- 0.24)

32(2)

kt23
kt12

E X A M P L E  1 . 7
Equivalent k of Hoisting Drum

A hoisting drum, carrying a steel wire rope, is mounted at the end of a cantilever beam as shown in

Fig. 1.31(a). Determine the equivalent spring constant of the system when the suspended length of

the wire rope is l. Assume that the net cross-sectional diameter of the wire rope is d and the Young s

modulus of the beam and the wire rope is E.

Solution: The spring constant of the cantilever beam is given by

(E.1)

The stiffness of the wire rope subjected to axial loading is

(E.2)

Since both the wire rope and the cantilever beam experience the same load W, as shown in Fig.

1.31(b), they can be modeled as springs in series, as shown in Fig. 1.31(c). The equivalent spring

constant is given by

or

(E.3)keq =
E

4
+

pat3d2

pd2b3
+ lat3

*

1

keq

=
1

kb

+
1

kr

=
4b3

Eat3
+

4l

pd2E

keq

kr =
AE

l
=
pd2E

4l

kb =
3EI

b3
=

3E

b3
+

1

12
 at3

* =
Eat3

4b3
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t

b

d

W

a

W

W

W

W

W

l

Beam

Rope

kb

kr

keq

(a)

(b) (c) (d)

W

FIGURE 1.31 Hoisting drum.

*

E X A M P L E  1 . 8
Equivalent k of a Crane

The boom AB of the crane shown in Fig. 1.32(a) is a uniform steel bar of length 10 m and area of

cross section A weight W is suspended while the crane is stationary. The cable CDEBF

is made of steel and has a cross-sectional area of Neglecting the effect of the cable CDEB,

find the equivalent spring constant of the system in the vertical direction.

Solution: The equivalent spring constant can be found using the equivalence of potential energies

of the two systems. Since the base of the crane is rigid, the cable and the boom can be considered to

be fixed at points F and A, respectively. Also, the effect of the cable CDEB is negligible; hence the

weight W can be assumed to act through point B as shown in Fig. 1.32(b).

100 mm2
.

2,500 mm2
.
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W

keq

1.5 m

1.5 m
F A

C

D

B

E

W

10
 m

45 

45  

A

B

F

W
l1, k1

l2  10 m, k2

x

3 m

45 

(a)

(b) (c)

u

90   u

FIGURE 1.32 Crane lifting a load.

A vertical displacement x of point B will cause the spring (boom) to deform by an amount and

the spring (cable) to deform by an amount The length of the cable FB, is given by Fig. 1.32(b):

The angle satisfies the relation

The total potential energy (U) stored in the springs and can be expressed, using Eq. (1.2) as

(E.1)U =
1

2
 k1 [x cos (90° - u)]2

+
1

2
 k2 [x cos (90° - 45°)]2

k2k1

l1
2
+ 32

- 2(l1)(3) cos u = 102,  cos u = 0.8184, u = 35.0736°

u

l1
2
= 32

+ 102
- 2(3)(10) cos 135° = 151.426, l1 = 12.3055 m

l1,
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1.7 SPRING ELEMENTS 37

where

and

Since the equivalent spring in the vertical direction undergoes a deformation x, the potential energy

of the equivalent spring is given by

(E.2)

By setting we obtain the equivalent spring constant of the system as

*

keq = k1 sin2 u + k2 sin2 45° = k1 sin2 35.0736° + k2 sin2 45° = 26.4304 * 106 N/m

U = Ueq,

Ueq =
1
2 k
#

eqx2

(Ueq)

k2 =
A2E2

l2
=

(2500 * 10-6)(207 * 109)

10
= 5.1750 * 107 N/m

k1 =
A1E1

l1
=

(100 * 10-6)(207 * 109)

12.3055
= 1.6822 * 106 N/m

E X A M P L E  1 . 9
Equivalent k of a Rigid Bar Connected by Springs

A hinged rigid bar of length l is connected by two springs of stiffnesses and and is subjected

to a force F as shown in Fig. 1.33(a). Assuming that the angular displacement of the bar is small,

find the equivalent spring constant of the system that relates the applied force F to the resulting dis-

placement x.

(u)

k2k 1

x D

F

F

C x

B

A
k1

k2

l1

l3

l2

B

A

(c)(a) (b)

O

k1

k2

k2 x2

l1

l2

x2

x1

l

k1 x1 A*

F

x

B*

C*

O

u

FIGURE 1.33 Rigid bar connected by springs.
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38 CHAPTER 1 FUNDAMENTALS OF VIBRATION

Solution: For a small angular displacement of the rigid bar the points of attachment of springs

and (A and B) and the point of application (C) of the force F undergo the linear or horizontal

displacements and respectively. Since is small, the horizontal displacements

of points A, B, and C can be approximated as and respectively. The

reactions of the springs, and will be as indicated in Fig. 1.33(b). The equivalent spring

constant of the system referred to the point of application of the force F can be determined by

considering the moment equilibrium of the forces about the hinge point O:

or

(E.1)

By expressing F as Eq. (E.1) can be written as

(E.2)

Using and Eq. (E.2) yields the desired result:

(E.3)

Notes:

1. If the force F is applied at another point D of the rigid bar as shown in Fig. 1.33(c), the equiv-

alent spring constant referred to point D can be found as

(E.4)

2. The equivalent spring constant, of the system can also be found by using the relation:

Work done by the applied force energy stored in springs and (E.5)

For the system shown in Fig. 1.33(a), Eq. (E.5) gives

(E.6)

from which Eq. (E.3) can readily be obtained.

3. Although the two springs appear to be connected to the rigid bar in parallel, the formula of par-

allel springs (Eq. 1.12) cannot be used because the displacements of the two springs are not the

same.

*

1

2
 Fx =

1

2
 k1x1

2
+

1

2
 k2x2

2

k2k1F = Strain

keq,

keq = k1+
l1

l3
*

2

+ k2 +
l2

l3
*

2

keq = k1+
l1

l
*

2

+ k2 +
l2

l
*

2

x = lu,x1 = l1u, x2 = l2u,

F = keqx = k1+
x1l1

l
* + k2 +

x2l2

l
*

k eqx,

F = k1+
x1l1

l
* + k2+

x2l2

l
*

k1x1(l1) + k2x2(l2) = F(l)

(keq)

k2x2,k1x 1

x = lu,x1 = l1u, x2 = l2u

ul sin u,l1 sin u, l2 sin u,

k2k1

(u),
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1.7 SPRING ELEMENTS 39

1.7.5
Spring Constant
Associated with
the Restoring
Force due to
Gravity

In some applications, a restoring force or moment due to gravity is developed when a

mass undergoes a displacement. In such cases, an equivalent spring constant can be asso-

ciated with the restoring force or moment of gravity. The following example illustrates

the procedure.

E X A M P L E  1 . 1 0
Spring Constant Associated with Restoring Force due to Gravity

Figure 1.34 shows a simple pendulum of length l with a bob of mass m. Considering an angular dis-

placement of the pendulum, determine the equivalent spring constant associated with the restoring

force (or moment).

Solution: When the pendulum undergoes an angular displacement the mass m moves by a

distance along the horizontal (x) direction. The restoring moment or torque (T) created by the

weight of the mass (mg) about the pivot point O is given by

(E.1)

For small angular displacements can be approximated as (see Appendix A) and

Eq. (E.1) becomes

(E.2)

By expressing Eq. (E.2) as

(E.3)

the desired equivalent torsional spring constant can be identified as

(E.4)kt = mgl

kt

T = ktu

T = mglu

sin u L uu, sin u

T = mg(l sin u)

l sin u

u,

u

O

l

mgy

m

x

l sin u

u

FIGURE 1.34 Simple pendulum. *
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40 CHAPTER 1 FUNDAMENTALS OF VIBRATION

1.8 Mass or Inertia Elements

The mass or inertia element is assumed to be a rigid body; it can gain or lose kinetic energy

whenever the velocity of the body changes. From Newton s second law of motion, the

product of the mass and its acceleration is equal to the force applied to the mass. Work is

equal to the force multiplied by the displacement in the direction of the force, and the work

done on a mass is stored in the form of the mass s kinetic energy.

In most cases, we must use a mathematical model to represent the actual vibrating sys-

tem, and there are often several possible models. The purpose of the analysis often deter-

mines which mathematical model is appropriate. Once the model is chosen, the mass or

inertia elements of the system can be easily identified. For example, consider again the

cantilever beam with an end mass shown in Fig. 1.25(a). For a quick and reasonably accu-

rate analysis, the mass and damping of the beam can be disregarded; the system can be

modeled as a spring-mass system, as shown in Fig. 1.25(b). The tip mass m represents the

mass element, and the elasticity of the beam denotes the stiffness of the spring. Next, con-

sider a multistory building subjected to an earthquake. Assuming that the mass of the

frame is negligible compared to the masses of the floors, the building can be modeled as

a multi-degree-of-freedom system, as shown in Fig. 1.35. The masses at the various floor

levels represent the mass elements, and the elasticities of the vertical members denote the

spring elements.

k5

m5

x5

k4

m4

x4

k3

m3

x3

k2

m2

x2

k1

m1

x1

k5

k4

k3

k2

k1

m5

x5

m4

x4

m3

x3

m2

x2

m1

x1

(a) (b)

FIGURE 1.35 Idealization of a multistory
building as a multi-degree-of-freedom system.

1.8.1

Combination 

of Masses

In many practical applications, several masses appear in combination. For a simple

analysis, we can replace these masses by a single equivalent mass, as indicated below

[1.27].
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1.8 MASS OR INERTIA ELEMENTS 41

Case 1: Translational Masses Connected by a Rigid Bar. Let the masses be attached

to a rigid bar that is pivoted at one end, as shown in Fig. 1.36(a). The equivalent mass can

be assumed to be located at any point along the bar. To be specific, we assume the loca-

tion of the equivalent mass to be that of mass The velocities of masses and

can be expressed in terms of the velocity of mass by assuming small angu-

lar displacements for the bar, as

(1.18)

and

(1.19)

By equating the kinetic energy of the three-mass system to that of the equivalent mass sys-

tem, we obtain

(1.20)

This equation gives, in view of Eqs. (1.18) and (1.19):

(1.21)

It can be seen that the equivalent mass of a system composed of several masses (each mov-

ing at a different velocity) can be thought of as the imaginary mass which, while moving

with a specified velocity v, will have the same kinetic energy as that of the system.

Case 2: Translational and Rotational Masses Coupled Together. Let a mass m hav-

ing a translational velocity be coupled to another mass (of mass moment of inertia ) 

having a rotational velocity as in the rack-and-pinion arrangement shown in Fig. 1.37. u

#

,

J0x
#

meq = m1 + +
l2

l1
*

2

m2 + +
l3

l1
*

2

m3

1

2
 m1x

#

1
2
+

1

2
 m2x

#

2
2
+

1

2
 m3x

#

3
2
=

1

2
 meqx

#

eq
2

x
#

eq = x
#

1

x
#

2 =
l2

l1
 x
#

1, x
#

3 =
l3

l1
 x
#

1

m1(x
#

1),m3(x
#

3)

m2(x
#

2)m1.

(a)

Pivot point

A B C

l1
l2

l3

m1 m2 m3

O

x1
+ x2

+ x3
+

(b)

Pivot point

A B C
l1

meq

O

xeq * x1
+ +

FIGURE 1.36 Translational masses connected by a rigid bar.
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42 CHAPTER 1 FUNDAMENTALS OF VIBRATION

These two masses can be combined to obtain either (1) a single equivalent translational

mass or (2) a single equivalent rotational mass as shown below.

1. Equivalent translational mass. The kinetic energy of the two masses is given by

(1.22)

and the kinetic energy of the equivalent mass can be expressed as

(1.23)

Since and the equivalence of T and gives

that is,

(1.24)

2. Equivalent rotational mass. Here and and the equivalence of T and

leads to

or

(1.25)Jeq = J0 + mR2

1

2
 Jeq u

#
2
=

1

2
 m(u

#

R)2 +
1

2
 J0 u

#
2

Teq

x
#
= u

#

R,u

#

eq = u

#

meq = m +
J0

R2

1

2
 meqx

# 2
=

1

2
 mx

# 2
+

1

2
 J0+

x
#

R
*

2

Tequ

#

= x
#
/R,x

#

eq = x
#

Teq =
1

2
 meqx

#

eq
2

T =
1

2
 mx

# 2
+

1

2
 J0 u

#
2

Jeq,meq

Rack, mass m

Pinion, mass moment of inertia J0

R

*

x*

u

FIGURE 1.37 Translational and rotational masses in a
rack-and-pinion arrangement.

E X A M P L E  1 . 1 1
Equivalent Mass of a System

Find the equivalent mass of the system shown in Fig. 1.38, where the rigid link 1 is attached to the

pulley and rotates with it.
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1.8 MASS OR INERTIA ELEMENTS 43

Solution: Assuming small displacements, the equivalent mass can be determined using the

equivalence of the kinetic energies of the two systems. When the mass m is displaced by a distance

x, the pulley and the rigid link 1 rotate by an angle This causes the rigid link 2 and

the cylinder to be displaced by a distance Since the cylinder rolls without

slippage, it rotates by an angle The kinetic energy of the system (T) can be

expressed (for small displacements) as:

(E.1)

where and denote the mass moments of inertia of the pulley, link 1 (about O), and cylinder, 

respectively, and indicate the angular velocities of the pulley, link 1 (about O), and cylin-

der, respectively, and and represent the linear velocities of the mass m and link 2, respectively.

Noting that and Eq. (E.1) can be rewritten as

(E.2)

By equating Eq. (E.2) to the kinetic energy of the equivalent system

(E.3)T =
1

2
 meqx

# 2

 +
1

2
 +

mcrc
2

2
* +

x
#
l1

rprc
*

2

+
1

2
 mc+

x
#
l1

rp
*

2

T =
1

2
 mx

# 2 +
1

2
 Jp+

x
#

rp
*

2

+
1

2
 +

m1l1
2

3
*  +

x
#

rp
*

2

+
1

2
 m2+

x
#
l1

rp
*

2

J1 = m1l1
2/3,Jc = mcrc

2/2

x
#

2x
#
u

#

cu

#

p, u
#

1,

JcJp, J1,

T =
1

2
 mx 

# 2
+

1

2
 Jpu

#

p
2

+
1

2
 J1u

#

1
2
+

1

2
 m2x  

#

2
2
+

1

2
 Jcu

#

c
2
+

1

2
 mcx

  #
2
2

uc = x2/rc = xl1/rp rc.

x2 = up l1 = xl1/rp.

up = u1 = x/rp.

(meq)

Pulley, mass moment of
inertia Jp

x(t)

k1

k2

m

O

l1

rp

rc

Rigid link 1 (mass m1),
rotates with pulley
about O

Cylinder, mass mc

No slip

x2(t)

Rigid link 2 (mass m2)

l2

FIGURE 1.38 System considered for finding equivalent mass.
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E X A M P L E  1 . 1 2

Cam-Follower Mechanism

A cam-follower mechanism (Fig. 1.39) is used to convert the rotary motion of a shaft into the oscil-

lating or reciprocating motion of a valve. The follower system consists of a pushrod of mass a

rocker arm of mass and mass moment of inertia about its C.G., a valve of mass and a valve

spring of negligible mass [1.28 1.30]. Find the equivalent mass of this cam-follower system

by assuming the location of as (i) point A and (ii) point C.

Solution: The equivalent mass of the cam-follower system can be determined using the equivalence

of the kinetic energies of the two systems. Due to a vertical displacement x of the pushrod, the rocker

arm rotates by an angle about the pivot point, the valve moves downward by

and the C.G. of the rocker arm moves downward by The

kinetic energy of the system (T) can be expressed as2

(E.1)T =
1

2
 mpx

#

p
2

+
1

2
 mvx

#

v
2
+

1

2
 Jru

#

r
2
+

1

2
 mrx

#

r
2

xr = url3 = xl3/l1.xv = url2 = xl2/l1,

ur = x/l1

meq

(meq)

mr,Jrmr,

mp,

2If the valve spring has a mass then its equivalent mass will be (see Example 2.8). Thus the kinetic 

energy of the valve spring will be 
1
2 (

1
3 ms)x

#

v
2.

1
3 msms,

x * xp

A

Pushrod
(mass mp)

Roller
follower

Cam

Shaft

Valve
spring

x
v

l1

l3

O G
B

Rocker arm
(mass moment of inertia, Jr)  r

C

Valve
(mass m

v
)

l2

u

FIGURE 1.39 Cam-follower system.

we obtain the equivalent mass of the system as

(E.4)

*

meq = m +

Jp

rp
2

+
1

3
 
m1l1

2

rp
2

+
m2l1

2

rp
2

+
1

2
 
mcl1

2

rp
2

+ mc 
l1
2

rp
2
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1.9 DAMPING ELEMENTS 45

where and are the linear velocities of the pushrod, C.G. of the rocker arm, and the valve, 

respectively, and is the angular velocity of the rocker arm.

(i) If denotes the equivalent mass placed at point A, with the kinetic energy of the

equivalent mass system is given by

(E.2)

By equating T and and noting that

we obtain

(E.3)

(ii) Similarly, if the equivalent mass is located at point C, and

(E.4)

Equating (E.4) and (E.1) gives

(E.5)

*

1.9 Damping Elements
In many practical systems, the vibrational energy is gradually converted to heat or sound.

Due to the reduction in the energy, the response, such as the displacement of the system,

gradually decreases. The mechanism by which the vibrational energy is gradually con-

verted into heat or sound is known as damping. Although the amount of energy converted

into heat or sound is relatively small, the consideration of damping becomes important for

an accurate prediction of the vibration response of a system. A damper is assumed to have

neither mass nor elasticity, and damping force exists only if there is relative velocity

between the two ends of the damper. It is difficult to determine the causes of damping in

practical systems. Hence damping is modeled as one or more of the following types.

Viscous Damping. Viscous damping is the most commonly used damping mechanism

in vibration analysis. When mechanical systems vibrate in a fluid medium such as air, gas,

water, or oil, the resistance offered by the fluid to the moving body causes energy to be

dissipated. In this case, the amount of dissipated energy depends on many factors, such as

the size and shape of the vibrating body, the viscosity of the fluid, the frequency of vibra-

tion, and the velocity of the vibrating body. In viscous damping, the damping force is pro-

portional to the velocity of the vibrating body. Typical examples of viscous damping

meq = mv +
Jr

l2
2

+ mp+
l1

l2
*

2

+ mr+
l3

l2
*

2

Teq =
1

2
 meq x

#

eq
2

=
1

2
 meq x

#

v
2

x
#

eq = x
#

v

meq = mp +
Jr

l1
2

+ mv 

l2
2

l1
2

+ mr 

l 3
2

l 1
2

x
#

p = x
#
, x

#

v =
x
#
l2

l1
, x

#

r =
x
#
l3

l1
, and u

#

r =
x
#

l1

Teq,

Teq =
1

2
 meq x

#

eq
2

Teq

x
#

eq = x
#
,meq

u

#

r

x
#

vx
#

p, x
#

r,
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46 CHAPTER 1 FUNDAMENTALS OF VIBRATION

include (1) fluid film between sliding surfaces, (2) fluid flow around a piston in a cylinder,

(3) fluid flow through an orifice, and (4) fluid film around a journal in a bearing.

Coulomb or Dry-Friction Damping. Here the damping force is constant in magnitude

but opposite in direction to that of the motion of the vibrating body. It is caused by friction

between rubbing surfaces that either are dry or have insufficient lubrication.

Material or Solid or Hysteretic Damping. When a material is deformed, energy is

absorbed and dissipated by the material [1.31]. The effect is due to friction between the

internal planes, which slip or slide as the deformations take place. When a body having

material damping is subjected to vibration, the stress-strain diagram shows a hysteresis

loop as indicated in Fig. 1.40(a). The area of this loop denotes the energy lost per unit vol-

ume of the body per cycle due to damping.3

3When the load applied to an elastic body is increased, the stress and the strain in the body also increase.
The area under the curve, given by

denotes the energy expended (work done) per unit volume of the body. When the load on the body is decreased,
energy will be recovered. When the unloading path is different from the loading path, the area ABC in Fig. 1.40(b)
the area of the hysteresis loop in Fig. 1.40(a) denotes the energy lost per unit volume of the body.

u =

L
s de

s-e
(e)(s)

Stress (force)

Hysteresis
loop

Loading

Unloading

Area

Strain
(displacement)

(a)

A

B

C D

Energy
expended (ABD)

Energy
recovered (BCD)

Stress (s)

de

Strain (e)

(b)

s

FIGURE 1.40 Hysteresis loop for elastic materials.

1.9.1
Construction
of Viscous
Dampers

Viscous dampers can be constructed in several ways. For instance, when a plate moves rel-

ative to another parallel plate with a viscous fluid in between the plates, a viscous damper

can be obtained. The following examples illustrate the various methods of constructing

viscous dampers used in different applications.
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E X A M P L E  1 . 1 3
Damping Constant of Parallel Plates Separated by Viscous Fluid

Consider two parallel plates separated by a distance h, with a fluid of viscosity between the plates.

Derive an expression for the damping constant when one plate moves with a velocity v relative to the

other as shown in Fig. 1.41.

Solution: Let one plate be fixed and let the other plate be moved with a velocity v in its own plane.

The fluid layers in contact with the moving plate move with a velocity v, while those in contact with

the fixed plate do not move. The velocities of intermediate fluid layers are assumed to vary linearly

between 0 and v, as shown in Fig. 1.41. According to Newton s law of viscous flow, the shear stress

developed in the fluid layer at a distance y from the fixed plate is given by

(E.1)

where is the velocity gradient. The shear or resisting force (F) developed at the bot-

tom surface of the moving plate is

(E.2)

where A is the surface area of the moving plate. By expressing F as

(E.3)

the damping constant c can be found as

(E.4)c =

mA

h

F = cv

F = tA =

mAv

h

du/dy = v/h

t = m 

du

dy

(t)

m

Surface area of plate * A

Viscous
fluid

F (damping force)

y
h

v *
dx
dt

u *
vy
h

FIGURE 1.41 Parallel plates with a viscous fluid in between.

E X A M P L E  1 . 1 4
Clearance in a Bearing

A bearing, which can be approximated as two flat plates separated by a thin film of lubricant (Fig. 1.42),

is found to offer a resistance of 400 N when SAE 30 oil is used as the lubricant and the relative veloc-

ity between the plates is 10 m/s. If the area of the plates (A) is determine the clearance between

the plates. Assume the absolute viscosity of SAE 30 oil as reyn or 0.3445 Pa-s.50 m

0.1 m2,

*
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h

v

Area (A)

FIGURE 1.42 Flat plates separated by thin
film of lubricant.

Solution: Since the resisting force (F) can be expressed as where c is the damping constant

and v is the velocity, we have

(E.1)

By modeling the bearing as a flat-plate-type damper, the damping constant is given by Eq. (E.4) of

Example 1.13:

(E.2)

Using the known data, Eq. (E.2) gives

(E.3)

*

c = 40 =

(0.3445)(0.1)

h
 or h = 0.86125 mm

c =

mA

h

c =

F

v
=

400

10
= 40 N-s/m

F = cv,

E X A M P L E  1 . 1 5
Damping Constant of a Journal Bearing

A journal bearing is used to provide lateral support to a rotating shaft as shown in Fig. 1.43. If the

radius of the shaft is R, angular velocity of the shaft is radial clearance between the shaft and the

bearing is d, viscosity of the fluid (lubricant) is and the length of the bearing is l, derive an expres-

sion for the rotational damping constant of the journal bearing. Assume that the leakage of the fluid

is negligible.

Solution: The damping constant of the journal bearing can be determined using the equation for the

shear stress in viscous fluid. The fluid in contact with the rotating shaft will have a linear velocity

(in tangential direction) of while the fluid in contact with the stationary bearing will have

zero velocity. Assuming a linear variation for the velocity of the fluid in the radial direction, we have

(E.1)v(r) =

vr

d
=

rRv

d

v = Rv,

m,

v,
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The shearing stress in the lubricant is given by the product of the radial velocity gradient and the

viscosity of the lubricant:

(E.2)

The force required to shear the fluid film is equal to stress times the area. The torque on the shaft (T)

is equal to the force times the lever arm, so that

(E.3)

where is the surface area of the shaft exposed to the lubricant. Thus Eq. (E.3) can be

rewritten as

(E.4)T = a
mRv

d
b(2pRl)R =

2pmR3lv

d

A = 2pRl

T = (tA)R

t = m 

dv

dr
=

mRv

d

(t)

v

Viscous fluid
(lubricant)

(a)

Journal
(shaft)

l

d

d

R

R

v

(b)

BearingViscous
fluid

FIGURE 1.43 A journal bearing.

M01_RAO8193_05_SE_C01.QXD  8/21/10  2:06 PM  Page 49



50 CHAPTER 1 FUNDAMENTALS OF VIBRATION

P

Cylinder

Piston

Viscous
fluid

l

d d

v0

D

(a)

P

Cylinder

Piston

Viscous
fluid

l

d d

v0

D

dy dy
y y

(b)

FIGURE 1.44 A dashpot.

From the definition of the rotational damping constant of the bearing 

(E.5)

we obtain the desired expression for the rotational damping constant as

(E.6)

Note: Equation (E.4) is called Petroff s law and was published originally in 1883. This equation is

widely used in the design of journal bearings [1.43].

*

ct =
2pmR3l

d

ct =
T

v

(ct):

E X A M P L E  1 . 1 6
Piston-Cylinder Dashpot

Develop an expression for the damping constant of the dashpot shown in Fig. 1.44(a).

Solution: The damping constant of the dashpot can be determined using the shear-stress equation

for viscous fluid flow and the rate-of-fluid-flow equation. As shown in Fig. 1.44(a), the dashpot

consists of a piston of diameter D and length l, moving with velocity in a cylinder filled with a

liquid of viscosity [1.24, 1.32]. Let the clearance between the piston and the cylinder wall be d.

At a distance y from the moving surface, let the velocity and shear stress be v and and at a distance

let the velocity and shear stress be and respectively (see Fig. 1.44(b)).

The negative sign for dv shows that the velocity decreases as we move toward the cylinder wall. The

viscous force on this annular ring is equal to

(E.1)F = pDl dt = pDl 
dt

dy
 dy

(t + dt),(v - dv)(y + dy)

t,

m

v0
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But the shear stress is given by

(E.2)

where the negative sign is consistent with a decreasing velocity gradient [1.33]. Using Eq. (E.2) in

Eq. (E.1), we obtain

(E.3)

The force on the piston will cause a pressure difference on the ends of the element, given by

(E.4)

Thus the pressure force on the end of the element is

(E.5)

where denotes the annular area between y and If we assume uniform mean

velocity in the direction of motion of the fluid, the forces given in Eqs. (E.3) and (E.5) must be equal.

Thus we get

or

(E.6)

Integrating this equation twice and using the boundary conditions at and at

we obtain

(E.7)

The rate of flow through the clearance space can be obtained by integrating the rate of flow through

an element between the limits and 

(E.8)

The volume of the liquid flowing through the clearance space per second must be equal to the vol-

ume per second displaced by the piston. Hence the velocity of the piston will be equal to this rate of

flow divided by the piston area. This gives

(E.9)v0 =

Q

¢
p

4
D2

Q =

L

d

0

vpD dy = pDB
2Pd3

6pD2lm
-

1

2
 v0dR

y = d:y = 0

v =
2P

pD2lm
 (yd - y2) - v0¢1 -

y

d

y = d,

v = 0y = 0v = -v0

d2
v

dy2
= -

4P

pD2lm

4P

D
 dy = -pDl dy m 

d2
v

dy2

(y + dy).(pD dy)

p(pD dy) =
4P

D
 dy

p =
P

¢
pD2

4

=
4P

pD2

F = -pDl dy m 
d2

v

dy2

t = -m 
dv

dy
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Equations (E.9) and (E.8) lead to

(E.10)

By writing the force as the damping constant c can be found as

(E.11)

*

c = mB
3pD3l

4d3
 ¢1 +

2d

D
R

P = cv0,

P = C

3pD3l¢1 +
2d

D

4d3
Smv0

1.9.2
Linearization of
a Nonlinear
Damper

If the force (F)-velocity (v) relationship of a damper is nonlinear:

(1.26)

a linearization process can be used about the operating velocity as in the case of a

nonlinear spring. The linearization process gives the equivalent damping constant as

(1.27)c =
dF

dv
 

`

v*

(v*),

F =  F(v)

1.9.3
Combination of
Dampers

In some dynamic systems, multiple dampers are used. In such cases, all the dampers are

replaced by a single equivalent damper. When dampers appear in combination, we can use

procedures similar to those used in finding the equivalent spring constant of multiple

springs to find a single equivalent damper. For example, when two translational dampers,

with damping constants and appear in combination, the equivalent damping constant

can be found as (see Problem 1.55):

(1.28)

(1.29)Series dampers: 1

ceq

=
1

c1
+

1

c2

 Parallel dampers: ceq = c1 + c2

(ceq)
c2,c1

E X A M P L E  1 . 1 7
Equivalent Spring and Damping Constants of a Machine Tool Support

A precision milling machine is supported on four shock mounts, as shown in Fig. 1.45(a). The

elasticity and damping of each shock mount can be modeled as a spring and a viscous damper, as

shown in Fig. 1.45(b). Find the equivalent spring constant, and the equivalent damping con-

stant, of the machine tool support in terms of the spring constants and damping constants

of the mounts.(ci)

(ki)ceq,

keq,
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A
B

C
D

k1

c1 c2

c3
c4

k3

k2

W

G

(b)

A
B

C
D

Fs1 Fd1 Fs2 Fd2

Fs4 Fd4 Fs3 Fd3
W

G

x x*

(c)

A
B

C
D

keq

ceq

W

G

x x*

(d)

(a)

Cutter

Table

Shock mounts
(at all four corners)Base

Knee

Spindle
Overarm

A

C

B

k4

FIGURE 1.45 Horizontal milling machine.
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Solution: The free-body diagrams of the four springs and four dampers are shown in Fig. 1.45(c).

Assuming that the center of mass, G, is located symmetrically with respect to the four springs and

dampers, we notice that all the springs will be subjected to the same displacement, x, and all the

dampers will be subject to the same relative velocity where x and denote the displacement and

velocity, respectively, of the center of mass, G. Hence the forces acting on the springs and the

dampers can be expressed as

(E.1)

Let the total forces acting on all the springs and all the dampers be and respectively (see

Fig. 1.45,(d)). The force equilibrium equations can thus be expressed as

(E.2)

where with W denoting the total vertical force (including the inertia force) acting on

the milling machine. From Fig. 1.45(d), we have

(E.3)

Equation (E.2), along with Eqs. (E.1) and (E.3), yields

(E.4)

when and for 

Note: If the center of mass, G, is not located symmetrically with respect to the four springs and

dampers, the ith spring experiences a displacement of and the ith damper experiences a velocity of

, where and can be related to the displacement x and velocity of the center of mass of the

milling machine, G. In such a case, Eqs. (E.1) and (E.4) need to be modified suitably.

*

1.10 Harmonic Motion

Oscillatory motion may repeat itself regularly, as in the case of a simple pendulum, or it

may display considerable irregularity, as in the case of ground motion during an earth-

quake. If the motion is repeated after equal intervals of time, it is called periodic motion.

The simplest type of periodic motion is harmonic motion. The motion imparted to the mass

m due to the Scotch yoke mechanism shown in Fig. 1.46 is an example of simple harmonic

motion [1.24, 1.34, 1.35]. In this system, a crank of radius A rotates about the point O. The

other end of the crank, P, slides in a slotted rod, which reciprocates in the vertical guide

R. When the crank rotates at an angular velocity the end point S of the slotted link andv,

x
#

x
#

ixix
#

i

xi

i = 1, 2, 3, 4.ci = cki = k

ceq = c1 + c2 + c3 + c4 = 4c

keq = k1 + k2 + k3 + k4 = 4k

Fd = ceqx
#

Fs = keqx

Fs + Fd = W,

Fd = Fd1 + Fd2 + Fd3 + Fd4

Fs = Fs1 + Fs2 + Fs3 + Fs4

Fd,Fs

Fdi = cix
#
; i = 1, 2, 3, 4

Fsi = kix; i = 1, 2, 3, 4

(Fdi)
(Fsi)

x
#

x
#
,
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hence the mass m of the spring-mass system are displaced from their middle positions by

an amount x (in time t) given by

(1.30)

This motion is shown by the sinusoidal curve in Fig. 1.46. The velocity of the mass m at

time t is given by

(1.31)

and the acceleration by

(1.32)
d

2
x

dt
2
= -v

2
A sin vt = -v

2
x

dx

dt
= vA cos vt

x = A sin u = A sin vt

Slotted rod

O

A

P

R

S

m

k

x(t)

A

O

*A

2p 3p u + vt

x

x + A sin vt

p

u + vt

FIGURE 1.46 Scotch yoke mechanism.
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2p

2p

3p

p

p

3p

x * A cos vt

y * A sin vt

O

P

y

P
P

A A

O O

Angular
displacement

One cycle of motion

One
cycle

of motion

x

A

u * vtu * vt

u * vt

v

FIGURE 1.47 Harmonic motion as the projection of the end of a rotating vector.

It can be seen that the acceleration is directly proportional to the displacement. Such a

vibration, with the acceleration proportional to the displacement and directed toward the

mean position, is known as simple harmonic motion. The motion given by 

is another example of a simple harmonic motion. Figure 1.46 clearly shows the similarity

between cyclic (harmonic) motion and sinusoidal motion.

x = A cos vt

1.10.1
Vectorial
Representation
of Harmonic
Motion

Harmonic motion can be represented conveniently by means of a vector of magnitude

A rotating at a constant angular velocity In Fig. 1.47, the projection of the tip of the vec-

tor on the vertical axis is given by

(1.33)y = A sin vt

X
:

= OP
¡

v.

OP
¡
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and its projection on the horizontal axis by

(1.34)x = A cos vt

1.10.2
Complex-
Number
Representation
of Harmonic
Motion

As seen above, the vectorial method of representing harmonic motion requires the

description of both the horizontal and vertical components. It is more convenient to rep-

resent harmonic motion using a complex-number representation. Any vector in the xy-

plane can be represented as a complex number:

(1.35)

where and a and b denote the x and y components of respectively (see 

Fig. 1.48). Components a and b are also called the real and imaginary parts of the vector

If A denotes the modulus or absolute value of the vector and represents the argu-

ment or the angle between the vector and the x-axis, then can also be expressed as

(1.36)

with

(1.37)

and

(1.38)

Noting that and can be expanded in a series as

(1.39) cos u = 1 -
u

2

2!
+
u

4

4!
- Á = 1 +

(iu)2

2!
+

(iu)4

4!
+ Á

i sin ui2 = -1, i3
= - i, i4

= 1, Á , cos u

u = tan-1
 

b

a

A = (a2
+ b2)1/2

X
:

= A cos u + iA sin u

X
:

uX
:

,X
:

.

X
:

,i = 1-1

X
:

= a + ib

X
:

y  (Imaginary)

x (Real)

b

aO

X + a * ib + Aeiu

u

FIGURE 1.48 Representation of a complex number.
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(1.40)

Equations (1.39) and (1.40) yield

(1.41)

and

(1.42)

Thus Eq. (1.36) can be expressed as

(1.43)X
:

= A(cos u + i sin u) = Aeiu

(cos u - i sin u) = 1 - iu +
(iu)2

2!
-

(iu)3

3!
+ Á = e-iu

(cos u + i sin u) = 1 + iu +
(iu)2

2!
+

(iu)3

3!
+ Á = eiu

 i sin u = iBu -
u

3

3!
+

u
5

5!
- ÁR = iu +

(iu)3

3!
+

(iu)5

5!
+ Á

1.10.3
Complex
Algebra

Complex numbers are often represented without using a vector notation as

(1.44)

where a and b denote the real and imaginary parts of z. The addition, subtraction, multi-

plication, and division of complex numbers can be achieved by using the usual rules of

algebra. Let

(1.45)

(1.46)

where

(1.47)

and

(1.48)

The sum and difference of and can be found as

(1.49)

(1.50) = (a1 - a2) + i(b1 - b2)

 z1 - z2 = A1e
iu1 - A2eiu2 = (a1 + ib1) - (a2 + ib2)

 = (a1 + a2) + i(b1 + b2)

 z1 + z2 = A1e
iu1 + A2eiu2 = (a1 + ib1) + (a2 + ib2)

z2z1

uj = tan-1
¢

bj

aj
;  j = 1, 2

Aj = 2aj
2
+ bj

2;  j = 1, 2

z2 = a2 + ib2 = A2eiu2

z1 = a1 + ib1 = A1e
iu1

z = a + ib
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1.10.4
Operations on
Harmonic
Functions

Using complex-number representation, the rotating vector of Fig. 1.47 can be written as

(1.51)

where denotes the circular frequency (rad/sec) of rotation of the vector in counter-

clockwise direction. The differentiation of the harmonic motion given by Eq. (1.51) with

respect to time gives

(1.52)

(1.53)

Thus the displacement, velocity, and acceleration can be expressed as4

(1.54)

(1.55)

(1.56)

where Re denotes the real part. These quantities are shown as rotating vectors in Fig. 1.49.

It can be seen that the acceleration vector leads the velocity vector by 90°, and the latter

leads the displacement vector by 90°.

Harmonic functions can be added vectorially, as shown in Fig. 1.50. If

and then the magnitude of the resultant 

vector is given by

(1.57)

and the angle by

(1.58)a = tan-1
+

A2 sin u

A1 + A2 cos u
*

a

A = 2(A1 + A2 cos u)2
+ (A2 sin u)2

X
:

Re( X
:

2) = A2 cos(vt + u),Re( X
:

1) = A1 cos vt

= v
2A cos (vt + 180°)

= -v
2A cos vtacceleration = Re[-v2Aeivt]

= vA cos (vt + 90°)

= -vA sin vtvelocity = Re[ivAeivt]

= A cos vtdisplacement = Re[Aeivt]

d2 X
:

dt2
=

d

dt
 (ivAeivt) = -v

2Aeivt
= -v

2X
:

d X
:

dt
=

d

dt
 (Aeivt) = ivAeivt

= ivX
:

X
:

v

X
:

= Aeivt

X
:

4If the harmonic displacement is originally given as then we have

where Im denotes the imaginary part.

acceleration  = Im[-v2Aeivt] = v
2 A sin(vt + 180°)

velocity  = Im[ivAeivt] = vA sin(vt + 90°)

displacement = Im[Aeivt] = A sin vt

x(t) = A sin vt,
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x(t)

x(t)

x(t)

O
2p

p/2

p/2
vt

vt

Im

Re

X  ivX

X     2
 
X

X

p

v

v

FIGURE 1.49 Displacement, velocity, and accelerations as rotating vectors.

Im

y

x
Re

O

X

A cos (vt  a)

X2

X1

A2 sin u

A2 cos u

u
a

vt

v

FIGURE 1.50 Vectorial addition of harmonic functions.

Since the original functions are given as real components, the sum is given by 

Re( X
:

) = A cos(vt + a).

X
:

1 + X
:

2

E X A M P L E  1 . 1 8

Addition of Harmonic Motions

Find the sum of the two harmonic motions 

Solution: Method 1: By using trigonometric relations: Since the circular frequency is the same for

both and we express the sum as

(E.1)

That is,

(E.2) = 10 cos vt + 15(cos vt cos 2 - sin vt sin 2)

A(cos vt cos a - sin vt sin a) = 10 cos vt + 15 cos(vt + 2)

x(t) = A cos(vt + a) = x1(t) + x2(t)

x2(t),x1(t)

x1(t) = 10 cos vt and x2(t) = 15 cos(vt + 2).
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That is,

(E.3)

By equating the corresponding coefficients of and on both sides, we obtain

(E.4)

and

(E.5)

Method 2: By using vectors: For an arbitrary value of the harmonic motions and can

be denoted graphically as shown in Fig. 1.51. By adding them vectorially, the resultant vector x(t)

can be found to be

(E.6)

Method 3: By using complex-number representation: The two harmonic motions can be denoted in

terms of complex numbers:

(E.7)

The sum of and can be expressed as

(E.8)

where A and can be determined using Eqs. (1.47) and (1.48) as and a = 74.5963°.A = 14.1477a

x(t) = Re[Aei(vt+a)]

x2(t)x1(t)

x2(t) = Re[A2ei(vt+2)] K Re[15ei(vt+2)]

x1(t) = Re[A1e
ivt] K Re[10eivt]

x(t) = 14.1477 cos(vt + 74.5963°)

x2(t)x1(t)vt,

a = tan-1
+

15 sin 2

10 + 15 cos 2
* = 74.5963°

 = 14.1477

 A = 2(10 + 15 cos 2)2
+ (15 sin 2)2

 A sin a = 15 sin 2

 A cos a = 10 + 15 cos 2

sin vtcos vt

cos vt(A cos a) - sin vt(A sin a) =  cos vt(10 + 15 cos 2) - sin vt(15 sin 2)

Im
x(t)

x2(t)

x1(t)

15

10

14.1477

74.6

Re
vt

O

vt  114.6

FIGURE 1.51 Addition of harmonic motions.

*
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62 CHAPTER 1 FUNDAMENTALS OF VIBRATION

1.10.5
Definitions and
Terminology

The following definitions and terminology are useful in dealing with harmonic motion and

other periodic functions.

Cycle. The movement of a vibrating body from its undisturbed or equilibrium position to

its extreme position in one direction, then to the equilibrium position, then to its extreme

position in the other direction, and back to equilibrium position is called a cycle of vibra-

tion. One revolution (i.e., angular displacement of radians) of the pin P in Fig. 1.46 or

one revolution of the vector in Fig. 1.47 constitutes a cycle.

Amplitude. The maximum displacement of a vibrating body from its equilibrium position

is called the amplitude of vibration. In Figs. 1.46 and 1.47 the amplitude of vibration is

equal to A.

Period of oscillation. The time taken to complete one cycle of motion is known as the

period of oscillation or time period and is denoted by It is equal to the time required for

the vector in Fig. 1.47 to rotate through an angle of and hence

(1.59)

where is called the circular frequency.

Frequency of oscillation. The number of cycles per unit time is called the frequency of

oscillation or simply the frequency and is denoted by f. Thus

(1.60)

Here is called the circular frequency to distinguish it from the linear frequency

The variable denotes the angular velocity of the cyclic motion; f is measured

in cycles per second (hertz) while is measured in radians per second.

Phase angle. Consider two vibratory motions denoted by

(1.61)

(1.62)

The two harmonic motions given by Eqs. (1.61) and (1.62) are called synchronous because

they have the same frequency or angular velocity, Two synchronous oscillations need

not have the same amplitude, and they need not attain their maximum values at the same

time. The motions given by Eqs. (1.61) and (1.62) can be represented graphically as shown

in Fig. 1.52. In this figure, the second vector leads the first one by an angle 

known as the phase angle. This means that the maximum of the second vector would occur

radians earlier than that of the first vector. Note that instead of maxima, any other cor-

responding points can be taken for finding the phase angle. In Eqs. (1.61) and (1.62) or in

Fig. 1.52 the two vectors are said to have a phase difference of 

Natural frequency. If a system, after an initial disturbance, is left to vibrate on its own,

the frequency with which it oscillates without external forces is known as its natural fre-

quency. As will be seen later, a vibratory system having n degrees of freedom will have,

in general, n distinct natural frequencies of vibration.

f.

f

f,OP
¡

1OP
¡

2

v.

x2 = A2 sin(vt + f)

x1 = A1 sin vt

v

vf = v/2p.

v

f =
1

t
=

v

2p

v

t =
2p

v

2pOP
¡

t.

OP
¡

2p
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1.10 HARMONIC MOTION 63

Beats. When two harmonic motions, with frequencies close to one another, are added, the

resulting motion exhibits a phenomenon known as beats. For example, if

(1.63)

(1.64)

where is a small quantity, the addition of these motions yields

(1.65)

Using the relation

(1.66)

Eq. (1.65) can be rewritten as

(1.67)

This equation is shown graphically in Fig. 1.53. It can be seen that the resulting motion,

x(t), represents a cosine wave with frequency which is approximately equal to

and with a varying amplitude of Whenever the amplitude reaches a max-

imum, it is called a beat. The frequency at which the amplitude builds up and dies

down between 0 and 2X is known as beat frequency. The phenomenon of beats is often

observed in machines, structures, and electric power houses. For example, in machines and

structures, the beating phenomenon occurs when the forcing frequency is close to the nat-

ural frequency of the system (see Section 3.3.2).

Octave. When the maximum value of a range of frequency is twice its minimum value, it

is known as an octave band. For example, each of the ranges 75 150 Hz, 150 300 Hz, and

300 600 Hz can be called an octave band. In each case, the maximum and minimum val-

ues of frequency, which have a ratio of 2:1, are said to differ by an octave.

Decibel. The various quantities encountered in the field of vibration and sound (such

as displacement, velocity, acceleration, pressure, and power) are often represented

(d)

2X cos dt/2.v,

v + d/2,

x(t) = 2X cos 
dt

2
 cos+v +

d

2
* t

cos A + cos B = 2 cos+
A + B

2
*  cos+

A - B

2
*

x(t) = x1(t) + x2(t) = X[cos vt +  cos(v + d)t]

d

x2(t) = X cos(v + d)t

 x1(t) = X cos vt

P2

P1

O

x2

x1

A2

A1

x1  A1 sin vt

x2  A2 sin

(vt  f)

u  vt

f

v

u1  vt

u2  vt  f

f

v

FIGURE 1.52 Phase difference between two vectors.
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64 CHAPTER 1 FUNDAMENTALS OF VIBRATION

using the notation of decibel. A decibel (dB) is originally defined as a ratio of electric

powers:

(1.68)

where is some reference value of power. Since electric power is proportional to the

square of the voltage (X), the decibel can also be expressed as

(1.69)

where is a specified reference voltage. In practice, Eq. (1.69) is also used for express-

ing the ratios of other quantities such as displacements, velocities, accelerations, and

pressures. The reference values of in Eq. (1.69) are usually taken as 

for pressure and for acceleration.

1.11 Harmonic Analysis5

Although harmonic motion is simplest to handle, the motion of many vibratory systems is

not harmonic. However, in many cases the vibrations are periodic for example, the type

shown in Fig. 1.54(a). Fortunately, any periodic function of time can be represented by

Fourier series as an infinite sum of sine and cosine terms [1.36].

If x(t) is a periodic function with period its Fourier series representation is given by

(1.70)=
a0

2
+ a

q

n=1

(an  
cos nvt + bn  

sin nvt)

+ b1 
sin vt + b2  

sin 2 vt + Á

x(t) =
a0

2
+ a1 

cos vt + a2  
cos 2 vt + Á

t,

1 mg = 9.81 * 10-6 m/s2

2 * 10-5 N/m2X0

X0

dB = 10 log+
X

X0

*

2

= 20 log+
X

X0

*

P0

dB = 10 log+
P

P0

*

x(t)

2X

*2X

0

x(t)

2X

Beat period,

tb +
2p

d

t

2X cos
dt

2

FIGURE 1.53 Phenomenon of beats.

5The harmonic analysis forms a basis for Section 4.2.

1.11.1
Fourier Series
Expansion
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1.11 HARMONIC ANALYSIS 65

where is the fundamental frequency and are constant

coefficients. To determine the coefficients and we multiply Eq. (1.70) by 

and respectively, and integrate over one period for example, from 0

to Then we notice that all terms except one on the right-hand side of the equation

will be zero, and we obtain

(1.71)

(1.72)

(1.73)

The physical interpretation of Eq. (1.70) is that any periodic function can be repre-

sented as a sum of harmonic functions. Although the series in Eq. (1.70) is an infinite sum,

we can approximate most periodic functions with the help of only a few harmonic func-

tions. For example, the triangular wave of Fig. 1.54(a) can be represented closely by

adding only three harmonic functions, as shown in Fig. 1.54(b).

Fourier series can also be represented by the sum of sine terms only or cosine terms

only. For example, the series using cosine terms only can be expressed as

(1.74)

where

(1.75)

(1.76)

and

(1.77)fn = tan-1
+

bn

an

*

 dn = (an
2
+ bn

2
)

1/2

d0 = a0/2

x(t) = d0 + d1 cos(vt - f1) + d2 cos(2vt - f2) + Á

bn =
v

pL

2p/v

0

x(t) sin nvt dt =
2

tL

t

0

x(t) sin nvt dt

an =
v

pL

2p/v

0

x(t) cos nvt dt =
2

tL

t

0

x(t) cos nvt dt

a0 =
v

pL

2p/v

0

x(t) dt =
2

tL

t

0

x(t) dt

2p/v.

t = 2p/vsin nvt,

cos nvtbn,an

a0, a1, a2, Á , b1, b2, Áv = 2p/t

A

0

x(t)

2t 3t t

A

0

x(t)

2t 3t t

A

2

One-term approximation
Two-term approximation

Three-term approximation
Actual function

(a) (b)

tt

FIGURE 1.54 A periodic function.
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66 CHAPTER 1 FUNDAMENTALS OF VIBRATION

Gibbs  Phenomenon. When a periodic function is represented by a Fourier series, an

anomalous behavior can be observed. For example, Fig. 1.55 shows a triangular wave and

its Fourier series representation using a different number of terms. As the number of terms

(n) increases, the approximation can be seen to improve everywhere except in the vicinity

of the discontinuity (point P in Fig. 1.55). Here the deviation from the true waveform

becomes narrower but not any smaller in amplitude. It has been observed that the error in

amplitude remains at approximately 9 percent, even when This behavior is known

as Gibbs  phenomenon, after its discoverer.

k: q .

x(t)

t
P

n  4

n  6

n  8
Error

FIGURE 1.55 Gibbs  phenomenon.

1.11.2
Complex Fourier
Series

The Fourier series can also be represented in terms of complex numbers. By noting, from

Eqs. (1.41) and (1.42), that

(1.78)

and

(1.79)

and can be expressed as

(1.80)

and

(1.81)sin vt =
e

ivt
- e

-ivt

2i

cos vt =
e

ivt
+ e

-ivt

2

sin vtcos vt

e
-ivt

= cos vt - i sin vt

e
ivt

= cos vt + i sin vt
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Thus Eq. (1.70) can be written as

(1.82)

where By defining the complex Fourier coefficients and as

(1.83)

and

(1.84)

Eq. (1.82) can be expressed as

(1.85)

The Fourier coefficients can be determined, using Eqs. (1.71) to (1.73), as

(1.86) =
1

tL

 
t

0

x(t)e
-invt

dt

cn =
an - ibn

2
=

1

tL

 
t

0

x(t)[cos nvt - i sin nvt]dt

cn

x(t) = a
q

n=-q

 cne
invt

c-n =
an + ibn

2

cn =
an - ibn

2

c-ncnb0 = 0.

+ a
q

n=1

 b e
invt

¢
an

2
-

ibn

2
+ e

-invt
¢

an

2
+

ibn

2
r

= e
i(0)vt

¢
a0

2
-

ib0

2

x(t) =
a0

2
+ a

q

n=1

 ban¢
e

invt
+ e

-invt

2
+ bn¢

e
invt

- e
-invt

2i
r

1.11.3
Frequency
Spectrum

The harmonic functions or in Eq. (1.70) are called the harmonics of

order n of the periodic function x(t). The harmonic of order n has a period These har-

monics can be plotted as vertical lines on a diagram of amplitude ( and or and

) versus frequency called the frequency spectrum or spectral diagram. Figure

1.56 shows a typical frequency spectrum.

(nv),fn

dnbnan

t/n.

bn sin nvtan cos nvt
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0

dn

2vv 3v 4v 5v 6v 7v 8v 9v Frequency (nv) 9v Frequency (nv)
0

2 3v 4v 5 vvv 6v 7v 8v

nf

FIGURE 1.56 Frequency spectrum of a typical periodic function of time.

1.11.4
Time- and
Frequency-
Domain
Representations

The Fourier series expansion permits the description of any periodic function using either

a time-domain or a frequency-domain representation. For example, a harmonic function

given by in time domain (see Fig. 1.57(a)) can be represented by the ampli-

tude and the frequency in the frequency domain (see Fig. 1.57(b)). Similarly, a periodic

function, such as a triangular wave, can be represented in time domain, as shown in

Fig. 1.57(c), or in frequency domain, as indicated in Fig. 1.57(d). Note that the amplitudes

and the phase angles corresponding to the frequencies can be used in place of the

amplitudes and for representation in the frequency domain. Using a Fourier integral

(considered in Section 14.9) permits the representation of even nonperiodic functions in

bnan

vnfndn

v

x(t) = A sin vt

x(t)

A

*A

x0

0 t

A

0

A sin (vt + f0)

(a) (b)

(d)

x(t)

A

x0

0 t

x(v)

a0

a1

a2
a3 a4

0

a
n
 (coefficients of cosine terms in Eq. (1.70))

(c)

b1

b2
b3 b4

0

b
n
 (coefficients of sine terms in Eq. (1.70))

v1 , v v2 , 2v v3 , 3v v4 ,  4v

v1 , v v2 , 2v v3 , 3v v4 ,  4v

v
n

v
n

v
v

FIGURE 1.57 Representation of a function in time and frequency domains.
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1.11 HARMONIC ANALYSIS 69

either a time domain or a frequency domain. Figure 1.57 shows that the frequency-domain

representation does not provide the initial conditions. However, in many practical applica-

tions the initial conditions are often considered unnecessary and only the steady-state con-

ditions are of main interest.

1.11.5

Even and Odd

Functions

An even function satisfies the relation

(1.87)

In this case, the Fourier series expansion of x(t) contains only cosine terms:

(1.88)

where and are given by Eqs. (1.71) and (1.72), respectively. An odd function satis-

fies the relation

(1.89)

In this case, the Fourier series expansion of x(t) contains only sine terms:

(1.90)

where is given by Eq. (1.73). In some cases, a given function may be considered as even

or odd depending on the location of the coordinate axes. For example, the shifting of the

vertical axis from (a) to (b) or (c) in Fig. 1.58(i) will make it an odd or even function. This

means that we need to compute only the coefficients or Similarly, a shift in the time

axis from (d) to (e) amounts to adding a constant equal to the amount of shift. In the case

of Fig. 1.58(ii), when the function is considered as an odd function, the Fourier series

expansion becomes (see Problem 1.107):

(1.91)

On the other hand, if the function is considered an even function, as shown in Fig. 1.50(iii),

its Fourier series expansion becomes (see Problem 1.107):

(1.92)

Since the functions and represent the same wave, except for the location of the

origin, there exists a relationship between their Fourier series expansions also. Noting that

(1.93)x1+ t +
t

4
* = x2(t)

x2(t)x1(t)

x2(t) =
4A

p
a

q

n=1

(-1)n+1

(2n - 1)
 cos 

2p(2n - 1)t

t

x1(t) =
4A

p
a

q

n=1

1

(2n - 1)
 sin 

2p(2n - 1)t

t

an.bn

bn

x(t) = a

q

n=1

bn sin nvt

x(- t) = -  x(t)

ana0

x(t) =
a0

2
+ a

q

n=1

an cos nvt

x(- t) = x(t)
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we find from Eq. (1.91),

(1.94)

Using the relation Eq. (1.94) can be expressed

as

(1.95) + cos 
2p(2n - 1)t

t

 sin 
2p(2n - 1)

4
r

 x1¢ t +
t

4
=

4A

p
a

q

n=1

b
1

(2n - 1)
 sin 

2p(2n - 1)t

t

 cos 
2p(2n - 1)

4

sin(A + B) = sin A cos B +  cos A sin B,

 =
4A

p
a

q

n=1

1

(2n - 1)
 sin b

2p(2n - 1)t

t

+

2p(2n - 1)

4
r

x1¢ t +
t

4
 =

4A

p
a

q

n=1

 
1

(2n - 1)
 sin 

2p(2n - 1)

t

¢ t +
t

4

A

A

A

*A

A

(a)

(d)

(e)

(b) (c)

x(t)

x1(t)

x2(t)

t

t

t

(i)

(ii) Odd function

(iii) Even function

O

O

*A
O

2

2

2
t

t

t t

t t

FIGURE 1.58 Even and odd functions.
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Since for and 

for Eq. (1.95) reduces to

(1.96)

which can be identified to be the same as Eq. (1.92).

x1+ t +
t

4
* =

4A

p

 a

q

n=1

 
(-1)n+1

(2n - 1)
 cos 

2p(2n - 1)t

t

n = 1, 2, 3, Á ,

sin [2p(2n - 1)/4] =  (-1)n+1n = 1, 2, 3, Á ,cos [2p(2n - 1)/4] = 0

1.11.6
Half-Range
Expansions

In some practical applications, the function x(t) is defined only in the interval 0 to as

shown in Fig. 1.59(a). In such a case, there is no condition of periodicity of the function,

since the function itself is not defined outside the interval 0 to However, we can extend

the function arbitrarily to include the interval to 0 as shown in either Fig. 1.59(b) or

Fig. 1.59(c). The extension of the function indicated in Fig. 1.59(b) results in an odd func-

tion, while the extension of the function shown in Fig. 1.59(c) results in an even

function, Thus the Fourier series expansion of yields only sine terms and that

of involves only cosine terms. These Fourier series expansions of and arex2(t)x1(t)x2(t)

x1(t)x2(t).

x1(t),

-t

t.

t

t

x1(t)

0

t

x2(t)

0*t t

*t t

t
t

x(t)

0

(a) Original function

(b) Extension as an odd function

(c) Extension as an even function

FIGURE 1.59 Extension of a
function for half-range expansions.
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72 CHAPTER 1 FUNDAMENTALS OF VIBRATION

known as half-range expansions [1.37]. Any of these half-range expansions can be used to

find x(t) in the interval 0 to t.

1.11.7
Numerical
Computation 
of Coefficients

For very simple forms of the function x(t), the integrals of Eqs. (1.71) to (1.73) can be eval-

uated easily. However, the integration becomes involved if x(t) does not have a simple

form. In some practical applications, as in the case of experimental determination of the

amplitude of vibration using a vibration transducer, the function x(t) is not available in the

form of a mathematical expression; only the values of x(t) at a number of points

are available, as shown in Fig. 1.60. In these cases, the coefficients and 

of Eqs. (1.71) to (1.73) can be evaluated by using a numerical integration procedure like

the trapezoidal or Simpson s rule [1.38].

Let s assume that are an even number of equidistant points over the

period with the corresponding values of x(t) given by 

respectively; then the application of the trapezoidal rule

gives the coefficients and (by setting ) as:6

(1.97)

(1.98)

(1.99) bn =
2

N
 a

N

i=1
 xi sin 

2npti
t

 an =
2

N
 a

N

i=1
 xi cos 

2npti
t

 a0 =
2

Na
N

i=1
xi

t = N¢tbnan

x2 = x(t2), Á , xN = x(tN),
x1 = x(t1),t(N = even)

t1, t2, Á , tN

bnant1, t2, Á , tN

6
N Needs to be an even number for Simpson s rule but not for the trapezoidal rule. Equations (1.97) to (1.99)

assume that the periodicity condition, holds true.x0 = xN,

t

xN

tNtN 1

xN 1

t
1

t
2

t
3

x
1

x
2

x
3

t
4

x
4

t
5

x
5

t
0

t t t

t  N t

x(t)

FIGURE 1.60 Values of the periodic function x(t) at discrete points t1, t2, Á , tN.
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E X A M P L E  1 . 1 9
Fourier Series Expansion

Determine the Fourier series expansion of the motion of the valve in the cam-follower system shown

in Fig. 1.61.

Solution: If y(t) denotes the vertical motion of the pushrod, the motion of the valve, x(t), can be

determined from the relation:

or

(E.1)

where

(E.2)

and the period is given by By defining

A =

Yl2

l1

t =
2p

v
.

y(t) = Y
t

t
;   0 t t

x(t) =

l2

l1
 y(t)

tan u =

y(t)

l1
=

x(t)

l2

Pushrod

Roller
follower

y(t)

y(t)

0

Y

x(t)

l1

Rocker arm

l2

t

Valve
spring

Valve

2t 3t

O

v t

u

FIGURE 1.61 Cam-follower system.
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x(t) can be expressed as

(E.3)

Equation (E.3) is shown in Fig. 1.54(a). To compute the Fourier coefficients and we use Eqs.

(1.71) to (1.73):

(E.4)

(E.5)

(E.6)

Therefore the Fourier series expansion of x(t) is

(E.7)

The first three terms of the series are shown plotted in Fig. 1.54(b). It can be seen that the approxi-

mation reaches the sawtooth shape even with a small number of terms.
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0

A
t

t

 dt =
v

p

 
A

t

¢
t2

2 0

2p/v

= A

bn,an

x(t) = A
t

t

;   0 t t

E X A M P L E  1 . 2 0
Numerical Fourier Analysis

The pressure fluctuations of water in a pipe, measured at 0.01-second intervals, are given in Table

1.1. These fluctuations are repetitive in nature. Make a harmonic analysis of the pressure fluctuations

and determine the first three harmonics of the Fourier series expansion.
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Solution: Since the given pressure fluctuations repeat every 0.12 sec, the period is sec and

the circular frequency of the first harmonic is radians per 0.12 sec or 

rad/sec. As the number of observed values in each wave (N) is 12, we obtain from Eq. (1.97)

(E.1)

The coefficients and can be determined from Eqs. (1.98) and (1.99):

(E.2)

(E.3)

The computations involved in Eqs. (E.2) and (E.3) are shown in Table 1.2. From these calculations,

the Fourier series expansion of the pressure fluctuations p(t) can be obtained (see Eq. 1.70):

(E.4) - 2333.3 sin 157.08t + Á  N/m2

 + 1416.7 cos 104.72t + 3608.3 sin 104.72t - 5833.3 cos 157.08t

p(t) = 34083.3 - 26996.0 cos 52.36t + 8307.7 sin 52.36t

bn =
2

N
 a

N

i=1
 pi sin 

2npti

t

=
1

6
 a

12

i=1
 pi sin 

2npti

0.12

an =
2

N
 a

N

i=1
 pi cos 

2npti

t

=
1

6
 a

12

i=1
 pi cos 

2npti

0.12

bnan

a0 =
2

N
 a

N

i=1
 pi =

1

6
 a

12

i=1
 pi = 68166.7

v = 2p/0.12 = 52.362p
t = 0.12

TABLE 1.1

Time Station, i Time (sec), ti Pressure (kN/m2), pi

0 0 0

1 0.01 20

2 0.02 34

3 0.03 42

4 0.04 49

5 0.05 53

6 0.06 70

7 0.07 60

8 0.08 36

9 0.09 22

10 0.10 16

11 0.11 7

12 0.12 0
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TABLE 1.2

n * 1 n * 2 n * 3

i ti pi
pi cos 

2Pti

0.12
pi sin 

2Pti

0.12
pi cos 

4Pti

0.12
pi sin 

4Pti

0.12
pi cos 

6Pti

0.12
pi sin 

6Pti

0.12

1 0.01 20000 17320 10000 10000 17320 0 20000

2 0.02 34000 17000 29444 -17000 29444 -34000 0

3 0.03 42000 0 42000 -42000 0 0 -42000

4 0.04 49000 -24500 42434 -24500 -42434 49000 0

5 0.05 53000 -45898 26500 26500 -45898 0 53000

6 0.06 70000 -70000 0 70000 0 -70000 0

7 0.07 60000 -51960 -30000 30000 51960 0 -60000

8 0.08 36000 -18000 -31176 -18000 31176 36000 0

9 0.09 22000 0 -22000 -22000 0 0 22000

10 0.10 16000 8000 -13856 -8000 -13856 -16000 0

11 0.11 7000 6062 -3500 3500 -6062 0 -7000

12 0.12 0 0 0 0 0 0 0

( )a
12

i=1

409000 -161976 49846 8500 21650 -35000 -14000

( )
1

6
 a

12

i=1

68166.7 -26996.0 8307.7 1416.7 3608.3 -5833.3 -2333.3

*

1.12 Examples Using MATLAB7

Graphical Representation of Fourier Series Using MATLAB

7The source codes of all MATLAB programs are given at the Companion Website.

E X A M P L E  1 . 2 1
Plot the periodic function

(E.1)

and its Fourier series representation with four terms

(E.2)

for with and t =
2p

v

= 2.A = 1, v = p,0 t t

x(t) =
A

p

 b
p

2
- ¢sin vt +

1

2
 sin 2vt +

1

3
 sin 3vt r

x(t) = A 
t

t

,   0 t t
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Solution: A MATLAB program is written to plot Eqs. (E.1) and (E.2) with different numbers of

terms as shown below.

%ex1_21.m

%plot the function x(t) = A * t / tau

A = 1;

w = pi;

tau = 2;

for i = 1: 101

t(i) = tau * (i-1)/100;

x(i) = A * t(i) / tau;

end

subplot(231);

plot(t,x);

ylabel('x(t)');

xlabel('t');

title('x(t) = A*t/tau');

for i = 1: 101

x1(i) = A / 2;

end

subplot(232);

plot(t,x1);

xlabel('t');

1

0.8

0.6

0.4

0.2

0
0 1

x(t) + A*t/tau

t

2

x
(t

)

1

0.8

0.6

0.4

0.2

0
0 1

Three terms

t

2

x
(t

)

1.5

1

0.5

0

*0.5
0 1

One term

t

2

1

0.8

0.6

0.4

0.2

0
0 1

Four terms

t

2

1

0.8

0.6

0.4

0.2

0
0 1

Two terms

t

2

Equations (E.1) and (E.2) with different numbers of terms.

M01_RAO8193_05_SE_C01.QXD  8/21/10  2:06 PM  Page 77



78 CHAPTER 1 FUNDAMENTALS OF VIBRATION

title('One term');

for i = 1: 101

x2(i) = A/2 - A * sin(w*t(i)) / pi;

end

subplot(233);

plot(t,x2);

xlabel('t');

title('Two terms');

for i = 1: 101

x3(i) = A/2 - A * sin(w*t(i)) / pi - A * sin(2*w*t(i)) / (2*pi);

end

subplot(234);

plot(t,x3);

ylabel('x(t)');

xlabel('t');

title('Three terms');

for i = 1: 101

t(i) = tau * (i-1)/100;

x4(i) = A/2 - A * sin(w*t(i)) / pi - A * sin(2*w*t(i)) / (2*pi) 

- A * sin(3*w*t(i)) / (3*pi);

end

subplot(235);

plot(t,x4);

xlabel('t');

title('Four terms');

*

E X A M P L E  1 . 2 2
Graphical Representation of Beats

A mass is subjected to two harmonic motions given by and 

with rad/sec, and rad/sec. Plot the resulting motion of the mass

using MATLAB and identify the beat frequency.

Solution: The resultant motion of the mass, x(t), is given by

(E.1)

The motion can be seen to exhibit the phenomenon of beats with a beat frequency

rad/sec. Equation (E.1) is plotted using MATLAB as shown below.

% ex1_22.m

% Plot the Phenomenon of beats

A = 1;

w = 20;

delta = 1;

for i = 1: 1001

t(i) = 15 * (i 1)/1000;

x(i) = 2 * A * cos (delta*t(i)/2) * cos ((w + delta/2) *t(i));

end

plot (t,x);

xlabel ('t');

ylabel ('x(t)');

title ('Phenomenon of beats');

vb = (v + d) - (v) = d = 1

= 2X cos 
dt

2
 cos+v +

d

2
* t

= X cos vt + X cos(v + d)t

x(t) = x1(t) + x2(t)

d = 1X = 1 cm, v = 20(v + d) t

x2(t) = X cosx1(t) = X cos vt
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*

0 5

t

Phenomenon of beats

10 15
*2

*1.5

*1

*0.5

0

x
(t

)

0.5

1

1.5

2

E X A M P L E  1 . 2 3
Numerical Fourier Analysis Using MATLAB

Conduct a harmonic analysis of the pressure fluctuations given in Table 1.1 on page 75 and deter-

mine the first five harmonics of the Fourier series expansion.

Solution: To find the first five harmonics of the pressure fluctuations (i.e., ),

a general-purpose MATLAB program is developed for the harmonic analysis of a function x(t) using

Eqs. (1.97) to (1.99). The program, named Program1.m, requires the following input data:

n number of equidistant points at which the values of x(t) are known

m number of Fourier coefficients to be computed 

time time period of the function x(t)

x array of dimension n, containing the known values of 

t array of dimension n, containing the known values of 

The following output is generated by the program:

of Eq. (1.97)

i, a(i), b(i); i = 1, 2, Á , m

azero = a0

t ; t(i) = ti=

x(t) ; x(i) = x(ti)=

=

=

=

a0, a1, Á , a5, b1, Á , b5
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where a(i) and b(i) denote the computed values of and given by Eqs. (1.98) and (1.99),

respectively.

>> program1

Fourier series expansion of the function x(t)

Data:

Number of data points in one cycle = 12

Number of Fourier Coefficients required = 5

Time period = 1.200000e 001

Station i Time at station i: t(i) x(i) at t(i)

1 1.000000e 002 2.000000e+004

2 2.000000e 002 3.400000e+004

3 3.000000e 002 4.200000e+004

4 4.000000e 002 4.900000e+004

5 5.000000e 002 5.300000e+004

6 6.000000e 002 7.000000e+004

7 7.000000e 002 6.000000e+004

8 8.000000e 002 3.600000e+004

9 9.000000e 002 2.200000e+004

10 1.000000e 001 1.600000e+004

11 1.100000e 001 7.000000e+003

12 1.200000e 001 0.000000e+000

Results of Fourier analysis:

azero=6.816667e+004

values of i a(i) b(i)

1 2.699630e+004 8.307582e+003

2 1.416632e+003 3.608493e+003

3 5.833248e+003 2.333434e+003

4 5.834026e+002 2.165061e+003

5 2.170284e+003 6.411708e+002

*

biai

1.13 Vibration Literature

The literature on vibrations is large and diverse. Several textbooks are available [1.39], and

dozens of technical periodicals regularly publish papers relating to vibrations. This is pri-

marily because vibration affects so many disciplines, from science of materials to machin-

ery analysis to spacecraft structures. Researchers in many fields must be attentive to

vibration research.

The most widely circulated journals that publish papers relating to vibrations are

ASME Journal of Vibration and Acoustics; ASME Journal of Applied Mechanics; Journal

of Sound and Vibration; AIAA Journal; ASCE Journal of Engineering Mechanics;

Earthquake Engineering and Structural Dynamics; Bulletin of the Japan Society of

Mechanical Engineers; International Journal of Solids and Structures; International

Journal for Numerical Methods in Engineering; Journal of the Acoustical Society of

America; Sound and Vibration; Vibrations, Mechanical Systems and Signal Processing;

International Journal of Analytical and Experimental Modal Analysis; JSME

International Journal Series III Vibration Control Engineering; and Vehicle System

Dynamics. Many of these journals are cited in the chapter references.
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In addition, Shock and Vibration Digest, Applied Mechanics Reviews, and Noise and

Vibration Worldwide are monthly abstract journals containing brief discussions of nearly

every published vibration paper. Formulas and solutions in vibration engineering can be

readily found in references [1.40 1.42].

CHAPTER SUMMARY

In this chapter, we presented the fundamental concepts of vibration along with a brief outline of the

history and the importance of the study of vibration. We introduced the concepts of degree of free-

dom, discrete and continuous systems, and the different classes of vibration. We outlined the basic

steps involved in the vibration analysis of a system. We introduced the fundamental type of vibration,

namely harmonic motion, along with the associated terminology. We presented harmonic analysis

and Fourier series representation of periodic functions as well as numerical determination of Fourier

coefficients with examples.

At this point, the reader should be able to achieve the objectives stated at the beginning of the

chapter. To help the reader, review questions in the form of questions requiring brief answers, true or

false statements, fill in the blanks, multiple choices, and matching of statements are given for self

testing with answers available at the Companion Website. Several problems involving different lev-

els of difficulty in applying the basic concepts presented in the chapter are also given. The answers to

selected problems can be found at the end of the book.
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REVIEW QUESTIONS

1.1 Give brief answers to the following:

1. Give two examples each of the bad and the good effects of vibration.

2. What are the three elementary parts of a vibrating system?

3. Define the number of degrees of freedom of a vibrating system.

4. What is the difference between a discrete and a continuous system? Is it possible to solve

any vibration problem as a discrete one?

5. In vibration analysis, can damping always be disregarded?
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6. Can a nonlinear vibration problem be identified by looking at its governing differential

equation?

7. What is the difference between deterministic and random vibration? Give two practical

examples of each.

8. What methods are available for solving the governing equations of a vibration problem?

9. How do you connect several springs to increase the overall stiffness?

10. Define spring stiffness and damping constant.

11. What are the common types of damping?

12. State three different ways of expressing a periodic function in terms of its harmonics.

13. Define these terms: cycle, amplitude, phase angle, linear frequency, period, and natural

frequency.

14. How are and f related to each other?

15. How can we obtain the frequency, phase, and amplitude of a harmonic motion from the

corresponding rotating vector?

16. How do you add two harmonic motions having different frequencies?

17. What are beats?

18. Define the terms decibel and octave.

19. Explain Gibbs  phenomenon.

20. What are half-range expansions?

1.2 Indicate whether each of the following statements is true or false:

1. If energy is lost in any way during vibration, the system can be considered to be damped.

2. The superposition principle is valid for both linear and nonlinear systems.

3. The frequency with which an initially disturbed system vibrates on its own is known as

natural frequency.

4. Any periodic function can be expanded into a Fourier series.

5. A harmonic motion is a periodic motion.

6. The equivalent mass of several masses at different locations can be found using the

equivalence of kinetic energy.

7. The generalized coordinates are not necessarily Cartesian coordinates.

8. Discrete systems are same as lumped parameter systems.

9. Consider the sum of harmonic motions, with

and The amplitude A is given by 30.8088.

10. Consider the sum of harmonic motions, with

and The phase angle is given by 1.57 rad.

1.3 Fill in the blank with the proper word:

1. Systems undergo dangerously large oscillations at _____.

2. Undamped vibration is characterized by no loss of _____.

3. A vibratory system consists of a spring, damper, and _____.

4. If a motion repeats after equal intervals of time, it is called a _____ motion.

5. When acceleration is proportional to the displacement and directed toward the mean

position, the motion is called _____ harmonic.

6. The time taken to complete one cycle of motion is called the _____ of vibration.

7. The number of cycles per unit time is called the _____ of vibration.

8. Two harmonic motions having the same frequency are said to be _____.

ax2(t) = 20 cos(vt + 1).x1(t) = 15 cos vt

x(t) = x1(t) + x2(t) = A cos(vt + a),

x2(t) = 20 cos(vt + 1).x1(t) = 15 cos vt

x(t) = x1(t) + x2(t) = A cos(vt + a),

t, v,
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9. The angular difference between the occurrence of similar points of two harmonic

motions is called _____.

10. Continuous or distributed systems can be considered to have _____ number of degrees of

freedom.

11. Systems with a finite number of degrees of freedom are called _____ systems.

12. The number of degrees of freedom of a system denotes the minimum number of independent

_____ necessary to describe the positions of all parts of the system at any instant of time.

13. If a system vibrates due to initial disturbance only, it is called _____ vibration.

14. If a system vibrates due to an external excitation, it is called _____ vibration.

15. Resonance denotes the coincidence of the frequency of external excitation with a _____

frequency of the system.

16. A function f(t) is called an odd function if _____.

17. The _____ range expansions can be used to represent functions defined only in the inter-

val 0 to 

18. _____ analysis deals with the Fourier series representation of periodic functions.

19. The rotational speed of 1000 rpm (revolutions per minute) is equivalent to _____

radians/sec.

20. When the speed of a turbine is 6000 rpm, it takes _____ seconds for the turbine to com-

plete one revolution.

1.4 Select the most appropriate answer from the multiple choices given:

1. The world s first seismograph was invented in

(a) Japan (b) China (c) Egypt

2. The first experiments on simple pendulums were conducted by

(a) Galileo (b) Pythagoras (c) Aristotle

3. The Philosophiae Naturalis Principia Mathematica was published by

(a) Galileo (b) Pythagoras (c) Newton

4. Mode shapes of plates, by placing sand on vibrating plates, were first observed by

(a) Chladni (b) D Alembert (c) Galileo

5. The thick beam theory was first presented by

(a) Mindlin (b) Einstein (c) Timoshenko

6. The number of degrees of freedom of a simple pendulum is:

(a) 0 (b) 1 (c) 2

7. Vibration can be classified in

(a) one way (b) two ways (c) several ways

8. Gibbs  phenomenon denotes an anomalous behavior in the Fourier series representation of a

(a) harmonic function (b) periodic function (c) random function

9. The graphical representation of the amplitudes and phase angles of the various frequency

components of a periodic function is known as a

(a) spectral diagram (b) frequency diagram (c) harmonic diagram

10. When a system vibrates in a fluid medium, the damping is

(a) viscous (b) Coulomb (c) solid

11. When parts of a vibrating system slide on a dry surface, the damping is

(a) viscous (b) Coulomb (c) solid

12. When the stress-strain curve of the material of a vibrating system exhibits a hysteresis

loop, the damping is

(a) viscous (b) Coulomb (c) solid

t.
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13. The equivalent spring constant of two parallel springs with stiffnesses and is

(a) (b) (c)

14. The equivalent spring constant of two series springs with stiffnesses and is

(a) (b) (c)

15. The spring constant of a cantilever beam with an end mass m is

(a) (b) (c)

16. If function f(t) is said to be

(a) even (b) odd (c) continuous

1.5 Match the following:

1. Pythagoras (582 507 B.C.) a. published a book on the theory of sound

2. Euclid (300 B.C.) b. first person to investigate musical sounds on a 

scientific basis

3. Zhang Heng (132 A.D.) c. wrote a treatise called Introduction to Harmonics

4. Galileo (1564 1642) d. founder of modern experimental science

5. Rayleigh (1877) e. invented the world s first seismograph

1.6 Match the following:

1. Imbalance in diesel engines a. can cause failure of turbines and aircraft engines

2. Vibration in machine tools b. cause discomfort in human activityduring metal 

cutting

3. Blade and disk vibration c. can cause wheels of locomotives to rise off the track

4. Wind-induced vibration d. can cause failure of bridges

5. Transmission of vibration e. can give rise to chatter

1.7 Consider four springs with the spring constants:

Match the equivalent spring constants:

1. and are in parallel a. 18.9189 lb/in.

2. and are in series b. 370.0 lb/in.

3. and are in parallel  c. 11.7647 lb/in.

4. and are in parallel  d. 300.0 lb/in.

5. and are in parallel  e. 70.0 lb/in.

6. is in series with  f. 170.0 lb/in.

7. and are in parallel  g. 350.0 lb/in.

8. and are in series h. 91.8919 lb/in.k234k1

(keq = k234)k4k2, k3,
k4k123

(keq = k123)k3k1, k2,

(keq = k34)k4k3

(keq = k12)k2k1

k4k1, k2, k3,

k4k1, k2, k3,

k1 = 20 lb/in., k2 = 50 lb/in., k3 = 100 lb/in., k4 = 200 lb/in.

f(- t) = f(t),

Wl3

3EI

l3

3EI

3EI

l3

1

k1
+

1

k2

1

1

k1
+

1

k2

k1 + k2

k2k1

1

k1
+

1

k2

1

1

k1
+

1

k2

k1 + k2

k2k1
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PROBLEMS

Section 1.4 Basic Concepts of Vibration and 

Section 1.6 Vibration Analysis Procedure

1.1* A study of the response of a human body subjected to vibration/shock is important in many

applications. In a standing posture, the masses of head, upper torso, hips, and legs and the elas-

ticity/damping of neck, spinal column, abdomen, and legs influence the response characteris-

tics. Develop a sequence of three improved approximations for modeling the human body.

1.2* Figure 1.54 shows a human body and a restraint system at the time of an automobile collision

[1.47]. Suggest a simple mathematical model by considering the elasticity, mass, and damp-

ing of the seat, human body, and restraints for a vibration analysis of the system.

*The asterisk denotes a design-type problem or a problem with no unique answer.

Windshield

Instrument
panel

Slant
footboard

Impact
forceFloor

Seat
Restraint
belts

FIGURE 1.62 A human body and a restraint system.

1.3* A reciprocating engine is mounted on a foundation as shown in Fig. 1.63. The unbalanced

forces and moments developed in the engine are transmitted to the frame and the foundation.

An elastic pad is placed between the engine and the foundation block to reduce the transmis-

sion of vibration. Develop two mathematical models of the system using a gradual refine-

ment of the modeling process.

1.4* An automobile moving over a rough road (Fig. 1.64) can be modeled considering 

(a) weight of the car body, passengers, seats, front wheels, and rear wheels; (b) elasticity of
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tires (suspension), main springs, and seats; and (c) damping of the seats, shock absorbers,

and tires. Develop three mathematical models of the system using a gradual refinement in the

modeling process.

Frame

Reciprocating
engine

Foundation
block

Bolts

Soil

Elastic pad

FIGURE 1.63 A reciprocating engine on a foundation.

FIGURE 1.64 An automobile moving on a
rough road.

1.5* The consequences of a head-on collision of two automobiles can be studied by considering

the impact of the automobile on a barrier, as shown in Fig. 1.65. Construct a mathematical

model by considering the masses of the automobile body, engine, transmission, and suspen-

sion and the elasticity of the bumpers, radiator, sheet metal body, driveline, and engine

mounts.

FIGURE 1.65 An automobile colliding with a barrier.
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1.6* Develop a mathematical model for the tractor and plow shown in Fig. 1.66 by considering

the mass, elasticity, and damping of the tires, shock absorbers, and plows (blades).

Shock absorber

Plow

FIGURE 1.66 A tractor and plow.

Section 1.7 Spring Elements

1.7 Determine the equivalent spring constant of the system shown in Fig. 1.67.

k4

k5

k3k3

k2

k1k1

FIGURE 1.67 Springs in
series-parallel.

1.8 Consider a system of two springs, with stiffnesses and arranged in parallel as shown in

Fig. 1.68. The rigid bar to which the two springs are connected remains horizontal when the

k2,k1
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force F is zero. Determine the equivalent spring constant of the system that relates the

force applied (F) to the resulting displacement (x) as

Hint: Because the spring constants of the two springs are different and the distances and 

are not the same, the rigid bar will not remain horizontal when the force F is applied.

1.9 In Fig. 1.69, find the equivalent spring constant of the system in the direction of u.

l2l1

F = kex

(ke)

l
1

k
1

k
2

x

F

l
2

FIGURE 1.68 Parallel springs subjected to load.

kt1

kt2

k
3

k
1

k
2

l
2

l
1

u

FIGURE 1.69

1.10 Find the equivalent torsional spring constant of the system shown in Fig. 1.70. Assume that

and are torsional and and are linear spring constants.k6k5k4k1, k2, k3,
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1.11 A machine of mass is mounted on a simply supported steel beam of length

having a rectangular cross section and Young s 

modulus To reduce the vertical deflection of the beam, a spring of

stiffness k is attached at mid-span, as shown in Fig. 1.71. Determine the value of k needed to

reduce the deflection of the beam by

a. 25 percent of its original value.

b. 50 percent of its original value.

c. 75 percent of its original value.

Assume that the mass of the beam is negligible.

E = 2.06 * 1011 N/m2.

(depth = 0.1 m, width = 1.2 m)l = 2 m

m = 500 kg

k
5

k
6

k
4

k
3

k
2

k
1

R
u

FIGURE 1.70

k

m

l

FIGURE 1.71

1.12 A bar of length L and Young s modulus E is subjected to an axial force. Compare the spring

constants of bars with cross sections in the form of a solid circle (of diameter d), square (of

side d) and hollow circle (of mean diameter d and wall thickness ). Determine which

of these cross sections leads to an economical design for a specified value of axial stiffness

of the bar.

t = 0.1d
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1.13 A cantilever beam of length L and Young s modulus E is subjected to a bending force at its

free end. Compare the spring constants of beams with cross sections in the form of a solid

circle (of diameter d), square (of side d), and hollow circle (of mean diameter d and wall

thickness ). Determine which of these cross sections leads to an economical design

for a specified value of bending stiffness of the beam.

1.14 An electronic instrument, weighing 200 lb, is supported on a rubber mounting whose force-

deflection relationship is given by where the force (F) and the

deflection (x) are in pounds and inches, respectively. Determine the following:

a. Equivalent linear spring constant of the mounting at its static equilibrium position.

b. Deflection of the mounting corresponding to the equivalent linear spring constant.

1.15 The force-deflection relation of a steel helical spring used in an engine is found experimen-

tally as where the force (F) and deflection (x) are mea-

sured in pounds and inches, respectively. If the spring undergoes a steady deflection of 0.5 in.

during the operation of the engine, determine the equivalent linear spring constant of the

spring at its steady deflection.

1.16 Four identical rigid bars each of length a are connected to a spring of stiffness k to form

a structure for carrying a vertical load P, as shown in Figs. 1.72(a) and (b). Find the equiva-

lent spring constant of the system for each case, disregarding the masses of the bars and

the friction in the joints.

keq,

F(x) = 200 x + 50  x2
+ 10 x3,

F(x) = 800 x + 40 x3,

t = 0.1d

b

P

(a)

k

a

P

a

(b)

k

b

FIGURE 1.72

1.17 The tripod shown in Fig. 1.73 is used for mounting an electronic instrument that finds the

distance between two points in space. The legs of the tripod are located symmetrically

about the mid-vertical axis, each leg making an angle with the vertical. If each leg has a

length l and axial stiffness k, find the equivalent spring stiffness of the tripod in the vertical

direction.

a
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1.18 The static equilibrium position of a massless rigid bar, hinged at point O and connected with

springs and is shown in Fig. 1.74. Assuming that the displacement (x) resulting from

the application of a force F at point A is small, find the equivalent spring constant of the sys-

tem, that relates the applied force F to the displacement x as F = kex.ke,

k2,k1

FIGURE 1.73

F O

k
2
 * k

k
1
 * 2k

x

A

l

4

l

4

l

2

l

4

FIGURE 1.74 Rigid bar connected by springs.

1.19 Figure 1.75 shows a system in which the mass m is directly connected to the springs with

stiffnesses and while the spring with stiffness or comes into contact with the mass

based on the value of the displacement of the mass. Determine the variation of the spring

force exerted on the mass as the displacement of the mass (x) varies.

1.20 Figure 1.76 shows a uniform rigid bar of mass m that is pivoted at point O and connected by

springs of stiffnesses and Considering a small angular displacement of the rigid bar

about the point O, determine the equivalent spring constant associated with the restoring

moment.

uk2.k1

k4k 3k2k 1
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1.21 Figure 1.77 shows a U-tube manometer open at both ends and containing a column of liquid

mercury of length l and specific weight Considering a small displacement x of the

manometer meniscus from its equilibrium position (or datum), determine the equivalent

spring constant associated with the restoring force.

g.

k2

k1

mg

O

l 
4

l 
2

l

FIGURE 1.76 Rigid bar connected by
springs.

x

Datum

Area, A

x

FIGURE 1.77 U-tube
manometer.

mk3 k4

k1 k2

d2

x0

d3 d3 d4

FIGURE 1.75 Mass connected by springs.
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1.22 An oil drum of diameter d and mass m floats in a bath of sea water of density as shown in

Fig. 1.78. Considering a small displacement x of the oil drum from its static equilibrium

position, determine the equivalent spring constant associated with the restoring force.

rw

x

Static
equilibrium
position

mg

d

l

FIGURE 1.78 Oil drum floating in sea water.

1.23 Find the equivalent spring constant and equivalent mass of the system shown in Fig. 1.79

with references to Assume that the bars AOB and CD are rigid with negligible mass.

1.24 Find the length of the equivalent uniform hollow shaft of inner diameter d and thickness t

that has the same axial spring constant as that of the solid conical shaft shown in Fig. 1.80.

u.

m1 m2

d

m

D

C

BA O

yLiquid of
density r

l1
l3

kt

k2

k1

k3

l2

u

FIGURE 1.79
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1.25 Figure 1.81 shows a three-stepped bar fixed at one end and subjected to an axial force F at the

other end. The length of step i is and its cross sectional area is All the steps

are made of the same material with Young s modulus 

a. Find the spring constant (or stiffness) of step i in the axial direction 

b. Find the equivalent spring constant (or stiffness) of the stepped bar, in the axial direc-

tion so that 

c. Indicate whether the steps behave as series or parallel springs.

F = k eqx.

k eq,

(i = 1, 2, 3).ki

Ei = E, i = 1, 2, 3.

Ai, i = 1, 2, 3.li

k

k

k k

k

k

F

FIGURE 1.82 Springs connected in series-parallel

A
1

A
2

A
3 x

F

l
1

l
2

l
3

FIGURE 1.81 A stepped bar subjected to axial force

D

l

d

FIGURE 1.80

1.26 Find the equivalent spring constant of the system shown in Fig. 1.82.

1.27 Figure 1.83 shows a three-stepped shaft fixed at one end and subjected to a torsional moment

T at the other end. The length of step i is and its diameter is All the steps are

made of the same material with shear modulus 

a. Find the torsional spring constant (or stiffness) of step i (i = 1, 2, 3).kti

Gi = G, i = 1, 2, 3.

Di, i = 1, 2, 3.li
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1.28 The force-deflection characteristic of a spring is described by where the

force (F) is in Newtons and the deflection (x) is in millimeters. Find (a) the linearized spring

constant at and (b) the spring forces at and using the lin-

earized spring constant. Also find the error in the spring forces found in (b).

1.29 Figure 1.84 shows an air spring. This type of spring is generally used for obtaining very low

natural frequencies while maintaining zero deflection under static loads. Find the spring con-

stant of this air spring by assuming that the pressure p and volume v change adiabatically

when the mass m moves.

x = 11 mmx = 9 mmx = 10 mm

F = 500x + 2x3,

Air
Pressure * p
Volume * v

Cross-sectional area * A

x(t)

m

FIGURE 1.84

T
u

D1 D2 D3

l1 l2 l3

FIGURE 1.83 A stepped shaft subjected to torsional
moment.

Hint: for an adiabatic process, where is the ratio of specific heats. For air,

1.30 Find the equivalent spring constant of the system shown in Fig. 1.85 in the direction of the

load P.

1.31 Derive the expression for the equivalent spring constant that relates the applied force F to the

resulting displacement x of the system shown in Fig. 1.86. Assume the displacement of the

link to be small.

1.32 The spring constant of a helical spring under axial load is given by

k =
Gd4

8ND3

g = 1.4.

gpvg = constant

b. Find the equivalent torsional spring constant (or stiffness) of the stepped shaft, so that

c. Indicate whether the steps behave as series or parallel torsional springs.

T = kteq
u.

kteq
,
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where G is the shear modulus, d is the wire diameter, D is the coil diameter, and N is the

number of turns. Find the spring constant and the weight of a helical spring made of steel for

the following data: 

1.33 Two helical springs, one made of steel and the other made of aluminum, have identical val-

ues of d and D. (a) If the number of turns in the steel spring is 10, determine the number of

turns required in the aluminum spring whose weight will be same as that of the steel spring,

(b) Find the spring constants of the two springs.

D = 0.2 m, d = 0.005 m, N = 10.

P

k
5

u
1

u
2

u
3

u
4

k
9

k
4k

2

k
1

k
6

k
7

k
3

k
8

FIGURE 1.85

k
1
 * k

k
2
 * 2 k

k
3
 * 3k F x

l2 *
2l 

3

l
1
 *

l 

3

l

FIGURE 1.86 Rigid bar connected by springs.
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1.34 Figure 1.87 shows three parallel springs, one with stiffness and each of the other two

with stiffness The spring with stiffness has a length l and each of the springs with

stiffness has a length of Find the force-deflection characteristic of the system.l - a.k2

k1k2 = k.
k1 = k

S1

S2

W

(a)

S1 S2

W

(b)

FIGURE 1.88

k2 * k k1 * k k2 * k

x

F

a

l

FIGURE 1.87 Nonlinear behavior of linear springs.

1.35* Design an air spring using a cylindrical container and a piston to achieve a spring constant of

75 lb/in. Assume that the maximum air pressure available is 200 psi.

1.36 The force (F)-deflection (x) relationship of a nonlinear spring is given by

where a and b are constants. Find the equivalent linear spring constant when the deflection is

0.01 m with and 

1.37 Two nonlinear springs, and are connected in two different ways as indicated in Fig.

1.88. The force, in spring is related to its deflection as

where and are constants. If an equivalent linear spring constant, is defined by

where x is the total deflection of the system, find an expression for in each

case.

keqW = keqx,

keq,biai

Fi = aixi + bixi
3,   i = 1, 2

(xi)SiFi,
S2,S1

b = 40 * 106 N/m3.a = 20,000 N/m

F = ax + bx3
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1.38* Design a steel helical compression spring to satisfy the following requirements:

Spring stiffness 

Fundamental natural frequency of vibration 

Spring index 

Number of active turns 

The stiffness and fundamental natural frequency of the spring are given by [1.43]:

where modulus, diameter, diameter, of the

spring, and due to gravity.

1.39 Find the spring constant of the bimetallic bar shown in Fig. 1.89 in axial motion.

g = acceleration

W = weightD = coild = wireG = shear

k =
Gd4

8D3N
 and f1 =

1

2A
kg

W

(N) Ú 10.

(D/d) Ú 6

(f1) Ú 0.4 Hz

(k) Ú 8000 N/mm

0.5 m

x

y

2 cm

0.5 cm

Steel,

E * 207 + 109 Pa

Aluminum,

E * 83 + 109 Pa

FIGURE 1.89

1.40 Consider a spring of stiffness k stretched by a distance from its free length. One end of the

spring is fixed at point O and the other end is connected to a roller as shown in Fig. 1.90. The

x0

A

O

k

B

x

FIGURE 1.90 One end of
spring with lateral movement.
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roller is constrained to move in the horizontal direction with no friction. Find the force (F)-

displacement (x) relationship of the spring when the roller is moved by a horizontal distance

x to position B. Discuss the resulting force-displacement relation and identify the stiffness

constant along the direction of x.

1.41 One end of a helical spring is fixed and the other end is subjected to five different tensile

forces. The lengths of the spring measured at various values of the tensile forces are given

below:

k

'

Tensile force F (N) 0 100 250 330 480 570

Total length of the spring (mm) 150 163 183 194 214 226

Determine the force-deflection relation of the helical spring.

1.42 A tapered solid steel propeller shaft is shown in Fig. 1.91. Determine the torsional spring

constant of the shaft.

0.1
m0.2 m

1 m

T

Steel, G * 80 + 109 Pa

FIGURE 1.91

1.43 A composite propeller shaft, made of steel and aluminum, is shown in Fig. 1.92.

a. Determine the torsional spring constant of the shaft.

b. Determine the torsional spring constant of the composite shaft when the inner diameter of

the aluminum tube is 5 cm instead of 10 cm.

1.44 Consider two helical springs with the following characteristics:

Spring 1: material steel; number of turns 10; mean coil diameter 12 in.; wire diameter

2 in.; free length 15 in.; shear 

Spring 2: material aluminum; number of turns 10; mean coil diameter 10 in.; wire

diameter 1 in.; free length 15 in.; shear 

Determine the equivalent spring constant when (a) spring 2 is placed inside spring 1, and (b)

spring 2 is placed on top of spring 1.

modulus 4 * 10
6 psi.

modulus 12 * 10
6 psi.
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1.45 Solve Problem 1.44 by assuming the wire diameters of springs 1 and 2 to be 1.0 in. and 0.5

in. instead of 2.0 in. and 1.0 in., respectively.

1.46 The arm AD of the excavator shown in Fig. 1.93 can be approximated as a steel tube of outer

diameter 10 in., inner diameter 9.5 in., and length 100 in. with a viscous damping coefficient

of 0.4. The arm DE can be approximated as a steel tube of outer diameter 7 in., inner diame-

ter 6.5 in., and length 75 in. with a viscous damping coefficient of 0.3. Estimate the equiva-

lent spring constant and equivalent damping coefficient of the excavator, assuming that the

base AC is fixed.

2
5
 c

m

1
5
 c

m

1
0
 c

m

5 m

TA

A Aluminum

Steel

Section AA

FIGURE 1.92

A

C

E

D

B

90

60

FIGURE 1.93 An excavator.
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1.47 A heat exchanger consists of six identical stainless steel tubes connected in parallel as shown

in Fig. 1.94. If each tube has an outer diameter 0.30 in., inner diameter 0.29 in., and length

50 in., determine the axial stiffness and the torsional stiffness about the longitudinal axis of

the heat exchanger.

Sector gear 1

Sector gear 2

Link 1

k4

m1g

Link 2

k3

l1

kt1

kt2

O2

O1
2

r1m2g

p1r2

p2

l2
1 k1

k2

u

u

FIGURE 1.95 Two sector gears.

FIGURE 1.94
A heat exchanger.

Section 1.8 Mass or Inertia Elements

1.48 Two sector gears, located at the ends of links 1 and 2, are engaged together and rotate about

and as shown in Fig. 1.95. If links 1 and 2 are connected to springs to and and

as shown, find the equivalent torsional spring stiffness and equivalent mass moment of

inertia of the system with reference to Assume (a) the mass moment of inertia of link 1

(including the sector gear) about is and that of link 2 (including the sector gear) about

is and (b) the angles and are small.u2u1J2,O2

J1O1

u1.

kt2

kt1k4k1O2,O1
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1.49 In Fig. 1.96 find the equivalent mass of the rocker arm assembly with respect to the x

coordinate.

1.51 Two masses, having mass moments of inertia and are placed on rotating rigid shafts

that are connected by gears, as shown in Fig. 1.98. If the numbers of teeth on gears 1 and 2

are and respectively, find the equivalent mass moment of inertia corresponding to u1.n2,n1

J2,J1

k2

m2

x

k1

kt

J0

m1

a

b

FIGURE 1.96 Rocker arm assembly.

Motor,
Jmotor

Load,
Jload

J1, n1

J2, n2 J3, n3

J4, n4

Driving
Shaft 1

Shaft 2

Shaft 3

Shaft N

Gear 2N * 1
J2N*1, n2N*1

Gear 2N
J2N, n2N

Shaft N + 1

1

2 3

4

FIGURE 1.97

1.50 Find the equivalent mass moment of inertia of the gear train shown in Fig. 1.97 with refer-

ence to the driving shaft. In Fig. 1.97, and denote the mass moment of inertia and the

number of teeth, respectively, of gear i, i = 1, 2, Á , 2N.

niJi
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2

Rigid
shafts

Gear 2, n2

Gear 1, n1

J2

J1
1

u

u

FIGURE 1.98 Rotational masses on geared shafts.

1.52 A simplified model of a petroleum pump is shown in Fig. 1.99, where the rotary motion of

the crank is converted to the reciprocating motion of the piston. Find the equivalent mass,

of the system at location A.meq,

c

B

l1

l2

l3

l4

b

Walking beam (mass moment
of inertia, Jb)

Horsehead
(mass, mh)

xh

A

Ladder

Stationary
frame

PistonCrank (mass moment of
inertia, Jc, and radius, rc)

Oil well

u

u

FIGURE 1.99

1.53 Find the equivalent mass of the system shown in Fig. 1.100.

1.54 Figure 1.101 shows an offset slider-crank mechanism with a crank length r, connecting

rod length l, and offset If the crank has a mass and mass moment of inertia of and

respectively, at its center of mass A, the connecting rod has a mass and mass moment

of inertia of and respectively, at its center of mass C, and the piston has a mass 

determine the equivalent rotational inertia of the system about the center of rotation of the

crank, point O.

mp,Jc,mc

Jr,

mrd.
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Section 1.9 Damping Elements

1.55 Find a single equivalent damping constant for the following cases:

a. When three dampers are parallel.

b. When three dampers are in series.

c. When three dampers are connected to a rigid bar (Fig. 1.102) and the equivalent damper

is at site c1.

k2

k1

Sphere, mass ms

rs

No slip

90

l2

O

l1

m

Bell crank lever,
mass moment of
inertia J0

x(t)

FIGURE 1.100

O

B

r

C D

mc , Jc

mp

mr, Jr

ll1

l2

d

f

y

x

FIGURE 1.101 Slider-crank mechanism.
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d. When three torsional dampers are located on geared shafts (Fig. 1.103) and the equivalent

damper is at location 

Hint: The energy dissipated by a viscous damper in a cycle during harmonic motion is given

by where c is the damping constant, is the frequency, and X is the amplitude of

oscillation.

vpcvX2,

ct1
.

Number of teeth

n1

n2

n3

ct
1

ct
2

ct
3

Oil

FIGURE 1.103 Dampers located on geared shafts.

c1
x1 c2

x2 c3
x3

l1

l2

l3

Pivot

FIGURE 1.102 Dampers connected to a
rigid bar.

1.56 Consider a system of two dampers, with damping constants and arranged in parallel as

shown in Fig. 1.104. The rigid bar to which the two dampers are connected remains horizon-

tal when the force F is zero. Determine the equivalent damping constant of the system 

that relates the force applied (F) to the resulting velocity (v) as 

Hint: Because the damping constants of the two dampers are different and the distances 

and are not the same, the rigid bar will not remain horizontal when the force F is applied.

1.57* Design a piston-cylinder-type viscous damper to achieve a damping constant of 1 lb-sec/in.

using a fluid of viscosity 

1.58* Design a shock absorber (piston-cylinder-type dashpot) to obtain a damping constant of 

lb-sec/in. using SAE 30 oil at 70°F. The diameter of the piston has to be less than 2.5 in.

105

4 mreyn (1 reyn = 1 lb-sec/in.2).

l2

l1

F = cev.

(ce)

c2,c1
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1.59 Develop an expression for the damping constant of the rotational damper shown in Fig. 1.105

in terms of and where denotes the constant angular velocity of the inner

cylinder, and d and h represent the radial and axial clearances between the inner and outer

cylinders.

vm,D, d, l, h, v,

c1 c2

F

v

l1 l2

FIGURE 1.104 Parallel dampers sub-
jected to load.

*

Fluid of

viscosity m

D

l

FIGURE 1.105

1.60 Consider two nonlinear dampers with the same force-velocity relationship given by

with F in newtons and v in meters/second. Find the linearized

damping constant of the dampers at an operating velocity of 10 m/s.

1.61 If the linearized dampers of Problem 1.60 are connected in parallel, determine the resulting

equivalent damping constant.

1.62 If the linearized dampers of Problem 1.60 are connected in series, determine the resulting

equivalent damping constant.

F = 1000v + 400v2
+ 20v3
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1.63 The force-velocity relationship of a nonlinear damper is given by 

where F is in newtons and v is in meters/second. Find the linearized damping constant of the

damper at an operating velocity of 5 m/s. If the resulting linearized damping constant is used

at an operating velocity of 10 m/s, determine the error involved.

1.64 The experimental determination of damping force corresponding to several values of the

velocity of the damper yielded the following results:

F = 500v + 100v2
+ 50v3,

Damping force (newtons) 80 150 250 350 500 600

Velocity of damper (meters/second) 0.025 0.045 0.075 0.110 0.155 0.185

Determine the damping constant of the damper.

1.65 A flat plate with a surface area of moves above a parallel flat surface with a lubricant

film of thickness 1.5 mm in between the two parallel surfaces. If the viscosity of the lubricant

is 0.5 Pa-s, determine the following:

a. Damping constant.

b. Damping force developed when the plate moves with a velocity of 2 m/s.

1.66 Find the torsional damping constant of a journal bearing for the following data: Viscosity of

the lubricant 0.35 Pa-s, Diameter of the journal or shaft (2 R): 0.05 m, Length of the

bearing (l): 0.075 m, Bearing clearance (d): 0.005 m. If the journal rotates at a speed (N) of

3000 rpm, determine the damping torque developed.

1.67 If each of the parameters ( R, l, d, and N) of the journal bearing described in Problem 1.66 is

subjected to a variation about the corresponding value given, determine the percentage

fluctuation in the values of the torsional damping constant and the damping torque developed.

Note: The variations in the parameters may have several causes, such as measurement error,

manufacturing tolerances on dimensions, and fluctuations in the operating temperature of the

bearing.

1.68 Consider a piston with an orifice in a cylinder filled with a fluid of viscosity as shown in

Fig. 1.106. As the piston moves in the cylinder, the fluid flows through the orifice, giving rise

to a friction or damping force. Derive an expression for the force needed to move the piston

with a velocity v and indicate the type of damping involved.

Hint: The mass flow rate of the fluid (q) passing through an orifice is given by 

where is a constant for a given fluid, area of cross section of the cylinder (or area of piston),

and area of the orifice [1.52].

1.69 The force (F)-velocity relationship of a nonlinear damper is given by

where a and b are constants. Find the equivalent linear damping constant when the relative

velocity is 5 m/s with N-s/m and b = 0.2 N-s2/m2.a = 5

F = ax
#
+ bx

# 2

(x
#
)

a

q = a 2¢p,

m

;5%
m,

(m):

0.25 m2
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1.70 The damping constant (c) due to skin-friction drag of a rectangular plate moving in a fluid of

viscosity is given by (see Fig. 1.107):

Design a plate-type damper (shown in Fig. 1.42) that provides an identical damping constant

for the same fluid.

c = 100ml
2
d

m

Piston rod

Viscous
fluid

Cylinder
(fixed)

Piston with orifice

F

(force)

v 
(velocity)

FIGURE 1.106 Piston and cylinder with orifice flow.

l

vd

FIGURE 1.107

1.71 The damping constant (c) of the dashpot shown in Fig. 1.108 is given by [1.27]:

Determine the damping constant of the dashpot for the following data: Pa-s,

1.72 In Problem 1.71, using the given data as reference, find the variation of the damping constant

c when

a. r is varied from 0.5 cm to 1.0 cm.

b. h is varied from 0.05 cm to 0.10 cm.

c. a is varied from 2 cm to 4 cm.

l = 10 cm, h = 0.1 cm, a = 2 cm, r = 0.5 cm.

m = 0.3445

c =

6pml

h
3

 B ¢a -

h

2

2

- r
2
R C

a
2
- r

2

a -

h

2

- hS
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2r

a

h

l

FIGURE 1.108

A
F

c2 + 15N*s/m

N*s/mc1 + 10

0.25 m

0.75 m

0.25 m

O

FIGURE 1.109 Rigid bar connected
by dampers.

1.73 A massless bar of length 1 m is pivoted at one end and subjected to a force F at the other end. 

Two translational dampers, with damping constants and are 

connected to the bar as shown in Fig. 1.109. Determine the equivalent damping constant, 

of the system so that the force F at point A can be expressed as where v is the lin-

ear velocity of point A.

1.74 Find an expression for the equivalent translational damping constant of the system shown in

Fig. 1.110 so that the force F can be expressed as where v is the velocity of the

rigid bar A.

F = ceqv,

F = ceqv,

ceq,

c2 = 15 N-s/mc1 = 10 N-s/m
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c1

c1

c2

F

v

c2

Rigid bar A

FIGURE 1.110 Dampers connected in series-parallel.

Section 1.10 Harmonic Motion

1.75 Express the complex number in the exponential form 

1.76 Add the two complex numbers and and express the result in the form 

1.77 Subtract the complex number from and express the result in the form 

1.78 Find the product of the complex numbers and and express the

result in the form 

1.79 Find the quotient, of the complex numbers and and

express the result in the form 

1.80 The foundation of a reciprocating engine is subjected to harmonic motions in x and y directions:

where X and Y are the amplitudes, is the angular velocity, and is the phase difference.

a. Verify that the resultant of the two motions satisfies the equation of the ellipse given by

(see Fig. 1.111):

(E.1)

b. Discuss the nature of the resultant motion given by Eq. (E.1) for the special cases of

and 

Note: The elliptic figure represented by Eq. (E.1) is known as a Lissajous figure and is

useful in interpreting certain types of experimental results (motions) displayed by

oscilloscopes.

f = p.f = 0, f =
p

2
,

x2

X2
+

y2

Y2
- 2 

xy

XY
 cos f = sin2 f

fv

y(t)  = Y cos(vt + f)

x(t) = X cos vt

Aeiu.

z2 = (3 - 4i)z1 = (1 + 2i)z1/z2,

Aeiu.

z2 = (3 - 4i)z1 = (1 + 2i)

Aeiu.(3 - 4i)(1 + 2i)

Aeiu.(3 - 4i)(1 + 2i)

Aeiu.5 + 2i
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1.81 The foundation of an air compressor is subjected to harmonic motions (with the same fre-

quency) in two perpendicular directions. The resultant motion, displayed on an oscilloscope,

appears as shown in Fig. 1.112. Find the amplitudes of vibration in the two directions and the

phase difference between them.

x

y

A

P

O
t

B

t

OA + X

OB + Y

f

v

v

FIGURE 1.111 Lissajous figure.

x (mm)

y (mm)

12

10

8

6

4

2

*2

*8 *6 *4 *2 0 2 4 6 8 10 12

*4

*6

*8

FIGURE 1.112
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1.82 A machine is subjected to the motion The initial conditions are

given by and 

a. Find the constants A and 

b. Express the motion in the form and identify the constants

and 

1.83 Show that any linear combination of and such that 

represents a simple harmonic motion.

1.84 Find the sum of the two harmonic motions and 

Use:

a. Trigonometric relations

b. Vector addition

c. Complex-number representation

1.85 If one of the components of the harmonic motion is 

find the other component.

1.86 Consider the two harmonic motions and Is the sum

a periodic motion? If so, what is its period?

1.87 Consider two harmonic motions of different frequencies: and 

Is the sum a harmonic motion? If so, what is its period?

1.88 Consider the two harmonic motions and Is the difference

a harmonic motion? If so, what is its period?

1.89 Find the maximum and minimum amplitudes of the combined motion 

when and Also find the frequency of beats correspond-

ing to x(t).

1.90 A machine is subjected to two harmonic motions, and the resultant motion, as displayed by an

oscilloscope, is shown in Fig. 1.113. Find the amplitudes and frequencies of the two motions.

1.91 A harmonic motion has an amplitude of 0.05 m and a frequency of 10 Hz. Find its period,

maximum velocity, and maximum acceleration.

1.92 An accelerometer mounted on a building frame indicates that the frame is vibrating harmon-

ically at 15 cps, with a maximum acceleration of 0.5g. Determine the amplitude and the max-

imum velocity of the building frame.

1.93 The maximum amplitude and the maximum acceleration of the foundation of a centrifugal

pump were found to be and Find the operating speed of the

pump.

1.94 An exponential function is expressed as with the values of x(t) known at 

and as and Determine the values of A and a.x(2) = 0.226795.x(1) = 0.752985t = 2

t = 1x(t) = Ae-at

x
$

max = 0.4g.xmax = 0.25 mm

x2(t) = 3 sin 29t.x1(t) = 3 sin 30t

x(t) = x1(t) + x2(t)

x(t) = x1(t) - x2(t)

x2(t) = cos pt.x1(t) =
1

2 cos 
p

2  t

x1(t) + x2(t)

x2(t) = cos 3t.x1(t) = 2 cos 2t

x1(t) + x2(t)

x2(t) = sin pt.x1(t) =
1

2 cos 
p

2  t

(vt + 30°),

x1(t) = 5 sinx(t) = 10 sin(vt + 60°)

x2(t) = 10 cos(3t + 2).x1(t) = 5 cos(3t + 1)

sin vt (A1, A2 = constants)

x(t) = A1 cos vt + A2cos vtsin vt

A2.A1

x(t) = A1 cos vt + A2 sin vt,

a.

x
#
(0) = 1.0 m/s.x(0) = 3 mm

x(t) = A cos(50t + a) mm.
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1.95 When the displacement of a machine is given by where x is measured in

millimeters and t in seconds, find (a) the period of the machine in sec, and (b) the frequency

of oscillation of the machine in rad/sec as well as in Hz.

1.96 If the motion of a machine is described as determine

the values of A and B.

1.97 Express the vibration of a machine given by in the form

1.98 If the displacement of a machine is given by where x is in meters

and t is in seconds, find the variations of the velocity and acceleration of the machine. Also

find the amplitudes of displacement, velocity, and acceleration of the machine.

1.99 If the displacement of a machine is described as where x is

in inches and t is in seconds, find the expressions for the velocity and acceleration of the

machine. Also find the amplitudes of displacement, velocity, and acceleration of the machine.

1.100 The displacement of a machine is expressed as where x is in

meters and t is in seconds. If the displacement of the machine at is known to be

0.04 m, determine the value of the phase angle 

1.101 The displacement of a machine is expressed as where x is in meters

and t is in seconds. If the displacement and the velocity of the machine at are known to

be 0.05 m and 0.005 m/s, determine the values of A and 

1.102 A machine is found to vibrate with simple harmonic motion at a frequency of 20 Hz and an

amplitude of acceleration of 0.5g. Determine the displacement and velocity of the machine.

Use the value of g as 9.81 m/s2.

f.

t = 0

x(t) = A sin(6 t + f),

f.

t = 0

x(t) = 0.05 sin(6 t + f),

x(t) = 0.15 sin 4 t + 2.0 cos 4 t,

x(t) = 0.2 sin(5 t + 3),

x(t) = A cos(5 t + f).

x(t) = -3.0 sin 5 t - 2.0 cos 5 t

8 sin(5 t + 1) = A sin 5 t + B cos 5 t,

x(t) = 18 cos 8t,

t, ms

x(t), mm

6

4

2

0
1 8 9 10 11 122 43 5 6 7

*2

*4

*6

FIGURE 1.113
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A

x(t)

0

2 2

3tt 5t

2
2t tt

FIGURE 1.114

1.103 The amplitudes of displacement and acceleration of an unbalanced turbine rotor are found to

be 0.5 mm and 0.5g, respectively. Find the rotational speed of the rotor using the value of g

as 

1.104 The root mean square (rms) value of a function, x(t), is defined as the square root of the aver-

age of the squared value of x(t) over a time period 

Using this definition, find the rms value of the function

1.105 Using the definition given in Problem 1.104, find the rms value of the function shown in

Fig. 1.54(a).

Section 1.11 Harmonic Analysis

1.106 Prove that the sine Fourier components are zero for even functions that is, when

Also prove that the cosine Fourier components ( and ) are zero for odd

functions that is, when 

1.107 Find the Fourier series expansions of the functions shown in Figs. 1.58(ii) and (iii). Also,

find their Fourier series expansions when the time axis is shifted down by a distance A.

1.108 The impact force created by a forging hammer can be modeled as shown in Fig. 1.114.

Determine the Fourier series expansion of the impact force.

x(- t) = -x(t).

ana0x(- t) = x(t).

(bn)

x(t) = X sin vt = X sin 
2pt

t

xrms = A
1

tL

t

0

[x(t)]2 dt

t:

9.81 m/s2.

1.109 Find the Fourier series expansion of the periodic function shown in Fig. 1.115. Also plot the

corresponding frequency spectrum.

1.110 Find the Fourier series expansion of the periodic function shown in Fig. 1.116. Also plot the

corresponding frequency spectrum.

1.111 Find the Fourier series expansion of the periodic function shown in Fig. 1.117. Also plot the

corresponding frequency spectrum.
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A

*A

x(t)

0
2t tt

FIGURE 1.116

1.112 The Fourier series of a periodic function, x(t), is an infinite series given by

(E.1)

where

(E.2)

(E.3)

(E.4)bn =
v

p3

2p

v

0

x(t) sin nvt dt

an =
v

p3

2p

v

0

x(t) cos nvt dt

a0 =
v

p3

2p

v

0

x(t) dt

x(t) =
a0

2
+ a

q

n=1

  (an cos nvt + bn sin nvt)

A

x(t)

0
2tt t

FIGURE 1.115

A

x(t)

0
2t tt

FIGURE 1.117
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is the circular frequency and is the time period. Instead of including the infinite

number of terms in Eq. (E.1), it is often truncated by retaining only k terms as

(E.5)

so that the error, e(t), becomes

(E.6)

Find the coefficients and which minimize the square of the error over a time

period:

(E.7)

Compare the expressions of and with Eqs. (E.2) to (E.4) and state your observation(s).

1.113 Conduct a harmonic analysis, including the first three harmonics, of the function given

below:

b
'

na
'

0, a
'

n,

L

p

v

-
p

v

e2(t) dt

b
'

na
'

0, a
'

n,

e(t) = x(t) - x
'

(t)

x(t) L x
'

(t) =
a
'

0

2
+ a

k

n=1
  ( a
'

n cos nvt + b
'

n sin nvt)

2p>vv

1.114 In a centrifugal fan (Fig. 1.118(a)), the air at any point is subjected to an impulse each time a

blade passes the point, as shown in Fig. 1.118(b). The frequency of these impulses is deter-

mined by the speed of rotation of the impeller n and the number of blades, N, in the impeller.

For and determine the first three harmonics of the pressure fluctuation

shown in Fig. 1.118(b).

N = 4,n = 100 rpm

ti 0.02 0.04 0.06 0.08 0.10 0.12 0.14 0.16 0.18

xi 9 13 17 29 43 59 63 57 49

ti 0.20 0.22 0.24 0.26 0.28 0.30 0.32

xi 35 35 41 47 41 13 7

A

Pressure (psi)

0

4 4
9t

4
5tt 3t2t t (sec)

pmax * 100

Impeller

(a) Centrifugal fan (b) Ideal pressure fluctuation at a point

n

t

FIGURE 1.118
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TABLE 1.3

t (s) Mt (N-m) t (s) Mt (N-m) t (s) Mt (N-m)

0.00050 770 0.00450 1890 0.00850 1050

0.00100 810 0.00500 1750 0.00900 990

0.00150 850 0.00550 1630 0.00950 930

0.00200 910 0.00600 1510 0.01000 890

0.00250 1010 0.00650 1390 0.01050 850

0.00300 1170 0.00700 1290 0.01100 810

0.00350 1370 0.00750 1190 0.01150 770

0.00400 1610 0.00800 1110 0.01200 750

1.115 Solve Problem 1.114 by using the values of n and N as 200 rpm and 6 instead of 100 rpm and

4, respectively.

1.116 The torque variation with time, of an internal combustion engine, is given in Table 1.3.

Make a harmonic analysis of the torque. Find the amplitudes of the first three harmonics.

(Mt)

1.117 Make a harmonic analysis of the function shown in Fig. 1.119 including the first three

harmonics.

40

30

20

10

F
o

rc
e
 (

N
)

Time (s)

0

0 0.1 0.2 0.3 0.4 0.5 0.6

*10

*20

*30

*40

FIGURE 1.119

Section 1.12 Examples Using MATLAB

1.118 Plot the Fourier series expansion of the function x(t) given in Problem 1.113 using

MATLAB.

1.119 Use MATLAB to plot the variation of the force with time using the Fourier series expansion

determined in Problem 1.117.
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1.120 Use MATLAB to plot the variations of the damping constant c with respect to r, h, and a as

determined in Problem 1.72.

1.121 Use MATLAB to plot the variation of spring stiffness (k) with deformation (x) given by the

relations:

a.

b.

1.122 A mass is subjected to two harmonic motions given by and

Plot the resultant motion of the mass using MATLAB and identify the 

beat frequency and the beat period.

x2(t) = 3 sin 29t.

x1(t) = 3 sin 30t

k = 500 + 500x
2
; 0 x 4.

k = 1000x - 100x
2
; 0 x 4.

DESIGN PROJECTS

1.123*A slider-crank mechanism is shown in Fig. 1.120. Derive an expression for the motion of the

piston P in terms of the crank length r, the connecting-rod length l, and the constant angular

velocity of the crank 

a. Discuss the feasibility of using the mechanism for the generation of harmonic motion.

b. Find the value of I/r for which the amplitude of every higher harmonic is smaller than that

of the first harmonic by a factor of at least 25.

v.

C

Q

B

A

x

P

O

xp

l

r

* vt

v

u

f

FIGURE 1.120
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1.124*The vibration table shown in Fig. 1.121 is used to test certain electronic components for

vibration. It consists of two identical mating gears and that rotate about the axes 

and attached to the frame F. Two equal masses, m each, are placed symmetrically about

the middle vertical axis as shown in Fig. 1.121. During rotation, an unbalanced vertical

force of magnitude where and velocity of gears,

will be developed, causing the table to vibrate. Design a vibration table that can develop a

force in the range 0 100 N over a frequency range 25 50 Hz.

v = angularu = vtP = 2mv2r cos u,

O2

O1G2G1

O2O1

G2

F

Spring

Object
being tested

G1

m

r r

m

u u

v v

FIGURE 1.121 A vibration table.

1.125*The arrangement shown in Fig. 1.122 is used to regulate the weight of material fed from a

hopper to a conveyor [1.44]. The crank imparts a reciprocating motion to the actuating rod

through the wedge. The amplitude of motion imparted to the actuating rod can be varied by

moving the wedge up or down. Since the conveyor is pivoted about point O, any overload on

the conveyor makes the lever OA tilt downward, thereby raising the wedge. This causes a

reduction in the amplitude of the actuating rod and hence the feed rate. Design such a

weight-regulating system to maintain the weight at lb per minute.

1.126*Figure 1.123 shows a vibratory compactor. It consists of a plate cam with three profiled

lobes and an oscillating roller follower. As the cam rotates, the roller drops after each rise.

Correspondingly, the weight attached at the end of the follower also rises and drops. The

10 ; 0.1

M01_RAO8193_05_SE_C01.QXD  8/21/10  2:06 PM  Page 121



122 CHAPTER 1 FUNDAMENTALS OF VIBRATION

A O

Wedge

Pivot point

Hopper

Conveyor

Crank

Actuating rod

FIGURE 1.122 A vibratory weight-regulating system.

contact between the roller and the cam is maintained by the spring. Design a vibration com-

pactor that can apply a force of 200 lb at a frequency of 50 Hz.

1.127*Vibratory bowl feeders are widely used in automated processes where a high volume of

identical parts are to be oriented and delivered at a steady rate to a workstation for further

tooling [1.45, 1.46]. Basically, a vibratory bowl feeder is separated from the base by a set of

inclined elastic members (springs), as shown in Fig. 1.124. An electromagnetic coil

mounted between the bowl and the base provides the driving force to the bowl. The vibra-

tory motion of the bowl causes the components to move along the spiral delivery track

located inside the bowl with a hopping motion. Special tooling is fixed at suitable positions

along the spiral track in order to reject the parts that are defective or out of tolerance or have

Roller

Lobes

Plate cam
Weight

Spring

Follower

FIGURE 1.123 A vibratory compactor.
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Bowl

Outlet

Base

Electromagnet
Elastic supports
(springs)

Spiral delivery
track

FIGURE 1.124 A vibratory bowl feeder.

incorrect orientation. What factors must be considered in the design of such vibratory bowl

feeders?

1.128*The shell-and-tube exchanger shown in Fig. 1.125(a) can be modeled as shown in Fig.

1.125(b) for a simplified vibration analysis. Find the cross-sectional area of the tubes so that

the total stiffness of the heat exchanger exceeds a value of N/m in the axial direc-

tion and N-m/rad in the tangential direction. Assume that the tubes have the same

length and cross section and are spaced uniformly.

20 * 10
6

200 * 10
6

Effect of baffles neglected

76 steel tubes

2 m

(b)(a)

1 m

FIGURE 1.125 (Part (a) courtesy of Young Radiator Company.)
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Sir Isaac Newton (1642 1727) was an English natural philosopher, a professor of
mathematics at Cambridge University, and president of the Royal Society. His
Principia Mathematica (1687), which deals with the laws and conditions of
motion, is considered to be the greatest scientific work ever produced. The defini-
tions of force, mass, and momentum and his three laws of motion crop up contin-
ually in dynamics. Quite fittingly, the unit of force named newton  in SI units
happens to be the approximate weight of an average apple, the falling object that
inspired him to study the laws of gravity. (Illustration of David Eugene Smith,
History of Mathematics, Vol. I General Survey of the History of Elementary

Mathematics, Dover Publications, Inc., New York, 1958.)
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This chapter starts with a consideration of the free vibration of an undamped single-degree-

of-freedom (spring-mass) system. Free vibration means that the mass is set into motion

due to initial disturbance with no externally applied force other than the spring force,

damper force, or gravitational force. To study the free-vibration response of the mass, we

need to derive the governing equation, known as the equation of motion. The equation of

motion of the undamped translational system is derived using four methods. The natural

frequency of vibration of the system is defined and the solution of the equation of motion

is presented using appropriate initial conditions. The solution is shown to represent har-

monic motion. The equation of motion and the solution corresponding to free vibration of

an undamped torsional system are presented. The response of first-order systems and the

time constant are considered. Rayleigh s method, based on the principle of conservation of

energy, is presented with illustrative examples.

Next, the derivation of the equation for the free vibration of a viscously damped single-

degree-of-freedom system and its solution are considered. The concepts of critical damp-

ing constant, damping ratio, and frequency of damped vibration are introduced. The

distinctions between underdamped, critically damped, and overdamped systems are

explained. The energy dissipated in viscous damping and the concepts of specific damp-

ing and loss coefficient are considered. Viscously damped torsional systems are also con-

sidered analogous to viscously damped translational systems with applications. The

graphical representation of characteristic roots and the corresponding solutions as well as

the concept of parameter variations and root locus plots are considered. The equations of

motion and their solutions of single-degree-of-freedom systems with Coulomb and hys-

teretic damping are presented. The concept of complex stiffness is also presented. The

idea of stability and its importance is explained along with an example. The determina-

tion of the responses of single-degree-of-freedom systems using MATLAB is illustrated

with examples.

Learning Objectives

After completing this chapter, you should be able to do the following:

* Derive the equation of motion of a single-degree-of-freedom system using a suitable

technique such as Newton s second law of motion, D Alembert s principle, the prin-

ciple of virtual displacements, and the principle of conservation of energy.

* Linearize the nonlinear equation of motion.

* Solve a spring-mass-damper system for different types of free-vibration response

depending on the amount of damping.

* Compute the natural frequency, damped frequency, logarithmic decrement, and time

constant.

* Determine whether a given system is stable or not.

* Find the responses of systems with Coulomb and hysteretic damping.

* Find the free-vibration response using MATLAB.
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*x

*x, x, x

k

m m

(a) (b) (c)

O

Stretched length

Free length

+ l0
x

kx

FIGURE 2.1 A spring-mass system in horizontal position.

2.1 Introduction

A system is said to undergo free vibration when it oscillates only under an initial distur-

bance with no external forces acting afterward. Some examples are the oscillations of the

pendulum of a grandfather clock, the vertical oscillatory motion felt by a bicyclist after hit-

ting a road bump, and the motion of a child on a swing after an initial push.

Figure 2.1(a) shows a spring-mass system that represents the simplest possible vibra-

tory system. It is called a single-degree-of-freedom system, since one coordinate (x) is suf-

ficient to specify the position of the mass at any time. There is no external force applied to

the mass; hence the motion resulting from an initial disturbance will be free vibration.

meq

keq

FIGURE 2.2

Equivalent spring-

mass system for 

the cam-follower

system of Fig. 1.32.
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FIGURE 2.3 The space needle (structure).

Since there is no element that causes dissipation of energy during the motion of the mass,

the amplitude of motion remains constant with time; it is an undamped system. In actual

practice, except in a vacuum, the amplitude of free vibration diminishes gradually over

time, due to the resistance offered by the surrounding medium (such as air). Such vibra-

tions are said to be damped. The study of the free vibration of undamped and damped

single-degree-of-freedom systems is fundamental to the understanding of more advanced

topics in vibrations.

Several mechanical and structural systems can be idealized as single-degree-of-freedom

systems. In many practical systems, the mass is distributed, but for a simple analysis, it can

be approximated by a single point mass. Similarly, the elasticity of the system, which may

be distributed throughout the system, can also be idealized by a single spring. For the cam-

follower system shown in Fig. 1.39, for example, the various masses were replaced by an

equivalent mass in Example 1.7. The elements of the follower system (pushrod,

rocker arm, valve, and valve spring) are all elastic but can be reduced to a single equivalent

spring of stiffness For a simple analysis, the cam-follower system can thus be idealized

as a single-degree-of-freedom spring-mass system, as shown in Fig. 2.2.

Similarly, the structure shown in Fig. 2.3 can be considered a cantilever beam that is

fixed at the ground. For the study of transverse vibration, the top mass can be considered a

keq.

(meq)

M02_RAO8193_5_SE_C02.QXD  8/21/10  4:02 PM  Page 127



128 CHAPTER 2 FREE VIBRATION OF SINGLE-DEGREE-OF-FREEDOM SYSTEMS

(b) Equivalent spring-
mass system

(a) Building frame

Elastic columns
(mass is negligible)

Rigid floor
(mass * m)

x(t)

x(t)x(t)

k

m

FIGURE 2.5 Idealization of a building frame.

(a) Idealization of the
tall structure

(b) Equivalent
spring-mass system

x(t)

k

m

m
m

l

x(t)

3EI

l
3

k *

FIGURE 2.4 Modeling of tall structure as spring-mass system.

point mass and the supporting structure (beam) can be approximated as a spring to

obtain the single-degree-of-freedom model shown in Fig. 2.4. The building frame shown in

Fig. 2.5(a) can also be idealized as a spring-mass system, as shown in Fig. 2.5(b). In this

case, since the spring constant k is merely the ratio of force to deflection, it can be deter-

mined from the geometric and material properties of the columns. The mass of the ideal-

ized system is the same as that of the floor if we assume the mass of the columns to be

negligible.
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2.2 FREE VIBRATION OF AN UNDAMPED TRANSLATIONAL SYSTEM 129

Using Newton s second law of motion, in this section we will consider the derivation of the

equation of motion. The procedure we will use can be summarized as follows:

1. Select a suitable coordinate to describe the position of the mass or rigid body in the

system. Use a linear coordinate to describe the linear motion of a point mass or the

centroid of a rigid body, and an angular coordinate to describe the angular motion of

a rigid body.

2. Determine the static equilibrium configuration of the system and measure the dis-

placement of the mass or rigid body from its static equilibrium position.

3. Draw the free-body diagram of the mass or rigid body when a positive displacement

and velocity are given to it. Indicate all the active and reactive forces acting on the

mass or rigid body.

4. Apply Newton s second law of motion to the mass or rigid body shown by the free-

body diagram. Newton s second law of motion can be stated as follows:

The rate of change of momentum of a mass is equal to the force acting on it.

Thus, if mass m is displaced a distance when acted upon by a resultant force in

the same direction, Newton s second law of motion gives

If mass m is constant, this equation reduces to

(2.1)

where

is the acceleration of the mass. Equation (2.1) can be stated in words as

For a rigid body undergoing rotational motion, Newton s law gives

(2.2)

where is the resultant moment acting on the body and and are the

resulting angular displacement and angular acceleration, respectively. Equation (2.1) or

(2.2) represents the equation of motion of the vibrating system.

The procedure is now applied to the undamped single-degree-of-freedom system

shown in Fig. 2.1(a). Here the mass is supported on frictionless rollers and can have

u

!
*

= d2u(t)>dt2u

!
M
!

M
!

(t) = Ju
!
*

Resultant force on the mass = mass * acceleration

x
!
* =

d2 x
!
(t)

dt2

F
!
(t) = m 

d2 x
!
(t)

dt2
= mx

!
*

F
!
(t) =

d

dt
 +m 

d x
!
(t)

dt
*

F
!
(t)x

!
(t)

2.2.1
Equation of
Motion Using
Newton s Second
Law of Motion

2.2 Free Vibration of an Undamped Translational System
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130 CHAPTER 2 FREE VIBRATION OF SINGLE-DEGREE-OF-FREEDOM SYSTEMS

translatory motion in the horizontal direction. When the mass is displaced a distance 

from its static equilibrium position, the force in the spring is kx, and the free-body diagram

of the mass can be represented as shown in Fig. 2.1(c). The application of Eq. (2.1) to mass

m yields the equation of motion

or

(2.3)mx
$
+ kx = 0

F(t) = -kx = mx
$

+x

2.2.2
Equation of
Motion Using
Other Methods

As stated in Section 1.6, the equations of motion of a vibrating system can be derived using

several methods. The applications of D Alembert s principle, the principle of virtual dis-

placements, and the principle of conservation of energy are considered in this section.

D Alembert s Principle. The equations of motion, Eqs. (2.1) and (2.2), can be rewritten as

(2.4a)

(2.4b)

These equations can be considered equilibrium equations provided that and are

treated as a force and a moment. This fictitious force (or moment) is known as the inertia

force (or inertia moment) and the artificial state of equilibrium implied by Eq. (2.4a) or

(2.4b) is known as dynamic equilibrium. This principle, implied in Eq. (2.4a) or (2.4b), is

called D Alembert s principle. Applying it to the system shown in Fig. 2.1(c) yields the

equation of motion:

(2.3)

Principle of Virtual Displacements. The principle of virtual displacements states that

if a system that is in equilibrium under the action of a set of forces is subjected to a virtual

displacement, then the total virtual work done by the forces will be zero.  Here the virtual

displacement is defined as an imaginary infinitesimal displacement given instantaneously.

It must be a physically possible displacement that is compatible with the constraints of the

system. The virtual work is defined as the work done by all the forces, including the inertia

forces for a dynamic problem, due to a virtual displacement.

Consider a spring-mass system in a displaced position as shown in Fig. 2.6(a), where

x denotes the displacement of the mass. Figure 2.6(b) shows the free-body diagram of the

mass with the reactive and inertia forces indicated. When the mass is given a virtual dis-

placement as shown in Fig. 2.6(b), the virtual work done by each force can be com-

puted as follows:

 Virtual work done by the inertia force = dWi = -(mx
$
) dx

 Virtual work done by the spring force = dWs = -(kx) dx

dx,

-kx - mx
$
= 0 or mx

$
+ kx = 0

-Ju
!
*

-mx
!
*

M
!
(t) - Ju

!
*

 = 0

F
!

(t) - mx
!
* = 0
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2.2 FREE VIBRATION OF AN UNDAMPED TRANSLATIONAL SYSTEM 131

When the total virtual work done by all the forces is set equal to zero, we obtain

(2.5)

Since the virtual displacement can have an arbitrary value, Eq. (2.5) gives the

equation of motion of the spring-mass system as

(2.3)

Principle of Conservation of Energy. A system is said to be conservative if no energy

is lost due to friction or energy-dissipating nonelastic members. If no work is done on a

conservative system by external forces (other than gravity or other potential forces), then

the total energy of the system remains constant. Since the energy of a vibrating system is

partly potential and partly kinetic, the sum of these two energies remains constant. The

kinetic energy T is stored in the mass by virtue of its velocity, and the potential energy U is

stored in the spring by virtue of its elastic deformation. Thus the principle of conservation

of energy can be expressed as:

or

(2.6)

The kinetic and potential energies are given by

(2.7)

and

(2.8)

Substitution of Eqs. (2.7) and (2.8) into Eq. (2.6) yields the desired equation

(2.3)mx 
$
+ kx = 0

U =
1
2 kx2

T =
1
2 mx 

#
 2

d

dt
 (T + U) = 0

T + U = constant

mx 
$
+ kx = 0

dx Z 0,

-mx
$
dx - kx dx = 0

(a) Mass under a
displacement x

(b) Free-body diagram

k

m m m

x dx

dx

m
kx

(reactive
force)

+mx

(inertia
force)

*x, x, x

FIGURE 2.6 Mass under virtual displacement.
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132 CHAPTER 2 FREE VIBRATION OF SINGLE-DEGREE-OF-FREEDOM SYSTEMS

2.2.3
Equation of
Motion of a
Spring-Mass
System in
Vertical Position

Consider the configuration of the spring-mass system shown in Fig. 2.7(a). The mass

hangs at the lower end of a spring, which in turn is attached to a rigid support at its upper

end. At rest, the mass will hang in a position called the static equilibrium position, in

which the upward spring force exactly balances the downward gravitational force on the

mass. In this position the length of the spring is where is the static deflection

the elongation due to the weight W of the mass m. From Fig. 2.7(a), we find that, for static

equilibrium,

(2.9)

where g is the acceleration due to gravity. Let the mass be deflected a distance from its

static equilibrium position; then the spring force is as shown in Fig. 2.7(c).

The application of Newton s second law of motion to mass m gives

and since we obtain

(2.10)mx
$
+ kx = 0

kdst = W,

mx
$
= -k(x + dst) + W

-k(x + dst),
+x

W = mg = kdst

dstl0 + dst  
,

Static equilibrium
position

Final position

(a)

Spring force

Potential
energy

Static equilibrium
position

(d)(c)

O

kx

x

k

m m

O

x

W  mg

(b)

W  kx

x

l0  dst

kdst

m

W

k(dst  x)

dst

FIGURE 2.7 A spring-mass system in vertical position.
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2.2 FREE VIBRATION OF AN UNDAMPED TRANSLATIONAL SYSTEM 133

Notice that Eqs. (2.3) and (2.10) are identical. This indicates that when a mass moves

in a vertical direction, we can ignore its weight, provided we measure x from its static equi-

librium position.

Note: Equation (2.10), the equation of motion of the system shown in Fig. 2.7, can

also be derived using D Alembert s principle, the principle of virtual displacements, or the

principle of conservation of energy. If we use the latter, for example, we note that the

expression for the kinetic energy, T, remains the same as Eq. (2.7). However, the expres-

sion for the potential energy, U, is to be derived by considering the weight of the mass. For

this we note that the spring force at static equilibrium position is mg. When the

spring deflects by an amount x, its potential energy is given by (see Fig. 2.7(d)):

Furthermore, the potential energy of the system due to the change in elevation of the mass

(note that is downward) is Thus the net potential energy of the system about the

static equilibrium position is given by

Since the expressions of T and U remain unchanged, the application of the principle of

conservation of energy gives the same equation of motion, Eq. (2.3).

 = mgx +
1

2
 kx2

- mgx =
1

2
 kx2

 + change in potential energy due to change in elevation of the mass m

U = potential energy of the spring

-mgx.+x

mgx +
1

2
 kx2

(x = 0)

2.2.4

Solution

The solution of Eq. (2.3) can be found by assuming

(2.11)

where C and s are constants to be determined. Substitution of Eq. (2.11) into Eq. (2.3)

gives

Since C cannot be zero, we have

(2.12)

and hence

(2.13)s = ; + -  

k

m
*

1/2

= ; ivn

ms2
+ k = 0

C(ms2
+ k) = 0

x(t) = Cest
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2.2.5

Harmonic

Motion

Equations (2.15), (2.16), and (2.18) are harmonic functions of time. The motion is sym-

metric about the equilibrium position of the mass m. The velocity is a maximum and the

acceleration is zero each time the mass passes through this position. At the extreme dis-

placements, the velocity is zero and the acceleration is a maximum. Since this represents

simple harmonic motion (see Section 1.10), the spring-mass system itself is called a

harmonic oscillator. The quantity given by Eq. (2.14), represents the system s natural

frequency of vibration.

Equation (2.16) can be expressed in a different form by introducing the notation

(2.19) A2 = A sin f

 A1 = A cos f

vn

where and

(2.14)

Equation (2.12) is called the auxiliary or the characteristic equation corresponding to the dif-

ferential Eq. (2.3). The two values of s given by Eq. (2.13) are the roots of the characteristic

equation, also known as the eigenvalues or the characteristic values of the problem. Since

both values of s satisfy Eq. (2.12), the general solution of Eq. (2.3) can be expressed as

(2.15)

where and are constants. By using the identities

Eq. (2.15) can be rewritten as

(2.16)

where and are new constants. The constants and or and can be deter-

mined from the initial conditions of the system. Two conditions are to be specified to eval-

uate these constants uniquely. Note that the number of conditions to be specified is the

same as the order of the governing differential equation. In the present case, if the values of

displacement x(t) and velocity are specified as and at we

have, from Eq. (2.16),

(2.17)

Hence and Thus the solution of Eq. (2.3) subject to the initial con-

ditions of Eq. (2.17) is given by

(2.18)x(t) = x0 cos vnt +
x 
#

0

vn

 sin vnt

A2 = x 
#

0/vn.A1 = x0

 x 
#
(t = 0) = vnA2 = x 

#

0

 x(t = 0) = A1 = x0

t = 0,x 
#

0x0x 
#
(t) = (dx/dt)(t)

A2A1C2C1A2A1

x(t) = A1 cos vnt + A2 sin vnt

e; ia t
= cos at ; i sin at

C2C1

x(t) = C1e
ivn t

+ C2e-ivn t

vn = +
k

m
*

1/2

i = (-1)1/2
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2.2 FREE VIBRATION OF AN UNDAMPED TRANSLATIONAL SYSTEM 135

where A and are the new constants, which can be expressed in terms of and as

(2.20)

Introducing Eq. (2.19) into Eq. (2.16), the solution can be written as

(2.21)

By using the relations

(2.22)

Eq. (2.16) can also be expressed as

(2.23)

where

(2.24)

and

(2.25)

The nature of harmonic oscillation can be represented graphically as in Fig. 2.8(a). If 

denotes a vector of magnitude A, which makes an angle with respect to the

vertical (x) axis, then the solution, Eq. (2.21), can be seen to be the projection of the vector

on the x-axis. The constants and of Eq. (2.16), given by Eq. (2.19), are merely the 

rectangular components of along two orthogonal axes making angles and 

with respect to the vector Since the angle is a linear function of time, it

increases linearly with time; the entire diagram thus rotates counterclockwise at an angular

velocity As the diagram (Fig. 2.8a) rotates, the projection of onto the x-axis varies 

harmonically so that the motion repeats itself every time the vector sweeps an angle of

The projection of namely x(t), is shown plotted in Fig. 2.8(b) as a function of 

and as a function of t in Fig. 2.8(c). The phase angle can also be interpreted as the angle

between the origin and the first peak.

f

vnt,A
!
,2p.

A
!

A
!

vn.

vnt - fA
!
.

-(
p
2 - f)fA

!
A2A1A

!

vnt - f

A
!

f0 = tan-1
¢

x0vn

x 
#
0

A0 = A = Bx0
2

+ ¢
x 
#
0

vn

2

R

1/2

x(t) = A0 sin (vnt + f0)

 A2 = A0 cos f0

 A1 = A0 sin f0

x(t) = A cos (vnt - f)

 f = tan-1
¢

A2

A1

= tan-1
¢

x 
#
0

x0vn

= phase angle

 A = (A1
2

+ A2
2)1/2

= Bx0
2

+ ¢
x 
#
0

vn

2

R

1/2

= amplitude

A2A1f
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Note the following aspects of the spring-mass system:

1. If the spring-mass system is in a vertical position, as shown in Fig. 2.7(a), the circu-

lar natural frequency can be expressed as

(2.26)vn = +
k

m
*

1/2

A1 A2

O

O

x(t)x

(a) (b)

Velocity maximum

x(t) + A cos (vnt , f)

x(t) + A cos (vnt , f)

A

*

x(t)

t

(c)

Amplitude,

A1A

Slope + x0

x0

A + x0
2 * 

x0
2

2
1

vnt

vn

vn
tn +

vnt , f

f

vn

vn

f

vnt
f

2-

2-

FIGURE 2.8 Graphical representation of the motion of a harmonic oscillator.
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2.2 FREE VIBRATION OF AN UNDAMPED TRANSLATIONAL SYSTEM 137

The spring constant k can be expressed in terms of the mass m from Eq. (2.9) as

(2.27)

Substitution of Eq. (2.27) into Eq. (2.14) yields

(2.28)

Hence the natural frequency in cycles per second and the natural period are given by

(2.29)

(2.30)

Thus, when the mass vibrates in a vertical direction, we can compute the natural fre-

quency and the period of vibration by simply measuring the static deflection We

don t need to know the spring stiffness k and the mass m.

2. From Eq. (2.21), the velocity and the acceleration of the mass m at time t can

be obtained as

(2.31)

Equation (2.31) shows that the velocity leads the displacement by and the accel-

eration leads the displacement by 

3. If the initial displacement is zero, Eq. (2.21) becomes

(2.32)

If the initial velocity is zero, however, the solution becomes

(2.33)x(t) = x0 cos vnt

(x 
#

0)

x(t) =
x 
#

0

vn
 cos +vnt -

p

2
* =

x 
#

0

vn
 sin vnt

(x0)
p.

p/2

 x
$
(t) =

d2x

dt2
 (t) = -vn

2A cos (vnt - f) = vn
2A cos (vnt - f + p)

 x 
#
(t) =

dx

dt
 (t) = -vnA sin (vnt - f) = vnA cos +vnt - f +

p

2
*

x
$
(t)x 

#
(t)

dst.

 tn =
1

fn
= 2p +

dst

g
*

1/2

 fn =
1

2p
 +

g

dst

*

1/2

vn = +
g

dst

*

1/2

k =
W

dst

=
mg

dst
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138 CHAPTER 2 FREE VIBRATION OF SINGLE-DEGREE-OF-FREEDOM SYSTEMS

4. The response of a single-degree-of-freedom system can be represented in the dis-

placement (x)-velocity -plane, known as the state space or phase plane. For this we

consider the displacement given by Eq. (2.21) and the corresponding velocity:

or

(2.34)

or

(2.35)

where By squaring and adding Eqs. (2.34) and (2.35), we obtain

or

(2.36)

The graph of Eq. (2.36) in the (x, y)-plane is a circle, as shown in Fig. 2.9(a), and

it constitutes the phase-plane or state-space representation of the undamped sys-

tem. The radius of the circle, A, is determined by the initial conditions of motion.

Note that the graph of Eq. (2.36) in the -plane will be an ellipse, as shown in

Fig. 2.9(b).

(x, x 
#
)

x2

A2
+

y2

A2
= 1

cos2(vnt - f) + sin2(vnt - f) = 1

y = x 
#
/vn.

sin(vnt - f) = -  

x 
#

Avn

= -  

y

A

 x 
#
(t) = -Avn sin (vnt - f)

 cos(vnt - f) =
x

A

x(t) = A cos (vnt - f)

(b)

O

A
x

y *
x

x

(a)

O
x

A

A

vn

Avn

FIGURE 2.9 Phase-plane representation of an undamped system.
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2.2 FREE VIBRATION OF AN UNDAMPED TRANSLATIONAL SYSTEM 139

E X A M P L E  2 . 1
Harmonic Response of a Water Tank

The column of the water tank shown in Fig. 2.10(a) is 300 ft high and is made of reinforced concrete

with a tubular cross section of inner diameter 8 ft and outer diameter 10 ft. The tank weighs lb

when filled with water. By neglecting the mass of the column and assuming the Young s modulus of

reinforced concrete as psi, determine the following:

a. the natural frequency and the natural time period of transverse vibration of the water tank.

b. the vibration response of the water tank due to an initial transverse displacement of 10 in.

c. the maximum values of the velocity and acceleration experienced by the water tank.

Solution: Assuming that the water tank is a point mass, the column has a uniform cross section, and

the mass of the column is negligible, the system can be modeled as a cantilever beam with a

concentrated load (weight) at the free end as shown in Fig. 2.10(b).

a. The transverse deflection of the beam, due to a load P is given by where l is the length, E

is the Young s modulus, and I is the area moment of inertia of the beam s cross section. The

stiffness of the beam (column of the tank) is given by

k =
P

d
=

3EI

l3

Pl3

3EI,d,

4 * 106

6 * 105

l

m

x(t)

(b)(a)

FIGURE 2.10 Elevated tank. (Photo courtesy of West Lafayette Water Company.)
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140 CHAPTER 2 FREE VIBRATION OF SINGLE-DEGREE-OF-FREEDOM SYSTEMS

In the present case, 

and hence

The natural frequency of the water tank in the transverse direction is given by

The natural time period of transverse vibration of the tank is given by

b. Using the initial displacement of and the initial velocity of the water tank as

zero, the harmonic response of the water tank can be expressed, using Eq. (2.23), as

where the amplitude of transverse displacement is given by

and the phase angle by

Thus

(E.1)

c. The velocity of the water tank can be found by differentiating Eq. (E.1) as

(E.2)

and hence

x 
#

max = A0vn = 10(0.9977) = 9.977 in./sec

x 
#
(t) = 10(0.9977) cos ¢0.9977t +

p

2

x(t) = 10 sin ¢0.9977t +
p

2
= 10 cos 0.9977t in.

f0 = tan-1
¢

x0vn

0
=
p

2

(f0)

A0 = Bx0
2
+ ¢

x 
#

0

vn

2

R

1/2

= x0 = 10 in.

(A0)

x(t) = A0 sin (vnt + f0)

(x 
#

0)x0 = 10 in.

tn =
2p

vn

=
2p

0.9977
= 6.2977 sec

vn =
A

k

m
=
A

1545.6672 * 386.4

6 * 105
= 0.9977 rad/sec

k =

3(4 * 106)(600.9554 * 104)

36003
= 1545.6672 lb/in.

I =
p

64
 (d0

4
- di

4) =
p

64
 (1204

- 964) = 600.9554 * 104
 in.4

l = 3600 in., E = 4 * 106 psi,
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The acceleration of the water tank can be determined by differentiating Eq. (E.2) as

(E.3)

and hence the maximum value of acceleration is given by

*

x
$

max = A0(vn)2
= 10(0.9977)2

= 9.9540 in./sec2

x
$
(t) = -10(0.9977)2 sin +0.9977t +

p

2
*

E X A M P L E  2 . 2
Free-Vibration Response Due to Impact

A cantilever beam carries a mass M at the free end as shown in Fig. 2.11(a). A mass m falls from a

height h onto the mass M and adheres to it without rebounding. Determine the resulting transverse

vibration of the beam.

Solution: When the mass m falls through a height h, it will strike the mass M with a velocity of

where g is the acceleration due to gravity. Since the mass m adheres to M without

rebounding, the velocity of the combined mass immediately after the impact can be

found using the principle of conservation of momentum:

mvm = (M + m)x 
#

0

(x 
#

0)(M + m)
vm = 22gh,

m

MYY YY

x0  
mg

k

m

M

k 
3EI

l3

Young's modulus, E
Moment of inertia, I

l

h

x(t)
ZZ

x(t)

k

M

m

k

2gh

(a)

YY  static equilibrium position of M
ZZ  static equilibrium position of M  m

(b) (c)

vm 

FIGURE 2.11 Response due to impact.
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or

(E.1)

The static equilibrium position of the beam with the new mass is located at a distance of

below the static equilibrium position of the original mass (M) as shown in Fig. 2.11(c). Here k

denotes the stiffness of the cantilever beam, given by

Since free vibration of the beam with the new mass occurs about its own static equilibrium

position, the initial conditions of the problem can be stated as

(E.2)

Thus the resulting free transverse vibration of the beam can be expressed as (see Eq. (2.21)):

where

with and given by Eq. (E.2).

*

x 
#

0x0

 vn = A
k

M + m
= A

3EI

l3(M + m)

 f = tan-1
¢

x 
#

0

x0vn

 A = Bx0
2
+ ¢

x 
#

0

vn

2

R

1/2

x(t) = A cos (vnt - f)

x0 = -  

mg

k
,    x 

#

0 = ¢
m

M + m
22gh

(M + m)

k =
3EI

l3

mg
k

(M + m)

x 
#

0 = ¢
m

M + m
vm = ¢

m

M + m
22gh

E X A M P L E  2 . 3
Young s Modulus from Natural Frequency Measurement

A simply supported beam of square cross section and length 1 m, carrying a mass of

2.3 kg at the middle, is found to have a natural frequency of transverse vibration of 30 rad/s. Deter-

mine the Young s modulus of elasticity of the beam.

Solution: By neglecting the self weight of the beam, the natural frequency of transverse vibration of

the beam can be expressed as

(E.1)vn = A
k

m

5 mm * 5 mm
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2.2 FREE VIBRATION OF AN UNDAMPED TRANSLATIONAL SYSTEM 143

where

(E.2)

where E is the Young s modulus, l is the length, and I is the area moment of inertia of the beam:

Since and Eqs. (E.1) and (E.2) yield

or

This indicates that the material of the beam is probably carbon steel.

*

E =
mvn

2l3

192I
=

2.3(30.0)2(1.0)3

192(0.5208 * 10-10)
= 207.0132 * 109 N/m2

k =
192EI

l3
= mvn

2

vn = 30.0 rad/s,m = 2.3 kg, l = 1.0 m,

I =
1

12
 (5 * 10-3)(5 * 10-3)3

= 0.5208 * 10-10 m4

k =
192EI

l3

E X A M P L E  2 . 4
Natural Frequency of Cockpit of a Firetruck

The cockpit of a firetruck is located at the end of a telescoping boom, as shown in Fig. 2.12(a). The

cockpit, along with the fireman, weighs 2000 N. Find the cockpit s natural frequency of vibration in

the vertical direction.

Data: Young s modulus of the material: lengths: cross-

sectional areas: 

Solution: To determine the system s natural frequency of vibration, we find the equivalent stiffness

of the boom in the vertical direction and use a single-degree-of-freedom idealization. For this we

assume that the mass of the telescoping boom is negligible and the telescoping boom can deform

only in the axial direction (with no bending). Since the force induced at any cross section is

equal to the axial load applied at the end of the boom, as shown in Fig. 2.12(b), the axial stiffness of

the boom is given by

(E.1)

where denotes the axial stiffness of the ith segment of the boom:

(E.2)

From the known data 

 kb1
=

(20 * 10-4)(2.1 * 1011)

3
= 14 * 107 N/m

E3 = 2.1 * 1011 N/m2),

E1 = E2 =A3 = 5 cm2,A2 = 10 cm2;(l1 = l2 = l3 = 3 m, A1 = 20 cm2,

kbi
=

AiEi

li
;    i = 1, 2, 3

kbi

1

kb

=
1

kb1

+
1

kb2

+
1

kb3

(kb)

O1 O2

A1 = 20 cm2, A2 = 10 cm2, A3 = 5 cm2.

l1 = l2 = l3 = 3 m;E = 2.1 * 1011 N/m2;
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Thus Eq. (E.1) gives

or

The stiffness of the telescoping boom in the vertical direction, k, can be determined as

The natural frequency of vibration of the cockpit in the vertical direction is given by

vn =
A

k

m
=
A

(107)(9.81)

2000
= 221.4723 rad/s

k = kb cos2 45° = 107 N/m

kb = 2 * 107 N/m

1

kb

=
1

14 * 107
+

1

7 * 107
+

1

3.5 * 107
=

1

2 * 107

 kb3
=

(5 * 10-4)(2.1 * 1011)

3
= 3.5 * 107 N/m

 kb2
=

(10 * 10-4)(2.1 * 1011)

3
= 7 * 107 N/m

(a)

(b)

P

l3, A3

l2, A2

l1, A1

Bucket

S

R

Telescoping arm

45

Q

P

O1

O2

l3 l2 l1

FIGURE 2.12 Telescoping boom of a fire truck.

*
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E X A M P L E  2 . 5
Natural Frequency of Pulley System

Determine the natural frequency of the system shown in Fig. 2.13(a). Assume the pulleys to be fric-

tionless and of negligible mass.

Solution: To determine the natural frequency, we find the equivalent stiffness of the system and

solve it as a single-degree-of-freedom problem. Since the pulleys are frictionless and massless, the

tension in the rope is constant and is equal to the weight W of the mass m. From the static equilibrium

of the pulleys and the mass (see Fig. 2.13(b)), it can be seen that the upward force acting on pulley 1

is 2W and the downward force acting on pulley 2 is 2W. The center of pulley 1 (point A) moves up by

a distance and the center of pulley 2 (point B) moves down by Thus the total

movement of the mass m (point O) is

as the rope on either side of the pulley is free to move the mass downward. If denotes the equiv-

alent spring constant of the system,

Weight of the mass

Equivalent spring constant
= Net displacement of the mass

keq

2+
2W

k1
+

2W

k2
*

2W/k2.2W/k1,

Pulley 1

k2

k1

Pulley 2

m

A,

A

k1x1

k1x1 + 2W

x1 +

W W

W

W + mg

mx

O
m

x1

2W
k1

B

B,

k2x2

k2x2 + 2W

x2 +

W W x2

2W
k2

O,

x + 2(x1 * x2)

(a) (b)

**

FIGURE 2.13 Pulley system.
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(E.1)

By displacing mass m from the static equilibrium position by x, the equation of motion of the mass

can be written as

(E.2)

and hence the natural frequency is given by

(E.3)

or

(E.4)

*

2.3 Free Vibration of an Undamped Torsional System
If a rigid body oscillates about a specific reference axis, the resulting motion is called

torsional vibration. In this case, the displacement of the body is measured in terms of an

angular coordinate. In a torsional vibration problem, the restoring moment may be due to

the torsion of an elastic member or to the unbalanced moment of a force or couple.

Figure 2.14 shows a disc, which has a polar mass moment of inertia mounted at

one end of a solid circular shaft, the other end of which is fixed. Let the angular rotation of

the disc about the axis of the shaft be also represents the shaft s angle of twist. From

the theory of torsion of circular shafts [2.1], we have the relation

(2.37)

where is the torque that produces the twist G is the shear modulus, l is the length of

the shaft, is the polar moment of inertia of the cross section of the shaft, given by

(2.38)

and d is the diameter of the shaft. If the disc is displaced by from its equilibrium position,

the shaft provides a restoring torque of magnitude Thus the shaft acts as a torsional

spring with a torsional spring constant

(2.39)kt =
Mt

u
=

GI0

l
=
pGd4

32l

Mt.
u

I0 =
pd4

32

Io

u,Mt

Mt =
GI0

l
 u

u; u

J0,

fn =
vn

2p
=

1

4p
 B

k1k2

m(k1 + k2)
R

1/2

 cycles/sec

vn = ¢

keq

m

1/2

= B
k1k2

4m(k1 + k2)
R

1/2

 rad/sec

mx
$
+ keqx = 0

 keq =
k1k2

4(k1 + k2)

 
W

keq

= 4W¢
1

k1
+

1

k2
=

4W(k1 + k2)

k1k2
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2.3.1
Equation 
of Motion

The equation of the angular motion of the disc about its axis can be derived by using New-

ton s second law or any of the methods discussed in Section 2.2.2. By considering the free-

body diagram of the disc (Fig. 2.14b), we can derive the equation of motion by applying

Newton s second law of motion:

(2.40)

which can be seen to be identical to Eq. (2.3) if the polar mass moment of inertia the

angular displacement and the torsional spring constant are replaced by the mass m, the

displacement x, and the linear spring constant k, respectively. Thus the natural circular fre-

quency of the torsional system is

(2.41)

and the period and frequency of vibration in cycles per second are

(2.42)

(2.43)fn =
1

2p
 +

kt

J0

*

1/2

tn = 2p+
J0

kt

*

1/2

vn = +
kt

J0

*

1/2

ktu,

J0,

J0 u
  

* + ktu = 0

l

D

(a) (b)

d

Shaft

Disc

J0
J0

h

, ,* **

ktu

u

u u u

FIGURE 2.14 Torsional vibration of a disc.
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Note the following aspects of this system:

1. If the cross section of the shaft supporting the disc is not circular, an appropriate tor-

sional spring constant is to be used [2.4, 2.5].

2. The polar mass moment of inertia of a disc is given by

where is the mass density, h is the thickness, D is the diameter, and W is the weight

of the disc.

3. The torsional spring-inertia system shown in Fig. 2.14 is referred to as a torsional

pendulum. One of the most important applications of a torsional pendulum is in a

mechanical clock, where a ratchet and pawl convert the regular oscillation of a small

torsional pendulum into the movements of the hands.

r

J0 =
rhpD4

32
=

WD2

8g

2.3.2
Solution

The general solution of Eq. (2.40) can be obtained, as in the case of Eq. (2.3):

(2.44)

where is given by Eq. (2.41) and and can be determined from the initial condi-

tions. If

(2.45)

the constants and can be found:

(2.46)

Equation (2.44) can also be seen to represent a simple harmonic motion.

 A2 = u  *0 
/vn

 A1 = u0

A2A1

u(t = 0) = u0 and u  *(t = 0) =
du

dt
 (t = 0) = u  *0

A2A1vn

u(t) = A1 cos vnt + A2 sin vnt

E X A M P L E  2 . 6
Natural Frequency of Compound Pendulum

Any rigid body pivoted at a point other than its center of mass will oscillate about the pivot point

under its own gravitational force. Such a system is known as a compound pendulum (Fig. 2.15). Find

the natural frequency of such a system.

Solution: Let O be the point of suspension and G be the center of mass of the compound pendulum,

as shown in Fig. 2.15. Let the rigid body oscillate in the xy-plane so that the coordinate can be used

to describe its motion. Let d denote the distance between O and G, and the mass moment of inertia

of the body about the z-axis (perpendicular to both x and y). For a displacement the restoring

torque (due to the weight of the body W) is and the equation of motion is

(E.1)J0u
  

+ + Wd sin u = 0

(Wd sin u)
u,

J0

u
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Note that Eq. (E.1) is a second-order nonlinear ordinary differential equation. Although it is possible

to find an exact solution of this equation (see Section 13.3), exact solutions cannot be found for most

nonlinear differential equations. An approximate solution of Eq. (E.1) can be found by one of two

methods. A numerical procedure can be used to integrate Eq. (E.1). Alternatively, Eq. (E.1) can be

approximated by a linear equation whose exact solution can be determined readily. To use the latter

approach, we assume small angular displacements so that is small and Hence Eq. (E.1)

can be approximated by the linear equation:

(E.2)

This gives the natural frequency of the compound pendulum:

(E.3)

Comparing Eq. (E.3) with the natural frequency of a simple pendulum, (see Problem

2.61), we can find the length of the equivalent simple pendulum:

(E.4)

If is replaced by where is the radius of gyration of the body about O, Eqs. (E.3) and (E.4)

become

(E.5)

(E.6) l = +
k0

2

d
*

 vn = +
gd

k0
2
*

1/2

k0mk0
2,J0

l =
J0

md

vn = (g/l)1/2

vn = +
Wd

J0
*

1/2

= +
mgd

J0
*

1/2

J0u
  

* + Wdu = 0

sin u L u.u

y

x

W + mg

A

G

B

 O

d

*u

u

FIGURE 2.15 Compound pendulum.
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If denotes the radius of gyration of the body about G, we have

(E.7)

and Eq. (E.6) becomes

(E.8)

If the line OG is extended to point A such that

(E.9)

Eq. (E.8) becomes

(E.10)

Hence, from Eq. (E.5), is given by

(E.11)

This equation shows that, no matter whether the body is pivoted from O or A, its natural frequency is

the same. The point A is called the center of percussion.

*

Center of Percussion. The concepts of compound pendulum and center of percussion

can be used in many practical applications:

1. A hammer can be shaped to have the center of percussion at the hammer head while

the center of rotation is at the handle. In this case, the impact force at the hammer

head will not cause any normal reaction at the handle (Fig. 2.16(a)).

2. In a baseball bat, if on one hand the ball is made to strike at the center of percussion

while the center of rotation is at the hands, no reaction perpendicular to the bat will

be experienced by the batter (Fig. 2.16(b)). On the other hand, if the ball strikes the

bat near the free end or near the hands, the batter will experience pain in the hands as

a result of the reaction perpendicular to the bat.

3. In Izod (impact) testing of materials, the specimen is suitably notched and held in a

vise fixed to the base of the machine (see Fig. 2.16(c)). A pendulum is released from

a standard height, and the free end of the specimen is struck by the pendulum as it

passes through its lowest position. The deformation and bending of the pendulum

can be reduced if the center of percussion is located near the striking edge. In this

case, the pivot will be free of any impulsive reaction.

4. In an automobile (shown in Fig. 2.16(d)), if the front wheels strike a bump, the pas-

sengers will not feel any reaction if the center of percussion of the vehicle is located

near the rear axle. Similarly, if the rear wheels strike a bump at point A, no reaction

vn = b
g

(k0
2/d)

r

1/2

= ¢
g

l

1/2

= ¢
g

OA

1/2

vn

l = GA + d = OA

GA =
kG
2

d

l = ¢
kG
2

d
+ d

k0
2
= kG

2
+ d2

kG
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will be felt at the front axle (point O) if the center of percussion is located near the

front axle. It is desirable, therefore, to have the center of oscillation of the vehicle at

one axle and the center of percussion at the other axle [2.2].

2.4 Response of First-Order Systems and Time Constant
Consider a turbine rotor mounted in bearings as shown in Fig. 2.17(a). The viscous fluid

(lubricant) in the bearings offers viscous damping torque during the rotation of the turbine

rotor. Assuming the mass moment of inertia of the rotor about the axis of rotation as J and

the rotational damping constant of the bearings as the application of Newton s second

law of motion yields the equation of motion of the rotor as

(2.47)

where is the angular velocity of the rotor, is the time rate of change of the angular 

velocity, and the external torque applied to the system is assumed to be zero. We assume

the initial angular velocity, as the input and the angular velocity of the

rotor as the output of the system. Note that the angular velocity, instead of the angular dis-

placement, is considered as the output in order to obtain the equation of motion as a first

order differential equation.

The solution of the equation of motion of the rotor, Eq. (2.47), can be found by assuming

the trial solution as

(2.48)

where A and s are unknown constants. By using the initial condition, Eq.

(2.48) can be written as

(2.49)v(t) = v0e
st

v(t = 0) = v0,

v(t) = Aest

v(t = 0) = v0,

v

#
=

dv

dt
v

Jv
#
+ ctv = 0

ct,

A

A

A

O
O

(a) (b) (c) (d)

Pivot O

Pendulum

Specimen

Vise O A

u

FIGURE 2.16 Applications of center of percussion.
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By substituting Eq. (2.49) into Eq. (2.47), we obtain

(2.50)

Since leads to no motion  of the rotor, we assume and Eq. (2.50) can be

satisfied only if

(2.51)

Equation (2.51) is known as the characteristic equation which yields Thus the

solution, Eq. (2.49), becomes

(2.52)

The variation of the angular velocity, given by Eq. (2.52), with time is shown in Fig.

2.17(b). The curve starts at decays and approaches zero as t increases without limit. Inv0,

v(t) = v0e
- 

c
t

J
 t

s = -  

ct

J
.

Js + ct = 0

v0 Z 0v0 = 0

v0e
st
(Js + ct) = 0

Rotor in bearings

Variation of angular velocity

v(t)

v(t) * v0 e
+

c
t

J
t

v0

0.368 v0

tO
t

Turbine rotor
(mass moment of inertia J)

Lubricant
Bearing LubricantBearing

v

(a)

(b)

FIGURE 2.17
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dealing with exponentially decaying responses, such as the one given by Eq. (2.52), it is

convenient to describe the response in terms of a quantity known as the time constant

The time constant is defined as the value of time which makes the exponent in Eq. (2.52) 

equal to Because the exponent of Eq. (2.52) is known to be the time constant

will be equal to

(2.53)

so that Eq. (2.52) gives, for 

(2.54)

Thus the response reduces to 0.368 times its initial value at a time equal to the time con-

stant of the system.

2.5 Rayleigh s Energy Method
For a single-degree-of-freedom system, the equation of motion was derived using the

energy method in Section 2.2.2. In this section, we shall use the energy method to find the

natural frequencies of single-degree-of-freedom systems. The principle of conservation of

energy, in the context of an undamped vibrating system, can be restated as

(2.55)

where the subscripts 1 and 2 denote two different instants of time. Specifically, we use the

subscript 1 to denote the time when the mass is passing through its static equilibrium posi-

tion and choose as reference for the potential energy. If we let the subscript 2 indi-

cate the time corresponding to the maximum displacement of the mass, we have 

Thus Eq. (2.55) becomes

(2.56)

If the system is undergoing harmonic motion, then and denote the maximum values

of T and U, respectively, and Eq. (2.56) becomes

(2.57)

The application of Eq. (2.57), which is also known as Rayleigh s energy method, gives the

natural frequency of the system directly, as illustrated in the following examples.

Tmax = Umax

U2T1

T1 + 0 = 0 + U2

T2 = 0.

U1 = 0

T1 + U1 = T2 + U2

v(t) = v0e
- 

c
t

J  t
= v0e

-1
= 0.368v0

t = t,

t =
J

ct

-  

ct

J
 t,-1.

(t).

E X A M P L E  2 . 7
Manometer for Diesel Engine

The exhaust from a single-cylinder four-stroke diesel engine is to be connected to a silencer, and the

pressure therein is to be measured with a simple U-tube manometer (see Fig. 2.18). Calculate the

minimum length of the manometer tube so that the natural frequency of oscillation of the mercury

column will be 3.5 times slower than the frequency of the pressure fluctuations in the silencer at an

engine speed of 600 rpm. The frequency of pressure fluctuation in the silencer is equal to

Number of cylinders * Speed of the engine

2
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Solution

1. Natural frequency of oscillation of the liquid column: Let the datum in Fig. 2.18 be taken as

the equilibrium position of the liquid. If the displacement of the liquid column from the equi-

librium position is denoted by x, the change in potential energy is given by

(E.1)

where A is the cross-sectional area of the mercury column and is the specific weight of mer-

cury. The change in kinetic energy is given by

(E.2)

where l is the length of the mercury column. By assuming harmonic motion, we can write

(E.3)

where X is the maximum displacement and is the natural frequency. By substituting 

Eq. (E.3) into Eqs. (E.1) and (E.2), we obtain

(E.4)

(E.5)T = Tmax sin2 
vnt

U = Umax cos2 
vnt

vn

x(t) = X cos vnt

 =
1

2
 
Alg

g
 x 
# 2

T =
1

2
 (mass of mercury)(velocity)2

g

 = (Axg) 

x

2
+ (Axg) 

x

2
= Agx2

 mercury depressed * displacement of the C.G. of the segment)

 = (weight of mercury raised * displacement of the C.G. of the segment) + (weight of

 U = potential energy of raised liquid column + potential energy of depressed liquid column

x

x

l

Datum

FIGURE 2.18 U-tube manometer.
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where

(E.6)

and

(E.7)

By equating to we obtain the natural frequency:

(E.8)

2. Length of the mercury column: The frequency of pressure fluctuations in the silencer

(E.9)

Thus the frequency of oscillations of the liquid column in the manometer is 

By using Eq. (E.8), we obtain

(E.10)

or

(E.11)

*

l =
2.0 * 9.81

(9.0)2
= 0.243 m

+
2g

l
*

1/2

= 9.0

10p/3.5 = 9.0 rad/sec.

 =
300 * 2p

60
= 10p rad/sec

 = 300 rpm

 =
1 * 600

2

vn = +
2g

l
*

1/2

Tmax,Umax

Tmax =
1

2
 
Aglvn

2

g
 X2

Umax = AgX2

E X A M P L E  2 . 8
Effect of Mass on of a Spring

Determine the effect of the mass of the spring on the natural frequency of the spring-mass system

shown in Fig. 2.19.

Solution: To find the effect of the mass of the spring on the natural frequency of the spring-mass

system, we add the kinetic energy of the system to that of the attached mass and use the energy

method to determine the natural frequency. Let l be the total length of the spring. If x denotes the

displacement of the lower end of the spring (or mass m), the displacement at distance y from the

support is given by y(x/l). Similarly, if denotes the velocity of the mass m, the velocity of a spring

element located at distance y from the support is given by The kinetic energy of the spring

element of length dy is

(E.1)dTs =
1

2
 +

ms

l
 dy* +

yx 
#

l
*

2

y(x 
#
/l).

x 
#

V
n
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where is the mass of the spring. The total kinetic energy of the system can be expressed as

(E.2)

The total potential energy of the system is given by

(E.3)

By assuming a harmonic motion

(E.4)

where X is the maximum displacement of the mass and is the natural frequency, the maximum

kinetic and potential energies can be expressed as

(E.5)

(E.6)

By equating and we obtain the expression for the natural frequency:

(E.7)

Thus the effect of the mass of the spring can be accounted for by adding one-third of its mass to the

main mass [2.3].

*

vn = -

k

m +
ms

3

+

1/2

Umax,Tmax

Umax =
1

2
 kX2

 Tmax =
1

2
 ,m +

ms

3
*X2

vn
2

vn

x(t) = X cos vnt

U =
1
2 kx2

 =
1

2
 mx 

# 2
+

1

2
 
ms

3
 x 
# 2

 =
1

2
 mx 

# 2
+

L

l

y=0

 

1

2
 ,

ms

l
 dy* ,

y2x 
# 2

l2
*

T = kinetic energy of mass (Tm) + kinetic energy of spring (Ts)

ms

l

y

dy

m

x(t)

FIGURE 2.19 Equivalent mass of a

spring.
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E X A M P L E  2 . 9
Effect of Mass of Column on Natural Frequency of Water Tank

Find the natural frequency of transverse vibration of the water tank considered in Example 2.1 and

Fig. 2.10 by including the mass of the column.

Solution: To include the mass of the column, we find the equivalent mass of the column at the free

end using the equivalence of kinetic energy and use a single-degree-of-freedom model to find the

natural frequency of vibration. The column of the tank is considered as a cantilever beam fixed at one

end (ground) and carrying a mass M (water tank) at the other end. The static deflection of a cantilever

beam under a concentrated end load is given by (see Fig. 2.20):

(E.1)

The maximum kinetic energy of the beam itself is given by

(E.2)

where m is the total mass and (m/l) is the mass per unit length of the beam. Equation (E.1) can be

used to express the velocity variation, as

(E.3)

and hence Eq. (E.2) becomes

(E.4) =
1

2
 
m

l
 
y
#

max
2

4l6
 +

33

35
 l7
* =

1

2
 +

33

140
 m*  y

#

max
2

 Tmax =

m

2l
 +

y
#

max

2l3
*

2

3

 l

0 
 (3x2l - x3)2

 dx

y
#

(x) =

y
#

max

2l3
 (3x2l - x3)

y
#

(x),

Tmax =

1

23

 l

0 
m

l
 5y
#

(x)62 dx

(Tmax)

 =
ymax

2l3
 (3x2l - x3)

 y(x) =

Px2

6EI
 (3l - x) =

ymaxx2

2l3
 (3l - x)

l

x P

y(x)
ymax *

Pl3

3EI

FIGURE 2.20 Equivalent mass of the column.
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If denotes the equivalent mass of the cantilever (water tank) at the free end, its maximum kinetic

energy can be expressed as

(E.5)

By equating Eqs. (E.4) and (E.5), we obtain

(E.6)

Thus the total effective mass acting at the end of the cantilever beam is given by

(E.7)

where M is the mass of the water tank. The natural frequency of transverse vibration of the water

tank is given by

(E.8)

*

2.6 Free Vibration with Viscous Damping

vn = A
k

Meff

=

Q

k

M +
33

140
 m

Meff = M + meq

meq =
33

140
 m

Tmax =
1

2
 meqy

#

max
2

meq

2.6.1
Equation 
of Motion

As stated in Section 1.9, the viscous damping force F is proportional to the velocity or v

and can be expressed as

(2.58)

where c is the damping constant or coefficient of viscous damping and the negative sign indi-

cates that the damping force is opposite to the direction of velocity. A single-degree-of-freedom

system with a viscous damper is shown in Fig. 2.21. If x is measured from the equilibrium posi-

tion of the mass m, the application of Newton s law yields the equation of motion:

or

(2.59)mx
$

+ cx 
#
+ kx = 0

mx
$

= -cx 
#
- kx

F = -  cx 
#

x 
#

2.6.2
Solution

To solve Eq. (2.59), we assume a solution in the form

(2.60)

where C and s are undetermined constants. Inserting this function into Eq. (2.59) leads to

the characteristic equation

(2.61)ms2 + cs + k = 0

x(t) = Cest
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2.6 FREE VIBRATION WITH VISCOUS DAMPING 159

the roots of which are

(2.62)

These roots give two solutions to Eq. (2.59):

(2.63)

Thus the general solution of Eq. (2.59) is given by a combination of the two solutions 

and :

(2.64)

where and are arbitrary constants to be determined from the initial conditions of the

system.

Critical Damping Constant and the Damping Ratio. The critical damping is

defined as the value of the damping constant c for which the radical in Eq. (2.62) becomes

zero:

+
cc

2m
*

2

-
k

m
= 0

cc

C2C1

 = C1e
E- 

c
2m+3A

c
2mB

2
-

k
mFt

+ C2eE-  
c

2m  - 3A
c

2m B
2
-

k
mFt

 x(t) = C1e
s1t + C2es2t

x2(t)

x1(t)

x1(t) = C1e
s1t and x2(t) = C2es2t

s1,2 =
-  c ; 4c2

- 4mk

2m
= -  

c

2m
; C+

c

2m
*

2

-
k

m

m m

k c

O

*x

*x

kx cx

System Free-body diagram

(a) (b)

FIGURE 2.21 Single-degree-of-freedom system

with viscous damper.
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or

(2.65)

For any damped system, the damping ratio is defined as the ratio of the damping constant

to the critical damping constant:

(2.66)

Using Eqs. (2.66) and (2.65), we can write

(2.67)

and hence

(2.68)

Thus the solution, Eq. (2.64), can be written as

(2.69)

The nature of the roots and and hence the behavior of the solution, Eq. (2.69), depends

upon the magnitude of damping. It can be seen that the case leads to the undamped

vibrations discussed in Section 2.2. Hence we assume that and consider the follow-

ing three cases.

Case 1. Underdamped system ( or or ). For this condition,

is negative and the roots and can be expressed as

and the solution, Eq. (2.69), can be written in different forms:

 = e- 
zvnt

bC1 
cos 21 - z2vnt + C2 sin21 - z2vntr

 = e- 
zvnt

b (C1 + C2) cos 21 - z2vnt + i(C1 - C2) sin 21 - z2vnt r

 = e- 
zvnt

bC1e
i21-z2vnt

+ C2e- 
i21-z2vnt

r

 x(t) = C1e
(- z+ i21-z2)vnt

+ C2e(- z-i21-z2)vnt

 s2 = (-  z - i21 - z2)vn

 s1 = (-  z + i21 - z2)vn

s2s1(z2
- 1)

c/2m 6 2k/mc 6 ccz 6 1

z Z 0

z = 0

s2s1

x(t) = C1e
(- z+2z2

-1)vnt
+ C2e(- z-2z2

-1)vnt

s1,2 = (-  z ; 2z2
- 1) vn

c

2m
=

c

cc

#
cc

2m
= zvn

z = c/cc

z

cc = 2mA
k

m
= 22km = 2mvn
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(2.70)

where and are arbitrary constants to be determined from the

initial conditions.

For the initial conditions and and can be found:

(2.71)

and hence the solution becomes

(2.72)

The constants and can be expressed as

(2.73)

(2.74)

(2.75)

The motion described by Eq. (2.72) is a damped harmonic motion of angular frequency

but because of the factor the amplitude decreases exponentially with

time, as shown in Fig. 2.22. The quantity

(2.76)

is called the frequency of damped vibration. It can be seen that the frequency of damped

vibration is always less than the undamped natural frequency The decrease in

the frequency of damped vibration with increasing amount of damping, given by Eq.

(2.76), is shown graphically in Fig. 2.23. The underdamped case is very important in

the study of mechanical vibrations, as it is the only case that leads to an oscillatory

motion [2.10].

vn.vd

vd = 21 - z2 vn

e-zvnt,21 - z2
 vn,

 f = tan-1  ¢
C2

C1

= tan-1 ¢
x 
#

0 + zvnx0

x0vn 21 - z2

 f0 = tan-1 ¢
C1

C2

= tan-1 ¢
x0vn 21 - z2

x 
#

0 + zvnx0

 X = X0 = 2(C1)
2
+ (C2)2

=
2x0

2 vn
2
+ x 

#

0
2
+ 2 x0 x 

#

0 zvn

21 - z2 vn

(X0, f0)(X, f)

 +
x 
#

0 + zvnx0

21 - z2vn

 sin21 - z2 vnt r

 x(t) = e- 
zvnt

bx0 cos 21 - z2 vnt

C1 = x0 and C2 =
x 
#

0 + zvnx0

21 - z2
 vn

C2x 
#
(t = 0) = x 

#

0, C1x(t = 0) = x0

(X0, f0)(C1, C2), (X, f),

 = Xe- 
zvnt

 cos ¢21 - z2vnt - f

 = X0e- 
zvnt

 sin ¢21 - z2vnt + f0
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Case 2. Critically damped system ( or or ). In this case the

two roots and in Eq. (2.68) are equal:

(2.77)

Because of the repeated roots, the solution of Eq. (2.59) is given by [2.6]1

(2.78)x(t) = (C1 + C2t)e- 
vnt

s1 = s2 = -  

cc

2m
= -  vn

s2s1

c/2m = 2k/mc = ccz = 1

x(t)

X

X1 x1

t1 t2

x2

O

Eq. (2.72)

Xe
+

f
f0

td * vd

vdt

zv
n
t

2p

FIGURE 2.22 Underdamped solution.

1

1O

vd
vn

z

FIGURE 2.23 Variation of with

damping.

vd

1Equation (2.78) can also be obtained by making approach unity in the limit in Eq. (2.72). As 
hence and Thus Eq. (2.72) yields

where and are new constants.C2 = C2vdC1 = C1

x(t) = e- 
vnt(C1 + C2vdt) = (C1 + C2t)e- 

vnt

sin vdt: vdt.cos vdt: 1
z: 1, vn: 0;z
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The application of the initial conditions and for this case

gives

(2.79)

and the solution becomes

(2.80)

It can be seen that the motion represented by Eq. (2.80) is aperiodic (i.e., nonperiodic).

Since as the motion will eventually diminish to zero, as indicated in

Fig. 2.24.

Case 3. Overdamped system ( or or ). As 

Eq. (2.68) shows that the roots and are real and distinct and are given by

with In this case, the solution, Eq. (2.69), can be expressed as

(2.81)

For the initial conditions and the constants and can

be obtained:

C1  =
x0vn(z + 2z2

- 1) + x 
#

0

2vn2z2
- 1

C2C1x 
#
(t = 0) = x 

#

0,x(t = 0) = x0

x(t) = C1e
(- z+2z2

-1)vnt
+ C2e(- z-2z2

-1)vnt

s2 V s1.

s2 = (-  z - 2z2
- 1)vn 6 0

s1 = (-  z + 2z2
- 1)vn 6 0

s2s1

2z2
- 1 7 0,c/2m 7 2k/mc 7 ccz 7 1

t: q ,e-vnt
: 0

x(t) = [x0 + (x 
#

0 + vnx0)t]e- 
vnt

 C2 = x 
#

0 + vnx0

 C1 = x0

x 
#
(t = 0) = x 

#

0x(t = 0) = x0

x(t)

tO

x0

tan 1 
x0

Overdamped (z  1)
Underdamped (z  1)

Undamped (z  0)

Critically
damped (z  1) (vd is smaller

than vn)

vd

vn

2p

2p

FIGURE 2.24 Comparison of motions with different types of damping.
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(2.82)

Equation (2.81) shows that the motion is aperiodic regardless of the initial conditions

imposed on the system. Since roots and are both negative, the motion diminishes

exponentially with time, as shown in Fig. 2.24.

Note the following aspects of these systems:

1. The graphical representation of different types of the characteristics roots and 

and the corresponding responses (solutions) of the system are presented in Section

2.7. The representation of the roots and with varying values of the system para-

meters c, k and m in the complex plane (known as the root locus plots) is considered

in Section 2.8.

2. A critically damped system will have the smallest damping required for aperiodic

motion; hence the mass returns to the position of rest in the shortest possible time

without overshooting. The property of critical damping is used in many practical

applications. For example, large guns have dashpots with critical damping value, so

that they return to their original position after recoil in the minimum time without

vibrating. If the damping provided were more than the critical value, some delay

would be caused before the next firing.

3. The free damped response of a single-degree-of-freedom system can be represented

in phase-plane or state space as indicated in Fig. 2.25.

s2s1

s2,s1

s2s1

C2 =
-x0vn(z-2z2

- 1) - x 
#

0

2vn2z2
- 1

Critically damped

Underdamped

Overdamped

x(t)

x(t)

(x0, x0)

FIGURE 2.25 Phase plane of a damped system.

2.6.3
Logarithmic
Decrement

The logarithmic decrement represents the rate at which the amplitude of a free-damped

vibration decreases. It is defined as the natural logarithm of the ratio of any two successive

amplitudes. Let and denote the times corresponding to two consecutive amplitudest2t1
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2.6 FREE VIBRATION WITH VISCOUS DAMPING 165

(displacements), measured one cycle apart for an underdamped system, as in Fig. 2.22.

Using Eq. (2.70), we can form the ratio

(2.83)

But , where is the period of damped vibration. Hence

and Eq. (2.83) can be writ-

ten as

(2.84)

The logarithmic decrement can be obtained from Eq. (2.84):

(2.85)

For small damping, Eq. (2.85) can be approximated:

(2.86)

Figure 2.26 shows the variation of the logarithmic decrement with as given by Eqs.

(2.85) and (2.86). It can be noticed that for values up to the two curves are diffi-

cult to distinguish.

z = 0.3,

zd

d M 2pz  if   z V 1

d = ln 

x1

x2

= zvntd = zvn 

2p

21 - z2vn

=
2pz

21 - z2
=

2p

vd

# c

2m

d

x1

x2

=
e-zvnt1

e-zvn(t1+td)
= ezvntd

-  f0) = cos(2p + vdt1 - f0) = cos(vdt1 - f0),cos(vdt2

td = 2p/vdt2 = t1 + td

x1

x2

=

X0e- 
zvnt1 cos (vdt1 - f0)

X0e- 
zvnt2 cos (vdt2 - f0)

14

12

10

8

6

4

2

0 0.2 0.4 0.6 0.8 1.0

Eq. (2.85)

Eq. (2.86)

c

c
c

x
1

x
2

 
ln

d

z

FIGURE 2.26 Variation of logarithmic

decrement with damping.
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The logarithmic decrement is dimensionless and is actually another form of the

dimensionless damping ratio Once is known, can be found by solving Eq. (2.85):

(2.87)

If we use Eq. (2.86) instead of Eq. (2.85), we have

(2.88)

If the damping in the given system is not known, we can determine it experimentally by

measuring any two consecutive displacements and By taking the natural logarithm

of the ratio of and we obtain By using Eq. (2.87), we can compute the damping

ratio In fact, the damping ratio can also be found by measuring two displacements sep-

arated by any number of complete cycles. If and denote the amplitudes corre-

sponding to times and , where m is an integer, we obtain

(2.89)

Since any two successive displacements separated by one cycle satisfy the equation

(2.90)

Eq. (2.89) becomes

(2.91)

Equations (2.91) and (2.85) yield

(2.92)

which can be substituted into Eq. (2.87) or Eq. (2.88) to obtain the viscous damping ratio z.

d =
1

m
 ln+

x1

xm+1
*

x1

xm+1
= (ezvntd)m

= emzvntd

xj

xj+1
= ezvntd

x1

xm+1
=

x1

x2
 
x2

x3
 
x3

x4
Á

xm

xm+1

tm+1 = t1 + mtdt1

xm+1x1

zz.
d.x2,x1

x2.x1

z M
d

2p

z =
d

2(2p)2
+ d2

zdz.

2.6.4
Energy
Dissipated 
in Viscous
Damping

In a viscously damped system, the rate of change of energy with time (dW/dt) is given by

(2.93)

using Eq. (2.58). The negative sign in Eq. (2.93) denotes that energy dissipates with time.

Assume a simple harmonic motion as where X is the amplitude of

motion and the energy dissipated in a complete cycle is given by2

x(t) = X sin vdt,

dW

dt
= force * velocity = Fv = -cv2

= -c +
dx

dt
*

2

2In the case of a damped system, simple harmonic motion is possible only when the steady-
state response is considered under a harmonic force of frequency (see Section 3.4). The loss of energy due to
the damper is supplied by the excitation under steady-state forced vibration [2.7].

vd

x(t) = X cos vdt
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2.6 FREE VIBRATION WITH VISCOUS DAMPING 167

(2.94)

This shows that the energy dissipated is proportional to the square of the amplitude of

motion. Note that it is not a constant for given values of damping and amplitude, since 

is also a function of the frequency 

Equation (2.94) is valid even when there is a spring of stiffness k parallel to the vis-

cous damper. To see this, consider the system shown in Fig. 2.27. The total force resisting

motion can be expressed as

(2.95)

If we assume simple harmonic motion

(2.96)

as before, Eq. (2.95) becomes

(2.97)

The energy dissipated in a complete cycle will be

(2.98) +
L

2p/vd

0
cvdX2 cos2 

vdt # d(vdt) = pcvdX2

 =
L

2p/vd

0
kX2

vd sin vdt # cos vdt # d(vdt)

 ¢W =
L

2p/vd

t=0
Fv dt

F = -kX sin vdt - cvdX cos vdt

x(t) = X sin vdt

F = -kx - cv = -kx - cx 
#

vd.
¢W

 = pcvdX2

 ¢W =
L

(2p/vd)

t=0
c +

dx

dt
*

2

dt =
L

2p

0
cX2

vd  
cos2 

vdt # d(vdt)

k c

x

FIGURE 2.27

Spring and damper

in parallel.
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168 CHAPTER 2 FREE VIBRATION OF SINGLE-DEGREE-OF-FREEDOM SYSTEMS

which can be seen to be identical with Eq. (2.94). This result is to be expected, since the

spring force will not do any net work over a complete cycle or any integral number of cycles.

We can also compute the fraction of the total energy of the vibrating system that is dis-

sipated in each cycle of motion as follows. The total energy of the system W can 

be expressed either as the maximum potential energy or as the maximum kinetic 

energy the two being approximately equal for small values of

damping. Thus

(2.99)

using Eqs. (2.85) and (2.88). The quantity is called the specific damping capac-

ity and is useful in comparing the damping capacity of engineering materials. Another

quantity known as the loss coefficient is also used for comparing the damping capacity

of engineering materials. The loss coefficient is defined as the ratio of the energy dissi-

pated per radian and the total strain energy:

(2.100)loss coefficient =
(¢W/2p)

W
=

¢W

2pW

¢W/W

¢W

W
=

pcvdX2

1
2 mvd

2X2
= 2 +

2p

vd
* +

c

2m
* = 2d M 4pz = constant

1
1
2 mvmax

2
=

1
2 mX2vd

2
2,

1
1
2 kX2

2

(¢W/W),

2.6.5
Torsional
Systems with
Viscous
Damping

The methods presented in Sections 2.6.1 through 2.6.4 for linear vibrations with viscous

damping can be extended directly to viscously damped torsional (angular) vibrations. For

this, consider a single-degree-of-freedom torsional system with a viscous damper, as shown

in Fig. 2.28(a). The viscous damping torque is given by (Fig. 2.28(b)):

(2.101)

where is the torsional viscous damping constant, is the angular velocity of

the disc, and the negative sign denotes that the damping torque is opposite the direction of

angular velocity. The equation of motion can be derived as

(2.102)

where moment of inertia of the disc, constant of the system (restor-

ing torque per unit angular displacement), and displacement of the disc. The

solution of Eq. (2.102) can be found exactly as in the case of linear vibrations. For exam-

ple, in the underdamped case, the frequency of damped vibration is given by

(2.103)

where

(2.104)vn = A
kt

J0

vd = 21 - z2 vn

u = angular

kt = springJ0 = mass

J0 u
  

+ + ct u  * + kt 
u = 0

u  * = du/dtct

T = -ct u  *
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and

(2.105)

where is the critical torsional damping constant.ctc

z =
ct

ctc

=
ct

2J0vn

=
ct

22ktJ0

u,u,

(a)

Shaft, kt

Fluid, ct Disc, J0

(b)

ktu ctu

J0

u,
. .

.

.

u

FIGURE 2.28 Torsional viscous damper.

E X A M P L E  2 . 1 0
Response of Anvil of a Forging Hammer

The anvil of a forging hammer weighs 5,000 N and is mounted on a foundation that has a stiffness of

and a viscous damping constant of 10,000 N-s/m. During a particular forging opera-

tion, the tup (i.e., the falling weight or the hammer), weighing 1,000 N, is made to fall from a height

of 2 m onto the anvil (Fig. 2.29(a)). If the anvil is at rest before impact by the tup, determine the

response of the anvil after the impact. Assume that the coefficient of restitution between the anvil and

the tup is 0.4.

Solution: First we use the principle of conservation of momentum and the definition of the

coefficient of restitution to find the initial velocity of the anvil. Let the velocities of the tup just

before and just after impact with the anvil be and respectively. Similarly, let and be the

velocities of the anvil just before and just after the impact, respectively (Fig. 2.29(b)). Note that the

va2va1vt2,vt1

5 * 10
6
 N/m
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c
k

M

c
k

M

m

m
2 m

vt2vt1

va2va1

(a) (b)

FIGURE 2.29 Forging hammer.

displacement of the anvil is measured from its static equilibrium position and all velocities are

assumed to be positive when acting downward. The principle of conservation of momentum gives

(E.1)

where (anvil is at rest before the impact) and can be determined by equating its kinetic

energy just before impact to its potential energy before dropping from a height of 

(E.2)

or

Thus Eq. (E.1) becomes

that is,

(E.3)

The definition of the coefficient of restitution (r) yields:

(E.4)

that is,

that is,

(E.5)va2 = vt2 + 2.504396

0.4 =  - +
va2 - vt2

0 - 6.26099
*

r = - +
va2 - vt2

va1 - vt1
*

510.204082 va2 = 638.87653 - 102.040813 vt2

5000

9.81
  (va2 - 0) =

1000

9.81
 (6.26099 - vt2)

vt1 = 22gh = 22 * 9.81 * 2 = 6.26099 m/s

1

2
 m vt1

2
= mgh

h = 2 m:

vt1va1 = 0

M(va2 - va1) = m(vt1 - vt2)

M02_RAO8193_5_SE_C02.QXD  8/21/10  4:03 PM  Page 170



2.6 FREE VIBRATION WITH VISCOUS DAMPING 171

The solution of Eqs. (E.3) and (E.5) gives

Thus the initial conditions of the anvil are given by

The damping coefficient is equal to

The undamped and damped natural frequencies of the anvil are given by

The displacement response of the anvil is given by Eq. (2.72):

*

 = e-9.799995 t 50.01490335 sin 98.024799 t6m

 x(t) = e-z vn t b
x 
#

0

vd
 sin vd 

t r

 vd = vn21 - z2
= 98.99494921 - 0.09899492

= 98.024799 rad/s

 vn = A
k

M
=

S

5 * 106

a
5000

9.81
b

= 98.994949 rad/s

z =
c

22kM
=

1000

2C(5 * 106)¢
5000

9.81

= 0.0989949

x0 = 0;    x 
#

0 = 1.460898 m/s

va2 = 1.460898 m/s;    vt2 = -1.043498 m/s

E X A M P L E  2 . 1 1
Shock Absorber for a Motorcycle

An underdamped shock absorber is to be designed for a motorcycle of mass 200 kg (Fig. 2.30(a)).

When the shock absorber is subjected to an initial vertical velocity due to a road bump, the resulting

displacement-time curve is to be as indicated in Fig. 2.30(b). Find the necessary stiffness and damp-

ing constants of the shock absorber if the damped period of vibration is to be 2 s and the amplitude

is to be reduced to one-fourth in one half cycle (i.e., ). Also find the minimum initial

velocity that leads to a maximum displacement of 250 mm.

Approach: We use the equation for the logarithmic decrement in terms of the damping ratio, equation

for the damped period of vibration, time corresponding to maximum displacement for an underdamped

system, and envelope passing through the maximum points of an underdamped system.

Solution: Since Hence the logarithmic decrement becomes

(E.1)d = ln ¢
x1

x2
= ln(16) = 2.7726 =

2pz

21 - z2

x1.5 = x1/4, x2 = x1.5/4 = x1/16.

x1.5 = x1/4x1
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k/2 k/2
c

m

(a)

x(t)

tO

x1 x2

x2.5

x1.5

(b)

FIGURE 2.30 Shock absorber of a motorcycle.

from which the value of can be found as The damped period of vibration is given to be

2 s. Hence

The critical damping constant can be obtained:

Thus the damping constant is given by

and the stiffness by

The displacement of the mass will attain its maximum value at time given by

(See Problem 2.99.) This gives

or

t1 =

sin-1(0.9149)

p
= 0.3678 sec

sin vdt1 = sin pt1 = 21 - (0.4037)2
= 0.9149

sin vdt1 = 21 - z2

t1,

k = mvn
2
= (200)(3.4338)2

= 2358.2652 N/m

c = zcc = (0.4037)(1373.54) = 554.4981 N-s/m

cc = 2mvn = 2(200)(3.4338) = 1373.54 N-s/m

 vn =

2p

221 - (0.4037)2
= 3.4338 rad/s

 2 = td =

2p

vd

=

2p

vn21 - z2

z = 0.4037.z
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The envelope passing through the maximum points (see Problem 2.99) is given by

(E.2)

Since Eq. (E.2) gives at 

or

The velocity of the mass can be obtained by differentiating the displacement

as

(E.3)

When Eq. (E.3) gives

*

 = 1.4294 m/s

 x 
#
(t = 0) = x 

#

0 = Xvd = Xvn21 - z2
= (0.4550)(3.4338) 21 - (0.4037)2

t = 0,

x 
#
(t) = Xe-zvnt(-zvn sin vdt + vd cos vdt)

x(t) = Xe-zvn t sin vdt

X = 0.4550 m

0.25 = 21 - (0.4037)2 Xe-(0.4037)(3.4338)(0.3678)

t1x = 250 mm,

x = 21 - z2Xe-zvn  t

E X A M P L E  2 . 1 2
Analysis of Cannon

The schematic diagram of a large cannon is shown in Fig. 2.31 [2.8]. When the gun is fired, high-

pressure gases accelerate the projectile inside the barrel to a very high velocity. The reaction force

pushes the gun barrel in the direction opposite that of the projectile. Since it is desirable to bring the

gun barrel to rest in the shortest time without oscillation, it is made to translate backward against a

critically damped spring-damper system called the recoil mechanism. In a particular case, the gun

barrel and the recoil mechanism have a mass of 500 kg with a recoil spring of stiffness 10,000 N/m.

The gun recoils 0.4 m upon firing. Find (1) the critical damping coefficient of the damper, (2) the ini-

tial recoil velocity of the gun, and (3) the time taken by the gun to return to a position 0.1 m from its

initial position.

Recoil mechanism
(spring and damper)

Gun barrel

Projectile

FIGURE 2.31 Recoil of cannon.
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Solution

1. The undamped natural frequency of the system is

and the critical damping coefficient (Eq. 2.65) of the damper is

2. The response of a critically damped system is given by Eq. (2.78):

(E.1)

where and The time at which x(t) reaches a maximum value can

be obtained by setting The differentiation of Eq. (E.1) gives

Hence yields

(E.2)

In this case, hence Eq. (E.2) leads to Since the maximum value of

x(t) or the recoil distance is given to be we have

or

3. If denotes the time taken by the gun to return to a position 0.1 m from its initial position, we have

(E.3)

The solution of Eq. (E.3) gives 

*

2.7 Graphical Representation of Characteristic Roots and Corresponding
Solutions

t2 = 0.8258 s.

0.1 = C2t2e
-

 
vn t2 = 4.8626t2e

-
 
4.4721t2

t2

x 
#

0 = xmaxvne = (0.4)(4.4721)(2.7183) = 4.8626 m/s

xmax = x(t = t1) = C2t1e
-

 
vn t1 =

x 
#

0

vn

 e-1 =
x 
#

0

evn

xmax = 0.4 m,

t1 = 1/vn.x0 = C1 = 0;

t1 = +
1

vn

-
C1

C2
*

x 
#
(t) = 0

x 
#
(t) = C2e

-
 
vnt - vn(C1 + C2t)e

-
 
vnt

x 
#
(t) = 0.

t1C2 = x 
#

0 + vnx0.C1 = x0

x(t) = (C1 + C2t)e
-

 
vnt

cc = 2mvn = 2(500)(4.4721) = 4472.1 N-s/m

vn =
A

k

m
=
A

10,000

500
= 4.4721 rad/s

2.7.1
Roots of the
Characteristic
Equation

The free vibration of a single-degree-of-freedom spring-mass-viscous-damper system

shown in Fig. 2.21 is governed by Eq. (2.59):

(2.106)

whose characteristic equation can be expressed as (Eq. (2.61)):

(2.107)

or

(2.108)s2 + 2zvns + vn
2
= 0

ms2 + cs + k = 0

mx
$

+ cx
#
+ kx = 0

If necessary, sections 2.7 and 2.8 can be skipped without losing continuity.
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The roots of this characteristic equation, called the characteristic roots or, simply, roots,

help us in understanding the behavior of the system. The roots of Eq. (2.107) or (2.108) are

given by (see Eqs. (2.62) and (2.68)):

(2.109)

or

(2.110)s1, s2 = -zvn ; ivn 21 - z2

s1, s2 =
-c ; 2c2

- 4mk

2 m

2.7.2
Graphical
Representation
of Roots and
Corresponding
Solutions

The roots given by Eq. (2.110) can be plotted in a complex plane, also known as the s-plane,

by denoting the real part along the horizontal axis and the imaginary part along the vertical

axis. Noting that the response of the system is given by

(2.111)

where and are constants, the following observations can be made by examining Eqs.

(2.110) and (2.111):

1. Because the exponent of a larger real negative number (such as ) decays faster

than the exponent of a smaller real negative number (such as ), the roots lying far-

ther to the left in the s-plane indicate that the corresponding responses decay faster

than those associated with roots closer to the imaginary axis.

2. If the roots have positive real values of s that is, the roots lie in the right half of

the s-plane the corresponding response grows exponentially and hence will be

unstable.

3. If the roots lie on the imaginary axis (with zero real value), the corresponding

response will be naturally stable.

4. If the roots have a zero imaginary part, the corresponding response will not

oscillate.

5. The response of the system will exhibit an oscillatory behavior only when the roots

have nonzero imaginary parts.

6. The farther the roots lie to the left of the s-plane, the faster the corresponding

response decreases.

7. The larger the imaginary part of the roots, the higher the frequency of oscillation of

the corresponding response of the system.

Figure 2.32 shows some representative locations of the characteristic roots in the

s-plane and the corresponding responses [2.15]. The characteristics that describe the

behavior of the response of a system include oscillatory nature, frequency of oscilla-

tion, and response time. These characteristics are inherent to the system (depend on the

values of m, c, and k) and are determined by the characteristic roots of the system but

not by the initial conditions. The initial conditions determine only the amplitudes and

phase angles.

e-t
e-2t

C2C1

x(t) = C1e
s1 

t
+ C2es2 

t
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2.8.1
Interpretations
of 
and in the 
s-plane

T
Vn, Vd, Z,

Although the roots and appear as complex conjugates, we consider only the roots

in the upper half of the s-plane. The root is plotted as point A with the real value as 

and the complex value as , so that the length of OA is (Fig. 2.33).

Thus the roots lying on the circle of radius correspond to the same natural fre-

quency of the system (PAQ denotes a quarter of the circle). Thus different con-

centric circles represent systems with different natural frequencies as shown in Fig.

2.34. The horizontal line passing through point A corresponds to the damped natural 

frequency, Thus, lines parallel to the real axis denote systems hav-

ing different damped natural frequencies, as shown in Fig. 2.35.

It can be seen, from Fig. 2.33, that the angle made by the line OA with the imaginary

axis is given by

(2.112)

or

(2.113)

Thus, radial lines passing through the origin correspond to different damping ratios, as

shown in Fig. 2.36. Therefore, when we have no damping , and the damped

natural frequency will reduce to the undamped natural frequency. Similarly, when z = 1,

(u = 0)z = 0,

u = sin-1
 z

sin u =

zvn

vn

= z

vd = vn21 - z2
.

(vn)

vn

vnvn 21 - z2zvn

s1

s2s1

STABLE (LHP) UNSTABLE (RHP)Im (s)

Re (s)
O

FIGURE 2.32 Locations of characteristic roots ( ) and the corresponding responses of the system.

2.8 Parameter Variations and Root Locus Representations
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Q

D

O

A B

P

Im

Re
+zvn

vn

vn

u * sin
+1 z

vd * vn 1 + z2

FIGURE 2.33 Interpretations of and z.vn, vd,

O

Im

Re

vn1

vn2

FIGURE 2.34 in s-plane.vn
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we have critical damping and the radical line lies along the negative real axis. The time

constant of the system, is defined as

(2.114)

and hence the distance DO or AB represents the reciprocal of the time constant, 

Hence different lines parallel to the imaginary axis denote reciprocals of different time

constants (Fig. 2.37).

zvn =

1

t
.

t =

1

zvn

t,

O
Re

Im

vd1
 * vn 1 + z1

2

vd2
 * vn 1 + z2

2

FIGURE 2.35 in s-plane.vd

Im

O

Re

u1 * sin
+1

 z1u1

u2 u2 * sin
+1

 z2

FIGURE 2.36 in s-plane.z
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Im

O

Re

1

t1

1

t2

FIGURE 2.37 in s-plane.t

2.8.2

Root Locus 

and Parameter

Variations

A plot or graph that shows how changes in one of the parameters of the system will mod-

ify the roots of the characteristic equation of the system is known as the root locus plot.

The root locus method is a powerful method of analysis and design for stability and tran-

sient response of a system. For a vibrating system, the root locus can be used to describe

qualitatively the performance of the system as various parameters, such as the mass, damp-

ing constant, or spring constant, are changed. In the root locus method, the path or locus of

the roots of the characteristic equation is plotted without actually finding the roots them-

selves. This is accomplished by using a set of rules which lead to a reasonably accurate

plot in a relatively short time [2.8]. We study the behavior of the system by varying one

parameter, among the damping ratio, spring constant, and mass, at a time in terms of the

locations of its characteristic roots in the s-plane.

Variation of the damping ratio: We vary the damping constant from zero to infinity and

study the migration of the characteristic roots in the s-plane. For this, we use Eq. (2.109).

We notice that negative values of the damping constant need not be considered,

because they result in roots lying in the positive real half-plane that correspond to an

unstable system. Thus we start with to obtain, from Eq. (2.109),

(2.115)s1,2 = ;  
2-4mk

2m
= ; i A

k

m
= ; ivn

c = 0

(c 6 0)

M02_RAO8193_5_SE_C02.QXD  8/21/10  4:03 PM  Page 179



180 CHAPTER 2 FREE VIBRATION OF SINGLE-DEGREE-OF-FREEDOM SYSTEMS

Thus the locations of the characteristic roots start on the imaginary axis. Because the roots

appear in complex conjugate pairs, we concentrate on the upper imaginary half-plane and

then locate the roots in the lower imaginary half-plane as mirror images. By keeping the

undamped natural frequency constant, we vary the damping constant c. Noting that

the real and imaginary parts of the roots in Eq. (2.109) can be expressed as

(2.116)

for we find that

(2.117)

Since is held fixed, Eq. (2.117) represents the equation of a circle with a radius 

in the (real) and (imaginary) plane. The radius vector will make an angle 

with the positive imaginary axis with

(2.118)

(2.119)

with

(2.120)

Thus the two roots trace loci or paths in the form of circular arcs as the damping ratio

is increased from zero to unity as shown in Fig. 2.38. The root with positive imaginary

part moves in the counterclockwise direction while the root with negative imaginary

part moves in the clockwise direction. When the damping ratio is equal to one, the

two loci meet, denoting that the two roots coincide that is, the characteristic equation

has repeated roots. As we increase the damping ratio beyond the value of unity, the

system becomes overdamped and, as seen earlier in Section 2.6, both the roots will

become real. From the properties of a quadratic equation, we find that the product of

the two roots is equal to the coefficient of the lowest power of s (which is equal to 

in Eq. (2.108)).

Since the value of is held constant in this study, the product of the two roots is a

constant. With increasing values of the damping ratio one root will increase and the

other root will decrease, with the locus of each root remaining on the negative real axis.

Thus one root will approach and the other root will approach zero. The two loci will

join or coincide at a point, known as the breakaway point, on the negative real axis. The

two parts of the loci that lie on the negative real axis, one from point P to and the

other from point P to the origin, are known as segments.

-q

-q

(z),

vn

vn
2

(z)

a = 21 - z2

cos u =
s

vn

=
zvn

vn

= z

sin u =
vd

vn

= a

ur = vnvds

r = vnvn

s2
+ vd

2
= vn

2

0 6 z 6 1,

-  s = -  
c

2m
= - zvn and 24mk - c2

2m
= vn21 - z2

= vd

(vn)

M02_RAO8193_5_SE_C02.QXD  8/21/10  4:03 PM  Page 180



2.8 PARAMETER VARIATIONS AND ROOT LOCUS REPRESENTATIONS 181

for z , 1 for z , 1

Real axis

Imaginary axis

s1

s1 * s2 * +vn

z * 0

z * 0

0 - z - 1

t .

O * s1s2 * +.

(t      .)

s2

s2

ivn * s1

+ivn * s2

vd

u

vn

+s * +zvn

FIGURE 2.38 Root locus plot with variation of damping ratio .z

E X A M P L E  2 . 1 3
Study of Roots with Variation of c

Plot the root locus diagram of the system governed by the equation

(E.1)

by varying the value of 

Solution: The roots of Eq. (E.1) are given by

(E.2)

We start with a value of At the roots are given by These roots are

shown as dots on the imaginary axis in Fig. 2.39. By using an increasing sequence of values of c, Eq.

(E.2) gives the roots as indicated in Table 2.1.

It can be seen that the roots remain complex conjugates as c is increased up to a value of 

At both the roots become real and identical with a value of As c increases beyond a

value of 18, the roots remain distinct with negative real values. One root becomes more and more

negative and the other root becomes less and less negative. Thus, as one root approaches

while the other root approaches 0. These trends of the roots are shown in Fig 2.39.-q

c: q ,

-3.0.c = 18,

c = 18.

s1,2 = ;3i.c = 0,c = 0.

s1,2 =
-c ; 2c

2
- 324

6

c 7 0.

3s
2
+ cs + 27 = 0
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*

Re

Im

O

c * ,c * ,

s2s2
s1 * +, s1 s1, s2

s2 * +3i

c * 0

s1 * 3i

c * 0

c * 18

+3

FIGURE 2.39 Root locus plot with variation of damping constant (c).

TABLE 2.1

Value of c Value of s1 Value of s2

0 +3i -3i

2 -0.3333 + 2.9814i -0.3333 - 2.9814i

4 -0.6667 + 2.9721i -0.6667 - 2.9721i

6 -1.0000 + 2.8284i -1.0000 - 2.8284i

8 -1.3333 + 2.6874i -1.3333 - 2.6874i

10 -1.6667 + 2.4944i -1.6667 - 2.4944i

12 -2.0000 + 2.2361i -2.0000 - 2.2361i

14 -2.3333 + 1.8856i -2.3333 - 1.8856i

16 -2.6667 + 1.3744i -2.6667 - 1.3744i

18 -3.0000 -3.0000

20 -1.8803 -4.7863

30 -1.0000 -9.0000

40 -0.7131 -12.6202

50 -5587 -16.1079

100 -0.2722 -33.0611

1000 -0.0270 -333.3063
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2.8 PARAMETER VARIATIONS AND ROOT LOCUS REPRESENTATIONS 183

Variation of the spring constant: Since the spring constant does not appear explicitly in

Eq. (2.108), we consider a specific form of the characteristic equation (2.107) as:

(2.121)

The roots of Eq. (2.121) are given by

(2.122)

Since the spring stiffness cannot be negative for real vibration systems, we consider the

variation of the values of k from zero to infinity. Equation (2.122) shows that for

both the roots are real and identical. As k is made greater than 64, the roots

become complex conjugates. The roots for different values of k are shown in Table 2.2.

The variations of the two roots can be plotted (as dots), as shown in Fig. 2.40.

Variation of the mass: To find the migration of the roots with a variation of the mass m,

we consider a specific form of the characteristic equation, Eq. (2.107), as

(2.123)

whose roots are given by

(2.124)

Since negative values as well as zero value of mass need not be considered for physical

systems, we vary the value of m in the range Some values of m and the cor-

responding roots given by Eq. (2.124) are shown in Table 2.3.

It can be seen that both the roots are negative with values ( ) for

and for The larger root is observed to move to the left and them = 2.(-2, -5)m = 1

-1.6148, -12.3852

1 m 6 q .

s1,2 =
-14 ; 2196 - 80m

2m

ms2
+ 14s + 20 = 0

0 k 6 64,

s1,2 =
-16 ; 2256 - 4k

2
= -8 ; 264 - k

s2
+ 16s + k = 0

TABLE 2.2

Value of k Value of s1 Value of s2

0 0 -16

16 -1.0718 -14.9282

32 -2.3431 -13.6569

48 -4 -12

64 -8 -8

80 -8 + 4i -8 - 4i

96 -8 + 5.6569i -8 - 5.6569i

112 -8 + 6.9282i -8 - 6.9282i

128 -8 + 8i -8 - 8i
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Re

Im

8

4

+4

+8

O * s1s1 +4

s1

s1

s2 s2

s2

s2

s2

s1, s2

k * 0

+16 +12 +8

k * 48

k * 128

k * 80

k * 64

k * 48

k * 80

k * 0

k * 128

FIGURE 2.40 Root locus plot with variation of spring constant (k).

TABLE 2.3

Value of m Value of s1 Value of s2

1 -1.6148 -12.3852

2 -2.0 -5.0

2.1 -2.0734 -4.5932

2.4 -2.5 -3.3333

2.45 -2.8571 -2.8571

2.5 -2.8 + 0.4000i -2.8 + 0.4000i

3 -2.3333 + 1.1055i -2.3333 - 1.1055i

5 -1.4 + 1.4283i -1.4 + 1.4283i

8 -0.8750 + 1.3169i -0.8750 - 1.3169i

10 -0.7000 + 1.2288i -0.7000 - 1.2288i

14 -0.5000 + 1.0856i -0.5000 - 1.0856i

20 -0.3500 + 0.9367i -0.3500 - 0.9367i

30 -0.2333 + 0.7824i -0.2333 - 0.7824i

40 -0.1750 + 0.6851i -0.1750 - 0.6851i

50 -0.1400 + 0.6167i -0.1400 - 0.6167i

100 -0.0700 + 0.4417i -0.0700 - 0.4417i

1000 -0.0070 + 0.1412i -0.0070 - 0.1412i
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2.9 FREE VIBRATION WITH COULOMB DAMPING 185

smaller root is found to move to the right, as shown in Fig. 2.41. The larger and smaller

roots are found to converge to the value as m increases to a value of 2.45. Beyond

this value of the roots become complex conjugate. As the value of m increases

from 2.45 to a large value the loci of the two complex conjugates (roots) are

shown by the curve (circle) shown in Fig. 2.41. For both the complex conjugate

roots converge to zero 

2.9 Free Vibration with Coulomb Damping
In many mechanical systems, Coulomb or dry-friction dampers are used because of their

mechanical simplicity and convenience [2.9]. Also, in vibrating structures, whenever the

components slide relative to each other, dry-friction damping appears internally. As stated

in Section 1.9, Coulomb damping arises when bodies slide on dry surfaces. Coulomb s law

of dry friction states that, when two bodies are in contact, the force required to produce

(s1, s2: 0).

m: q ,

(: q),

m = 2.45,

-2.8571

3

2

1

Migration of s1 as
m increases

Migration of s2 
as m increases

+1

+2

+3

+1+2+3+4

+2.8571 
(for m * 2.45)

+5+6

(for m      ,)

FIGURE 2.41 Root locus plot with variation of mass (m).
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186 CHAPTER 2 FREE VIBRATION OF SINGLE-DEGREE-OF-FREEDOM SYSTEMS

sliding is proportional to the normal force acting in the plane of contact. Thus the friction

force F is given by

(2.125)

where N is the normal force, equal to the weight of the mass and is the coeffi-

cient of sliding or kinetic friction. The value of the coefficient of friction depends on the

materials in contact and the condition of the surfaces in contact. For example, for

metal on metal (lubricated), 0.3 for metal on metal (unlubricated), and nearly 1.0 for rubber on

metal. The friction force acts in a direction opposite to the direction of velocity. Coulomb

damping is sometimes called constant damping, since the damping force is independent of the

displacement and velocity; it depends only on the normal force N between the sliding surfaces.

m M 0.1
(m)

m(W = mg)

F = mN = mW = mmg

2.9.1
Equation 
of Motion

Consider a single-degree-of-freedom system with dry friction as shown in Fig. 2.42(a).

Since the friction force varies with the direction of velocity, we need to consider two cases,

as indicated in Figs. 2.42(b) and (c).

Case 1. When x is positive and dx/dt is positive or when x is negative and dx/dt is positive

(i.e., for the half cycle during which the mass moves from left to right), the equation of

motion can be obtained using Newton s second law (see Fig. 2.42(b)):

(2.126)

This is a second-order nonhomogeneous differential equation. The solution can be verified

by substituting Eq. (2.127) into Eq. (2.126):

(2.127)

where is the frequency of vibration and and are constants whose val-

ues depend on the initial conditions of this half cycle.

Case 2. When x is positive and dx/dt is negative or when x is negative and dx/dt is

negative (i.e., for the half cycle during which the mass moves from right to left), the

equation of motion can be derived from Fig. 2.42(c) as

(2.128)-kx + mN = mx
$ or mx

$
+ kx = mN

A2A1vn = 2k/m

x(t) = A1 cos vnt + A2 sin vnt -
mN

k

mx
$
= -kx - mN or mx

$
+ kx = -mN

m

W

N

kx x
·

mN mN

(b)

m

W

N

kx x
·

(c)

m

k
*x

(a)

FIGURE 2.42 Spring-mass system with Coulomb damping.
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2.9 FREE VIBRATION WITH COULOMB DAMPING 187

The solution of Eq. (2.128) is given by

(2.129)

where and are constants to be found from the initial conditions of this half cycle. The

term appearing in Eqs. (2.127) and (2.129) is a constant representing the virtual dis-

placement of the spring under the force if it were applied as a static force. Equations

(2.127) and (2.129) indicate that in each half cycle the motion is harmonic, with the equi-

librium position changing from to every half cycle, as shown in Fig. 2.43.-(mN/k)mN/k

mN,
mN/k

A4A3

x(t) = A3 cos vnt + A4 sin vnt +
mN

k

2.9.2

Solution

Equations (2.126) and (2.128) can be expressed as a single equation (using ):

(2.130)

where sgn(y) is called the signum function, whose value is defined as 1 for for

and 0 for Equation (2.130) can be seen to be a nonlinear differential equa-

tion for which a simple analytical solution does not exist. Numerical methods can be used

to solve Eq. (2.130) conveniently (see Example 2.21). Equation (2.130), however, can be

solved analytically if we break the time axis into segments separated by (i.e., time

intervals with different directions of motion). To find the solution using this procedure, let

us assume the initial conditions as

(2.131) x 
#
(t = 0) = 0

 x(t = 0) = x0

x 
#
= 0

y = 0.y 6 0,
y 7 0, -1

mx
$
+ mmg sgn(x 

#
) + kx = 0

N = mg

x(t)

x
0

tO

k

k

  x
0
 

k

x
0
 

k

pk

p
vn

2p
vn

3p
vn

4p
vn

mN

mN

k

mN
4mN

2mNvn

2mN

FIGURE 2.43 Motion of the mass with Coulomb damping.
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That is, the system starts with zero velocity and displacement at Since at

the motion starts from right to left. Let denote the amplitudes of

motion at successive half cycles. Using Eqs. (2.129) and (2.131), we can evaluate the con-

stants and :

Thus Eq. (2.129) becomes

(2.132)

This solution is valid for half the cycle only that is, for When 

the mass will be at its extreme left position and its displacement from equilibrium position

can be found from Eq. (2.132):

Since the motion started with a displacement of and, in a half cycle, the value of x

became the reduction in magnitude of x in time is 

In the second half cycle, the mass moves from left to right, so Eq. (2.127) is to be used.

The initial conditions for this half cycle are

and

Thus the constants in Eq. (2.127) become

so that Eq. (2.127) can be written as

(2.133)x(t) = ¢x0 -
3mN

k
 cos vnt -

mN

k

-A1 = -x0 +
3mN

k
,  A2 = 0

 = bvalue of -vn¢x0 -
mN

k
 sin vnt at t =

p

vn
r = 0

 x 
#
(t = 0) = value of x 

#
 at t =

p

vn
  in Eq. (2.132)

x(t = 0) = value of x at t =
p

vn
 in Eq. (2.132) = -  ¢x0 -

2mN

k

2mN/k.p/vn-[x0 - (2mN/k)],
x = x0

-x1 = x¢ t =
p

vn
= ¢x0 -

mN

k
 cos p +

mN

k
= - ¢x0 -

2mN

k

t = p/vn,0 t p/vn.

x(t) = ¢x0 -
mN

k
 cos vnt +

mN

k

A3 = x0 -
mN

k
,    A4 = 0

A4A3

x0, x1, x2, Át = 0,
x = x0t = 0.x0
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This equation is valid only for the second half cycle that is, for At

the end of this half cycle the value of x(t) is

and

These become the initial conditions for the third half cycle, and the procedure can be con-

tinued until the motion stops. The motion stops when since the restoring

force exerted by the spring (kx) will then be less than the friction force Thus the num-

ber of half cycles (r) that elapse before the motion ceases is given by

that is,

(2.134)

Note the following characteristics of a system with Coulomb damping:

1. The equation of motion is nonlinear with Coulomb damping, while it is linear with

viscous damping.

2. The natural frequency of the system is unaltered with the addition of Coulomb damp-

ing, while it is reduced with the addition of viscous damping.

3. The motion is periodic with Coulomb damping, while it can be nonperiodic in a vis-

cously damped (overdamped) system.

4. The system comes to rest after some time with Coulomb damping, whereas the

motion theoretically continues forever (perhaps with an infinitesimally small ampli-

tude) with viscous and hysteresis damping.

5. The amplitude reduces linearly with Coulomb damping, whereas it reduces exponen-

tially with viscous damping.

6. In each successive cycle, the amplitude of motion is reduced by the amount 

so the amplitudes at the end of any two consecutive cycles are related:

(2.135)Xm = Xm -  1 -

4mN

k

4mN/k,

r Ú d

x0 -

mN

k

2mN

k

t

x0 - r  

2mN

k

mN

k

mN.
xn mN/k,

x 
#
¢ t =

p

vn
 in Eq. (2.133) = 0

x2 = x¢ t =
p

vn
 in Eq. (2.133) = x0 -

4mN

k

p/vn t 2p/vn.
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As the amplitude is reduced by an amount in one cycle (i.e., in time ),

the slope of the enveloping straight lines (shown dotted) in Fig. 2.43 is

The final position of the mass is usually displaced from equilibrium position

and represents a permanent displacement in which the friction force is locked. Slight

tapping will usually make the mass come to its equilibrium position.

(x = 0)

-  ¢
4mN

k
n ¢

2p

vn
= -  ¢

2mNvn

pk

2p/vn4mN/k

2.9.3
Torsional
Systems 
with Coulomb
Damping

If a constant frictional torque acts on a torsional system, the equation governing the angu-

lar oscillations of the system can be derived, similar to Eqs. (2.126) and (2.128), as

(2.136)

and

(2.137)

where T denotes the constant damping torque (similar to for linear vibrations). The

solutions of Eqs. (2.136) and (2.137) are similar to those for linear vibrations. In particular,

the frequency of vibration is given by

(2.138)

and the amplitude of motion at the end of the rth half cycle is given by

(2.139)

where is the initial angular displacement at (with at ). The motion

ceases when

(2.140)r Ú d

u0 -
T

kt

2T

kt

t

t = 0u  * = 0t = 0u0

ur = u0 - r 

2T

kt

(ur)

vn = A
kt

J0

mN

J0 u
  

+ + ktu = T

J0 u
  

+ + ktu = -
 
T

E X A M P L E  2 . 1 4
Coefficient of Friction from Measured Positions of Mass

A metal block, placed on a rough surface, is attached to a spring and is given an initial displacement

of 10 cm from its equilibrium position. After five cycles of oscillation in 2 s, the final position of the

metal block is found to be 1 cm from its equilibrium position. Find the coefficient of friction between

the surface and the metal block.

Solution: Since five cycles of oscillation were observed to take place in 2 s, the period is 

and hence the frequency of oscillation is Since

the amplitude of oscillation reduces by

4mN

k
=

4mmg

k

vn = 2k
m =

2p
tn
=

2p
0.4 = 15.708 rad/s.2/5 = 0.4 s,

(tn)
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in each cycle, the reduction in amplitude in five cycles is

or

*

m =
0.09k

20mg
=

0.09vn
2

20g
=

0.09(15.708)2

20(9.81)
= 0.1132

5¢
4mmg

k
= 0.10 - 0.01 = 0.09 m

E X A M P L E  2 . 1 5
Pulley Subjected to Coulomb Damping

A steel shaft of length 1 m and diameter 50 mm is fixed at one end and carries a pulley of mass moment

of inertia at the other end. A band brake exerts a constant frictional torque of 400 N-m around

the circumference of the pulley. If the pulley is displaced by 6 and released, determine (1) the number

of cycles before the pulley comes to rest and (2) the final settling position of the pulley.

Solution:

1. The number of half cycles that elapse before the angular motion of the pulley ceases is given

by Eq. (2.140): 

(E.1)

where spring constant

of the shaft given by

and friction torque applied to the Equation (E.1) gives

Thus the motion ceases after six half cycles.

2. The angular displacement after six half cycles is given by Eq. (2.120):  

u = 0.10472 - 6 * 2¢
400

49,087.5
= 0.006935 rad = 0.39734°

r Ú

0.10472 - ¢
400

49,087.5

¢
800

49,087.5

= 5.926

pulley = 400 N-m.T = constant

kt =
GJ

l
=

(8 * 1010)b
p

32
 (0.05)4

r

1
= 49,087.5 N-m/rad

u0 = initial angular displacement = 6° = 0.10472 rad, kt = torsional

r Ú d

u0 -
T

kt

2T

kt

t

°
25 kg-m2
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F

x
*X

Xx

cvX

*cvX

kx

cv*X
2
 * x

2

k
c

F(t)x(t)

(a) (b)

FIGURE 2.44 Spring-viscous-damper system.

Thus the pulley stops at 0.39734º from the equilibrium position on the same side of the initial

displacement.

*

2.10 Free Vibration with Hysteretic Damping
Consider the spring-viscous-damper arrangement shown in Fig. 2.44(a). For this system,

the force F needed to cause a displacement x(t) is given by

(2.141)

For a harmonic motion of frequency and amplitude X,

(2.142)

Equations (2.141) and (2.142) yield

(2.143) = kx ; cv2X2
- x2

 = kx ; cv2X2
- (X sin vt)2

 F(t) = kX sin vt + cXv cos vt

x(t) = X sin vt

v

F = kx + cx 
#
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2.10 FREE VIBRATION WITH HYSTERETIC DAMPING 193

When F versus x is plotted, Eq. (2.143) represents a closed loop, as shown in Fig. 2.44(b).

The area of the loop denotes the energy dissipated by the damper in a cycle of motion and

is given by

(2.144)

Equation (2.144) has been derived in Section 2.6.4 also (see Eq. (2.98)).

As stated in Section 1.9, the damping caused by the friction between the internal

planes that slip or slide as the material deforms is called hysteresis (or solid or structural)

damping. This causes a hysteresis loop to be formed in the stress-strain or force-displacement

curve (see Fig. 2.45(a)). The energy loss in one loading and unloading cycle is equal to the

area enclosed by the hysteresis loop [2.11 2.13]. The similarity between Figs. 2.44(b) and

2.45(a) can be used to define a hysteresis damping constant. It was found experimentally

that the energy loss per cycle due to internal friction is independent of the frequency but

approximately proportional to the square of the amplitude. In order to achieve this

observed behavior from Eq. (2.144), the damping coefficient c is assumed to be inversely

proportional to the frequency as

(2.145)

where h is called the hysteresis damping constant. Equations (2.144) and (2.145) give

(2.146)¢W = phX2

c =
h

v

 = pvcX2

 ¢W =
C

F dx =
L

2p/v

0
(kX sin vt + cXv cos vt)(vX cos vt)dt

Stress (force)

Hysteresis
loop

Loading

Unloading

Area

Strain
(displacement)

k

F(t)x(t)

(a) (b)

h

FIGURE 2.45 Hysteresis loop.
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Complex Stiffness. In Fig. 2.44(a), the spring and the damper are connected in parallel,

and for a general harmonic motion, the force is given by

(2.147)

Similarly, if a spring and a hysteresis damper are connected in parallel, as shown in Fig.

2.45(b), the force-displacement relation can be expressed as

(2.148)

where

(2.149)

is called the complex stiffness of the system and is a constant indicating a dimen-

sionless measure of damping.

Response of the System. In terms of the energy loss per cycle can be expressed as

(2.150)

Under hysteresis damping, the motion can be considered to be nearly harmonic (since 

is small), and the decrease in amplitude per cycle can be determined using energy balance.

For example, the energies at points P and Q (separated by half a cycle) in Fig. 2.46 are

related as

or

(2.151)
Xj

Xj+0.5
=
A

2 + pb

2 - pb

kXj
2

2
-

pkbXj
2

4
-

pkbXj+0.5
2

4
=

kXj+0.5
2

2

¢W

¢W = pkbX2

b,

b = h/k

k + ih = k+1 + i 
h

k
* = k(1 + i b)

F = (k + ih)x

F = kXeivt + cviXeivt = (k + ivc)x

x = Xeivt,

t

x(t)

O
P

Xj

Xj*0.5

Xj*1

R

Q

FIGURE 2.46 Response of a hysteretically damped system.
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Similarly, the energies at points Q and R give

(2.152)

Multiplication of Eqs. (2.151) and (2.152) gives

(2.153)

The hysteresis logarithmic decrement can be defined as

(2.154)

Since the motion is assumed to be approximately harmonic, the corresponding frequency

is defined by [2.10]:

(2.155)

The equivalent viscous damping ratio can be found by equating the relation for the log-

arithmic decrement 

(2.156)

Thus the equivalent damping constant is given by

(2.157)

Note that the method of finding an equivalent viscous damping coefficient for a struc-

turally damped system is valid only for harmonic excitation. The above analysis assumes

that the system responds approximately harmonically at the frequency v.

ceq = cc
# zeq = 22mk #

b

2
= b2mk =

bk

v
=

h

v

ceq

 zeq =
b

2
=

h

2k

 d M 2pzeq M pb =
ph

k

d:

zeq

v = A
k

m

d = ln +
Xj

Xj+1
* M ln (1 + pb) M pb

Xj

Xj+1
=

2 + pb

2 - pb
=

2 - pb + 2pb

2 - pb
M 1 + pb = constant

Xj+0.5

Xj+1
= A

2 + pb

2 - pb

E X A M P L E  2 . 1 6
Estimation of Hysteretic Damping Constant

The experimental measurements on a structure gave the force-deflection data shown in Fig. 2.47.

From this data, estimate the hysteretic damping constant and the logarithmic decrement 

Solution

Approach: We equate the energy dissipated in a cycle (area enclosed by the hysteresis loop) to 

of Eq. (2.146).

¢W

d.b
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FIGURE 2.47 Force-deflection curve.
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2.10 FREE VIBRATION WITH HYSTERETIC DAMPING 197

The energy dissipated in each full load cycle is given by the area enclosed by the hysteresis curve.

Each square in Fig. 2.47 denotes The area enclosed by the loop can be

found as area

square units. This area represents an energy of

From Eq. (2.146), we have

(E.1)

Since the maximum deflection X is 0.008 m and the slope of the force-deflection curve (given

approximately by the slope of the line OF) is the hysteretic

damping constant h is given by

(E.2)

and hence

The logarithmic decrement can be found as

(E.3)

*

d M pb = p(0.248679) = 0.78125

b =
h

k
=

12,433.95

50,000
= 0.248679

h =
¢W

pX2
=

2.5

p(0.008)2
= 12,433.95

k = 400/8 = 50 N/mm = 50,000 N/m,

¢W = phX2
= 2.5 N-m

12.25 * 200/1,000 = 2.5 N-m.

1
2 (1.25)(1.8) + (1.25)(8) +

1
2 (1.25)(1.8) = 12.25

ACB + area ABDE + area DFE M
1
2 (AB)(CG) + (AB)(AE) +

1
2 (DE)(FH) =

100 * 2 = 200 N-mm.

E X A M P L E  2 . 1 7
Response of a Hysteretically Damped Bridge Structure

A bridge structure is modeled as a single-degree-of-freedom system with an equivalent mass of

and an equivalent stiffness of During a free-vibration test, the ratio of

successive amplitudes was found to be 1.04. Estimate the structural damping constant and the

approximate free-vibration response of the bridge.

Solution: Using the ratio of successive amplitudes, Eq. (2.154) yields the hysteresis logarithmic

decrement as

or

The equivalent viscous damping coefficient can be determined from Eq. (2.157) as

(E.1)ceq =
bk

v
=

bk

A
k

m

= b2km

(ceq)

1 + pb = 1.04 or b =
0.04

p
= 0.0127

d = ln +
Xj

Xj+1

* = ln(1.04) = ln(1 + pb)

(d)

(b)
25 * 106 N/m.5 * 105 kg
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198 CHAPTER 2 FREE VIBRATION OF SINGLE-DEGREE-OF-FREEDOM SYSTEMS

Using the known values of the equivalent stiffness (k) and the equivalent mass (m) of the bridge,

Eq. (E.1) yields

The equivalent critical damping constant of the bridge can be computed using Eq. (2.65) as

Since the bridge is underdamped, and hence its free-vibration response is given by Eq. (2.72) as

where

and and denote the initial displacement and initial velocity given to the bridge at the start of

free vibration.

*

2.11 Stability of Systems
Stability is one of the most important characteristics for any vibrating system. Although

many definitions can be given for the term stability depending on the kind of system or the

point of view, we consider our definition for linear and time-invariant systems (i.e., sys-

tems for which the parameters m, c, and k do not change with time). A system is defined to

be asymptotically stable (called stable in controls literature) if its free-vibration response

approaches zero as time approaches infinity. A system is considered to be unstable if its

free-vibration response grows without bound (approaches infinity) as time approaches

infinity. Finally, a system is said to be stable (called marginally stable in controls litera-

ture) if its free-vibration response neither decays nor grows, but remains constant or oscil-

lates as time approaches infinity. It is evident that an unstable system whose free-vibration

response grows without bounds can cause damage to the system, adjacent property, or

human life. Usually, dynamic systems are designed with limit stops to prevent their

responses from growing with no limit.

As will be seen in Chapters 3 and 4, the total response of a vibrating system, subjected

to external forces/excitations, is composed of two parts one the forced response and the

other the free-vibration response. For such systems, the definitions of asymptotically sta-

ble, unstable, and stable systems given above are still applicable. This implies that, for sta-

ble systems, only the forced response remains as the free-vibration response approaches

zero as time approaches infinity.

Stability can be interpreted in terms of the roots of the characteristic roots of the sys-

tem. As seen in Section 2.7, the roots lying in the left half-plane (LHP) yield either pure

exponential decay or damped sinusoidal free-vibration responses. These responses decay

x 
#

0x0

z =

ceq

cc

=
40.9013 * 103

7071.0678 * 103
= 0.0063

x(t) = e- 
zvnt

bx0 cos 21 - z2 vnt +

x 
#

0 + zvnx0

21 - z2
 vn

 sin 21 - z2 vnt r

ceq 6 cc,

cc = 22km = 22(25 * 106)(5 * 105) = 7071.0678 * 103 N-s/m

ceq = (0.0127)2(25 * 106)(5 * 105) = 44.9013 * 103 N-s/m
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2.11 STABILITY OF SYSTEMS 199

to zero as time approaches infinity. Thus, systems whose characteristics roots lie in the left

half of the s-plane (with a negative real part) will be asymptotically stable. The roots lying in

the right half-plane yield either pure exponentially increasing or exponentially increasing

sinusoidal free-vibration responses. These free-vibration responses approach infinity as time

approaches infinity. Thus, systems whose characteristic roots lie in the right half of the s-

plane (with positive real part) will be unstable. Finally, the roots lying on the imaginary axis

of the s-plane yield pure sinusoidal oscillations as free-vibration response. These responses

neither increase nor decrease in amplitude as time grows. Thus, systems whose characteristic

roots lie on the imaginary axis of the s-plane (with zero real part) will be stable.3

Notes:

1. It is evident, from the definitions given, that the signs of the coefficients of the char-

acteristic equation, Eq. (2.107), determine the stability behavior of a system. For

example, from the theory of polynomial equations, if there is any number of negative

terms or if any term in the polynomial in s is missing, then one of the roots will be

positive, which results in an unstable behavior of the system. This aspect is consid-

ered further in Section 3.11 as well as in Section 5.8 in the form of the Routh-Hurwitz

stability criterion.

2. In an unstable system, the free-vibration response may grow without bound with no

oscillations or it may grow without bound with oscillations. The first behavior is

called divergent instability and the second is called flutter instability. These cases are

also known as self-excited vibration (see Section 3.11).

3. If a linear model of a system is asymptotically stable, then it is not possible to find a

set of initial conditions for which the response approaches infinity. On the other hand,

if the linear model of the system is unstable, it is possible that certain initial conditions

might make the response approach zero as time increases. As an example, consider a

system governed by the equation of motion with characteristic roots given

by Thus the response is given by where and 

are constants. If the initial conditions are specified as and we

find that and and hence the response becomes which 

approaches zero as time increases to infinity.

4. Typical responses corresponding to different types of stability are shown in 

Figs. 2.48(a) (d).

5. Stability of a system can also be explained in terms of its energy. According to this

scheme, a system is considered to be asymptotically stable, stable, or unstable if its

energy decreases, remains constant, or increases, respectively, with time. This idea

forms the basis for Lyapunov stability criterion [2.14, 2.15].

6. Stability of a system can also be investigated based on how sensitive the response or

motion is to small perturbations (or variations) in the parameters (m, c and k) and/or

small perturbations in the initial conditions.

x(t) = e-t,C2 = 0C1 = 1

x
#
(0) = -1,x(0) = 1

C2C1x(t) = C1e
-t

+ C2et,s
1,2

= <1.

x
...

- x = 0

3Strictly speaking, the statement is true only if the roots that lie on the imaginary axis appear with multiplicity
one. If such roots appear with multiplicity the system will be unstable because the free-vibration 

response of such systems will be of the form Ctn sin (vt + f).

n 7 1,
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E X A M P L E  2 . 1 8

x (t)

x (t)

x (t)

x (t)

O

O

O

O

Stable system

Asymptotically stable system

Unstable system (with divergent instability)

Unstable system (with flutter instability)

t

t

t

t

(a)

(b)

(c)

(d)

FIGURE 2.48 Different types of stability.

Stability of a System

Consider a uniform rigid bar, of mass m and length l, pivoted at one end and connected symmetri-

cally by two springs at the other end, as shown in Fig. 2. 49. Assuming that the springs are unstretched

when the bar is vertical, derive the equation of motion of the system for small angular displacements

of the bar about the pivot point, and investigate the stability behavior of the system.(u)
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2.11 STABILITY OF SYSTEMS 201

Solution: When the bar is displaced by an angle the spring force in each spring is the

total spring force is The gravity force acts vertically downward through the

center of gravity, G. The moment about the point of rotation O due to the angular acceleration is

Thus the equation of motion of the bar, for rotation about the point O, can be

written as

(E.1)

For small oscillations, Eq. (E.1) reduces to

(E.2)

or

(E.3)

where

(E.4)

The characteristic equation is given by

(E.5)

and hence the solution of Eq. (E.2) depends on the sign of as indicated below.a
2

s2
+ a

2
= 0

a
2
= +

12kl2
- 3Wl

2ml2
*

u
  

* + a
2 u = 0

ml2

3
 u

  

* + 2kl2
u -

Wl

2
 u = 0

ml2

3
 u

  

* + (2kl sin u)l cos u - W 

l

2
 sin u = 0

J0u
  

* = (ml2/3) u  *.
u

  

*

W = mg2kl sin u.
kl sin u;u,

(a) (b)

l

k kA

G

O

mg

l
2

G

l

mg

O

l cos u
u

kl sin u kl sin u

l sin u

FIGURE 2.49 Stability of a rigid bar.
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Case 1. When the solution of Eq. (E.2) represents a stable system with

stable oscillations and can be expressed as

(E.6)

where and are constants and

(E.7)

Case 2. When Eq. (E.2) reduces to and the solution can be

obtained directly by integrating twice as

(E.8)

For the initial conditions and the solution becomes

(E.9)

Equation (E.9) shows that the system is unstable with the angular displacement increasing linearly at

a constant velocity However, if Eq. (E.9) denotes a stable or static equilibrium position

with that is, the pendulum remains in its original position, defined by 

Case 3. When the solution of Eq. (E.2) can be expressed as

(E.10)

where and are constants. For the initial conditions and Eq.

(E.10) becomes

(E.11)

Equation (E.11) shows that increases exponentially with time; hence the motion is unstable. The 

physical reason for this is that the restoring moment due to the spring which tries to bring

the system to the equilibrium position, is less than the nonrestoring moment due to gravity

which tries to move the mass away from the equilibrium position.

*

2.12 Examples Using MATLAB

[-W(l/2)u],

(2kl2
u),

u(t)

u(t) =
1

2a
 [(au0 + u

  

*0)eat
+ (au0 - u

  

*0)e-at]

u
  

*(t = 0) = u
  

*0,u(t = 0) = u0B2B1

u(t) = B1e
at
+ B2e-at

(12kl2
- 3Wl)/2ml2

6 0,

u = u0.u = u0

u0 = 0,u0.

u(t) = u
  

*0t + u0

u
  

*(t = 0) = u
  

*0,u(t = 0) = u0

u(t) = C1t + C2

u  + = 0(12kl2
- 3Wl)/2ml2

= 0,

vn = +

(12kl2
- 3Wl

2ml2
*

1/2

A2A1

u(t) = A1 cos vn t + A2 sin vn t

(12kl2
- 3Wl)/2ml2

7 0,

E X A M P L E  2 . 1 9
Variations of Natural Frequency and Period with Static Deflection

Plot the variations of the natural frequency and the time period with static deflection of an undamped

system using MATLAB.

Solution: The natural frequency and the time period are given by Eqs. (2.28) and (2.30):

vn = +
g

dst

*

1/2

,    tn = 2p+
dst

g
*

1/2

(tn)(v
n
)
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Using and are plotted over the range of to 0.5 using a MATLAB program.

% Ex2_19.m

g = 9.81;

for i = 1: 101

t(i) = 0.01 + (0.5-0.01) * (i-1)/100;

w(i) = (g/t(i))^0.5;

tao(i) = 2 * pi * (t(i)/g)^0.5;

end

plot(t,w);

gtext( w_n );

hold on;

plot(t, tao);

gtext( T_n );

xlabel( Delta_s_t );

title( Example 2.17 );

dst = 0tng = 9.81 m/s2
, vn

0
0

5

10

15

20

25

30

35

0.05 0.1 0.15 0.2 0.25

Deltast

Example 2.19

0.3 0.35 0.4 0.45 0.5

wn

Tn

*

Variations of natural frequency and time period.

E X A M P L E  2 . 2 0
Free-Vibration Response of a Spring-Mass System

A spring-mass system with a mass of and stiffness 500 lb/in. is subject to an initial dis-

placement of and an initial velocity of Plot the time variations of the

mass s displacement, velocity, and acceleration using MATLAB.

x
 #

0 = 4.0 in/sec.x0 = 3.0 in.

20 lb-sec2
>in.
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Solution: The displacement of an undamped system can be expressed as (see Eq. (2.23)):

(E.1)

where

Thus Eq. (E.1) yields

(E.2)

(E.3)

(E.4)x
$
(t) = -77.62 sin (5t + 1.3102) in./sec2

x 
#
(t) = 15.524 cos (5t + 1.3102) in./sec

x(t) = 3.1048 sin (5t + 1.3102) in.

 f0 = tan-1
¢

x0vn

x 
#

0

= tan-1
¢

(3.0)(5.0)

4.0
= 75.0686° = 1.3102 rad

 A0 = Bx0
2
+ ¢

x 
#

0

vn

2

R

1/2

= B(3.0)2
+ ¢

4.0

5.0

2

R

1/2

= 3.1048 in.

vn =
A

k

m
=
A

500

20
= 5 rad/sec

x(t) = A0 sin(vnt + f0)

0
*4

*2

0

x
(t

)

2

4

1 2 3 4 5 6

0
*100

*50

0

x
(t

)

50

100

1 2 3

t

4 5 6

0
*20

*10

0

x
(t

)

10

20

1 2 3 4 5 6

..

.

Example 2.20

Response of an undamped system.
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Equations (E.2) (E.4) are plotted using MATLAB in the range to 6 sec.

% Ex2_20.m

for i = 1: 101

t(i) = 6 * (i-1)/100;

x(i) = 3.1048 * sin(5 * t(i) + 1.3102);

x1(i) = 15.524 * cos(5 * t(i) + 1.3102);

x2(i) = -77.62 * sin(5 * t(i) + 1.3102);

end

subplot (311);

plot (t,x);

ylabel ( x(t) );

title ( Example 2.18 );

subplot (312);

plot (t,x1);

ylabel ( x^.(t) );

subplot (313);

plot (t,x2);

xlabel ( t );

ylabel ( x^.^.(t) );

*

t = 0

E X A M P L E  2 . 2 1
Free-Vibration Response of a System with Coulomb Damping

Find the free-vibration response of a spring-mass system subject to Coulomb damping for the fol-

lowing initial conditions: .

Data:

Solution: The equation of motion can be expressed as

(E.1)

In order to solve the second-order differential equation, Eq. (E.1), using the Runge-Kutta method

(see Appendix F), we rewrite Eq. (E.1) as a set of two first-order differential equations as follows:

(E.2)

(E.3)

Equations (E.2) and (E.3) can be expressed in matrix notation as

(E.4)

where

X
!

= b
x1(t)

x2(t)
r ,    f

:

= b
f1(x1, x2)

f2(x1, x2)
r ,    X

!
(t = 0) = b

x1(0)

x2(0)
r

X
!#

 = f
:

(X
!
)

 x 
#
2 = -mg sgn(x2) -

k

m
x1 K f2(x1, x2)

x 
#
1 = x2 K f1(x1, x2)

x1 = x,   x2 = x 
#
1 = x 

#

mx
$

+ mmg sgn(x 
#
) + kx = 0

m = 10 kg, k = 200 N/m, m = 0.5

x(0) = 0.5 m, x 
#
(0) = 0
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The MATLAB program ode23 is used to find the solution of Eq. (E.4) as shown below.

% Ex2_21.m

% This program will use dfunc1.m

tspan = [0: 0.05: 8];

x0 = [5.0; 0.0];

[t, x] = ode23 ( dfuncl , tspan, x0);

plot (t, x(:, 1));

xlabel ( t );

ylabel ( x(1) );

title ( Example 2.19 );

% dfunc1.m

function f = dfuncl (t, x)

f = zeros (2, 1);

f(1) = x(2);

f(2) = -0.5 * 9.81 * sign(x(2)) - 200 * x(1) / 10;

*

0 1 2 3 4

t

5 6 7 8
*5

*4

*3

*2

*1

0

1

2

3

4

5

x
(1

)

Example 2.21

Solution of Eq. (E4):
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E X A M P L E  2 . 2 2
Free Vibration Response of a Viscously Damped System Using MATLAB

Develop a general-purpose MATLAB program, called Program2.m, to find the free-vibration

response of a viscously damped system. Use the program to find the response of a system with the

following data:

Solution: Program2.m is developed to accept the following input data:

stiffness

constant

displacement

velocity

of time steps at which values of x(t) are to be found

interval between consecutive time steps 

The program gives the following output:

step number i, time

The program also plots the vatiations of and with time.

>> program2

Free vibration analysis of a single degree of freedom analysis

Data:

m= 4.50000000e+002

k= 2.65192000e+004

c= 1.00000000e+003

x0= 5.39657000e-001

xd0= 1.00000000e+000

n= 100

delt= 2.50000000e-002

system is under damped

Results:

i time(i) x(i) xd(i) xdd(i)

1 2.500000e-002 5.540992e-001 1.596159e-001 -3.300863e+001

2 5.000000e-002 5.479696e-001 -6.410545e-001 -3.086813e+001

3 7.500000e-002 5.225989e-001 -1.375559e+000 -2.774077e+001

4 1.000000e-001 4.799331e-001 -2.021239e+000 -2.379156e+001

5 1.250000e-001 4.224307e-001 -2.559831e+000 -1.920599e+001

6 1.500000e-001 3.529474e-001 -2.977885e+000 -1.418222e+001

.

.

.

96 2.400000e+000 2.203271e-002 2.313895e-001 -1.812621e+000

97 2.425000e+000 2.722809e-002 1.834092e-001 -2.012170e+000

98 2.450000e+000 3.117018e-002 1.314707e-001 -2.129064e+000

99 2.475000e+000 3.378590e-002 7.764312e-002 -2.163596e+000

100 2.500000e+000 3.505350e-002 2.395118e-002 -2.118982e+000

x
$

x, x 
#
,

(i), x(i), x 
#
(i), x

$
(i)

(¢t)delt = time

n = number

xd0 = initial

x0 = initial

c = damping

k = spring

m = mass

m = 450.0, k = 26519.2,   c = 1000.0,   x0 = 0.539657,   x 
#
0 = 1.0

M02_RAO8193_5_SE_C02.QXD  8/21/10  4:03 PM  Page 207



208 CHAPTER 2 FREE VIBRATION OF SINGLE-DEGREE-OF-FREEDOM SYSTEMS

CHAPTER SUMMARY

We considered the equations of motion and their solutions for the free vibration of undamped and

damped single-degree-of-freedom systems. Four different methods namely, Newton s second law

of motion, D  Alembert s principle, the principle of virtual displacements, and the principle of con-

servation of energy were presented for deriving the equation of motion of undamped systems. Both

translational and torsional systems were considered. The free-vibration solutions have been presented

for undamped systems. The equation of motion, in the form of a first-order differential equation, was

considered for a mass-damper system (with no spring), and the idea of time constant was introduced.

The free-vibration solution of viscously damped systems was presented along with the concepts

of underdamped, overdamped, and critically damped systems. The free-vibration solutions of systems

with Coulomb and hysteretic damping were also considered. The graphical representation of charac-

teristic roots in the complex plane and the corresponding solutions were explained. The effects of vari-

ation of the parameters m, c, and k on the characteristic roots and their representations using root locus

plots were also considered. The identification of the stability status of a system was also explained.

Now that you have finished this chapter, you should be able to answer the review questions and

solve the problems given below.

*

0 0.5 1

t

1.5 2 2.5
*40

*30

*20

*10
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10

x(t)

x
(
t)

, 
x
d

(
t)

, 
x
d
d

(
t)

xd(t)

xdd(t)

20

30

Variations of , , and .x
$

x
 #

x
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REVIEW QUESTIONS

2.1 Give brief answers to the following:

1. Suggest a method for determining the damping constant of a highly damped vibrating

system that uses viscous damping.

2. Can you apply the results of Section 2.2 to systems where the restoring force is not pro-

portional to the displacement that is, where k is not a constant?
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210 CHAPTER 2 FREE VIBRATION OF SINGLE-DEGREE-OF-FREEDOM SYSTEMS

3. State the parameters corresponding to m, c, k, and x for a torsional system.

4. What effect does a decrease in mass have on the frequency of a system?

5. What effect does a decrease in the stiffness of the system have on the natural period?

6. Why does the amplitude of free vibration gradually diminish in practical systems?

7. Why is it important to find the natural frequency of a vibrating system?

8. How many arbitrary constants must a general solution to a second-order differential

equation have? How are these constants determined?

9. Can the energy method be used to find the differential equation of motion of all single-

degree-of-freedom systems?

10. What assumptions are made in finding the natural frequency of a single-degree-of-

freedom system using the energy method?

11. Is the frequency of a damped free vibration smaller or greater than the natural frequency

of the system?

12. What is the use of the logarithmic decrement?

13. Is hysteresis damping a function of the maximum stress?

14. What is critical damping, and what is its importance?

15. What happens to the energy dissipated by damping?

16. What is equivalent viscous damping? Is the equivalent viscous-damping factor a constant?

17. What is the reason for studying the vibration of a single-degree-of-freedom system?

18. How can you find the natural frequency of a system by measuring its static deflection?

19. Give two practical applications of a torsional pendulum.

20. Define these terms: damping ratio, logarithmic decrement, loss coefficient, and specific

damping capacity.

21. In what ways is the response of a system with Coulomb damping different from that of

systems with other types of damping?

22. What is complex stiffness?

23. Define the hysteresis damping constant.

24. Give three practical applications of the concept of center of percussion.

25. What is the order of the equation of motion given by 

26. Define the time constant.

27. What is a root locus plot?

28. What is the significance of 

29. What is a time-invariant system?

2.2 Indicate whether each of the following statements is true or false:

1. The amplitude of an undamped system will not change with time.

2. A system vibrating in air can be considered a damped system.

3. The equation of motion of a single-degree-of-freedom system will be the same whether

the mass moves in a horizontal plane or an inclined plane.

4. When a mass vibrates in a vertical direction, its weight can always be ignored in deriving

the equation of motion.

5. The principle of conservation of energy can be used to derive the equation of motion of

both damped and undamped systems.

6. The damped frequency can in some cases be larger than the undamped natural frequency

of the system.

7. The damped frequency can be zero in some cases.

c 6 0?

mv
#
+ cv = 0?
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8. The natural frequency of vibration of a torsional system is given by where k and 

m denote the torsional spring constant and the polar mass moment of inertia, respectively.

9. Rayleigh s method is based on the principle of conservation of energy.

10. The final position of the mass is always the equilibrium position in the case of Coulomb

damping.

11. The undamped natural frequency of a system is given by where is the static

deflection of the mass.

12. For an undamped system, the velocity leads the displacement by 

13. For an undamped system, the velocity leads the acceleration by 

14. Coulomb damping can be called constant damping.

15. The loss coefficient denotes the energy dissipated per radian per unit strain energy.

16. The motion diminishes to zero in both underdamped and overdamped cases.

17. The logarithmic decrement can be used to find the damping ratio.

18. The hysteresis loop of the stress-strain curve of a material causes damping.

19. The complex stiffness can be used to find the damping force in a system with hysteresis

damping.

20. Motion in the case of hysteresis damping can be considered harmonic.

21. In the s-plane, the locus corresponding to constant natural frequency will be a circle.

22. The characteristic equation of a single-degree-of-freedom system can have one real root

and one complex root.

2.3 Fill in the blanks with proper words:

1. The free vibration of an undamped system represents interchange of _____ and _____

energies.

2. A system undergoing simple harmonic motion is called a _____ oscillator.

3. The mechanical clock represents a _____ pendulum.

4. The center of _____ can be used advantageously in a baseball bat.

5. With viscous and hysteresis damping, the motion _____ forever, theoretically.

6. The damping force in Coulomb damping is given by _____.

7. The _____ coefficient can be used to compare the damping capacity of different engi-

neering materials.

8. Torsional vibration occurs when a _____ body oscillates about an axis.

9. The property of _____ damping is used in many practical applications, such as large

guns.

10. The logarithmic decrement denotes the rate at which the _____ of a free damped vibra-

tion decreases.

11. Rayleigh s method can be used to find the _____ frequency of a system directly.

12. Any two successive displacements of the system, separated by a cycle, can be used to

find the _____ decrement.

13. The damped natural frequency can be expressed in terms of the undamped natural

frequency as _____.

14. The time constant denotes the time at which the initial response reduces by  _____ percent.

15. The term decays _____ than the term as time t increases.

16. In the s-plane, lines parallel to real axis denote systems having different _____ frequencies.

e
-

 

t
e
-2 t

(vn)

(vd)

p/2.

p/2.

dst2g>dst,

A
k

m
,
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212 CHAPTER 2 FREE VIBRATION OF SINGLE-DEGREE-OF-FREEDOM SYSTEMS

2.4 Select the most appropriate answer out of the multiple choices given:

1. The natural frequency of a system with mass m and stiffness k is given by:

a. b. c.

2. In Coulomb damping, the amplitude of motion is reduced in each cycle by:

a. b. c.

3. The amplitude of an undamped system subject to an initial displacement 0 and initial

velocity is given by:

a. b. c.

4. The effect of the mass of the spring can be accounted for by adding the following fraction

of its mass to the vibrating mass:

a. b. c.

5. For a viscous damper with damping constant c, the damping force is:

a. b. cx c.

6. The relative sliding of components in a mechanical system causes:

a. dry-friction damping b. viscous damping c. hysteresis damping

7. In torsional vibration, the displacement is measured in terms of a:

a. linear coordinate b. angular coordinate c. force coordinate

8. The damping ratio, in terms of the damping constant c and critical damping constant

is given by:

a. b. c.

9. The amplitude of an underdamped system subject to an initial displacement and initial

velocity 0 is given by:

a. b. c.

10. The phase angle of an undamped system subject to an initial displacement and initial

velocity 0 is given by:

a. b. c. 0

11. The energy dissipated due to viscous damping is proportional to the following power of

the amplitude of motion:

a. 1 b. 2 c. 3

12. For a critically damping system, the motion will be:

a. periodic b. aperiodic c. harmonic

13. The energy dissipated per cycle in viscous damping with damping constant c during the

simple harmonic motion is given by:

a. b. c.

14. For a vibrating system with a total energy W and a dissipated energy per cycle, the

specific damping capacity is given by:

a. b. c.

15. If the characteristic roots have positive real values, the system response will be:

a. stable b. unstable c. asymptotically stable

16. The frequency of oscillation of the response of a system will be higher if the imaginary

part of the roots is:

a. smaller b. zero c. larger

¢W
¢W

W

W

¢W

¢W
pcvdXpvdX2

pcvdX2

x(t) = X sin vdt,

2x0x0

x0

x0vn2x0x0

x0

A
c

cc

c

cc

cc

c

(cc),

cx
$

cx 
#

4

3

1

3

1

2

x 
#
0

vn
x 
#
0vnx 

#
0
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17. If the characteristic roots have a zero imaginary part, the response of the system will be:

a. oscillatory b. nonoscillatory c. steady

18. The shape of the root locus of a single-degree-of-freedom system for is:

a. circular b. horizontal line c. radial line

19. The shape of the root locus of a single-degree-of-freedom system as k is varied is:

a. vertical and horizontal lines b. circular arc c. radial lines

2.5 Match the following for a single-degree-of-freedom system with and c = 0.5:m = 1, k = 2,

0 z 1

1. Natural frequency, 

2. Linear frequency, 

3. Natural time period, 

4. Damped frequency, 

5. Critical damping constant, 

6. Damping ratio, 

7. Logarithmic decrement, d

z

cc

vd

tn

fn

vn a. 1.3919

b. 2.8284

c. 2.2571

d. 0.2251

e. 0.1768

f. 4.4429

g. 1.4142

2.6 Match the following for a mass moving with velocity v = 10 m/s:m = 5 kg

Damping force Type of damper

1. 20 N

2. 1.5 N

3. 30 N

4. 25 N

5. 10 N

a. Coulomb damping with a coefficient of friction of 0.3

b. Viscous damping with a damping coefficient 1 N-s/m

c. Viscous damping with a damping coefficient 2 N-s/m

d. Hysteretic damping with a hysteretic damping coefficient of 12 N/m at a 

frequency of 4 rad/s

e. Quadratic damping with damping constant a = 0.25 N-s2/m2(force = av2)

2.7 Match the following characteristics of the s-plane:

Locus Significance

1. Concentric circles

2. Lines parallel to real axis

3. Lines parallel to imaginary axis

4. Radial lines through origin

a. Different values of damped natural frequency

b. Different values of reciprocals of time constant

c. Different values of damping ratio

d. Different values of natural frequency

2.8 Match the following terms related to stability of systems:

Type of system Nature of free-vibration response as time approaches infinity

1. Asymptotically stable

2. Unstable

3. Stable

4. Divergent instability

5. Flutter instability

a. Neither decays nor grows

b. Grows with oscillations

c. Grows without oscillations

d. Approaches zero

e. Grows without bound
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PROBLEMS

Section 2.2 Free Vibration of an Undamped Translational System

2.1 An industrial press is mounted on a rubber pad to isolate it from its foundation. If the rubber pad

is compressed 5 mm by the self weight of the press, find the natural frequency of the system.

2.2 A spring-mass system has a natural period of 0.21 sec. What will be the new period if the

spring constant is (a) increased by 50 percent and (b) decreased by 50 percent?

2.3 A spring-mass system has a natural frequency of 10 Hz. When the spring constant is reduced

by 800 N/m, the frequency is altered by 45 percent. Find the mass and spring constant of the

original system.

2.4 A helical spring, when fixed at one end and loaded at the other, requires a force of 100 N to

produce an elongation of 10 mm. The ends of the spring are now rigidly fixed, one end verti-

cally above the other, and a mass of 10 kg is attached at the middle point of its length. Deter-

mine the time taken to complete one vibration cycle when the mass is set vibrating in the

vertical direction.

2.5 An air-conditioning chiller unit weighing 2,000 lb is to be supported by four air springs (Fig.

2.50). Design the air springs such that the natural frequency of vibration of the unit lies

between 5 rad/s and 10 rad/s.

FIGURE 2.50 (Courtesy of Sound and Vibration.)
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FIGURE 2.51

2.6 The maximum velocity attained by the mass of a simple harmonic oscillator is 10 cm/s, and

the period of oscillation is 2 s. If the mass is released with an initial displacement of 2 cm,

find (a) the amplitude, (b) the initial velocity, (c) the maximum acceleration, and (d) the

phase angle.

2.7 Three springs and a mass are attached to a rigid, weightless bar PQ as shown in Fig. 2.51.

Find the natural frequency of vibration of the system.

2.8 An automobile having a mass of 2,000 kg deflects its suspension springs 0.02 m under static

conditions. Determine the natural frequency of the automobile in the vertical direction by

assuming damping to be negligible.

2.9 Find the natural frequency of vibration of a spring-mass system arranged on an inclined

plane, as shown in Fig. 2.52.

k
1

m k
2

u

FIGURE 2.52

2.10 A loaded mine cart, weighing 5,000 lb, is being lifted by a frictionless pulley and a wire rope,

as shown in Fig. 2.53. Find the natural frequency of vibration of the cart in the given position.

2.11 An electronic chassis weighing 500 N is isolated by supporting it on four helical springs, as

shown in Fig. 2.54. Design the springs so that the unit can be used in an environment in

which the vibratory frequency ranges from 0 to 5 Hz.
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216 CHAPTER 2 FREE VIBRATION OF SINGLE-DEGREE-OF-FREEDOM SYSTEMS

2.12 Find the natural frequency of the system shown in Fig. 2.55 with and without the springs 

and in the middle of the elastic beam.

2.13 Find the natural frequency of the pulley system shown in Fig. 2.56 by neglecting the friction

and the masses of the pulleys.

2.14 A weight W is supported by three frictionless and massless pulleys and a spring of stiffness

k, as shown in Fig. 2.57. Find the natural frequency of vibration of weight W for small

oscillations.

k2

k1

Loaded
mine cart

Steel wire rope,
0.05+ diameter

25*

30*

Pulley

50

FIGURE 2.53

FIGURE 2.54 An electronic chassis mounted on

vibration isolators. (Courtesy of Titan SESCO.)
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FIGURE 2.55

2.15 A rigid block of mass M is mounted on four elastic supports, as shown in Fig. 2.58. A mass

m drops from a height l and adheres to the rigid block without rebounding. If the spring con-

stant of each elastic support is k, find the natural frequency of vibration of the system

(a) without the mass m, and (b) with the mass m. Also find the resulting motion of the system

in case (b).

2.16 A sledgehammer strikes an anvil with a velocity of 50 ft/sec (Fig. 2.59). The hammer and the

anvil weigh 12 lb and 100 lb, respectively. The anvil is supported on four springs, each of

stiffness Find the resulting motion of the anvil (a) if the hammer remains in

contact with the anvil and (b) if the hammer does not remain in contact with the anvil after

the initial impact.

2.17 Derive the expression for the natural frequency of the system shown in Fig. 2.60. Note that

the load W is applied at the tip of beam 1 and midpoint of beam 2.

k = 100 lb/in.

k k

4k

4k

m

FIGURE 2.56
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l

m

k

k

M

k

k

FIGURE 2.58

W

k

FIGURE 2.57

2.18 A heavy machine weighing 9,810 N is being lowered vertically down by a winch at a uni-

form velocity of 2 m/s. The steel cable supporting the machine has a diameter of 0.01 m. The

winch is suddenly stopped when the steel cable s length is 20 m. Find the period and ampli-

tude of the ensuing vibration of the machine.
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Hammer

k

k

k

Spring

Anvil

k

FIGURE 2.59

2.19 The natural frequency of a spring-mass system is found to be 2 Hz. When an additional mass

of 1 kg is added to the original mass m, the natural frequency is reduced to 1 Hz. Find the

spring constant k and the mass m.

2.20 An electrical switch gear is supported by a crane through a steel cable of length 4 m and

diameter 0.01 m (Fig. 2.61). If the natural time period of axial vibration of the switch gear is

found to be 0.1 s, find the mass of the switch gear.

2.21 Four weightless rigid links and a spring are arranged to support a weight W in two different

ways, as shown in Fig. 2.62. Determine the natural frequencies of vibration of the two

arrangements.

W

l1, E1, I1

l2, E2, I2

FIGURE 2.60
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2.22 A scissors jack is used to lift a load W. The links of the jack are rigid and the collars can slide

freely on the shaft against the springs of stiffnesses and (see Fig. 2.63). Find the natural

frequency of vibration of the weight in the vertical direction.

k2k1

FIGURE 2.61 (Photo courtesy of the

Institution of Electrical Engineers.)

W

k

l

l

l

l

(a)

W

k

l

l

l

l

(b)

2u
u u

FIGURE 2.62
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FIGURE 2.63

2.23 A weight is suspended using six rigid links and two springs in two different ways, as shown

in Fig. 2.64. Find the natural frequencies of vibration of the two arrangements.

W

k

k

l

l

l

ll

l

ll

(a)

W

k

l

l

l

ll

l

ll

(b)

k

FIGURE 2.64

2.24 Figure 2.65 shows a small mass m restrained by four linearly elastic springs, each of which

has an unstretched length l, and an angle of orientation of 45 with respect to the x-axis. Deter-

mine the equation of motion for small displacements of the mass in the x direction.

2.25 A mass m is supported by two sets of springs oriented at 30 and 120 with respect to the

X-axis, as shown in Fig. 2.66. A third pair of springs, each with a stiffness of is to be

designed so as to make the system have a constant natural frequency while vibrating in any

direction x. Determine the necessary spring stiffness and the orientation of the springs

with respect to the X-axis.

k3

k3,

°°

°
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2.26 A mass m is attached to a cord that is under a tension T, as shown in Fig. 2.67. Assuming that

T remains unchanged when the mass is displaced normal to the cord, (a) write the differential

equation of motion for small transverse vibrations and (b) find the natural frequency of

vibration.

2.27 A bungee jumper weighing 160 lb ties one end of an elastic rope of length 200 ft and stiffness

10 lb/in. to a bridge and the other end to himself and jumps from the bridge (Fig. 2.68).

Assuming the bridge to be rigid, determine the vibratory motion of the jumper about his sta-

tic equilibrium position.

x

y

m

k
1

k
1

k
2

k
2

l

l

45

45

l

l

FIGURE 2.65
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k
2

60

u

FIGURE 2.66
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l

m

a b

FIGURE 2.67

2.28 An acrobat weighing 120 lb walks on a tightrope, as shown in Fig. 2.69. If the natural fre-

quency of vibration in the given position, in vertical direction, is 10 rad/sec, find the tension

in the rope.

2.29 The schematic diagram of a centrifugal governor is shown in Fig. 2.70. The length of each

rod is l, the mass of each ball is m, and the free length of the spring is h. If the shaft speed is

determine the equilibrium position and the frequency for small oscillations about this

position.

2.30 In the Hartnell governor shown in Fig. 2.71, the stiffness of the spring is N/m and the

weight of each ball is 25 N. The length of the ball arm is 20 cm, and that of the sleeve arm is

12 cm. The distance between the axis of rotation and the pivot of the bell crank lever is 16 cm.

The spring is compressed by 1 cm when the ball arm is vertical. Find (a) the speed of the

governor at which the ball arm remains vertical and (b) the natural frequency of vibration for

small displacements about the vertical position of the ball arms.

10
4

v,

Unstretched length, 200 ft

FIGURE 2.68
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2.31 A square platform PQRS and a car that it is supporting have a combined mass of M. The plat-

form is suspended by four elastic wires from a fixed point O, as indicated in Fig. 2.72. The

vertical distance between the point of suspension O and the horizontal equilibrium position

of the platform is h. If the side of the platform is a and the stiffness of each wire is k, deter-

mine the period of vertical vibration of the platform.

2.32 The inclined manometer, shown in Fig. 2.73, is used to measure pressure. If the total length

of mercury in the tube is L, find an expression for the natural frequency of oscillation of the

mercury.

80 in. 160 in.

FIGURE 2.69

m m

l

l

l

l

h k

Rod

uu

v

FIGURE 2.70
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Spring

Ball

O

20 cm

12 cm

16 cm

FIGURE 2.71 Hartnell governor.

2.33 The crate, of mass 250 kg, hanging from a helicopter (shown in Fig. 2.74(a)) can be modeled

as shown in Fig. 2.74(b). The rotor blades of the helicopter rotate at 300 rpm. Find the diam-

eter of the steel cables so that the natural frequency of vibration of the crate is at least twice

the frequency of the rotor blades.

P Q

S
Ra

a

O

FIGURE 2.72
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2.34 A pressure-vessel head is supported by a set of steel cables of length 2 m as shown in Fig.

2.75. The time period of axial vibration (in vertical direction) is found to vary from 5 s to

4.0825 s when an additional mass of 5,000 kg is added to the pressure-vessel head. Deter-

mine the equivalent cross-sectional area of the cables and the mass of the pressure-vessel

head.

2.35 A flywheel is mounted on a vertical shaft, as shown in Fig. 2.76. The shaft has a diameter d

and length l and is fixed at both ends. The flywheel has a weight of W and a radius of gyra-

tion of r. Find the natural frequency of the longitudinal, the transverse, and the torsional

vibration of the system.

L

u

FIGURE 2.73

1 m
1 m

2 m

1 m

(a) (b)

FIGURE 2.74
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FIGURE 2.75 (Photo courtesy of CBI Industries Inc.)

Flywheel

Shaft

a

b * l + a

d

l

FIGURE 2.76
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2.36 A TV antenna tower is braced by four cables, as shown in Fig. 2.77. Each cable is under ten-

sion and is made of steel with a cross-sectional area of The antenna tower can be

modeled as a steel beam of square section of side 1 in. for estimating its mass and stiffness.

Find the tower s natural frequency of bending vibration about the y-axis.

0.5 in.2.

z

2 ft

2 ft

Antenna

tower

50 ft

Cables

100 ft

x

15 ft

15 ft
15 ft

15 ft

y

FIGURE 2.77

2.37 Figure 2.78(a) shows a steel traffic sign, of thickness , fixed to a steel post. The post is

72 in. high with a cross section and it can undergo torsional vibration (about

the z-axis) or bending vibration (either in the zx-plane or the yz-plane). Determine the mode

of vibration of the post in a storm during which the wind velocity has a frequency component

of 1.25 Hz.

Hints:

1. Neglect the weight of the post in finding the natural frequencies of vibration.

2. Torsional stiffness of a shaft with a rectangular section (see Fig. 2.78(b)) is given by

where G is the shear modulus.

kt = 5.33 

ab3G

l
 B1 - 0.63 

b

a
 ¢1 -

b4

12a4
R

2 in. * 1/4 in.,

1

8  in.
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x x

W

EI EI

EI EI

h

x x

W

EI EI

EI EI

h

(a) (b)

FIGURE 2.79

(b)

2a

2b

l

2 in.

8.8 in.

72 in.

30 in.

z

x

(a) (c)

h

O

O

b

l

FIGURE 2.78

3. Mass moment of inertia of a rectangular block about axis OO (see Fig. 2.78(c)) is given by

where is the density of the block.

2.38 A building frame is modeled by four identical steel columns, each of weight w, and a rigid

floor of weight W, as shown in Fig. 2.79. The columns are fixed at the ground and have a

bending rigidity of EI each. Determine the natural frequency of horizontal vibration of the

building frame by assuming the connection between the floor and the columns to be (a) piv-

oted as shown in Fig. 2.79(a) and (b) fixed against rotation as shown in Fig. 2.79(b). Include

the effect of self weights of the columns.

r

IOO =

rl

3
 (b3h + h3b)
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A

A

B

B

C

C

l1 l2 l3

d1 d2 d3

D1 D2 D3

E3E2E1

Section AA Section BB Section CC

FIGURE 2.80

2.39 A pick-and-place robot arm, shown in Fig. 2.80, carries an object weighing 10 lb. Find the

natural frequency of the robot arm in the axial direction for the following data: 

psi; 

d2 = 1.25 in., d3 = 0.75 in.d1 = 1.75 in.,

D3 = 1 in.;D2 = 1.5 in.,D1 = 2 in.,E1 = E2 = E3 = 107l3 = 8 in.;l2 = 10 in.,

l1 = 12 in.,

*The asterisk denotes a design problem or a problem with no unique answer.

l

2

l

2

m

l

4

3l

4

m

(a) (b)

FIGURE 2.81

2.41* Figure 2.82 shows a metal block supported on two identical cylindrical rollers rotating in

opposite directions at the same angular speed. When the center of gravity of the block is ini-

tially displaced by a distance x, the block will be set into simple harmonic motion. If the fre-

quency of motion of the block is found to be determine the coefficient of friction between

the block and the rollers.

2.42* If two identical springs of stiffness k each are attached to the metal block of Problem 2.41 as

shown in Fig. 2.83, determine the coefficient of friction between the block and the rollers.

v,

2.40 A helical spring of stiffness k is cut into two halves and a mass m is connected to the two

halves as shown in Fig. 2.81(a). The natural time period of this system is found to be 0.5 s. If

an identical spring is cut so that one part is one-fourth and the other part three-fourths of the

original length, and the mass m is connected to the two parts as shown in Fig. 2.81(b), what

would be the natural period of the system?
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k k

a
G

W

x

c c

FIGURE 2.83

W

a
G

x

c c

FIGURE 2.82

2.43 An electromagnet weighing 3,000 lb is at rest while holding an automobile of weight 2,000

lb in a junkyard. The electric current is turned off, and the automobile is dropped. Assuming

that the crane and the supporting cable have an equivalent spring constant of 10,000 lb/in.,

find the following: (a) the natural frequency of vibration of the electromagnet, (b) the result-

ing motion of the electromagnet, and (c) the maximum tension developed in the cable during

the motion.

2.44 Derive the equation of motion of the system shown in Fig. 2.84, using the following meth-

ods: (a) Newton s second law of motion, (b) D Alembert s principle, (c) principle of virtual

work, and (d) principle of conservation of energy.

m

k
1

k
2

FIGURE 2.84
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2.45 2.46 Draw the free-body diagram and derive the equation of motion using Newton s second law of

motion for each of the systems shown in Figs. 2.85 and 2.86.

m

k

r

4r

O

x(t)

Pulley, mass
moment of
inertia Jo

FIGURE 2.85

r

2r

x(t)

k

5k

2k

m

FIGURE 2.86

2.47 2.48 Derive the equation of motion using the principle of conservation of energy for each of the

systems shown in Figs. 2.85 and 2.86.

2.49 A steel beam of length 1 m carries a mass of 50 kg at its free end, as shown in Fig. 2.87. Find

the natural frequency of transverse vibration of the mass by modeling it as a single-degree-

of-freedom system.
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Cross section, 5 cm * 5 cm

Mass, 50 kg

0.8 m 0.2 m

FIGURE 2.87

2.50 A steel beam of length 1 m carries a mass of 50 kg at its free end, as shown in Fig. 2.88. Find

the natural frequency of transverse vibration of the system by modeling it as a single-degree-

of-freedom system.

Cross section, 5 cm * 5 cm

Mass, 50 kg

0.8 m 0.2 m

FIGURE 2.88

2.51 Determine the displacement, velocity, and acceleration of the mass of a spring-mass system

with and 

2.52 Determine the displacement (x), velocity and acceleration of a spring-mass system

with rad/s for the initial conditions and Plot 

and from to 5 s.

2.53 The free-vibration response of a spring-mass system is observed to have a frequency of 2

rad/s, an amplitude of 10 mm, and a phase shift of 1 rad from Determine the initial

conditions that caused the free vibration. Assume the damping ratio of the system as 0.1.

2.54 An automobile is found to have a natural frequency of 20 rad/s without passengers and 17.32

rad/s with passengers of mass 500 kg. Find the mass and stiffness of the automobile by treat-

ing it as a single-degree-of-freedom system.

2.55 A spring-mass system with mass 2 kg and stiffness 3,200 N/m has an initial displacement of

What is the maximum initial velocity that can be given to the mass without the

amplitude of free vibration exceeding a value of 0.1 m?

2.56 A helical spring, made of music wire of diameter d, has a mean coil diameter (D) of 0.5625

in. and N active coils (turns). It is found to have a frequency of vibration (f) of 193 Hz and a

spring rate k of 26.4 lb/in. Determine the wire diameter d and the number of coils N, assum-

ing the shear modulus G is psi and weight density is The spring

rate (k) and frequency (f) are given by

where W is the weight of the helical spring and g is the acceleration due to gravity.

k =
d4G

8D3N
,   f =

1

2A
kg

W

0.282 lb/in.3.r11.5 * 106

x0 = 0.

t = 0.

t = 0x
$
(t)

x(t), x 
#
(t),x 

#

0 = 1 m/s.x0 = 0.05 mvn = 10
(x
$
)(x 

#
),

x 
#

0 = 5 m/s.k = 500 N/m, m = 2 kg, x0 = 0.1 m,
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2.57 Solve Problem 2.56 if the material of the helical spring is changed from music wire to alu-

minum with and 

2.58 A steel cantilever beam is used to carry a machine at its free end. To save weight, it is pro-

posed to replace the steel beam by an aluminum beam of identical dimensions. Find the

expected change in the natural frequency of the beam-machine system.

2.59 An oil drum of diameter 1 m and a mass of 500 kg floats in a bath of salt water of density

Considering small displacements of the drum in the vertical direction (x),

determine the natural frequency of vibration of the system.

2.60 The equation of motion of a spring-mass system is given by (units: SI system)

a. Determine the static equilibrium position of the system.

b. Derive the linearized equation of motion for small displacements (x) about the static equi-

librium position.

c. Find the natural frequency of vibration of the system for small displacements.

d. Find the natural frequency of vibration of the system for small displacements when the

mass is 600 (instead of 500).

2.61 A deceleration of is caused when brakes are applied to a vehicle traveling at a speed

of 100 km/hour. Determine the time taken and the distance traveled before the vehicle comes

to a complete stop.

2.62 A steel hollow cylindrical post is welded to a steel rectangular traffic sign as shown in Fig.

2.89 with the following data:

Dimensions: 

material properties: 

Find the natural frequencies of the system in transverse vibration in the yz- and xz-planes by

considering the masses of both the post and the sign.

Hint: Consider the post as a cantilever beam in transverse vibration in the appropriate plane.

2.63 Solve Problem 2.62 by changing the material from steel to bronze for both the post and the

sign. Material properties of bronze: 

Section 2.3 Free Vibration of an Undamped Torsional System

2.64 A simple pendulum is set into oscillation from its rest position by giving it an angular veloc-

ity of 1 rad/s. It is found to oscillate with an amplitude of 0.5 rad. Find the natural frequency

and length of the pendulum.

G = 41.4 GPa.
r (specific weight) = 80.1 kN/m3, E = 111.0 GPa,

r (specific weight) = 76.50 kN/m3, E = 207 GPa, G = 79.3 GPa

l = 2 m, r0 = 0.050 m, ri = 0.045 m, b = 0.75 m, d = 0.40 m, t = 0.005 m;

10 m/s2

500x
$
+ 1000a

x

0.025
b

3

= 0

rw = 1050 kg/m3.

r = 0.1 lb/in.3.G = 4 * 106 psi
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t

Traffic
sign

Hollow cylindrical
post

A
A

z

y
ri

r0

x
Section A-A

l

b

d

FIGURE 2.89

2.65 A pulley 250 mm in diameter drives a second pulley 1,000 mm in diameter by means of a

belt (see Fig. 2.90). The moment of inertia of the driven pulley is The belt con-

necting these pulleys is represented by two springs, each of stiffness k. For what value of k

will the natural frequency be 6 Hz?

2.66 Derive an expression for the natural frequency of the simple pendulum shown in Fig. 1.10.

Determine the period of oscillation of a simple pendulum having a mass and a

length 

2.67 A mass m is attached at the end of a bar of negligible mass and is made to vibrate in three dif-

ferent configurations, as indicated in Fig. 2.91. Find the configuration corresponding to the

highest natural frequency.

2.68 Figure 2.92 shows a spacecraft with four solar panels. Each panel has the dimensions

with a weight density of and is connected to the body of the

spacecraft by aluminum rods of length 12 in. and diameter 1 in. Assuming that the body of

the spacecraft is very large (rigid), determine the natural frequency of vibration of each panel

about the axis of the connecting aluminum rod.

2.69 One of the blades of an electric fan is removed (as shown by dotted lines in Fig. 2.93). The

steel shaft AB, on which the blades are mounted, is equivalent to a uniform shaft of diameter

1 in. and length 6 in. Each blade can be modeled as a uniform slender rod of weight 2 lb and

length 12 in. Determine the natural frequency of vibration of the remaining three blades

about the y-axis.

0.1 lb/in.35 ft * 3 ft * 1 ft

l = 0.5 m.

m = 5 kg

0.2 kg-m2
.
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m m

m

l

Massless
bar

Massless
bar

a

a

k

k

(a) (b) (c)

u
u

u

FIGURE 2.91

25
0 

m
m

10
00

 m
m

k

k

(b)

(a)

FIGURE 2.90 (Photo courtesy of Reliance Electric

Company.)
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Aluminum rod

FIGURE 2.92

6*

A
B

x

y

z

FIGURE 2.93

2.70 A heavy ring of mass moment of inertia is attached at the end of a two-layered

hollow shaft of length 2 m (Fig. 2.94). If the two layers of the shaft are made of steel and

brass, determine the natural time period of torsional vibration of the heavy ring.

1.0 kg-m2
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5 cm
4 cm

3 cm

2 m

Two-layered
hollow shaft

Brass
Steel

FIGURE 2.94

2.71 Find the natural frequency of the pendulum shown in Fig. 2.95 when the mass of the con-

necting bar is not negligible compared to the mass of the pendulum bob.

Connecting bar
(mass m, length l )

Bob
(mass M)

u

FIGURE 2.95

2.72 A steel shaft of 0.05 m diameter and 2 m length is fixed at one end and carries at the other

end a steel disc of 1 m diameter and 0.1 m thickness, as shown in Fig. 2.14. Find the system s

natural frequency of torsional vibration.

2.73 A uniform slender rod of mass m and length l is hinged at point A and is attached to four lin-

ear springs and one torsional spring, as shown in Fig. 2.96. Find the natural frequency of the

system if and l = 5 m.k = 2000 N/m, kt = 1000 N-m/rad, m = 10 kg,
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m, J0
k1 k2

O

R a

u

FIGURE 2.97

2.74 A cylinder of mass m and mass moment of inertia is free to roll without slipping but is

restrained by two springs of stiffnesses and as shown in Fig. 2.97. Find its natural fre-

quency of vibration. Also find the value of a that maximizes the natural frequency of vibration.

k2,k1

J0

k k

k

kt

k

A

2l

3

l

3

FIGURE 2.96

2.75 If the pendulum of Problem 2.66 is placed in a rocket moving vertically with an acceleration

of what will be its period of oscillation?

2.76 Find the equation of motion of the uniform rigid bar OA of length l and mass m shown in Fig.

2.98. Also find its natural frequency.

5 m/s2,

Torsional
spring

Linear
spring

Linear
spring

k1

k2

kt

O
C.G.

A

a
l
2

l

u

FIGURE 2.98
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2.77 A uniform circular disc is pivoted at point O, as shown in Fig. 2.99. Find the natural frequency

of the system. Also find the maximum frequency of the system by varying the value of b.

b
a

O

FIGURE 2.99

Uniform rigid
bar, mass m

k3k

O

l

4
3l
4

u

FIGURE 2.100

2.78 Derive the equation of motion of the system shown in Fig. 2.100, using the following meth-

ods: (a) Newton s second law of motion, (b) D Alembert s principle, and (c) principle of vir-

tual work.

2.79 Find the natural frequency of the traffic sign system described in Problem 2.62 in torsional

vibration about the z-axis by considering the masses of both the post and the sign.

Hint: The spring stiffness of the post in torsional vibration about the z-axis is given by 

The mass moment of inertia of the sign about the z-axis is given by 

where is the mass of the sign.

2.80 Solve Problem 2.79 by changing the material from steel to bronze for both the post and

the sign. Material properties of bronze: 

2.81 A mass is attached at one end of a uniform bar of mass whose other end is pivoted at

point O as shown in Fig. 2.101. Determine the natural frequency of vibration of the resulting

pendulum for small angular displacements.

m2m 1

G = 41.4 GPa.

r (specific weight) = 80.1 kN/m3, E = 111.0 GPa,

m0I0 =
1

12
 m0 (d2

+ b2),

kt =
pG

2l
 (r0

4
- ri

4).
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m
1
g

m
2
g

u

l

FIGURE 2.101

2.82 The angular motion of the forearm of a human hand carrying a mass is shown in Fig.

2.102. During motion, the forearm can be considered to rotate about the joint (pivot point) O

with muscle forces modeled in the form of a force by triceps and a force in biceps

where and are constants and is the velocity with which triceps are stretched

(or contracted). Approximating the forearm as a uniform bar of mass m and length l, derive

the equation of motion of the forearm for small angular displacements Also find the nat-

ural frequency of the forearm.

Section 2.4 Response of First-Order Systems and Time Constant

2.83 Find the free-vibration response and the time constant, where applicable, of systems gov-

erned by the following equations of motion:

a.

b.

c.

d.

Hint: The time constant can also be defined as the value of time at which the step response

of a system rises to 63.2% of its final value.

2.84 A viscous damper, with damping constant c, and a spring, with spring stiffness k, are con-

nected to a massless bar AB as shown in Fig. 2.103. The bar AB is displaced by a distance of

when a constant force is applied. The applied force F is then abruptly

released from its displaced position. If the displacement of the bar AB is reduced from its ini-

tial value of 0.1 m at to 0.01 m at see, find the values of c and k.

2.85 The equation of motion of a rocket, of mass m, traveling vertically under a thrust F and air

resistance or drag D is given by

mn
#
= F - D - mg

t = 10,t = 0

F = 500 Nx = 0.1 m

(100.0% - 36.8%)

500v
#
+ 50v = 0, v(0) = v(t = 0) = 0.5

100n
#
- 20n = 0, n(0) = n(t = 0) = 10

100n
#
+ 20n = 10, n(0) = n(t = 0) = 10

100n
#
+ 20n = 0, n(0) = n(t = 0) = 10

u.

x
#

c2c1(-c2u),

(c1x
#
)

m0
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Biceps
muscle
contracted 
(F2 * +a2u)

a2

m1g

m2g

a1

O (pivot point)

u

F2

F1 Triceps
muscle
contracted 
(F1 * a1x)

.

b

Forearm

FIGURE 2.102 Motion of arm.

A

B
x

c

F * 500 N

k

FIGURE 2.103

If and find the time variation of 

the velocity of the rocket, using the initial conditions and 

where x(t) is the distance traveled by the rocket in time t.

v(0) = 0,x(0) = 0n(t) =

dx(t)

dt
,

g = 9.81 m/s2
,m = 1000 kg, F = 50,000 N, D = 2,000 v,

M02_RAO8193_5_SE_C02.QXD  8/21/10  4:03 PM  Page 242



PROBLEMS 243

b
a

h

x

FIGURE 2.105

Uniform beam,
flexural stiffness * El,
total weight * mg.

l

2
l

M

FIGURE 2.104

Section 2.5 Rayleigh s Energy Method

2.86 Determine the effect of self weight on the natural frequency of vibration of the pinned-

pinned beam shown in Fig. 2.104.

2.87 Use Rayleigh s method to solve Problem 2.7.

2.88 Use Rayleigh s method to solve Problem 2.13.

2.89 Find the natural frequency of the system shown in Fig. 2.54.

2.90 Use Rayleigh s method to solve Problem 2.26.

2.91 Use Rayleigh s method to solve Problem 2.73.

2.92 Use Rayleigh s method to solve Problem 2.76.

2.93 A wooden rectangular prism of density height h, and cross section is initially

depressed in an oil tub and made to vibrate freely in the vertical direction (see Fig. 2.105).

a * brw,
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Cylinder rolls
without sliding

Rough surface

k

x

uR

FIGURE 2.106

Use Rayleigh s method to find the natural frequency of vibration of the prism. Assume the

density of oil is If the rectangular prism is replaced by a uniform circular cylinder of

radius r, height h, and density will there be any change in the natural frequency?

2.94 Use the energy method to find the natural frequency of the system shown in Fig. 2.97.

2.95 Use the energy method to find the natural frequency of vibration of the system shown in Fig. 2.85.

2.96 A cylinder of mass m and mass moment of inertia J is connected to a spring of stiffness k and

rolls on a rough surface as shown in Fig. 2.106. If the translational and angular displace-

ments of the cylinder are x and from its equilibrium position, determine the following:

a. Equation of motion of the system for small displacements in terms of x using the energy

method.

b. Equation of motion of the system for small displacements in terms of using the energy

method.

c. Find the natural frequencies of the system using the equation of motion derived in parts

(a) and (b). Are the resulting natural frequencies same?

u

u

rw,

r0.

Section 2.6 Free Vibration with Viscous Damping

2.97 A simple pendulum is found to vibrate at a frequency of 0.5 Hz in a vacuum and 0.45 Hz in

a viscous fluid medium. Find the damping constant, assuming the mass of the bob of the pen-

dulum is 1 kg.

2.98 The ratio of successive amplitudes of a viscously damped single-degree-of-freedom system

is found to be 18:1. Determine the ratio of successive amplitudes if the amount of damping is

(a) doubled, and (b) halved.

2.99 Assuming that the phase angle is zero, show that the response x(t) of an underdamped single-

degree-of-freedom system reaches a maximum value when

and a minimum value when

sin vd 
t = -21 - z2

sin vd 
t = 21 - z2
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Also show that the equations of the curves passing through the maximum and minimum val-

ues of x(t) are given, respectively, by

and

2.100 Derive an expression for the time at which the response of a critically damped system will

attain its maximum value. Also find the expression for the maximum response.

2.101 A shock absorber is to be designed to limit its overshoot to 15 percent of its initial displace-

ment when released. Find the damping ratio required. What will be the overshoot if is

made equal to (a) and (b) 

2.102 The free-vibration responses of an electric motor of weight 500 N mounted on different types

of foundations are shown in Figs. 2.107(a) and (b). Identify the following in each case: (i) the

nature of damping provided by the foundation, (ii) the spring constant and damping coeffi-

cient of the foundation, and (iii) the undamped and damped natural frequencies of the elec-

tric motor.

5

4 z0?
3

4 z0,

zz0

x = -21 - z2Xe-zvn 
t

x = 21 - z2Xe-zvn t

0
0.1

x(t), mm

t, sec
0.2

4

0.3 0.4

(a)

0.5 0.6

8

x(t), mm

t, sec

(b)

0.1 0.2 0.3 0.4
0.5

8

0

6
4

2 1

FIGURE 2.107
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c

k/2

v

k/2

FIGURE 2.108

2.103 For a spring-mass-damper system, and Find the following: (a)

critical damping constant (b) damped natural frequency when and (c) logarith-

mic decrement.

2.104 A railroad car of mass 2,000 kg traveling at a velocity is stopped at the end of the

tracks by a spring-damper system, as shown in Fig. 2.108. If the stiffness of the spring is

and the damping constant is determine (a) the maximum

displacement of the car after engaging the springs and damper and (b) the time taken to reach

the maximum displacement.

c = 20 N-s/mm,k = 80 N/mm

v = 10 m/s

c = cc/2,cc,

k = 5,000 N/m.m = 50 kg

2.105 A torsional pendulum has a natural frequency of 200 cycles/min when vibrating in a vacuum.

The mass moment of inertia of the disc is It is then immersed in oil and its natural

frequency is found to be 180 cycles/min. Determine the damping constant. If the disc, when

placed in oil, is given an initial displacement of 2 , find its displacement at the end of the first

cycle.

2.106 A boy riding a bicycle can be modeled as a spring-mass-damper system with an equiva-

lent weight, stiffness, and damping constant of 800 N, 50,000 N/m, and 1,000 N-s/m,

respectively. The differential setting of the concrete blocks on the road caused the level

surface to decrease suddenly, as indicated in Fig. 2.109. If the speed of the bicycle is 5

m/s (18 km/hr), determine the displacement of the boy in the vertical direction. Assume

that the bicycle is free of vertical vibration before encountering the step change in the

vertical displacement.

2.107 A wooden rectangular prism of weight 20 lb, height 3 ft, and cross section floats

and remains vertical in a tub of oil. The frictional resistance of the oil can be assumed to be

equivalent to a viscous damping coefficient When the prism is depressed by a distance of

6 in. from its equilibrium and released, it is found to reach a depth of 5.5 in. at the end of its

first cycle of oscillation. Determine the value of the damping coefficient of the oil.

z.

1 ft * 2 ft

°

0.2 kg-m2.
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10 m 10 m15 m

meq

keq
ceq

v

A

Bt * 0
t * 3 s

5 cm

C, t+ * 0

FIGURE 2.109

2.108 A body vibrating with viscous damping makes five complete oscillations per second, and in

50 cycles its amplitude diminishes to 10 percent. Determine the logarithmic decrement and

the damping ratio. In what proportion will the period of vibration be decreased if damping is

removed?

2.109 The maximum permissible recoil distance of a gun is specified as 0.5 m. If the initial recoil

velocity is to be between 8 m/s and 10 m/s, find the mass of the gun and the spring stiffness

of the recoil mechanism. Assume that a critically damped dashpot is used in the recoil mech-

anism and the mass of the gun has to be at least 500 kg.

2.110 A viscously damped system has a stiffness of 5,000 N/m, critical damping constant of 0.2 N-

s/mm, and a logarithmic decrement of 2.0. If the system is given an initial velocity of 1 m/s,

determine the maximum displacement of the system.

2.111 Explain why an overdamped system never passes through the static equilibrium position

when it is given (a) an initial displacement only and (b) an initial velocity only.

2.112 2.114 Derive the equation of motion and find the natural frequency of vibration of each of the sys-

tems shown in Figs. 2.110 to 2.112.

2.115 2.117 Using the principle of virtual work, derive the equation of motion for each of the systems

shown in Figs. 2.110 to 2.112.

ck R

Cylinder, mass m

Pure rolling

x(t)

FIGURE 2.110
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O

Uniform
rigid bar,
mass m

l

2

l

4

l

4

c3k k

u

FIGURE 2.112

2.118 A wooden rectangular prism of cross section height 120 cm, and mass 40

kg floats in a fluid as shown in Fig. 2.105. When disturbed, it is observed to vibrate freely

with a natural period of 0.5 s. Determine the density of the fluid.

2.119 The system shown in Fig. 2.113 has a natural frequency of 5 Hz for the following data:

When the system is disturbed by giv-

ing it an initial displacement, the amplitude of free vibration is reduced by 80 percent in 10

cycles. Determine the values of k and c.

m = 10 kg, J0 = 5 kg-m2, r1 = 10 cm, r2 = 25 cm.

40 cm * 60 cm,

r1

O

Pulley,
mass moment of inertia J0

r2

c

m

x(t)

k

FIGURE 2.113

k

k

c

R Cylinder, mass m

No slip

30

x(t)

FIGURE 2.111
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2.120 The rotor of a dial indicator is connected to a torsional spring and a torsional viscous damper

to form a single-degree-of-freedom torsional system. The scale is graduated in equal divi-

sions, and the equilibrium position of the rotor corresponds to zero on the scale. When a

torque of N-m is applied, the angular displacement of the rotor is found to be 50

with the pointer showing 80 divisions on the scale. When the rotor is released from this posi-

tion, the pointer swings first to divisions in one second and then to 5 divisions in

another second. Find (a) the mass moment of inertia of the rotor, (b) the undamped natural

time period of the rotor, (c) the torsional damping constant, and (d) the torsional spring

stiffness.

2.121 Determine the values of and for the following viscously damped systems:

a.

b.

c.

2.122 Determine the free-vibration response of the viscously damped systems described in Prob-

lem 2.121 when and 

2.123 Find the energy dissipated during a cycle of simple harmonic motion given by

by a viscously damped single-degree-of-freedom system with the fol-

lowing parameters:

a.

b.

2.124 The equation of motion of a spring-mass-damper system, with a hardening-type spring, is

given by (in SI units)

a. Determine the static equilibrium position of the system.

b. Derive the linearized equation of motion for small displacements (x) about the static equi-

librium position.

c. Find the natural frequency of vibration of the system for small displacements.

2.125 The equation of motion of a spring-mass-damper system, with a softening-type spring, is

given by (in SI units)

a. Determine the static equilibrium position of the system.

b. Derive the linearized equation of motion for small displacements (x) about the static equi-

librium position.

c. Find the natural frequency of vibration of the system for small displacements.

2.126 The needle indicator of an electronic instrument is connected to a torsional viscous

damper and a torsional spring. If the rotary inertia of the needle indicator about its pivot

point is and the spring constant of the torsional spring is 100 N-m/rad, deter-

mine the damping constant of the torsional damper if the instrument is to be critically

damped.

25 kg-m2

100x
$
+ 500x

#
+ 10 000x - 400x3

= 0

100x
$
+ 500x

#
+ 10 000x + 400x3

= 0

m = 10 kg, c = 150 N-s/m, k = 1000 N/m

m = 10 kg, c = 50 N-s/m, k = 1000 N/m

x(t) = 0.2 sin vdt m

x 
#

0 = 10 m/s.x0 = 0.1 m

m = 10 kg, c = 250 N-s/m, k = 1000 N/m

m = 10 kg, c = 200 N-s/m, k = 1000 N/m

m = 10 kg, c = 150 N-s/m, k = 1000 N/m

vdz

-20

°2 * 10-3

M02_RAO8193_5_SE_C02.QXD  8/21/10  4:03 PM  Page 249



250 CHAPTER 2 FREE VIBRATION OF SINGLE-DEGREE-OF-FREEDOM SYSTEMS

Bearing Bearing

Body of revolution

(J)

Torsional

spring (kt)

FIGURE 2.114

2.127 Find the responses of systems governed by the following equations of motion for the initial

conditions 

a.

b.

c.

2.128 Find the responses of systems governed by the following equations of motion for the initial

conditions 

a.

b.

c.

2.129 Find the responses of systems governed by the following equations of motion for the initial

conditions 

a.

b.

c.

2.130 A spring-mass system is found to vibrate with a frequency of 120 cycles per minute in air

and 100 cycles per minute in a liquid. Find the spring constant k, the damping constant c, and

the damping ratio when vibrating in the liquid. Assume m = 10 kg.

2.131 Find the frequency of oscillation and time constant for the systems governed by the follow-

ing equations:

a.

b.

c.

2.132 The mass moment of inertia of a nonhomogeneous and/or complex-shaped body of revolu-

tion about the axis of rotation can be determined by first finding its natural frequency of tor-

sional vibration about its axis of rotation. In the torsional system shown in Fig. 2.114, the

body of revolution (or rotor), of rotary inertia J, is supported on two frictionless bearings and

x
$

+ 6x
#
+ 9x = 0

x
$

+ 8x
#
+ 9x = 0

x
$

+ 2x
#
+ 9x = 0

z

2x
$

+ 8x
#
+ 8x = 0

3x
$

+ 12x
#
+ 9x = 0

2x
$

+ 8x
#
+ 16x = 0

x(0) = 1, x
#
(0) = -1:

2x
$

+ 8x
#
+ 8x = 0

3x
$

+ 12x
#
+ 9x = 0

2x
$

+ 8x
#
+ 16x = 0

x(0) = 1, x
#
(0) = 0:

2x
$

+ 8x
#
+ 8x = 0

3x
$

+ 12x
#
+ 9x = 0

2x
$

+ 8x
#
+ 16x = 0

x(0) = 0, x
#
(0) = 1:
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connected to a torsional spring of stiffness By giving an initial twist (angular displace-

ment) of and releasing the rotor, the period of the resulting vibration is measured as 

a. Find an expression for the mass moment of inertia of the rotor (J) in terms of and 

b. Determine the value of J if and 

Section 2.7 Graphical Representation of Characteristic Roots 

and Corresponding Solutions

2.133 The characteristic roots of a single-degree-of-freedom system are given below. Find all the

applicable features of the system among the characteristic equation, time constant,

undamped natural frequency, damped frequency, and damping ratio.

a.

b.

c.

d.

2.134 Show the characteristic roots indicated in Problem 2.133 (a) (d) in the s-plane and describe

the nature of the response of the system in each case.

2.135 The characteristic equation of a single-degree-of-freedom system, given by Eq. (2.107), can

be rewritten as

(E.1)

where and can be considered as the parameters of the system. Identify

regions that represent a stable, unstable, and  marginally stable system in the parameter

plane i.e., the plane in which a and b are denoted along the vertical and horizontal axes,

respectively.

Section 2.8 Parameter Variations and Root Locus Representations

2.136 Consider the characteristic equation: Draw the root locus of the system

for 

2.137 Consider the characteristic equation: Draw the root locus of the system

for 

2.138 Consider the characteristic equation: Draw the root locus of the sys-

tem for 

Section 2.9 Free Vibration with Coulomb Damping

2.139 A single-degree-of-freedom system consists of a mass of 20 kg and a spring of stiffness 4,000

N/m. The amplitudes of successive cycles are found to be Determine

the nature and magnitude of the damping force and the frequency of the damped vibration.

50, 45, 40, 35, Á mm.

m Ú 0.

ms2
+ 12s + 4 = 0.

k Ú 0.

2s2
+ 12s + k = 0.

c Ú 0.

2s2
+ cs + 18 = 0.

b = k /ma = c/m

s2
+ as + b = 0

s1, 2 = -4, -4

s1, 2 = -4, -5

s1, 2 = 4 ; 5i

s1, 2 = -4 ; 5i

k t = 5000 N-m/rad.t = 0.5 s

k t.t

t.u0

k t.
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2.140 A mass of 20 kg slides back and forth on a dry surface due to the action of a spring having a

stiffness of 10 N/mm. After four complete cycles, the amplitude has been found to be 100 mm.

What is the average coefficient of friction between the two surfaces if the original amplitude

was 150 mm? How much time has elapsed during the four cycles?

2.141 A 10-kg mass is connected to a spring of stiffness 3,000 N/m and is released after giving an

initial displacement of 100 mm. Assuming that the mass moves on a horizontal surface, as

shown in Fig. 2.42(a), determine the position at which the mass comes to rest. Assume the

coefficient of friction between the mass and the surface to be 0.12.

2.142 A weight of 25 N is suspended from a spring that has a stiffness of 1,000 N/m. The weight

vibrates in the vertical direction under a constant damping force. When the weight is initially

pulled downward a distance of 10 cm from its static equilibrium position and released, it

comes to rest after exactly two complete cycles. Find the magnitude of the damping force.

2.143 A mass of 20 kg is suspended from a spring of stiffness 10,000 N/m. The vertical motion of

the mass is subject to Coulomb friction of magnitude 50 N. If the spring is initially displaced

downward by 5 cm from its static equilibrium position, determine (a) the number of half

cycles elapsed before the mass comes to rest, (b) the time elapsed before the mass comes to

rest, and (c) the final extension of the spring.

2.144 The Charpy impact test is a dynamic test in which a specimen is struck and broken by a pen-

dulum (or hammer) and the energy absorbed in breaking the specimen is measured. The

energy values serve as a useful guide for comparing the impact strengths of different materi-

als. As shown in Fig. 2.115, the pendulum is suspended from a shaft, is released from a par-

ticular position, and is allowed to fall and break the specimen. If the pendulum is made to

oscillate freely (with no specimen), find (a) an expression for the decrease in the angle of

swing for each cycle caused by friction, (b) the solution for if the pendulum is released

from an angle and (c) the number of cycles after which the motion ceases. Assume the

mass of the pendulum is m and the coefficient of friction between the shaft and the bearing of

the pendulum is 

2.145 Find the equivalent viscous-damping constant for Coulomb damping for sinusoidal vibration.

2.146 A single-degree-of-freedom system consists of a mass, a spring, and a damper in which both

dry friction and viscous damping act simultaneously. The free-vibration amplitude is found

to decrease by 1 percent per cycle when the amplitude is 20 mm and by 2 percent per cycle

when the amplitude is 10 mm. Find the value of for the dry-friction component of

the damping.

2.147 A metal block, placed on a rough surface, is attached to a spring and is given an initial dis-

placement of 10 cm from its equilibrium position. It is found that the natural time period of

motion is 1.0 s and that the amplitude reduces by 0.5 cm in each cycle. Find (a) the kinetic

coefficient of friction between the metal block and the surface and (b) the number of cycles

of motion executed by the block before it stops.

2.148 The mass of a spring-mass system with and is made to vibrate on

a rough surface. If the friction force is and the amplitude of the mass is observed

to decrease by 50 mm in 10 cycles, determine the time taken to complete the 10 cycles.

F = 20 N

m = 5 kgk = 10,000 N/m

(mN/k)

m.

u0,
u(t)
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2.149 The mass of a spring-mass system vibrates on a dry surface inclined at 30 to the horizontal

as shown in Fig. 2.116.

a. Derive the equation of motion.

b. Find the response of the system for the following data:

2.150 The mass of a spring-mass system is initially displaced by 10 cm from its unstressed position

by applying a force of 25 N, which is equal to five times the weight of the mass. If the mass

is released from this position, how long will the mass vibrate and at what distance will it stop

from the unstressed position? Assume a coefficient of friction of 0.2.

Section 2.10 Free Vibration with Hysteretic Damping

2.151 The experimentally observed force-deflection curve for a composite structure is shown in

Fig. 2.117. Find the hysteresis damping constant, the logarithmic decrement, and the equiva-

lent viscous-damping ratio corresponding to this curve.

m = 20 kg,   k = 1,000 N/m,   m = 0.1,   x0 = 0.1 m,   x 
#

0 = 5 m/s.

°

d

Location
of
specimen

Striking edge

G
Pendulum

l

Shaft

Bearing of
pendulum

Striking edge

Test
specimen

Anvil
(support for
test specimen)

(b)(a)

u

FIGURE 2.115
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FIGURE 2.117

2.152 A panel made of fiber-reinforced composite material is observed to behave as a single-degree-

of-freedom system of mass 1 kg and stiffness 2 N/m. The ratio of successive amplitudes is

found to be 1.1. Determine the value of the hysteresis-damping constant the equivalent

viscous-damping constant and the energy loss per cycle for an amplitude of 10 mm.

2.153 A built-up cantilever beam having a bending stiffness of 200 N/m supports a mass of 2 kg at its

free end. The mass is displaced initially by 30 mm and released. If the amplitude is found to be

20 mm after 100 cycles of motion, estimate the hysteresis-damping constant of the beam.

2.154 A mass of 5 kg is attached to the top of a helical spring, and the system is made to vibrate by

giving to the mass an initial deflection of 25 mm. The amplitude of the mass is found to

b

ceq,

b,

k

x(t)

k

m

30

FIGURE 2.116
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reduce to 10 mm after 100 cycles of vibration. Assuming a spring rate of 200 N/m for the

helical spring, find the value of the hysteretis-damping coefficient (h) of the spring.

Section 2.11 Stability of Systems

2.155 Consider the equation of motion of a simple pendulum:

(E.1)

a. Linearize Eq. (E.1) about an arbitrary angular displacement of the pendulum.

b. Investigate the stability of the pendulum about and using the linearized

equation of motion.

2.156 Figure 2.118 shows a uniform rigid bar of mass m and length l, pivoted at one end (point O)

and carrying a circular disk of mass M and mass moment of inertia J (about its rotational

axis) at the other end (point P). The circular disk is connected to a spring of stiffness k and a

viscous damper of damping constant c as indicated.

a. Derive the equation of motion of the system for small angular displacements of the rigid

bar about the pivot point O and express it in the form:

b. Derive conditions corresponding to the stable, unstable, and marginally stable behavior of

the system.

m0 u
 ...

+ c0u
  

* + k0u = 0

u0 = pu0 = 0

u0

u
 ...

+

g

l
 sin u = 0

k
c

L

l

FIGURE 2.118

Section 2.12 Examples Using MATLAB

2.157 Find the free-vibration response of a spring-mass system subject to Coulomb damping using

MATLAB for the following data:

m = 5 kg,   k = 100 N/m,   m = 0.5,   x0 = 0.4 m,   x 
#

0 = 0.
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2.158 Plot the response of a critically damped system (Eq. 2.80) for the following data using MAT-

LAB:

a. 50 mm, 100 mm; 

b. 50 mm/s, 100 mm/s; 

2.159 Plot Eq. (2.81) as well as each of the two terms of Eq. (2.81) as functions of t using MAT-

LAB for the following data:

2.160 2.163 Using the MATLAB Program2.m, plot the free-vibration response of a viscously damped sys-

tem with 

for the following values of the damping constant:

a.

b.

c.

d.

2.164 Find the response of the system described in Problem 2.149 using MATLAB.

c = 400 N-s/m

c = 200 N-s/m

c = 100 N-s/m

c = 0

m = 4 kg, k = 2,500 N/m, x0 = 100 mm, x 
#
0 = -10 m/s, ¢t = 0.01 s, n = 50

vn = 10 rad/s,   z = 2.0,   x0 = 20 mm,   x 
#
0 = 50 mm/s

vn = 10 rad/s.x0 = 0, x 
#
0 = 10 mm/s,

x 
#
0 = 0, vn = 10 rad/s.x0 = 10 mm,

DESIGN PROJECTS

2.165*A water turbine of mass 1,000 kg and mass moment of inertia is mounted on a

steel shaft, as shown in Fig. 2.119. The operational speed of the turbine is 2,400 rpm.

Assuming the ends of the shaft to be fixed, find the values of l, a, and d, such that the natural

frequency of vibration of the turbine in each of the axial, transverse, and circumferential

directions is greater than the operational speed of the turbine.

500 kg-m2

a

d

l

FIGURE 2.119

M02_RAO8193_5_SE_C02.QXD  8/21/10  4:03 PM  Page 256



DESIGN PROJECTS 257

Amusement park

Bar (mass m)
Fd

ktO

M

l  45
Entrance

u

FIGURE 2.120

2.166* Design the columns for each of the building frames shown in Figs. 2.79(a) and (b) for min-

imum weight such that the natural frequency of vibration is greater than 50 Hz. The weight

of the floor (W) is 4,000 lb and the length of the columns (l) is 96 in. Assume that the

columns are made of steel and have a tubular cross section with outer diameter d and wall

thickness t.

2.167* One end of a uniform rigid bar of mass m is connected to a wall by a hinge joint O, and the

other end carries a concentrated mass M, as shown in Fig. 2.120. The bar rotates about the

hinge point O against a torsional spring and a torsional damper. It is proposed to use this

mechanism, in conjunction with a mechanical counter, to control entrance to an amusement

park. Find the masses m and M, the stiffness of the torsional spring and the damping

force necessary to satisfy the following specifications: (1) A viscous damper or a

Coulomb damper can be used. (2) The bar has to return to within 5 of closing in less than 2

sec when released from an initial position of u = 75°.

°

(Fd)

(k t),

2.168* The lunar excursion module has been modeled as a mass supported by four symmetrically

located legs, each of which can be approximated as a spring-damper system with negligible

mass (see Fig. 2.121). Design the springs and dampers of the system in order to have the

damped period of vibration between 1 s and 2 s.

70 

Mass, 2000 kg

FIGURE 2.121
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258 CHAPTER 2 FREE VIBRATION OF SINGLE-DEGREE-OF-FREEDOM SYSTEMS

2.169* Consider the telescoping boom and cockpit of the firetruck shown in Fig. 2.12(a). Assume

that the telescoping boom PQRS is supported by a strut QT, as shown in Fig. 2.122. Deter-

mine the cross section of the strut QT so that the natural time period of vibration of the

cockpit with the fireperson is equal to 1 s for the following data. Assume that each segment

of the telescoping boom and the strut is hollow circular in cross section. In addition, assume

that the strut acts as a spring that deforms only in the axial direction.

Data:

Lengths of segments: 

Young s modulus of the telescoping arm and 

Outer diameters of sections: 

Inner diameters of sections: 

Weight of the 

Weight of fireperson = 200 lb

cockpit = 100 lb

PQ = 1.75 in., QR = 1.25 in., RS = 0.75 in.

PQ = 2.0 in., QR = 1.5 in., RS = 1.0 in.

strut = 30 * 106 psi

PQ = 12 ft, QR = 10 ft, RS = 8 ft, TP = 3 ft

45 

3*

S

T

P

Strut

A3, l3

A2, l2

A1, l1

R

Q

FIGURE 2.122
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Charles Augustin de Coulomb (1736 1806) was a French military engineer and
physicist. His early work on statics and mechanics was presented in 1779 in his
great memoir The Theory of Simple Machines, which describes the effect of resis-
tance and the so-called Coulomb s law of proportionality  between friction and
normal pressure. In 1784, he obtained the correct solution to the problem of the
small oscillations of a body subjected to torsion. He is well known for his laws of
force for electrostatic and magnetic charges. His name has been given to the unit
of electric charge. (Courtesy of Applied Mechanics Reviews.)
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260 CHAPTER 3 HARMONICALLY EXCITED VIBRATION

This chapter deals with the response of single-degree-of-freedom systems subjected to har-

monic excitations. First, it presents the derivation of the equation of motion and its solution

when a single degree of freedom system is subjected to harmonic excitation. Both undamped

and damped systems are considered. The magnification or amplification factor, and the phe-

nomena of resonance and beating are introduced in the context of an undamped spring-mass

system. The total solution of the governing nonhomogeneous second-order differential equa-

tion is presented as a sum of the homogeneous equation (free-vibration solution) and the par-

ticular integral (forced-vibration solution). The known initial conditions of the system are

used to evaluate the constants in the total solution. The important characteristics of the mag-

nification factor and the phase angle for a viscously damped system are presented in detail.

Quality factor, bandwidth, and half-power point are defined and the use of quality factor in

estimating the viscous damping factor in a mechanical system is outlined. The response of

the spring-mass-damper system with the harmonic forcing function in complex form is pre-

sented and the concept of complex frequency response is introduced. The response of a

damped system under the harmonic motion of the base and the ideas of displacement trans-

missibility and force transmissibility are introduced. The applications of this problem include

vibration of airplanes caused by runway roughness during taxiing and landing, vibration of

ground vehicles due to unevenness and potholes in roads, and vibration of buildings caused

by ground motion during earthquakes. The response of a damped system under rotating

unbalance is also presented. The applications of this problem include a variety of rotating

machines with unbalance in the rotors. The forced vibration of a spring-mass system under

Coulomb, hysteresis, and other types of damping is also presented. Self-excitation and

dynamic stability analysis of a single-degree-of-freedom system along with applications are

presented. The general transfer-function approach, the Laplace transform approach, and the

harmonic transfer-function approach for the solution of harmonically excited systems are

outlined. Finally, the solution of different types of harmonically excited undamped and

damped vibration problems using MATLAB is presented.

Learning Objectives

After completing this chapter, you should be able to do the following:

* Find the responses of undamped and viscously damped single-degree-of-freedom

systems subjected to different types of harmonic force, including base excitation and

rotating unbalance.

* Distinguish between transient, steady-state, and total solutions.

* Understand the variations of magnification factor and phase angles with the fre-

quency of excitation and the phenomena of resonance and beats.

* Find the response of systems involving Coulomb, hysteresis, and other types of

damping.

* Identify self-excited problems and investigate their stability aspects.

* Derive transfer functions of systems governed by linear differential equations with

constant coefficients.

* Solve harmonically excited single-degree-of-freedom vibration problems using

Laplace transforms.
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3.2 EQUATION OF MOTION 261

* Derive frequency transfer function from the general transfer function and represent

frequency-response characteristics using Bode diagrams.

* Solve harmonically excited vibration response using MATLAB.

3.1 Introduction
A mechanical or structural system is said to undergo forced vibration whenever external

energy is supplied to the system during vibration. External energy can be supplied through

either an applied force or an imposed displacement excitation. The applied force or dis-

placement excitation may be harmonic, nonharmonic but periodic, nonperiodic, or random

in nature. The response of a system to a harmonic excitation is called harmonic response.

The nonperiodic excitation may have a long or short duration. The response of a dynamic

system to suddenly applied nonperiodic excitations is called transient response.

In this chapter, we shall consider the dynamic response of a single-degree-of-freedom

system under harmonic excitations of the form or 

or where is the amplitude, is the frequency, and

is the phase angle of the harmonic excitation. The value of depends on the value of

F(t) at and is usually taken to be zero. Under a harmonic excitation, the response of

the system will also be harmonic. If the frequency of excitation coincides with the natural

frequency of the system, the response will be very large. This condition, known as resonance,

is to be avoided to prevent failure of the system. The vibration produced by an unbalanced

rotating machine, the oscillations of a tall chimney due to vortex shedding in a steady wind,

and the vertical motion of an automobile on a sinusoidal road surface are examples of har-

monically excited vibration. 

The applications of transfer-function, Laplace transform, and frequency-function

approaches in the solution of harmonically excited systems are also discussed in this chapter.

3.2 Equation of Motion
If a force F(t) acts on a viscously damped spring-mass system as shown in Fig. 3.1, the

equation of motion can be obtained using Newton s second law:

(3.1)

Since this equation is nonhomogeneous, its general solution x(t) is given by the sum of the

homogeneous solution, and the particular solution, The homogeneous solu-

tion, which is the solution of the homogeneous equation

(3.2)

represents the free vibration of the system and was discussed in Chapter 2. As seen in Section

2.6.2, this free vibration dies out with time under each of the three possible conditions of

damping (underdamping, critical damping, and overdamping) and under all possible initial

mx
$

+ cx
#
+ kx = 0

xp(t).xh(t),

mx
$

+ cx
#
+ kx = F(t)

t = 0

ff

vF0F(t) = F0 sin (vt + f),(vt + f)

F(t) = F0 cosF(t) = F0ei(vt+f)
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262 CHAPTER 3 HARMONICALLY EXCITED VIBRATION

k
c

F(t)

*x

m

(a)

kx

F(t)

*x

m

cx+

(b) Free-body diagram

FIGURE 3.1 A spring-mass-damper system.

xh(t)

xp(t)

x(t) , xh(t) * xp(t)

O

O

O

t

t

t

t

t

t

FIGURE 3.2 Homogenous, particular, and general solutions

of Eq. (3.1) for an underdamped case.

conditions. Thus the general solution of Eq. (3.1) eventually reduces to the particular solu-

tion which represents the steady-state vibration. The steady-state motion is present

as long as the forcing function is present. The variations of homogeneous, particular, and

general solutions with time for a typical case are shown in Fig. 3.2. It can be seen that

dies out and x(t) becomes after some time ( in Fig. 3.2). The part of the

motion that dies out due to damping (the free-vibration part) is called transient. The rate at

which the transient motion decays depends on the values of the system parameters k, c, and

m. In this chapter, except in Section 3.3, we ignore the transient motion and derive only the

particular solution of Eq. (3.1), which represents the steady-state response, under harmonic

forcing functions.

txp(t)xh(t)

xp(t),
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3.3 RESPONSE OF AN UNDAMPED SYSTEM UNDER HARMONIC FORCE 263

3.3 Response of an Undamped System Under Harmonic Force
Before studying the response of a damped system, we consider an undamped system sub-

jected to a harmonic force, for the sake of simplicity. If a force acts on

the mass m of an undamped system, the equation of motion, Eq. (3.1), reduces to

(3.3)

The homogeneous solution of this equation is given by

(3.4)

where is the natural frequency of the system. Because the exciting force

F(t) is harmonic, the particular solution is also harmonic and has the same frequency

Thus we assume a solution in the form

(3.5)

where X is an constant that denotes the maximum amplitude of By substituting

Eq. (3.5) into Eq. (3.3) and solving for X, we obtain

(3.6)

where denotes the deflection of the mass under a force and is sometimes

called static deflection because is a constant (static) force. Thus the total solution of

Eq. (3.3) becomes

(3.7)

Using the initial conditions and we find that

(3.8)

and hence

(3.9) + +
F0

k - mv2
*  cos vt

 x(t) = +x0 -
F0

k - mv2
*  cos vnt + +

x 
#

0

vn
*  sin vnt

C1 = x0 -
F0

k - mv2
 , C2 =

x 
#

0

vn

x 
#
(t = 0) = x 

#

0,x(t = 0) = x0

x(t) = C1 cos vnt + C2 sin vnt +
F0

k - mv2
 cos vt

F0

F0dst = F0/k

X =
F0

k - mv2
=

dst

1 - +
v

vn
*

2

xp(t).

xp(t) = X cos vt

v.

xp(t)

vn = (k/m)1/2

xh(t) = C1 cos vnt + C2 sin vnt

mx
$
+ kx = F0 cos vt

F(t) = F0 cos vt
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264 CHAPTER 3 HARMONICALLY EXCITED VIBRATION

r * (v/vn)

X/d
st

3

2

1

0

+1

+2

+3

1 2 3 4

FIGURE 3.3 Magnification factor of an undamped system, Eq. (3.10).

The maximum amplitude X in Eq. (3.6) can be expressed as

(3.10)

The quantity represents the ratio of the dynamic to the static amplitude of motion

and is called the magnification factor, amplification factor, or amplitude ratio. The vari-

ation of the amplitude ratio, with the frequency ratio (Eq. 3.10) is

shown in Fig. 3.3. From this figure, the response of the system can be identified to be of

three types.

Case 1. When the denominator in Eq. (3.10) is positive and the response

is given by Eq. (3.5) without change. The harmonic response of the system is said to

be in phase with the external force as shown in Fig. 3.4.

xp(t)

0 6 v/vn 6 1,

r = v/vnX/dst,

X/dst

X

dst

=
1

1 - +
v

vn
*

2
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F0

O
vt

vt

2p

F(t) * F0 cos vt

X

O
2p

xp(t) * X cos vt

FIGURE 3.4 Harmonic response when

0 6 v/vn 6 1.

Case 2. When the denominator in Eq. (3.10) is negative, and the steady-state

solution can be expressed as

(3.11)

where the amplitude of motion X is redefined to be a positive quantity as

(3.12)

The variations of F(t) and with time are shown in Fig. 3.5. Since and F(t) have

opposite signs, the response is said to be 180° out of phase with the external force. Further,

as Thus the response of the system to a harmonic force of very high

frequency is close to zero.

Case 3. When the amplitude X given by Eq. (3.10) or (3.12) becomes

infinite. This condition, for which the forcing frequency is equal to the natural frequency

of the system is called resonance. To find the response for this condition, we rewrite

Eq. (3.9) as

(3.13)x(t) = x0 cos vnt +
x 
#

0

vn

 sin vnt + dstD
cos vt - cos vnt

1 - ¢
v

vn

2
T

vn,

v

v/vn = 1,

v/vn: q , X: 0.

xp(t)xp(t)

X =
dst

¢
v

vn

2

- 1

xp(t) = -X cos vt

v/vn 7 1,

M03_RAO8193_05_SE_C03.QXD  8/21/10  4:05 PM  Page 265



266 CHAPTER 3 HARMONICALLY EXCITED VIBRATION

F0

O
vt

vt

2p

2p

F(t) * F0 cos vt

+X

O

xp(t) * +X cos vt

FIGURE 3.5 Harmonic response when

v/vn 7 1.

Since the last term of this equation takes an indefinite form for we apply L Hos-

pital s rule [3.1] to evaluate the limit of this term:

(3.14)

Thus the response of the system at resonance becomes

(3.15)

It can be seen from Eq. (3.15) that at resonance, x(t) increases indefinitely. The last term of

Eq. (3.15) is shown in Fig. 3.6, from which the amplitude of the response can be seen to

increase linearly with time.

x(t) = x0 cos vnt +
x
 #

0

vn

 sin vnt +
dstvnt

2
 sin vnt

 = lim
v:vn

C

t sin vt

2 
v

vn
2

S
=
vnt

2
 sin vnt

 lim
v:vn

D
 cos vt - cos vnt

1 - ¢
v

vn

2
T = lim

v:vn

D

d

dv
 (cos vt - cos vnt)

d

dv
¢1 -

v
2

vn
2

T

v = vn,
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t
O

xp(t)

t *
vn

2p

FIGURE 3.6 Response when v/vn = 1.

3.3.1
Total Response

The total response of the system, Eq. (3.7) or Eq. (3.9), can also be expressed as

(3.16)

(3.17)

where A and can be determined as in the case of Eq. (2.21). Thus the complete motion

can be expressed as the sum of two cosine curves of different frequencies. In Eq. (3.16),

the forcing frequency is smaller than the natural frequency, and the total response is

shown in Fig. 3.7(a). In Eq. (3.17), the forcing frequency is greater than the natural fre-

quency, and the total response appears as shown in Fig. 3.7(b).

v

f

 x(t) = A cos (vnt - f) -
dst

-  1 + ¢
v

vn

2
 cos vt;  for 

v

vn

7 1

 x(t) = A cos (vnt - f) +
dst

1 - ¢
v

vn

2
 cos vt;  for 

v

vn

6 1

3.3.2
Beating
Phenomenon

If the forcing frequency is close to, but not exactly equal to, the natural frequency of the

system, a phenomenon known as beating may occur. In this kind of vibration, the ampli-

tude builds up and then diminishes in a regular pattern (see Section 1.10.5). The phenome-

non of beating can be explained by considering the solution given by Eq. (3.9). If the initial

conditions are taken as Eq. (3.9) reduces to

(3.18) =
(F0/m)

vn
2
- v2

 B2 sin 
v + vn

2
 t #  sin 

vn - v

2
 tR

 x(t) =

(F0/m)

vn
2
- v2

 (cos vt - cos vnt)

x0 = x 
#

0 = 0,
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O

x(t)

A

vn

2p

vn

2
1 *

dst

v

v
vn

(a) + 1

O

x(t)

vn

2p

vn

2
* 1

dst

v

vn

v
(b) , 1

2p

v

2p

v

A
t

t

FIGURE 3.7 Total response.

Let the forcing frequency be slightly less than the natural frequency:

(3.19)

where is a small positive quantity. Then and

(3.20)

Multiplication of Eqs. (3.19) and (3.20) gives

(3.21)

The use of Eqs. (3.19) to (3.21) in Eq. (3.18) gives

(3.22)

Since is small, the function varies slowly; its period, equal to is large. Thus

Eq. (3.22) may be seen as representing vibration with period and of variable ampli-

tude equal to

2p/v

2p/e,sin ete

x(t) = +
F0/m

2ev
 sin et*sin vt

vn
2
- v

2
= 4ev

v + vn M 2v

vn L ve

vn - v = 2e

v
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3.3 RESPONSE OF AN UNDAMPED SYSTEM UNDER HARMONIC FORCE 269

It can also be observed that the curve will go through several cycles, while the 

wave goes through a single cycle, as shown in Fig. 3.8. Thus the amplitude builds up and

dies down continuously. The time between the points of zero amplitude or the points of

maximum amplitude is called the period of beating and is given by

(3.23)

with the frequency of beating defined as

vb = 2e = vn - v

tb =
2p

2e
=

2p

vn - v

(tb)

sin etsin vt

+
F0/m

2ev
*sin et

E X A M P L E  3 . 1
Plate Supporting a Pump

A reciprocating pump, weighing 150 lb, is mounted at the middle of a steel plate of thickness 0.5 in.,

width 20 in., and length 100 in., clamped along two edges as shown in Fig. 3.9. During operation of

the pump, the plate is subjected to a harmonic force, 62.832t lb. Find the amplitude of

vibration of the plate.

Solution: The plate can be modeled as a fixed-fixed beam having Young s modulus 

psi, length in., and area moment of inertia The bending

stiffness of the beam is given by

(E.1)k =
192EI

l3
=

192(30 * 106)(0.2083)

(100)3
= 1200.0 lb/in.

(I) =
1
12 (20)(0.5)3

= 0.2083 in4.(l) = 100

(E) = 30 * 106

F(t) = 50 cos

O

x(t)

2p

v

2p

F0/m

2*v

F0/m

2*v
sin *t

t

*

FIGURE 3.8 Phenomenon of beats.
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F(t), x(t)

0.5 in.

100 in.

FIGURE 3.9 Plate supporting an unbalanced pump.

The amplitude of harmonic response is given by Eq. (3.6) with 

(neglecting the weight of the steel plate), and Thus Eq. (3.6)

gives

(E.2)

The negative sign indicates that the response x(t) of the plate is out of phase with the excitation F(t).

*

X =
F0

k - mv2
=

50

1200.0 - (150/386.4)(62.832)2
= -0.1504 in.

v = 62.832 rad/s.k = 1200.0 lb/in.,

m = 150/386.4 lb-sec2/in.F0 = 50 lb,

E X A M P L E  3 . 2
Determination of Mass from Known Harmonic Response

A spring-mass system, with a spring stiffness of 5,000 N/m, is subjected to a harmonic force of

magnitude 30 N and frequency 20 Hz. The mass is found to vibrate with an amplitude of 0.2 m.

Assuming that vibration starts from rest determine the mass of the system.

Solution: The vibration response of the system can be found from Eq. (3.9) with 

(E.1)

which can be rewritten as

(E.2)

Since the amplitude of vibration is known to be 0.2 m, Eq. (E.2) gives

(E.3)
2F0

k - mv2
= 0.2

x(t) =
2F0

k - mv2
 sin 

vn + v

2
 t sin 

vn - v

2
 t

x(t) =
F0

k - mv2
 (cos vt - cos vn t)

x0 = x
#

0 = 0:

(x0 = x
#

0 = 0),
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Using the known values of and Eq. (E.3)

yields

(E.4)

Equation (E.4) can be solved to find 

*

3.4 Response of a Damped System Under Harmonic Force
If the forcing function is given by the equation of motion becomes

(3.24)

The particular solution of Eq. (3.24) is also expected to be harmonic; we assume it in

the form1

(3.25)

where X and are constants to be determined. X and denote the amplitude and phase angle

of the response, respectively. By substituting Eq. (3.25) into Eq. (3.24), we arrive at

(3.26)

Using the trigonometric relations

in Eq. (3.26) and equating the coefficients of and on both sides of the result-

ing equation, we obtain

(3.27)

Solution of Eq. (3.27) gives

(3.28)X =
F0

[(k - mv2)2
+ c2v2]1/2

 X[(k - mv2) sin f - cv cos f] = 0

 X[(k - mv2) cos f + cv sin f] = F0

sin vtcos vt

 sin (vt - f) = sin vt cos f - cos vt sin f

 cos (vt - f) = cos vt cos f +  sin vt sin f

X[(k - mv2) cos (vt - f) - cv sin (vt - f)] = F0 cos vt

ff

xp(t) = X cos (vt - f)

mx 
$
+ cx 

#
+ kx = F0 cos vt

F(t) = F0 cos vt,

m = 0.2976 kg.

2(30)

5000 - m(125.664)2
= 0.2

k = 5,000 N/m,F0 = 30 N, v = 20 Hz = 125.665 rad/s,

1Alternatively, we can assume to be of the form which also involves two

constants and But the final result will be the same in both cases.C2.C1

xp(t) = C1 cos vt + C2 sin vt,xp(t)
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272 CHAPTER 3 HARMONICALLY EXCITED VIBRATION

and

(3.29)

By inserting the expressions of X and from Eqs. (3.28) and (3.29) into Eq. (3.25), we

obtain the particular solution of Eq. (3.24). Figure 3.10(a) shows typical plots of the forc-

ing function and (steady-state) response. The various terms of Eq. (3.26) are shown vecto-

rially in Fig. 3.10(b). Dividing both the numerator and denominator of Eq. (3.28) by k and

making the following substitutions

we obtain

(3.30)
X

dst

=
1

b B1 - ¢
v

vn

2

R

2

+ B2z
v

vn
R

2

r

1/2
=

1

2(1 - r2)2
+ (2zr)2

 r =
v

vn

= frequency ratio

 dst =
F0

k
= deflection under the static force F0, and

 z =
c

cc

=
c

2mvn

=
c

22mk
 ;   

c

m
= 2zvn, 

 vn = A
k

m
= undamped natural frequency, 

f

f = tan-1 ¢
cv

k - mv2

(a) Graphical representation

X

kX

Reference

F0

mv2X

cvX

vt
f

(b) Vectorial representation

F(t)

vt

v

xp(t)

vt * f

X
F0

O

2p
2p

vt

xp(t)

F(t)
F(t), xp(t)

f

f

FIGURE 3.10 Representation of forcing function and response.
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and

(3.31)

As stated in Section 3.3, the quantity is called the magnification factor, ampli-

fication factor, or amplitude ratio. The variations of and with the frequency ratio

r and the damping ratio are shown in Fig. 3.11.

The following characteristics of the magnification factor (M) can be noted from

Eq. (3.30) and Fig. 3.11(a):

1. For an undamped system Eq. (3.30) reduces to Eq. (3.10), and as

2. Any amount of damping reduces the magnification factor (M) for all values

of the forcing frequency.

3. For any specified value of r, a higher value of damping reduces the value of M.

4. In the degenerate case of a constant force (when ), the value of 

5. The reduction in M in the presence of damping is very significant at or near resonance.

6. The amplitude of forced vibration becomes smaller with increasing values of the forc-

ing frequency (that is, as ).r:  qM: 0

M = 1.r = 0

(z 7 0)
r: 1.

M: q(z = 0),

z

fX/dst

M = X/dst

f = tan-1
d

2z
v

vn

1 - ¢
v

vn

2 t
= tan-1 ¢

2zr

1 - r2

2.8
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FIGURE 3.11 Variation of X and with frequency ratio r.f
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274 CHAPTER 3 HARMONICALLY EXCITED VIBRATION

7. For the maximum value of M occurs when (see Problem 3.32)

(3.32)

which can be seen to be lower than the undamped natural frequency and the

damped natural frequency 

8. The maximum value of X (when ) is given by

(3.33)

and the value of X at by

(3.34)

Equation (3.33) can be used for the experimental determination of the measure of

damping present in the system. In a vibration test, if the maximum amplitude of the

response is measured, the damping ratio of the system can be found using Eq.

(3.33). Conversely, if the amount of damping is known, one can make an estimate of

the maximum amplitude of vibration.

9. For when For the graph of M monotonically decreases 

with increasing values of r.

The following characteristics of the phase angle can be observed from Eq. (3.31) and

Fig. 3.11(b):

1. For an undamped system Eq. (3.31) shows that the phase angle is 0 for

and 180° for This implies that the excitation and response are in

phase for and out of phase for when 

2. For and the phase angle is given by implying that

the response lags the excitation.

3. For and the phase angle is given by implying that

the response leads the excitation.

4. For and the phase angle is given by implying that the phase

difference between the excitation and the response is 90°.

5. For and large values of r, the phase angle approaches 180°, implying that the

response and the excitation are out of phase.

z 7 0

f = 90°,r = 1,z 7 0

90° 6 f 6 180°,r 7 1,z 7 0

0 6 f 6 90°,0 6 r 6 1,z 7 0
z = 0.r 7 10 6 r 6 1

r 7 1.0 6 r 6 1
(z = 0),

z 7
1
12

 

,r = 0.z =
1
12

, dM
dr = 0

(X)max

+
X

dst

*
v=vn

=
1

2z

v = vn

+
X

dst

*
max

=
1

2z21 - z2

r = 21 - 2z2

vd = vn21 - z2.
vn

r = 21 - 2z2 or v = vn21 - 2z2

0 6 z 6
1
12

,

3.4.1
Total Response

The complete solution is given by where is given by Eq.

(2.70). Thus, for an underdamped system, we have

(3.35)

vd = 21 - z2 vn

x(t) = X0e-zvn t cos(vdt - f0) + Xcos(vt - f)

xh(t)x(t) = xh(t) + xp(t)
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E X A M P L E  3 . 3
Total Response of a System

Find the total response of a single-degree-of-freedom system with 

and under the following conditions:

a. An external force t acts on the system with and 

b. Free vibration with 

Solution:

a. From the given data, we obtain

(E.1)

(E.2)

Using the initial conditions, and Eq. (3.36) yields:

0.01 = X0 cos f0 + (0.03326)(0.997785)

x 
#

0 = 0,x0 = 0.01

f = tan-1 ¢
2zr

1 - r2
= tan-1 ¢

2 # 0.05 # 0.5

1 - 0.52
= 3.814075°

X =
dst

2(1 - r2)2
+ (2 z r)2

=
0.025

C(1 - 0.052)2
+ (2 # 0.5 # 0.5)2

D

1/2
= 0.03326 m

r =
v

vn

=
10

20
= 0.5

vd = 21 - z2vn = 21 - (0.05)2(20) = 19.974984 rad/s

z =
c

cc

=
c

22km
=

20

22(4000)(10)
= 0.05

dst =
F0

k
=

100

4000
= 0.025 m

vn = A
k

m
= A

4000

10
= 20 rad/s

F(t) = 0.

v = 10 rad/s.F0 = 100 NF(t) = F0 cos v 

x 
#

0 = 0x0 = 0.01 m,k = 4000 N/m,

c = 20 N-s/m,m = 10 kg,

X and are given by Eqs. (3.30) and (3.31), respectively, and and [different from

those of Eq. (2.70)] can be determined from the initial conditions. For the initial condi-

tions, and Eq. (3.35) yields

(3.36)

The solution of Eq. (3.36) gives and as

(3.37)

X0 = B(x0 - X cos f)2
+

1

vd
2

 (zvnx0 + x
#

0 - zvnX cos f - vX sin f)2
R

1
2

tan f0 =
zvnx0 + x

#

0 - zvnX cos f - vX sin f

vd(x0 - X cos f)

 t

f0X0

 x 
#

0 = -  zvnX0 cos f0 + vdX0 sin f0 + vX sin f

 x0 = X0 cos f0 + X cos f

x 
#
(t = 0) = x 

#

0,x(t = 0) = x0

f0X0f
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276 CHAPTER 3 HARMONICALLY EXCITED VIBRATION

or

(E.3)

(E.4)

Substituting the value of from Eq. (E.3) into (E.4), we obtain

(E.5)

Solution of Eqs. (E.3) and (E.5) yields

(E.6)

and

or

(E.7)

b. For free vibration, the total response is given by

(E.8)

Using the initial conditions and and of Eq. (E.8) can

be determined as (see Eqs. 2.73 and 2.75):

(E.9)

(E.10)

Note that the constants and in cases (a) and (b) are very different.

*

f0X0

 f0 = tan-1 ¢ -  

x
#
0 + zvnx0

vd x0
= tan-1

¢ -  

0.05 # 20

19.974984
= -2.865984°

 X0 = Bx0
2
+ ¢

zvnx0

vd

2

R

1/2

= B0.012
+ ¢

0.05 # 20 # 0.01

19.974984

2

R

1/2

= 0.010012

f0x 
#
(0) = x 

#
0 = 0, X0x(0) = x0 = 0.01

x(t) = X0e- 
z vn t cos (vdt - f0)

f0 = 5.586765°

tan f0 =
X0 sin f0

X0 cos f0
= 0.0978176

X0 = C(X0 cos f0)2
+ (X0 sin f0)2

D

1/2
= 0.023297

X0 sin f0 = -  0.002268

X0 cos f0

0  = -  (0.05)(20) X0 cos f0 + X0 (19.974984) sin f0 + (0.03326)(10) sin (3.814075°)

X0 cos f0 = -0.023186

3.4.2
Quality Factor
and Bandwidth

For small values of damping we can take

(3.38)

The value of the amplitude ratio at resonance is also called Q factor or quality factor of the

system, in analogy with some electrical-engineering applications, such as the tuning circuit

of a radio, where the interest lies in an amplitude at resonance that is as large as possible

[3.2]. The points and where the amplification factor falls to are called half-

power points because the power absorbed by the damper (or by the resistor in an

electrical circuit), responding harmonically at a given frequency, is proportional to the

square of the amplitude (see Eq. (2.94)):

(3.39)¢W = pcvX2

(¢W)
Q/12,R2,R1

¢
X

dst max

M ¢
X

dst v=vn

=
1

2z
= Q

(z 6 0.05),
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The difference between the frequencies associated with the half-power points and is

called the bandwidth of the system (see Fig. 3.12). To find the values of and we set

in Eq. (3.30) so that

or

(3.40)

The solution of Eq. (3.40) gives

(3.41)

For small values of Eq. (3.41) can be approximated as

(3.42)

where and From Eq. (3.42),

(3.43)

Using the relation

(3.44)v2 + v1 = 2vn

v2
2 - v1

2 = (v2 + v1)(v2 - v1) = (R2
2 - R1

2)vn
2 M 4zvn

2

v2 = v R2
.v1 = v R1

r1
2 = R1

2 = +
v1

vn
*

2

M 1 - 2z, r2
2 = R2

2 = +
v2

vn
*

2

M 1 + 2z

z,

r1
2 = 1 - 2z2 - 2z21 + z2, r2

2 = 1 - 2z2 + 2z21 + z2

r4 - r2(2 - 4z2) + (1 - 8z2) = 0

1

2(1 - r2)2 + (2zr)2
=

Q

22
=

1

222z

X/dst = Q/12

R2,R1

R2R1

vn
v

X/dst

Q

Q * 
1

2z

*2

R1 1.0 R2

Half-power points

Bandwidth

FIGURE 3.12 Harmonic-response curve showing half-

power points and bandwidth.
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278 CHAPTER 3 HARMONICALLY EXCITED VIBRATION

in Eq. (3.43), we find that the bandwidth is given by

(3.45)

Combining Eqs. (3.38) and (3.45), we obtain

(3.46)

It can be seen that the quality factor Q can be used for estimating the equivalent viscous

damping in a mechanical system.2

3.5 Response of a Damped System Under 
Let the harmonic forcing function be represented in complex form as so that

the equation of motion becomes

(3.47)

Since the actual excitation is given only by the real part of F(t), the response will also be

given only by the real part of x(t), where x(t) is a complex quantity satisfying the differen-

tial equation (3.47). in Eq. (3.47) is, in general, a complex number. By assuming the

particular solution 

(3.48)

we obtain, by substituting Eq. (3.48) into Eq. (3.47),3

(3.49)

Multiplying the numerator and denominator on the right side of Eq. (3.49) by 

and separating the real and imaginary parts, we obtain

(3.50)

Using the relation where and Eq. (3.50)

can be expressed as

(3.51)X =
F0

[(k - mv2)2
+ c2v2]1/2

 e- 
if

tan f = y/x,A = 2x2
+ y2x + iy = Aeif,

X = F0 B
k - mv2

(k - mv2)2
+ c2v2

- i 
cv

(k - mv2)2
+ c2v2

R

-  icv]

[(k - mv2)

X =
F0

(k - mv2) + icv

xp(t) = Xeivt

xp(t)

F0

mx 
$
+ cx 

#
+ kx = F0eivt

F(t) = F0eivt

F(t) = F0e
iVt

Q M
1

2z
M

vn

v2 - v1

¢v = v2 - v1 M 2zvn

¢v

2The determination of the system parameters (m, c, and k) based on half-power points and other response charac-
teristics of the system is considered in Section 10.8.
3Equation (3.49) can be written as where is called the mechanical

impedance of the system [3.8].
Z(iv) = -mv2

+ ivc + kZ(iv)X = F0,
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3.5 RESPONSE OF A DAMPED SYSTEM UNDER 279F(t) = F0e
iVt

where

(3.52)

Thus the steady-state solution, Eq. (3.48), becomes

(3.53)xp(t) =
F0

[(k - mv2)2
+ (cv)2]1/2

 ei(v t -  f)

f = tan-1 ¢
cv

k - mv2

Frequency Response. Equation (3.49) can be rewritten in the form

(3.54)

where is known as the complex frequency response of the system. The absolute

value of given by

(3.55)

denotes the magnification factor defined in Eq. (3.30). Recalling that 

we can show that Eqs. (3.54) and (3.55) are related:

(3.56)

where is given by Eq. (3.52), which can also be expressed as

(3.57)

Thus Eq. (3.53) can be expressed as

(3.58)

It can be seen that the complex frequency-response function, contains both the

magnitude and phase of the steady-state response. The use of this function in the experi-

mental determination of the system parameters (m, c, and k) is discussed in Section 10.8.

If the corresponding steady-state solution is given by the real part of

Eq. (3.53):

(3.59) = ReB
F0

k
 H(iv)eivt

R = ReB
F0

k
 H(iv) ei(v t -  f)

R

 xp(t) =
F0

C (k - mv2)2
+ (cv)2

D

1/2
 cos(vt - f)

F(t) = F0 cos vt,

H(iv),

xp(t) =
F0

k
 H(iv) ei(vt -  f)

f = tan-1 ¢
2zr

1 - r2

f

H(iv) = H(iv) e- 
if

i sin f,
eif

= cos f +

H(iv) = `

kX

F0
` =

1

[(1 - r2)2
+ (2zr)2]1/2

H(iv)
H(iv)

kX

F0
=

1

1 - r2
+ i2zr

K H(iv)
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280 CHAPTER 3 HARMONICALLY EXCITED VIBRATION

which can be seen to be the same as Eq. (3.25). Similarly, if the corre-

sponding steady-state solution is given by the imaginary part of Eq. (3.53):

(3.60)

Complex Vector Representation of Harmonic Motion. The harmonic excitation and

the response of the damped system to that excitation can be represented graphically in the

complex plane, and an interesting interpretation can be given to the resulting diagram. We

first differentiate Eq. (3.58) with respect to time and obtain

(3.61)

Because i can be expressed as

(3.62)

we can conclude that the velocity leads the displacement by the phase angle and that

it is multiplied by Similarly, can be written as

(3.63)

Hence the acceleration leads the displacement by the phase angle and it is multiplied

by 

Thus the various terms of the equation of motion (3.47) can be represented in the

complex plane, as shown in Fig. 3.13. The interpretation of this figure is that the sum of

the complex vectors and kx(t) balances F(t), which is precisely what is

required to satisfy Eq. (3.47). It is to also be noted that the entire diagram rotates with

angular velocity in the complex plane. If only the real part of the response is to be con-

sidered, then the entire diagram must be projected onto the real axis. Similarly, if only

the imaginary part of the response is to be considered, then the diagram must be pro-

jected onto the imaginary axis. In Fig. 3.13, notice that the force is repre-

sented as a vector located at an angle to the real axis. This implies that is real. If 

is also complex, then the force vector F(t) will be located at an angle of where

is some phase angle introduced by In such a case, all the other vectors namely,

and kx will be shifted by the same angle This is equivalent to multiplying

both sides of Eq. (3.47) by eic.
c.mx

$
, cx

#
,

F0.c

(v + c),
F0F0vt

F(t) = F0eivt

v

mx
$
(t), cx

#
(t),

v2.
p,

-1 = cos p + i sin p = eip

-1v.
p/2

i = cos  

p

2
+ i sin 

p

2
= ei 

p
2

 Acceleration = x
$

p(t) = (iv)2
 

F0

k
 H(iv) ei(vt -  f)

= -
 v2xp(t)

 Velocity = x
#
p(t) = iv 

F0

k
 H(iv) ei(vt -

 
f)

= ivxp(t)

 = ImB
F0

k
 H(iv) ei(vt -  f)

R

 xp(t) =
F0

C(k - mv2)2
+ (cv)2

D

1/2 sin(vt - f)

F(t) = F0 sin vt,
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Im

F(t)

vt

v

(m
x * kx)
..

cx(t)
.

kx(t)

x(t)

Re

mx(t)
..

f

FIGURE 3.13 Representation of Eq. (3.47) in a complex

plane.

3.6 Response of a Damped System Under the Harmonic Motion of the Base
Sometimes the base or support of a spring-mass-damper system undergoes harmonic motion,

as shown in Fig. 3.14(a). Let y(t) denote the displacement of the base and x(t) the displace-

ment of the mass from its static equilibrium position at time t. Then the net elongation of the

spring is and the relative velocity between the two ends of the damper is From

the free-body diagram shown in Fig. 3.14(b), we obtain the equation of motion:

(3.64)mx
$
+ c(x

#
- y

#
) + k(x - y) = 0

x
#
- y

#
.x - y

m

k c

Base

*x

*y

m

*x

y(t) + Y sin vt

t

k(x , y) c(x , y)
. .

*x
..

(b)(a)

FIGURE 3.14 Base excitation.
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If Eq. (3.64) becomes

(3.65)

where and This shows that giving excitation to

the base is equivalent to applying a harmonic force of magnitude A to the mass. By using

the solution indicated by Eq. (3.60), the steady-state response of the mass, can be

expressed as

(3.66)

where

Using trigonometric identities, Eq. (3.66) can be rewritten in a more convenient form as

(3.67)

where X and are given by

(3.68)

and

(3.69)

The ratio of the amplitude of the response to that of the base motion y(t), is called 

the displacement transmissibility.4 The variations of and given by Eqs. (3.68)

and (3.69) are shown in Figs. 3.15(a) and (b), respectively, for different values of r and 

Note that if the harmonic excitation of the base is expressed in complex form as

the response of the system can be expressed, using the analysis of

Section 3.5, as

(3.70)

and the displacement transmissibility as

(3.71)

where is given by Eq. (3.55).H(iv)

X

Y
= Td = C1 + (2zr)2

D

1/2 H(iv)

xp(t) = Reb ¢
1 + i2zr

1 - r2
+ i2zr

Yeivt
r

y(t) = Re(Yeivt),

z.
f

X
Y K Td

X
Y,xp(t)

f = tan-1 B
mcv3

k(k - mv2) + (vc)2R
= tan-1 B

2zr3

1 + (4z2
- 1)r2R

X

Y
= B

k2
+ (cv)2

(k - mv2)2
+ (cv)2 R

1/2

= B
1 + (2zr)2

(1 - r2)2
+ (2zr)2R

1/2

f

xp(t) = X sin(vt - f)

f1 = tan-1
¢

cv

k - mv2

xp(t) =
Y2k2

+ (cv)2

C(k - mv2)2
+ (cv)2

D

1/2
 sin(vt - f1 - a)

xp(t),

a = tan-1 C -  
cv
k D .A = Y2k2

+ (cv)2

 = A sin(vt - a)

 mx
$
+ cx

#
+ kx = ky + cy

#
= kY sin vt + cvY cos vt

y(t) = Y sin vt,

4The expression for the displacement transmissibility can also be derived using the transfer-function approach
described in Section 3.14.
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The following aspects of displacement transmissibility, can be noted from

Fig. 3.15(a):

1. The value of is unity at and close to unity for small values of r.

2. For an undamped system at resonance 

3. The value of is less than unity for values of (for any amount of

damping ).

4. The value of for all values of at 

5. For smaller damping ratios lead to larger values of On the other hand,

for smaller values of damping ratio lead to smaller values of 

6. The displacement transmissibility, attains a maximum for at the fre-

quency ratio given by (see Problem 3.60):

rm =
1

2z
 B21 + 8z2

- 1R
1/2

r = rm 6 1

0 6 z 6 1Td,

Td.r 7 12,

Td.r 6 12,

r = 12.zTd is unity

z

r 7 12(Td 6 1)Td

(r = 1).(z = 0), Td:  q 

r = 0Td

Td =
X
Y,

6

4

5

3

2

1
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Frequency ratio: r *vn

v
vn

v
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z * 0.25
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FIGURE 3.15 Variations of and with r.fTd

3.6.1

Force

Transmitted

In Fig. 3.14, a force, F, is transmitted to the base or support due to the reactions from the

spring and the dashpot. This force can be determined as

(3.72)

From Eq. (3.67), Eq. (3.72) can be written as

(3.73)

where is the amplitude or maximum value of the force transmitted to the base given by

(3.74)
FT

kY
= r2

B
1 + (2zr)2

(1 - r2)2
+ (2zr)2

R

1/2

FT

F = mv2X sin (vt - f) = FT sin(vt - f)

F = k(x - y) + c(x
#
- y

#
) = -mx

$
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The ratio is known as the force transmissibility.5 Note that the transmitted force is

in phase with the motion of the mass x(t). The variation of the force transmitted to the base

with the frequency ratio r is shown in Fig. 3.16 for different values of z.

(FT/kY)

0 1 22 3 4

1

2

3

4

z * 0 z * 0

z * 0

z * 1

z * 0.1 z * 0.1

z * 0.2

z * 0.1

z * 0.5

z * 0.35

z * 0.2

F
T

k
Y

(B
a
se
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n
)

F
T
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o
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n
g
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n
b

a
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n
ce

)
m

e
v

n2

vn

v
r *

FIGURE 3.16 Force transmissibility.

3.6.2

Relative Motion

If denotes the motion of the mass relative to the base, the equation of motion,

Eq. (3.64), can be rewritten as

(3.75)

The steady-state solution of Eq. (3.75) is given by

(3.76)

where Z, the amplitude of z(t), can be expressed as

(3.77)Z =
mv2Y

2(k - mv2)2
+ (cv)2

= Y
r2

2(1 - r2)2
+ (2zr)2

z(t) =

mv2Y sin(vt - f1)

[(k - mv2)2
+ (cv)2]1/2

= Z sin (vt - f1)

mz
$
+ cz

#
+ kz = -my

$
= mv2Y sin vt

z = x - y

5The use of the concept of transmissibility in the design of vibration isolation systems is discussed in Chapter 9.
The expression for the force transmissibility can also be derived using the transfer-function approach described in
Section 3.14.

M03_RAO8193_05_SE_C03.QXD  8/21/10  4:05 PM  Page 284



3.6 RESPONSE OF A DAMPED SYSTEM UNDER THE HARMONIC MOTION OF THE BASE 285

and by

The ratio Z/X is shown graphically in Fig. 3.17. The variation of is same as that of 

shown in Fig. 3.11(b).

ff1

f1 = tan-1
+

cv

k - mv2 *
= tan-1 +

2zr

1 - r2 *

f1

0 1.00.5 2.52.01.5 3.53.0 4.0
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7
z * 0.00
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b
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r *

FIGURE 3.17 Variation of (Z/Y) or (MX/me) with

frequency ratio r = (v/vn).

E X A M P L E  3 . 4
Vehicle Moving on a Rough Road

Figure 3.18 shows a simple model of a motor vehicle that can vibrate in the vertical direction while

traveling over a rough road. The vehicle has a mass of 1200 kg. The suspension system has a spring

constant of 400 kN/m and a damping ratio of If the vehicle speed is 20 km/hr, determine the

displacement amplitude of the vehicle. The road surface varies sinusoidally with an amplitude of

and a wavelength of 6 m.

Solution: The frequency of the base excitation can be found by dividing the vehicle speed v km/hr

by the length of one cycle of road roughness:

For The natural frequency of the vehicle is given by

vn =
A

k

m
= +

400 * 103

1200
*

1/2

= 18.2574 rad/s

v = 20 km/hr, v = 5.81778 rad/s.

v = 2pf = 2p+
v * 1000

3600
*

1

6
= 0.290889v rad/s

v

Y = 0.05 m

z = 0.5.
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and hence the frequency ratio r is

The amplitude ratio can be found from Eq. (3.68):

Thus the displacement amplitude of the vehicle is given by

This indicates that a 5-cm bump in the road is transmitted as a 5.5-cm bump to the chassis and the

passengers of the car. Thus in the present case the passengers feel an amplified motion (see Problem

3.107 for other situations).

*

X = 1.100964Y = 1.100964(0.05) = 0.055048 m

 = 1.100964

 
X

Y
= b

1 + (2zr)2

(1 - r2)2
+ (2zr)2

r

1/2

= b

1 + (2 * 0.5 * 0.318653)2

(1 - 0.318653)2
+ (2 * 0.5 * 0.318653)2

r

1/2

r =
v

vn

=
5.81778

18.2574
= 0.318653

m

Road surface

x(t)

y(t)

m

x(t)

y(t)

One cycle

Y

v km/hr

c

k
2

k c

k
2

y(t) * Y sin vt

(a)

(b)

FIGURE 3.18 Vehicle moving over a rough road.
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E X A M P L E  3 . 5
Machine on Resilient Foundation

A heavy machine, weighing 3000 N, is supported on a resilient foundation. The static deflection of

the foundation due to the weight of the machine is found to be 7.5 cm. It is observed that the machine

vibrates with an amplitude of 1 cm when the base of the foundation is subjected to harmonic oscilla-

tion at the undamped natural frequency of the system with an amplitude of 0.25 cm. Find 

a. the damping constant of the foundation, 

b. the dynamic force amplitude on the base, and 

c. the amplitude of the displacement of the machine relative to the base.

Solution:

a. The stiffness of the foundation can be found from its static deflection: of

At resonance Eq. (3.68) gives

(E.1)

The solution of Eq. (E.1) gives The damping constant is given by

(E.2)

b. The dynamic force amplitude on the base at can be found from Eq. (3.74):

(E.3)

c. The amplitude of the relative displacement of the machine at can be obtained from Eq. (3.77):

(E.4)

It can be noticed that and therefore, 

This is due to the phase differences between x, y, and z.

*

Z Z X - Y.Z = 0.00968 m;X = 0.01 m, Y = 0.0025 m,

Z =
Y

2z
=

0.0025

2 * 0.1291
= 0.00968 m

r = 1

FT = YkB
1 + 4z2

4z2
R

1/2

= kX = 40,000 * 0.01 = 400 N

r = 1

 = 903.0512 N-s/m

 c = z # cc = z22km = 0.1291 * 2 * 240,000 * (3000/9.81)

z = 0.1291.

X

Y
=

0.010

0.0025
= 4 = B

1 + (2z)2

(2z)2
R

1/2

(v = vn or r = 1),

machine/dst = 3000/0.075 = 40,000 N/m.

k = weight

3.7 Response of a Damped System Under Rotating Unbalance
Unbalance in rotating machinery is one of the main causes of vibration. A simplified

model of such a machine is shown in Fig. 3.19. The total mass of the machine is M, and

there are two eccentric masses m/2 rotating in opposite directions with a constant angular

velocity The centrifugal force due to each mass will cause excitation of the

mass M. We consider two equal masses m/2 rotating in opposite directions in order to have

the horizontal components of excitation of the two masses cancel each other. However, the

vertical components of excitation add together and act along the axis of symmetry inA A

(mev2)/2v.
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Fig. 3.19. If the angular position of the masses is measured from a horizontal position, the

total vertical component of the excitation is always given by The

equation of motion can be derived by the usual procedure:

(3.78)

The solution of this equation will be identical to Eq. (3.60) if we replace m and by M

and respectively. This solution can also be expressed as

(3.79)

where and X and denote the amplitude and the phase angle of vibration

given by

X =
mev2

C(k - Mv2)2
+ (cv)2

D

1/2
=

me

M
¢
v

vn

2

H(iv)

fvn = 1k/M

xp(t) = X sin (vt - f) = Im B
me

M
¢
v

vn

2

H(iv) ei(v t -  f)
R

mev2,
F0

Mx
$
+ cx

#
+ kx = mev2 sin vt

F(t) = mev2 sin vt.

ev
2 

sin vt

ev
2 

cos vtev
2 

cos vt

ev
2

ev
2 

cos vt

ev
2 

sin vt
ev

2

ev
2 

cos vt

x(t)
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2

M

A
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2
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FIGURE 3.19 Rotating unbalanced masses.
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(3.80)

By defining and Eqs. (3.80) can be rewritten as

(3.81)

The variation of MX/me with r for different values of is shown in Fig. 3.17. On the other

hand, the graph of versus r remains as in Fig. 3.11(b). The following observations can be

made from Eq. (3.81) and Fig. 3.17:

1. All the curves begin at zero amplitude. The amplitude near resonance is

markedly affected by damping. Thus if the machine is to be run near resonance,

damping should be introduced purposefully to avoid dangerous amplitudes.

2. At very high speeds ( large), MX/me is almost unity, and the effect of damping is

negligible.

3. For the maximum of occurs when

(3.82)

The solution of Eq. (3.82) gives

with the corresponding maximum value of given by

(3.83)

Thus the peaks occur to the right of the resonance value of 

4. For does not attain a maximum. Its value grows from 0 at to

1 at r: q .

r = 0z 7
1

22
, c

MX

me
d

r = 1.

a
MX

me
b

max

=
1

2z21 - z2

MX

me

r =
1

21 - 2z2
7 1

d

dr
 a

MX

me
b = 0

MX

me
0 6 z 6

1

22
,

v

(v = vn)

f

z

f = tan-1 +
2zr

1 - r2 *

MX

me
=

r2

C(1 - r2)2 + (2zr)2
D
1/2

= r2 H(iv)

cc = 2Mvn,z = c/cc

f = tan-1
+

cv

k - Mv2 *
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E X A M P L E  3 . 6
Deflection of an Electric Motor due to Rotating Unbalance

An electric motor of mass M, mounted on an elastic foundation, is found to vibrate with a deflection

of 0.15 m at resonance (Fig. 3.20). It is known that the unbalanced mass of the motor is 8% of the

mass of the rotor due to manufacturing tolerances used, and the damping ratio of the foundation is

Determine the following:

a. the eccentricity or radial location of the unbalanced mass (e),

b. the peak deflection of the motor when the frequency ratio varies from resonance, and

c. the additional mass to be added uniformly to the motor if the deflection of the motor at reso-

nance is to be reduced to 0.1 m.

Assume that the eccentric mass remains unaltered when the additional mass is added to the motor.

a. From Eq. (3.81), the deflection at resonance is given by

MX

me
=

1

2z
=

1

2(0.025)
= 20

(r = 1)

z = 0.025.

290 CHAPTER 3 HARMONICALLY EXCITED VIBRATION

5. The force transmitted to the foundation due to rotating unbalanced force (F) can be

found as The magnitude (or maximum value) of F can be

derived as (see Problem 3.73):

(3.84)F = me v2 B
1 + 4z2r2

(1 - r2)2
+ 4z2r2R

1
2

F(t) = kx(t) + cx
#
(t).

k c

e

m x(t)
Electric
motor,
mass M

v

FIGURE 3.20
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from which the eccentricity can be found as

b. The peak deflection of the motor is given by Eq. (3.83):

from which the peak deflection can be determined as

c. If the additional mass added to the motor is denoted as the corresponding deflection is

given by Eq. (3.81):

which yields Thus the mass of the motor is to be increased by 50% in order to

reduce the deflection at resonance from 0.15 m to 0.10 m.

*

Ma = 0.5M.

(M + Ma)(0.1)

(0.08M)(0.09375)
= 20

Ma,

Xmax =
20.0063me

M
=

20.0063(0.08M)(0.09375)

M
= 0.150047 m

a
MX

me
b

max

=
1

2z21 - z2
=

1

2(0.025)21 - 0.0252
= 20.0063

e =
MX

20m
=

M(0.15)

20(0.08 M)
= 0.09375 m

E X A M P L E  3 . 7

Francis Water Turbine

Figure 3.21 is a schematic diagram of a Francis water turbine, in which water flows from A into the

blades B and down into the tail race C. The rotor has a mass of 250 kg and an unbalance (me) of 5 kg-

mm. The radial clearance between the rotor and the stator is 5 mm. The turbine operates in the speed

range 600 to 6000 rpm. The steel shaft carrying the rotor can be assumed to be clamped at the

bearings. Determine the diameter of the shaft so that the rotor is always clear of the stator at all the

operating speeds of the turbine. Assume damping to be negligible.

Solution: The maximum amplitude of the shaft (rotor) due to rotating unbalance can be obtained

from Eq. (3.80) by setting as

(E.1)

where and the limiting value of The value of ranges from

600 rpm = 600 *
2p

60
= 20p rad/s

vX = 5 mm.me = 5 kg-mm, M = 250 kg,

X =
mev2

(k - Mv2)
=

mev2

k(1 - r2)

c = 0
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Bearing

Shaft

A A

5 mm 5 mm

Rotor

Stator

B B

l * 2 m

C

Tail race

FIGURE 3.21 Francis water turbine.

to

while the natural frequency of the system is given by

(E.2)

if k is in N/m. For rad/s, Eq. (E.1) gives

(E.3)

For Eq. (E.1) gives

 0.005 =

(5.0 * 10-3) * (200p)2

kB1 -

(200p)2

0.004k
R

=
200p2

k - 107
p

2

v = 200p rad/s,

 k = 10.04 * 104
p

2 N/m

 0.005 =

(5.0 * 10-3) * (20p)2

kB1 -

(20p)2

0.004 k
R

=
2p2

k - 105
p

2

v = 20p

vn = A
k

M
= A

k

250
= 0.0632452k rad/s

6000 rpm = 6000 *
2p

60
= 200p rad/s
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(E.4)

From Fig. 3.17, we find that the amplitude of vibration of the rotating shaft can be minimized by

making very large. This means that must be made small compared to that is, k

must be made small. This can be achieved by selecting the value of k as N/m.

Since the stiffness of a cantilever beam (shaft) supporting a load (rotor) at the end is given by

(E.5)

the diameter of the beam (shaft) can be found:

or

(E.6)

*

3.8 Forced Vibration with Coulomb Damping
For a single-degree-of-freedom system with Coulomb or dry-friction damping, subjected

to a harmonic force as in Fig. 3.22, the equation of motion is given by

(3.85)

where the sign of the friction force is positive (negative) when the mass

moves from left to right (right to left). The exact solution of Eq. (3.85) is quite involved.

However, we can expect that if the dry-friction damping force is large, the motion of the

mass will be discontinuous. On the other hand, if the dry-friction force is small compared

to the amplitude of the applied force the steady-state solution is expected to be nearly

harmonic. In this case, we can find an approximate solution of Eq. (3.85) by finding an

equivalent viscous-damping ratio. To find such a ratio, we equate the energy dissipated due

to dry friction to the energy dissipated by an equivalent viscous damper during a full cycle

of motion. If the amplitude of motion is denoted as X, the energy dissipated by the friction

force in a quarter cycle is Hence in a full cycle, the energy dissipated by dry-

friction damping is given by

(3.86)¢W = 4mNX

mNX.mN

F0,

(mN = mmg)

mx
$
+ kx ; mN = F(t) = F0 sin vt

F(t) = F0 sin vt

d = 0.1270 m = 127 mm

d4
=

64kl3

3pE
=

(64)(10.04 * 104
p

2)(23)

3p(2.07 * 1011)
= 2.6005 * 10-4 m4

k =
3EI

l3
=

3E

l3
+
pd4

64
*

10.04 * 104
p

2
vvnr = v/vn

 k = 10.04 * 106
p

2 N/m

M03_RAO8193_05_SE_C03.QXD  8/21/10  4:05 PM  Page 293



294 CHAPTER 3 HARMONICALLY EXCITED VIBRATION

If the equivalent viscous-damping constant is denoted as the energy dissipated during

a full cycle (see Eq. (2.94)) will be

(3.87)

By equating Eqs. (3.86) and (3.87), we obtain

(3.88)

Thus the steady-state response is given by

(3.89)

where the amplitude X can be found from Eq. (3.60):

(3.90)

with

(3.91)zeq =

ceq

cc
=

ceq

2mvn
=

4mN

2mvnpvX
=

2mN

pmvvnX

X =
F0

B(k - mv2)2
+ (ceqv)2

R

1/2
=

(F0/k)

B ¢1 -
v2

vn
2

2

+ ¢2zeq

v

vn

2

R

1/2

xp(t) = X sin(vt - f)

ceq =
4mN

pvX

¢W = pceqvX2

ceq,

m

mg

k

(a)

(b)

Displaced
to left (x  0)

Displaced
to right (x  0)

x

F(t)  F0 sin vt

F0 sin vt

mx
kx

mN mN

N

mg
F0 sin vt

mx
kx

N

FIGURE 3.22 Single-degree-of-freedom system with Coulomb damping.
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Substitution of Eq. (3.91) into Eq. (3.90) gives

(3.92)

The solution of this equation gives the amplitude X as

(3.93)

As stated earlier, Eq. (3.93) can be used only if the friction force is small compared to 

In fact, the limiting value of the friction force can be found from Eq. (3.93). To avoid

imaginary values of X, we need to have

If this condition is not satisfied, the exact analysis, given in reference [3.3], is to be used.

The phase angle appearing in Eq. (3.89) can be found using Eq. (3.52):

(3.94)

Substituting Eq. (3.93) into Eq. (3.94) for X, we obtain

(3.95)

Equation (3.94) shows that is a constant for a given value of is discontin-

uous at (resonance), since it takes a positive value for and a negative

value for Thus Eq. (3.95) can also be expressed asv/vn 7 1.
v/vn 6 1v/vn = 1

fF0/mN.tan f

f = tan-1 E

4mN

pF0

b 1 - ¢
4mN

pF0

2

r

1/2
U

f = tan-1 £
ceqv

k - mv2
= tan-1 

D

2zeq 

v

vn

1 -
v2

vn
2

T = tan-1 
d

4mN

pkX

1 -
v2

vn
2

t

f

1 - ¢
4mN

pF0

2

7 0 or F0

mN
7

4

p

mN
F0.

X =
F0

k
 D

1 - ¢
4mN

pF0

2

¢1 -
v2

vn
2

2
T

1/2

X =

(F0/k)

B ¢1 -
v2

vn
2

2

+ ¢
4mN

pkX

2

R

1/2
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(3.96)

Equation (3.93) shows that friction serves to limit the amplitude of forced vibration

for However, at resonance the amplitude becomes infinite. This

can be explained as follows. The energy directed into the system over one cycle when it is

excited harmonically at resonance is

(3.97)

Since Eq. (3.94) gives at resonance, Eq. (3.97) becomes

(3.98)

The energy dissipated from the system is given by Eq. (3.86). Since for X

to be real-valued, at resonance (see Fig. 3.23). Thus more energy is directed

into the system per cycle than is dissipated per cycle. This extra energy is used to build up

the amplitude of vibration. For the nonresonant condition the energy input

can be found from Eq. (3.97):

(v/vn Z 1),

¢W¿ 7 ¢W
pF0X 7 4mNX

¢W¿ = F0Xv
L

2p/v

0
 sin2 vt dt = pF0X

f = 90°

 =
L

t=2p/v

0
F0 sin vt # [vX cos (vt - f)] dt

 ¢W¿ =
Lcycle

F # dx =
L

t

0
F 

dx

dt
 dt

(v/vn = 1),v/vn Z 1.

f = tan-1 E

;
4mN

pF0

b 1 - ¢
4mN

pF0

2

r

1/2
U

O
X

W

W   pF0X

E
ne

rg
y 

in
pu

t

Energy dissi
pated

1

1

4mN

W  4mNX
pF0

FIGURE 3.23 Energy input and energy

dissipated with Coulomb damping.

M03_RAO8193_05_SE_C03.QXD  8/21/10  4:05 PM  Page 296



3.8 FORCED VIBRATION WITH COULOMB DAMPING 297

(3.99)

Due to the presence of in Eq. (3.99), the input energy curve in Fig. 3.23 is made to

coincide with the dissipated energy curve, so the amplitude is limited. Thus the phase of

the motion can be seen to limit the amplitude of the motion.

The periodic response of a spring-mass system with Coulomb damping subjected to

base excitation is given in references [3.10, 3.11].

f

sin f

¢W¿ = vF0X
L

2p/v

0
 sin vt cos(vt - f) dt = pF0X sin f

E X A M P L E  3 . 8
Spring-Mass System with Coulomb Damping

A spring-mass system, having a mass of 10 kg and a spring of stiffness of 4000 N/m, vibrates on a

horizontal surface. The coefficient of friction is 0.12. When subjected to a harmonic force of fre-

quency 2 Hz, the mass is found to vibrate with an amplitude of 40 mm. Find the amplitude of the har-

monic force applied to the mass.

Solution: The vertical force (weight) of the mass is The natural

frequency is

and the frequency ratio is

The amplitude of vibration X is given by Eq. (3.93):

The solution of this equation gives 

*

F0 = 97.9874 N.

 0.04 =
F0

4000
 D

1 - b

4(0.12)(98.1)

pF0
r

2

(1 - 0.62832)2
T

1/2

 X =
F0

k
 E

1 - ¢
4mN

pF0

2

b 1 - ¢
v

vn

2

r

2
U

1/2

v

vn
=

2 * 2p

20
= 0.6283

vn =
A

k

m
=
A

4000

10
= 20 rad/s

N = mg = 10 * 9.81 = 98.1 N.
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3.9 Forced Vibration with Hysteresis Damping
Consider a single-degree-of-freedom system with hysteresis damping and subjected to a

harmonic force as indicated in Fig. 3.24. The equation of motion of the

mass can be derived, using Eq. (2.157), as

(3.100)

where denotes the damping force.6 Although the solution of Eq.

(3.100) is quite involved for a general forcing function F(t), our interest is to find the

response under a harmonic force.

The steady-state solution of Eq. (3.100) can be assumed:

(3.101)

By substituting Eq. (3.101) into Eq. (3.100), we obtain

(3.102)

and

(3.103)f = tan-1 C

b

¢1 -
v2

vn
2

S

X =
F0

k B ¢1 -
v2

vn
2

2

+ b2
R

1/2

xp(t) = X sin (vt - f)

(bk/v)x
#
= (h/v)x

#

mx
$

+
bk

v
 x
#
+ kx = F0 sin vt

F(t) = F0 sin vt,

6In contrast to viscous damping, the damping force here can be seen to be a function of the forcing frequency 
(see Section 2.10).

v

m

m

(a)

(b)

x(t)

F0 sin vt

mxkx

x
bk

v

F(t) * F0 sin vt

k

b

FIGURE 3.24 System with hysteresis damping.
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Equations (3.102) and (3.103) are shown plotted in Fig. 3.25 for several values of A

comparison of Fig. 3.25 with Fig. 3.11 for viscous damping reveals the following:

1. The amplitude ratio

attains its maximum value of at the resonant frequency in the case

of hysteresis damping, while it occurs at a frequency below resonance in

the case of viscous damping.

2. The phase angle has a value of at in the case of hysteresis damping,

while it has a value of zero at in the case of viscous damping. This indicates

that the response can never be in phase with the forcing function in the case of hys-

teresis damping.

v = 0

v = 0tan-1(b)f

(v 6 vn)

(v = vn)F0 
/kb

X

(F0 
/k)

b.

0 1 2 3 4 5

b * 0

b * 0.2
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b * 1.0

0

1
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4

5

1 2 3 4 5

vn

v

vn

v

2

p

p

f

b * 1.0

b * 0.5

b * 0.2

b * 0

X

(
F
o
/k

)

FIGURE 3.25 Steady-state response.
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300 CHAPTER 3 HARMONICALLY EXCITED VIBRATION

Note that if the harmonic excitation is assumed to be in Fig. 3.24, the

equation of motion becomes

(3.104)

In this case, the response x(t) is also a harmonic function involving the factor Hence

is given by and Eq. (3.104) becomes

(3.105)

where the quantity is called the complex stiffness or complex damping [3.7].

The steady-state solution of Eq. (3.105) is given by the real part of

(3.106)

3.10 Forced Motion with Other Types of Damping
Viscous damping is the simplest form of damping to use in practice, since it leads to linear

equations of motion. In the cases of Coulomb and hysteretic damping, we defined equiva-

lent viscous-damping coefficients to simplify the analysis. Even for a more complex form of

damping, we define an equivalent viscous-damping coefficient, as illustrated in the follow-

ing examples. The practical use of equivalent damping is discussed in reference [3.12].

x(t) =
F0eivt

k B1 - ¢
v

vn

2

+ ib R

k(1 + ib)

mx
$
+ k(1 + ib)x = F0eivt

ivx(t),x
#
(t)

eivt.

mx
$
+
bk

v
 x
#
+ kx = F0eivt

F(t) = F0eivt

E X A M P L E  3 . 9
Quadratic Damping

Find the equivalent viscous-damping coefficient corresponding to quadratic or velocity-squared

damping that is present when a body moves in a turbulent fluid flow.

Solution: The damping force is assumed to be

(E.1)

where a is a constant, is the relative velocity across the damper, and the negative (positive) sign

must be used in Eq. (E.1) when is positive (negative). The energy dissipated per cycle during har-

monic motion is given by

(E.2)¢W = 2
L

x

-x
a(x

#
)2 dx = 2X3

L

p/2

-p/2
 av2 cos3 vt d(vt) =

8

3
 v2aX3

x(t) = X sin vt
x
#

x
#

Fd = ;a(x
#
)2
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3.11 SELF-EXCITATION AND STABILITY ANALYSIS 301

By equating this energy to the energy dissipated in an equivalent viscous damper (see Eq. (2.94))

(E.3)

we obtain the equivalent viscous-damping coefficient 

(E.4)

It can be noted that is not a constant but varies with and X. The amplitude of the steady-state

response can be found from Eq. (3.30):

(E.5)

where and

(E.6)

Using Eqs. (E.4) and (E.6), Eq. (E.5) can be solved to obtain

(E.7)

*

3.11 Self-Excitation and Stability Analysis
The force acting on a vibrating system is usually external to the system and independent of

the motion. However, there are systems for which the exciting force is a function of the

motion parameters of the system, such as displacement, velocity, or acceleration. Such sys-

tems are called self-excited vibrating systems, since the motion itself produces the exciting

force (see Problem 3.92). The instability of rotating shafts, the flutter of turbine blades, the

flow-induced vibration of pipes, and the automobile wheel shimmy and aerodynamically

induced motion of bridges are typical examples of self-excited vibrations.

X =
3pm

8ar2
 B-  

(1 - r2)2

2
+ C

(1 - r2)4

4
+ ¢

8ar2dst

3pm

2

R

1/2

zeq =

ceq

cc
=

ceq

2mvn

r = v/vn

X

dst

=
1

2(1 - r2)2 + (2zeqr)
2

vceq

ceq =
8

3p
avX

(ceq)

¢W = pceqvX
2

A system is dynamically stable if the motion (or displacement) converges or remains steady with

time. On the other hand, if the amplitude of displacement increases continuously (diverges) with

time, it is said to be dynamically unstable. The motion diverges and the system becomes

unstable if energy is fed into the system through self-excitation. To see the circumstances that

lead to instability, we consider the equation of motion of a single-degree-of-freedom system:

(3.107)mx
$
+ cx

#
+ kx = 0

3.11.1
Dynamic
Stability
Analysis
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302 CHAPTER 3 HARMONICALLY EXCITED VIBRATION

If a solution of the form where C is a constant, is assumed, Eq. (3.107) leads

to the characteristic equation

(3.108)

The roots of this equation are

(3.109)

Since the solution is assumed to be the motion will be diverging and aperi-

odic if the roots and are real and positive. This situation can be avoided if c/m and k/m

are positive. The motion will also diverge if the roots and are complex conjugates with

positive real parts. To analyze the situation, let the roots and of Eq. (3.108) be

expressed as

(3.110)

where p and q are real numbers, so that

(3.111)

Equations (3.111) and (3.110) give

(3.112)

Equations (3.112) show that for negative p, c/m must be positive and for positive

must be positive. Thus the system will be dynamically stable if c and k are

positive (assuming that m is positive).

p2
+ q2, k/m

c

m
= -(s1 + s2) = -2p,  k

m
= s1s2 = p2

+ q2

(s - s1)(s - s2) = s2
- (s1 + s2)s + s1s2 = s2

+
c

m
 s +

k

m
= 0

s1 = p + iq,  s2 = p - iq

s2s1

s2s1

s2s1

x(t) = Cest,

s1,2 = -  

c

2m
;

1

2
 B ¢

c

m

2

- 4¢
k

m
R

1/2

s2
+

c

m
 s +

k

m
= 0

x(t) = Cest,

E X A M P L E  3 . 1 0
Instability of Spring-Supported Mass on Moving Belt

Consider a spring-supported mass on a moving belt, as shown in Fig. 3.26(a). The kinetic coefficient

of friction between the mass and the belt varies with the relative (rubbing) velocity, as shown in Fig.

3.26(b). As rubbing velocity increases, the coefficient of friction first decreases from its static value

linearly and then starts to increase. Assuming that the rubbing velocity, v, is less than the transition

value, the coefficient of friction can be expressed as

m = m0 -
a

W
 v

vQ,
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3.11 SELF-EXCITATION AND STABILITY ANALYSIS 303

where a is a constant and is the weight of the mass. Determine the nature of free vibration

about the equilibrium position of the mass.

Solution: Let the equilibrium position of mass m correspond to an extension of of the spring.

Then

or

where V is the velocity of the belt. If the mass is displaced by a distance x from its equilibrium posi-

tion the rubbing velocity v is given by

v = V - x
#

(x0),

x0 =

mW

k
=

m0W

k
-

aV

k

mW = kx0

x0

W = mg

Belt

V

m

k

x0 x

(a)

(b)

(c)

P

m

0

m0

Q

vQ Relative
velocity (v)

mk(x0  x)

x0

mW

 x, x, x

FIGURE 3.26 Motion of a spring-supported

mass due to belt friction.
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Work table (m)

Feed screw

Gears

Drive

FIGURE 3.27 Motion of work table on feed screw in a

machine tool.

The equation of motion for free vibration can be written, using Newton s second law of motion, as

(see Fig. 3.26(c)):

i.e.,

(E.1)

Since the coefficient of is negative, the motion given by Eq. (E.1) will be unstable. The solution of

Eq. (E.1) is given by

(E.2)

where and are constants and

As can be seen from Eq. (E.2), the value of x increases with time. It increases until either 

or After this, the will have a positive slope, and hence the nature of the motion will

be different [3.13].

Note: A similar motion can be observed in belt and pulley-type absorption brakes and in machine

tool slides [3.14]. In machine tools, for example, a work table is mounted on suitable guideways and

a feed screw is used to impart motion to the work table, as shown in Fig. 3.27. In some cases, the

work table may slide in a jerky fashion even when the feed screw has a uniform and smooth motion.

Such a motion is known as stick-slip motion. A simplified analysis of the stick-slip motion can be

conducted by modeling the work table as a mass (m) and the connection between the work table and

the feed screw (which is never perfectly rigid) as a spring (k) and viscous damper (c). The coeffi-

cient of friction between the mass and the sliding surface varies as a function of the sliding speed,

mV + x
#
= vQ.

V - x
#
= 0

 r2 = -  

1

2
 B ¢

a

m

2

- 4¢
k

m
R

1/2

 r1 =
1

2
 B ¢

a

m

2

- 4¢
k

m
R

1/2

C2C1

x(t) = e(a/2m) t
5C1e

r1t + C2er2t
6

x
#

mx
$
- ax

#
+ kx = 0

mx
$

= -k(x0 + x) + mW = -k(x0 + x) + W¢m0 -
a

W
(V - x

#
)
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3.11 SELF-EXCITATION AND STABILITY ANALYSIS 305

3.11.2
Dynamic
Instability
Caused by Fluid
Flow

The vibration caused by a fluid flowing around a body is known as flow-induced vibration

[3.4]. For example, tall chimneys, submarine periscopes, electric transmission lines, and

nuclear fuel rods are found to vibrate violently under certain conditions of fluid flow

around them. Similarly, water and oil pipelines and tubes in air compressors undergo

severe vibration under certain conditions of fluid flow through them. In all these examples,

the vibration of the system continuously extracts energy from the source, leading to larger

and larger amplitudes of vibration.

The flow-induced vibration may be caused by various phenomena. For example, in

ice-covered electric transmission lines, low-frequency vibration (1 to 2 Hz) known as

galloping, occurs as a result of the lift and drag forces developed by air flowing around the

lines. The unstable vibration, known as flutter, of airfoil sections is also due to the lift and

drag forces developed by the air flowing around the airfoil. In addition, a high-frequency

vibration known as singing of transmission lines occurs as a result of the phenomenon of

vortex shedding.

To see the phenomenon of galloping of wires, consider a cylindrical section with wind

blowing against it at a velocity U, as shown in Fig. 3.28(a) [3.3]. Due to symmetry of the

section, the direction of force due to wind will be same as that of the wind. If a small down-

ward velocity u is given to the cylinder, the wind will have an upward component of veloc-

ity u (relative to the cylinder) along with the horizontal component U. Thus the direction of

the resultant force due to wind on the cylinder will be upward, as shown in Fig. 3.28(b).

Since this force (upward) is opposite to the direction of motion of the cylinder (down-

ward), the motion of the cylinder will be damped. In contrast, if a noncircular section such

as an ice-covered cylindrical wire is considered, the resultant wind force may not always

oppose the motion of the wire, as shown in Fig. 3.28(c). In such a case, the motion of the

wire is aided by the wind forces, implying a negative damping in the system.

To visualize the phenomenon of singing of wires, consider a fluid flowing past a

smooth cylinder. Under certain conditions, alternating vortices in a regular pattern are

formed downstream, as shown in Fig. 3.29. These are called Karman vortices, in honor of

the prominent fluid mechanician, Theodor von Karman, who was first to predict the stable

spacing of the vortices on theoretical grounds in 1911. The Karman vortices are alternately

clockwise and counterclockwise and thus cause harmonically varying lift forces on the

as indicated in Fig. 3.26(b). The equation of motion of the mass (work table) can be derived as in

the case of Eq. (E.1) of Example 3.8 as

i.e.,

It can be seen that dynamic instability occurs if 

*

c 6 a.

mx
$
+ (c - a)x

#
+ kx = 0

mx
$
+ cx

#
+ kx = mW = W Bm0 -

a

W
 (V - x

#
)R
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d

FIGURE 3.29 Fluid flow past a cylinder.
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Wind
velocity, U

u

u

(c)

Original
wind force

Wire

Resultant
wind force

Resultant
wind velocity due
to nonsymmetry u (velocity of wire)

Ice cover

FIGURE 3.28 Galloping of a wire.

cylinder perpendicular to the velocity of the fluid. Experimental data show that regular

vortex shedding occurs strongly in the range of Reynolds number (Re) from about 60 to

5000. In this case

(3.113)Re =

rVd

m
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3.11 SELF-EXCITATION AND STABILITY ANALYSIS 307

where d is the diameter of the cylinder, is the density, V is the velocity, and is the

absolute viscosity of the fluid. For the dimensionless frequency of vortex

shedding, expressed as a Strouhal number (St), is approximately equal to 0.21 [3.15]

(3.114)

where f is the frequency of vortex shedding. The harmonically varying lift force (F) is

given by

(3.115)

where c is a constant ( for a cylinder), A is the projected area of the cylinder perpen-

dicular to the direction of V, is the circular frequency and t is time. The

mechanism of vortex shedding from a cylinder can be called a self-excited one, since the

fluid flow (V) has no alternating component. From a design point of view, we have to

ensure the following:

1. The magnitude of the force exerted on the cylinder, given by Eq. (3.115), is less than

the static-failure load.

2. Even if the magnitude of force F is small, the frequency of oscillation (f) should not

cause fatigue failure during the expected lifetime of the structure (or cylinder).

3. The frequency of vortex shedding (f) does not coincide with the natural frequency of

the structure or cylinder to avoid resonance.

Reduction of Flow-Induced Vibration. Several methods can be used to reduce failures

caused by flow-induced vibration.

1. To reduce the singing vibration of transmission lines due to vortex shedding, a damped

vibration absorber, known as Stockbridge damper, can be used. A typical Stockbridge

damper consists of a short steel cable with two masses attached at the ends. This damper

is clamped to the transmission line, as shown in Fig. 3.30(a). The device thus acts as 

a spring-mass system and can be tuned to the frequency of flow-induced vibration by

adjusting its length (the length of the cable) or the value of the masses. The Stock-

bridge damper is clamped to the transmission line at a point where the amplitude of

vibration is expected to be large.

2. For tall steel chimneys, the effect of flow-induced vibration can be minimized by

attaching vibration dampers through guy cables between the top of the chimney and

the ground, as shown in Fig. 3.30(b).

3. For tall chimneys, helical spoilers or strakes can be provided around the chimney, as

shown in Fig. 3.31. The helical spoilers break the vortex pattern so that no well-defined

excitation is applied to the chimney wall.

4. In high-speed (racing) cars, the flow-induced lift forces can unload the tires, thereby

causing problems with steering control and stability of the vehicle. Although lift

(v = 2pf),v

c L 1

F(t) =
1

2
  crV2A sin vt

St K
fd

V
= 0.21

Re 7 1000,

mr
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Helical spoilers

(a) (b)

FIGURE 3.31 Helical spoilers. (Photo courtesy of Bethlehem Steel Corporation.)

m m

Transmission line

Attached mass Piece of
stranded
steel cable

(a)

Attached mass

Clamping point

(b)

Steel
chimney

Guy cable

Vibration
damper

FIGURE 3.30 Stockbridge damper.
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3.11 SELF-EXCITATION AND STABILITY ANALYSIS 309

FIGURE 3.32 Contemporary sports-racing car with

aerodynamic features for low drag and high stability. (Photo

courtesy of Goodyear Tire & Rubber Co. Inc.)

E X A M P L E  3 . 1 1
Dynamic Instability of an Airfoil

Find the value of free-stream velocity u at which the airfoil section (single-degree-of-freedom system)

shown in Fig. 3.33 becomes unstable.

Solution

Approach: Find the vertical force acting on the airfoil (or mass m) and obtain the condition that

leads to zero damping.

m

x
*

x
*

+a

ck

u

urel

u

Blade
stiffness and
damping

(a) (b)

FIGURE 3.33 Modeling of airfoil as a single-degree-of-freedom system.

forces can be countered partly by adding spoilers, the drag force will increase. 

In recent years, movable inverted airfoils are being used to develop a downward

aerodynamic force with improved stability characteristics (see Fig. 3.32).
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The vertical force acting on the airfoil (or mass m) due to fluid flow can be expressed as [3.4]

(E.1)

where of the fluid, -stream velocity, of the cross section normal to

the fluid flow direction, and force coefficient, which can be expressed as

(E.2)

where is the relative velocity of the fluid, is the lift coefficient, is the drag coefficient, and

is the angle of attack (see Fig. 3.33):

(E.3)

For small angles of attack,

(E.4)

and can be approximated, using Taylor s series expansion, about as

(E.5)

where, for small values of and Eq. (E.2) becomes

(E.6)

Equation (E.5) can be rewritten, using Eqs. (E.6) and (E.4), as

(E.7) = CL `

a=0

-
x
#

u
 b
0CL

0a
`

a=0

+ CD `

a=0
r

 = CL `

a=0

+ a 
0Cx

0a
`

a=0

 + aB
0CL

0a
 cos a - CL sin a +

0CD

0a
 sin a + CD cos aR

`

a=0

 Cx = (CL cos a + CD sin a)
`

a=0

Cx = CL cos a + CD sin a

a, urel M u

Cx M Cx `

a=0

+
0Cx

0a
`

a=0

# a

a = 0,Cx

a = -  

x
#

u

a = - tan-1 ¢
x
#

u

a

CDCLurel

Cx =
urel

2

u2
 (CL cos a + CD sin a)
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D = widthu = freer = density

F =
1

2
  ru2DCx

M03_RAO8193_05_SE_C03.QXD  8/21/10  4:05 PM  Page 310



3.11 SELF-EXCITATION AND STABILITY ANALYSIS 311

Substitution of Eq. (E.7) into Eq. (E.1) gives

(E.8)

The equation of motion of the airfoil (or mass m) is

(E.9)

The first term on the right-hand side of Eq. (E.9) produces a static displacement, and hence only the

second term can cause instability of the system. The equation of motion, considering only the second

term on the right-hand side, is

(E.10)

Note that m includes the mass of the entrained fluid. We can see from Eq. (E.10) that the displace-

ment of the airfoil (or mass m) will grow without bound (i.e., the system becomes unstable) if c is

negative. Hence the minimum velocity of the fluid for the onset of unstable oscillations is given by

or,

(E.11)

The value of for a square section in a steady flow [3.4].

*

Note: An analysis similar to that of Example 3.11 is applicable to other vibrating structures

such as water tanks (Fig. 3.34a) and galloping ice-coated power lines (Fig. 3.34b) under

wind loading.

0Cx
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`
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= -2.7
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a=0
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 ruD 
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#
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#
+ kx = F =

1

2
 ru2DCL `
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-
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2
 ruD 

0Cx
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`

a=0

 x
#
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1

2
 ru2DCL `

a=0

-
1

2
 ruD 

0Cx

0a
`

a=0

x
#

Flow-Induced Vibration of a Chimney

A steel chimney has a height 2 m, an inner diameter 0.75 m, and an outer diameter 0.80 m. Find the

velocity of the wind flowing around the chimney which will induce transverse vibration of the chim-

ney in the direction of airflow.

Solution

Approach: Model the chimney as a cantilever beam and equate the natural frequency of the transverse

vibration of the chimney to the frequency of vortex shedding.

E X A M P L E  3 . 1 2
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To find the natural frequency of the transverse vibration of the chimney, the Rayleigh s energy

method can be used by assuming a suitable transverse deflection of the cantilever beam (see Section

8.7). However, in this case, we use the natural frequencies of the cantilever beam given in Fig. 8.15.

Figure 8.15 gives the fundamental natural frequency of transverse vibration of a cantilever

(fixed-free) beam as

(E.1)

where

(E.2)

For the chimney, 

and

Thus

 = 12.415417 rad/s = 1.975970 Hz

 v1 = (1.875104)2
d

(207 * 109)(0.004574648)

¢
76.5 * 103

9.81
(0.0608685)(20)4

t

1/2

I =
p

64
 (D4

- d4) =
p

64
 (0.804

- 0.754) = 0.004574648 m4

A =
p

4
 (D2

- d2) =
p

4
 (0.802

- 0.752) = 0.0608685 m2

D = 0.80 m,d = 0.75 m,

l = 20 m,rg = unit weight = 76.5 * 103 N/m3,E = 207 * 109 Pa,

b1l = 1.875104

v1 = (b1l)
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FIGURE 3.34 Instability of typical vibrating structures.
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E X A M P L E  3 . 1 3
Transfer Function Corresponding to a Differential Equation

Consider the following nth-order linear, time-invariant differential equation that governs the behav-

ior of a dynamic system:

(E.1)= bm 
dmf(t)

dtm + bm-1 
dm-1f(t)

dtm-1
+ Á + b0f(t)

an 

dnx(t)

dtn + an-1 

dn-1x(t)

dtn-1
+ Á + a0x(t)

The frequency of vortex shedding (f) is given by the Strouhal number:

Using and the velocity of wind (V) which causes resonance can

be determined as

*

3.12 Transfer-Function Approach
The transfer-function approach, based on Laplace transforms, is commonly used for the

formulation and solution of dynamic problems in the controls literature. It can also be con-

veniently used for solving forced-vibration problems. Transfer function relates a system s

output to its input. This function permits separation of the input, system, and output into

three separate and distinct parts (unlike the differential equation, in which the three aspects

cannot be separated easily).

Definition: The transfer function of a linear, time-invariant differential equation is defined

as the ratio of the Laplace transform of the output or response function to the Laplace

transform of the input or forcing function, assuming zero initial conditions.

The general procedure used to find the transfer function of a linear differential equation

involves taking the Laplace transforms of both sides, assuming zero initial conditions, and

solving for the ratio of the output Laplace transform and the input Laplace transform. Since

the linear differential equation consists of the variable and its derivatives, the Laplace trans-

form converts the differential equation into a polynomial equation in the Laplace variable s.

The expressions given in Appendix D for the Laplace transforms of derivatives can be used

in deriving the transfer function.

V =

f1d

0.21
=

1.975970(0.80)

0.21
= 7.527505 m/s

f = f1 = 1.975970 Hz,d = 0.80 m

St =
fd

V
= 0.21
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System, T(s)
Input, F(s) Output, X(s)

FIGURE 3.35 Block-diagram representation

of input, system, and output.

where x(t) is the output, f(t) is the input, t is the time, and and are constants. Find the trans-

fer function of the system and show the input, system, and output in a block diagram

Solution: By taking Laplace transform of both sides of Eq. (E.1), we obtain

(E.2)

It can be seen that Eq. (E.2) is a purely algebraic expression. If all initial conditions are assumed to

be zero, Eq. (E.2) reduces to the following form:

(E.3)

By solving Eq. (E.3), the transfer function of the system evaluated at zero initial conditions, T(s), can

be found as the ratio of the output transform, X(s), and the input transform, F(s):

(E.4)

It can be seen that the transfer function identifies the input, F(s), the output, X(s), and the system

(defined by the right-hand side expression in Eq. (E.4) as separate entities. From Eq. (E.4), the out-

put of the system can be determined as

(E.5)

By taking the inverse Laplace transform of Eq. (E.5), we can find the output of the system in the time

domain for any known input.

The transfer function can be represented as a block diagram as shown in Fig. 3.35, where the

input and output are shown on the left and the right sides, respectively, of the block with the transfer

function shown inside the block. Note that the denominator of the transfer function is identical to the

characteristic polynomial of the differential equation.

X(s) = T(s)F(s)

T(s) =
X(s)

F(s)
=

(bmsm
+ bm-1s

m-1
+ Á + b0)

(ansn
+ an-1s

n-1
+ Á + a0)

5ansn
+ an-1s

n-1
+ Á + a06X(s) = 5bmsm

+ bm-1s
m-1

+ Á + b06 F(s)

+ initial conditions involving f(t)

 = bmsmF(s) + bm-1s
m-1F(s) + Á + b0F(s)

 ansnX(s) + an-1s
n-1X(s) + Á + a0X(s) + initial conditions involving x(t)

bi sai s

*

M03_RAO8193_05_SE_C03.QXD  8/21/10  4:05 PM  Page 314



3.12 TRANSFER-FUNCTION APPROACH 315

Transfer Function of a Damped Single-Degree-of-Freedom System

Derive the transfer function of a viscously damped single-degree-of-freedom system subjected to

external force f(t) as shown in Fig. 3.1.

Solution: The equation of motion of the system is given by

(E.1)

By taking the Laplace transforms of both sides of Eq. (E.1), we obtain

(E.2)

or

(E.3)

Equation (E.2) can be rewritten as

(E.4)

where and The transfer function of the system can be obtained

from Eq. (E.4), by setting as

(E.5)

Notes:

1. The transfer function is a property of the system and is unrelated to the input or forcing
function.

2. The transfer function does not provide any information on the physical structure of the system.

In fact, the transfer functions of many physically different systems can be identical.

3. Representation of a dynamic system using the transfer function is very useful in control theory

as well as in vibration testing for measuring the dynamic response and for system identification.

For example, for a system whose parameters such as mass (m), damping constant (c) and spring

stiffness (k) are unknown, the transfer function can be determined experimentally by measuring

the response or output due to a known input. Once the transfer function is determined, it pro-

vides a complete description of the dynamic characteristics of the system.

In vibration testing, the measured vibration response (due to a known input or forcing

function) could be the displacement, velocity or, more commonly, the acceleration. The transfer 

function corresponding to the acceleration response can be defined as the ratio, where
s2X(s)

F(s)
,

T(s) =
l[output]

l[input]
 zero initial conditions =

X(s)

F(s)
=

1

ms2
+ cs + k

x(0) = x
#
(0) = 0,

F(s) = l[f(t)].X(s) = l[x(t)]

(ms2
+ cs + k) X(s) - 5msx(0) + mx

#
(0) + sx(0)6 = F(s)

m 5s2X(s) - sx(0) - x
#
(0)6 + 5sX(s) - x(0)6 + kX(s) = F(s)

ml[x
$
(t)] + cl[x

#
(t)] + kl[x(t)] = l[f(t)]

mx
$

+ cx
#
+ kx = f(t)

E X A M P L E  3 . 1 4
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316 CHAPTER 3 HARMONICALLY EXCITED VIBRATION

F(s) is the Laplace transform of the input and is the Laplace transform of the 

acceleration.

4. If the transfer function of a system is known, the output or response of the system can be found

for any type of input.

5. The variable s in the Laplace transform is a complex number and hence the transfer function

will be a complex quantity. The variable s is similar to the characteristic root s used in repre-

senting the solution of a differential equation [see Eq. (2.61)]. By denoting the variable s in the

Laplace transform in complex form as

(3.116)

where and denote the real and imaginary parts, respectively, of s, the complete analysis
considered in Section 2.8 can be seen to be valid for the variable s of the Laplace transform as
well.

6. As can be seen from Eq. (3.1), the equation of motion of a vibrating system is in the time domain.

Although the output or response of the system can be found in the time domain directly as indi-

cated in Section 3.4, sometimes, it is easier to find the response using the Laplace transform

approach. The Laplace transform converts a linear differential equation into an algebraic expres-

sion, which is easier to manipulate. It transforms functions defined in terms of the independent

variable (such as time) into functions in terms of the complex quantity s as the independent vari-

able. In order to use the Laplace transform, we need first to determine the transfer function of the

system.

7. Although the transfer function is derived formally through application of the Laplace trans-

form, it can be derived informally in a simple manner. For this, consider the equation

(3.117)

The transfer function associated with this equation can be derived by replacing x(t) by X(s)

and f(t) by F(s) The time derivatives of x(t) can be obtained by differentiating X(s)

with respect to time as and Thus Eq. (3.117) can be

rewritten as

(3.118)

Equation (3.118) can be solved for the ratio X(s)/F(s) to obtain the transfer function, 

T(s), as

(3.119)

This equation can be seen to be identical to Eq. (E.5) of Example 3.14.

*

T(s) =

X(s)

F(s)
=

1

ms2 + cs + k

ms2X(s)est + csX(s)est + kX(s)est = F(s)est

x
$
(t) = X(s)s2est.x

#
(t) = X(s)sest

estest.

est

mx
$

+ cx
#
(t) + kx(t) = f(t)

vds

s = s + ivd

s2 X(s)
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E X A M P L E  3 . 1 5
Response of a Damped System Using Laplace Transforms

Derive an expression for the complete response of a damped single-degree-of-freedom system sub-

jected to a general force, f(t), as shown in Fig. 3.1 using Laplace transforms.

Solution: The Laplace transform of Eq. (3.1) leads to the relation (see Eq. (E.4) of Example 3.14)

(E.1)

The complete response of the system can be found by taking inverse Laplace transforms of each term

on the right-hand side of Eq. (E.1). For convenience, we define the following functions with the sub-

scripts i and s denoting the input and system, respectively:

(E.2)

(E.3)

We note that the inverse Laplace transform of will be equal to the known forcing function

(E.4)

and the inverse Laplace transform of is given by (see Appendix D)

(E.5)

where

(E.6)

The inverse Laplace transform of the first term on the right-hand side of Eq. (E.1) can be expressed

as (see Appendix D):

(E.7)l
-1Fi(s)Fs(s) =

3

 t

r=0 
fi(t)fs(t - t) dt =

1

mvd 3

 t

r=0 
f(t)e-zvn (t-t) sin vd(t - t) dt

vd = 21 - z2 vn

fs(t) =
1

mvd
 e-zvnt sin vdt

Fs(s)

fi(t) = F0 cos vt

Fi(s)

Fs(s) =
1

m(s2
+ 2 zvns + vn

2)

Fi(s) = F(s)

X(s) =

F(s)

m(s2
+ 2 zvns + vn

2)
+

s + 2 zvn

s2
+ 2 zvns + vn

2
 x(0) +

1

s2
+ 2 zvns + vn

2
 x
#
(0)

3.13 Solutions Using Laplace Transforms
The computation of responses of single-degree-of-freedom systems using Laplace trans-

forms is illustrated through the following examples.
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The inverse Laplace transform of the coefficient of x(0) in Eq. (E.1) yields

(E.8)

where

(E.9)

The inverse Laplace transform of the coefficient of can be obtained by multiplying by m

so that

(E.10)

Thus the complete response of the system, using the responses given on the right-hand sides of Eqs.

(E.7), (E.8), and (E.10), can be expressed as

(E.11)

Noting that the inverse Laplace transform of the product function in Eq. (E.7) can also be

expressed as

(E.12)

the complete response of the system can also be expressed as

(E.13)

*

+
vn

vd
 e-zvnt cos(vdt - f1) +

1

vd
 e-zvn t sin vdt

 x(t) =
1

mvd 3

 t

t=0 
f(t - t) e-zvnt sin vdt dt

l
-1Fi(s)Fs(s) =

3

 t

t=0 
fi(t - t)fs(t) dt =

1

mvd 3

 t

t=0 
f(t - t)e-zvnt sin vdt dt

 +
vn

vd
 e-zvn t cos(vdt - f1) +

1

vd
 e-zvn t sin vdt

 x(t) =
1

mvd 3

 t

t=0 
f(t)e-zvn(t-t) sin vd(t - t) dt

l
-1 1

(s2
+ 2 zvns + vn

2)
=

1

vd
 e-zvn t sin vdt

fs(t)x
#
(0)

f1 = tan-1 
zvn

vd
= tan-1 

z

21 - z2

l
-1 s + 2 zvn

s2
+ 2 zvns + vn

2
=
vn

vd
 e-zvnt cos(vdt - f1)
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E X A M P L E  3 . 1 6
Steady-State Response Using Laplace Transform

Find the steady-state response of a damped single-degree-of-freedom system subjected to a har-

monic force using Laplace transform.

Solution: The Laplace transform of Eq. (3.1) leads to the relation (with zero initial conditions for

steady-state response in Eq. (E.1) of Example 3.15)

(E.1)

The Laplace transform of the input is given by Thus Eq. (E.1)

becomes

(E.2)

where the relations and have been used in expressing Eq. (E.2). By express-

ing the right-hand side of Eq. (E.2) as

(E.3)

the constants and can be identified as (see Problem 3.99)

(E.4)

(E.5)

(E.6)

(E.7)

Thus, X(s) can be expressed as

(E.8) - (vn
2
- v2)¢

s

s2
+ 2zvns + vn

2
- (2zvn)¢

vn
2

s2
+ 2zvns + vn

2

 X(s) =
F0

m
 

1

(2zvn)2v2
+ (vn

2
- v2)2

 b (vn
2
- v2)¢

s

s2
+ v2

+ (2zvnv) ¢
v

s2
+ v2

 a4 = -  

vn
2
- v2

(2zvn)2v2
+ (vn

2
- v2)2

 a3 = -  

vn
2
- v2

(2zvn)2v2
+ (vn

2
- v2)2

 a2 =

2zvnv
2

(2zvn)2v2
+ (vn

2
- v2)2

 a1 =
vn

2
- v2

(2zvn)2v2
+ (vn

2
- v2)2

a4a1, a2, a3,

F(s) =
F0

m
 ¢

a1s + a2

s2
+ v2

 +
a3s + a4

s2
+ 2zvns + vn

2

z =
c

22mk
vn = A

k

m

X(s) =
F0

m
 

s

s2
+ v2

 
1

s2
+ 2zvns + vn

2

F(s) = F0 

s

s2
+ v2

.f(t) = F0 cos vt

X(s) =

F(s)

m(s2
+ 2zvns + vn

2)

f(t) = F0 cos vt
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Using the relations 14, 15, 27 and 28 of Appendix D, the response of the system can be expressed as

(E.9)

where

(E.10)

It can be observed that as the terms involving in Eq. (E.9) approach zero. Thus the

steady-state response of the system can be expressed as

(E.11)

which can be simplified as

(E.12)

This solution can be seen to be seen as the one found in Section 3.4 [Eqs. (3.25), (3.28) and (3.29)].

*

3.14 Frequency Transfer Functions
As seen earlier, for example, in Section 3.4, the steady-state response of a linear system

subjected to a sinusoidal (or harmonic) input will also be sinusoidal (or harmonic) of the

same frequency. Although the response is at the same frequency as the input, it differs in

amplitude and phase angle from the input. These differences are functions of the frequency

(see Fig. 3.11). Also, as indicated in Section 1.10.2, any sinusoid can be represented as a

complex number (called phasor). The magnitude of the complex number is the amplitude

of the sinusoid, and the angle of the complex number is the phase angle of the sinusoid.

Thus, the input phasor, can be denoted in polar form as where the

frequency, is considered to be implicit.

Because a system causes both the amplitude and phase angle of the input to be

changed (see, for example, Section 3.4), we can think of representing the system itself by

a complex number or function defined such that the output phasor is given by the product

of the system function and the input phasor. For example, for the spring-mass-damper sys-

tem shown in Fig. 3.36(a), the input-output relation can be shown in the form of a block

diagram as in Fig. 3.36(b). Thus the steady-state output or response sinusoid of the system

can be denoted as

(3.120)Mo(v)eifo(v)
= Ms(v)eifs(v)Mi(v)eifi(v)

= Ms(v)Mi(v)ei5fs(v)+fi(v)6

v,
Mie

ifi,Mi sin(vt + fi),

x(t) =
F0

2c2v2
+ (k - mv2)2

 cos(vt - f)

x(t) =
F0

m
 

1

(2zvn)2
+ (vn

2
- v2)2

 [(vn
2
- v2) cos vt + 2zvnv sin vt]

e-zvn tt: q ,

f = tan-1 +
1 - z2

z
*

 -
(2zvn

2)

21 - z2
 e-zvn t sin(vn21 - z2 t)]

 +
(vn

2
- v2)

21 - z2
 e-zvnt sin(vn21 - z2 t - f)

 x(t) =
F0

m
 

1

(2zvn)2
+ (vn

2
- v2)2

 [(vn
2
- v2)cos vt + 2zvnv sin vt
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3.14 FREQUENCY TRANSFER FUNCTIONS 321

where M s denote the amplitudes and indicate the phase angles, respectively, of the

sinusoids. It can be seen from Eq. (3.120) that the system function, is

defined by its magnitude

(3.121)

and the phase by

(3.122)

The system function, is called the frequency-response function with 

being called the amplitude or magnitude frequency response and the phase-response

function of the system.

The frequency-response magnitude is given by the ratio of the output sinusoid s mag-

nitude to the input sinusoid s magnitude. The phase response is given by the difference in

phase angles between the output and the input sinusoids. Each of these responses is a func-

tion of frequency and will apply only to the steady-state sinusoidal responses of the sys-

tem. For convenience of notation, the frequency-response function is sometimes called the

frequency transfer function, denoted so that

(3.123)T(iv) = Ms(v)e
ifs(v)

T(iv),

fs(v)
Ms(v)Ms(v)e

ifs(v),

fs(v) = fo(v) - fi(v)

Ms(v) =

Mo(v)

Mi(v)

Ms(v)e
ifs(v),

f s

m

(a) Physical system

(b) Block diagram

x(t) + Mo cos (vt * fo) + Mo(v)eifo
(v)

f(t) + Mi cos (vt * fi) + Mi(v)eifi
(v)

k c

t
O

fi fo + fi * fs

Mi

Mi (v)eifi
(v) Mo(v)eifo

(v)
Ms(v)eifs

(v)

f(t)

Input Output

t
O

Mo + MiMs

x(t)

FIGURE 3.36
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3.14.1
Relation Between
the General
Transfer function
T(s) and the
Frequency
Transfer
Function T(iv)

The frequency transfer function, can be obtained by substituting in the gen-

eral transfer function T(s). The following example illustrates not only the generation of the

frequency transfer function from the general transfer function but also the identification of

the input, system, and output sinusoids.

s = ivT(iv),

E X A M P L E  3 . 1 7
Generation of Frequency Transfer Function from General Transfer Function

Generate the frequency transfer function from the general transfer function for a spring-mass-

damper system considered in Example 3.14 and identify the input, system, and output sinusoids.

Solution: For the spring-mass-damper system considered in Example 3.14, the general transfer

function is given by

(E.1)

Using the frequency transfer function of the system can be generated as

(E.2)

This frequency transfer function can be rewritten as

(E.3)

where

(E.4)

(E.5)

It can be seen that the amplitude or magnitude of is given by

(E.6)

and the phase angle by

(E.7)

It can be observed that Eq. (E.5) is identical to Eqs. (3.30) and (3.31). Thus the frequency transfer

function of the system, can be found from the general transfer function, T(s), by substitutingT(iv),

fs = tan-1
+

vc

mv2
- k

*

Ms(s) = T(iv) =
1

[(k - mv2)2
+ (vc)2]

1
2

T(iv)

 Mi(v) =
1

2(k - mv2)2
+ (vc)2

, fi(v) = tan-1 +
vc

k - mv2
*

 Mo(v) = 1, fo(v) = 0

T(iv) = Ms(v)eifs(v)
=

Mo(v)eifo(v)

Mi(v)eifi(v)

T(iv) =
1

k - mv2
+ ivc

s = iv,

T(s) =
1

ms2
+ cs + k
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3.14.2
Representation
of Frequency-
Response
Characteristics

The frequency response of a second-order system, such as the spring-mass-damper sys-

tem, denotes the steady-state response of the system to a sinusoidal input for different

possible frequencies of the sinusoidal input. It can be shown graphically in several ways.

In Section 3.4, the variations of the magnitude or amplitude ratio (M) and the phase angle

with frequency have been plotted as two separate graphs. For some systems, the

frequency will vary over a considerably large range. In such cases, it is desirable to use

logarithmic scales to accommodate the complete range of in graphs plotted on stan-

dard-size paper.

Bode Diagrams. A Bode diagram consists of two graphs graph of the logarithm of the

magnitude of the frequency transfer function (M) versus logarithm of the frequency 

and a graph of the phase angle versus logarithm of the frequency Bode diagrams

are also known as logarithmic plots of the frequency response.

As the standard representation of the logarithmic magnitude of a logarithmic

unit known as decibel, abbreviated dB, is used. The magnitude ratio in decibels, m, is

defined as

(3.124)

Number-Decibel Conversion Line. It can be seen from Eq. (3.124) that for any number

N, its decibel value is given by For some representative values of N, the decibel

equivalencies are shown below:

20 log10 N.

m = 10 log10 (M2) = 20 log10 M dB

T(iv),

(v).(f)
(v)

v

v

(v)(f)

Value of N 0.001 0.01 0.1 0.5 1

22

1 22 2 10 100 1000

dB Value -60 -40 -20 -6 -2 0 3 6 20 40 60

for s. Although this observation is made only for a damped single-degree-of-freedom (second-

order differential equation) system, it can be proved for any nth-order linear, time-invariant differen-

tial equation.

*

iv

The main advantages of representing the frequency-response characteristics in the form of

Bode diagram are the following:

1. The transfer function of a system can be identified (i.e., experimentally determined)

from the Bode diagram.

2. The frequency-response curves can be plotted over a wide range of the frequency,

3. In some applications, we need to multiply the magnitudes of the frequency

response. In such cases, the result can be obtained by a simple addition in Bode

diagrams.

v.
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Bode Diagrams of a Damped Single-Degree-of-Freedom System

Plot the Bode diagrams corresponding to a damped second-order (spring-mass-damper) system in

standard form with the transfer function

(E.1)

Solution: The frequency transfer function, can be obtained by substituting for s as

(E.2)

or

(E.3)

where The magnitude, M, of is given by

(E.4)

so that

(E.5)

Note that for low frequencies with or Eq. (E.5) reduces to

For very high frequencies with or Eq. (E.5) becomes

The phase angle given by Eq. (E.3) is

(E.6)

Equation (E.6) shows that is a function of and At When 

regardless of the value of , since

At the phase angle becomes The phase angle will be skew symmetric about the

inflection point, the point where 

The Bode diagrams of Eq. (E.5) and (E.6) are shown in Figs. 3.37(a) and (b), respectively.

f = -90°.
-180°.v = q ,

f = - tan-1 a
2z

0
b = - tan-1 q = -90°

z

v = vn, f = -90°v = 0, f = 0.z.vf

f =
1

1 - r2 + i2zr
= - tan-1

 

2zr

1 - r2

-20 log10 r2 = -40 log10 r dB

r W 1,v W vn

-20 log10 1 = 0 dB

r V 1,v V vn

20 log10 M = -  20 log10 2(1 - r2)2 + (2zr)2

M = T(iv = `
1

1 - r2 + i2zr
` =

1

2(1 - r2)2 + (2zr)2

T(iv)r = v/vn.

T(iv) =
1

1 - r2 + i2zr

T(iv) =
vn

2

(iv)2 + 2zvn(iv) + vn
2

 

ivT(iv),

T(s) =
vn

2

s2 + 2zvns + vn
2

E X A M P L E  3 . 1 8
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FIGURE 3.37 Bode diagrams.
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326 CHAPTER 3 HARMONICALLY EXCITED VIBRATION

3.15 Examples Using MATLAB

E X A M P L E  3 . 1 9
Total Response of an Undamped System

Using MATLAB, plot the response of a spring-mass system under a harmonic force for the fol-

lowing data:

Solution: The response of the system is given by Eq. (3.9), which can be rewritten as

(E.1)

where and v = 30 rad/s.f0 =
F0

m
=

100

5
= 20, vn =

A
k

m
= 20 rad/s,

x(t) =
x
#

0

vn
 sin vnt + +x0 -

f0

vn
2
- v

2
*cos vnt +

f0

vn
2
- v

2
 cos vt

m = 5 kg,  k = 2000 N/m,  F(t) = 100 cos 30t N,  x0 = 0.1 m,  x
#

0 = 0.1 m/s

*0.2
0.2

x
(t

)

0.4 0.6 0.8 1

t

1.2 1.4 1.6 1.8 20

*0.15

*0.1

*0.05

0

0.05

0.1

0.15

0.2
Example 3.19
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Equation (E.1) is plotted using the following MATLAB program:

% Ex3_19.m

F0 = 100;

wn = 20;

m = 5;

w = 30;

x0 = 0.1;

x0_dot = 0.1;

f_0 = F0/m;

for i = 1: 101

t(i) = 2 * (i 1)/100;

x(i) = x0_dot*sin(wn*t(i))/wn + (x0  f_0/(wn&and;2 w&and;2))*cos

(wn*t(i)).. + f_0/ (wn^2 w^2)*cos(w*t(i));

end

plot (t, x);

xlabel ('t');

ylabel ('x(t)');

title ('Ex3.11')

*

E X A M P L E  3 . 2 0
Forced Response of a System with Coulomb Damping

Using MATLAB, plot the forced response of a spring-mass system with Coulomb damping for the fol-

lowing data: 

Solution: The equation of motion of the system can be expressed as

(E.1)

which can be rewritten as a system of two first-order differential equations (using and

) as

(E.2)

with the initial conditions and The MATLAB solution of Eq. (E.2), using

ode23, is given next.

% Ex3_20.m

% This program will use the function dfunc3_20.m, they should

% be in the same folder

tspan  =  [0: 0.01: 4];

x0  =  [0.1; 0.1];

[t, x]  =  ode23 ('dfunc3_12', tspan, x0);

disp ('        t          x(t)      xd(t)');

disp ([t x]);

plot (t, x(:, 1));

xlabel ('t');

gtext ('x(t)');

title ('Ex3.12');

% dfunc3_12.m

function f = dfunc3_12 (t, x)

f = zeros (2, 1);

f(1) = x(2);

f(2) = 100*sin(30*t)/5  9.81*0.5*sign(x(2))  (2000/5)*x(1);

x2(0) = 0.1.x1(0) = 0.1

x
#

2 =
F0

m
 sin vt -

k

m
 x1 - mg sgn(x2)

x
#

1 = x2

x2 = x
#

x1 = x

mx
$
+ kx + mmg sgn(x

#
) = F0 sin vt

x
#

0 = 0.1 m/s.x0 = 0.1 m,F(t) = 100 sin 30t N,m = 0.5,k = 2000 N/m,m = 5 kg,
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328 CHAPTER 3 HARMONICALLY EXCITED VIBRATION

>> Ex3_12

t x(t) xd(t)

0 0.1000 0.1000

0.0100 0.0991 0.2427

0.0200 0.0954 0.4968

0.0300 0.0894 0.6818

0.0400 0.0819 0.8028

0.0500 0.0735 0.8704

.

.

.

3.9500 0.0196 0.9302

3.9600 0.0095 1.0726

3.9700 0.0016 1.1226

3.9800 0.0126 1.0709

3.9900 0.0226 0.9171

4.0000 0.0307 0.6704

E X A M P L E  3 . 2 1
Response of a System Under Base Excitation

Using MATLAB, find and plot the response of a viscously damped spring-mass system under the

base excitation for the following data: 

x
#

0 = 0.1 m/s.x0 = 0,v = 29.0887 rad/s,Y = 0.05 m,

z = 0.5,k = 4 * 105 N/m,m = 1200 kg,y(t) = Y sin vt

*0.1
0.5 1

x(t)

1.5 2 2.5

t

3 3.5 40

*0.05

0

0.05

0.1

0.15
Example 3.20

*
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Solution: The equation of motion, Eq. (3.64),

(E.1)

can be expressed as a system of two first-order ordinary differential equations (using and

) as

(E.2)

with and 

The MATLAB solution of Eq. (E.2), using ode23, is given below.

% Ex3_21.m

% This program will use the function dfunc3_21.m, they should

% be in the same folder

tspan = [0: 0.01: 2];

x0 = [0; 0.1];

[t, x] = ode23 ('dfunc3_13', tspan, x0);

disp ('      t          x(t)    xd(t)');

disp ([t x]);

plot (t, x (:, 1));

xlabel ('t');

gtext ('x(t)');

title ('Ex3.13');

(0.05) cos 29.0887t.

y
#
= (29.0887)c =  zcc =  2z2km =  2(0.5)2(4 * 105)(1200), y =  0.5 sin 29.0887t,

 x
#

2 = -  

c

m
 x2 -

k

m
 x1 +

k

m
 y +

c

m
 y
#

x
#

1 = x2

x2 = x
#

x1 = x

mx
$
+ cx

#
+ kx = ky + cy

#

*0.05
0.2 0.4

x(t)

0.6 0.8 1

t

1.2 1.6 20

*0.01

0

0.01

*0.02

*0.03

*0.04

0.02

0.03

0.04

0.05
Example 3.21

1.81.4
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% dfunc3_20.m

function f = dfunc3_20 (t, x)

f = zeros (2, 1);

f(1) = x(2);

f(2) = 400000*0.05*sin(29.0887*t)/1200 + ...

sqrt (400000*1200)*29.0887*0.05*cos(29.0887*t)/1200 ...

 sqrt(400000*1200)*x(2)/1200  (400000/1200)*x(1);

>> Ex3_13

t x(t) xd(t)

0 0 0.1000

0.0100 0.0022 0.3422

0.0200 0.0067 0.5553

0.0300 0.0131 0.7138

0.0400 0.0208 0.7984

0.0500 0.0288 0.7976

.

.

.

1.9500 0.0388 0.4997

1.9600 0.0322 0.8026

1.9700 0.0230 1.0380

1.9800 0.0118 1.1862

1.9900 0.0004 1.2348

2.0000 0.0126 1.1796

*

E X A M P L E  3 . 2 2
Steady-State Response of a Viscously Damped System

Develop a general-purpose MATLAB program, called Program3.m, to find the steady-state response

of a viscously damped single-degree-of-freedom system under the harmonic force or

Use the program to find and plot the response of a system with the following data:

Solution: Program3.m is developed to accept the following input data:

constant

constant

of the forcing function

frequency

of time steps in a cycle at which the response is to be computed

for cosine-type forcing function; 0 for sine-type forcing function

The program gives the following output:

The program also plots the variations of with time.

>> program3

Steady state response of an undamped

Single degree of freedom system under harmonic force

Given data

xm  =  5.00000000e+000

xc  =  2.00000000e+001

xk  =  5.00000000e+002

x, x
#

, and x
$

 

step number i, x(i), x
#

(i), x
$

(i)

ic = 1

n = number

om = forcing

f0 = amplitude

xk = spring

xc = damping

xm = mass

m = 5 kg, c = 20 N-s/m, k = 500 N/m, F0 = 250 N, v = 40 rad/s, n = 40, ic = 0.

F0 sin vt.

F0 cos vt
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f0  =  2.50000000e+002

om  =  4.00000000e+001

ic  =  0

n   =  20

Response:

i x(i) xd(i) xdd(i)

1 1.35282024e 002 1.21035472e+000 2.16451238e+001

2 2.22166075e 002 9.83897315e 001 3.55465721e+001

3 2.87302863e 002 6.61128738e 001 4.59684581e+001

4 3.24316314e 002 2.73643972e 001 5.18906102e+001

5 3.29583277e 002 1.40627096e 001 5.27333244e+001

6 3.02588184e 002 5.41132540e 001 4.84141094e+001

7 2.45973513e 002 8.88667916e 001 3.93557620e+001

8 1.65281129e 002 1.14921388e+000 2.64449806e+001

9 6.84098018e 003 1.29726626e+000 1.09455683e+001

10 3.51579846e 003 1.31833259e+000 5.62527754e+000

11 1.35284247e 002 1.21035075e+000 2.16454794e+001

12 2.22167882e 002 9.83890787e 001 3.55468612e+001

13 2.87304077e 002 6.61120295e 001 4.59686523e+001

14 3.24316817e 002 2.73634442e 001 5.18906907e+001

15 3.29583019e 002 1.40636781e 001 5.27332831e+001

16 3.02587190e 002 5.41141432e 001 4.84139504e+001

17 2.45971881e 002 8.88675144e 001 3.93555009e+001

18 1.65279018e 002 1.14921874e+000 2.64446429e+001

19 6.84074192e 003 1.29726827e+000 1.09451871e+001

20 3.51604059e 003 1.31833156e+000 5.62566494e+000

*100
0 0.02 0.04 0.06 0.08 0.1 0.12

xdd(t)

t

x
d
d
(
t)

0.14 0.16

*50

0

50

100

*0.04
0 0.02 0.04 0.06 0.08 0.1 0.12

x(t)

t

x
(
t)

0.14 0.16

*0.02

0

0.02

0.04

*2
0 0.02 0.04 0.06 0.08 0.1 0.12

xd(t)

x
d
(
t)

0.14 0.16

*1

0

1

2

*

M03_RAO8193_05_SE_C03.QXD  8/21/10  4:05 PM  Page 331



332 CHAPTER 3 HARMONICALLY EXCITED VIBRATION

CHAPTER SUMMARY

We considered the forced-vibration responses of undamped and viscously damped systems subjected to

harmonic excitations. The harmonic excitations are in the form of external force applied to the mass,

base motion and force exerted on the mass of the system by a rotating unbalanced mass. We also dis-

cussed the aspects of resonance, beats, magnification or amplitude ratio, phase angle, transient vibration,

and steady-state vibration. Finally, we studied application of the transfer-function approach, Laplace

transforms, and the frequency transfer function in finding the response of harmonically excited systems.

Now that you have finished this chapter, you should be able to answer the review questions and

solve the problems given below.
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REVIEW QUESTIONS 333

REVIEW QUESTIONS

3.1 Give brief answers to the following:

1. How are the amplitude, frequency, and phase of a steady-state vibration related to those

of the applied harmonic force for an undamped system?

2. Explain why a constant force on the vibrating mass has no effect on the steady-state

vibration.

3. Define the term magnification factor. How is the magnification factor related to the fre-

quency ratio?

4. What will be the frequency of the applied force with respect to the natural frequency of

the system if the magnification factor is less than unity?

5. What are the amplitude and the phase angle of the response of a viscously damped sys-

tem in the neighborhood of resonance?

6. Is the phase angle corresponding to the peak amplitude of a viscously damped system

ever larger than 90°?

7. Why is damping considered only in the neighborhood of resonance in most cases?

8. Show the various terms in the forced equation of motion of a viscously damped system in

a vector diagram.

9. What happens to the response of an undamped system at resonance?

10. Define the following terms: beating, quality factor, transmissibility, complex stiffness,

quadratic damping.

11. Give a physical explanation of why the magnification factor is nearly equal to 1 for small

values of r and is small for large values of r.

12. Will the force transmitted to the base of a spring-mounted machine decrease with the

addition of damping?

13. How does the force transmitted to the base change as the speed of the machine increases?

14. If a vehicle vibrates badly while moving on a uniformly bumpy road, will a change in the

speed improve the condition?

15. Is it possible to find the maximum amplitude of a damped forced vibration for any value

of r by equating the energy dissipated by damping to the work done by the external

force?

16. What assumptions are made about the motion of a forced vibration with nonviscous

damping in finding the amplitude?

17. Is it possible to find the approximate value of the amplitude of a damped forced vibration

without considering damping at all? If so, under what circumstances?

18. Is dry friction effective in limiting the reasonant amplitude?

19. How do you find the response of a viscously damped system under rotating unbalance?

20. What is the frequency of the response of a viscously damped system when the external

force is Is this response harmonic?

21. What is the difference between the peak amplitude and the resonant amplitude?

22. Why is viscous damping used in most cases rather than other types of damping?

23. What is self-excited vibration?

24. How is transfer function defined?

25. How can we generate the frequency transfer function from the general transfer function?

26. What is a Bode diagram?

27. How is decibel defined?

F0 sin vt?
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3.2 Indicate whether each of the following statements is true or false:

1. The magnification factor is the ratio of maximum amplitude and static deflection.

2. The response will be harmonic if excitation is harmonic.

3. The phase angle of the response depends on the system parameters m, c, k, and 

4. The phase angle of the response depends on the amplitude of the forcing function.

5. During beating, the amplitude of the response builds up and then diminishes in a regular

pattern.

6. The Q-factor can be used to estimate the damping in a system.

7. The half-power points denote the values of frequency ratio where the amplification factor

falls to where Q is the Q factor.

8. The amplitude ratio attains its maximum value at resonance in the case of viscous damp-

ing.

9. The response is always in phase with the harmonic forcing function in the case of hys-

teresis damping.

10. Damping reduces the amplitude ratio for all values of the forcing frequency.

11. The unbalance in a rotating machine causes vibration.

12. The steady-state solution can be assumed to be harmonic for small values of dry-friction

force.

13. In a system with rotational unbalance, the effect of damping becomes negligibly small at

higher speeds.

14. The transfer function is a property of the system and is not related to the input.

15. The transfer functions of several different systems can be same.

16. If the transfer function of a system is known, its can be found for all types of input.

3.3 Fill in each of the following blanks with the appropriate word:

1. The excitation can be _____, periodic, nonperiodic, or random in nature.

2. The response of a system to a harmonic excitation is called _____ response.

3. The response of a system to suddenly applied nonperiodic excitation is called _____

response.

4. When the frequency of excitation coincides with the natural frequency of the system, the

condition is known as _____.

5. The magnification factor is also known as _____ factor.

6. The phenomenon of _____ can occur when the forcing frequency is close to the natural

frequency of the system.

7. When the base of system is subject to harmonic motion with amplitude Y resulting in a

response amplitude X, the ratio is called the displacement _____.

8. is called the mechanical _____ of the system.

9. The difference between the frequencies associated with half-power points is called the

_____ of the system.

10. The value of the amplitude ratio at resonance is called _____ factor.

11. The dry-friction damping is also known as _____ damping.

12. For _____ values of dry-friction damping, the motion of the mass will be discontinuous.

13. The quantity in hysteresis damping is called _____ stiffness.

14. Quadratic or velocity-squared damping is present whenever a body moves in a _____

fluid flow.

15. In self-excited systems, the _____ itself produces the exciting force.

k(1 + ib)

Z(iv) = -mv2
+ ivc + k

X
Y

Q/12,

v.

M03_RAO8193_05_SE_C03.QXD  8/21/10  4:05 PM  Page 334



REVIEW QUESTIONS 335

16. The flutter of turbine blades is an example of _____ vibration.

17. The motion _____ and the system becomes unstable during self-excitation.

18. The transfer function approach is based on _____ transform.

19. _____ identifies the input, system, and output clearly.

20. The Laplace transform of f(t) is denoted as _____.

21. The Laplace transform converts a linear differential equation into an _____ expression.

3.4 Select the most appropriate answer out of the choices given:

1. The response of an undamped system under resonance will be

a. very large b. infinity c. zero

2. The reduction of the amplitude ratio in the presence of damping is very significant

a. near b. near c. near 

3. The frequency of beating is

a. b. c.

4. The energy dissipated in a cycle by dry-friction damping is given by

a. b. c.

5. The complex frequency response, is defined by

a. b. c.

6. The energy dissipated over the following duration is considered in finding the equivalent

viscous-damping constant of a system with Coulomb damping:

a. half cycle b. full cycle c. one second

7. The damping force depends on the frequency of the applied force in the case of

a. viscous-damping b. Coulomb damping c. hysteresis damping

8. The system governed by the equation is dynamically stable if

a. k is positive b. c and k are positive c. c is positive

9. Complex stiffness or complex damping is defined in the case of

a. hysteresis damping b. Coulomb damping c. viscous damping

10. The equation of motion of a machine (rotating at frequency ) of mass M, with an unbal-

anced mass m, at radius e, is given by

a. b.

c.

11. The force transmissibility of a system, subjected to base excitation (with amplitude Y)

resulting in a transmitted force is defined as

a. b. c.

3.5 Using the notation:

v1, v2 = frequencies corresponding to half-power points

z = damping ratio

vn = natural frequency

v = forcing frequency

r = frequency ratio =
v

vn

FT

k

X

kY

FT

kY

FT,

Mx
$
+ cx

#
+ kx = Mev2 sin vt

Mx
$
+ cx

#
+ kx = mev2 sin vtmx

$
+ cx

#
+ kx = mev2 sin vt

v

mx
$
+ cx

#
+ kx = 0

`

kX

F0
`

X

F0

kX

F0

H(iv),
4mNX24mN4mNX

vvnvn - v

v = qv = 0v = vn
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match the items in the two columns below:

1. Magnification factor of an undamped system a.

2. Period of beating b.

3. Magnification factor of a damped system c.

4. Damped frequency d.

5. Quality factor e.

6. Displacement transmissibility f.

3.6 Match the following equations of motion:

1. a. System with Coulomb damping

2. b. System with viscous damping

3. c. System subject to base excitation

4. d. System with hysteresis damping

5. e. System with rotating unbalancemx
$
+ cx

#
+ kx = F0 sin vt

mx
$
+ k(1 + ib)x = F0 sin vt

mx
$
+ kx ; mN = F(t)

Mx
$
+ cx

#
+ kx = mev2 sin vt

mz
$
+ cz

#
+ kz = -my

$

B
1

(1 - r2)2
+ (2zr)2

R

1/2

vn21 - z2

1

1 - r2

vn

v2 - v1

B

1 + (2zr)2

(1 - r2)2
+ (2zr)2

R

1/2

2p

vn - v

PROBLEMS

Section 3.3 Response of an Undamped System Under Harmonic Force

3.1 A weight of 50 N is suspended from a spring of stiffness 4000 N/m and is subjected to a har-

monic force of amplitude 60 N and frequency 6 Hz. Find (a) the extension of the spring due

to the suspended weight, (b) the static displacement of the spring due to the maximum

applied force, and (c) the amplitude of forced motion of the weight.

3.2 A spring-mass system is subjected to a harmonic force whose frequency is close to the nat-

ural frequency of the system. If the forcing frequency is 39.8 Hz and the natural frequency is

40.0 Hz, determine the period of beating.

3.3 Consider a spring-mass system, with and subject to a harmonic

force Find and plot the total response of the system under the follow-

ing initial conditions:

a.

b.

c. x0 = 0.1 m, x
#

0 = 10 m/s

x0 = 0, x
#

0 = 10 m/s

x0 = 0.1 m, x
#

0 = 0

F(t) = 400 cos 10t N.
m = 10 kg,k = 4000 N/m
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3.4 Consider a spring-mass system, with and subject to a harmonic

force Find and plot the total response of the system under the fol-

lowing initial conditions:

a.

b.

c.

3.5 Consider a spring-mass system, with and subject to a harmonic

force Find and plot the total response of the system under the fol-

lowing initial conditions:

a.

b.

c.

3.6 Consider a spring-mass system, with and subject to a harmonic

force Find and plot the total response of the system under the follow-

ing initial conditions:

a.

b.

c.

3.7 A spring-mass system consists of a mass weighing 100 N and a spring with a stiffness of

2000 N/m. The mass is subjected to resonance by a harmonic force 

Find the amplitude of the forced motion at the end of (a) cycle, (b) cycles, and (c) cycles.

3.8 A mass m is suspended from a spring of stiffness 4000 N/m and is subjected to a harmonic

force having an amplitude of 100 N and a frequency of 5 Hz. The amplitude of the forced

motion of the mass is observed to be 20 mm. Find the value of m.

3.9 A spring-mass system with and is subjected to a harmonic force

of amplitude 250 N and frequency If the maximum amplitude of the mass is observed to

be 100 mm, find the value of 

3.10 In Fig. 3.1(a), a periodic force is applied at a point on the spring that is

located at a distance of 25 percent of its length from the fixed support. Assuming that 

find the steady-state response of the mass m.

3.11 A spring-mass system, resting on an inclined plane, is subjected to a harmonic force as

shown in Fig. 3.38. Find the response of the system by assuming zero initial conditions.

3.12 The natural frequency of vibration of a person is found to be 5.2 Hz while standing on a hor-

izontal floor. Assuming damping to be negligible, determine the following:

a. If the weight of the person is 70 kg
f
, determine the equivalent stiffness of his body in the

vertical direction.

b. If the floor is subjected to a vertical harmonic vibration of frequency of 5.3 Hz and ampli-

tude of 0.1 m due to an unbalanced rotating machine operating on the floor, determine the

vertical displacement of the person.

c = 0,

F(t) = F0 cos vt

v.

v.

k = 5000 N/mm = 10 kg

5 
3
42 

1
2

1
4

F(t) = 25 cos vt N.

x0 = 0.1 m, x
#

0 = 10 m/s

x0 = 0, x
#

0 = 10 m/s

x0 = 0.1 m, x
#

0 = 0

F(t) = 400 cos 30t N.

m = 10 kg,k = 4000 N/m

x0 = 0.1 m, x
#

0 = 10 m/s

x0 = 0, x
#

0 = 10 m/s

x0 = 0.1 m, x
#

0 = 0

F(t) = 400 cos 20.1t N.

m = 10 kg,k = 4000 N/m

x0 = 0.1 m, x
#

0 = 10 m/s

x0 = 0, x
#

0 = 10 m/s

x0 = 0.1 m, x
#

0 = 0

F(t) = 400 cos 20t N.

m = 10 kg,k = 4000 N/m
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3.13 Plot the forced-vibration response of a spring-mass system given by Eq. (3.13) for the fol-

lowing sets of data:

a. Set 1: 

b. Set 2: 

c. Set 3: 

3.14 A spring-mass system is set to vibrate from zero initial conditions under a harmonic force.

The response is found to exhibit the phenomenon of beats with the period of beating equal to

0.5 s and the period of oscillation equal to 0.05 s. Find the natural frequency of the system

and the frequency of the harmonic force.

3.15 A spring-mass system, with and is subjected to a harmonic force

with Find the response of the system when is equal to (a) 2

rad/s, (b) 0.2 rad/s, and (c) 20 rad/s. Discuss the results.

3.16 An aircraft engine has a rotating unbalanced mass m at radius r. If the wing can be modeled

as a cantilever beam of uniform cross section as shown in Fig. 3.39(b), determine the

maximum deflection of the engine at a speed of N rpm. Assume damping and effect of the

wing between the engine and the free end to be negligible.

3.17 A three-bladed wind turbine (Fig. 3.40(a)) has a small unbalanced mass m located at a radius

r in the plane of the blades. The blades are located from the central vertical (y) axis at a dis-

tance R and rotate at an angular velocity of If the supporting truss can be modeled as a hol-

low steel shaft of outer diameter 0.1 m and inner diameter 0.08 m, determine the maximum

stresses developed at the base of the support (point A). The mass moment of inertia of the tur-

bine system about the vertical (y) axis is Assume 

and v = 31.416 rad/s.h = 8 m,J0 = 100 kg-m2,

r = 0.1 m,m = 0.1 kg,R = 0.5 m,J0.

v.

a * b,

vF0 = 10 N.f(t) = F0 cos vt

k = 400 N/m,m = 100 kg

dst = 0.1, v = 5.9, vn = 6, x0 = 0.1, x
#

0 = 0.5

dst = 0.1, v = 6.1, vn = 6, x0 = 0.1, x
#

0 = 0.5

dst = 0.1, v = 5, vn = 6, x0 = 0.1, x
#

0 = 0.5

m * 100 kg

u * 20+

k * 4,000 N/m

f(t) * F0 cos vt

FIGURE 3.38
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FIGURE 3.39
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FIGURE 3.40 Three-bladed wind turbine. (Photo courtesy of Power Transmission Design.)

M03_RAO8193_05_SE_C03.QXD  8/21/10  4:05 PM  Page 339



340 CHAPTER 3 HARMONICALLY EXCITED VIBRATION

Specimen
(stiffness, k2)

Spring
(stiffness, k1)

Armature
Magnets

FIGURE 3.41 Electromagnetic fatigue-testing machine.

3.18 An electromagnetic fatigue-testing machine is shown in Fig. 3.41 in which an alternating force

is applied to the specimen by passing an alternating current of frequency f through the arma-

ture. If the weight of the armature is 40 lb, the stiffness of the spring is 10,217.0296 lb/in,. 

and the stiffness of the steel specimen is lb/in., determine the frequency of the alter-

nating current that induces a stress in the specimen that is twice the amount generated by

the magnets.

75 * 104

(k1)

3.19 The spring actuator shown in Fig. 3.42 operates by using the air pressure from a pneumatic

controller (p) as input and providing an output displacement to a valve (x) proportional to the

input air pressure. The diaphragm, made of a fabric-base rubber, has an area A and deflects

under the input air pressure against a spring of stiffness k. Find the response of the valve

under a harmonically fluctuating input air pressure  for the following data: 

weight of and

weight of valve and valve 

3.20 In the cam-follower system shown in Fig. 3.43, the rotation of the cam imparts a vertical

motion to the follower. The pushrod, which acts as a spring, has been compressed by an

amount before assembly. Determine the following: (a) equation of motion of the follower,

including the gravitational force; (b) force exerted on the follower by the cam; and (c) condi-

tions under which the follower loses contact with the cam.

x0

rod = 20 lb.

spring = 15 lb,p0 = 10 psi, v = 8 rad/s, A = 100 in.2, k = 400 lb/in.,

p(t) = p0 sin vt
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e

R

G

O

v

Circular
cam

A

Follower, mass * m

Pushrod (A, E, l),
spring constant * k * AE

l

r B

l

FIGURE 3.43

Input
(air under pressure, p)

Diaphragm
(area, A)

Valve rod

Spring (stiffness, k)

Valve

Output air
(pressure
controlled
by motion
of valve)

x(t)

FIGURE 3.42 A spring actuator.   
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F(t) * F0 sin vt

l

b

Uniform rigid bar, mass m

M

k1

k2

a

O
u

FIGURE 3.44

3.21* Design a solid steel shaft supported in bearings which carries the rotor of a turbine at the

middle. The rotor weighs 500 lb and delivers a power of 200 hp at 3000 rpm. In order to keep

the stress due to the unbalance in the rotor small, the critical speed of the shaft is to be made

one-fifth of the operating speed of the rotor. The length of the shaft is to be made equal to at

least 30 times its diameter.

3.22 A hollow steel shaft, of length 100 in., outer diameter 4 in., and inner diameter 3.5 in., carries

the rotor of a turbine, weighing 500 lb, at the middle and is supported at the ends in bearings.

The clearance between the rotor and the stator is 0.5 in. The rotor has an eccentricity equiva-

lent to a weight of 0.5 lb at a radius of 2 in. A limit switch is installed to stop the rotor when-

ever the rotor touches the stator. If the rotor operates at resonance, how long will it take to

activate the limit switch? Assume the initial displacement and velocity of the rotor perpen-

dicular to the shaft to be zero.

3.23 A steel cantilever beam, carrying a weight of 0.1 lb at the free end, is used as a frequency

meter.7 The beam has a length of 10 in., width of 0.2 in., and thickness of 0.05 in. The inter-

nal friction is equivalent to a damping ratio of 0.01. When the fixed end of the beam is sub-

jected to a harmonic displacement the maximum tip displacement has

been observed to be 2.5 in. Find the forcing frequency.

3.24 Derive the equation of motion and find the steady-state response of the system shown in Fig. 3.44

for rotational motion about the hinge O for the following data: 

3.25 Derive the equation of motion and find the steady-state solution of the system shown in Fig. 3.45

for rotational motion about the hinge O for the following data: 

l = 1 m, m = 10 kg, M0 = 100 N-m, v = 1000 rpm.
k = 5000 N/m,

v = 1000 rpm.F0 = 500 N,m = 10 kg,M = 50 kg,l = 1 m,b = 0.5 m,a = 0.25 m,
k1 = k2 = 5000 N/m,

y(t) = 0.05 cos vt,

*The asterisk denotes a design-type problem or a problem with no unique answer.
7The use of cantilever beams as frequency meters is discussed in detail in Section 10.4.
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Section 3.4 Response of a Damped System under Harmonic Force

3.26 Consider a spring-mass-damper system with and 

Find the steady-state and total responses of the system under the harmonic force

and the initial conditions and 

3.27 Consider a spring-mass-damper system with and 

Find the steady-state and total responses of the system under the harmonic force

and the initial conditions and 

3.28 Consider a spring-mass-damper system with and 

Find the steady-state and total responses of the system under the harmonic force

and the initial conditions and 

3.29 Consider a spring-mass-damper system with and 

Find the steady-state and total responses of the system under the harmonic force

and the initial conditions and 

3.30 A four-cylinder automobile engine is to be supported on three shock mounts, as indicated in

Fig. 3.46. The engine-block assembly weighs 500 lb. If the unbalanced force generated by

the engine is given by 200 sin lb, design the three shock mounts (each of stiffness k

and viscous-damping constant c) such that the amplitude of vibration is less than 0.1 in.

3.31 The propeller of a ship, of weight N and polar mass moment of inertia is

connected to the engine through a hollow stepped steel propeller shaft, as shown in Fig. 3.47.

Assuming that water provides a viscous damping ratio of 0.1, determine the torsional vibra-

tory response of the propeller when the engine induces a harmonic angular displacement of

0.05 sin 314.16t rad at the base (point A) of the propeller shaft.

3.32 Find the frequency ratio at which the amplitude of a single-degree-of-freedom

damped system attains the maximum value. Also find the value of the maximum amplitude.

3.33 Figure 3.48 shows a permanent-magnet moving-coil ammeter. When current (I) flows through

the coil wound on the core, the core rotates by an angle proportional to the magnitude of the

current that is indicated by the pointer on a scale. The core, with the coil, has a mass moment of

inertia the torsional spring constant is and the torsional damper has a damping constantkt,J0,

r = v/vn

10,000 kg-m2,105

100 pt

x
#

0 = 10 m/s.x0 = 0F(t) = 200 cos 20t N

c = 40 N-s/m.k = 4000 N/m, m = 10 kg,

x
#

0 = 0.x0 = 0.1 mF(t) = 200 cos 20t N

c = 40 N-s/m.k = 4000 N/m, m = 10 kg,

x
#

0 = 10 m/s.x0 = 0F(t) = 200 cos 10t N

c = 40 N-s/m.k = 4000 N/m, m = 10 kg,

x
#

0 = 0.x0 = 0.1 mF(t) = 200 cos 10t N

c = 40 N-s/m.k = 4000 N/m, m = 10 kg,

M0 cos vt

3l
4

l

4

Uniform rigid bar,
mass mk k

O

u

FIGURE 3.45
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Piston

Connecting rod

Crank

Counterweights

Chassis

Shock mounts

Engine
block

FIGURE 3.46 Four-cylinder automobile engine.

of The scale of the ammeter is calibrated such that when a direct current of magnitude 1 ampere

is passed through the coil, the pointer indicates a current of 1 ampere. The meter has to be recali-

brated for measuring the magnitude of alternating current. Determine the steady-state value of the

current indicated by the pointer when an alternating current of magnitude 5 amperes and frequency

50 Hz is passed through the coil. Assume and

3.34 A spring-mass-damper system is subjected to a harmonic force. The amplitude is found to be

20 mm at resonance and 10 mm at a frequency 0.75 times the resonant frequency. Find the

damping ratio of the system.

3.35 For the system shown in Fig. 3.49, x and y denote, respectively, the absolute displacements

of the mass m and the end Q of the dashpot (a) Derive the equation of motion of the

mass m, (b) find the steady-state displacement of the mass m, and (c) find the force trans-

mitted to the support at P, when the end Q is subjected to the harmonic motion

y(t) = Y cos vt.

c1.

ct = 0.5 N-m-s/rad.

J0 = 0.001 N-m2
, kt = 62.5 N-m/rad,

ct.
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Torsional damper
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N S

Core

Coil

FIGURE 3.48 Permanent-magnet moving-coil ammeter.

Propeller Hollow stepped
propeller shaft

Water
(provides
damping)

Engine vibratory
disturbance 
(a0 cos vt)

(105 N)

20 m 30 m

0.2 m

0.4 m
0.6 m

Engine

0.4 m A

(a)

(b)

FIGURE 3.47 Propeller of a ship.
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P

c2
c1

k2 m

x(t)

Q

y(t) = Y cos vt

FIGURE 3.49

3.36 The equation of motion of a spring-mass-damper system subjected to a harmonic force can

be expressed as

(E.1)

where and 

i. Find the steady-state response of the system in the form 

ii. Find the total response of the system in the form

(E.2)

Assume the initial conditions of the system as and 

3.37 A video camera, of mass 2.0 kg, is mounted on the top of a bank building for surveillance.

The video camera is fixed at one end of a tubular aluminum rod whose other end is fixed to

the building as shown in Fig. 3.50. The wind-induced force acting on the video camera, f(t),

is found to be harmonic with N. Determine the cross-sectional

dimensions of the aluminum tube if the maximum amplitude of vibration of the video camera

is to be limited to 0.005 m.

f(t) = 25 cos 75.3984t

x
#
(t = 0) = x

#

0.x (t = 0) = x0

x(t) = xh(t) + xp(t) = A cos vdt + B sin vdt + C1 cos vt + C2 sin vt

xs(t) = C1 cos vt + C2 sin vt

z = c/(2mvn).f0 =
F0

m
, vn =

A
k

m
, and

x
$

+ 2zvnx
#
+ vn

2
= f0 cos vt

Video camera

0.5 m

Building

Tubular aluminum rod

F0 cos vt

FIGURE 3.50
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Turbine rotor, J0

M(t) * M0 cos vt

kt2kt1

u(t)

FIGURE 3.51

3.38 A turbine rotor is mounted on a stepped shaft that is fixed at both ends as shown in Fig. 3.51.

The torsional stiffnesses of the two segments of the shaft are given by 

and The turbine generates a harmonic torque given by

about the shaft axis with and The mass moment of inertia

of the rotor about the shaft axis is Assuming the equivalent torsional

damping constant of the system as determine the steady-state response

of the rotor, u(t).
ct = 2.5 N-m-s/rad,
J0 = 0.05 kg-m2.

v = 500 rad/s.M0 = 200 N-mvt
M(t) = M0 coskt2 = 4,000 N-m/rad.

kt1 = 3,000 N-m/rad

3.39 It is required to design an electromechanical system to achieve a natural frequency of 1000 Hz

and a Q factor of 1200. Determine the damping factor and the bandwidth of the system.

3.40 Show that, for small values of damping, the damping ratio can be expressed as

where and are the frequencies corresponding to the half-power points.

3.41 A torsional system consists of a disc of mass moment of inertia a torsional

damper of damping constant and a steel shaft of diameter 4 cm and

length 1 m (fixed at one end and attached to the disc at the other end). A steady angular oscil-

lation of amplitude 2° is observed when a harmonic torque of magnitude 1000 N-m is

applied to the disc. (a) Find the frequency of the applied torque, and (b) find the maximum

torque transmitted to the support.

3.42 For a vibrating system, and A harmonic force of

amplitude 180 N and frequency 3.5 Hz acts on the mass. If the initial displacement and

velocity of the mass are 15 mm and 5 m/s, find the complete solution representing the motion

of the mass.

3.43 The peak amplitude of a single-degree-of-freedom system, under a harmonic excitation, is

observed to be 0.2 in. If the undamped natural frequency of the system is 5 Hz, and the static

deflection of the mass under the maximum force is 0.1 in., (a) estimate the damping ratio of

the system, and (b) find the frequencies corresponding to the amplitudes at half power.

c = 45 N-s/m.m = 10 kg, k = 2500 N/m,

ct = 300 N-m-s/rad,
J0 = 10 kg-m2,

v2v1

z =
v2 - v1

v2 + v1

z
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m
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x(t)

y(t) Runway

(b)

(a)

Wheel

Mass of
aircraft, m

Housing with
strut and
viscous damping

FIGURE 3.52 Modeling of landing gear.

3.44 The landing gear of an airplane can be idealized as the spring-mass-damper system shown in

Fig. 3.52. If the runway surface is described determine the values of k and

c that limit the amplitude of vibration of the airplane (x) to 0.1 m. Assume 

and 

3.45 A precision grinding machine (Fig. 3.53) is supported on an isolator that has a stiffness of

1 MN/m and a viscous damping constant of 1 kN-s/m. The floor on which the machine is

mounted is subjected to a harmonic disturbance due to the operation of an unbalanced engine

in the vicinity of the grinding machine. Find the maximum acceptable displacement ampli-

tude of the floor if the resulting amplitude of vibration of the grinding wheel is to be

restricted to Assume that the grinding machine and the wheel are a rigid body of

weight 5000 N.

3.46 Derive the equation of motion and find the steady-state response of the system shown in Fig. 3.54

for rotational motion about the hinge O for the following data: 

l = 1 m, c = 1000 N-s/m, m = 10 kg, M0 = 100 N-m, v = 1000 rpm.
k = 5000 N/m,

10-6 m.

v = 157.08 rad/s.y0 = 0.2 m,
m = 2000 kg,

y(t) = y0 cos vt,
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l

2
l

4
l

4

Uniform
rigid bar,
mass mk kcM0 cos vt

O

u

FIGURE 3.54

3.47 An air compressor of mass 100 kg is mounted on an elastic foundation. It has been observed

that, when a harmonic force of amplitude 100 N is applied to the compressor, the maximum

steady-state displacement of 5 mm occurred at a frequency of 300 rpm. Determine the equiv-

alent stiffness and damping constant of the foundation.

3.48 Find the steady-state response of the system shown in Fig. 3.55 for the following data:

3.49 A uniform slender bar of mass mmay be supported in one of two ways as shown in Fig. 3.56.

Determine the arrangement that results in a reduced steady-state response of the bar under a

harmonic force, applied at the middle of the bar, as shown in the figure.F0 sin vt,

v = 20 rad/s.F0 = 50 N,

J0 = 1 kg-m2,r = 5 cm,m = 10 kg,c = 500 N-s/m,k2 = 500 N/m,k1 = 1000 N/m,

x(t)

Floor

Isolator

Grinding
machine

Grinding
wheel

= Y sin 200 pt m
y(t) = Y sin vt

FIGURE 3.53
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2r

r

O

k2

k1

m

c

x(t)

F0 sin vt

Pulley, mass moment of inertia J0

FIGURE 3.55

Section 3.5 Response of a Damped System Under F(t) = F
0
e

3.50 Derive the expression for the complex frequency response of an undamped torsional system.

3.51 A damped single-degree-of-freedom system, with parameters 

and is subjected to the harmonic force Find the

amplitude and phase angle of the steady-state response of the system using a graphical

method.

Section 3.6 Response of a System Under the Harmonic Motion of the Base

3.52 A single-story building frame is subjected to a harmonic ground acceleration, as shown in

Fig. 3.57. Find the steady-state motion of the floor (mass m).

f(t) = 100 cos 20t N.c = 2000 N-s/m,

m = 150 kg, k = 25 kN/m,

l

2
l

4
l

4

l

2
l

4
l

4

F0 sin vt F0 sin vt

Uniform bar,
mass m

G

Uniform bar,
mass m

G

(a) (b)

k k
c c

FIGURE 3.56
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3.53 Find the horizontal displacement of the floor (mass m) of the building frame shown in Fig. 3.57

when the ground acceleration is given by : Assume 

and 

3.54 If the ground in Fig. 3.57,  is subjected to a horizontal harmonic displacement with fre-

quency and amplitude find the amplitude of vibration of the

floor (mass m). Assume the mass of the floor as 2000 kg and the stiffness of the columns as

0.5 MN/m.

3.55 An automobile is modeled as a single-degree-of-freedom system vibrating in the vertical

direction. It is driven along a road whose elevation varies sinusoidally. The distance from

peak to trough is 0.2 m and the distance along the road between the peaks is 35 m. If the nat-

ural frequency of the automobile is 2 Hz and the damping ratio of the shock absorbers is

0.15, determine the amplitude of vibration of the automobile at a speed of 60 km/hour. If the

speed of the automobile is varied, find the most unfavorable speed for the passengers.

3.56 Derive Eq. (3.74).

3.57 A single-story building frame is modeled by a rigid floor of mass m and columns of stiffness

k, as shown in Fig. 3.58. It is proposed that a damper shown in the figure is attached to absorb

vibrations due to a horizontal ground motion Derive an expression for the

damping constant of the damper that absorbs maximum power.

3.58 A uniform bar of mass m is pivoted at point O and supported at the ends by two springs, as

shown in Fig. 3.59. End P of spring PQ is subjected to a sinusoidal displacement,

Find the steady-state angular displacement of the bar when 

and 

3.59 A uniform bar of mass m is pivoted at point O and supported at the ends by two springs, as

shown in Fig. 3.60. End P of spring PQ is subjected to a sinusoidal displacement,

Find the steady-state angular displacement of the bar when 

and v = 10 rad/s.k = 1000 N/m, c = 500 N-s/m, m = 10 kg, x0 = 1 cm,

l = 1 m,x(t) = x0 sin vt.

v = 10 rad/s.k = 1000 N/m, m = 10 kg, x0 = 1 cm,

l = 1 m,x(t) = x0 sin vt.

y(t) = Y cos vt.

Xg = 15 mm,v = 200 rad/s

(t = 0) = x (t = 0) = x
#

 (t = 0) = 0.xg(t = 0) = x
#

gv = 25 rad/s,k = 0.1 MN/m,

m = 2000 kg,x
$

g = 100 sin vt mm/sec

x(t)

k
2

k
2

x
..

g(t) = A cos vt

m

FIGURE 3.57

M03_RAO8193_05_SE_C03.QXD  8/21/10  4:05 PM  Page 351



352 CHAPTER 3 HARMONICALLY EXCITED VIBRATION

x(t)

k
2

k
2

y(t) = Y cos vt

c

 m

FIGURE 3.58
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x(t) = x0 sin vt
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l
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4
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bar, mass m

k kc

O

x(t) = x0 sin vt

Q

P

FIGURE 3.60
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Piston
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v

Belt

Rubber mounts

Motor

r

FIGURE 3.61

3.60 Find the frequency ratio, at which the displacement transmissibility given by

Eq. (3.68) attains a maximum value.

3.61 An automobile, weighing 1000 lb empty and 3000 lb fully loaded, vibrates in a vertical

direction while traveling at 55 mph on a rough road having a sinusoidal waveform with an

amplitude Y ft and a period 12 ft. Assuming that the automobile can be modeled as a

single-degree-of-freedom system with stiffness 30,000 lb/ft and damping ratio 

determine the amplitude of vibration of the automobile when it is (a) empty and (b) fully

loaded.

3.62 The base of a damped spring-mass system, with and is subjected

to a harmonic excitation The amplitude of the mass is found to be 0.05 m

when the base is excited at the natural frequency of the system with Determine

the damping constant of the system.

Section 3.7 Response of a Damped System Under Rotating Unbalance

3.63 A single-cylinder air compressor of mass 100 kg is mounted on rubber mounts, as shown in

Fig. 3.61. The stiffness and damping constants of the rubber mounts are given by 

and 2000 N-s/m, respectively. If the unbalance of the compressor is equivalent to a mass

0.1 kg located at the end of the crank (point A), determine the response of the compressor at

a crank speed of 3000 rpm. Assume and l = 40 cm.r = 10 cm

10
6
 N/m

Y0 = 0.01 m.

y(t) = Y0 cos vt.

k = 2500 N/m,m = 25 kg

z = 0.2,

r = rm,
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A

B

e

m

Tail section, EI

Tail rotor blades

FIGURE 3.62

3.64 One of the tail rotor blades of a helicopter has an unbalanced mass of at a dis-

tance of from the axis of rotation, as shown in Fig. 3.62. The tail section has a

length of 4 m, a mass of 240 kg, a flexural stiffness (EI) of 2.5 and a damping ratio

of 0.15. The mass of the tail rotor blades, including their drive system, is 20 kg. Determine

the forced response of the tail section when the blades rotate at 1500 rpm.

MN-m2,

e = 0.15 m

m = 0.5 kg

F0

l

2

l

2

vt

FIGURE 3.63

3.65 When an exhaust fan of mass 380 kg is supported on springs with negligible damping, the

resulting static deflection is found to be 45 mm. If the fan has a rotating unbalance of

0.15 kg-m, find (a) the amplitude of vibration at 1750 rpm, and (b) the force transmitted to

the ground at this speed.

3.66 A fixed-fixed steel beam, of length 5 m, width 0.5 m, and thickness 0.1 m, carries an electric

motor of mass 75 kg and speed 1200 rpm at its mid-span, as shown in Fig. 3.63. A rotating

force of magnitude is developed due to the unbalance in the rotor of the motor.

Find the amplitude of steady-state vibrations by disregarding the mass of the beam. What

will be the amplitude if the mass of the beam is considered?

F0 = 5000 N
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3.67 If the electric motor of Problem 3.66 is to be mounted at the free end of a steel cantilever

beam of length 5 m (Fig. 3.64), and the amplitude of vibration is to be limited to 0.5 cm, find

the necessary cross-sectional dimensions of the beam. Include the weight of the beam in the

computations.

F
0

vt

l

FIGURE 3.64

3.68 A centrifugal pump, weighing 600 N and operating at 1000 rpm, is mounted on six springs of

stiffness 6000 N/m each. Find the maximum permissible unbalance in order to limit the

steady-state deflection to 5 mm peak-to-peak.

3.69* An air compressor, weighing 1000 lb and operating at 1500 rpm, is to be mounted on a suit-

able isolator. A helical spring with a stiffness of 45,000 lb/in., another helical spring with a

stiffness of 15,000 lb/in., and a shock absorber with a damping ratio of 0.15 are available for

use. Select the best possible isolation system for the compressor.

3.70 A variable-speed electric motor, having an unbalance, is mounted on an isolator. As the

speed of the motor is increased from zero, the amplitudes of vibration of the motor are

observed to be 0.55 in. at resonance and 0.15 in. beyond resonance. Find the damping ratio

of the isolator.

3.71 An electric motor weighing 750 lb and running at 1800 rpm is supported on four steel helical

springs, each having eight active coils with a wire diameter of 0.25 in. and a coil diameter of

3 in. The rotor has a weight of 100 lb with its center of mass located at a distance of 0.01 in.

from the axis of rotation. Find the amplitude of vibration of the motor and the force trans-

mitted through the springs to the base.

3.72 A small exhaust fan, rotating at 1500 rpm, is mounted on a 0.2-in. steel shaft. The rotor of the

fan weighs 30 lb and has an eccentricity of 0.01 in. from the axis of rotation. Find (a) the

maximum force transmitted to the bearings, and (b) the horsepower needed to drive the shaft.

3.73 Derive Eq. (3.84) for the force transmitted to the foundation due to rotating unbalance.

3.74 A rigid plate, weighing 100 lb, is hinged along an edge (P) and is supported on a dashpot

with at the opposite edge (Q), as shown in Fig. 3.65. A small fan weighing

50 lb and rotating at 750 rpm is mounted on the plate through a spring with If

the center of gravity of the fan is located at 0.1 in. from its axis of rotation, find the steady-

state motion of the edge Q and the force transmitted to the point S.

k = 200 lb/in.

c = 1 lb-sec/in.
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k
R

S

P

Q

c

C.G.

5 * 15 * 20 *

FIGURE 3.65

3.75 An electric motor is mounted at the end of a cantilever beam. The beam is observed to deflect

by 0.02 m when the motor runs at a speed of 1500 rpm. By neglecting the mass and damping

of the beam, determine the speed of the motor so that the dynamic amplification is less than

10% about the static equilibrium value.

3.76 An air compressor of mass 50 kg is mounted on an elastic support and operates at a speed of

1000 rpm. It has an unbalanced mass of 2 kg at a radial distance (eccentricity) of 0.1 m from

the axis of rotation. If the damping factor of the elastic support is determine the

following: (a) the spring constant of the elastic support which transmits no more than 25% of

the unbalanced force to the foundation, and (b) the magnitude of the force transmitted to the

foundation.

3.77 A turbine rotor of mass 200 kg has an unbalanced mass of 15 kg. It is supported on a foun-

dation which has an equivalent stiffness of 5,000 N/m and a damping ratio of If the

rotor is found to vibrate with a deflection of 0.1 m at resonance, determine: (a) the radial

location (eccentricity) of the unbalanced mass, (b) the additional mass to be added (uni-

formly) to the rotor if the deflection of the rotor at resonance is to be reduced to 0.05 m, and

(c) the peak deflection of the turbine when the frequency ratio (r) varies.

Section 3.8 Forced Vibration with Coulomb Damping

3.78 Derive Eq. (3.99).

3.79 Derive the equation of motion of the mass m shown in Fig. 3.66 when the pressure in the

cylinder fluctuates sinusoidally. The two springs with stiffnesses are initially under a ten-

sion of and the coefficient of friction between the mass and the contacting surfaces is 

3.80 The mass of a spring-mass system, with and vibrates on a hori-

zontal surface under a harmonic force of magnitude 200 N and frequency 20 Hz. Find the

resulting amplitude of steady-state vibration. Assume the coefficient of friction between the

mass and the horizontal surface as 0.25.

k = 25 kN/m,m = 15 kg

m.T0,

k1

z = 0.05.

z = 0.1,
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3.81 A spring-mass system with and vibrates on a horizontal surface

with coefficient of friction Under a harmonic force of frequency 8 Hz, the steady-

state vibration of the mass is found to be 0.2 m. Determine the equivalent viscous-damping

constant of the system.

3.82 A spring-mass system is subjected to Coulomb damping. When a harmonic force of amplitude

120 N and frequency 2.5173268 Hz is applied, the system is found to oscillate with an ampli-

tude of 75 mm. Determine the coefficient of dry friction if and 

Section 3.9 Forced Vibration with Hysteresis Damping

3.83 A load of 5000 N resulted in a static displacement of 0.05 m in a composite structure. A har-

monic force of amplitude 1000 N is found to cause a resonant amplitude of 0.1 m. Find

(a) the hysteresis-damping constant of the structure, (b) the energy dissipated per cycle at

resonance, (c) the steady-state amplitude at one-quarter of the resonant frequency, and (d) the

steady-state amplitude at thrice the resonant frequency.

3.84 The energy dissipated in hysteresis damping per cycle under harmonic excitation can be

expressed in the general form

(E.1)

where is an exponent ( was considered in Eq. (2.150)), and is a coefficient of

dimension A spring-mass system having vibrates under hysteresis

damping. When excited harmonically at resonance, the steady-state amplitude is found to be 40

mm for an energy input of 3.8 N-m. When the resonant energy input is increased to 9.5 N-m,

the amplitude is found to be 60 mm. Determine the values of and in Eq. (E.1).

Section 3.10 Forced Motion with Other Types of Damping

3.85 When a spring-mass-damper system is subjected to a harmonic force 

the resulting displacement is given by in. Find the work done

(a) during the first second, and (b) during the first 4 seconds.

x(t) = 0.5 cos (3pt - p/3)
F(t) = 5 cos 3pt lb,

gb

k = 60 kN/m(meter)2-g
bg = 2g

¢W = pbkXg

k = 2100 N/m.m = 2 kg

m = 0.3.
k = 10 kN/mm = 25 kg

k1

k1

k2

T0

T0

x(t)

x(t)m
p(t) *

p0 sin vt

l

l

m

m

FIGURE 3.66
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l

v

FIGURE 3.67

3.86 Find the equivalent viscous-damping coefficient of a damper that offers a damping force of

where c and n are constants and is the relative velocity across the damper.

Also, find the amplitude of vibration.

3.87 Show that for a system with both viscous and Coulomb damping the approximate value of

the steady-state amplitude is given by

3.88 The equation of motion of a spring-mass-damper system is given by

Derive expressions for (a) the equivalent viscous-damping constant, (b) the steady-state

amplitude, and (c) the amplitude ratio at resonance.

Section 3.11 Self-Excitation and Stability Analysis

3.89 A fluid, with density flows through a cantilevered steel pipe of length l and cross-sectional

area A (Fig. 3.67). Determine the velocity (v) of the fluid at which instability occurs. Assume

that the total mass and the bending stiffness of the pipe are m and EI, respectively.

r,

mx
$ 
; mN + cx

# 3
+ kx = F0 cos vt

X2[k2(1 - r2)2
+ c2

v
2] + X 

8mNcv

p
+ +

16m2N2

p
2

- F0
2
* = 0

x
#

Fd = c(x
#
)n,

3.90 The first two natural frequencies of the telescoping car antenna shown in Fig. 3.68 are given

by 3.0 Hz and 7.0 Hz. Determine whether the vortex shedding around the antenna causes

instability over the speed range 50 75 mph of the automobile.

3.91 The signpost of a fast food restaurant consists of a hollow steel cylinder of height h, inside

diameter d, and outside diameter D, fixed to the ground and carries a concentrated mass M at

the top. It can be modeled as a single-degree-of-freedom spring-mass-damper system with an

equivalent viscous-damping ratio of 0.1 for analyzing its transverse vibration characteristics

under wind excitation. Determine the following: (a) the natural frequency of transverse

vibration of the signpost; (b) the wind velocity at which the signpost undergoes maximum

steady-state displacement; and (c) the maximum wind-induced steady-state displacement of

the signpost. Data: h = 10 m, D = 25 cm, d = 20 cm, M = 200 kg.
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3.92 Consider the equation of motion of a single-degree-of-freedom system:

Derive the condition that leads to divergent oscillations in each of the following cases: (a)

when the forcing function is proportional to the displacement, (b) when the

forcing function is proportional to the velocity, and (c) when the forcing

function is proportional to the acceleration, 

Section 3.12 Transfer-Function Approach

3.93 Derive the transfer function of a viscously damped system subject to a harmonic base

motion, with the equation of motion:

where 

3.94 Derive the transfer function of a viscously damped system under rotating unbalance, with the

equation of motion:

Section 3.13 Solutions Using Laplace Transforms

3.95 Find the steady-state response of a damped single-degree-of-freedom system subjected to a

harmonic base motion, considered in Section 3.6, using Laplace transform.

3.96 Find the steady-state response of a damped single-degree-of-freedom system under rotating

unbalance, considered in Section 3.7, using Laplace transform.

3.97 Find the steady-state response of an undamped single-degree-of-freedom system subjected

to a harmonic force, considered in Section 3.3, using Laplace transform.

3.98 A spring and a viscous damper, connected to a massless rigid bar, are subjected to a har-

monic force f(t) as shown in Fig. 3.69. Find the steady-state response of the system using

Laplace transform.

Mx
$

+ cx
#
+ kx = mev2 sin vt

y(t) = Y sin vt.

mx
$

+ c(x
#
- y

#
) + k(x - y) = 0

F(t) = F0x
$
(t).

F(t) = F0x
#
(t);
F(t) = F0x(t);

mx
$
+ cx

#
+ kx = F

6*

6*

6*

0.1*

0.2*

0.3*

FIGURE 3.68
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x(t)F * 200 N

k c

FIGURE 3.69

3.99 Derive Eqs. (E.4) (E.7) in Example 3.16.

3.100 An experiment is conducted to find the dynamic response characteristics of an automobile

wheel assembly system. For this, the wheel is connected to a shaft through a tie rod and is sub-

jected to a harmonic force f(t) as shown in Fig. 3.70. The shaft offers a torsional stiffness of 

while the wheel undergoes torsional vibration about the axis of the shaft. Find the response of

the system, using Laplace transform. Assume the initial conditions to be zero.

Section 3.14 Frequency Transfer Functions 

3.101 Generate the frequency transfer function from the general transfer function derived for a vis-

cously damped system subject to a harmonic base motion considered in Problem 3.93 and

identify the input, system, and output sinusoids.

3.102 Generate the frequency transfer function from the general transfer function derived for a vis-

cously damped system under rotating unbalance considered in Problem 3.94 and identify the

input, system, and output sinusoids.

Section 3.15 Examples Using MATLAB

3.103 Plot the forced response of an undamped spring-mass system under the following conditions

using MATLAB: 

3.104 Plot the forced response of a spring-mass system subject to Coulomb damping using MAT-

LAB. Assume the following data: 

3.105 Plot the response of a viscously damped system under harmonic base excitation, 

using MATLAB for the following data: 

3.106 Plot the steady-state response of a viscously damped system under the harmonic force

using MATLAB. Assume the following data: 

z = 0.1, F0 = 100 N, v = 20 rad/s.

k = 1000 N/m,m = 10 kg,F(t) = F0 cos vt

x
#

0 = 0.x0 = 1 m,v = 10 rad/s,z = 0.25, Y = 0.05 m,

k = 4 * 104 N/m,m = 100 kg, =  Y sin vt m,

y(t)

x
#

0 = 10 m/s.x0 = 0.1 m,m = 0.3,

F(t) = 200 sin 10t N,k = 4000 N/m,m = 10 kg,

x
#

0 = 10 m/s.

x0 = 0.1 m,F(t) = 200 cos 10t N,k = 4000 N/m,m = 10 kg,

u(t),

k t
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3.107 Consider an automobile traveling over a rough road at a speed of v km/hr. The suspension

system has a spring constant of 40 kN/m and a damping ratio of The road surface

varies sinusoidally with an amplitude of and a wavelength of 6 m. Write a MATLAB

program to find the displacement amplitude of the automobile for the following conditions:

(a) mass of the (empty), 1000 kg (loaded), (b) velocity of the automo-

bile (v) = 10 km/hr, 50 km/hr, 100 km/hr.

3.108 Write a computer program for finding the total response of a spring-mass-viscous-damper

system subjected to base excitation. Use this program to find the solution of a problem with

and 

3.109 Plot the graphs of versus r and versus r for a damped system under rotating unbalance 

(Eqs. (3.81)) for the damping ratios and 1 using MATLAB.

3.110 Plot the graphs of versus r and versus r for a damped system subjected to base excitation 

(Eqs. (3.68) and (3.69)) for the damping ratios and 1 using MATLAB.z = 0, 0.2, 0.4, 0.6, 0.8

f
X

Y

z = 0, 0.2, 0.4, 0.6, 0.8

f
MX

m e

x
#

0 = 5 m/s.m = 2 kg, c = 10 N-s/m, k = 100 N/m, y(t) = 0.1 sin 25t m, x0 = 10 mm,

automobile = 600 kg

Y = 0.05 m

z = 0.1.

Shaft, diameter: 0.05 m

1 m

Tie rod

Wheel

f(t) * 500 sin 30t N

0.25 m

u(t)

FIGURE 3.70
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DESIGN PROJECTS

3.111 The arrangement shown in Fig. 3.71 consists of two eccentric masses rotating in opposite

directions at the same speed It is to be used as a mechanical shaker over the frequency

range 20 to 30 Hz. Find the values of e, M, m, k, and c to satisfy the following require-

ments: (a) The mean power output of the shaker should be at least 1 hp over the specified fre-

quency range. (b) The amplitude of vibration of the masses should be between 0.1 and 0.2 in.

(c) The mass of the shaker (M) should be at least 50 times that of the eccentric mass (m).

3.112 Design a minimum-weight, hollow circular steel column for the water tank shown in Fig.

3.72. The weight of the tank (W) is 100,000 lb and the height is 50 ft. The stress induced in

the column should not exceed the yield strength of the material, which is 30,000 psi, when

subjected to a harmonic ground acceleration (due to an earthquake) of amplitude 0.5 g and

frequency 15 Hz. In addition, the natural frequency of the water tank should be greater than

15 Hz. Assume a damping ratio of 0.15 for the column.

v,

v.

W

x(t)

D

d l

y(t)

FIGURE 3.72
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FIGURE 3.71
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Jean Baptiste Joseph Fourier (1768 1830) was a French mathematician and a
professor at the Ecole Polytechnique in Paris. His works on heat flow, published
in 1822, and on trigonometric series are well known. The expansion of a periodic
function in terms of harmonic functions has been named after him as the
Fourier series.

(Reproduced with permission from Applied Mechanics Reviews.)
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Vibration Under
General Forcing
Conditions

363

Chapter Outline

This chapter is devoted to the vibration response of a single-degree-of-freedom system

under arbitrary forcing conditions. The response of the system under a general periodic

force is presented by first expanding the periodic force into a series of harmonic forces

using Fourier series and then superposing the responses due to the individual harmonic

forces. The response of the system under a nonperiodic force is presented using two
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364 CHAPTER 4 VIBRATION UNDER GENERAL FORCING CONDITIONS

methods those of convolution integral and of Laplace transform. The method of convolu-

tion or Duhamel integral makes use of the impulse response function of the system. The

method is also used to find the response to base excitation. Several examples are presented to

illustrate its use. The concept of response spectra corresponding to specific forcing func-

tions and their use in finding the maximum response of the system is also outlined. The

response spectrum corresponding to the base excitation, such as the one caused by an

earthquake, is also considered. Typical earthquake response spectra and their use in finding

the responses of building frames are illustrated. The concept of pseudo velocity and the

associated pseudo spectrum are also defined. The design of mechanical systems under a

shock environment is presented with an illustrative example. The Laplace transform

method and its use in finding the response of both first- and second-order systems are pre-

sented. The responses under impulse, step, and ramp forcing functions are considered.

Inelastic and elastic collision problems are considered as applications of impulse response

computations. The analysis of the step response and the description of transient response in

terms of peak time, rise time, maximum overshoot, settling time, and delay time are pre-

sented. The response of systems under irregular forcing conditions using numerical meth-

ods, including the fourth-order Runge-Kutta method, is presented with illustrative

examples. Finally the use of MATLAB programs in finding the response of a system under

arbitrary forcing functions is illustrated with examples.

Learning Objectives

After completing this chapter, you should be able to do the following:

* Find the responses of single-degree-of-freedom systems subjected to general periodic

forces using Fourier series.

* Use the method of convolution or Duhamel integral to solve vibration problems of

systems subjected to arbitrary forces.

* Find the response of systems subjected to earthquakes using response spectra.

* Solve undamped and damped systems subjected to arbitrary forces, including

impulse, step, and ramp forces, using Laplace transform.

* Understand the characteristics of transient response, such as peak time, overshoot,

settling time, rise time, and decay time, and procedures for their estimation.

* Apply numerical methods to solve vibration problems of systems subjected to forces

that are described numerically.

* Solve forced-vibration problems using MATLAB.

4.1 Introduction

In Chapter 3, we considered the response of single-degree-of-freedom systems subjected to

harmonic excitation. However, many practical systems are subjected to several types of

forcing functions that are not harmonic. The general forcing functions may be periodic

(nonharmonic) or nonperiodic. The nonperiodic forces include forces such as a suddenly

applied constant force (called a step force), a linearly increasing force (called a ramp force),

and an exponentially varying force. A nonperiodic forcing function may be acting for a
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4.2 RESPONSE UNDER A GENERAL PERIODIC FORCE 365

short, long, or infinite duration. A forcing function or excitation of short duration compared

to the natural time period of the system is called a shock. Examples of general forcing func-

tions are the motion imparted by a cam to the follower, the vibration felt by an instrument

when its package is dropped from a height, the force applied to the foundation of a forging

press, the motion of an automobile when it hits a pothole, and the ground vibration of a

building frame during an earthquake.

If the forcing function is periodic but not harmonic, it can be replaced by a sum of har-

monic functions using the harmonic analysis procedure discussed in Section 1.11. Using

the principle of superposition, the response of the system can then be determined by super-

posing the responses due to the individual harmonic forcing functions.

The response of a system subjected to any type of nonperiodic force is commonly

found using the following methods:

1. Convolution integral.

2. Laplace transform.

3. Numerical methods.

The first two methods are analytical ones, in which the response or solution is expressed in

a way that helps in studying the behavior of the system under the applied force with respect

to various parameters and in designing the system. The third method, on the other hand,

can be used to find the response of a system under any arbitrary force for which an analyt-

ical solution is difficult or impossible to find. However, the solution found is applicable

only for the particular set of parameter values used in finding the solution. This makes it

difficult to study the behavior of the system when the parameters are varied. This chapter

presents all three methods of solution.

4.2 Response Under a General Periodic Force
When the external force F(t) is periodic with period it can be expanded in a

Fourier series (see Section 1.11):

(4.1)

where

(4.2)

and

(4.3)

The response of systems under general periodic forces is considered in this section for both

first- and second-order systems. First-order systems are those for which the equation of

bj =
2

tL

t

0

F(t) sin jv t dt,  j = 1, 2, Á

aj =
2

tL

t

0

F(t) cos jv t dt,  j = 0, 1, 2, Á

F(t) =
a0

2
+ a

q

j=1

 aj cos jv t + a
q

j=1

 bj sin jv t

t = 2p/v,
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Damper (ct)

Rotor (J)

v(t) T(t)

(c)

Jv * ctv + T(t)
.

k
c

(b)

F(t)

Rigid bar
(no mass)

x(t)

cx * kx + f(t)
.

c

(a)

k

A

B

y(t)

x(t)

Rigid bar
(no mass)

Rigid bar
(no mass)

cx * kx + ky(t)
.

FIGURE 4.1 Examples of first-order systems.

motion is a first-order differential equation. Similarly, second-order systems are those for

which the equation of motion is a second-order differential equation. Typical examples of

first- and second-order systems are shown in Figs. 4.1 and 4.2, respectively.

4.2.1
First-Order
Systems

Consider a spring-damper system subjected to a periodic excitation as shown in Fig.

4.1(a). The equation of motion of the system is given by

(4.4)

where y(t) is the periodic motion (or excitation) imparted to the system at point A (for

example, by a cam). If the periodic displacement of point A, y(t), is expressed in Fourier

series as indicated by the right-hand side of Eq. (4.1), the equation of motion of the system

can be expressed as

(4.5)x
#
+ ax = ay = A0 + a

q

j=1

Aj   

sin vjt + a

q

j=1

Bj cos vj 

t

cx
#
+ k(x - y) = 0
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4.2 RESPONSE UNDER A GENERAL PERIODIC FORCE 367

where

(4.6)

The solution of Eq. (4.5) is presented in Example 4.1.

a =
k

c
,      A0 =

aa0

2
,      Aj = aaj,      Bj = abj,      vj = jv,      j = 1, 2, 3,Á

E X A M P L E  4 . 1

m

k
c

(a) (b)

(c)

m

k

c

Rigid bar
(no mass)

Torsional spring
(kt)Torsional damper

(ct)
Rotor (J)

T(t)
u(t)

f(t)

x(t)
y(t)

x(t)

mx * cx * kx + f(t)
.. .

mx * cx * kx + ky(t)
.. .

Ju * ctu * ktu + T(t)
.. .

FIGURE 4.2 Examples of second-order systems.

Response of a First-Order System under Periodic Force

Find the response of the spring-damper system shown in Fig. 4.1(a) subjected to a periodic force

with the equation of motion given by Eq. (4.5).

Solution: It can be seen that the right-hand side of the equation of motion, Eq. (4.5), is a constant

plus a linear sum of harmonic (sine and cosine) functions. Using the principle of superposition, the

steady-state solution of Eq. (4.5) can be found by summing the steady-state solutions corresponding

to the individual forcing terms on the right-hand side of Eq. (4.5).
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368 CHAPTER 4 VIBRATION UNDER GENERAL FORCING CONDITIONS

The equation of motion corresponding to the constant force can be expressed, using for x, as

(E.1)

The solution of Eq. (E.1) is given by (can be verified by substituting in Eq. (E.1)):

(E.2)

The equation of motion under the force can be expressed as

(E.3)

in which the steady-state solution of Eq. (E.3) can be assumed in the form

(E.4)

where the magnitude and the phase angle denote the unknown constants to be determined. The

solution in Eq. (E.4) can be expressed as the imaginary part of the following solution in complex form:

(E.5)

where denotes the complex number:

(E.6)

Noting that the time derivative of is given by

(E.7)

Eq. (E.3) can be expressed with the forcing term in complex form (with the understanding that we

are interested only in the imaginary part of the solution):

(E.8)

By inserting Eqs. (E.5) and (E.7) into Eq. (E.8), we obtain

(E.9)

Since Eq. (E.9) can be reduced to

(E.10)

or

(E.11)Uj =

Aj

a + ivj

ivjUj + aUj = Aj

ei vj  

t
Z 0,

ivjUjeivjt + aUjeivj t = Ajeivj t

x
#

j + axj = Ajei vj 
t
= Aj(cos vj 

t + i sin vj 
t)

x
#

j(t) = ivj 
Ujei vj 

t

xj(t)

Uj = Xje
-i fj

Uj

xj(t) = Im:Xje
i(vj t-fj)

; = Xjei vj 
te-i fj = Ujei vj 

t

fjXj

xj(t) = Xj sin(vj 

t - fj)

x
#

j + axj = A j sin vj 

t

Aj sin vj 

t

x0(t) =
A0

a

x
#

0 + ax0 = A0

x0A0
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4.2 RESPONSE UNDER A GENERAL PERIODIC FORCE 369

Equations (E.6) and (E.11) yield

(E.12)

By expressing  as

(E.13)

Eq. (E.13) can be rewritten as

(E.14)

where

(E.15)

By using Eq. (E.14) in Eq. (E.12), we find that

(E.16)

The solution of Eq. (E.3) is thus given by Eq. (E.4) with and given by Eq. (E.16). The equation

of motion under the force can be expressed as

(E.17)

By assuming the steady-state solution of Eq. (E.17) in the form

(E.18)

the constants and can be determined, by proceeding as in the case of the solution of Eq. (E.3), as

(E.19)

The complete steady-state (or particular) solution of Eq. (4.5) can be expressed as

(E.20)

where and are given by Eq. (4.6).vja, A0, Aj, Bj,

 + a

q

j=1
 

Bj

2a2
+ vj

2
 cosbvj t - tan-1

¢

vj

a
r

 xp(t) =
A0

a
+ a

q

j=1

Aj

2a2
+ vj

2
 sinbvjt - tan-1

¢

vj

a
r

Yj =

Bj

2a2
+ vj

2
,              fj = tan-1

¢

vj

a

fjYj

xj(t) = Yj cos(vj 
t - fj)

x
#

j + axj = Bj cos vj 
t

Bj cos vj 
t

fjXj

Xj =

Aj

2a2
+ vj

2
,              fj = tan-1

¢

vj

a

fj = tan-1 ¢
vj

a

1

a + ivj

=
1

2a2
+ vj

2
 [cos fj - i sin fj] =

1

2a2
+ vj

2
 e-i fj

1

a + ivj

=

a - ivj

(a + ivj)(a - ivj)
=

1

2a2
+ vj

2
 B

a

2a2
+ vj

2
- i 

vj

2a2
+ vj

2
R

1

a + ivj

Uj = Xje
-i fj =

Aj

a + ivj
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Note: The total solution of Eq. (4.5) is given by the sum of the homogeneous and particular (or

steady-state) solutions:

(E.21)

where the particular solution is given by Eq. (E.20) and the homogeneous solution of Eq. (4.5) can be

expressed as

(E.22)

where C is an unknown constant to be determined using the initial condition of the system. The total

solution can be expressed as

(E.23)

When the initial condition is used in Eq. (E.23), we obtain

(E.24)

which yields

(E.25)

Thus the total solution of Eq. (4.5) becomes

(E.26)

The features of the response of the system can be studied by considering a simpler type of forcing

function through the following example.

*

 +
A0

a
+ a

q

j=1

Xj sin(vd 

t - fj) + a

q

j=1

Yj cos(vd 

t - fj)

 x(t) = Bx0 -
A0

a
+ a

q

j=1

Xj sin fj - a

q

j=1

Yj cos fjRe-a t

C = x0 -
A0

a
+ a

q

j=1

Xj sin fj - a

q

j=1

Yj cos fj

x0 = C +
A0

a
- a

q

j=1

Xj sin fj + a

q

j=1

Yi cos fj

x(t = 0) = x0

x(t) = Ce-a t
+

A0

a
+ a

q

j=1

Xj sin(vj 
t - fj) + a

q

j=1

Yj cos(vj 
t - fj)

xh(t) = Ce-at

x(t) = xh(t) + xp(t)

E X A M P L E  4 . 2
Response of a First-Order System

Determine the response of a spring-damper system, similar to the one shown in Fig. 4.1(a), with the

equation of motion:

Assume the initial condition as x(t = 0) = 0.

x
#
+ 1.5x = 7.5 + 4.5 cos t + 3 sin 5t
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Solution: The equation of motion of the system is given by

(E.1)

We first find the solution of the differential equation by considering one forcing term at a time given

on the right-hand side of Eq. (E.1) and then adding the solutions to find the total solution of Eq. (E.1).

For the constant term, the equation to be solved is

(E.2)

The solution of Eq. (E.2) is For the cosine term, the equation to be solved is

given by

(E.3)

Using the steady-state solution indicated in Eq. (E.21) of Example 4.1, we can express the solution

of Eq. (E.3) as

(E.4)

where

(E.5)

and

(E.6)

Similarly, for the sine term, the equation to be solved is

(E.7)

Using the steady-state solution indicated in Eq. (E.4) of Example 4.1, we can express the solution of

Eq. (E.7) as

(E.8)

where

(E.9)

and

(E.10)

Thus the total particular solution of Eq. (E.1) is given by the sum of the solutions of Eqs. (E.2), (E.3)

and (E.7):

(E.11)x(t) = 5 + 2.4961 cos(t - 0.5880) + 0.5747 sin(5 t - 1.2793)

f = tan-1
a

5

1.5
b = 1.2793 rad

X =
3

2(1.5)2
+ (5)2

=
3

227.25
= 0.5747

x(t) = X sin(5 t - f)

x
#
+ 1.5x = 3 sin 5  t

f = tan-1
a

1

1.5
b = 0.5880 rad

Y =
4.5

2(1.5)2
+ (1)2

=
4.5

23.25
= 2.4961

x(t) = Y cos(t - f)

x
#
+ 1.5x = 4.5 cos t

x(t) = 7.5/1.5 = 5.

x
#
+ 1.5x = 7.5

x
#
+ 1.5x = 7.5 + 4.5 cos t + 3 sin 5t
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The forcing function given by the right-hand-side expression in Eq. (E.1) and the steady-state

response of the system given by Eq. (E.11) are shown graphically in Fig. 4.3. The first two terms of

the response (given by the first two terms on the right-hand side of Eq. (E.11)) are also shown in

Fig. 4.3. It can be seen that system does not filter the constant term. However, it filters the lower-

frequency (cosine term) to some extent and the higher-frequency (sine time) to a larger extent.

*

4.2.2
Second-Order
Systems

Let a spring-mass-damper system, Fig. 4.2(a), be subjected to a periodic force. This is a

second-order system because the governing equation is a second-order differential equation:

(4.7)

If the forcing function f (t) is periodic, it can be expressed in Fourier series so that the equa-

tion of motion becomes

(4.8)

The determination of the solution of Eq. (4.8) is illustrated in Example 4.3.

mx
$
+ cx

#
+ kx = F(t) =

a0

2
+ a

q

i=1
aj cos jvt + a

q

j=1
bj sin jvt

mx
$
+ cx

#
+ kx = f(t)

E X A M P L E  4 . 3
Response of a Second-Order System Under Periodic Force

Determine the response of a spring-mass-damper system subjected to a periodic force with the

equation of motion given by Eq. (4.8). Assume the initial conditions as zero.

0
0

1

2

3

4

5

6

7

8

9

10
Forcing function

First two terms
of x(t)

All three 
terms of x(t)

2 4 6 8 10 12 14 16

FIGURE 4.3
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Solution: The right-hand side of Eq. (4.8) is a constant plus a sum of harmonic functions. Using the

principle of superposition, the steady-state solution of Eq. (4.4) is the sum of the steady-state

solutions of the following equations:

(E.1)

(E.2)

(E.3)

Noting that the solution of Eq. (E.1) is given by

(E.4)

and, using the results of Section 3.4, we can express the solutions of Eqs. (E.2) and (E.3), respec-

tively, as

(E.5)

(E.6)

where

(E.7)

and

(E.8)

Thus the complete steady-state solution of Eq. (4.8) is given by

(E.9)

It can be seen from the solution, Eq. (E.9), that the amplitude and phase shift corresponding to the jth

term depend on j. If for any j, the amplitude of the corresponding harmonic will be com-

paratively large. This will be particularly true for small values of j and Further, as j becomes larger,

the amplitude becomes smaller and the corresponding terms tend to zero. Thus the first few terms are

usually sufficient to obtain the response with reasonable accuracy.

The solution given by Eq. (E.9) denotes the steady-state response of the system. The transient

part of the solution arising from the initial conditions can also be included to find the complete

solution. To find the complete solution, we need to evaluate the arbitrary constants by setting the

z.

jv = vn,

 + a

q

j=1
 

(bj/k)

2(1 - j2r2)2
+ (2zjr)2

  sin( jv t - fj)

 xp(t) =
a0

2k
+ a

q

j=1
 

(aj/k)

2(1 - j2r2)2
+ (2zjr)2

  cos( jv t - fj)

r =
v

vn

fj = tan-1 +
2zjr

1 - j2r2
*

 xp(t) =

(bj 
/k)

2(1 - j2r2)2
+ (2zjr)2

  sin(jv t - fj)

 xp(t) =

(aj 
/k)

2(1 - j2r2)2
+ (2zjr)2

  cos(jv t - fj)

xp(t) =
a0

2k

 mx
$
+ cx

#
+ kx = bj sin jv t

 mx
$
+ cx

#
+ kx = aj cos jv t

 mx
$
+ cx

#
+ kx =

a0

2
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m

p(t)

x(t)

Chamber

(a) (b)

50 mm
diameter

k c

0 1

50,000

t * 2 2t * 43 5

t (sec)

50,000t
50,000(2 + t)

p(t) * pressure, Pa

FIGURE 4.4 Periodic vibration of a hydraulic valve.

value of the complete solution and its derivative to the specified values of initial displacement x(0)

and the initial velocity This results in a complicated expression for the transient part of the

total solution.

*

x
#

(0).

E X A M P L E  4 . 4
Periodic Vibration of a Hydraulic Valve

In the study of vibrations of valves used in hydraulic control systems, the valve and its elastic stem

are modeled as a damped spring-mass system, as shown in Fig. 4.4(a). In addition to the spring force

and damping force, there is a fluid-pressure force on the valve that changes with the amount of open-

ing or closing of the valve. Find the steady-state response of the valve when the pressure in the cham-

ber varies as indicated in Fig. 4.4(b). Assume and 

Solution: The valve can be considered as a mass connected to a spring and a damper on one side and

subjected to a forcing function F(t) on the other side. The forcing function can be expressed as

(E.1)

where A is the cross-sectional area of the chamber, given by

(E.2)

and p(t) is the pressure acting on the valve at any instant t. Since p(t) is periodic with period

seconds and A is a constant, F(t) is also a periodic function of period seconds. Thet = 2t = 2

A =

p(50)2

4
= 625 p mm2

= 0.000625 p m2

F(t) = Ap(t)

m = 0.25 kg.k = 2500 N/m, c = 10 N-s/m,
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4.2 RESPONSE UNDER A GENERAL PERIODIC FORCE 375

frequency of the forcing function is F(t) can be expressed in a Fourier

series as

(E.3)

where and are given by Eqs. (4.2) and (4.3). Since the function F(t) is given by

(E.4)

the Fourier coefficients and can be computed with the help of Eqs. (4.2) and (4.3):

(E.5)

(E.6)

(E.7)

(E.8)

(E.9)

(E.10)

(E.11)

Likewise, we can obtain By considering only the first

three harmonics, the forcing function can be approximated:

(E.12)F(t) M 25,000A -
2 * 105A

p
2

 cos v t -
2 * 105A

9p2
 cos 3vt

a4 = a6 =
Á = b4 = b5 = b6 =

Á = 0.

 b3 =
2

2
B
L

1

0

50,000At sin 3pt dt +
L

2

1

50,000A(2 - t) sin 3pt dtR = 0

 = -  
2 * 105A

9p2

 a3 =
2

2
B
L

1

0

50,000At cos 3pt dt +
L

2

1

50,000A(2 - t) cos 3pt dtR

 b2 =
2

2
B
L

1

0

50,000At sin 2pt dt +
L

2

1

50,000A(2 - t) sin 2pt dtR = 0

 a2 =
2

2
B
L

1

0

50,000At cos 2pt dt +
L

2

1

50,000A(2 - t) cos 2pt dtR = 0

 b1 =
2

2
B
L

1

0

50,000At sin pt dt +
L

2

1

50,000A(2 - t) sin pt dtR = 0

 = -  
2 * 105A

p
2

 a1 =
2

2
B
L

1

0

50,000At cos pt dt +
L

2

1

50,000A(2 - t) cos pt dtR

 a0 =
2

2
B
L

1

0

50,000At dt +
L

2

1

50,000A(2 - t) dtR = 50,000A

bjaj

F(t) = c

50,000At for 0 * t *
t

2

50,000A(2 - t) for 
t

2
* t * t

bjaj

 + b1  sin v t + b2  sin 2v t + Á

 F(t) =
a0

2
+ a1  cos v t + a2  cos 2v t + Á

v = (2p/t) = p rad/s.
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The steady-state response of the valve to the forcing function of Eq. (E.12) can be expressed as

(E.13)

The natural frequency of the valve is given by

(E.14)

and the forcing frequency by

(E.15)

Thus the frequency ratio can be obtained:

(E.16)

and the damping ratio:

(E.17)

The phase angles and can be computed as follows:

(E.18)

and

(E.19)

In view of Eqs. (E.2) and (E.14) to (E.19), the solution can be written as

(E.20)

*

 - 0.0017828 cos(3pt - 0.0380483) m

 xp(t) = 0.019635 - 0.015930 cos(pt - 0.0125664)

 = tan-1 +
6 * 0.2 * 0.031416

1 - 9(0.031416)2
* = 0.0380483 rad

 f3 = tan-1 +
6zr

1 - 9r2
*

 = tan-1 +
2 * 0.2 * 0.031416

1 - 0.0314162
* = 0.0125664 rad

 f1 = tan-1 +
2zr

1 - r2
*

f3f1

z =
c

cc

=
c

2mvn

=
10.0

2(0.25)(100)
= 0.2

r =
v

vn

=
p

100
= 0.031416

v =
2p

t
=

2p

2
= p rad/s

v

vn = A
k

m
= A

2500

0.25
= 100 rad/s

 -
(2 * 105A/(9kp2))

2(1 - 9r2)2
+ (6zr)2

 cos (3v t - f3)

 xp(t) =

25,000A

k
-

(2 * 105A/(kp2))

2(1 - r2)2
+ (2zr)2

 cos (v t - f1)
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E X A M P L E  4 . 5
Total Response Under Harmonic Base Excitation

Find the total response of a viscously damped single-degree-of-freedom system subjected to a har-

monic base excitation for the following data: 

Solution: The equation of motion of the system is given by (see Eq. (3.65)):

(E.1)

Noting that Eq. (E.1) is similar to Eq. (4.8) with , and 

the steady-state response of the system can be expressed, using Eq. (E.9) of Example 4.3, as

(E.2)

For the given data, we find

The solution of the homogeneous equation is given by (see Eq. (2.70)):

(E.3)

where and are unknown constants. The total solution can be expressed as the superposition of

and as

(E.4)

where the unknowns and are to be found from the initial conditions. The velocity of the mass

can be expressed from Eq. (E.4) as

(E.5) - 0.006665 sin (5 t - 0.02666) + 0.266572 cos (5 t - 0.02666)

 x
#
(t) =

dx

dt
 (t) = -X0e- 

t cos (19.975 t - f0) - 19.975X0e- 
t sin (19.975 t - f0)

f0X0

 + 0.053314 sin (5 t - 0.02666)

 = X0 e- 
t cos (19.975 t - f0) + 0.001333 cos (5 t - 0.02666)

 x(t) = X0e- 
t cos (19.975 t - f0) +

1

0.937833
 B

5

4000
 cos (5 t - f1) +

200

4000
 sin (5 t - f1)R

xp(t)xh(t)

f0X0

xh(t) = X0e- 
zvn t cos (vd 

t - f0) = X0e- 
t cos (19.975 t - f0)

 2(1 - r2)2
+ (2 zr)2

= 2(1 - 0.252)2
+ (2 (0.05) (0.25))2

= 0.937833.

 f1 = tan-1 ¢
2 zr

1 - r2
= tan-1 ¢

2 (0.05) (0.25)

1 - (0.25)2
= 0.02666 rad

 a1 = cvY = (20) (5) (0.05) = 5,        b1 = kY = (4000) (0.05) = 200

 vd = 21 - z2 vn = 19.975 rad/s

 r =
v

vn

=
5

20
= 0.25,        z =

c

cc

=
c

22k m
=

20

22(4000) (10)
= 0.05

 Y = 0.05 m,        v = 5 rad/s,       vn = A
k

m
= A

4000

10
= 20 rad/s

xp(t) =
1

2(1 - r2)2
+ (2 zr)2

 B
a1

k
 cos (v t - f1) +

b1

k
 sin (v t - f1)R

2, 3, Á ,

ai = bi = 0; i =a0 = 0, a1 = cvY, b1 = kY

mx
$
+ cx

#
+ kx = ky + cy

#
= kY sin vt + cvY cos v t

x
#

0 = 10 m/s.x0 = 0.02 m,0.05 sin 5 t m,

y(t) =k = 4000 N/m,c = 20 N-s/m,m = 10 kg,
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378 CHAPTER 4 VIBRATION UNDER GENERAL FORCING CONDITIONS

Using Eqs. (E.4) and (E.5), we find

or

(E.6)

and

or

(E.7)

The solution of Eqs. (E.6) and (E.7) yields and Thus the total

response of the mass under base excitation, in meters, is given by

(E.8)

Note: Equation (E.8) is plotted in Example 4.32.

*

 + 0.001333 cos (5 t - 0.02666) + 0.053314 sin (5 t - 0.02666)

 x(t) = 0.488695e- 
t cos (19.975 t - 1.529683)

f0 = 1.529683 rad.X0 = 0.488695

- X0 cos f0 + 19.975 sin f0 = 9.733345

 + 0.006665 sin (0.02666) + 0.266572 cos (0.02666)

 x
#
0 = x

#
(t = 0) = 10 = -X0 cos f0 + 19.975 X0 sin f0

X0 cos f0 = 0.020088

x0 = x(t = 0) = 0.02 = X0 cos f0 + 0.001333 cos(0.02666) - 0.053314 sin (0.02666)

4.3 Response Under a Periodic Force of Irregular Form
In some cases, the force acting on a system may be quite irregular and may be determined

only experimentally. Examples of such forces include wind and earthquake-induced forces.

In such cases, the forces will be available in graphical form and no analytical expression can

be found to describe F(t). Sometimes, the value of F(t) may be available only at a number of

discrete points In all these cases, it is possible to find the Fourier coefficients

by using a numerical integration procedure, as described in Section 1.11. If 

denote the values of F(t) at respectively, where N denotes an even number of

equidistant points in one time period as shown in Fig. 4.5, the application of

trapezoidal rule [4.1] gives

(4.9)

(4.10)

(4.11) bj =
2

N
 a

N

i=1
 Fi sin 

2jpti
t

,  j = 1, 2, Á

 aj =
2

N
 a

N

i=1
 Fi cos 

2jpti
t

,  j = 1, 2, Á

 a0 =
2

N
 a

N

i=1
 Fi

t(t = N¢t),
t1, t2, Á , tN,

F1, F2, Á , FN

t1, t2, Á , tN.
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4.3 RESPONSE UNDER A PERIODIC FORCE OF IRREGULAR FORM 379

Once the Fourier coefficients and are known, the steady-state response of the

system can be found using Eq. (4.9) with

(4.12)r = +
2p

tvn

*

bja0, aj,

F(t)

F
1 F

2

F
3

FN 1

tN 1

tN

FN

F
4

F
5

t
5

t
4

t
3

t
2

t
1

t

t

t t t

O

t  N t

2t

FIGURE 4.5 An irregular forcing function.

E X A M P L E  4 . 6
Steady-State Vibration of a Hydraulic Valve

Find the steady-state response of the valve in Example 4.4 if the pressure fluctuations in the chamber

are found to be periodic. The values of pressure measured at 0.01-second intervals in one cycle are

given below.

Time, 

(seconds)

ti 0 0.01 0.02 0.03 0.04 0.05 0.06 0.07 0.08 0.09 0.10 0.11 0.12

(kN/m2
)

pi = p(ti) 0 20 34 42 49 53 70 60 36 22 16 7 0

Solution: Since the pressure fluctuations on the valve are periodic, the Fourier analysis of the given

data of pressures in a cycle gives

(E.1)

(See Example 1.20.) Other quantities needed for the computation are

 r =
v

vn

= 0.5236

 vn = 100 rad/s

 v =
2p

t

=
2p

0.12
= 52.36 rad/s

 - 5833.3 cos 157.08t - 2333.3 sin 157.08t + Á  N/m2

 + 1416.7 cos 104.72t + 3608.3 sin 104.72t

 p(t) = 34083.3 - 26996.0 cos 52.36t + 8307.7 sin 52.36t

M04_RAO8193_5_SE_C04.qxd  8/21/10  4:13 PM  Page 379



380 CHAPTER 4 VIBRATION UNDER GENERAL FORCING CONDITIONS

The steady-state response of the valve can be expressed, using Eq. (E.9) of Example 4.3, as

*

4.4 Response Under a Nonperiodic Force
We have seen that periodic forces of any general waveform can be represented by Fourier

series as a superposition of harmonic components of various frequencies. The response of

a linear system is then found by superposing the harmonic response to each of the exciting

forces. When the exciting force F(t) is nonperiodic, such as that due to the blast from an

explosion, a different method of calculating the response is required. Various methods can

be used to find the response of the system to an arbitrary excitation. Some of these meth-

ods are as follows:

1. Representing the excitation by a Fourier integral.

2. Using the method of convolution integral.

-

(2333.3A/k)

2(1 - 9r2)2
+ (6zr)2

 sin(157.08t - f3)

-

(5833.3A/k)

2(1 - 9r2)2
+ (6zr)2

 cos(157.08t - f3)

+

(3608.3A/k)

2(1 - 4r2)2
+ (4zr)2

 sin(104.72t - f2)

+

(1416.7A/k)

2(1 - 4r2)2
+ (4zr)2

 cos(104.72t - f2)

+

(8309.7A/k)

2(1 - r2)2
+ (2zr)2

 sin(52.36t - f1)

xp(t) =
34083.3A

k
-

(26996.0A/k)

2(1 - r2)2
+ (2zr)2

 cos(52.36t - f1)

 f3 = tan-1 +
6zr

1 - 9r2
* = tan-1 +

6 * 0.2 * 0.5236

1 - 9 * 0.52362
* = -23.18°

 f2 = tan-1 +
4zr

1 - 4r2
* = tan-1 +

4 * 0.2 * 0.5236

1 - 4 * 0.52362
* = -77.01°

 f1 = tan-1 +
2zr

1 - r2
* = tan-1 +

2 * 0.2 * 0.5236

1 - 0.52362
* = 16.1°

 A = 0.000625p m2

 z = 0.2
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4.5 CONVOLUTION INTEGRAL 381

3. Using the method of Laplace transforms.

4. Numerically integrating the equations of motion (numerical solution of differential

equations).

We shall discuss methods 2, 3 and 4 in the following sections. The numerical methods are

also considered in Chapter 11.

4.5 Convolution Integral
A nonperiodic exciting force usually has a magnitude that varies with time; it acts for a

specified period and then stops. The simplest form is the impulsive force a force that has

a large magnitude F and acts for a very short time From dynamics we know that

impulse can be measured by finding the change it causes in momentum of the system [4.2].

If and denote the velocities of the mass m before and after the application of the

impulse, we have

(4.12)

By designating the magnitude of the impulse by we can write, in general,

(4.13)

A unit impulse acting at is defined as

(4.14)

It can be seen that in order for F dt to have a finite value, F tends to infinity (since dt tends

to zero).

The unit impulse, acting at is also denoted by the Dirac delta function as

(4.15)

and the impulse of magnitude acting at is denoted as1

(4.16)F = F d(t)

t = 0,F,

f = f d(t) = d(t)

t = 0,f = 1,

f = lim
¢t:0

 
L

t+¢t

t

F dt = F dt = 1

t = 0 (f
 

)

F =
L

t+¢t

t

F dt

F,F¢t

Impulse = F¢t = mx
#
2 - mx

#
1

x
#
2x

#
1

¢t.

1The unit impulse, acting at is also denoted by the Dirac delta function, The Dirac delta function at

time denoted as has the properties

where Thus an impulse of magnitude acting at can be denoted as F(t) = F d(t - t)t = t,F,0 6 t 6 q .

 
L

q

0

d(t - t) dt = 1, 
L

q

0

d(t - t)F(t) dt = F(t)

 d(t - t) = 0 for t Z t;

d(t - t),t = t,
d(t).t = 0,f,
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382 CHAPTER 4 VIBRATION UNDER GENERAL FORCING CONDITIONS

4.5.1
Response to 
an Impulse

We first consider the response of a single-degree-of-freedom system to an impulse excitation;

this case is important in studying the response under more general excitations. Consider a

viscously damped spring-mass system subjected to a unit impulse at as shown in

Figs. 4.6(a) and (b). For an underdamped system, the solution of the equation of motion

(4.17)

is given by Eq. (2.72) as

(4.18)

where

(4.19)

(4.20)

(4.21)

If the mass is at rest before the unit impulse is applied ( for or at ),

we obtain, from the impulse-momentum relation,

(4.22)

Thus the initial conditions are given by

(4.23)

(4.24) x
#
(t = 0) = x

#

0 =
1

m

 x(t = 0) = x0 = 0

Impulse = f = 1 = mx
#

 (t = 0) - mx
#

 (t = 0-
 ) = mx

#

0

t = 0-
 t 6 0x = x

#
= 0

 vn = A
k

m

 vd = vn21 - z2
= C

k

m
- ¢

c

2m

2

 z =
c

2mvn

x(t) =  e- 
zvnt

 bx0  cos vdt +
x
#

0 + zvnx0

vd

  sin vdt r

mx
$
+ cx

#
+ kx = 0

t = 0,

m

F(t)

F(t) x(t)  g(t)

F

O

O

t

t

(a) (b) (c)

c k
F t  1

t
2p

vd

FIGURE 4.6 A single-degree-of-freedom system subjected to an impulse.
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4.5 CONVOLUTION INTEGRAL 383

In view of Eqs. (4.23) and (4.24), Eq. (4.18) reduces to

(4.25)

Equation (4.25) gives the response of a single-degree-of-freedom system to a unit impulse,

which is also known as the impulse response function, denoted by g(t). The function g(t),

Eq. (4.25), is shown in Fig. 4.6(c).

If the magnitude of the impulse is instead of unity, the initial velocity is and

the response of the system becomes

(4.26)

If the impulse is applied at an arbitrary time as shown in Fig. 4.7(a), it will change

the velocity at by an amount Assuming that until the impulse is applied,

the displacement x at any subsequent time t, caused by a change in the velocity at time is

given by Eq. (4.26) with t replaced by the time elapsed after the application of the impulse

that is, Thus we obtain

(4.27)

This is shown in Fig. 4.7(b).

x(t) = Fg(t - t)

t - t.

t,

x = 0F/m.t = t

t = t,F

x(t) =

Fe-
 
zvnt

mvd

 sin vdt = Fg(t)

F/mx
#

0F

x(t) = g(t) =

e-
 
zvnt

mvd

 sin vdt

F(t)

x(t)

F+t , F

Fg(t *t)

+t

F

O

t

O
t

(a)

(b)

t

t

FIGURE 4.7 Impulse response.
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384 CHAPTER 4 VIBRATION UNDER GENERAL FORCING CONDITIONS

x(t)

m

Load cell
signal,
F(t)

F(t)

t

F

Impact
hammer

0

t
t

(a)

(b)

k

2
k

2

F1

t * t

F2

FIGURE 4.8 Structural testing using an impact hammer.

E X A M P L E  4 . 7
Response of a Structure Under Impact

In the vibration testing of a structure, an impact hammer with a load cell to measure the impact force is

used to cause excitation, as shown in Fig. 4.8(a). Assuming

and find the response of the system.

Solution: From the known data, we can compute

Assuming that the impact is given at we find (from Eq. (4.26)) the response of the system as

(E.1)

Note: The graph of Eq. (E.1) is shown in Example 4.33.

 =
20

(5) (19.975)
 e-    

0.05(20)t sin 19.975 t = 0.20025 e-  

t sin 19.975 t  m

 x1(t) = F  
e- zvn t

mvd

 sin vd t

t = 0,

 vd = 21 - z2
 vn = 19.975 rad/s

 vn = A
k

m
= A

2000

5
= 20 rad/s,              z =

c

cc

=

c

22km
=

10

222000(5)
= 0.05

F = 20 N-s,

m = 5 kg, k = 2000 N>m,  c = 10 N-s>m, 

*
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4.5 CONVOLUTION INTEGRAL 385

E X A M P L E  4 . 8
Response of a Structure Under Double Impact

In many cases, providing only one impact to the structure using an impact hammer is difficult. Some-

times a second impact takes place after the first, as shown in Fig. 4.8(b), and the applied force, F(t),

can be expressed as

where is the Dirac delta function and indicates the time between the two impacts of magnitudes

and For a structure with and 

N, find the response of the structure.

Solution: From the known data, we find (see the solution for Example 4.7), 

and The response due to the impulse is given by Eq. (E.1) of Example 4.7,

while the response due to the impulse can be determined from Eqs. (4.27) and (4.26) as

(E.1)

For Eq. (E.1) becomes

(E.2)

Using the superposition of the two responses and the response due to two impacts, in

meters, can be expressed as

(E.3)

Note: The graph of Eq. (E.3) is shown in Example 4.33.

*

x(t) = b
0.20025 e- 

t sin 19.975 t; 0 t 0.2

0.20025 e- 
t sin 19.975 t + 0.100125 e- 

(t-0.2) sin 19.975(t - 0.2); t 7 0.2
r

x2(t),x1(t)

 = 0.100125e-(t-0.2) sin 19.975(t - 0.2);           t 7 0.2

 x2(t) =
10

(5) (19.975)
 e- 

0.05 (20)(t-0.2) sin 19.975(t - 0.2)

t = 0.2,

x2(t) = F2 
e-  

zvn(t-t)

mvd

 sin vd (t - t)

F2 d(t - 0.2)

F1 d(t)vd = 19.975 rad/s.

z = 0.05,vn = 20 rad/s

10 d(t - 0.2)

F(t) = 20 d(t) +m = 5 kg, k = 2000 N/m, c = 10 N-s/mF2.F1

td(t)

F(t) = F1 d(t) + F2 d(t - t)

4.5.2
Response to a
General Forcing
Condition

Now we consider the response of the system under an arbitrary external force F(t), shown

in Fig. 4.9. This force may be assumed to be made up of a series of impulses of varying

magnitude. Assuming that at time the force acts on the system for a short period of

time the impulse acting at is given by At any time t, the elapsed time

since the impulse is so the response of the system at t due to this impulse alone is

given by Eq. (4.27) with 

(4.28)

The total response at time t can be found by summing all the responses due to the elementary

impulses acting at all times :

(4.29)x(t) M a   F(t)g(t - t) ¢t

t

¢x(t) = F(t) ¢  t g(t - t)

F = F(t) ¢t:

t - t,

F(t) ¢t.t = t¢t,

F(t)t,
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386 CHAPTER 4 VIBRATION UNDER GENERAL FORCING CONDITIONS

Letting and replacing the summation by integration, we obtain

(4.30)

By substituting Eq. (4.25) into Eq. (4.30), we obtain

(4.31)

which represents the response of an underdamped single-degree-of-freedom system to the

arbitrary excitation F(t). Note that Eq. (4.31) does not consider the effect of initial conditions

of the system, because the mass is assumed to be at rest before the application of the impulse,

as implied by Eqs. (4.25) and (4.28). The integral in Eq. (4.30) or Eq. (4.31) is called the

convolution or Duhamel integral. In many cases the function F(t) has a form that permits an

explicit integration of Eq. (4.31). If such integration is not possible, we can evaluate numeri-

cally without much difficulty, as illustrated in Section 4.9 and in Chapter 11. An elemen-

tary discussion of the Duhamel integral in vibration analysis is given in reference [4.6].

x(t) =
1

mvdL

t

0

F(t) e- 
zvn(t-t) sin vd (t - t) dt

x(t) =
L

t

0

F(t)g(t - t) dt

¢t: 0

4.5.3
Response to
Base Excitation

If a spring-mass-damper system is subjected to an arbitrary base excitation described by its

displacement, velocity, or acceleration, the equation of motion can be expressed in terms

of the relative displacement of the mass as follows (see Section 3.6.2):

(4.32)

This is similar to the equation

(4.33)

with the variable z replacing x and the term replacing the forcing function F. Hence all

of the results derived for the force-excited system are applicable to the base-excited system

-my
$

mx
$
+ cx

#
+ kx = F

mz
$
+ cz

#
+ kz = -my

$

z = x - y

F(t)

O t
t

F(t)

t

t  tt

FIGURE 4.9 An arbitrary (nonperiodic)

forcing function.
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Material
being compacted

Platform

(a)

(d)

(b)

Cylinder

m

x(t)

c

F(t)

F0

O t

F(t)

Piston

(c)

O t

x(t)

F0

k

2F0

k

O
t

x(t)

F0

k

2F0

k

k

2
k

2

FIGURE 4.10 Step force applied to a compacting machine.

E X A M P L E  4 . 9
Step Force on a Compacting Machine

A compacting machine, modeled as a single-degree-of-freedom system, is shown in Fig. 4.10(a).

The force acting on the mass m (m includes the masses of the piston, the platform, and the material

being compacted) due to a sudden application of the pressure can be idealized as a step force, as

shown in Fig. 4.10(b). Determine the response of the system.

also for z when the term F is replaced by For an underdamped system subjected to

base excitation, the relative displacement can be found from Eq. (4.31):

(4.34)z(t) = -  

1

vdL

t

0

y
$

(t)e-  

zvn(t-t) sin vd(t - t) dt

-my
$

.
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O t

F(t)

F
0

t
0

FIGURE 4.11 Step force applied with a

time delay.

Solution: Since the compacting machine is modeled as a mass-spring-damper system, the problem

is to find the response of a damped single-degree-of-freedom system subjected to a step force. By

noting that we can write Eq. (4.31) as

(E.1)

where

(E.2)

This response is shown in Fig. 4.10(c). If the system is undamped ( and ), Eq. (E.1)

reduces to

(E.3)

Equation (E.3) is shown graphically in Fig. 4.10(d). It can be seen that if the load is instantaneously

applied to an undamped system, a maximum displacement of twice the static displacement will be

attained that is, 

*

xmax = 2F0/k.

x(t) =
F0

k
 [1 -  cos vnt]

vd = vnz = 0

f = tan-1 ¢
z

21 - z2

 =
F0

k
 B1 -

1

21 - z2
#  e- 

zvnt cos(vdt - f)R

 =
F0

mvd

 B  e- 
zvn(t-t) b

zvn sin vd(t - t) + vd cos vd(t - t)

(zvn)2
+ (vd)2

r R
t=0

t

 x(t) =
F0

mvdL

t

0

 e- 
zvn (t-t) sin vd(t - t) dt

F(t) = F0,

E X A M P L E  4 . 1 0
Time-Delayed Step Force

Find the response of the compacting machine shown in Fig. 4.10(a) when it is subjected to the force

shown in Fig. 4.11.
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4.5 CONVOLUTION INTEGRAL 389

Solution: Since the forcing function starts at instead of at the response can be obtained

from Eq. (E.1) of Example 4.9 by replacing t by This gives

(E.1)

If the system is undamped, Eq. (E.1) reduces to

(E.2)

*

x(t) =
F0

k
 [1 -  cos vn(t - t0)]

x(t) =
F0

k21 - z2
 B21 - z2

-  e- 
zvn(t- t0) cos5vd(t - t0) - f6R

t - t0.

t = 0,t = t0

E X A M P L E  4 . 1 1
Rectangular Pulse Load

If the compacting machine shown in Fig. 4.10(a) is subjected to a constant force only during the time

(Fig. 4.12a), determine the response of the machine.

Solution: The given forcing function, F(t), can be considered as the sum of a step function of

magnitude beginning at and a second step function of magnitude starting at

time as shown in Fig. 4.12(b).

Thus the response of the system can be obtained by subtracting Eq. (E.1) of Example 4.10 from

Eq. (E.1) of Example 4.9. This gives

(E.1)

with

(E.2)

To see the vibration response graphically, we consider the system as undamped, so that Eq. (E.1)

reduces to

(E.3)

The response is shown in Fig. 4.12(c) for two different pulse widths of for the following data

(Problem 4.90): and The responses will

be different for the two cases and where is the undamped natural time

period of the system. If the peak will be larger and occur during the forced-vibration era

(that is, during 0 to ) while the peak will be smaller and occur in the residual-vibration era (that is,

after ) if In Fig. 4.12(c), and the peak corresponding to is

about six times larger than the one with t0 = 0.1 s.

t0 = 1.5 stn = 1.8138 st0 7 tn/2.t0

t0

t0 7 tn/2,

tnt0 7 tn/2,t0 7 tn/2

F0 = 100 N.m = 100 kg, c = 50 N-s/m, k = 1200 N/m,

t0

x(t) =
F0

k
 Bcos vn(t - t0) -  cos vntR

f = tan-1 ¢
z

21 - z2

x(t) =
F0e- 

zvnt

k21 - z2
 B -  cos (vdt - f) + ezvnt0 cos5vd(t - t0) - f6R

t = t0,

-F0F2(t)t = 0+F0

F1(t)

0 t t0

M04_RAO8193_5_SE_C04.qxd  8/21/10  4:13 PM  Page 389



390 CHAPTER 4 VIBRATION UNDER GENERAL FORCING CONDITIONS

t

F(t)

(a)

F0

t0

0

t

F1(t)

,F0

0 t

x
(
t)

(b)

*F0

t0
0,

0.15

0.1

0.05

0

*0.05

*0.1
0 1 2 3 4 5

t

(c)

6 7 8 9 10

t0 -

2
(t0 + 0.1)

t0 .
tn

tn

2
(t0 + 1.5)

F2(t)

FIGURE 4.12 Response due to a pulse load.
*
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E X A M P L E  4 . 1 2
Compacting Machine Under Linear Force

Determine the response of the compacting machine shown in Fig. 4.13(a) when a linearly varying

force (shown in Fig. 4.13(b)) is applied due to the motion of the cam.

Solution: The linearly varying force shown in Fig. 4.13(b) is known as the ramp function. This

forcing function can be represented as where denotes the rate of increase of the

force F per unit time. By substituting this into Eq. (4.31), we obtain

 x(t) =

dF

mvdL

t

0

te-

 
zvn(t-t) sin vd(t - t) dt

dFF(t) = dF # t,

Motion of
cam

Cam

m

k/2k/2
c

Material
being compacted

Platform

Follower

F(t)

x(t)

(a)

(b)

1

F(t)

t

dF

O

(c)

1

F(t)

t
O

dF

k

2p
vn

4p
vn

6p
vn

FIGURE 4.13 Compacting machine subjected to a linear

force.
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(a) (b)

F(t)

F(t)

F0

t0
t

O

x(t)

m

k

2

k

2

FIGURE 4.14 Building frame subjected to a blast load.

These integrals can be evaluated and the response expressed as follows:

(E.1)

(See Problem 4.28.) For an undamped system, Eq. (E.1) reduces to

(E.2)

Figure 4.13(c) shows the response given by Eq. (E.2).

*

x(t) =
dF

vnk
 [vnt -  sin vnt]

x(t) =
dF

k
 B t -

2z

vn

+  e- 
zvnt ¢

2z

vn

 cos vdt - b
vd

2
- z2vn

2

vn
2vd

r  sin vdt R

 -
dF # t

mvd L

t

0

 e- 
zvn(t-t) sin vd(t - t) (-dt)

 =
dF

mvdL

t

0

(t - t)e- 
zvn(t-t) sin vd(t - t) (-dt)

E X A M P L E  4 . 1 3
Blast Load on a Building Frame

A building frame is modeled as an undamped single-degree-of-freedom system (Fig. 4.14(a)). Find

the response of the frame if it is subjected to a blast loading represented by the triangular pulse

shown in Fig. 4.14(b).

Solution: The forcing function is given by

(E.1)

(E.2) F(t) = 0                       for t 7 t0

 F(t) = F0 ¢1 -
t

t0
          for 0 t t0
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4.5 CONVOLUTION INTEGRAL 393

Equation (4.31) gives, for an undamped system,

(E.3)

Response during Using Eq. (E.1) for in Eq. (E.3) gives

(E.4)

By noting that integration by parts gives

(E.5)

and

(E.6)

Eq. (E.4) can be written as

(E.7)

Simplifying this expression, we obtain

(E.8)

Response during Here also we use Eq. (E.1) for but the upper limit of integration in

Eq. (E.3) will be since for Thus the response can be found from Eq. (E.7) by

setting within the square brackets. This results in

(E.9)

*

x(t) =
F0

kvnt0
 B(1 -  cos vnt0) sin vnt - (vnt0 -  sin vnt0) cos vntR

t = t0

t 7 t0.F(t) = 0t0,

F(t),t 7 t0:

x(t) =
F0

k
 B1 -

t

t0
-  cos vnt +

1

vnt0
 sin vntR

 - cos vnt B -  cos vnt + 1 +
t

t0
 cos vnt -

1

vnt0
 sin vntR r

 x(t) =
F0

k
 b sin vnt  B  sin vnt -

t

t0
 sin vnt -

1

vnt0
 cos vnt +

1

vnt0
R

L
t sin vnt

# d(vnt) = -   t cos vnt +
1

vn

 sin vnt

L
t cos vnt

# d(vnt) = t sin vnt +
1

vn

 cos vnt

 -
F0

k
 cos vnt

L

t

0
¢1 -

t

t0
 sin vnt

# d(vnt)

 =
F0

k
 sin vnt

L

t

0

 ¢1 -
t

t0
 cos vnt

# d(vnt)

 x(t) =
F0

mvn
2L

t

0

 ¢1 -
t

t0
 [sin vnt cos vnt -  cos vnt sin vnt] d(vnt)

F(t)0 t t0:

x(t) =
1

mvnL

t

0

F(t) sin vn(t - t) dt
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O 0
0
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dst max

t0
tn

FIGURE 4.15 Response spectrum due to a sinusoidal pulse.

4.6 Response Spectrum
The graph showing the variation of the maximum response (maximum displacement,

velocity, acceleration, or any other quantity) with the natural frequency (or natural period)

of a single-degree-of-freedom system to a specified forcing function is known as the

response spectrum. Since the maximum response is plotted against the natural frequency

(or natural period), the response spectrum gives the maximum response of all possible

single-degree-of-freedom systems. The response spectrum is widely used in earthquake

engineering design [4.2, 4.5]. A review of recent literature on shock and seismic response

spectra in engineering design is given in reference [4.7].

Once the response spectrum corresponding to a specified forcing function is available,

we need to know just the natural frequency of the system to find its maximum response.

Example 4.14 illustrates the construction of a response spectrum.

E X A M P L E  4 . 1 4
Response Spectrum of Sinusoidal Pulse

Find the undamped response spectrum for the sinusoidal pulse force shown in Fig. 4.15(a) using the

initial conditions 

Solution

Approach: Find the response and express its maximum value in terms of its natural time period.

The equation of motion of an undamped system can be expressed as

(E.1)

where

(E.2)v =
p

t0

mx
$
+ kx = F(t) = b

F0 sin v t, 0 t t0

0, t 7 t0

x(0) = x
#
(0) = 0.
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4.6 RESPONSE SPECTRUM 395

The solution of Eq. (E.1) can be obtained by superposing the homogeneous solution and the

particular solution as

(E.3)

That is,

(E.4)

where A and B are constants and is the natural frequency of the system:

(E.5)

Using the initial conditions in Eq. (E.4), we can find the constants A and B as

(E.6)

Thus the solution becomes

(E.7)

which can be rewritten as

(E.8)

where

(E.9)

The solution given by Eq. (E.8) is valid only during the period of force application, 

Since there is no force applied for the solution can be expressed as a free-vibration solution:

(E.10)

where the constants and can be found by using the values of and given by

Eq. (E.8), as initial conditions for the duration This gives

(E.11)

(E.12) = -vnA¿ sin vnt + vnB¿ cos vnt

 x
#
(t = t0) = ab

p

t0
-
p

t0
 cos  

2pt0

tn
r

 x(t = t0) = a B -
tn

2t0
 sin  

2pt0

tn
R = A¿ cos vnt0 + B¿ sin vnt0

t 7 t0.

x
#
(t = t0),x(t = t0)B¿A¿

x(t) = A¿ cos vnt + B¿ sin vnt,  t 7 t0

t 7 t0,

0 t t0.

dst =
F0

k

x(t)

dst

=
1

1 - ¢
tn

2t0

2
 b  sin  

pt

t0
-

tn

2t0
 sin  

2pt

tn
r ,  0 t t0

x(t) =
F0  

/k

1 - (v/vn)2
 b  sin vt -

v

vn

 sin vnt r ,  0 t t0

A = 0,  B = -   

F0v

vn(k - mv2)

x(0) = x
#
(0) = 0

vn =
2p

tn

=
A

k

m

vn

x(t) = A cos vnt + B sin vnt + ¢
F0

k - mv2
 sin vt

x(t) = xc(t) + xp(t)

xp(t)

xc(t)
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where

(E.13)

Equations (E.11) and (E.12) can be solved to find and as

(E.14)

Equations (E.14) can be substituted into Eq. (E.10) to obtain

(E.15)

Equations (E.8) and (E.15) give the response of the system in nondimensional form that is, is

expressed in terms of Thus for any specified value of the maximum value of can be

found. This maximum value of when plotted against gives the response spectrum shown

in Fig. 4.15(b). It can be observed that the maximum value of occurs at a value of

*

In Example 4.14, the input force is simple and hence a closed-form solution has been

obtained for the response spectrum. However, if the input force is arbitrary, we can find the

response spectrum only numerically. In such a case, Eq. (4.31) can be used to express the

peak response of an undamped single-degree-of-freedom system due to an arbitrary input

force F(t) as

(4.35)x(t)
`

max

=
1

mvn

 

L

t

0

F(t) sin vn(t - t) dt
`

max

t0 
/tn M 0.75.

(x/dst)max M 1.75

t0 
/tn,x/dst,

x/dstt0 
/tn,t/tn.

x/dst

x(t)

dst

=
(tn/t0)

2b 1 - (tn/2t0)2
r

 B  sin 2p ¢
t0

tn

-
t

tn

-  sin 2p 

t

tn
R ,  t Ú t0

A¿ =
ap

vnt0
 sin vnt0,  B¿ = -  

ap

vnt0
 [1 +  cos vnt0]

B¿A¿

a =
dst

1 - ¢
tn

2t0

2

4.6.1
Response
Spectrum for
Base Excitation

In the design of machinery and structures subjected to a ground shock, such as that caused

by an earthquake, the response spectrum corresponding to the base excitation is useful. If

the base of a damped single-degree-of-freedom system is subjected to an acceleration 

the equation of motion, in terms of the relative displacement is given by

Eq. (4.32) and the response z(t) by Eq. (4.34). In the case of a ground shock, the velocity

response spectrum is generally used. The displacement and acceleration spectra are then

expressed in terms of the velocity spectrum. For a harmonic oscillator (an undamped

system under free vibration), we notice that

(4.36)

and

(4.37)x
#

max = vmx max

x
$

max = -vn
2x max

z = x - y,

y
$
(t),
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2The following relation is used in deriving Eq. (4.39) from Eq. (4.34):

d

dtL

t

0

f(t, t) dt =
L

t

0

0f

0t
 (t, t)dt + f(t, t) t= t

Thus the acceleration and displacement spectra and can be obtained in terms of the

velocity spectrum :

(4.38)

To consider damping in the system, if we assume that the maximum relative displacement

occurs after the shock pulse has passed, the subsequent motion must be harmonic. In such a

case we can use Eq. (4.38). The fictitious velocity associated with this apparent harmonic

motion is called the pseudo velocity and its response spectrum, is called the pseudo spec-

trum. The velocity spectra of damped systems are used extensively in earthquake analysis.

To find the relative velocity spectrum, we differentiate Eq. (4.34) and obtain2

(4.39)

Equation (4.39) can be rewritten as

(4.40)

where

(4.41)

(4.42)

and

(4.43)

The velocity response spectrum, can be obtained from Eq. (4.40):

(4.44)

Thus the pseudo response spectra are given by

(4.45)Sd = z max =
Sv

vn

;  Sv = z
#

max;  Sa = z
$

max = vnSv

Sv = z
#
(t) max =

`

e-
 
zvnt

21 - z2
2P2

+ Q2
`

max

Sv,

f = tan-1 
b
-(P21 - z2

+ Qz)

(Pz - Q21 - z2)
r

Q =
L

t

0

 y
$
(t)ezvnt sin vdt dt

P =
L

t

0

 y
$
(t)ezvnt cos vdt dt

z
#
(t) =

e- 
zvnt

21 - z2
 2P2

+ Q2 sin (vdt - f)

 + vd cos vd(t - t)] dt

 z
#
(t) = -  

1

vdL

t

0

y
$
(t)e-

 
zvn(t-t)[-zvn sin vd(t - t)

Sv,

Sd =
Sv

vn

,  Sa = vnSv

(Sv)

SdSa
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Water tank
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m

y(t)

x(t)

ÿ(t)

ÿmax

O t

*ÿmax

2t0

FIGURE 4.16 Water tank subjected to base motion.

Water Tank Subjected to Base Acceleration

The water tank, shown in Fig. 4.16(a), is subjected to a linearly varying ground acceleration as shown

in Fig. 4.16(b) due to an earthquake. The mass of the tank is m, the stiffness of the column is k, and

damping is negligible. Find the response spectrum for the relative displacement, of the

water tank.

Solution

Approach: Model the water tank as an undamped single-degree-of-freedom system. Find the

maximum relative displacement of the tank and express it as a function of 

The base acceleration can be expressed as

(E.1)

(E.2)

Response during : By substituting Eq. (E.1) into Eq. (4.34), the response can be

expressed, for an undamped system, as

(E.3)

This equation is the same as Eq. (E.4) of Example 4.13 except that appears in place of

Hence z(t) can be written, using Eq. (E.8) of Example 4.13, as

(E.4)

To find the maximum response we setzmax,

z(t) = -  

y
$

max

vn
2

 B1 -
t

t0
-  cos vnt +

1

vnt0
 sin vntR

F0 
/m.

(-y
$

max)

 (sin vnt cos vnt -  cos vnt sin vnt) dtR

 z(t) = -  

1

vn

 y
$

max B
L

t

0

 ¢1 -
t

t0

0 t 2t0

 y
$
(t) = 0      for t 7 2t0

 y
$
(t) = y

$

max ¢1 -
t

t0
 for 0 t 2t0

vn.

z = x - y,

E X A M P L E  4 . 1 5
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4.6 RESPONSE SPECTRUM 399

(E.5)

This equation gives the time at which occurs:

(E.6)

By substituting Eq. (E.6) into Eq. (E.4), the maximum response of the tank can be found:

(E.7)

Response during Since there is no excitation during this time, we can use the solution of the

free-vibration problem (Eq. 2.18)

(E.8)

provided that we take the initial displacement and initial velocity as

(E.9)

using Eq. (E.7). The maximum of z(t) given by Eq. (E.8) can be identified as

(E.10)

where and are computed as indicated in Eq. (E.9).

*

z
#

0z0

zmax = Bz0
2
+ ¢

z
#

0

vn

2

R

1/2

z0 = z(t = 2t0) and z
#

0 = z
#
(t = 2t0)

z(t) = z0 cos vnt + ¢
z
#

0

vn

sin vnt

t 7 2t0:

zmax = -  

y
$

max

vn
2

 B1 -
tm

t0
-  cos vntm +

1

vnt0
 sin vntmR

tm =
2

vn

 tan-1(vnt0)

zmaxtm

z
#
(t) = -  

y
$

max

t0vn
2

 B -1 + vnt0 sin vnt +  cos vntR = 0

4.6.2
Earthquake
Response
Spectra

The most direct description of an earthquake motion in time domain is provided by

accelerograms that are recorded by instruments called strong motion accelerographs.

They record three orthogonal components of ground acceleration at a certain location. A

typical accelerogram is shown in Fig. 4.17. A accelerograms are generally recorded on

photographic paper or film and are digitized for engineering applications. The peak

ground acceleration, duration, and frequency content of the earthquake can be obtained

from an accelerogram. An accelerogram can be integrated to obtain the time variations of

the ground velocity and ground displacement.

A response spectrum is used to provide the most descriptive representation of the

influence of a given earthquake on a structure or machine. It is possible to plot the maxi-

mum response of a single-degree-of-freedom system in terms of the acceleration, relative

pseudo velocity, and relative displacement using logarithmic scales. A typical response

spectrum, plotted on a four-way logarithmic paper, is shown in Fig. 4.18. In this figure, the
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FIGURE 4.17 A typical accelerogram.

FIGURE 4.18 Response spectrum of a typical earthquake [4.12]. (Imperial

Valley Earthquake, May 18, 1940; and 0.20.) (Reprinted 

with permission from The Shock and Vibration Digest.)

z = 0, .02, 0.05, 0.10,
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4.6 RESPONSE SPECTRUM 401

vertical axis denotes the spectral velocity, the horizontal axis represents the natural time

period, the 45° inclined axis indicates the spectral displacement, and the 135° inclined axis

shows the spectral acceleration.

As can be seen from Fig. 4.18, the response spectrum of a particular accelerogram

(earthquake) exhibits considerable irregularities in the frequency domain. However, spectra

corresponding to an ensemble of accelerograms produced by ground shakings of sites with

similar geological and seismological features are smooth functions of time and provide

statistical trends that characterize them collectively. This idea has led to the development

of the concept of a design spectrum, a typical one shown in Fig. 4.19, for use in earthquake-

resistant design of structures and machines. The following examples illustrate the use of the

response and design spectra of earthquakes.

FIGURE 4.19 Design spectrum [4.12]. (Reprinted with permission from 

The Shock and Vibration Digest.)
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FIGURE 4.20 Building frame subjected to base motion.
*

Response of a Building Frame to an Earthquake

A building frame has a weight of 15,000 lb and two columns of total stiffness k, as indicated in

Fig. 4.20. It has a damping ratio of 0.05 and a natural time period of 1.0 sec. For the earthquake

characterized in Fig. 4.18, determine the following:

a. Maximum relative displacement of the mass, 

b. Maximum shear force in the columns

c. Maximum bending stress in the columns

Solution

Approach: Find the spectral displacement, spectral velocity, and spectral acceleration corresponding

to the given natural time period.

For and Fig. 4.18 gives and 

a. Maximum relative displacement of the mass, 

b. Maximum shear force in both columns:

Thus the maximum shear force in each column is given by

c. Maximum bending moment in each Thus the maximum bending

stress is given by the beam formula

where I is the area moment of inertia and c is the distance of the outer fiber from the neutral axis

of the column section.

smax =
Mmaxc

I

column = Mmax = Fmaxl.

Fmax = 6,300/2 = 3,150 lb

kxmax = mx
$

max =
W

g
 Sa = +

15,000

386.4
*(162.288) = 6300 lb

xmax = Sd = 4.2 in.

=  162.288 in./sec2.
Sa = 0.42gSv = 25 in./ sec, Sd = 4.2 in,z = 0.05,tn = 1.0 sec

xmax

E X A M P L E  4 . 1 6
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Earthquake
excitation

Trolley

Wheels

FIGURE 4.21 A crane subjected to an earthquake excitation.
*

E X A M P L E  4 . 1 7
Derailment of Trolley of a Crane During Earthquake

The trolley of an electric overhead traveling (EOT) crane travels horizontally on the girder as indi-

cated in Fig. 4.21. Assuming the trolley as a point mass, the crane can be modeled as a single-degree-

of-freedom system with a period 2 s and a damping ratio 2%. Determine whether the trolley derails

under a vertical earthquake excitation whose design spectrum is given by Fig. 4.19.

Solution

Approach: Determine whether the spectral acceleration of the trolley (mass) exceeds a value of 1g.

For and Fig. 4.19 gives the spectral acceleration as and hence

the trolley will not derail.

Sa = 0.25gz = 0.02,tn = 2 s

4.6.3
Design Under
a Shock
Environment

When a force is applied for short duration, usually for a period of less than one natural time

period, it is called a shock load. A shock causes a significant increase in the displacement,

velocity, acceleration, or stress in a mechanical system. Although fatigue is a major cause

of failure under harmonic forces, usually it is not very important under shock loads.

A shock may be described by a pulse shock, velocity shock, or a shock response spectrum.

The pulse shocks are introduced by suddenly applied forces or displacements in the form

of a square, half sine, triangular, or similar shape (see Fig. 4.22). A velocity shock is

caused by sudden changes in the velocity such as those caused when packages are dropped

from a height. The shock response spectrum describes the way in which a machine or

structure responds to a specific shock instead of describing the shock itself. Different types

of shock pulses are used in qualifying most commercial, industrial, and military products.

Many military specifications such as MIL-E-5400 and MIL-STD-810 define different

types of shock pulses and detailed methods for testing with these pulses. The following

example illustrates the method of limiting dynamic stresses in mechanical systems under a

shock environment.
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(a) Half-sine pulse (b) Triangular pulse (c) Rectangular pulse

FIGURE 4.22 Typical shock pulses.

E X A M P L E  4 . 1 8
Design of a Bracket for Shock Loads

A printed circuit board (PCB) is mounted on a cantilevered aluminum bracket, as shown in Fig. 4.23(a).

The bracket is placed in a container that is expected to be dropped from a low-flying helicopter. The

resulting shock can be approximated as a half-sine-wave pulse, as shown in Fig. 4.23(b). Design the

bracket to withstand an acceleration level of 100 g under the half-sine-wave pulse shown in Fig.

4.23(b). Assume a specific weight of a Young s modulus of psi, and a permissible stress

of 26,000 psi for aluminum.

Solution: The self weight of the beam (w) is given by

and the total weight, W, assumed to be a concentrated load at the free end of the beam, is given by

The area moment of inertia (I) of the cross section of the beam is

The static deflection of the beam under the end load W, can be computed as

dst =
Wl3

3EI
=

(0.5d + 0.4)(103)

3 * 107(0.04167d3)
=

(0.5d + 0.4)

d3
 7.9994 * 10-4

dst,

I =
1

12
*

1

2
* d3

= 0.04167d3

W = Weight of beam + Weight of PCB = 0.5d + 0.4

w = (10) +
1

2
* d*(0.1) = 0.5d

1070.1 lb/in.3,

Section A A

Acceleration

10+

PCB, weight 0.4 lb

A

A

t0 * 0.1 sec

1/2+

d

(b)(a)

100 g

0 t

FIGURE 4.23 A cantilever subjected to an acceleration pulse.
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Since the shock amplification factor (the ordinate in Fig. 4.15(b)) cannot be determined unless the

value of is known, we adopt a trial-and-error procedure to determine the value of and hence

that of If d is assumed as in.,

Equation (2.30) gives

Hence

The shock amplification factor can be found from Fig. 4.15(b) as 1.1. The dynamic load 

acting on the cantilever is given by

where is the acceleration corresponding to the shock, M is the mass at the end of the beam, and

is the inertia force on the beam. Noting that the maximum

bending stress at the root of the cantilever bracket can be computed as

Since this stress exceeds the permissible value, we assume the next trial value of d as 0.6 in. This

yields

From Fig. 4.15(b), the shock amplification factor is found as and hence the dynamic load

acting on the beam can be determined as

Pd = (1.1) +
0.7

g
*  (100g) = 77.0 lb

Aa L 1.1,

 
t0

tn
=

0.1

0.01627
= 6.1445

 tn = 2p 
B
dst

g
= 2p 

B
25.9240 * 10-4

386.4
= 0.01627 sec

 dst = +
0.5 * 0.6 + 0.4

0.63
*  7.9994 * 10-4

= 25.9240 * 10-4 in.

smax =
Mbc

I
=

(71.5 * 10) 
0.5

2

0.005209
= 34315.6076 lb/in.2

I = 0.04167d3
= 0.005209 in.4,Mas

as

Pd = AaMas = (1.1)+
0.65

g
*(100 g) = 71.5 lb

(Pd)(Aa)

t0

tn
=

0.1

0.020615
= 4.8508

tn = 2p 
B
dst

g
= 2pC+

41.5969 * 10-4

386.4
* = 0.020615 sec

dst = +
0.5 * 0.5 + 0.4

0.53
*  7.9997 * 10-4

= 41.5969 * 10-4 in.

1
2t0>tn.

tnt0>tn
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406 CHAPTER 4 VIBRATION UNDER GENERAL FORCING CONDITIONS

Since gives the maximum bending stress at the root of

the bracket will be

Since this stress is within the permissible limit, the thickness of the bracket can be taken as 

*

4.7 Laplace Transform
As stated earlier, the Laplace transform method can be used to find the response of a system

under any type of excitation, including the harmonic and periodic type. A major advantage of

the method is that it takes into account the initial conditions automatically. An introduction

to Laplace transform is given in Appendix D along with a table of Laplace transform pairs.

The application of the Laplace transform method for the finding the response of a system

basically involves the following steps:

1. Write the equation of motion of the system.

2. Transform each term of the equation, using known initial conditions.

3. Solve for the transformed response of the system.

4. Obtain the desired solution (response) by using inverse Laplace transformation.

d = 0.6 in.

smax =
Mbc

I
=

(77.0 * 10)+
0.6

2
*

0.009001
= 25663.8151 lb/in.2

I = 0.04167d3
= 0.009001 in.4,d = 0.6 in.

4.7.1
Transient and
Steady-State
Responses

The transient response denotes the portion of the solution caused by the initial conditions and

dies down with time. The steady-state response represents the portion of the solution caused

by the applied force or excitation and approaches the condition in which equilibrium prevails.

Initial value of the response: If the response or solution of a system is known in time

domain, the initial value of the response, can be determined by setting If the

response of the system is given in Laplace domain, the initial value can be found as follows:

(4.46)

Equation (4.46) is known as the initial value theorem.

Steady-state value of the response: If the response of a system is known in time

domain, the steady-state value of the response, can be determined by taking the limit

as time approaches infinity. If the response of the system is given in the Laplace domain,

the steady-state value can be found by taking the limit, as s approaches zero, of s times the

response in Laplace domain:

(4.47)

Equation (4.47) is called the final value theorem.

The application of Laplace transform for the computation of the response of first and

second-order systems under different forcing functions is considered below.

xss = lim
s:0

[sX(s)]

xss,

x(t = 0) lim
s:q

[sX(s)]

t = 0.x (t = 0),
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4.7.2
Response
of First-Order
Systems

Consider a spring-damper system subjected to a forcing function with the equation of

motion (Fig. 4.1(b)):

(4.48)

Equation (4.48) can be rewritten as

(4.49)

where

(4.50)

The solution of Eq. (4.49) under different forcing functions is illustrated in the fol-

lowing examples.

F(t)

a =
k

c
,        F(t) = F F(t),       F =

1

c

x
#
+ ax = F(t)

cx
#
+ kx = F(t)

F(t)

E X A M P L E  4 . 1 9
Unit Impulse Response of a First-Order System

Find the solution of Eq. (4.49) when the forcing function is a unit impulse at and determine the

initial and steady-state values of the response.

Solution: The equation of motion, Eq. (4.49), in this case becomes

(E.1)

where By taking Laplace transform of Eq. (E.1), we obtain

(E.2)

Assuming the initial condition to be zero, Eq. (E.2) can be expressed as

(E.3)

The inverse Laplace transform of Eq. (E.3) gives the steady-state response of the system as

(E.4)

The initial value of the response can be found from the time response, Eq. (E.4), by setting 

This gives

(E.5)

From the solution in Laplace domain, the initial value of the response is given by the initial value theorem:

(E.6)x(t = 0+) = lim
s:q

[sX(s)] = lim
s:q

 F a
s

s + a
b = lim

s:q
 F a

1

1 + (a/s)
b = F

x(t = 0+) = F

t = 0.

x(t) = Fe-at

X(s) =
F

s + a
= F a

1

s + a
b

x(0) = 0,

sX(s) - x(0) + aX(s) = F

F = 1/c.

x
#
+ ax = F d(t)

t = 0
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f (t)

f (t) * bt

b

t

FIGURE 4.24 Ramp function.
*

Similarly, from the response in time domain, Eq. (E.4), the steady-state value can be found by taking

the limit as Thus Eq. (E.4) yields

(E.7)

The steady-state value of the response can be determined from Eq. (E.3) using the final value theorem as

(E.8)

*

xss = lim
s:0

[sX(s)] = lim
s:0

a
Fs

s + a
b = 0

xss = lim
t:q

 Fe-at
= 0

t: q .

E X A M P L E  4 . 2 0
Response of a First-Order System due to Ramp Function

Find the solution of Eq. (4.49) when the applied force is a ramp function.

Solution: The equation of motion, Eq. (4.49), in this case can be written as

(E.1)

where and b denotes the slope of the ramp (Fig. 4.24). By taking Laplace transform

of Eq. (E.1), we obtain

(E.2)

Assuming the initial condition to be zero, Eq. (E.2) can be expressed as

(E.3)

The inverse Laplace transform of Eq. (E.3) gives the steady-state response of the system as

(E.4)x(t) =
d

a2
 [at - (1 - e-at)]

X(s) = d +
1

s2(s + a)
* =

d

a2
 

a2

s2(s + a)

x(0) = 0,

sX(s) - x(0) + aX(s) =
d

x2

d = Fb, F = 1/c,

x
#
+ ax = Fbt = dt
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4.7.3
Response of
Second-Order
Systems

Consider a spring-mass-damper system subjected to a forcing function with the equa-

tion of motion (Fig. 4.2(a)):

(4.51)

The solution of Eq. (4.51) under different forcing functions is illustrated in the fol-

lowing examples.

F(t)

mx
$

+ cx
#
+ kx = F(t)

F(t)

E X A M P L E  4 . 2 1
Unit Impulse Response of a Second-Order System

Find the response of an underdamped single-degree-of-freedom system to a unit impulse.

Solution: The equation of motion is given by

(E.1)

By taking the Laplace transform of both sides of Eq. (E.1), we obtain

or

(E.2)

Assuming zero initial condition, Eq. (E.2) can be expressed as

or

(E.3)

We can express the right-hand side of Eq. (E.3) in partial fractions as

(E.4)

where and are the roots of the polynomial equation:

(E.5)

which are given by

(E.6)

where

(E.7)vd = vn21 - z2

s1 = -zvn + ivd,        s2 = -zvn - ivd

s2
+ 2zvns + vn

2
= 0

s2s1

X(s) =
C1

s - s1

+
C2

s - s2

X(s) =
1

m(s2
+ 2 zvns + vn

2)

(ms2
+ cs + k)X(s) = 1

x0 = x
#

0 = 0,

(ms2
+ cs + k)X(s) = mx

#

0 + (ms + c)x0 + 1

[m(s2
- sx0 - x

#

0) + c(s - x0) + k]X(s) = 1

mx
$

+ cx
#
+ kx = d(t)
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410 CHAPTER 4 VIBRATION UNDER GENERAL FORCING CONDITIONS

is the damped frequency of the system. Substitution of Eq. (E.6) into Eq. (E.4) yields

or

(E.8)

By equating the coefficients on both sides of Eq. (E.8), we obtain

(E.9)

or

(E.10)

Equations (E.9) and (E.10) give

(E.11)

Using Eq. (E.11) in Eq. (E.4), X(s) can be expressed as

(E.12)

By taking the inverse Laplace transform of Eq. (E.12), we obtain

(E.13)

Notes:

1. The response for (because the unit impulse is applied at ).

2. Equation (E.13) can be seen to be same as the unit impulse response function derived using

the traditional method, Eq. (4.25).

The following two examples illustrate the application of impulse response computations in the

context of inelastic and elastic impacts.

*

t = 0t 6 0x(t) = 0

 =
1

mvd

 e-zvn t sin vd t;             t Ú 0

 =
1

2imvd

 e-zvn t(eivd t
- e-ivdt)

 x(t) =
1

2imvd

 (esi t
- es2t) =

1

2imvd

 [e(-zvn+ ivd)
- e(- zvn+ ivd)]

X(s) =
1

2imvd

 +
1

s - s1

-
1

s - s2
*

C2 = -
1

2imvd

= -C1

C2(zvn + ivd - zvn + ivd) = -
1

m

 C1(-zvn - ivd) + C2(-zvn + ivd) = -
1

m

 C1 + C2 = 0 or C1 = -C2

(C1 + C2)s - 5C1(-zvn - ivd) + C2(-zvn + ivd)6 = (0) s +
1

m

C1(s - s2) + C2(s - s1) =
1

m
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E X A M P L E  4 . 2 2

x(t)

k c

(a) Before impact (b) After impact

v1

M

m

x(t)

k

M

m

c

FIGURE 4.25 Inelastic impact.

Response to Inelastic Impact

A mass m, moving with velocity strikes the mass M of a damped single-degree-of-freedom sys-

tem as shown in Fig. 4.25(a) and gets attached to the mass M after the impact as shown in Fig.

4.25(b). Find the resulting displacement response of the system.

Approach: Use the relation:

Change in 

i.e.,

(E.1)

where m is the striking mass, is the final velocity (after impact), is the initial velocity (before

impact), f(t) is the force applied during the short duration 0 to t, and the integral denotes the impulse

(same as the area under the force-time curve).

Solution: Since the mass m gets attached to the mass M after the impact, the impact can be

considered to be perfectly plastic or inelastic. The combined system (with the two masses together as

shown in Fig. 4.25(b)) can be considered to be subjected to an impulse with changes in the velocities

of the masses. The impact force, f(t), is internal to the system and can be assumed to be zero. Thus

Eq. (E.1) can be rewritten as

(E.2)

where is the velocity of the combined system after impact. Equation (E.2) gives the

velocity of the system immediately after the impact as

(E.3)

The equation of motion for the combined system is given by

(E.4)(m + M)x
$

+ cx
#
+ kx = 0

Vs =
mv1

m + M

(m + M)Vs

(m + M)Vs - 5mv1 + M(0)6 = 0

v1v2

mv2 - mv1 =

L

1

0
f(t) dt

momentum = impulse

v1,
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x(t)

k
c

(a) Before impact (b) After impact

v1

V1 V2

v2

M

m

x(t)

k
c

M

m

FIGURE 4.26 Elastic impact.

Since the impact causes a change in the velocity, but not the displacement, of the system just imme-

diately after impact, the initial conditions can be taken as and 

The free-vibration response of the system (solution of Eq. (E.4)) can be obtained from 

Eq. (4.18) as

(E.5)

*

x(t) = e-zvn t
 

x
#

0

vd
 sin vdt =

m v1

(m + M)vd
 e-zvn t sin vdt

Vs =

mv1

m + M
.

x 
#
(t = 0) =x (t = 0) = 0

E X A M P L E  4 . 2 3
Response to Perfectly Elastic Impact

A mass m, moving with velocity strikes the mass M of a damped single-degree-of-freedom sys-

tem as shown in Fig. 4.26(a). The impact is perfectly elastic, so that after impact the mass m

rebounds with velocity Find the resulting displacement response of the mass M.

Approach: When two masses m and M moving initially with velocities and strike each other,

and attain the velocities and immediately after impact, respectively (Fig. 4.26(b)), the con-

servation-of-momentum principle yields

or

(E.1)

Because the impact is perfectly elastic, the principle of conservation of kinetic energy is applicable,

so that

1

2
 mv1

2
+

1

2
 MV1

2
=

1

2
 mv2

2
+

1

2
 MV2

2

m(v1 - v2) = -M(V1 - V2)

mv1 + MV1 = mv2 + MV2

V2v2

V1v1

v2.

v1,
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or

which can be rewritten in the form 

(E.2)

Using Eq. (E.1) in Eq. (E.2), we find that

or

(E.3)

Equation (E.3) indicates that the magnitude of the relative velocity of the masses remains constant

and only the sign changes during a perfectly elastic impact.

Solution: Because the velocities of the masses m and M are known to be and before

impact, their velocities immediately after impact can be determined from Eqs. (E.1) and (E.3):

or

(E.4)

and

(E.5)

The solution of Eqs. (E.4) and (E.5) yields

(E.6)

The change in the momentum of mass m is given by

(E.7)

Thus the impulse applied to the mass m during the impact is given by

(E.8)

According to Newton s third law of motion, the impulse applied to the mass M during impact will be

the same as, but opposite in sign to, the impulse applied to mass m. Due to this impulse applied, the

equation of motion of mass M can be expressed as

(E.9)Mx
#
+ cx

#
+ kx =

L

t

0
F(t) dt = F =

2mM

m + M
 v1d(t)

L

t

0
f(t) dt = - a

2mM

m + M
b  v1

m(v2 - v1) = ma
m - M

m + M
- 1b  v1 = - a

2mM

m + M
b  v1

v2 =
m - M

m + M
 v1,           V2 =

2m

m + M
 v1

(v1 - 0) = v1 = -(v2 - V2) = V2 - v2

V2 =
mv1

M
-

m

M
 v2

m(v1 - v2) = -M(0 - V2) = MV2

V1 = 0v1

(v1 - V1) = -(v2 - V2)

v1 + v2 = V1 + V2

1

2
 m(v1 + v2)(v1 - v2) = -

1

2
 M(V1 + V2)(V1 - V2)

1

2
 m(v1

2
- v2

2) = -
1

2
 M(V1

2
- V2

2)
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Using the initial conditions of M as and the solution of

Eq. (E.8) can be expressed, using Eq. (4.26), as

(E.10)

*

x(t) =
Fe-zvnt

Mvd
 sin vdt = a

2mM

m + M
b  

v1

Mvd
 e-zvn t sin vdt

x
#  (t = 0) = x

#

0 = 0,x (t = 0) = x0 = 0

4.7.4
Response to
Step Force

E X A M P L E  4 . 2 4
Step Response of an Underdamped System

Find the response of an underdamped single-degree-of-freedom system to a unit step function.

Solution: The equation of motion is given by

(E.1)

By taking the Laplace transform of both sides of Eq. (E.1) and assuming zero initial conditions

we obtain

(E.2)

which can be rewritten as

(E.3)

We can express the right-hand side of Eq. (E.3) in partial fractions as

(E.4)

where and are the roots of the polynomial equation

(E.5)

which are given by

(E.6)

The constants and in Eq. (E.4) can be determined as follows. Substituting the values of

and given by Eq. (E.6) into Eq. (E.4) and rearranging the terms leads to

(E.7)

Equation (E.7) can be rewritten as

(E.8) = (0)s2
+ (0)s +

1

m

 s2(C1 + C2 + C3) + s[(2zvn) C1 + (zvn + ivd)C2 + (zvn - ivd)C3] + vn
2C1

1

m
= C1(s2

+ 2zvns + vn
2) + C2[s2

+ s(zvn + ivd)] + C3[s2
+ s(zvn - ivd)]

s3s1, s2,
C3C1, C2,

s1 = 0,         s2 = -zvn + ivd,        s3 = -zvn - ivd

s(s2
+ 2zvns + vn

2) = 0

s3s1, s2,

X(s) =
1

ms(s2
+ 2 zvns + vn

2)
=

C1

s - s1
+

C2

s - s2
+

C3

s - s3

X(s) =
1

ms(s2
+ 2zvns + vn

2)

(ms2
+ cs + k)X(s) = l[1] =

1

s

(x0 = x
#

0 = 0),

mx
#
+ cx

#
+ kx = f(t) = 1
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By equating the coefficients of corresponding terms on both of Eq. (E.8), we obtain

(E.9)

(E.10)

(E.11)

The solution of Eqs. (E.9) (E.11) gives

(E.12)

(E.13)

(E.14)

Using Eqs. (E.12) (E.14) in Eq. (E.3), X(s) can be expressed as

(E.15)

By taking the inverse Laplace transform of Eq. (E.15) and using the results given in Appendix D, we

obtain

(E.16)

where

(E.17)

It can be seen that Eq. (E.16) is same as the unit step response (with ) derived using the tra-

ditional method, Eq. (E.1) of Example 4.9. The response given by Eq. (E.16) is shown in Fig. 4.27.

F0 = 0

f = tan-1
¢

z

21 - z2

 =
1

k
 B1 -

e-zvn t

21 - z2
   cos(vdt - f)R

 =
1

k
 b 1 -

e-zvn t

vd

 [zvn  sin vd t + vd  cos vdt] r

 =
1

mvn
2

 b 1 +
e-zvd t

2ivd

 [(-zvn - ivd)eivd t
- (-zvn + ivd)e-ivd t] r

 x(t) =
1

mvn
2
+

e-zvn t

2imvd

 ¢
eivd t

-zvn + ivd

-
e-ivd t

-zvn - ivd

 +
1

2imvd

 B
1

-zvn + ivd

 
1

s - (-zvn + ivd)
-

1

-zvn - ivd

 
1

s - (-zvn - ivd
R

 X(s) =
1

mvn
2
 
1

s

 C3 =
1

2imvd(zvn + ivd)

 C2 =
1

2imvd(-zvn + ivd)

 C1 =
1

mvn
2

 C1vn
2
=

1

m

 C1(2zvn) + C2(-zvn + ivd) + C3(zvn - ivd) = 0

 C1 + C2 + C3 = 0
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Steady-state value + 1

Envelope of e*zvnt

2

kx(t)

F0

1

0 t

FIGURE 4.27 Response of an underdamped system subjected

to a step force.
*

E X A M P L E  4 . 2 5
Initial and Final Values of Step Response of Underdamped System

Find the initial and steady-state values of the unit step response of an underdamped system from the

responses indicated by Eqs. (E.16) and (E.3) of Example 4.24.

Solution: The response of the system in time domain, Eq. (E.16) of Example 4.24, can be written as

(E.1)

By setting in Eq. (E.1), we find the initial value as 0. By taking the limit as the term 

and hence the steady-state value of x(t) is given by The response of the system in

Laplace domain is given by Eq. (E.3) of Example 4.24. Using the initial value theorem, we find

the initial value as

*

 xss = lim
s:0

[sX(s)] = lim
s:0

B
1

m(s2
+ 2zvns + vn

2
R =

1

mvn
2
=

1

k

 x (t = 0+) = lim
s:q

[sX(s)] = lim
s:q

B
1

m(s2
+ 2zvns + vn

2
R = 0

1>k.e-zvn t
: 0

t: q ,t = 0

x(t) =
1

k
 b 1 -

e-zvn t

vd

 [zvn  
sin vdt + vd  

cos vdt] r

E X A M P L E  4 . 2 6
Response of a Compacting Machine

Find the response of the compacting machine of Example 4.9 assuming the system to be under-

damped (i.e., ).

Approach: Use a spring-mass-damper model of the compacting machine and use Laplace transform

technique.

z 6 1
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Solution: The forcing function is given by

(E.1)

By taking the Laplace transform of the governing differential equation, Eq. (4.51), and using

Appendix D, we obtain the following equation:

(E.2)

where

(E.3)

Thus Eq. (E.2) can be written as

(E.4)

The inverse transform of Eq. (E.4) can be expressed by using the results in Appendix D as

(E.5) + ¢
2zx0

vn

+
x 
#

0

vn
2

B
vn

21 - z2
 e- 

zvnt sin(vn21 - z2 t)R

 -
x0

vn
2

  B
vn

2 e- 
zvnt

21 - z2
 sin 5vn21 - z2

 t - f16R

 -
F0

mvn
2

  B1 -
e- 

zvn(t- t0)

21 - z2
 sin 5vn21 - z2

 (t - t0) + f16R

 x(t) =
F0

mvn
2

 B1 -
e- 

zvnt

21 - z2
 sin 5vn21 - z2

 t + f16R

 +
x0

vn
2

  
s

¢
s2

vn
2
+

2zs

vn

+ 1

+ ¢
2zx0

vn

+
x
#

0

vn
2

 
1

¢
s2

vn
2
+

2zs

vn

+ 1

 =
F0

mvn
2

  
1

s ¢
s2

vn
2
+

2zs

vn

+ 1

-
F0

mvn
2

  
e-  

t0s

s ¢
s2

vn
2
+

2zs

vn

+ 1

 +
1

s2
+ 2zvn + vn

2
 x
#

0

 X(s) =

F0(1 -  e-   
t0s)

ms(s2
+ 2zvns + vn

2)
+

s + 2zvn

s2
+ 2zvns + vn

2
 x0

F(s) = lF(t) =

F0(1 -  e-  
t0s)

s

 +
1

s2
+ 2zvns + vn

2
 x
#

0

 X(S) =

F(s)

m(s2
+ 2zvns + vn

2)
+

s + 2zvn

s2
+ 2zvns + vn

2
 x0

F(t) = b
F0  for 0 t t0

0  for t 7 t0
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418 CHAPTER 4 VIBRATION UNDER GENERAL FORCING CONDITIONS

where

(E.6)

Thus the response of the compacting machine can be expressed as

(E.7)

Although the first part of Eq. (E.7) is expected to be the same as Eq. (E.1) of Example 4.11, it is dif-

ficult to see the equivalence in the present form of Eq. (E.7). However, for the undamped system, Eq.

(E.7) reduces to

(E.8)

The first or steady-state part of Eq. (E.8) can be seen to be identical to Eq. (E.3) of Example 4.11.

*

 =
F0

k
 [cos vn(t - t0) -  cos vnt] + x0 cos vnt +

x 
#

0

vn

 sin vnt

 - x0 sin ¢vn t -
p

2
+

x
#

0

vn

 sin vnt

 x(t) =
F0

mvn
2

 B -sin ¢vnt +
p

2
+  sin bvn(t - t0) +

p

2
r R

 +
(2zvnx0 + x 

#

0)

vn21 - z2
 e- 

zvnt sin(vn21 - z2 t)

 -
x0

21 - z2
 e- 

zvnt sin (vn21 - z2 t - f1)

 +  e-  

zvn(t- t0) sin 5vn21 - z2
 (t - t0) + f16]

 x(t) =
F0

mvn
221 - z2

 [-e- 
zvnt sin(vn21 - z2 t + f1)

f1 = cos-1(z)

E X A M P L E  4 . 2 7
Overdamped System Subjected to Step Force

Find the response of an overdamped single-degree-of-freedom system subjected to a step force with

the equation of motion

(E.1)

Assume the initial conditions as and 

Solution: By taking the Laplace transform of both sides of Eq. (E.1), we obtain

or

(E.2)s(2s2
+ 8s + 6)X(s) = 5 + 2s(sx0 + x

#

0) + 8sx0

[25s2X(s) - sx0 - x
#

0) + 85sX(s) - x06 + 6X(s)] =
5

s

x
#

0 = 2.x0 = 1

2x
$

+ 8x
#
+ 6x = 5us(t)
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4.7 LAPLACE TRANSFORM 419

Using the initial values, and Eq. (E.2) can be expressed as

or

(E.3)

Noting that the roots of the polynomial in the denominator on the right-hand side of Eq. (E.3) are

and X(s) can be expressed, using partial fractions, as

(E.4)

where the constants can be found, using Eq. (D.1), as

(E.5)

where A(s) is the numerator and B(s) is the denominator of the middle expression in Eq. (E.3) and a

prime denotes the derivative with respect to s. The middle expression in Eq. (E.3) yields

(E.6)

Equations (E.5) and (E.6) give

(E.7)

In view of Eqs. (E.7), Eq. (E.4) becomes

(E.8)

By taking the inverse Laplace transform of Eq. (E.8), we obtain the response of the system as

(E.9)

The response given by Eq. (E.9) is shown graphically in Fig. 4.28.

x(t) =
5

6
+

5

4
 e-t

-
13

12
 e-3 t

X(s) =
5

6
 
1

s
+

5

4
 

1

s + 1
-

13

12
 

1

s + 3

  C3 =

A(s)

B¿(s)
`

s=s3=-3

=
-6.5

6
= -

13

12

  C2 =

A(s)

B¿(s)
`

s=s2=-1

=
-2.5

-2
=

5

4

 C1 =

A(s)

B¿(s)
`

s=s1=0

=
2.5

3
=

5

6

A(s)

B¿(s)
=

s2
+ 6s + 2.5

3s2
+ 8s + 3

Ck =

A(s)

B¿(s)
`

s=sk

;         k = 1, 2, 3

X(s) =
C1

s - s1

+
C2

s - s2

+
C3

s - s3

s3 = -3,s1 = 0, s2 = -1

X(s) =
2s2

+ 12s + 5

2s(s2
+ 4s + 3)

=
s2

+ 6s + 2.5

s(s + 1)(s + 3)

s(2s2
+ 8s + 6)X(s) = 2s2

+ 12s + 5

x
#
0 = 2,x0 = 1
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FIGURE 4.28
*

4.7.5
Analysis of the
Step Response

The response of a damped single-degree-of-freedom system under a step force, given by

Eqs. (E.1) and (E.2) of Example 4.9 and Eqs. (E.16) and (E.17) of Example 4.24, can be

expressed in the form

(4.52)

where

(4.53)

The variations of the nondimensional response with the nondimensional time,

is shown graphically in Fig. 4.29 for several values of the damping ratio It can be

seen that for an undamped system the response exhibits oscillations which never

die out. For an underdamped system the response overshoots and oscillates about

the final or steady-state value. Furthermore, the smaller the value of the damping ratio, the

larger will be the overshoot, so that the oscillations take longer to die out. For a critically

damped system the response reaches the final or steady-state value most quickly

with no oscillation. For an overdamped system the response reaches the steady-

state value slowly with no overshoot.

(z 7 1),

(z = 1),

(z 6 1),

(z = 0),

z.vnt,

kx(t)>F0,

f = tan-1 +
z

21 - z2
*

kx(t)

F0

= 1 -
1

21 - z2
 e-zvn t cos(vdt - f)
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4.7 LAPLACE TRANSFORM 421

FIGURE 4.29 Response of an underdamped system due to a unit step force.

4.7.6
Description 
of Transient
Response

The performance and behavior of a vibrating system for transient response is described in

terms of parameters such as maximum overshoot, peak time, rise time, delay time, and

settling time. These parameters are shown in Fig. 4.30, which denotes a typical step

response of an underdamped system. They are discussed below.

1. Peak time The peak time is the time required for the response to attain the first

peak of the overshoot.

The maximum amount the response overshoots, occurs when the derivative

of x(t) is zero. The time variation of the unit step response of an underdamped system

is given by Eq. (E.16) of Example 4.24:

(4.54)

where Equation (4.54) can also be expressed in compact form as

(4.55)

where

(4.56)a = tan-1
 +
zvn

vd

* = tan-1
+

z

21 - z2
*

kx(t) = 1 - e
-zvnt

 A1 + a

zvn

vd
b

2

 cos(vdt - a)

vd = vn21 - z2
.

kx(t) = 1 - e
-zvnt

 +
zvn

vd

 sin vdt + cos vdt*

Mp,

(tp):

0

0.2

0.4

0.6

0.8

1.0

1.2

1.4

1.6

1.8

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17

z * .1

vnt

.2

.4

.8

.6

.5

kx(t)

F
0
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O

0.1

0.50

0.9

0.98

1.0

1.02

x(t)

Mp

td

tr

tp ts
t

FIGURE 4.30 Specifications of the response of an underdamped system.

The derivative of x(t) will be zero when x(t) reaches its maximum, so that

or

(4.57)

Equation (4.57) is satisfied when sin so that

(4.58)

Thus the peak time is given by

(4.59)

2. Rise time The rise time is the time needed for the response to rise from 10% to

90% of the final or steady-state value for overdamped systems. For underdamped

systems, usually, the rise time is taken as the time required for the response to rise

from 0% to 100% of the final or steady-state value.

(tr 
):

tp =
p

vd

vdtp = 0

vdt = 0

e
-zvn t

 b
(zvn)

2

vd

 sin vdt + vd sin vdt r = 0

 - e
-zvnt

 5zvncos vdt - vd sin vdt6 = 0

 kx
#
(t) = zvne

-z
 
vnt

 b
zvn

vd

 sin vdt + cos vdt r
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By assuming the rise time to be equal to the time required for the response to rise from

0% to 100%, we can find the rise time by setting the value of x(t), given by Eq. (4.54)

at , equal to one:

(4.60)

Noting that Eq. (4.60) yields

or

(4.61)

This gives the rise time as

(4.62)

where is given by Eq. (4.56). Equation (4.56) indicates that the rise time can be

reduced by increasing the value of or .

3. Maximum overshoot The maximum overshoot is the maximum peak value of

the response compared to the final or steady-state value ( or ), expressed as a

percentage of the steady-state value. It can be computed as

(4.63)

Substituting Eq. (4.59) into the expression for x(t), Eq. (4.54), we obtain

(4.64)

Thus the overshoot is given by

(4.65)

The percent overshoot can be obtained as

(4.66)% Mp = 100e- 
zp

11- z
2

Mp = e- 
zv

n
p

vd = e
- 

zp

31- z2

x(tp) K 1 + Mp = 1 - e-
zv

n
p

vd +
zvn

vd
 sin p + cos p* = 1 + e-

z vnp

vd

Overshoot =
x(tp) - x(q)

x(q)

xssx(q)
(Mp):

zvd

tra

tr =
1

vd
 tan-1

+ -
21 - z2

z
* =

p - a

vd

tr

tan vdt = -
21 - z2

z

+
zvn

vd
 sin vdtr + cos vdtr* = 0

e-zvn tr Z 0,

x(tr) = 1 = 1 - e-zvn tr +
zvn

vd
 sin vdtr + cos vdtr*

tr
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424 CHAPTER 4 VIBRATION UNDER GENERAL FORCING CONDITIONS

By inverting the relation in Eq. (4.66), we can find the damping ratio for a given

percent overshoot as

(4.67)

The overshoot, given by Eq. (4.65), is shown graphically in Fig. 4.31.

4. Settling time: The settling time, by definition, is the time during which x(t) in

Eq. (4.55) reaches and stays within of the steady-state value, By

assuming the cosine term in Eq. (4.55) to be approximately equal to one, the set-

tling time is given by the time it takes for the multiplication factor of the cosine

term to reach a value of 0.02:

which gives

(4.68)ts =
- ln (0.0221 - z2)

zvn

e-zvn ts C1 + +
zvn

vd
*

2

= e-zvn ts 
1

21 - z2
= 0.02

x final.;2 %

z = -

ln (% Mp/100))

2p2
+ ln2 (% Mp/100)
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FIGURE 4.31 Variation of percent overshoot with damping ratio.
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As varies from 0 to 0.9, the numerator in Eq. (4.68) can be seen to vary from 3.01 to

4.74. Thus the settling time, valid approximately for all values of can be taken as

(4.69)

5. Delay time The delay time is the time required for the response to reach 50% of

the final or steady-state value for the first time.

(td):

ts *
4

zvn

z,
z

E X A M P L E  4 . 2 8
Response Characteristics from Transfer Function

Find the peak time percent overshoot (% ), settling time and rise time from the

transfer function of the system given by

(E.1)

Solution: The natural frequency of the system can be found from the last term in the denominator of

Eq. (E.1):

(E.2)

The damping ratio can be determined from the middle term in the denominator of Eq. (E.1) as

(E.3)

Substitution of the values of and into Eqs. (4.59), (4.66), (4.69) and (4.62) yields

(E.4)

(E.5)

(E.6)

(E.7)=

p - tan-1 +
0.5

21 - 0.52
*

1521 - 0.52
= 0.2015 s

Rise time = tr =
p - a

vd
=

p - tan-1 +
z

21 - z2
*

vd

Settling time = ts =
4

zvn
=

4

0.5(15)
= 0.5333 s

Percent overshoot = % Mp = 100e-
p z

11- z
2 = 100e-A

p(0.5)

11- 0.5
2B = 100(0.1231) = 12.31

Peak time = tp =
p

vd
=

p

vn21 - z2
=

p

1521 - 0.52
= 0.2418 s

zvn

2zvn = 15 or z =
15

2vn
=

15

2(15)
= 0.5

vn = 2225 = 15 rad/s

T(s) =

X(s)

F(s)
=

225

s2
+ 15s + 225

(tr)(ts),Mp(tp),
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E X A M P L E  4 . 2 9
System Parameters from Known Response Characteristics

Determine the values of the mass moment of inertia and torsional damping constant of a torsional

system, shown in Fig. 4.32, to achieve a 25% overshoot and a settling time of 2.5 s for a step input

torque of T
0
(t). The torsional stiffness of the system is 10 N-m/rad.

Solution: The transfer function of the system can be expressed as

(E.1)

From the last term in the denominator of Eq. (E.1), we obtain

(E.2)vn =
A

kt

J

T(s) =
(s)

T0(s)
=

(1/J)

s
2
+

ct

J
 s +

kt

J

0
0

0.5

1

1.5

2

2.5

x
(t
)

3

3.5

4

4.5

2 4 6 8 10

Time

12 14 16 18 20

FIGURE 4.32

This example demonstrates that the response characteristics peak time, percent overshoot, set-

tling time and rise time can be determined without the tedious task of finding the time response

through inverse Laplace transform, plotting the time response, and taking measurements from the

time response plot.

*
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The middle term in the denominator of Eq. (E.1) gives

(E.3)

Since the settling time is given as 2.5 s, we have (from Eq. (4.69)):

(E.4)

Equations (E.3) and (E.4) give

(E.5)

Equations (E.2) and (E.4) yield

(E.6)

Using the known percent overshoot, the damping ratio can be determined from Eq. (4.67) as

(E.7)

Equation (E.4) gives

(E.8)

Equation (E.2) yields

(E.9)

The torsional damping constant can be found from Eq. (E.5) as

(E.10)

*

ct = 3.2J = 3.2(0.6366) = 2.0372 N-m-s/rad

ct

J =
kt

vn
2
=

10

3.96332
= 0.6366 kg-m2

vn =
1.6

z
=

1.6

0.4037
= 3.9633 rad/s

z = -

ln (% Mp/100)

2p2
+ ln2 (% Mp/100)

= -

ln (25/100)

2p2
+ ln2 (25/100)

= 0.4037

z =
1.6

vn
= 1.6 A

J

kt

2zvn = 3.2 =
ct

J

ts =
4

zvn
= 2.5 or zvn = 1.6

2 zvn =
ct

J
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4.8 Numerical Methods

The determination of the response of a system subjected to arbitrary forcing functions

using numerical methods is called numerical simulation. The analytical methods discussed

so far become tedious and sometimes even impossible to use in finding the response of a

system if the forcing function or excitation cannot be described in simple analytical form,

or if experimentally determined force data (such as the ground acceleration history mea-

sured during an earthquake) is to be used. Numerical simulations can be used to check the

accuracy of analytical solutions, especially if the system is complex. In a similar manner,

the numerical solutions are to be checked using analytical methods wherever possible. The

numerical methods of solving single-degree-of-freedom systems subjected to arbitrary

forcing functions are considered in this section.

Analytical solutions are extremely useful in understanding the system s behavior with

respect to changes in its parameters. The analytical solutions directly help in designing sys-

tems to meet any specified response characteristics by selecting the parameter values appro-

priately. If analytical solution becomes difficult, the response of the system can be found

using a suitable numerical integration procedure. Several methods are available for numeri-

cally integrating ordinary differential equations. The Runge-Kutta methods are quite popu-

lar for the numerical solution of differential equations.

Consider the equation of motion of a damped single-degree-of-freedom system subject

to an arbitrary force f(t):

(4.70)

with the initial conditions and Most numerical methods

assume that the differential equation is in the form of a first-order differential equation (or

a set of simultaneous first-order differential equations). As such, we need to convert the

second-order differential equation, Eq. (4.70), into an equivalent set of two first-order dif-

ferential equations. For this, we introduce the unknown functions

(4.71)

and rewrite Eq. (4.70) as

(4.72)

or, in view of the functions and introduced in Eq. (4.71),

(4.73)

Equation (4.73) along with the second relation given in Eq. (4.71) can be expressed as

(4.74)x
#

1(t) = x2(t)

mx
#

2 = -cx2(t) - kx1(t) + f(t)

x2(t)x1(t)

mx
$
(t) = -cx

#
(t) - kx(t) + f(t)

x1(t) = x(t),          x2(t) = x
#
(t) =

dx(t)

dt
K x

#

1(t)

x 
#
(t = 0) = x

#

0.x (t = 0) = x0

mx
$
(t) + cx

#
(t) + kx(t) = f(t)
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(4.75)

Equations (4.74) and (4.75) represent two first-order differential equations which together

denote Eq. (4.70). Equations (4.74) and (4.75) can be expressed in vector form as

(4.76)

where

(4.77)F
B

(X
B

, t) = b
F1(t)

F2(t)
r K c

x2(t)

-
k

m
 x1(t) -

c

m
 x2(t) +

1

m
 f(t)

s

X
!
(t) = b

x1(t)

x2(t)
r ,       X

!#

(t) = b
x
#
1(t)

x
#
2(t)

r ,

X
!#

(t) = F
!
(X
!
, t)

x
#
2(t) =

c

m
 x2(t) -

k

m
 x1(t) +

1

m
 f(t)

4.8.1
Runge-Kutta
Methods

In most of the numerical methods, improved solutions are found from the present solution

(starting with a known initial value at time zero) according to the formula

(4.78)

where is the value of x at is the value of x at and is the incre-

mental improvement added to If the solution, x(t), is to be found over the time interval

the total time T is divided into n equal parts with so that

In the Runge-Kutta methods, the approximate formula used for obtaining the solution

from is made to coincide with the Taylor s series expansion of x at up to terms

of order , where k denotes the order of the Runge-Kutta method. The Taylor s series

expansion of x(t) at is given by

(4.79)

In contrast to Eq. (4.79), which requires higher-order derivatives, the Runge-Kutta meth-

ods do not require explicitly derivatives beyond the first.

In the fourth-order Runge-Kutta method, which is most commonly used, the following

recurrence formula is used to find the values of at different time stations starting

from the known initial vector, 

(4.80)X
!

i+1 = X
!

i +
1

6
 [K

!

1 + 2K
!

2 + 2K
!

3 + K
!

4]

X
!

0 = b
x(t = 0)

x
#
(t = 0)

r = b
x0

x
#
0
r:

tiX
!
(t)

x(t + ¢t) = x(t) + x
#
 ¢t + x

$
 

(¢t)2

2!
+ x

...
 

(¢t)3

3!
+ Á

t + ¢t

(¢t)k
x i+1x ix i+1

t0 = 0, t1 = ¢t, t2 = 2 ¢t, Á , ti = i ¢t, Á , tn = n ¢t = T.
¢t = T/n,0 t T,

xi.
¢xt = ti,t = ti+1, xix i+1

xi+1 = xi + ¢xi

M04_RAO8193_5_SE_C04.qxd  8/21/10  4:13 PM  Page 429



430 CHAPTER 4 VIBRATION UNDER GENERAL FORCING CONDITIONS

E X A M P L E  4 . 3 0
Response Using Runge-Kutta Method

Find the response of a single-degree-of-freedom system subjected to a force with the equation of

motion

(E.1)

so that and Use the fourth-order Runge-Kutta

method. Assume the initial conditions as and 

Solution: The equation of motion given by (E.1) can be expressed as a system of two first-order

differential equations as shown in Eq. (4.76) with

and

The response is computed over the time (0, T). The time duration of is divided into 400

equal time steps so that

¢t = h =
T

400
=

20

400
= 0.05 s

T = 20 s

X
!

0 = b
x1(0)

x2(0)
r = b

0

0
r

f
!
= b

f1(t)

f2(t)
r = c

x2(t)

1

500
 (2000 - 200x2 - 750x1)

s

x
#
(t = 0) = x

#
0 = 0.x(t = 0) = x0 = 0

F(t) = F0 = 2000.m = 500, c = 200, k = 750,

500x
$

+ 200x
#
+ 750x = F(t) = 2000

where

(4.81)

(4.82)

(4.83)

(4.84)

The method is stable and self starting that is, only the value of the vector function at a

single previous time station is required to find the function value at the current time station.

The following example illustrates the procedure.

F
!

K
!

4 = hF
!
(X

!

i + K
!

3, ti+1)

K
!

3 = hF
!
¢X

!

i +
1

2
 K
!

2, ti +
1

2
 h

K
!

2 = hF
!
¢X

!

i +
1

2
 K
!

1, ti +
1

2
 h

K
!

1 = hF
!
(X

!

i, ti)
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Thus The Runge-Kutta method is applied

to find the response of the system Typical solution vectors generated for 

400 are shown in Table 4.1. The response of the system is shown plotted in Fig. 4.32.

*

4.9 Response to Irregular Forcing Conditions Using Numerical Methods
In the method of direct numerical integration of the equation of motion (numerical solution

of differential equations) presented in Section 4.8, it was assumed that the forcing func-

tions F(t) are available as functions of time in an explicit manner. In many practical prob-

lems, however, the forcing functions F(t) are not available in the form of analytical

expressions. When a forcing function is determined experimentally, F(t) may be known as

an irregular curve. Sometimes only the values of at a series of points mayt = tiF(t) = Fi

i = 1, 2, 3, Á ,X
!
i(x1(t)).

t0 = 0, t1 = 0.05, t2 = 0.10, t3 = 0.15, Á , t400 = 20.0.

TABLE 4.1

i x1(i) = x(ti) x2(i) = x(ti)

1 0.000000e+000 0.000000e+000

2 4.965271e-003 1.978895e-001

3 1.971136e-002 3.911261e-001

4 4.398987e-002 5.790846e-001

5 7.752192e-002 7.611720e-001

6 1.199998e-001 9.368286e-001

7 1.710888e-001 1.105530e+000

8 2.304287e-001 1.266787e+000

9 2.976359e-001 1.420150e+000

10 3.723052e-001 1.565205e+000

o

391 2.675602e+000 -6.700943e-002

392 2.672270e+000 -6.622167e-002

393 2.668983e+000 -6.520372e-002

394 2.665753e+000 -6.396391e-002

395 2.662590e+000 -6.251125e-002

396 2.659505e+000 -6.085533e-002

397 2.656508e+000 -5.900634e-002

398 2.653608e+000 -5.697495e-002

399 2.650814e+000 -5.477231e-002

400 2.648133e+000 -5.241000e-002
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432 CHAPTER 4 VIBRATION UNDER GENERAL FORCING CONDITIONS

be available, in the form of a diagram or a table. In such cases, we can fit polynomials or

some such curves to the data and use them in the Duhamel integral, Eq. (4.31), to find the

response of the system. Another more common method of finding the response involves

dividing the time axis into a number of discrete points and using a simple variation of F(t)

during each time step. We shall present this numerical approach in this section, using a lin-

ear interpolation function for F(t) [4.8]. 

Let the function F(t) vary with time in an arbitrary manner, as indicated in Fig. 4.33.

This forcing function is approximated by a piecewise linear function. In the piecewise lin-

ear interpolation, the variation of F(t) in any time interval is assumed to be linear, as shown

in Fig. 4.34. In this case, the response of the system in the time interval can

be found by adding the response due to the linear (ramp) function applied during the cur-

rent interval to the response existing at (initial condition). This gives

(4.85) +  e- 
zvn(t- tj- 1)

 Bxj-1 cos vd (t - tj-1) +
x 
#
j-1 + zvnxj-1

vd

 sin vd(t - tj-1)R

 +
Fj-1

k
 B1 -  e- 

zvn(t- tj- 1)
 b  cos vd (t - tj-1) +

zvn

vd

 sin vd(t - tj-1) r R

x(t) =

¢Fj

k ¢tj
 B t - tj-1 -

2z

vn

+  e- 
zvn(t- tj- 1) * b

2z

vn

 cos vd(t - tj-1) -
vd

2
- z2vn

2

vn
2vd

 sin vd(t - tj-1) r R

t = tj-1

tj-1 t tj

F(t)

O t

FIGURE 4.33 Arbitrary forcing function.
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where By setting in Eq. (4.85), we obtain the response at the end

of the interval :

(4.86)

By differentiating Eq. (4.85) with respect to t and substituting we obtain the veloc-

ity at the end of the interval:

(4.87)

Equations (4.86) and (4.87) are the recurrence relations for finding the response of the sys-

tem at the end of jth time step.

 * Bx 
#
j-1 cos vd ¢tj -

zvn

vd

 ¢x 
#
j-1 +

vn

z
 xj-1  sin vd ¢tjR

 +
Fj-1

k
 e- 

zvn¢tj 

 

 

vn
2

vd

 sin vd ¢tj +  e- 
zvn ¢tj

 x 
#
j =

¢Fj

k ¢tj
 B1 -  e- 

zvn¢tj
 b cos vd ¢tj +

zvn

vd

 sin vd ¢tj r R

t = tj,

 + e- 
zvn¢tj

 Bxj-1 cos vd ¢tj +

x 
#
j-1 + zvnxj-1

vd

 sin vd ¢tjR

 +
Fj-1

k
 B1 -  e- 

zvn¢tjb  cos vd ¢tj +
zvn

vd

 sin vd ¢tj r R

 xj =

¢Fj

k ¢tj
 B¢tj -

2z

vn

+  e- 
zvn¢tj

 b
2z

vn

 cos vd ¢tj -
vd

2
- z2vn

2

vn
2vd

 sin vd ¢tj r R

¢tj

t = tj¢Fj = Fj - Fj-1.

F(t)

O t

+F
2

+t
2

+t
3

+tj

+F
5

Fj*1

Fj

+F
4

+F
3

+t
4

t
1 , 0 t

2
t
3

t
4

tj*1
tj

F
5

F
4

F
3

F
2

F
1

FIGURE 4.34 Approximation of forcing function as a piecewise linear function.
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434 CHAPTER 4 VIBRATION UNDER GENERAL FORCING CONDITIONS

E X A M P L E  4 . 3 1
Damped Response Using Numerical Methods

Find the response of a spring-mass-damper system subjected to the forcing function

(E.1)

in the interval using a numerical procedure. Assume 

and where denotes the natural period of vibration given by

(E.2)

The values of x and at are zero.

Solution: Figure 4.35 shows the forcing function of Eq. (E.1). For the numerical computations, the

time interval 0 to is divided into 10 equal steps with

(E.3)¢ti =
t0

10
=

p

10
; i = 2, 3, Á , 11

t0

t = 0x
#

tn =
2p

vn

=
2p

(k/m)1/2
= 2p

tnt0 = tn  
/2,

F0 = 1, k = 1, m = 1, z = 0.1,0 t t0,

F(t) = F0 +1 - sin 

pt

2t0
*

0.25

0.50

0.75

1.00

0

F(t)

F(t) + F0

F0 + 1

t0 + p

4

p p p

2 4

3p
t

1 * sin
pt

2t0

FIGURE 4.35 Forcing function.

*
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4.9 RESPONSE TO IRREGULAR FORCING CONDITIONS USING NUMERICAL METHODS 435

TABLE 4.2 Response of the system

i ti Obtained According to

Fig. 4.36 (Idealization 4)

x(ti)

1 0 0.00000

2 0.1p 0.04541

3 0.2p 0.16377

4 0.3p 0.32499

5 0.4p 0.49746

6 0.5p 0.65151

7 0.6p 0.76238

8 0.7p 0.81255

9 0.8p 0.79323

10 0.9p 0.70482

11 p 0.55647

1.0

0.8

0.6

0.4

0.2

0.0

0

1.0000

0.8436

0.6910

0.5460

0.4122

0.2929

0.1910

0.1090

0.04894 0.01231

0.00000

F(t)

t
1

t
2

t
3

t
4

t
5

t
6

t
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t
8

t
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t
10

t
11

10 10

2pp
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FIGURE 4.36 Piecewise linear approximation.
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436 CHAPTER 4 VIBRATION UNDER GENERAL FORCING CONDITIONS

E X A M P L E  4 . 3 2
Total Response of a System Under Base Excitation

Using MATLAB, plot the total response of the viscously damped system subject to harmonic base

excitation considered in Example 4.5.

Solution: The total response of the system is given by Eq. (E.8) of Example 4.5:

The MATLAB program to plot this equation is given below.

% Ex4_32.m

for i = 1: 1001

t(i) = (i  1)*10/1000;

 + 0.001333 cos(5t - 0.02666) + 0.053314 sin(5t - 0.02666)

 x(t) = 0.488695e
-

  

t
 cos(19.975t - 1.529683)

In Fig. 4.36, piecewise linear (trapezoidal) impulses are used to approximate the forcing

function F(t). The numerical results are given in Table 4.1. The results can be improved by

using a higher-order polynomial for interpolation instead of the linear function.

4.10 Examples Using MATLAB

0
*0.4

*0.3

*0.2

*0.1

0

0.1

0.2

0.3

0.4

0.5

1 2 3 4 5 6 7 8 9 10

x
(
t)

t
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4.10 EXAMPLES USING MATLAB 437

x(i) = 0.488695 * exp( t(i)) * cos(19.975*t(i) 1.529683) + ... 

0.001333*cos(5*t(i) 0.02666) + 0.053314 * sin(5*t(i)

 0.02666);

end

plot(t,x);

xlabel( t );

ylabel( x(t) );

*

0.5 1

Eq. (E.1): solid line
Eq. (E.2): dashed line

1.5 2 2.5

t

x

3 3.5 4 4.5 50

*0.15

*0.1

*0.05

0

0.05

0.1

0.15

0.2

*0.2

E X A M P L E  4 . 3 3
Impulse Response of a Structure

Using MATLAB, plot the impulse response of the single-degree-of-freedom structure due to (a) a sin-

gle impact and (b) a double impact considered in Examples 4.7 and 4.8.

Solution: The impulse responses of the structure due to single and double impacts are given by Eqs.

(E.1) and (E.3) of Examples 4.7 and 4.8, respectively:

(E.1)

(E.2)x(t) = b
0.20025e

-
  

t
 sin 19.975t;  0 t 0.2

0.20025e
-

  

t
 sin 19.975t + 0.100125e

-
  

(t-0.2)
 sin 19.975 (t - 0.2);  t Ú 0.2

r

x(t) = 0.20025e
-

  

t
 sin 19.975t
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438 CHAPTER 4 VIBRATION UNDER GENERAL FORCING CONDITIONS

E X A M P L E  4 . 3 4
Response Under a Periodic Force

Develop a general-purpose MATLAB program, called Program4.m, to find the steady-state

response of a viscously damped single-degree-of-freedom system under a periodic force. Use the

program to find the response of a system that is subject to the force shown in the accompanying fig-

ure with the following data: 

Solution: Program4.m is developed to accept the values of the periodic force at n discrete values of

time. The input data of the program are as follows:

of the system

of the system

of equidistant points at which the values of the force F(t) are known

of Fourier coefficients to be considered in the solution

period of the function F(t)

of dimension n that contains the known values of F(t); 

of dimension n that contains the known discrete values of time t;

The program gives the following output:

where is the response at time step i. The program also plots the variation of x

with time.

x(i) = x(t = ti)

step number i, t(i), f(i), x(i)

i = 1, 2, Á , n

t(i) = ti,t = array

f(i) = F(ti), i = 1, 2, Á , nf = array

time = time

m = number

n = number

xai = damping ratio (z)

xk = stiffness

xm = mass

m = 100 kg, k = 105 N/m, z = 0.1.

The MATLAB program to plot Eqs. (E.1) and (E.2) is given below.

% Ex4_33.m

for i = 1: 1001

t (i) = (i 1)*5/1000;

x1(i) = 0.20025 * exp( t(i)) * sin(19.975*t(i));

if t(i) > 0.2

a = 0.100125;

else

a = 0.0;

end

x2(i) = 0.20025 * exp( t(i)) * sin(19.975*t(i)) + ...

a * exp( (t(i) 0.2)) * sin(19.975*(t(i) 0.2));

end

plot(t,x1);

gtext( Eq. (E.1): solid line );

hold on;

plot(t,x2, );

gtext( Eq. (E.2): dash line );

xlabel( t );

*
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E X A M P L E  4 . 3 5

*

x
(t

)

Program 4.m: x(t)

0.050

0.1

0

0.2

0.3

0.4

0.5

0.7

0.6

0.1

t

0.15 0.20.050.025

48,000

24,000

0

72,000

96,000

120,000

F(t)

0.1000.075 0.120
t

Response Under Arbitrary Forcing Function

Develop a general-purpose MATLAB program, called Program5.m, to find the response of a viscously

damped spring-mass system under an arbitrary forcing function using the methods of Section 4.9. Use

the program to find the solution of Example 4.31.

Solution: Program5.m is developed to accept the values of the applied force at n discrete values of

time. The program requires the following input data:

of time stations at which the values of the forcing function are known

of size n containing the values of time at which the forcing function is known

of size n containing the values of the forcing function at various time stations accord-

ing to the idealization of Fig. 4.34 (Fig. 4.36 for Example 4.31)

of size n containing the values of the forcing function at various time stations 

according to the idealization of Fig. 4.34 (Fig. 4.36 for Example 4.31)

factor 

natural frequency of the system

time between consecutive time stations

stiffness

The program gives the values of x(i) obtained by the numerical method at the various time stations i.

The program also plots the variation of x with time.

xk = spring

delt = incremental

omn = undamped

(z)xai = damping

ff = array

f = array

t = array

n = number
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440 CHAPTER 4 VIBRATION UNDER GENERAL FORCING CONDITIONS

CHAPTER SUMMARY

We considered the forced vibration of single-degree-of-freedom systems subjected to general peri-

odic forces using Fourier series. For systems subjected to arbitrary forcing functions, we discussed

the methods of convolution integral and Laplace transform for finding the response of undamped and

damped systems. We studied the concept of response spectra and its use in finding the response of

systems subjected to earthquake excitations. Finally, we considered numerical methods, including

the fourth-order Runge-Kutta method, for finding the response of systems subjected to arbitrary

forces, including those described numerically.

Now that you have finished this chapter, you should be able to answer the review questions and solve

the problems given below.
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REVIEW QUESTIONS 441

REVIEW QUESTIONS

4.1 Give brief answers to the following:

1. What is the basis for expressing the response of a system under periodic excitation as a

summation of several harmonic responses?

2. Indicate some methods for finding the response of a system under nonperiodic forces.

3. What is the Duhamel integral? What is its use?

4. How are the initial conditions determined for a single-degree-of-freedom system sub-

jected to an impulse at 

5. Derive the equation of motion of a system subjected to base excitation.

6. What is a response spectrum?

7. What are the advantages of the Laplace transform method?

8. What is the use of a pseudo spectrum?

9. How is the Laplace transform of a function x(t) defined?

10. Define the terms generalized impedance and admittance of a system.

11. State the interpolation models that can be used for approximating an arbitrary forcing

function.

12. How many resonant conditions are there when the external force is not harmonic?

13. How do you compute the frequency of the first harmonic of a periodic force?

14. What is the relation between the frequencies of higher harmonics and frequency of the

first harmonic for a periodic excitation?

15. What is the difference between transient and steady-state responses?

16. What is a first-order system?

17. What is an impulse?

18. What are the properties of the Dirac delta function 

4.2 Indicate whether each of the following statements is true or false:

1. The change in momentum is called impulse.

2. The response of a system under arbitrary force can be found by summing the responses

due to several elementary impulses.

d(t)?

t = 0?
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442 CHAPTER 4 VIBRATION UNDER GENERAL FORCING CONDITIONS

3. The response spectrum corresponding to base excitation is useful in the design of

machinery subject to earthquakes.

4. Some periodic functions cannot be replaced by a sum of harmonic functions.

5. The amplitudes of higher harmonics will be smaller in the response of a system.

6. The Laplace transform method takes the initial conditions into account automatically.

7. The equation of motion can be integrated numerically even when the exciting force is

nonperiodic.

8. The response spectrum gives the maximum response of all possible single-degree-of-

freedom systems.

9. For a harmonic oscillator, the acceleration and displacement spectra can be obtained

from the velocity spectrum.

10. If two masses and get attached to one another after a collision, it is called an elas-

tic collision.

11. The transient response characteristics can be found from the transfer function.

12. The Runge-Kutta method can be used to solve to numerically solve differential equations

of any order.

13. The Laplace transform of 1 is 

4.3 Fill in each of the following blanks with the appropriate word:

1. The response of a linear system under any periodic force can be found by _____ appro-

priate harmonic responses.

2. Any nonperiodic function can be represented by a _____ integral.

3. An impulse force has a large magnitude and acts for a very _____ period of time.

4. The response of a single-degree-of-freedom system to a unit _____ is known as the

impulse response function.

5. The Duhamel integral is also known as the _____ integral.

6. The variation of the maximum response with the natural frequency of a single-degree-of-

freedom system is known as _____ spectrum.

7. The transient response of a system can be found using the _____ integral.

8. The complete solution of a vibration problem is composed of the _____ state and tran-

sient solutions.

9. The Laplace transform method converts a differential equation into an _____ equation.

10. The transfer function is the _____ of the generalized impedance.

11. An impulse can be measured by finding the change in _____ of the system.

12. The Duhamel integral is based on the _____ response function of the system.

13. The Duhamel integral can be used to find the response of _____ single-degree-of-freedom

systems under arbitrary excitations.

14. The velocity response spectrum, determined from the acceleration spectrum, is known as

the _____ spectrum.

15. Any periodic forcing function can be expanded in _____ series.

16. In Laplace domain, gives _____ value of the response.

17. A change in momentum of a system gives the _____.

18. Total response of a system is composed of transient and _____ values.

19. The Laplace transform of x(t) is denoted as _____.

20. F(t) denotes the inverse Laplace transform of _____.

21. The equation of motion corresponds to _____ order system.

22. The Laplace transform of is _____.d(t)

mx
$

+ cx
#
+ kx = f(t)

lim
s:0

[sX(s)]

1

s
.

m2m 1
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4.4 Select the most appropriate answer out of the choices given:

1. The transient part of the solution arises from

a. forcing function b. initial conditions c. bounding conditions

2. If a system is subjected to a suddenly applied nonperiodic force, the response will be

a. periodic b. transient c. steady

3. The initial conditions are to be applied to a

a. steady-state solution b. transient solution c. total solution

4. The acceleration spectrum can be expressed in terms of the displacement spectrum

as

a. b. c.

5. The pseudo spectrum is associated with

a. pseudo acceleration b. pseudo velocity c. pseudo displacement

6. The Fourier coefficients are to be found numerically when the values of the function f(t)

are available

a. in analytical form

b. at discrete values of t

c. in the form of a complex equation

7. The response of a single-degree-of-freedom system under base excitation, y(t), can be

determined by using the external force as

a. b. c.

8. The response spectrum is widely used in

a. building design under large live loads

b. earthquake design

c. design of machinery under fatigue

9. The equation of motion of a system subjected to base excitation, y(t), is given by

a.

b.

c.

10. The function used in the Laplace transform is known as

a. kernel b. integrand c. subsidiary term

11. The Laplace transform of x(t) is defined by

a.

b.

c.

12. In Laplace domain, gives the:

a. initial value b. transient value c. steady-state value

13. corresponds to:

a. an impulse b. step force c. ramp force

14. corresponds to a force applied at

a. b. c.

15. In a perfect elastic collision of two masses and the quantity conserved is:

a. energy b. momentum c. velocity

m2,m1

t - t 7 0t - t 6 0t - t = 0

f(t) = d(t - t)

F(t) = at

lim
s:0

[sX(s)]

x(s) =

L

q

0
 estx(t) dt

x(s) =

L

q

-q

 e-  

stx(t) dt

x(s) =

L

q

0
 e-  

stx(t) dt

 e-  

st

mx
$
+ cx

#
+ kx = -mz

$
; z = x - y

mz
$
+ cz

#
+ kz = -my

$
; z = x - y

mx
$
+ cx

#
+ kx = -my

$

my
$
+ cy

#
+ kymy

$
-my

$

Sa = vn
2SdSa = vnSdSa = -

  

vn
2Sd

(Sd)

(Sa)
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444 CHAPTER 4 VIBRATION UNDER GENERAL FORCING CONDITIONS

16. The step response of an overdamped system exhibits

a. no oscillations b. oscillations c. overshoot

17. The method used to express as is called:

a. separation b. partial fractions c. decomposition

18. Most numerical methods of solving differential equations assume that the order of the

equation is:

a. one b. two c. arbitrary

4.5 Match the items in the two columns below:

1.

2.

3.

4.

5.

6. x(s) =

L

q

0
 e-  

stx(t) dt

z(s) = ms2
+ cs + k

Y(s) =
1

ms2
+ cs + k

x(t) = l 
-1Y(s)F(s)

x(t) =

L

t

0
F(t)g(t - t) dt

x(t) =
1

mvd
 e- 

zvn t sin vdt

C1

s + 1
+

C2

s + 2

3 s + 4

(s + 1)(s + 2)

a. Inverse Laplace transform of 

b. Generalized impedance function

c. Unit impulse response function

d. Laplace transform

e. Convolution integral

f. Admittance function

x(s)

4.6 Match the following characteristics of transient response:

a. Peak time

b. Rise time

c. Maximum overshoot

d. Settling time

e. Decay time

PROBLEMS

Section 4.2 Response Under a General Periodic Force

4.1 4.4 Find the steady-state response of the hydraulic control valve shown in Fig. 4.4(a) to the forcing

functions obtained by replacing x(t) with F(t) and A with in Figs. 1.114 1.117.

4.5 Find the steady-state response of a viscously damped system to the forcing function obtained

by replacing x(t) and A with F(t) and respectively, in Fig. 1.54(a).

4.6 The torsional vibrations of a driven gear mounted on a shaft (see Fig. 4.37) under steady con-

ditions are governed by the equation

where is the torsional stiffness of the driven shaft, is the torque transmitted, is the

mass moment of inertia, and is the angular deflection of the driven gear. If one of the 16 teeth

on the driving gear breaks, determine the resulting torsional vibration of the driven gear for the

following data.

Driven gear: driven shaft: material steel, solid circu-

lar section with diameter 5 cm and length 1 m, Mt0 = 1000 N-m.
J0 = 0.1 N-m-s2,  speed = 1000 rpm,

u

J0Mtkt

J0u
$

+ ktu = Mt

F0,

F0

1. Maximum peak value

2. Time to attain the maximum value

3. Time to reach within of steady-state value

4. Time to reach 50% of the steady-state value

5. Time to increase from 10% to 90% of steady-state value

;2%
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4.7 A slider-crank mechanism is used to impart motion to the base of a spring-mass-damper

system, as shown in Fig. 4.38. Approximating the base motion y(t) as a series of harmonic

functions, find the response of the mass for 

and v = 100 rad/s.l = 1 m,r = 10 cm,

k = 100 N/m,c = 10 N-s/m,m = 1 kg,

d

Driven gear, J0

Driving gearBroken tooth

Driven shaft, kt

l
u

FIGURE 4.37

c

x(t)
k/2

k/2

r
l

m

y(t)

u  vt

FIGURE 4.38

4.8 The base of a spring-mass-damper system is subjected to the periodic displacement shown in

Fig. 4.39. Determine the response of the mass using the principle of superposition.

0

Y

t

y(t)

x(t)

ck

y(t)

2tt

m

v

FIGURE 4.39
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446 CHAPTER 4 VIBRATION UNDER GENERAL FORCING CONDITIONS

4.10 A roller cam is used to impart a periodic motion to the base of the spring-mass system shown

in Fig. 4.41. If the coefficient of friction between the mass and the surface is find the

response of the system using the principle of superposition. Discuss the validity of the result.

m,

x(t)

k

r
l

m m

y(t)

u  vt

FIGURE 4.40

4.9 The base of a spring-mass system, with Coulomb damping, is connected to the slider-crank

mechanism shown in Fig. 4.40. Determine the response of the system for a coefficient of

friction between the mass and the surface by approximating the motion y(t) as a series of

harmonic functions for and

Discuss the limitations of your solution.v = 100 rad/s.

m = 0.1,l = 1 m,r = 10 cm,k = 100 N/m,m = 1 kg,

m

k

y(t)

y(t)

t

0
Y

2t

t

v

m

x(t)

m

FIGURE 4.41

4.11 Find the total response of a viscously damped single-degree-of-freedom system subjected to a

harmonic base excitation for the following data: 

4.12 The suspension system of a car traveling on a bumpy road has a stiffness of 

and the effective mass of the car on the suspension is The road bumps can be

considered to be periodic half-sine waves as indicated in Fig. 4.42. Determine the displace-

ment response of the car. Assume the damping of the system to be negligible.

Hint: The Fourier series representation of the bumpy road, y(t), is given by

y(t) =
1

p
+

1

2
 sin 2pt -

2

p
 b

cos 4pt

1(3)
+

cos 8pt

3(5)
+

cos 12pt

5(7)
+ Á r

m = 750 kg.

k = 5 * 106 N/m

x
#

0 = 1 m/s.x0 = 0.1 m,y(t) = 0.05 cos 5t m,

k = 4000 N/m,c = 20 N-s/m,m = 10 kg,
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m

k

x(t)

y(t)

y(t)

O 0.5t 1.5t 2.5t2t 3t t (time)t

FIGURE 4.42

Section 4.3 Response Under a Periodic Force of Irregular Form

4.13 Find the response of a damped system with and under the

action of a periodic forcing function, as shown in Fig. 1.119.

4.14 Find the response of a viscously damped system under the periodic force whose values are

given in Problem 1.116. Assume that denotes the value of the force in newtons at time 

seconds. Use and 

4.15 Find the displacement of the water tank shown in Fig. 4.43(a) under the periodic force shown

in Fig. 4.43(b) by treating it as an undamped single-degree-of-freedom system. Use the

numerical procedure described in Section 4.3.

z = 0.06.m = 0.5 kg, k = 8000 N/m,

tiMt

z = 0.1m = 1 kg, k = 15 kN/m.

F(t), kNx(t)

F(t) m * 10 Mg

k * 5 MN/m

t (seconds)
0

400

0.06 0.15 0.21

(b)(a)

0.30 0.36

FIGURE 4.43

Section 4.5 Convolution Integral

4.16 Sandblasting is a process in which an abrasive material, entrained in a jet, is directed onto the

surface of a casting to clean its surface. In a particular setup for sandblasting, the casting of

mass m is placed on a flexible support of stiffness k as shown in Fig. 4.44(a). If the force

exerted on the casting due to the sandblasting operation varies as shown in Fig. 4.44(b), find

the response of the casting.
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448 CHAPTER 4 VIBRATION UNDER GENERAL FORCING CONDITIONS

4.17 Find the displacement of a damped single-degree-of-freedom system under the forcing func-

tion where is a constant.

4.18 A compressed air cylinder is connected to the spring-mass system shown in Fig. 4.45(a).

Due to a small leak in the valve, the pressure on the piston, p(t), builds up as indicated in

Fig. 4.45(b). Find the response of the piston for the following data: 1000 N/m,

and d = 0.1 m.

m = 10 kg, k =

aF(t) = F0e-  

a t,

Jet of abrasive
material

Nozzle

Casting, m

(a) (b)

F(t)

Flexible
support, k

t0

F0

O t

FIGURE 4.44

d

x(t)

k
p(t) m

Hose

(a)

Valve

Compressed
air

cylinder

(b)

p(t) + 50 (1 * e*3t)

p(t), kPa

t

FIGURE 4.45
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4.19 Find the transient response of an undamped spring-mass system for when the mass

is subjected to a force

Assume that the displacement and velocity of the mass are zero at 

4.20 4.22 Use the Dahamel integral method to derive expressions for the response of an undamped sys-

tem subjected to the forcing functions shown in Figs. 4.46(a) to (c).

t = 0.

F(t) = d

F0

2
 (1 -  cos vt) for 0 t

p

v

F0 for t 7
p

v

t 7 p/v

F(t)

t0

F0

tO

F(t)

t0

F0

tO

F(t)

t0

F0

tO

F0(1 * cos       )
pt

2t0

(a) (b) (c)

FIGURE 4.46

4.23 Figure 4.47 shows a one degree of freedom model of a motor vehicle traveling in the hori-

zontal direction. Find the relative displacement of the vehicle as it travels over a road bump

of the form y(s) = Y sin ps/d.

4.24 A vehicle traveling at a constant speed v in the horizontal direction encounters a triangular

road bump, as shown in Fig. 4.48. Treating the vehicle as an undamped spring-mass system,

determine the response of the vehicle in the vertical direction.

m

y(s)

s

Y

k/2k/2 c

d

FIGURE 4.47
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0 0.25

0.1

0.50

Distance along
road (m)

Height of bump (m)

FIGURE 4.49

4.25 An automobile, having a mass of 1000 kg, runs over a road bump of the shape shown in

Fig. 4.49. The speed of the automobile is 50 km/hr. If the undamped natural period of vibra-

tion in the vertical direction is 1.0 sec, find the response of the car by assuming it as a single-

degree-of-freedom undamped system vibrating in the vertical direction.

Y

k

m v

d

FIGURE 4.48

4.26 A camcorder of mass m is packed in a container using a flexible packing material. The stiff-

ness and damping constant of the packing material are given by k and c, respectively, and the

mass of the container is negligible. If the container is dropped accidentally from a height of

h onto a rigid floor (see Fig. 4.50), find the motion of the camcorder.

c k/2k/2

h

Camcorder
(m)

Container

FIGURE 4.50
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4.27 An airplane, taxiing on a runway, encounters a bump. As a result, the root of the wing is sub-

jected to a displacement that can be expressed as

Find the response of the mass located at the tip of the wing if the stiffness of the wing is k

(see Fig. 4.51).

y(t) = b
Y(t2/t0

2), 0 t t0
0, t 7 t0

Wing root

Wing, k Equivalent
mass, m

FIGURE 4.51

4.28 Derive Eq. (E.1) of Example 4.12.

4.29 In a static firing test, a rocket is anchored to a rigid wall by a spring-damper system, as

shown in Fig. 4.52(a). The thrust acting on the rocket reaches its maximum value F in a neg-

ligibly short time and remains constant until the burnout time as indicated in Fig. 4.52(b).

The thrust acting on the rocket is given by where is the constant rate at which

fuel is burnt and v is the velocity of the jet stream. The initial mass of the rocket is M, so

that its mass at any time t is given by If the data are

and (1) derive the equation of motion of the rocket, and (2) find the maxi-

mum steady-state displacement of the rocket by assuming an average (constant) mass of

(M -
1
2 m0t0).

t0 = 100 s,
M = 2000 kg,v = 2000 m/s,m0 = 10 kg/s,c = 0.1 * 106 N-s/m,k = 7.5 * 106 N/m,

m = M - m0t, 0 t t0.

m0F = m0v,
t0,

F

F

v

x(t)

t
t0O

k

c

(a) (b)

FIGURE 4.52

4.30 Show that the response to a unit step function h(t) ( in Fig. 4.10(b)) is related to the

impulse response function g(t), Eq. (4.25), as follows:

g(t) =

dh(t)

dt

F0 = 1
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l
b

a

F(t) + F0e
* t

M

k1

k2

Uniform rigid bar,
mass m

,
u

FIGURE 4.53

kk

Uniform rigid bar,
mass m

l

4
3l

4

,

M0e
*2t

u

FIGURE 4.54

4.31 Show that the convolution integral, Eq. (4.31), can also be expressed in terms of the response

to a unit step function h(t) as

4.32 Find the response of the rigid bar shown in Fig. 4.53 using convolution integral for the following

data: 

F0 = 500 N.
m = 10 kg,M = 50 kg,l = 1.0 m,b = 0.5 m,a = 0.25 m,k1 = k2 = 5000 N/m,

x(t) = F(0)h(t) +

L

t

0

dF(t)

dt
 h(t - t) dt

kk

Uniform bar,
mass m

l

4
3l

4

,

Q

x(t) + x0e
* t

P

u

FIGURE 4.55

4.33 Find the response of the rigid bar shown in Fig. 4.54 using convolution integral for the fol-

lowing data: k = 5000 N/m, l = 1 m, m = 10 kg, M0 = 100 N-m.

4.34 Find the response of the rigid bar shown in Fig. 4.55 using convolution integral when the end

P of the spring PQ is subjected to the displacement, Data: 

l = 1 m, m = 10 kg, x0 = 1 cm.
k = 5000 N/m,x(t) = x0e- 

t.

M04_RAO8193_5_SE_C04.qxd  8/21/10  4:13 PM  Page 452



PROBLEMS 453

+

k1

k2

x(t)

m

F0e
* t

r

2r

Pulley, mass moment of inertia J0

FIGURE 4.56

4.35 Find the response of the mass shown in Fig. 4.56 under the force using convo-

lution integral. Data: 

F0 = 50 N.

J0 = 1 kg-m2,m = 10 kg,r = 5 cm,k2 = 500 N/m,k1 = 1000 N/m,

F(t) = F0e- 
t

4.36 Find the impulse response functions of a viscously damped spring-mass system for the fol-

lowing cases:

a. Undamped 

b. Underdamped (c 6 cc)

(c = 0)

Bending axis

(a) Real system

FIGURE 4.57

c. Critically damped 

d. Overdamped (c 7 cc)

(c = cc)

4.37 Find the response of a single-degree-of-freedom system under an impulse for the follow-

ing data: 

4.38 The wing of a fighter aircraft, carrying a missile at its tip, as shown in Fig. 4.57, can be approx-

imated as an equivalent cantilever beam with about the vertical axis and

length If the equivalent mass of the wing, including the mass of the missile and its

carriage system, at the tip of the wing is determine the vibration response of the

wing (of m) due to the release of the missile. Assume that the force on m due to the release of

the missile can be approximated as an impulse function of magnitude F = 50 N-s.

m = 2500 kg,

l = 10 m.

EI = 15 * 109 N-m2

m = 2 kg, c = 4 N-s/m, k = 32 N/m, F = 4 d(t), x0 = 0.01 m, x
#

0 = 1 m/s.

F
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x(t)

m

(b) Beam model

(c) Vibration model

m

keq

keq

x(t)

F

F

FIGURE 4.57 (Continued)

v

Hammer

(a) (b)

Base

F(t)

m

Frame

Anvil

Elastic
pad, k

F(t)

t0 5t0

F0

O t

FIGURE 4.58

4.39 The frame, anvil, and base of the forging hammer shown in Fig. 4.58(a) have a total mass of

m. The support elastic pad has a stiffness of k. If the force applied by the hammer is given by

Fig. 4.58(b), find the response of the anvil.

4.40 The input to the valve of an internal combustion engine is a force of applied

over a period of 0.001 s by a cam as shown in Fig. 4.59 (see Fig. 1.39 for the arrangement of

the valve). The valve has a mass of 15 kg, stiffness of 10,000 N/m, and damping constant of

20 N-s/m. The cam applies the force F once every 0.5 s. (a) Find the displacement response

of the valve from its rest position when the cam applies the force F for the first time.

(b) Determine the displacement of the valve from its rest position when the cam applies the

force F for the second time.

F = 15,000 N
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O

F

f(t)

0.05
t

FIGURE 4.59

4.41 A bird strike on the engine of an airplane can be considered as an impulse (Fig. 4.60(a)). If

the stiffness and damping coefficient of the engine mount are given by and

1000 N-s/m, and the engine mass is find the response of the engine. Assume

the mass of the bird as 4 kg and the velocity of the airplane as 250 km/hr.

m = 500 kg,

k = 50,000 N/m

x(t)

Engine

(a) Physical system

Engine mount

Wing

F d(t)

(b) Model

k c

m

F (Impulse)

FIGURE 4.60

4.42 The rail car, shown in Fig. 4.61, is initially at rest and is set into motion by an impulse 

(a) Determine the motion of the car, x(t). (b) If it is desired to stop the car by applying another

impulse, determine the impulse that needs to be applied to the car.

5 d(t).

k m

c

FIGURE 4.61
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4.43 A spring-damper system is connected to a massless rigid lever as shown in Fig. 4.62. If a step

force of magnitude is applied at time determine the displacement, x(t), of point A

of the lever.

t = 0,F0

m

kx(t) x(t)

y(t) y(t)

m

FIGURE 4.63

x(t)

F(t) * F
0

k

A

c

l
1

l
2

FIGURE 4.62

4.44 A space experimental package of mass m is supported on an elastic suspension of stiffness k

in the space shuttle. During launching, the space shuttle (base of the elastically supported

package) experiences an acceleration of where is a constant. Find the time vari-

ation of the displacement, x(t), and the relative displacement, of the package.

Assume zero initial conditions.

4.45 A person, carrying a precision instrument of mass m, rides in the elevator of a building in a

standing position (Fig. 4.63). The elevator, while moving with velocity at time decel-

erates to zero velocity (stops) in time so that the variation of its velocity can be expressed as

Assuming that the stiffness of the person in standing position is k, determine the displace-

ment variation of the precision instrument, x(t).

n(t) = c
n0a1 -

t

t

b ;      0 t t

0;                         t 7 t

t,

t = 0,v0

x(t) - y(t),

ay
$
(t) = at,
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4.46 The water tank shown in Fig. 4.43(a) is subjected to a sudden hurricane force which varies

with time as shown in Fig. 4.64. Assuming zero initial conditions, determine the displace-

ment response, x(t), of the water tank.

O

F0

f(t)

T
t

FIGURE 4.64

Section 4.6 Response Spectrum

4.47 Derive the response spectrum of an undamped system for the rectangular pulse shown in Fig.

4.46(a). Plot with respect to 

4.48 Find the displacement response spectrum of an undamped system for the pulse shown in

Fig. 4.46(c).

4.49 The base of an undamped spring-mass system is subjected to an acceleration excitation given

by Find the relative displacement of the mass z.

4.50 Find the response spectrum of the system considered in Example 4.13. Plot ver-

sus in the range 

4.51* A building frame is subjected to a blast load, and the idealization of the frame and the load

are shown in Fig. 4.14. If and find the minimum stiff-

ness required if the displacement is to be limited to 10 mm.

4.52 Consider the printed circuit board (PCB) mounted on a cantilevered aluminum bracket

shown in Fig. 4.23(a). Design the bracket to withstand an acceleration level of 100g under

the rectangular pulse shown in Fig. 4.65. Assume the specific weight, Young s modulus, and

permissible stress of aluminum as and respectively.26,000 lb/in.2,0.1 lb/in.3, 107 lb/in.2,

t0 = 0.4 s,m = 5000 kg, F0 = 4 MN,

0 vnt0 15.vnt0

(kx/F0)max

a0[1 - sin(pt/2t0)].

(t0/tn).(x/dst)max

0

0

1 2 3 4

t0 * 0.1

5 6

1

2

100g

t (sec)

Shock amplification
factor

Acceleration

t0
tn

FIGURE 4.65

*The asterisk denotes a problem with no unique answer.
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4.53 Consider the printed circuit board (PCB) mounted on a cantilevered aluminum bracket shown

in Fig. 4.23(a). Design the bracket to withstand an acceleration level of 100g under the trian-

gular pulse shown in Fig. 4.66. Assume the material properties as given in Problem 4.52.

1 lb

16+
8+

1/2+

A

A
Section A A

Electronic box

d

FIGURE 4.67

4.54 An electronic box, weighing 1 lb, is to be shock-tested using a 100g half-sine pulse with a

0.1-sec time base for a qualification test. The box is mounted at the middle of a fixed-fixed

beam as shown in Fig. 4.67. The beam, along with the box, is placed in a container and sub-

jected to the shock test. Design the beam to withstand the stated shock pulse. Assume the

material properties as given in Problem 4.52.

1 2 3 4

t0 * 0.1

5 6

1

100g

2

0

0

t0
tn

t (sec)

Shock amplification
factor Acceleration

FIGURE 4.66

4.55 The water tank shown in Fig. 4.68 is subjected to an earthquake whose response spectrum is

indicated in Fig. 4.18. The weight of the tank with water is 100,000 lb. Design a uniform steel

*

FIGURE 4.68
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hollow circular column of height 50 ft so that the maximum bending stress does not exceed

the yield stress of the material. Assume a damping ratio of 0.05 and a factor of safety of 2.

4.56 Consider the overhead traveling crane shown in Fig. 4.21. Assuming the weight of the trolley

as 5000 lb and the overall damping ratio as 2%, determine the overall stiffness of the system

necessary in order to avoid derailment of the trolley under a vertical earthquake excitation

whose design spectrum is given by Fig. 4.19.

4.57 An electric pole of circular cross section, with a bending stiffness and a

damping ratio carries a transformer of mass as shown in Fig. 4.69. It

is subjected to an earthquake that is characterized by a response spectrum given in Fig. 4.18.

Find (a) maximum relative displacement of the transformer, (b) maximum shear force in the

pole, and (c) maximum bending moment in the pole.

m = 250 kgz = 0.05,

k = 5000 N/m

x(t)

y(t)

Transformer,
mass (m)

Circular pole; 
bending
stiffness

(k)     

Ground motion

FIGURE 4.69

Section 4.7 Laplace Transform

4.58 Find the steady-state response of an undamped single-degree-of-freedom system subjected

to the force by using the method of Laplace transformation.

4.59 Find the response of a damped spring-mass system subjected to a step function of magnitude

by using the method of Laplace transformation.

4.60 Find the response of an undamped system subjected to a square pulse for

and 0 for by using the Laplace transformation method. Assume the initial

conditions as zero.

4.61 Derive the expression for the Laplace transform of the response of a damped single-degree-

of-freedom system subjected to the following types of forcing functions:

a.

b. f(t) = A cos v t

f(t) = A sin v t

t 7 t00 t t0

F(t) = F0

F0

F(t) = F0eiv t

c.

d. f(t) = Ad(t - t0)

f(t) = Ae-vt

4.62 Derive an expression for the impulse response function of a critically damped single-degree-

of-freedom system.

4.63 Find the response of a system with the following equation of motion:

using the initial conditions and Plot the

response of the system.

x
#
(t = 0) = x

#

0 = 0.x(t = 0) = x0 = 0.05 m

2x
$
+ 8x

#
+ 16x = 5 d(t)
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460 CHAPTER 4 VIBRATION UNDER GENERAL FORCING CONDITIONS

x(t)

k c

M

m
0

h

FIGURE 4.70

4.64 A bronze ball of mass is dropped on the mass of a single-degree-of-freedom system from

a height h as shown in Fig. 4.70. If the ball is caught after its first bounce, determine the

resulting displacement response of the mass m. Assume that the collision is perfectly elastic

and the system is at rest initially. Data: 

and h = 2 m.

m = 2 kg, m0 = 0.1 kg, k = 100 N/m, c = 5 N-s/m,

m0

4.65 Consider the equation of motion of a first-order system:

where the forcing function f(t) is periodic. If the Fourier series representation of f(t) is given by

a. what is the bandwidth of the system?

b. find the steady-state response of the system considering only those components of f(t)

that lie within the bandwidth of the system.

4.66 Find the step response of a system with the stated equation of motion:

a.

b.

c.

4.67 Derive the Laplace transform of the ramp function starting from the defin-

ition of Laplace transform.

4.68 Find the inverse Laplace transform of

4.69 Find the inverse Laplace transform of

4.70 Find the response of a spring-damper (first-order) system shown in Fig. 4.1(a) with the

equation of motion

cx
#
+ kx = F(t)

F(S) =
3s + 8

(s + 2)2(s + 5)

F(S) =
-s + 3

(s + 1)(s + 2)

F(t) = bt, t Ú 0,

2x
$
+ 10x

#
+ 18 = 10us(t)

2x
$
+ 10x

#
+ 8 = 10us(t)

2x
$
+ 10x

#
+ 12.5 = 10us(t)

f(t) = 4 sin 2t + 2 sin 4t + sin 6t + 0.5 sin 8t + Á

0.5x
#
+ 4x = f(t)
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where the forcing function is a unit step function. Also determine the initial and steady-

state values of the response from the time and Laplace domain solutions.

4.71 Determine the initial and steady-state values of the ramp response of a first-order system

considered in Example 4.20 from the time and Laplace domain solutions.

4.72 Find the initial and steady-state values of the impulse response of the underdamped system

considered in Example 4.19 using both the time and Laplace domain solutions.

4.73 Find the response of a critically damped single-degree-of-freedom system subjected to a step

force with the equation of motion

Assume the initial conditions as and 

4.74 Find the steady-state response of an underdamped single-degree-of-freedom system sub-

jected to a ramp input where b is the slope of the ramp.

4.75 Derive the expression for the total response of an underdamped single-degree-of-freedom

system subjected to a forcing function F(t). Assume the initial conditions as 

and 

4.76 For the damped second-order system with the transfer function given below, find the values

of and percent overshoot:

4.77 For the damped second-order system with the transfer function given below, find the values

of and percent overshoot:

4.78 For the translational second-order system shown in Fig. 4.2(a) with 

and find the values of and percent overshoot for x(t).

4.79 For the torsional second-order system shown in Fig. 4.2(c) with 

and find the values of and percent overshoot

for 

4.80 For the translational system shown in Fig. 4.2(a) with and step function,

determine the values of m and c to achieve a 40% overshoot and a settling time of 5 s.

Section 4.8 Numerical Methods

4.81 Find the response of a damped single-degree-of-freedom system with the equation of motion

using Runge-Kutta method. Assume that and

with and t1 = 6 s.F0 = 2000 N

F(t) = c

F0 t

t1
;          0 t t1

F0;             t Ú t1

m = 5 kg, c = 200 N-s/m, k = 750 N/m,

mx
$
+ cx

#
+ kx = F(t)

f(t) = unitk = 1

u(t).

z, vn, ts, tr, tp,kt = 2 N-m/rad,2 N-m-s/rad,

J = 2 kg-m2, ct =

z, vn, ts, tr, tp,k = 45 N/m,

m = 6 kg, c = 30 N-s/m,

T(s) =

X(s)

F(s)
=

3.24 * 106

s2
+ 2700s + 3.24 * 106

z, vn, ts, tr, tp,

T(s) =

X(s)

F(s)
=

121

s2
+ 17.6s + 121

z, vn, ts, tr, tp,

x
#  (t = 0) = x

#

0.

x (t = 0) = x0

F(t) = bt

x
#

0 = 2.x0 = 1

2x
$
+ 8x

#
+ 8x = 5

F(t)
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462 CHAPTER 4 VIBRATION UNDER GENERAL FORCING CONDITIONS

4.82 Solve Problem 4.81 (using Runge-Kutta method) for the forcing function

with and 

4.83 Solve Problem 4.81 (using Runge-Kutta method) for the forcing function

with and 

Section 4.9 Response to Irregular Forcing Conditions Using Numerical Methods

4.84 Derive the expressions for and according to the linear interpolation function, consid-

ered in Section 4.9 for the undamped case. Using these expressions, find the solution of

Example 4.31 by assuming the damping to be zero.

4.85 Find the response of a damped single-degree-of-freedom system with the equation of motion

using the numerical method of Section 4.9. Assume that 

and the values of the forcing function F(t) at discrete times are as indicated below:750 N/m,

m = 5 kg, c = 200 N-s/m, k =

mx
$
+ cx

#
+ kx = F(t)

x
#

jxj

t2 = 6 s.F0 = 2000 N, t1 = 3 s,

F(t) = f

F0 t

t1
;                         0 t t1

F0 ¢
t2 - t

t2 - t1
;          t1 t t2

0;                              t Ú t2

t1 = 6 s.F0 = 2000 N

F(t) = c
F0 sin 

p t

t1
;         0 t t1

0;                      t Ú t1

t 0 1 2 3 4 5 6 7 8 9 10

F(t) 0 400 800 1200 1600 2000 2000 2000 2000 2000 2000

t 0 1 2 3 4 5 6 7 8 9 10

F(t) 0 1000 1732 2000 1732 1000 0 0 0 0 0

4.86 Find the response of a damped single-degree-of-freedom system with the equation of motion

using the numerical method of Section 4.9. Assume that 

and the values of the forcing function F(t) at discrete times are as indicated below:750 N/m,

m = 5 kg, c = 200 N-s/m, k =

mx
$
+ cx

#
+ kx = F(t)

M04_RAO8193_5_SE_C04.qxd  8/21/10  4:13 PM  Page 462



4.87 Find the response of a damped single-degree-of-freedom system with the equation of motion

using the numerical method of Section 4.9. Assume that 

and  the values of the forcing function F(t) at discrete times are as indicated below:750 N/m,

m = 5 kg, c = 200 N-s/m, k =

mx
$

+ cx
#
+ kx = F(t)

PROBLEMS 463

Section 4.10 Examples Using MATLAB

4.88 A machine is given an impact force by an impact hammer. If the machine can be modeled as

a single-degree-of-freedom system with and and

the magnitude of the impact is determine the response of the machine. Also

plot the response using MATLAB.

4.89 If the machine described in Problem 4.88 is given a double impact by the impact hammer,

find the response of the machine. Assume the impact force, F(t), as 

where is the Dirac delta function. Also plot the response of the

machine using MATLAB.

4.90 Using MATLAB, plot the response of a viscously damped spring-mass system subject to the

rectangular pulse shown in Fig. 4.12(a) with (a) and (b) Assume the

following data: 

4.91 Using Program4.m, find the steady-state response of a viscously damped system with

and subject to the periodic force shown in Fig. 4.71.c = 5 N-s/mm = 1 kg, k = 400 N/m,

m = 100 kg, k = 1200 N/m, c = 50 N-s/m, F0 = 100 N.

t0 = 1.5 s.t0 = 0.1 s

d(t)50 d(t - 0.5) N,

F(t) = 100 d(t) +

F = 100 N-s,

c = 40 N-s/m,m = 10 kg, k = 4000 N/m,

t 0 1 2 3 4 5 6 7 8 9 10

F(t) 0 666.7 1333.3 2000 1333.3 666.7 0 0 0 0 0

500

0 0.4 0.5 1.0 1.4 1.5

F(t), N

t, s

FIGURE 4.71

4.92 Using Program5.m, find the response of a viscously damped system with 

and subject to the force F(t) = 1000 (1 -  cos pt) N.z = 0.1k = 105 N,

m = 100 kg,
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464 CHAPTER 4 VIBRATION UNDER GENERAL FORCING CONDITIONS

4.93 A damped single-degree-of-freedom system has a mass a spring of stiffness 

and a damper with A forcing function F(t), whose magnitude is indicated in the table

below, acts on the mass for 1 sec. Find the response of the system by using the piecewise lin-

ear interpolation method described in Section 4.9 using Program5.m.

c = 2.

k = 50,m = 2,

4.95 Solve Problem 4.94 using MATLAB program ode23 if the system is viscously damped so

that the equation of motion is

4.96 Write a MATLAB program for finding the steady-state response of a single-degree-of-free-

dom system subjected to an arbitrary force, by numerically evaluating the Duhamel integral.

Using this program, solve Example 4.31.

4.97 Find the relative displacement of the water tank shown in Fig. 4.43(a) when its base is sub-

jected to the earthquake acceleration record shown in Fig. 1.115 by assuming the ordinate

represents acceleration in g s. Use the program of Problem 4.96.

4.98 The differential equation of motion of an undamped system is given by 

with the initial conditions If F(t) is as shown in Fig. 4.73, find the response of

the problem using the computer program of Problem 4.96.

x0 = x
#
0 = 0.

2x
$
+ 150x = F(t)

2x
$
+ 10x

#
+ 1500x = F(t)

0.10 0.25

20

0

F(t), N

t, sec

FIGURE 4.72

Time (ti) F(ti)

0.0 -8.0

0.1 -12.0

0.2 -15.0

0.3 -13.0

0.4 -11.0

0.5 -7.0

0.6 -4.0

0.7 3.0

0.8 10.0

0.9 15.0

1.0 18.0

4.94 The equation of motion of an undamped system is given by where the

forcing function is defined by the curve shown in Fig. 4.72. Find the response of the system

numerically for Assume the initial conditions as and the step

size as Use the MATLAB program ode23.¢t = 0.01.

x0 = x
#
0 = 00 t 0.5.

2x
$
+ 1500x = F(t),
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4.100 The cutting forces developed during two different machining operations are shown in

Figs. 4.75(a) and (b). The inaccuracies (in the vertical direction) in the surface finish in the

two cases were observed to be 0.1 mm and 0.05 mm, respectively. Find the equivalent mass

and stiffness of the cutting head (Fig. 4.76), assuming it to be an undamped single-degree-of-

freedom system.

0.150.100.05

100

0

30

60

F(t)

t

FIGURE 4.73

DESIGN PROJECTS

4.99 Design a seismometer of the type shown in Fig. 4.74(a) (by specifying the values of a, m, and

k) to measure earthquakes. The seismometer should have a natural frequency of 10 Hz, and

the maximum relative displacement of the mass should be at least 2 cm when its base is sub-

jected to the displacement shown in Fig. 4.74(b).

Cage (mass
negligible)

Rigid bar (mass negligible)

x(t)

m

k/2

k/2

O

y(t)

a

b * 3a

(a)

O

1

1

y(t), cm

t, sec

(b)

FIGURE 4.74

0 0.1
t, sec t, sec

(a) (b)

5000

F(t), N

0 0.10.05

5000

F(t), N

FIGURE 4.75
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466 CHAPTER 4 VIBRATION UNDER GENERAL FORCING CONDITIONS

4.101 A milling cutter, mounted at the middle of an arbor, is used to remove metal from a workpiece

(Fig. 4.77). A torque of 500 N-m is developed in the cutter under steady-state cutting condi-

tions. One of the 16 teeth on the cutter breaks during the cutting operation. Determine the

cross section of the arbor to limit the amplitude of angular displacement of the cutter to 1°.

Assume that the arbor can be modeled as a hollow steel shaft fixed at both ends.

Data: Length of arbor mass moment of inertia of the cutter speed of

cutter = 1000 rpm.

= 0.1 N-m2
,= 0.5 m,

Cutting head

FIGURE 4.76

 Overarm

Column

Table

CutterArbor

Arbor
support

Workpiece

FIGURE 4.77
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Daniel Bernoulli (1700 1782) was a Swiss who became a professor of mathemat-
ics at Saint Petersburg in 1725 after receiving his doctorate in medicine for his the-
sis on the action of lungs. He later became professor of anatomy and botany at
Basel. He developed the theory of hydrostatics and hydrodynamics, and Bernoulli s
theorem  is well known to engineers. He derived the equation of motion for the
vibration of beams (the Euler-Bernoulli theory) and studied the problem of vibrat-
ing strings. Bernoulli was the first person to propose the principle of superposition
of harmonics in free vibration.
(A photo of a portrait courtesy of David Eugene Smith, History of Mathematics,
Volume 1 General Survey of the History of Elementary Mathematics. Dover
Publications, New York, 1958.)
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Two-Degree-of-
Freedom Systems

467

Chapter Outline

This chapter deals with two-degree-of-freedom systems, which require two independent

coordinates to describe their motion. The coupled equations of motion of the system are

derived using Newton s second law of motion. By expressing these equations in matrix

form, the mass, damping, and stiffness matrices of the system are identified. By assuming
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468 CHAPTER 5 TWO-DEGREE-OF-FREEDOM SYSTEMS

harmonic motion of the two masses, the eigenvalues or natural frequencies of vibration,

the modal vectors, and the free-vibration solution of the undamped system are found. The

method of incorporating the initial conditions is also outlined. The two-degrees-of-freedom

torsional systems are considered in an analogous manner. The concepts of coordinate cou-

pling, generalized coordinates, and principal coordinates are introduced with examples.

The forced-vibration analysis of the system under the complex form of harmonic force is

presented and the impedance matrix is identified. The semidefinite, unrestricted, or degen-

erate systems are introduced along with a method of finding their natural frequencies of

vibration. The self-excitation and stability analysis of two-degrees-of-freedom systems are

considered along with a derivation of the conditions of stability. The Routh-Hurwitz crite-

rion, which can be used for deriving the conditions of stability of any n-degree-of-freedom

system, is also introduced. The transfer-function approach, the computation of the

response of two-degree-of-freedom systems using Laplace transform, and solutions using

frequency transfer functions are also presented. Finally, the free- and forced-vibration solu-

tions of two-degree-of-freedom systems using MATLAB are illustrated with examples.

Learning Objectives

After completing this chapter, you should be able to do the following:

* Formulate the equations of motion of two-degree-of-freedom systems.

* Identify the mass, damping, and stiffness matrices from the equations of motion.

* Compute the eigenvalues or natural frequencies of vibration and the modal vectors.

* Determine the free-vibration solution using the known initial conditions.

* Understand the concepts of coordinate coupling and principal coordinates.

* Determine the forced-vibration solutions under harmonic forces.

* Understand the concepts of self-excitation and stability of the system.

* Use the Laplace transform approach for solution of two-degree-of-freedom systems.

* Solve two-degree-of-freedom free- and forced-vibration problems using MATLAB.

5.1 Introduction

Systems that require two independent coordinates to describe their motion are called two-

degree-of-freedom systems. Some examples of systems having two degrees of freedom

were shown in Fig. 1.12. We shall consider only two-degree-of-freedom systems in this

chapter, so as to provide a simple introduction to the behavior of systems with an arbitrar-

ily large number of degrees of freedom, which is the subject of Chapter 6.

Consider a simplified model of a lathe shown in Fig. 5.1(a), in which the lathe bed,

represented as an elastic beam, is supported on short elastic columns with the headstock

and tailstock denoted as lumped masses attached to the beam [5.1 5.3]. For a simplified

vibration analysis, the lathe can be treated as a rigid body of total mass m and mass

moment of inertia about its center of gravity (C.G.), resting on springs of stiffness 

and as shown in Fig. 5.1(b). The displacement of the system at any time can be specified

by a linear coordinate x(t), indicating the vertical displacement of the C.G. of the mass,

k2,

k1J0
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5.1 INTRODUCTION 469

and an angular coordinate denoting the rotation of the mass m about its C.G. Instead

of x(t) and we can also use and the displacements of points A and B, as

independent coordinates to specify the motion of the system. Thus the system has two

degrees of freedom. It is important to note that in this case the mass m is treated not as a

point mass but as a rigid body having two possible types of motion. (If it is a particle, there

is no need to specify the rotation of the mass about its C.G.)

Similarly, consider the automobile shown in Fig. 5.2(a). For the vibration of the auto-

mobile in the vertical plane, a two-degree-of-freedom model shown in Fig. 5.2(b) can be

used. Here the body is idealized as a bar of mass m and mass moment of inertia sup-

ported on the rear and front wheels (suspensions) of stiffness and The displacement

of the automobile at any time can be specified by the linear coordinate x(t) denoting the

vertical displacement of the C.G. of the body and the angular coordinate indicating the

rotation (pitching) of the body about its C.G. Alternately, the motion of the automobile can

be specified using the independent coordinates, and of points A and B.

Next, consider the motion of a multistory building under an earthquake. For simplic-

ity, a two-degree-of-freedom model can be used as shown in Fig. 5.3. Here the building is

modeled as a rigid bar having a mass m and mass moment of inertia The resistance

offered to the motion of the building by the foundation and surrounding soil is approxi-

mated by a linear spring on stiffness k and a torsional spring of stiffness The displace-

ment of the building at any time can be specified by the horizontal motion of the base x(t)

and the angular motion about the point O. Finally, consider the system shown in Fig.

5.4(a), which illustrates the packaging of an instrument of mass m. Assuming that the

motion of the instrument is confined to the xy-plane, the system can be modeled as a mass

u(t)

k t.

J0.

x2(t),x1(t)

u(t)

k2.k1

J0,

x2(t),x1(t)u(t),

u(t),

k1 k2
l1

A B

C.G.

l2

m, J0

Bed

(a)

(b)

Headstock TailstockLive center Dead center

FIGURE 5.1 Lathe.
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A

A B

A*

B*

B

k1 k2

l1

k1

k2

(a)

(b)

l2

l1 l2

m

C.G. J0

C.G.

x(t)

u(t)

FIGURE 5.2 Automobile.

m supported by springs in the x and y directions, as indicated in Fig. 5.4(b). Thus the sys-

tem has one point mass m and two degrees of freedom, because the mass has two possible

types of motion (translations along the x and y directions). The general rule for the compu-

tation of the number of degrees of freedom can be stated as follows:

There are two equations of motion for a two-degree-of-freedom system, one for each mass

(more precisely, for each degree of freedom). They are generally in the form of coupled

differential equations that is, each equation involves all the coordinates. If a harmonic

solution is assumed for each coordinate, the equations of motion lead to a frequency equa-

tion that gives two natural frequencies for the system. If we give suitable initial excitation,

the system vibrates at one of these natural frequencies. During free vibration at one of the

natural frequencies, the amplitudes of the two degrees of freedom (coordinates) are related

in a specific manner and the configuration is called a normal mode, principal mode, or

Number of Number of masses in the system

degrees of freedom = * number of possible types

of the system of motion of each mass

M05_RAO08193_05_SE_C05.qxd  8/21/10  4:34 PM  Page 470



5.1 INTRODUCTION 471

(a) (b)

m

x(t)
y(t)

k2

k1

Instrument
(mass m)

Packaging
(cushioning)

material

FIGURE 5.4 Packaging of an instrument.

natural mode of vibration. Thus a two-degree-of-freedom system has two normal modes of

vibration corresponding to the two natural frequencies.

If we give an arbitrary initial excitation to the system, the resulting free vibration will

be a superposition of the two normal modes of vibration. However, if the system vibrates

under the action of an external harmonic force, the resulting forced harmonic vibration

takes place at the frequency of the applied force. Under harmonic excitation, resonance

Building
(mass: m,
mass moment of
inertia: J0)

kk

u(t)

kt

O

x(t)

FIGURE 5.3 Multistory building subjected to an earthquake.
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m1

m1

m2

x1(t)

f1(t)

x1, x
..

1

F1

m2

x2, x
..

2

F2

k2

x2(t)

f2(t) k3k1

(a)

k1x1 k2(x2  x1)

c2(x
.
2  x

.
1)c1x

.
1

k3x2

c3x
.
2

Spring k2 under tension
for +(x2  x1)

Spring k1 under tension
for +x1

Spring k3 under
compression for +x2

(b)

c1 c2 c3

FIGURE 5.5 A two-degree-of-freedom spring-mass-damper system.

occurs (i.e., the amplitudes of the two coordinates will be maximum) when the forcing fre-

quency is equal to one of the natural frequencies of the system.

As is evident from the systems shown in Figs. 5.1 5.4, the configuration of a system

can be specified by a set of independent coordinates such as length, angle, or some other

physical parameters. Any such set of coordinates is called generalized coordinates.

Although the equations of motion of a two-degree-of-freedom system are generally cou-

pled so that each equation involves all the coordinates, it is always possible to find a par-

ticular set of coordinates such that each equation of motion contains only one coordinate.

The equations of motion are then uncoupled and can be solved independently of each

other. Such a set of coordinates, which leads to an uncoupled system of equations, is called

principal coordinates.

5.2 Equations of Motion for Forced Vibration
Consider a viscously damped two-degree-of-freedom spring-mass system, shown in Fig.

5.5(a). The motion of the system is completely described by the coordinates and 

which define the positions of the masses and at any time t from the respective equilib-

rium positions. The external forces and act on the masses and respectively.

The free-body diagrams of the masses and are shown in Fig. 5.5(b). The application of

Newton s second law of motion to each of the masses gives the equations of motion:

(5.1)

(5.2)

It can be seen that Eq. (5.1) contains terms involving (namely, and ),

whereas Eq. (5.2) contains terms involving (namely, and ). Hence they-k2x1-c2x
#

1x1

-k2x2-c2x 
#

2x2

 m2x 
$

2 - c2x 
#

1 + (c2 + c3)x 
#

2 - k2x1 + (k2 + k3)x2 = f2

 m1x 
$

1 + (c1 + c2)x 
#

1 - c2 x 
#

2 + (k1 + k2)x1 - k2x2 = f1

m2m1

m2,m1F2(t)F1(t)
m2m1

x2(t),x1(t)
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5.2 EQUATIONS OF MOTION FOR FORCED VIBRATION 473

represent a system of two coupled second-order differential equations. We can therefore

expect that the motion of the mass will influence the motion of the mass and vice

versa. Equations (5.1) and (5.2) can be written in matrix form as

(5.3)

where [m], [c], and [k] are called the mass, damping, and stiffness matrices, respectively,

and are given by

and and are called the displacement and force vectors, respectively, and are

given by

and

It can be seen that [m], [c], and [k] are all matrices whose elements are the known

masses, damping coefficients, and stiffnesses of the system, respectively. Further, these

matrices can be seen to be symmetric, so that

where the superscript T denotes the transpose of the matrix.

Notice that the equations of motion (5.1) and (5.2) become uncoupled (independent of

one another) only when which implies that the two masses and are

not physically connected. In such a case, the matrices [m], [c], and [k] become diagonal.

The solution of the equations of motion (5.1) and (5.2) for any arbitrary forces and

is difficult to obtain, mainly due to the coupling of the variables and The

solution of Eqs. (5.1) and (5.2) involves four constants of integration (two for each equa-

tion). Usually the initial displacements and velocities of the two masses are specified as

and 

We shall first consider the free-vibration solution of Eqs. (5.1) and (5.2).

x 
#
2(t = 0) = x 

#
2(0).x1(t = 0) = x1(0), x 

#
1(t = 0) = x 

#
1(0), x2(t = 0) = x2(0),

x2(t).x1(t)f2(t)
f1(t)

m2m1c2 = k2 = 0,

[m]T
= [m],  [c]T

= [c],  [k]T
= [k]

2 * 2

f
:

(t) = b
f1(t)

f2(t)
r

x
:

(t) = b
x1(t)

x2(t)
r

f
!
(t)x

:

(t)

 [k] = B
k1 + k2 -  k2

-  k2 k2 + k3
R

 [c] = B
c1 + c2 -  c2

-  c2 c2 + c3
R

 [m] = B
m1 0

0 m2
R

[m] x
$
:

(t) + [c] x
#
:

(t) + [k] x:(t) = f
!
(t)

m2,m1
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5.3 Free-Vibration Analysis of an Undamped System
For the free-vibration analysis of the system shown in Fig. 5.5(a), we set 

Further, if damping is disregarded, and the equations of motion (5.1)

and (5.2) reduce to

(5.4)

(5.5)

We are interested in knowing whether and can oscillate harmonically with the same

frequency and phase angle but with different amplitudes. Assuming that it is possible to

have harmonic motion of and at the same frequency and the same phase angle 

we take the solutions of Eqs. (5.4) and (5.5) as

(5.6)

where and are constants that denote the maximum amplitudes of and 

and is the phase angle. Substituting Eq. (5.6) into Eqs. (5.4) and (5.5), we obtain

(5.7)

Since Eq. (5.7) must be satisfied for all values of the time t, the terms between brackets

must be zero. This yields

(5.8)

which represent two simultaneous homogenous algebraic equations in the unknowns 

and It can be seen that Eq. (5.8) is satisfied by the trivial solution which

implies that there is no vibration. For a nontrivial solution of and the determinant of

the coefficients of and must be zero:

or

(5.9) + 5(k1 + k2)(k2 + k3) - k2
2
6 = 0

 (m1m2)v4
- 5(k1 + k2)m2 + (k2 + k3)m16v

2

det B
5-m1v

2
+ (k1 + k2)6 -k2 -k2 5-m2v

2
+ (k2 + k3)6

R = 0

X2X1

X2,X1

X1 = X2 = 0,X2.
X1

 -k2X1 + 5-m2v
2
+ (k2 + k3)6X2 = 0

 5-m1v
2
+ (k1 + k2)6X1 - k2X2 = 0

 [-k2X1 + 5-m2v
2
+ (k2 + k3)6X2] cos(vt + f) = 0

 [5-m1v
2
+ (k1 + k2)6X1 - k2X2] cos(vt + f) = 0

f

x2(t),x1(t)X2X1

 x2(t) = X2 cos(vt + f)

 x1(t) = X1 cos(vt + f)

f,vm2m1

m2m1

 m2x
$

2(t) - k2x1(t) + (k2 + k3)x2(t) = 0

 m1x
$

1(t) + (k1 + k2)x1(t) - k2x2(t) = 0

c1 = c2 = c3 = 0,
f1(t) = f2(t) = 0.
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Equation (5.9) is called the frequency or characteristic equation because its solution

yields the frequencies or the characteristic values of the system. The roots of Eq. (5.9)

are given by

(5.10)

This shows that it is possible for the system to have a nontrivial harmonic solution of the

form of Eq. (5.6) when is equal to and given by Eq. (5.10). We call and the

natural frequencies of the system.

The values of and remain to be determined. These values depend on the natural

frequencies and We shall denote the values of and corresponding to as 

and and those corresponding to as and Further, since Eq. (5.8) is 

homogenous, only the ratios and can be found. For 

and Eq. (5.8) gives

(5.11)

Notice that the two ratios given for each in Eq. (5.11) are identical. The normal 

modes of vibration corresponding to and can be expressed, respectively, as

and

(5.12)

The vectors and which denote the normal modes of vibration, are known as the

modal vectors of the system. The free-vibration solution or the motion in time can be

expressed, using Eq. (5.6), as

X
!
(2),X

!
(1)

X
!
(2)

= b
X1

(2)

X2
(2) r = b

X1
(2)

r2X1
(2) r

X
!
(1)

= b
X1

(1)

X2
(1) r = b

X1
(1)

r1X1
(1) r

v2
2

v1
2

ri (i = 1, 2)

 r2 =
X2

(2)

X1
(2)

=
-m1v2

2
+ (k1 + k2)

k2

=
k2

-m2v2
2
+ (k2 + k3)

 r1 =
X2

(1)

X1
(1)

=
-m1v1

2
+ (k1 + k2)

k2

=
k2

-m2v1
2
+ (k2 + k3)

v
2
= v2

2,v
2
= v1

2

r2 = 5X2
(2)/X1

(2)
6r1 = 5X2

(1)/X1
(1)
6

X2
(2).X1

(2)
v2X2

(1)X1
(1)

v1X2X1v2.v1

X2X1

v2v1v2v1v

- 4b
(k1 + k2)(k2 + k3) - k2

2

m1m2
r R

1/2

*
1

2
 B b

(k1 + k2)m2 + (k2 + k3)m1

m1m2
r

2

v1
2, v2

2
=

1

2
 b

(k1 + k2)m2 + (k2 + k3)m1

m1m2
r
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(5.13)

where the constants and are determined by the initial conditions.f2X1
(1), X1

(2), f1,

 x
!
(2)(t) = b

x1
(2)(t)

x2
(2)(t)

r = b
X1

(2) cos(v2t + f2)

r2X1
(2) cos(v2t + f2)

r = second mode

 x
!
(1)(t) = b

x1
(1)(t)

x2
(1)(t)

r = b
X1

(1) cos(v1t + f1)

r1X1
(1) cos(v1t + f1)

r = first mode

Initial Conditions. As stated earlier, each of the two equations of motion, Eqs. (5.1) and

(5.2), involves second-order time derivatives; hence we need to specify two initial

conditions for each mass. As stated in Section 5.1, the system can be made to vibrate in its

ith normal mode by subjecting it to the specific initial conditions

However, for any other general initial conditions, both modes will be excited. The resulting

motion, which is given by the general solution of Eqs. (5.4) and (5.5), can be obtained by a

linear superposition of the two normal modes, Eq. (5.13):

(5.14)

where and are constants. Since and already involve the unknown constants 

and (see Eq. (5.13)), we can choose with no loss of generality. Thus the 

components of the vector can be expressed, using Eq. (5.14) with and

Eq. (5.13), as

(5.15)

where the unknown constants and can be determined from the initial

conditions:

(5.16)

Substitution of Eq. (5.16) into Eq. (5.15) leads to

 x 
#
1(0) = -  v1X1

(1) sin f1 - v2X1
(2) sin f2

 x1(0) = X1
(1) cos f1 + X1

(2) cos f2

 x2(t = 0) = x2(0),  x 
#
2(t = 0) = x 

#
2(0)

 x1(t = 0) = x1(0),  x 
#
1(t = 0) = x 

#
1(0), 

f2X1
(1), X1

(2), f1,

 = r1X1
(1) cos(v1t + f1) + r2X1

(2) cos(v2t + f2)

 x2(t) = x2
(1)(t) + x2

(2)(t)

 x1(t) = x1
(1)(t) + x1

(2)(t) = X1
(1) cos(v1t + f1) + X1

(2) cos(v2t + f2)

c1 = c2 = 1x
!
(t)

c1 = c2 = 1X1
(2)X1

(1)

x
!
(2)(t)x

!
(1)(t)c2c1

x
:

(t) = c1 x
:(1)(t) + c2 x

:(2)(t)

 x2(t = 0) = riX1
(i),        x #

2(t = 0) = 0

 x1(t = 0) = X1
(i)

= some constant,  x 
#
1(t = 0) = 0, 

(i = 1, 2)
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(5.17)

Equation (5.17) can be regarded as four algebraic equations in the unknowns

and The solution of Eq. (5.17) can be

expressed as

from which we obtain the desired solution:

(5.18) f2 = tan-1
b

X1
(2) sin f2

X1
(2) cos f2

r = tan-1
b

r1x
#

1(0) - x
#

2(0)

v2[-  r1x1(0) + x2(0)]
r

 f1 = tan-1
b

X1
(1) sin f1

X1
(1) cos f1

r = tan-1
b

-  r2x
#

1(0) + x
#

2(0)

v1[r2x1(0) - x2(0)]
r

 =
1

(r2 - r1)
 B5-  r1x1(0) + x2(0)62

+

5r1x
#

1(0) - x
#

2(0)62

v2
2

R

1/2

 X1
(2)

= [5X1
(2) cos f26

2
+ 5X1

(2) sin f26
2]1/2

 =
1

(r2 - r1)
 B5r2x1(0) - x2(0)62

+

5-  r2x
#

1(0) + x
#

2(0)62

v1
2

R

1/2

 X1
(1)

= [5X1
(1) cos f16

2
+ 5X1

(1) sin f16
2]1/2

 X1
(1) sin f1 = b

-  r2x 
#

1(0) + x 
#

2(0)

v1(r2 - r1)
r ,    X1

(2) sin f2 = b
r1x

 #
1(0) - x 

#

2(0)

v2(r2 - r1)
r

 X1
(1) cos f1 = b

r2x1(0) - x2(0)

r2 - r1
r ,   X1

(2) cos f2 = b
-  r1x1(0) + x2(0)

r2 - r1
r

X1
(2) sin f2.X1

(1) cos f1, X1
(2) cos f2, X1

(1) sin f1,

 x 
#

2(0) = -  v1r1X1
(1) sin f1 - v2r2X1

(2) sin f2

 x2(0) = r1X1
(1) cos f1 + r2X1

(2) cos f2

Frequencies of Spring-Mass System

Find the natural frequencies and mode shapes of a spring-mass system, shown in Fig. 5.6, which is

constrained to move in the vertical direction only. Take 

Solution: If we measure and from the static equilibrium positions of the masses and 

respectively, the equations of motion and the solution obtained for the system of Fig. 5.5(a) are also

applicable to this case if we substitute and Thus the equations of

motion, Eqs. (5.4) and (5.5), are given by

(E.1) mx
$

2 - kx1 + 2kx2 = 0

 mx
$

1 + 2kx1 - kx2 = 0

k1 = k2 = k3 = k.m1 = m2 = m

m2,m1x2x1

n = 1.

E X A M P L E  5 . 1
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x1(t)

x2(t)

k1 = k

k2 = nk

m2 = m

m1 = m

k3 = k

FIGURE 5.6 Two-degree-

of-freedom system.

By assuming harmonic solution as

(E.2)

the frequency equation can be obtained by substituting Eq. (E.2) into Eq. (E.1):

or

(E.3)

The solution of Eq. (E.3) gives the natural frequencies

(E.4)

(E.5)

From Eq. (5.11), the amplitude ratios are given by

(E.6)

(E.7) r2 =
X2

(2)

X1
(2)

=
-  mv2

2
+ 2k

k
=

k

-  mv2
2
+ 2k

= -  1

 r1 =
X2

(1)

X1
(1)

=
-  mv1

2
+ 2k

k
=

k

-  mv1
2
+ 2k

= 1

 v2 = b

4km + [16k2m2
- 12m2k2]1/2

2m2
r

1/2

=
A

3k

m

 v1 = b

4km - [16k2m2
- 12m2k2]1/2

2m2
r

1/2

=
A

k

m

m2v4
- 4kmv2

+ 3k2
= 0

`

(-  mv2
+ 2k)  (-  k)

 (-  k) (-  mv2
+ 2k)

`
= 0

xi(t) = Xi cos(vt + f); i = 1, 2
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The natural modes are given by Eq. (5.13):

(E.8)

(E.9)

It can be seen from Eq. (E.8) that when the system vibrates in its first mode, the amplitudes of the

two masses remain the same. This implies that the length of the middle spring remains constant.

Thus the motions of and are in phase (see Fig. 5.7(a)). When the system vibrates in its second

mode, Eq. (E.9) shows that the displacements of the two masses have the same magnitude with oppo-

site signs. Thus the motions of and are 180° out of phase (see Fig. 5.7(b)). In this case the mid-

point of the middle spring remains stationary for all time t. Such a point is called a node. Using Eq.

(5.15), the motion (general solution) of the system can be expressed as

(E.10) x2(t) = X1
(1) cos¢

A
k

m
 t + f1

 

-
 
X1

(2) cos¢
A

3k

m
 t + f2

 x1(t) = X1
(1) cos¢

A
k

m
 t + f1 + X1

(2) cos¢
A

3k

m
 t + f2

m2m1

m2m1

 Second mode = x
!
(2) (t) = e

   X1
(2) cos¢

A
3k

m
 t + f2

-X1
(2) cos¢

A
3k

m
 t + f2

u

 First mode = x
!
(1) (t) = e

X1
(1) cos¢

A
k

m
 t + f1

X1
(1) cos¢

A
k

m
 t + f1

u

m1

m2

m1

m2

m1 m2

(a) First mode (b) Second mode

m1

m2
Node

Node

FIGURE 5.7 Modes of vibration.

*
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Note: It can be seen that the computation of the natural frequencies and mode shapes is

lengthy and tedious. Computer programs can be used conveniently for the numerical com-

putation of the natural frequencies and mode shapes of multidegree-of-freedom systems

(see Section 5.12).

Initial Conditions to Excite Specific Mode

Find the initial conditions that need to be applied to the system shown in Fig. 5.6 so as to make it

vibrate in (a) the first mode, and (b) the second mode.

Solution:

Approach: Specify the solution to be obtained for the first or second mode from the general solution

for arbitrary initial conditions and solve the resulting equations.

For arbitrary initial conditions, the motion of the masses is described by Eq. (5.15). In the pre-

sent case, and so Eq. (5.15) reduces to Eq. (E.10) of Example 5.1:

(E.1)

Assuming the initial conditions as in Eq. (5.16), the constants and can be obtained

from Eq. (5.18), using and 

(E.2)

(E.3)

(E.4)

(E.5)

a. The first normal mode of the system is given by Eq. (E.8) of Example 5.1:

(E.6)x
!
(1)(t) = e

X1
(1) cos¢A

k

m
 t + f1

X1
(1) cos¢A

k

m
 t + f1

u

 f2 = tan-1b
2m [x

#
1(0) - x

#
2(0)]

23k [-x1(0) + x2(0)]
r

 f1 = tan-1 b
-2m [x 

#
1(0) + x 

#
2(0)]

2k [x1(0) + x2(0)]
r

 X1
(2)

= -  

1

2
 b [-x1(0) + x2(0)]2

+
m

3k
 [x 

#
1(0) - x 

#
2(0)]2 r

1/2

 X1
(1)

= -  

1

2
 b [x1(0) + x2(0)]2

+
m

k
 [x 

#
1(0) + x 

#
2(0)]2 r

1/2

r2 = -1:r1 = 1

f2X1
(1), X1

(2), f1,

 x2(t) = X1
(1) cos¢A

k

m
 t + f1

 

-
 
X1

(2) cos¢A
3k

m
 t + f2

 x1(t) = X1
(1) cos¢A

k

m
 t + f1 + X1

(2) cos¢A
3k

m
 t + f2

r2 = -1,r1 = 1

E X A M P L E  5 . 2
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Comparison of Eqs. (E.1) and (E.6) shows that the motion of the system is identical with the

first normal mode only if This requires that (from Eq. E.3)

(E.7)

b. The second normal mode of the system is given by Eq. (E.9) of Example 5.1:

(E.8)

Comparison of Eqs. (E.1) and (E.8) shows that the motion of the system coincides with the sec-

ond normal mode only if This implies that (from Eq. E.2)

(E.9)

*

x1(0) = -x2(0)  and  x 
#
1(0) = -x 

#
2(0)

X1
(1)

= 0.

x
!
(2)(t) = e

X1
(2) cos¢

A
3k

m
 t + f2

-X1
(2) cos¢

A
3k

m
 t + f2

u

x1(0) = x2(0)  and  x 
#
1(0) = x 

#
2(0)

X1
(2)

= 0.

Free-Vibration Response of a Two-Degree-of-Freedom System

Find the free-vibration response of the system shown in Fig. 5.5(a) with 

and for the initial conditions 

Solution: For the given data, the eigenvalue problem, Eq. (5.8), becomes

or

(E.1)

By setting the determinant of the coefficient matrix in Eq. (E.1) to zero, we obtain the frequency

equation (see Eq. (5.9)):

(E.2)

from which the natural frequencies can be found as

or

(E.3)v1 = 1.5811,  v2 = 2.4495

v1
2
= 2.5,  v2

2
= 6.0

10v4
- 85v2

+ 150 = 0

B
-10v2

+ 35  -5

-5  -v2
+ 5

R b
X1

X2

r = b
0

0
r

B
-  m1v

2
+ k1 + k2 - k2

-  k2 - m2v
2
+ k2 + k3

R b
X1

X2
r = b

0

0
r

x2(0) = x 
#
2(0) = 0.

x 
#
1(0) =x1(0) = 1,c1 = c2 = c3 = 0m2 = 1,m1 = 10,

k3 = 0,k2 = 5,k1 = 30,

E X A M P L E  5 . 3
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The substitution of in Eq. (E.1) leads to while in 

Eq. (E.1) yields Thus the normal modes (or eigenvectors) are given by

(E.4)

(E.5)

The free-vibration responses of the masses and are given by (see Eq. (5.15)):

(E.6)

(E.7)

where and are constants to be determined from the initial conditions. By using the

given intial conditions in Eqs. (E.6) and (E.7), we obtain

(E.8)

(E.9)

(E.10)

(E.11)

The solution of Eqs. (E.8) and (E.9) yields

(E.12)

while the solution of Eqs. (E.10) and (E.11) leads to

(E.13)

Equations (E.12) and (E.13) give

(E.14)

Thus the free-vibration responses of and are given by

(E.15)

(E.16)

The graphical representation of Eqs. (E.15) and (E.16) is considered in Example 5.17.

*

 x2(t) =
10

7
 cos 1.5811t -

10

7
 cos 2.4495 t

 x1(t) =
5

7
 cos 1.5811t +

2

7
 cos 2.4495 t

m2m1

X1
(1)

=
5

7
,   X1

(2)
=

2

7
,   f1 = 0,   f2 = 0

X1
(1) sin f1 = 0,   X1

(2) sin f2 = 0

X1
(1) cos f1 =

5

7
,   X1

(2) cos f2 =
2

7

x 
#
2(t = 0) = -3.1622X1

(1)
+ 12.2475X1

(2) sin f2

x 
#
1(t = 0) = 0 =  -1.5811X1

(1) sin f1 - 2.4495X1
(2) sin f2

x2(t = 0) = 0 = 2X1
(1) cos f1 - 5X1

(2) cos f2

x1(t = 0) = 1 = X1
(1) cos f1 + X1

(2) cos f2

f2X1
(1), X1

(2), f1,

 x2(t) = 2X1
(1) cos (1.5811t + f1) - 5X1

(2) cos (2.4495t + f2)

 x1(t) = X1
(1) cos (1.5811t + f1) + X1

(2) cos (2.4495t + f2)

m2m1

X
!
(2)

= b
X1

(2)

X2
(2) r = b

1

-5
rX1

(2)

X
!
(1)

= b
X1

(1)

X2
(1) r = b

1

2
rX1

(1)

X2
(2)

= -5X1
(2).

v2
= v2

2
= 6.0X2

(1)
= 2X1

(1),v2
= v1

2
= 2.5
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5.4 TORSIONAL SYSTEM 483

5.4 Torsional System
Consider a torsional system consisting of two discs mounted on a shaft, as shown in

Fig. 5.8. The three segments of the shaft have rotational spring constants and 

as indicated in the figure. Also shown are the discs of mass moments of inertia and 

the applied torques and and the rotational degrees of freedom and The dif-

ferential equations of rotational motion for the discs and can be derived as

which upon rearrangement become

(5.19)

For the free-vibration analysis of the system, Eq. (5.19) reduces to

(5.20)

Note that Eq. (5.20) is similar to Eqs. (5.4) and (5.5). In fact, Eq. (5.20) can be obtained by

substituting and for and respectively.

Thus the analysis presented in Section 5.3 is also applicable to torsional systems with

proper substitutions. The following two examples illustrate the procedure.

k3,x1, x2, m1, m2, k1, k2,kt3u1, u2, J1, J2, kt1, kt2,

 J2u
 $

2 - kt2u1 + (kt2 + kt3)u2 = 0

 J1u
 $

1 + (kt1 + kt2)u1 - kt2u2 = 0

 J2u
 $

2 - kt2u1 + (kt2 + kt3)u2 = Mt2

 J1u
 $

1 + (kt1 + kt2)u1 - kt2u2 = Mt1

 J2u
 $

2 = -
 
kt2(u2 - u1) - kt3u2 + Mt2

 J1u
 $

1 = -
 
kt1u1 + kt2(u2 - u1) + Mt1

J2J1

u2.u1Mt2,Mt1

J2,J1

kt3,kt1, kt2,

kt1 kt3

kt2

Mt1

Mt2

J1 J2

u1

kt1u1

kt2(u2  u1)

kt3u2

u2

(a)

(b)

u1 u2

FIGURE 5.8 Torsional system with discs

mounted on a shaft.
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E X A M P L E  5 . 4
Natural Frequencies of a Torsional System

Find the natural frequencies and mode shapes for the torsional system shown in Fig. 5.9 for

and 

Solution: The differential equations of motion, Eq. (5.20), reduce to (with 

and ):

(E.1)

Rearranging and substituting the harmonic solution

(E.2)

gives the frequency equation:

(E.3)

The solution of Eq. (E.3) gives the natural frequencies

(E.4)

The amplitude ratios are given by

(E.5)

Equations (E.4) and (E.5) can also be obtained by substituting 

and in Eqs. (5.10) and (5.11).k3 = 0m2 = J2 = 2J0,m1 = J1 = J0,

k2 = kt2 = kt,k1 = kt1 = kt,

 r2 =
®2

(2)

®1
(2)

= 2 -
(5 + 217)

4

 r1 =
®2

(1)

®1
(1)

= 2 -
(5 - 217)

4

v1 = A
kt

4J0
 (5 - 217)  and  v2 = A

kt

4J0
 (5 + 217)

2v4J0
2
- 5v2J0kt + kt

2
= 0

ui(t) = ®i cos(vt + f);  i = 1, 2

 2J0u
 $

2 - ktu1 + ktu2 = 0

 J0u
 $

1 + 2ktu1 - ktu2 = 0

J2 = 2J0J1 = J0,

kt1 = kt2 = kt,kt3 = 0,

kt1 = kt2 = kt.J1 = J0, J2 = 2J0,

484 CHAPTER 5 TWO-DEGREE-OF-FREEDOM SYSTEMS

kt1

kt2

J
1

J
2 u

2

u
1

FIGURE 5.9
Torsional system.

*
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5.4 TORSIONAL SYSTEM 485

Note: For a two-degree-of-freedom system, the two natural frequencies and are not

equal to either of the natural frequencies of the two single-degree-of-freedom systems con-

structed from the same components. In Example 5.4, the single-degree-of-freedom systems

and 

and and 

are combined to obtain the system shown in Fig. 5.9. It can be seen that and are dif-

ferent from and v2.v1

v2v1

+with v2 = A
kt2

J2

=
1

22A
kt

J0

*

J2kt2

+with v1 = A
kt1

J1

= A
kt

J0

*

J1kt1

v2v1

E X A M P L E  5 . 5
Natural Frequencies of a Marine Engine Propeller

The schematic diagram of a marine engine connected to a propeller through gears is shown in Fig.

5.10(a). The mass moments of inertia of the flywheel, engine, gear 1, gear 2, and the propeller (in

) are 9000, 1000, 250, 150, and 2000, respectively. Find the natural frequencies and mode

shapes of the system in torsional vibration.

Solution

Approach: Find the equivalent mass moments of inertia of all rotors with respect to one rotor and

use a two-degree-of-freedom model.

Assumptions:

1. The flywheel can be considered to be stationary (fixed), since its mass moment of inertia is

very large compared to that of other rotors.

2. The engine and gears can be replaced by a single equivalent rotor.

Since gears 1 and 2 have 40 and 20 teeth, shaft 2 rotates at twice the speed of shaft 1. Thus the mass

moments of inertia of gear 2 and the propeller, referred to the engine, are given by

Since the distance between the engine and the gear unit is small, the engine and the two gears can be

replaced by a single rotor with a mass moment of inertia of

Assuming a shear modulus of for steel, the torsional stiffnesses of shafts 1 and 2 can

be determined as

80 * 109 N/m2

J1 = JE + JG1 + (JG2)eq = 1000 + 250 + 600 =  1850 kg-m2

 (JP)eq = (2)2(2000) = 8000 kg-m2

  (JG2)eq = (2)2(150)  = 600 kg-m2

kg-m2
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486 CHAPTER 5 TWO-DEGREE-OF-FREEDOM SYSTEMS

0.8 m

Steel
shaft 1,
dia. 0.1 m

Steel
shaft 2,
dia. 0.15 m

1.0 m

Flywheel

Engine

Gear 1, 40 teeth

Gear 2,
20 teeth

(a)

(b)

Propeller

u1(t) u2(t)

kt1 kt2

J1 J2

FIGURE 5.10 Marine engine propeller system.

Since the length of shaft 2 is not negligible, the propeller is assumed to be a rotor connected at the

end of shaft 2. Thus the system can be represented as a two-degree-of-freedom torsional system, as

indicated in Fig. 5.10(b). By setting and in Eq. (5.10),

the natural frequencies of the system can be found as

 ; B b

(kt1 + kt2) J2 + kt2 J1

J1 J2

r

2

- 4b
(kt1 + kt2) kt2 - kt2

2

J1 J2

r R

1/2

 v1
2, v2

2
=

1

2
 b

(kt1 + kt2) J2 + kt2 J1

J1 J2

r

m2 = J2k3 = 0, k1 = kt1, k2 = kt2, m1 = J1,

 kt2 =
GI02

l2
=

G

l2
 ¢
pd2

4

32
=

(80 * 109)(p)(0.15)4

(1.0)(32)
= 3,976,087.5 N-m/rad

 kt1 =
GI01

l1
=

G

l1
 ¢
pd1

4

32
=

(80 * 109)(p)(0.10)4

(0.8)(32)
= 981,750.0 N-m/rad

M05_RAO08193_05_SE_C05.qxd  8/21/10  4:34 PM  Page 486



5.4 TORSIONAL SYSTEM 487

(E.1)

Since

and

Eq. (E.1) gives

Thus

For the mode shapes, we set and in Eq. (5.11) to obtain

and

Thus the mode shapes can be determined from an equation similar to Eq. (5.12) as

b
®1

®2

r

(1)

= b
1

r1
r =

1

1.2072

 =
-  (1850) (3091.6083) + (495.7837 * 104)

397.6087 * 104
= -  0.1916

 r2 =
-  J1v2

2
+ (kt1 + kt2)

kt2

 =
-  (1850) (85.3117) + (495.7837 * 104)

397.6087 * 104
= 1.2072

 r1 =
-  J1v1

2
+ (kt1 + kt2)

kt2

m2 = J2k1 = kt1, k2 = kt2, k3 = 0, m1 = J1,

 v2
2
= 3091.6083 or v2 = 55.6022 rad/sec

 v1
2
= 85.3117  or v1 = 9.2364 rad/sec

 = 1588.46 ; 1503.1483

 v1
2, v2

2
= 1588.46 ; [(1588.46)2

- 26.3750 * 104]1/2

kt1kt2

J1J2

=
(98.1750 * 104) (397.6087 * 104)

(1850) (8000)
= 26.3750 * 104

 = 1588.46

 
(kt1 + kt2)

2J1

+
kt2

2J2

=
(98.1750 + 397.6087) * 104

2 * 1850
+

397.6087 * 104

2 * 8000

 ; B b

(kt1 + kt2)

2J1

+
kt2

2J2
r

2

-
kt1 

kt2

J1J2
R

1/2

 = b

(kt1 + kt2)

2J1

+
kt2

2J2
r
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488 CHAPTER 5 TWO-DEGREE-OF-FREEDOM SYSTEMS

and

*

5.5 Coordinate Coupling and Principal Coordinates
As stated earlier, an n-degree-of-freedom system requires n independent coordinates to

describe its configuration. Usually, these coordinates are independent geometrical quanti-

ties measured from the equilibrium position of the vibrating body. However, it is possible

to select some other set of n coordinates to describe the configuration of the system. The

latter set may be, for example, different from the first set in that the coordinates may have

their origin away from the equilibrium position of the body. There could be still other sets

of coordinates to describe the configuration of the system. Each of these sets of n coordi-

nates is called the generalized coordinates.

As an example, consider the lathe shown in Fig. 5.11(a). For simplicity, the lathe bed

can be replaced by an elastic beam supported on short elastic columns and the headstock

and tailstock can be replaced by two lumped masses as shown in Fig. 5.11(b). The model-

ing of the lathe as a two-degree-of-freedom system has been indicated in Section 5.1. As

shown in Figs. 5.12(a) and (b), any of the following sets of coordinates can be used to

describe the motion of this two-degree-of-freedom system:

1. Deflections and of the two ends of the lathe AB.

2. Deflection x(t) of the C.G. and rotation .

3. Deflection of the end A and rotation .

4. Deflection y(t) of point P located at a distance e to the left of the C.G. and

rotation u(t).

u(t)x1(t)

u(t)

x2(t)x1(t)

b
®1

®2

r

(2)

= b
1

r2

r =
1

-  0.1916

FIGURE 5.11 Lathe. (Photo courtersy of South Bend Lathe Corp.)

Bed

(b)

Headstock TailstockLive center Dead center

(a)
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5.5 COORDINATE COUPLING AND PRINCIPAL COORDINATES 489

Thus any set of these coordinates and represents the gen-

eralized coordinates of the system. Now we shall derive the equations of motion of the lathe

using two different sets of coordinates to illustrate the concept of coordinate coupling.

(y, u)(x1, x2), (x, u), (x1, u),

k1 k2
l1

l1

A B

A B

C.G.

l2

m, J0

k1 k2
l 1 l 2

A B

C.G. P

l 1 l 2

m, J0

P

e

C.G.

A

B

l2

x1(t)

x2(t)

x(t)

u(t)

k1x1  k1(x  l1u)

k2x2  k2(x  l2u)

B

C.G.

A

B

k2(y  l 2u)

y2  l 2u

y  l 1u

k1(y  l 1u)

A

y(t)

u(t)

(a)

(b)

FIGURE 5.12 Modeling of a lathe.

Equations of Motion Using x(t) and From the free-body diagram shown in Fig.

5.12(a), with the positive values of the motion variables as indicated, the force equilibrium

equation in the vertical direction can be written as

(5.21)

and the moment equation about the C.G. can be expressed as

(5.22)

Equations (5.21) and (5.22) can be rearranged and written in matrix form as

(5.23) = b
0

0
r

 B
m 0

0 J0

R b
x 
$

u
 $ r + B

(k1 + k2) -(k1l1 - k2l2)

-  (k1l1 - k2l2)        (k1l1
2
+ k2l2

2)
R b

x

u
r

J0u
 $
= k1(x - l1u)l1 - k2(x + l2u)l2

mx
$
= -

 k1(x - l1u) - k2(x + l2u)

u(t).
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490 CHAPTER 5 TWO-DEGREE-OF-FREEDOM SYSTEMS

It can be seen that each of these equations contain x and They become independent of

each other if the coupling term is equal to zero that is, if If

the resultant motion of the lathe AB is both translational and rotational when

either a displacement or torque is applied through the C.G. of the body as an initial condi-

tion. In other words, the lathe rotates in the vertical plane and has vertical motion as well,

unless This is known as elastic or static coupling.

Equations of Motion Using y(t) and From Fig. 5.12(b), where y(t) and are used

as the generalized coordinates of the system, the equations of motion for translation and

rotation can be written as

(5.24)

These equations can be rearranged and written in matrix form as

(5.25)

Both the equations of motion represented by Eq. (5.25) contain y and so they are

coupled equations. They contain static (or elastic) as well as dynamic (or mass) cou-

pling terms. If the system will have dynamic or inertia coupling only. In

this case, if the lathe moves up and down in the y direction, the inertia force which

acts through the center of gravity of the body, induces a motion in the direction, by

virtue of the moment Similarly, a motion in the direction induces a motion of 

the lathe in the y direction due to the force 

Note the following characteristics of these systems:

1. In the most general case, a viscously damped two-degree-of-freedom system has

equations of motion in the following form:

(5.26)

This equation reveals the type of coupling present. If the stiffness matrix is not diago-

nal, the system has elastic or static coupling. If the damping matrix is not diagonal, the

system has damping or velocity coupling. Finally, if the mass matrix is not diagonal,

the system has mass or inertial coupling. Both velocity and mass coupling come under

the heading of dynamic coupling.

2. The system vibrates in its own natural way regardless of the coordinates used. The

choice of the coordinates is a mere convenience.

B
m11 m12

m12 m22

R b
x
$

1

x
$

2
r + b

c11 c12

c12 c22
r b

x 
#

1

x 
#

2
r + B

k11 k12

k12 k22

R b
x1

x2
r = b

0

0
r

meu
$

.

umy 
$
e.

u

my 
$
,

k1l1 = k2l2,

u,

 = b
0

0
r

 B
m me

me Jp

R b
y
$

u

$ r + B
(k1 + k2) (k2l2 - k1l1)

(-  k1l1 + k2l2) (k1l1
2
+ k2l2

2)
R b

y

u
r

 Jpu
 $

= k1(y - l1u)l1 - k2(y + l2u)l2 - mey 
$

 my 
$

= -
 k1(y - l1u) - k2(y + l2u) - meu

 $

u(t)u(t).

k1l1 = k2l2.

k1l1 Z k2l2,

k1l1 = k2l2.(k1l1 - k2l2)

u.
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5.5 COORDINATE COUPLING AND PRINCIPAL COORDINATES 491

3. From Eqs. (5.23) and (5.25), it is clear that the nature of the coupling depends on the

coordinates used and is not an inherent property of the system. It is possible to

choose a system of coordinates and which give equations of motion that

are uncoupled both statically and dynamically. Such coordinates are called principal

or natural coordinates. The main advantage of using principal coordinates is that the

resulting uncoupled equations of motion can be solved independently of one another.

The following example illustrates the method of finding the principal coordinates in

terms of the geometrical coordinates.

q2(t)q1(t)

E X A M P L E  5 . 6
Principal Coordinates of Spring-Mass System

Determine the principal coordinates for the spring-mass system shown in Fig. 5.6.

Solution

Approach: Define two independent solutions as principal coordinates and express them in terms of

the solutions and 

The general motion of the system shown in Fig. 5.6 is given by Eq. (E.10) of Example 5.1:

(E.1)

where and are constants. We define a new set of coordinates and

such that

(E.2)

Since and are harmonic functions, their corresponding equations of motion can be writ-

ten as1

(E.3) q
$

2 + +
3k

m
*q2 = 0

 q
$

1 + +
k

m
*q1 = 0

q2(t)q1(t)

 q2(t) = B2 cos+
A

3k

m
 t + f2*

 q1(t) = B1 cos+
A

k

m
 t + f1*

q2(t)

q1(t)f2B1 = X1
(1), B2 = X1

(2), f1,

 x2(t) = B1 cos+
A

k

m
 t + f1* - B2 cos+

A
3k

m
 t + f2*

 x1(t) = B1 cos+
A

k

m
 t + f1* + B2 cos+

A
3k

m
 t + f2*

x2(t).x1(t)

1Note that the equation of motion corresponding to the solution is given by q
$
+ v2q = 0.q = B cos(vt + f)
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492 CHAPTER 5 TWO-DEGREE-OF-FREEDOM SYSTEMS

These equations represent a two-degree-of-freedom system whose natural frequencies are 

and Because there is neither static nor dynamic coupling in the equations of motion

(E.3), and are principal coordinates. From Eqs. (E.1) and (E.2), we can write

(E.4)

The solution of Eqs. (E.4) gives the principal coordinates:

(E.5)

*

 q2(t) =
1

2
 [x1(t) - x2(t)]

 q1(t) =
1

2
 [x1(t) + x2(t)]

 x2(t) = q1(t) - q2(t)

 x1(t) = q1(t) + q2(t)

q2(t)q1(t)

v2 = 23k/m.

v1 = 1k/m

E X A M P L E  5 . 7
Frequencies and Modes of an Automobile

Determine the pitch (angular motion) and bounce (up-and-down linear motion) frequencies and the

location of oscillation centers (nodes) of an automobile with the following data (see Fig. 5.13):

Mass 

Radius of gyration 

Distance between front axle and C.G. 

Distance between rear axle and C.G. 

Front spring stiffness 

Rear spring stiffness (kr) = 22 kN/m

(kf) = 18 kN/m

(l2) = 1.5 m

(l1) = 1.0 m

(r) = 0.9 m

(m) = 1000 kg

Bounce

Pitch

C.G.
kf kr

l1 l2

x

uC.G.

Reference

kf kr

FIGURE 5.13 Pitch and bounce

motions of an automobile.
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5.5 COORDINATE COUPLING AND PRINCIPAL COORDINATES 493

Solution: If x and are used as independent coordinates, the equations of motion are given by Eq.

(5.23) with and For free vibration, we assume a harmonic solution:

(E.1)

Using Eqs. (E.1) and (5.23), we obtain

(E.2)

For the known data, Eq. (E.2) becomes

(E.3)

from which the frequency equation can be derived:

(E.4)

The natural frequencies can be found from Eq. (E.4):

(E.5)

With these values, the ratio of amplitudes can be found from Eq. (E.3):

(E.6)

The node locations can be obtained by noting that the tangent of a small angle is approximately equal

to the angle itself. Thus, from Fig. 5.14, we find that the distance between the C.G. and the node is

m for and 0.3061 m for The mode shapes are shown by dashed lines in Fig. 5.14.v2.v1-2.6461

X(1)

®
(1)

= -2.6461,  X(2)

®
(2)

= 0.3061

v1 = 5.8593 rad/s,  v2 = 9.4341 rad/s

8.1v4
- 999v2

+ 24,750 = 0

B
(-1000v2

+ 40,000) 15,000

15,000 (-810v2
+ 67,500)

R b
X

®
r = b

0

0
r

B
(-  mv2

+ kf + kr) (-  kf l1 + kr l2)

(-  kf l1 + kr l2) (-  J0v
2
+ kf l1

2
+ kr l2

2)
R b

X

®
r = b

0

0
r

x(t) = X cos (vt + f),  u (t) = ® cos (vt + f)

J0 = mr2.k1 = kf, k2 = kr,

u

C.G.
O

+x

2.6461

0.3061

C.G.

O
+x +u

*u

FIGURE 5.14 Mode shapes of an auto-

mobile.

*

M05_RAO08193_05_SE_C05.qxd  8/21/10  4:34 PM  Page 493
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5.6 Forced-Vibration Analysis
The equations of motion of a general two-degree-of-freedom system under external forces

can be written as

(5.27)

Equations (5.1) and (5.2) can be seen to be special cases of Eq. (5.27), with 

and We shall consider the external forces to be harmonic:

(5.28)

where is the forcing frequency. We can write the steady-state solutions as

(5.29)

where and are, in general, complex quantities that depend on and the system para-

meters. Substitution of Eqs. (5.28) and (5.29) into Eq. (5.27) leads to

(5.30)

As in Section 3.5, we define the mechanical impedance as

(5.31)

and write Eq. (5.30) as

(5.32)

where

and

F
!

0 = b
F10

F20
r

 X
!
= b

X1

X2
r

 [Z(iv)] = B
Z11(iv) Z12(iv)

Z12(iv) Z22(iv)
R = Impedance matrix

[Z(iv)]X
!

= F
!

0

Zrs(iv) = -v
2mrs + ivcrs + krs,  r, s = 1, 2

Zrs(iv)

= b
F10

F20
r

B
(-v2m11 + ivc11 + k11) (-v2m12 + ivc12 + k12)

(-v2m12 + ivc12 + k12) (-v2m22 + ivc22 + k22)
R b

X1

X2
r

vX2X1

xj(t) = Xje
ivt,  j = 1, 2

v

Fj(t) = Fj0eivt,  j = 1, 2

m12 = 0.m22 = m2,
m11 = m1,

 + B
k11 k12

k12 k22
R b

x1

x2
r = b

F1

F2
r

 B
m11 m12

m12 m22
R b

x
$

1

x
$

2
r + B

c11 c12

c12 c22
R b

x 
#
1

x 
#
2
r
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5.6 FORCED-VIBRATION ANALYSIS 495

Equation (5.32) can be solved to obtain

(5.33)

where the inverse of the impedance matrix is given by

(5.34)

Equations (5.33) and (5.34) lead to the solution

(5.35)

By substituting Eq. (5.35) into Eq. (5.29) we can find the complete solution, and 

The analysis of a two-degree-of-freedom system used as a vibration absorber is given

in Section 9.11. Reference [5.4] deals with the impact response of a two-degree-of-freedom

system, while Ref. [5.5] considers the steady-state response under harmonic excitation.

x2(t).x1(t)

 X2(iv) =
-  Z12(iv)F10 + Z11(iv)F20

Z11(iv)Z22(iv) - Z12
2 (iv)

 X1(iv) =
Z22(iv)F10 - Z12(iv)F20

Z11(iv)Z22(iv) - Z12
2 (iv)

[Z(iv)] 

-
 

1
=

1

Z11(iv)Z22(iv) - Z12
2 (iv)

B
Z22(iv) -Z12(iv)

-Z12(iv) Z11(iv)
R

X
!
= [Z(iv)] 

-
 

1 F
!

0

E X A M P L E  5 . 8
Steady-State Response of Spring-Mass System

Find the steady-state response of the system shown in Fig. 5.15 when the mass is excited by the

force Also, plot its frequency-response curve.

Solution: The equations of motion of the system can be expressed as

(E.1)

Comparison of Eq. (E.1) with Eq. (5.27) shows that

We assume the solution to be as follows:2

(E.2)

Equation (5.31) gives

(E.3)Z11(v) = Z22(v) = -mv2
+ 2k,   Z12(v) = -k

xj(t) = Xj cos vt,  j = 1, 2

k11 = k22 = 2k, k12 = -
 
k, F1 = F10 cos vt, F2 = 0

m11 = m22 = m, m12 = 0, c11 = c12 = c22 = 0, 

B
m 0

0 m
R b

x
$

1

x
$

2
r + B

2k -  k

-  k 2k
R b

x1

x2
r = b

F10 cos vt

0
r

F1(t) = F10 cos vt.

m1

2Since we shall assume the solution also to be 

It can be verified that are real for an undamped system.Xjj = 1, 2.

xj = Re(Xj
   

e  

i
 
v

 
t) = Xj cos vt,F10 cos vt = Re(F10

   

e   

i
 
v

 
t),
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496 CHAPTER 5 TWO-DEGREE-OF-FREEDOM SYSTEMS

Hence and are given by Eq. (5.35):

(E.4)

(E.5)

By defining and Eqs. (E.4) and (E.5) can be expressed as

(E.6)

(E.7)

The responses and are shown in Fig. 5.16 in terms of the dimensionless parameter In this

parameter, was selected arbitrarily; could have been selected just as easily. It can be seen that

the amplitudes and become infinite when or Thus there are two resonance

conditions for the system: one at and another at At all other values of the amplitudes of

vibration are finite. It can be noted from Fig. 5.16 that there is a particular value of the frequency atv

v,v2.v1

v
2
= v2

2.v
2
= v1

2X2X1

v2v1

v/v1.X2X1

 X2(v) =
F10

kB ¢
v2

v1

2

- ¢
v

v1

2

R B1 - ¢
v

v1

2

R

 X1(v) =

b2 - ¢
v

v1

2

rF10

kB ¢
v2

v1

2

- ¢
v

v1

2

R B1 - ¢
v

v1

2

R

v2
2
= 3k/m,v1

2
= k/m

 X2(v) =
kF10

(-mv2
+ 2k)2

- k2
=

kF10

(-mv2
+ 3k)(-mv2

+ k)

 X1(v) =

(-v2m + 2k) F10

(-v2m + 2k)2
- k2

=

(-v2m + 2k) F10

(-mv2
+ 3k)(-mv2

+ k)

X2X1

m

k

k

x1(t)

m
x2(t)

k

f1(t) * F10 cos vt

FIGURE 5.15 A two-mass system

subjected to harmonic force.
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5.7 SEMIDEFINITE SYSTEMS 497

which the vibration of the first mass to which the force is applied, is reduced to zero. This

characteristic forms the basis of the dynamic vibration absorber discussed in Chapter 9.

*

5.7 Semidefinite Systems
Semidefinite systems are also known as unrestrained or degenerate systems. Two examples

of such systems are shown in Fig. 5.17. The arrangement in Fig. 5.17(a) may be considered

to represent two railway cars of masses and with a coupling spring k. The arrange-

ment in Fig. 5.17(c) may be considered to represent two rotors of mass moments of inertia

and connected by a shaft of torsional stiffness kt.J2J1

m2m1

f1(t)m1,

*3

*2

*1

0

1

2

3

1 2 3

(a) (b)

4

X1·k

F10

*3

*2

*1

0

1

2

3

1 2 3 4

X2·k

F10

v1

v2

v1

v1

v2v1
v v

FIGURE 5.16 Frequency-response curves of Example 5.8.

Shaft

Rotor 2
(turbine)

(c)(b)

Rotor 1
(air blower)

m1

x1(t)
J1J2

kt

m2k(x2 * x1)

x2(t)

(a)

m1

x1(t)

m2

k

x2(t)

FIGURE 5.17 Semidefinite systems.
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498 CHAPTER 5 TWO-DEGREE-OF-FREEDOM SYSTEMS

In a railway train, the rail cars can be modeled as lumped masses and the couplings

between the cars as springs. A train rolling down the track can be considered as a system

having rigid-body, unrestrained, translational motion. At the same time, the rail cars can

vibrate relative to one another. The presence of an unrestrained degree of freedom in the

equation of motion changes the analysis. The stiffness matrix of an unrestrained system

will be singular. One of the natural frequencies of an unrestrained two-degree-of-freedom

system will be zero. For such a system, the motion is composed of translation and

vibration.

The analysis of unrestrained systems is presented by considering the system shown in

Fig. 5.17(a). The equations of motion of the system can be written as (Fig. 5.17b):

(5.36)

For free vibration, we assume the motion to be harmonic:

(5.37)

Substitution of Eq. (5.37) into Eq. (5.36) gives

(5.38)

By equating the determinant of the coefficients of and to zero, we obtain the fre-

quency equation as

(5.39)

from which the natural frequencies can be obtained:

(5.40)

As stated earlier, Eq. (5.40) shows that one of the natural frequencies of the system is zero,

which means that the system is not oscillating. In other words, the system moves as a

whole without any relative motion between the two masses (rigid-body translation). Such

systems, which have one of the natural frequencies equal to zero, are called semidefinite

systems. We can verify, by substituting into Eq. (5.38), that and are opposite

in phase. There would thus be a node at the middle of the spring.

The free-vibration solution of an unrestrained system is illustrated through the follow-

ing example.

X2
(2)X1

(2)v2

v1 = 0  and  v2 =
A

k(m1 + m2)

m1m2

v2[m1m2v
2
- k(m1 + m2)] = 0

X2X1

 -kX1 + (-m2v
2
+ k)X2 = 0

 (-m1v
2
+ k)X1 - kX2 = 0

xj(t) = Xj cos(vt + fj),  j = 1, 2

 m2x
$

2 + k(x2 - x1) = 0

 m1x
$

1 + k(x1 - x2) = 0
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5.7 SEMIDEFINITE SYSTEMS 499

E X A M P L E  5 . 9
Free Vibration of an Unrestrained System

Find the free-vibration solution of the unrestrained system shown in Fig. 5.17(a) for the following

data: and 

Solution: The natural frequencies of the system can be computed, for the known data, from

Eq. (5.40) as

(E.1)

To compute the mode shapes, Eq. (5.38) is written in matrix form as

(E.2)

For Eq. (E.2) becomes, for the known data,

(E.3)

The solution of Eq. (E.3) gives the first mode shape or modal vector as

(E.4)

where is a constant. For Eq. (E.2) becomes, for the known data,

(E.5)

The solution of Eq. (E.5) gives the second mode shape or modal vector as

(E.6)

where is a constant. The free-vibration solution in each mode can be expressed as

(E.7)

(E.8)

The free-vibration solution for any specified initial conditions can be expressed as a linear combina-

tion of the mode shapes as

x(2)(t) = b
x1

(2)

x2
(2¿) r = b

X1

X2
r

(2)

 cos(v2t + f2) = a2 b
1

-0.5
r  cos(17.3205t + f2)

x
# (1)(t) = b

x1
(1)

x2
(1¿) r = b

X1

X2
r

(1)

 cos(v1t + f1) = a1 b
1

1
r  cos f1

a2

b
X1

X2

r

(2)

= a2 b
1

-0.5
r

B
-100 -200

-200 -400
R b

X1

X2
r = b

0

0
r

v2 = 17.3205,a1

b
X1

X2
r

(1)

= a1 b
1

1
r

B
200 -200

-200 200
R b

X1

X2
r = b

0

0
r

v1 = 0,

B
(-m1v

2
+ k) -k

-k (-m2v
2
+ k)

R b
X1

X2
r = b

0

0
r

v1 = 0,  v2 = e

200(1 + 2)

1(2)
f

1
2

= 17.3205 rad/S

x2(0) = x
#
1(0) = x

#
2(0) = 0.m1 = 1 kg, m2 = 2 kg, k = 200 N/m, x1(0) = 0.1 m,
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500 CHAPTER 5 TWO-DEGREE-OF-FREEDOM SYSTEMS

(E.9)

where and are (unknown) constants. The velocities of the masses can be

determined by differentiating Eq. (E.9) as

(E.10)

Using the given initial conditions, Eqs. (E.9) and (E.10) give

(E.11)

(E.12)

(E.13)

(E.14)

The solution of Eqs. (E.11) (E.14) gives

(E.15)

Using Eq. (E.15), the free-vibration solution given by Eq. (E.9) can be expressed as

(E.16)

(E.17)

where plus (minus) is to be used when is taken as in Eqs. (E.16) and (E.17).

Note: It can be seen from Eqs. (E.16) and (E.17) that the free-vibration response (or solution) is com-

posed of a constant (translation) and a harmonic term (vibration).

*

5.8 Self-Excitation and Stability Analysis
In Section 3.11, the stability conditions of a single-degree-of-freedom system have been

expressed in terms of the physical constants of the system. The procedure is extended to a

two-degree-of-freedom system in this section. When the system is subjected to self-exciting

0 (p)f2

x2(t) = 0.03333 < 0.03333 cos(17.3205t + f2)

x1(t) = 0.03333 ; 0.06666 cos(17.3205t + f2)

c2 = ;0.06666,   f2 = 0 or p,   c1 cos f1 = 0.03333

x
#

2(0) = -8.66025c2 sin f2 = 0

x
#

1(0) = -17.3205c2 sin f2 = 0

x2(0) = c1 cos f1 + 0.5c2 cos f2 = 0

x1(0) = c1 cos f1 + c2 cos f2 = 0.1

x

#

(t) = -c2 b
1

-0.5
r(17.3205) sin(17.3205t + f2)

c2 = a2b2b1, b2, c1 = a1b1

 = c1 b
1

1
r  cos f1 + c2 b

1

-0.5
r  cos(17.3205t + f2)

 x(t) = b
x1(t)

x2(t)
r = b1x

(1)
(t) + b2x

(2)
(t)
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5.8 SELF-EXCITATION AND STABILITY ANALYSIS 501

forces, the force terms can be combined with the damping/stiffness terms, and the resulting

equations of motion can be expressed in matrix notation as

(5.41)

By substituting the solution

(5.42)

in Eq. (5.41) and setting the determinant of the coefficient matrix to zero, we obtain the

characteristic equation of the form

(5.43)

The coefficients and are real numbers, since they are derived from the

physical parameters of the system. If and denote the roots of Eq. (5.43), we have

or

(5.44)

A comparison of Eqs. (5.43) and (5.44) yields

(5.45)

The criterion for stability is that the real parts of must be negative to

avoid increasing exponentials in Eq. (5.42). Using the properties of a quartic equation, it

can be derived that a necessary and sufficient condition for stability is that all the coeffi-

cients of the equation ( and ) be positive and that the condition

(5.46)a1a2a3 7 a0a3
2
+ a4a1

2

a4a0, a1, a2, a3,

si (i = 1, 2, 3, 4)

 a4 = s1s2s3s4

 a3 = -
 
(s1s2s3 + s1s2s4 + s1s3s4 + s2s3s4)

 a2 = s1s2 + s1s3 + s1s4 + s2s3 + s2s4 + s3s4

 a1 = -
 
(s1 + s2 + s3 + s4)

 a0 = 1

 - (s1s2s3 + s1s2s4 + s1s3s4 + s2s3s4)s + (s1s2s3s4) = 0

 + (s1s2 + s1s3 + s1s4 + s2s3 + s2s4 + s3s4)s2

 s4
- (s1 + s2 + s3 + s4)s3

(s - s1)(s - s2)(s - s3)(s - s4) = 0

s4s1, s2, s3,
a4a0, a1, a2, a3,

a0s4
+ a1s

3
+ a2s2

+ a3s + a4 = 0

xj(t) = Xje
st, j = 1, 2

 + B
k11 k12

k21 k22
R b

x2

x2
r = b

0

0
r

 B
m11 m12

m21 m22
R b

x
$

1

x
$

2
r + B

c11 c12

c21 c22
R b

x
#

1

x
#

2
r
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502 CHAPTER 5 TWO-DEGREE-OF-FREEDOM SYSTEMS

be fulfilled [5.8, 5.9]. A more general technique, which can be used to investigate the

stability of an n-degree-of-freedom system, is known as the Routh-Hurwitz criterion

[5.10]. For the system under consideration, Eq. (5.43), the Routh-Hurwitz criterion states

that the system will be stable if all the coefficients are positive and the

determinants defined below are positive:

(5.47)

(5.48)

(5.49)

Equation (5.47) simply states that the coefficient must be positive, while the satisfaction

of Eq. (5.49), coupled with the satisfaction of the conditions and implies

the satisfaction of Eq. (5.48). Thus the necessary and sufficient condition for the stability

of the system is that all the coefficients and be positive and that the

inequality stated in Eq. (5.46) be satisfied.

5.9 Transfer-Function Approach
As stated in Section 3.12, the transfer function of a differential equation denotes the ratio

of the Laplace transform of the response (output) function to the Laplace transform of the

forcing (input) function, assuming zero initial conditions. For the two-degree-of-freedom

system shown in Fig. 5.5, the equations of motion are [Eqs. (5.1) and (5.2)]:

(5.50)

(5.51)

By taking Laplace transforms of Eqs. (5.50) and (5.51), assuming zero initial conditions,

we obtain

(5.52)

(5.53)

Equations (5.52) and (5.53) can be rearranged to obtain

+ (k2 + k3)X2(s) - k2X1(s) = F2(s)

m2s2X2(s) + (c2 + c3)sX2(s) - c2sX1(s)

+ (k1 + k2)X1(s) - k2X2(s) = F1(s)

m1s
2X1(s) + (c1 + c2)sX1(s) - c2sX2(s)

m2x
$

2 + (c2 + c3)x
#
2 - c2x

#
1 + (k2 + k3)x2 - k2x1 = f2

m1x
$

1 + (c1 + c2)x
#
1 - c2x

#
2 + (k1 + k2)x1 - k2x2 = f1

a4a0, a1, a2, a3,

a4 7 0,a3 7 0
a1

 T3 = 3

a1 a3 0

a0 a2 a4

0 a1 a3

3 = a1a2a3 - a1
2a4 - a0a3

2 7 0

 T2 =
`

a1 a3

a0 a2
`
= a1a2 - a0a3 7 0

 T1 = a1 7 0

a0, a1, Á , a4
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5.9 TRANSFER-FUNCTION APPROACH 503

(5.54)

(5.55)

Equations (5.54) and (5.55) indicate two simultaneous linear algebraic equations in 

and These can be solved using Cramer s rule [5.11] as

(5.56)

(5.57)

where

(5.58)

(5.59)

(5.60)

Notes:

1. The denominator, D(s), in the expressions of and given by Eq. (5.60), is 

a fourth-order polynomial in s and denotes the characteristic polynomial of the system.

Because the characteristic polynomial is of order four, the model (or system) is said to

be a fourth-order model (or system).

2. Equations (5.56) and (5.57) permit us to apply inverse Laplace transforms to obtain the

fourth-order differential equations for and respectively (Problem 5.79).

3. Equations (5.56) and (5.57) can be used to derive the transfer functions of and

corresponding to any specified forcing function.x2(t)
x 1(t)

x2(t),x1(t)

X2(s)X1(s)

 + (k1k2 + k2k3 + k3k1)

 + [(k1 + k2)(c2 + c3) + c1k2 + c1k3 - c2k2 + c2k3]s

 + [m2(k1 + k2) + m1(k2 + k3) + c1c2 + c2c3 + c3c1]s2

 = m1m2s4
+ [m2(c1 + c2) + m1(c2 + c3)]s3

D(s) =
`

m1s
2
+ (c1 + c2)s + (k1 + k2) -(c2s + k2)

-(c2s + k2) m2s2
+ (c2 + c3)s + (k2 + k3)

`

= [m1s
2
+ (c1 + c2)s + (k1 + k2)]F2(s) + (c2s + k2)F1(s)

 D2(s) =
`

m1s
2
+ (c1 + c2)s + (k1 + k2) F1(s)

-(c2s + k2) F2(s)
`

 = [m2s2
+ (c2 + c3)s + (k2 + k3)]F1(s) + (c2s + k2)F2(s)

 D1(s) =
`

F1(s) -(c2s + k2)

F2(s) m2s2
+ (c2 + c3)s + (k2 + k3)

`

X2(s) =

D2(s)

D(s)

X1(s) =

D1(s)

D(s)

X2(s).
X1(s)

[m2s2
+ (c2 + c3)s + (k2 + k3)]X2(s) - (c2s + k2)X1(s) = F2(s)

[m1s
2
+ (c1 + c2)s + (k1 + k2)]X1(s) - (c2 s + k2)X2(s) = F1(s)
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504 CHAPTER 5 TWO-DEGREE-OF-FREEDOM SYSTEMS

5.10 Solutions Using Laplace Transform
The computation of responses of two-degree-of-freedom systems using Laplace transform

is illustrated through the following examples.

E X A M P L E  5 . 1 0
Free-Vibration Response of an Undamped System

Find the free-vibration response of the system shown in Fig. 5.5(a) using Laplace transform

approach for the following data: 

Assume the initial conditions as and 

Solution: For the given data, for free vibration with the equations of motion of

the system, Eqs. (5.1) and (5.2), take the form

(E.1)

(E.2)

By taking Laplace transform of Eqs. (E.1) and (E.2), we obtain

(E.3)

(E.4)

For the known initial conditions, and Eqs. (E.3) and

(E.4) become

(E.5)

(E.6)

By introducing

(E.7)

(E.8)

(E.9)

the solution of Eqs. (E.5) and (E.6) for and based on Cramer s rule, can be expressed asX2(s),X1(s)

D(s) =
`

2s2
+ 12 -4

-4 4s2
+ 4

`
= 8s4

+ 56s2
+ 32

D2(s) =
`

2s2
+ 12 0

-4 4s
`
= 8s3

+ 48s

D1(s) =
`

0 -4

4s 4s2
+ 4

`
= 16s

(4s2
+ 4)X2(s) - 4X1(s) = 4s

(2s2
+ 12)X1(s) - 4X2(s) = 0

x
#

1(0) = x
#

2(0) = 0,x1(0) = 0, x2(0) = 1,

4[s2X2(s) - sx2(0) - x
#

2(0)] - 4X1(s) + 4X2(s) = 0

2[s2X1(s) - sx1(0) - x
#

1(0)] + 12X1(s) - 4X2(s) = 0

4x
$

2 - 4x1 + 4x2 = 0

2x
$

1 + 12x1 - 4x2 = 0

f1(t) = f2(t) = 0,

x
#

1(0) = x
#

2(0) = 0.x1(0) = 0, x2(0) = 1,

m1 = 2, m2 = 4, k 1 = 8, k2 = 4, k 3 = 0, c1 = 0, c2 = 0, c3 = 0.
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(E.10)

(E.11)

As can be observed from Eqs. (E.10) and (E.11), the denominator is a quadratic in (true for all

undamped two-degree-of-freedom systems). Since the roots of the denominator,

are given by

(E.12)

and can be expressed in factored form as

(E.13)

(E.14)

Using partial fractions, and can be written as

(E.15)

(E.16)

To determine we equate (E.15) and (E.13) to obtain (from the numerators)

or

(E.17)

By equating the corresponding terms on both sides of Eq. (E.17), we obtain

(E.18) 5.0488C1 + 1.5845C3 = 0

 C2 + C4 = 0, 0.7923C1 + 2.5243C3 = 0, 6.3723C2 + 0.6277C4 = 2, 

 + (5.0488C1 + 3.4676C3) = 2s

 s3(C2 + C4) + s2(0.7923C1 + 2.5243C3) + s(6.3723C2 + 0.6277C4)

= 2s

0.7923C1(s2
+ 6.3723) + C2s(s2

+ 6.3723) + 2.5243C3(s2
+ 0.6277) + C4s(s2

+ 0.6277)

x1(t),

X2(s) =
0.7923C5

s2
+ 0.6277

+
C6s

s2
+ 0.6277

+
2.5243C7

s2
+ 6.3723

+
C8s

s2
+ 6.3723

X1(s) =
0.7923C1

s2
+ 0.6277

+
C2s

s2
+ 0.6277

+
2.5243C3

s2
+ 6.3723

+
C4s

s2
+ 6.3723

X2(s)X1(s)

X2(s) =
s3

+ 6s

(s2
+ 0.6277)(s2

+ 6.3723)

X1(s) =
2s

(s2
+ 0.6277)(s2

+ 6.3723)

X2(s)X1(s)

s2
= -0.6277 (or -0.79232), -6.3723 (or -2.52432)

s4
+ 7s2

+ 4 = 0,

s
2

X2(s) =

D2(s)

D(s)
=

8s3
+ 48s

8s4
+ 56s2

+ 32
=

s3
+ 6s

s4
+ 7s2

+ 4

X1(s) =

D1s)

D(s)
=

16s

8s4
+ 56s2

+ 32
=

2s

s4
+ 7s2

+ 4
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506 CHAPTER 5 TWO-DEGREE-OF-FREEDOM SYSTEMS

The solution of Eqs. (E.18) yields and hence of

Eq. (E.15) becomes

(E.19)

The inverse Laplace transform of Eq. (E.19) gives

(E.20)

To determine we equate (E.16) and (E.14) to obtain (from the numerators)

or

(E.21)

By equating the corresponding terms on both sides of Eq. (E.21), we obtain

(E.22)

The solution of Eqs. (E.22) yields and hence of

Eq. (E.16) becomes

(E.23)

The inverse Laplace transform of Eq. (E.23) gives

(E.24)

The free-vibration response of the system, and given by Eqs. (E.20) and (E.24), is shown

graphically in Fig. 5.18.

x2(t),x1(t)

x2(t) = 0.9352 cos 0.7923t + 0.0648 cos 2.5243t

X2(s) = 0.9352 

s

s2
+ 0.6277

+ 0.0648 

s

s2
+ 6.3723

X2(s)C5 = 0, C6 = 0.9352, C7 = 0, C8 = 0.0648,

 5.0488C5 + 1.5845C7 = 0

 C6 + C8 = 1, 0.7923C5 + 2.5243C7 = 0, 6.3723C6 + 0.6277C8 = 6,

 + (5.0488C5 + 1.5845C7) = s3
+ 6s

 s3 (C6 + C8) + s2 (0.7923C5 + 2.5243C7) + s(6.3723C6 + 0.6277C8)

+ 2.5243C7 (s2
+ 0.6277) + C8s(s2

+ 0.6277) = s3
+ 6s

0.7923C5(s2
+ 6.3723) + C6s(s2

+ 6.3723)

x2(t),

x1(t) = 0.3481 cos 0.7923t - 0.3481 cos 2.5243t

X1(s) = 0.3481 

s

s2
+ 0.6277

- 0.3481 

s

s2
+ 6.3723

X1(s)C1 = 0, C2 = 0.3481, C3 = 0, C4 = -0.3481,
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*
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x2(t)
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1
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12 14 16 18 20

FIGURE 5.18

E X A M P L E  5 . 1 1
Free-Vibration Response of a Damped System

Find the free-vibration response of the system shown in Fig. 5.5(a) using Laplace transform approach

for the following data: 

Assume the initial conditions as and x
#

1(0) = x
#

2(0) = 0.x1(0) = 0, x2(0) = 1,

m1 = 2, m2 = 4, k 1 = 8, k2 = 4, k 3 = 0, c1 = 0, c2 = 2, c3 = 0.
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508 CHAPTER 5 TWO-DEGREE-OF-FREEDOM SYSTEMS

Solution: For the given data, for free vibration with the equations of motion of

the system, Eqs. (5.1) and (5.2), take the form

(E.1)

(E.2)

By taking Laplace transform of Eqs. (E.1) and (E.2), we obtain

(E.3)

(E.4)

For the known initial conditions, and Eqs. (E.3) and

(E.4) become

(E.5)

(E.6)

By introducing

(E.7)

(E.8)

(E.9)

the solution of Eqs. (E.5) and (E.6) for and based on Cramer s rule, can be expressed as

(E.10)

(E.11)

As can be observed from Eqs. (E.10) and (E.11), the denominator is not a quadratic in 

(true for all damped two-degree-of-freedom systems). The roots of the denominator (characteris-

tic roots of the system), can be found (for example, using

MATLAB), as

s4
+ 1.5s3

+ 7s2
+ 2s + 4 = 0,

s2

X2(s) =

D2(s)

D(s)
=

8s3
+ 12s2

+ 48s + 16

8s4
+ 12s3

+ 56s2
+ 16s + 32

=
s3 

+ 1.5s2
+ 6s + 2

s4
+ 1.5s3

+ 7s2
+ 2s + 4

X1(s) =

D1(s)

D(s)
=

16s

8s4
+ 12s3

+ 56s2
+ 16s + 32

=
2s

s4
+ 1.5s3

+ 7s2
+ 2s + 4

X2(s),X1(s)

D(s) =
`

2s2
+ 2s + 12 -2s - 4

-2s - 4 4s2
+ 2s + 4

`
= 8s4

+ 12s3
+ 56s2

+ +  16s + 32

D2(s) =
`

2s2
+ 2s + 12 -2

-2s - 4 4s + 2
`
= 8s3

+ 12s2
+ 48s + 16

D1(s) =
`

-2 2s - 4

4s + 2 4s2
+ 2s + 4

`
= 16s

(4s2 + 2s + 4)X2(s) - (2s + 4)X1(s) = 4s + 2

(2s2
+ 2s + 12)X1(s) - (2s + 4)X2(s) = -2

x
#

1(0) = x
#

2(0) = 0,x1(0) = 0, x2(0) = 1,

+ 2[sX2(s) - x2(0)] - 4X1(s) + 4X2(s) = 0

4[s2X2(s) - sx2(0) - x
#

2(0)] - 2[sX1(s) - x1(0)]

+ 12X1(s) - 4X2(s) = 0

2[s2X1(s) - sx1(0) - x
#

1(0)] + 2[sX1(s) - x1(0)] - 2[sX2(s) - x2(0)]

4x
$

1 - 2x
#

1 + 2x
#

2 - 4x1 + 4x2 = 0

2x
$

1 + 2x
#

1 - 2x
#

2 + 12x1 - 4x2 = 0

f1(t) = f2(t) = 0,
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5.10 SOLUTIONS USING LAPLACE TRANSFORM 509

(E.12)

It can be seen that the roots are complex (true for all damped systems) instead of simply imaginary

values (true for undamped systems). In view of the characteristic roots given in Eq. (E.12), of

Eq. (E.10) can be expressed as

(E.13)

where and are unknown con-

stants. By writing the right-hand-side expression in Eq. (E.13) as

(E.14)

and equating the numerator of Eq. (E.14) to the numerator in the middle expression of Eq. (E.13), we

obtain

or

(E.15)

By equating the coefficients of the corresponding terms on both sides of Eq. (E.15), we obtain

(E.16)

where the values of a, b, c, and d are defined in Eq. (E.12). The solution of Eqs. (E.16), for example

by MATLAB, gives Thus in Eq.

(E.13), becomes

(E.17) + 0.0196 

d

(s + c)2
+ d2

+ 0.3713 

s + c

(s + c)2
+ d2

 X1(s) = - 0.0945 

b

(s + a)2
+ b2

- 0.3713 

s + a

(s + a)2
+ b2

X1(s),C1 = -0.0945, C2 = -0.3713, C3 = 0.0196, C4 = 0.3713.

(bc2
+ bd2)C1 + (ac2

+ ad2)C2 + (da2
+ db2)C3 + (ca2

+ cb2)C4 = 0

2cbC1 + (2ac + c2
+ d2)C2 + 2adC3 + (2ac + 2a2

+ b2)C4 = 0

bC1 + (2 c + a)C2 + dC3 + (2a + c)C4 = 0

C2 + C4 = 0

+ (dC3 + cC4)(a2
+ b2) = 2s

+ (a2
+ b2)C4 + 2a(dC3 + cC4)] + [(bC1 + aC2)(c2

+ d2)2c(bC1 + aC2)

+ cC4) + s[(c2
+ d2)C2s3(C2 + C4) + s2(2cC2 + bC1 + aC2 + 2aC4 + dC3

(C1b + C2s + C2a)(s2
+ 2sc + c2

+ d2) + (C3d + C4s + C4c)(s2
+ 2sa + a2

+ b2) = 2s

[C1b + C2(s + a)][(s + c)2
+ d2]

[(s + a)2
+ b2] 

 +  
[C3d + C4(s + c)][(s + a)2

+ b2]

[(s + c)2
+ d2]

Ci, i = 1, 2, 3, 4a = 0.6567, b = 2.3807, c = 0.0933, d = 0.8044,

X1(s) =
2s

[(s + a)2
+ b2][(s + c)2

+ d2]
=

C1b + C2(s + a)

[(s + a)2
+ b2]

+

C3d + C4(s + c)

[(s + c)2
+ d2]

X1(s)

 s3,4 = -0.0933 ; 0.8044i K c ; di

 s1,2 = -0.6567 ; 2.3807i K a ; bi
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510 CHAPTER 5 TWO-DEGREE-OF-FREEDOM SYSTEMS

By taking inverse Laplace transform of Eq. (E.17), we obtain

(E.18)

Similarly, based on the characteristic roots given in Eq. (E.12), of Eq. (E.11) can be expressed as

(E.19)

where and 6, 7, 8, are unknown con-

stants. By writing the right-hand-side expression in Eq. (E.19) as

(E.20)

and equating the numerator of Eq. (E.20) to the numerator in the middle expression of Eq. (E.19), we

obtain

or

(E.21)

By equating the coefficients of the corresponding terms on both sides of Eq. (E.21), we obtain

(E.22)

where the values of a, b, c, and d are defined in Eq. (E.12). The solution of Eqs. (E.22), for example

by MATLAB, gives Thus Eq. (E.19) can

be written as

 X2(s) = - 0.0418 

b

(s + a)2
+ b2

+ 0.0970 

s + a

(s + a)2
+ b2

C5 = -0.0418, C6 = 0.0970, C7 = 0.3077, C8 = 0.9030.

(bc2
+ bd2)C5 + (ac2

+ ad2)C6 + (da2
+ db2)C7 + (ca2

+ cb2)C8 = 2

2cbC5 + (2ac + c2
+ d2)C6 + 2adC7 + (2ac + a2

+ b2)C8 = 6

bC5 + (2c + a)C6 + dC7 + (2a + c)C8 = 1.5

C6 + C8 = 1

= s3
+ 1.5s2

+ 6s + 2+ dC7 + cC8)(a2
+ b2)

+ (a2
+ b2)C8 + 2a(dC7 + cC8)] + [(bC5 + aC6)(c2

+ d2)+ 2c(bC5 + aC6)

+ s[(c2
+ d2)C6s3(C6 + C8 + s2(2cC6 + bC5 + aC6 + 2aC8 + dC7 + cC8)

= s3
+ 1.5s2

+ 6s + 2

(C5b + C6s + C6a)(s2
+ 2sc + c2

+ d2) + (C7d + C8s + C8c)(s2
+ 2sa + a2

+ b2)

[C5 
b + C6(s + a)][s + c)2

+ d2]

[(s + a)2
+ b2] 

 +  
[C7d + C8(s + c)][s + a)2

+ b2]

[(s + c)2
+ d2]

Ci, i = 5,a = 0.6567, b = 2.3807, c = 0.0933, d = 0.8044

X2(s) =
s3

+ 1.5s2
+ 6s + 2

[(s + a)2
+ b2][(s + c)2

+ d2]
=

C5b + C6(s + a)

[(s + a)2
+ b2]

+

C7d + C8(s + c)

[(s + c)2
+ d2]

X2(s)

 +e-0.0933t (0.0196 sin 0.8044t + 0.3713 cos 0.8044t)

 x1(t) = e-0.6567t(0.0945 sin 2.3807t - 0.3713 cos 2.3807t)
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5.10 SOLUTIONS USING LAPLACE TRANSFORM 511

(E.23)

By taking inverse Laplace transform of Eq. (E.23), we obtain

(E.24)

The free-vibration response of the system, and given by Eqs. (E.18) and (E.24), is shown

graphically in Fig. 5.18.

*

x2(t),x1(t)

+ e-0.0933t(0.3077 sin 0.8044t + 0.9030 cos 0.8044t)

x2(t) = e-0.6567t(-0.0418 sin 2.3807t + 0.0970 cos 2.3807t)

 + 0.3077 

d

(s + c)2
+ d2

+ 0.9030 

s + c

(s + c)2
+ d2

E X A M P L E  5 . 1 2
Response Under Impulse Using Laplace Transform Method

Two railway cars, of masses and are connected by a spring of stiffness k, as

shown in Fig. 5.17(a). If the car of mass M is subjected to an impulse determine the time

responses of the cars using the Laplace transform method.

Solution: The responses of the cars can be determined using either of the following approaches:

a. Consider the system to be undergoing free vibration due to the initial velocity caused by the

impulse applied to car M.

b. Consider the system to be undergoing forced vibration due to the force applied

to car M (with the displacements and velocities of cars M and m considered to be zero initially).

Using the second approach, the equations of motion of the cars can be expressed as

(E.1)

(E.2)

Using Laplace transforms, Eqs. (E.1) and (E.2) can be written as

(E.3)

(E.4)

Equations (E.3) and (E.4) can be solved for and as

(E.5)

(E.6)X2(s) =
F0 

k

s2 
5Mm s2

+ k(M + m)6

 X1(s) =

F0 
(ms2

+ k)

s2 
5Mm s2

+ k(M + m)6

X2(s)X1(s)

-  kX1(s) + (ms2
+ k)X2(s) = 0

(Ms2
+ k)X1(s) - kX2(s) = F0

 mx
..

2 + k(x2 - x1) = 0

 Mx
..
1 + k(x1 - x2) = F0 d(t)

f(t) = F0 d(t)

F0 d(t),
m2 = m,m1 = M
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512 CHAPTER 5 TWO-DEGREE-OF-FREEDOM SYSTEMS

Using partial fractions, Eqs. (E.5) and (E.6) can be rewritten as

(E.7)

(E.8)

where

(E.9)

The inverse transforms of Eqs. (E.7) and (E.8), using the results of Appendix D, yield the time

responses of the cars as

(E.10)

(E.11)

Note: Equations (E.10) and (E.11) are plotted in Example 5.18.

*

5.11 Solutions Using Frequency Transfer Functions
The frequency transfer function can be obtained by substituting in place of s in the gen-

eral transfer function of the system. The generation of the frequency transfer function and

the method of finding the response of a system using this function is illustrated through the

following examples.

iv

 x2(t) =
F0

M + m
 + t -

1

v

 sin vt*

 x1(t) =
F0

M + m
 + t +

m

vM
 sin vt*

v
2
= k+

1

M
+

1

m
*

 X2(s) =
F0

M + m
 +

1

s2
-

1

v

 
v

s2
+ v

2
*

 X1(s) =
F0

M + m
 +

1

s2
+

m

v M
 

v

s2
+ v

2
*

E X A M P L E  5 . 1 3
Derivation of Frequency Transfer Functions

Derive the frequency transfer functions of and for the system shown in Fig. 5.19(a).

Solution: From the free-body diagrams of the masses and shown in Fig. 5.19(b), the

equations of motion of the system can be obtained as

(E.1)

(E.2)m2x
$

2 + c2(x
#

2 - x
#

1) + k2(x2 - x1) = p2 = 0

m1x
$

1 + c1x
#

1 + k1x1 + c2(x
#

1 - x
#

2) + k2(x1 - x2) = p1 = P0  sin vt

m2m1

x2(t)x1(t)
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5.11 SOLUTIONS USING FREQUENCY TRANSFER FUNCTIONS 513

It can be observed that Eqs. (E.1) and (E.2) can be obtained from Eqs. (5.50) and (5.51) by setting

and By taking the Laplace transforms of Eqs. (E.1) and (E.2),

assuming zero initial conditions, we obtain

(E.3)

(E.4)

The expressions for and can be found from the solution of Eqs. (E.3) and (E.4) [by setting

and in Eqs. (5.56)  (5.60)]:

(E.5)

(E.6)

where

(E.7)

(E.8)

(E.9) + [m1k2 + m2k1 + m2k2 + c1c2]s2
+ [c1k2 + c2k1]s + (k1k2)

 D(s) = (m1m2)s4
+ [m1c2 + m2c1 + m2c2]s3

D2(s) = (c2s + k2)P1(s)

D1(s) = (m2s2
+ c2s + k2)P1(s)

X2(s) =

D2(s)

D(s)

X1(s) =

D1(s)

D(s)

F2(s) = 0k3 = c3 = 0, F1(s) = P1(s),
X2(s)X1(s)

m2s2X2(s) + c2s[X2(s) - X1(s)] + k2[X2(s) - X1(x)] = 0

+ k2[X1(s) - X2(s)] = P1(s)

m1s
2X1(s) + c1sX1(s) + k1X1(s) + c2s[X1(s) - X2(s)]

f2(t) = 0.k3 = c3 = 0, f1(t) = p1(t),

m1

m2

(a) (b)

c2

x2

x1

k1x1 c1x1

.

..

. .

m1x1

..

m2x2

p1(t) + P0 sin vt

k2

c1
k1

m1

k2(x2 * x1)

m2

c2(x2 * x1)

FIGURE 5.19
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514 CHAPTER 5 TWO-DEGREE-OF-FREEDOM SYSTEMS

In view of Eqs. (E.7) (E.9), the general transfer functions of and can be found from Eqs.

(E.5) and (E.6) as

(E.10)

(E.11)

where D(s) is given by Eq. (E.9). By setting in Eqs. (E.10), (E.11), and (E.9), the frequency

transfer functions of and can be obtained as

(E.12)

(E.13)

where

(E.14)

*

 -  v2 [m1k2 + m2k1 + m2k2 + c1c2] + iv[c1k2 + c2k1] + (k1k2)

 D(iv) = v
4(m1m2)v4

- iv3[m1 c2 + m2 c1 + m2 c2]

X2(iv)

P1(iv)
=

ivc2 + k2

D(iv)

X1(iv)

P1(iv)
=

-m2v
2
+ ivc2 + k2

D(iv)

x2(t)x1(t)

s = iv

X2(s)

P1(s)
=

c2s + k2

D(s)

X1(s)

P1(s)
=

m2s2
+ c2s + k2

D(s)

x2(t)x1(t)

E X A M P L E  5 . 1 4
Steady-State Response of a System

Find the steady-state response of the system considered in Example 5.13 by neglecting damping.

Solution: By setting in Eqs. (E.12) and (E.13) of Example 5.13, we obtain the

frequency transfer functions

(E.1)

(E.2)

and hence

(E.3)
X2(iv)

X1(iv)
=

k2

k2 - m2 v2

T2(iv) =

X2(iv)

P1(iv)
=

k2

m1m2v
4
- (m1k2 + m2k1 + m2k2)v2

+ k1k2

T1(iv) =

X1(iv)

P1(iv)
=

k2 - m2v
2

m1m2v
4
- (m1k2 + m2k1 + m2k2) v2

+ k1k2

c1 = c2 = 0
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5.12 EXAMPLES USING MATLAB 515

From Eq. (E.1), the steady-state solution can be obtained, using as

(E.4)

where

(E.5)

From Eqs. (E.3) and (E.4), the steady-state solution can be determined as

(E.6)

where

(E.7)

It can be seen that and are either 0 or Hence the masses and move either in phase

or out of phase with the applied force Thus the masses and 

will move in the same direction if and in the opposite direction if If 

the mass will not move while the mass will have sinusoidal motion.

*

5.12 Examples Using MATLAB

m2m1v =
A

k2

m2

,

v 7
A

k2

m2

.v 6
A

k2

m2

m2m 1P1(iv).(f = p)(f = 0)

m2m 1p.f2f1

f2 =
X2(iv)

P1(iv)
=

X2(iv)

X1(iv)
 
X1(iv)

P1(iv)
= 0 or p

 =
k2P0

[m1m2v
4 - (m1k2 + m2k1 + m2k2)v2 + k1k2]

 sin(vt + f2)

 =
k2

(k2 - m2v
2)

(k2 - m2v
2)P0

[m1m2v
4 - (m1k2 + m2k1 + m2k2)v2 + k1k2]

 sin (vt + f2)

 x2(t) = X2(iv)  sin(vt + f2) =
`

X2(iv)

X1(iv)
`

X1(iv)  sin(vt + f2)

x2(t)

f1 =
X1(i v)

P1(i v)
= 0 or p

x1(t) = X1(iv)  sin vt =
(k2 - m2v

2)P0

[m1m2v
4 - (m1k2 + m2k1 + m2k2)v2 + k1k2]

 sin(vt + f1)

P1(iv) = P0  sin vt,x1(t)

E X A M P L E  5 . 1 5
Solution of the Eigenvalue Problem

Using MATLAB, determine the natural frequencies and mode shapes of the following problem:

(E.1)B -  v2mB
1 0

0 1
R + kB

2  -1

-1 2
R RX

!
= 0

!
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516 CHAPTER 5 TWO-DEGREE-OF-FREEDOM SYSTEMS

Solution: The eigenvalue problem, Eq. (E.1), can be rewritten as

(E.2)

where is the eigenvalue, is the natural frequency, and is the eigenvector or mode

shape. The solution of Eq. (E.2) can be found using MATLAB as follows:

>> A=[2 1; 1 2]

A =

2 1

1 2

>> [V, D] = eig(A)

V =

-0.7071 0.7071

0.7071 0.7071

D =

3.0000 0

0 1.0000

Thus the eigenvalues are and and the corresponding eigenvectors are

*

X
!

1 = b
-0.7071

-0.7071
r  and  X

!

2 = b
-0.7071

0.7071
r

l2 = 3.0,l1 = 1.0

X
!

vl = mv2
>k

B
2  -1

-1 2
RX

!
= lB

1 0

0 1
RX

!

E X A M P L E  5 . 1 6
Roots of a Quartic Equation

Using MATLAB, find the roots of the quartic equation

Solution: The MATLAB command roots is used to obtain the roots of the fourth-degree polynomial as

>> roots ([1 0 0 8 12])

ans =

1.3709 + 1.8271i

1.3709 1.8271i

1.3709 + 0.645 i

1.3709 0.645 i

>>

*

 x3,4 = 1.37091 ; 0.648457i

 x1,2 = -1.37091 ; 1.82709i

f(x) = x4
- 8x + 12 = 0
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E X A M P L E  5 . 1 7
Plotting a Free-Vibration Response

Using MATLAB, plot the free-vibration response of the masses and of Example 5.3.

Solution: The time responses of the masses and are given by Eqs. (E.15) and (E.16) of

Example 5.3. The MATLAB program to plot the responses is given below.

% E _3.m

for i = 1: 501

t(i) = 20 * (i 1)/500;

x1(i) = (5/7) * cos(1.5811*t(i)) + (2/7) * cos(2.4495*t(i));

x2(i) = (10/7) * cos(1.5811*t(i))  (10/7) * cos(2.4495*t(i));

end

subplot(211);

plot(t, x1);

xlabel('t');

ylabel('x1(t)');

subplot(212);

plot(t, x2);

xlabel('t');

ylabel('x2(t)');

m2m1

m2m1

*

3

2

1

0

0 2 4 6 8 10 12 14 16 18 20

0 2 4 6 8 10 12 14 16 18 20

1

2

3

1

0.5

0.5

1

0

x
1
(
t)

x
2
(
t)

t

t
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518 CHAPTER 5 TWO-DEGREE-OF-FREEDOM SYSTEMS

E X A M P L E  5 . 1 8
Time Response of Railway Cars

Using MATLAB, plot the time responses of the two railway cars considered in Example 5.12 for the

following data: 

Solution: For the given data, the time responses of the railway cars can be expressed as (from Eqs.

(E.10) and (E.11) of Example 5.12):

(E.1)

(E.2)

where

(E.3)v
2
= 104

+
1

5000
+

1

2500
*  or  v = 2.44949 rad/s

 x2(t) = 0.2(t - 0.408248 sin 2.44949t)

 x1(t) = 0.2(t + 0.204124 sin 2.44949t)

F0 = 1500 N, M = 5000 kg, m = 2500 kg, k = 104 N/m.

1.4

1.2

1

0.8

0.6

0.4

0.2

0
0 1 2 3 4 5 6

x1: Solid line

x
1
(t

),
  
x

2
(t

)

x2: Dotted line

t

The MATLAB program to plot Eqs. (E.1) and (E.2) is given below.

% Ex5_18.m

for i=1 : 101

t(i) = 6* (i  1) / 100;

x1(i) = 0.2* (t(i) + 0.204124*sin(2.44949*t(i)));

x2(i) = 0.2* (t(i)  0.408248*sin(2.44949*t(i)));

end
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plot (t, x1);

xlabel ('t');

ylabel ('x1(t), x2(t)');

hold on;

plot (t, x2, ' ');

gtext ('x1: Solid line');

gtext ('x2: Dotted line');

*

E X A M P L E  5 . 1 9
Plotting of Frequency Response of a Two-Degree-of-Freedom System

Using MATLAB, plot the frequency-response functions of the system considered in Example 5.8

Solution: The frequency-response functions and given by Eqs. (E.6) and (E.7) of

Example 5.8, are

(E.1)

(E.2) 
X2(v) k

F10

=

1

(l2
2
- l

2)(1 - l
2)

 
X1(v) k

F10

=

(2 - l
2)

(l2
2
- l

2)(1 - l
2)

X2(v),X1(v)

*10

*5

0

5

10

0 0.5 1 1.5 2 2.5 3 3.5 4 4.5 5

X
1
*
K
/F

1
0

w/w
1

*6

*4

0

2

8

0 0.5 1 1.5 2 2.5 3 3.5 4 4.5 5

4

6

*2

X
2
*
K
/F

1
0

w/w
1
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520 CHAPTER 5 TWO-DEGREE-OF-FREEDOM SYSTEMS

where and From the results of Example 5.8, we find that

The MATLAB program to plot Eqs. (E.1) and (E.2) is given

below.

% Ex 514.m

for i = 1: 101

w_w1 (i) = 5 * (i - 1) / 100; % 0 to 5

x1 (i) = (2-w_w1 (i) \^2) / ( (3-w_w1 (i) \^2) * (1-w_w1 (i) \^2) );

x2 (i) = 1 / ( (3-w_w1 (i) \^2) * (1-w_w1 (i) \^2) );

end

subplot (211);

plot (w_w1, x1);

xlabel ('w/w_1');

ylabel ('X_1*K/F_1_0');

grid on;

subplot (212);

plot (w_w1, x2);

xlabel ('w/w_1');

ylabel ('X_2*K/F_1_0');

grid on

*

l2 = v2 
/v1 = (3k/m)/(k/m) = 3.

l2 = v2/v1.l = v/v1

E X A M P L E  5 . 2 0
Forced Response of a Two-Degree-of-Freedom System

Determine and plot the time response of a two-degree-of-freedom system with equations of motion

(E.1)

with the initial conditions

(E.2)

Solution: In order to use the MATLAB program ode23, the two coupled second-order differential

equations, Eq. (E.1), are to be expressed as a system of coupled first-order differential equations. For

this, we introduce new variables and as

and express Eq. (E.1) as

(E.3)

or

(E.4)

and

(E.5)

or

(E.6)y
#

4 = cos 3t +
1

2
  y2 - y4 + y1 -

3

2
 y3

2 x
$

2 - x
#

1 + 2x
#

2 - 2x1 + 3x2 = 2 cos 3t

y
#

2 = cos 3t - 4y2 + y4 - 5y1 + 2y3

 x
$

1 + 4x 
#

1 - x 
#

2 + 5 x1 - 2x2 = cos 3t

y1 = x1,  y2 = x 
#

1,  y3 = x2,  y4 = x 
#

2

y4y1, y2, y3,

x1(0) = 0.2,  x 
#

1(0) = 1.0,  x2(0) = 0,  x 
#

2(0) = 0

B
1 0

0 2
R b

x
$

1

x
$

2
r + B

4  -1

-1 2
R b

x
#

1

x
#

2
r + B

5  -2

-2 3
R b

x1

x2
r = b

1

2
r  cos 3t
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Thus Eq. (E.1) can be restated as

(E.7)

with the initial conditions

(E.8)y

!
(0) = d

y1(0)

y2(0)

y3(0)

y4(0)

t = d

0.2

1.0

0.0

0.0

t

d

y
#
1

y
#
2

y
#
3

y
#
4

t = e

y2

cos 3t - 4y2 + y4 - 5y1 + 2y3

y4

cos 3t +
1

2
 
y2 - y4 + y1 -

3

2
 
y3

u

*0.1

0

0.2

0.1

0.3

0.4

0 2 4 6 8 10 12 14 16 18 20

x
1
(
t)

t

*0.2

*0.1

0.1

0

0.2

0.3

0 2 4 6 8 10 12 14 16 18 20

x
2
(
t)

t

The MATLAB program to solve Eqs. (E.7) with the initial conditions of Eq. (E.8) is given below.

% Ex5_20.m

tspan = [0: 0.01: 20];

y0 = [0.2; 1.0; 0.0; 0.0];

[t,y] = ode23('dfunc5_15', tspan, y0);

subplot (211)

plot (t,y (:, 1));

xlabel ('t');

ylabel ('x1 (t)');

subplot (212)
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522 CHAPTER 5 TWO-DEGREE-OF-FREEDOM SYSTEMS

Program to Find the Roots of a Quartic Equation

Develop a general program, called Program6.m, to find the roots of a quartic equation. Use the pro-

gram to find the roots of the equation

Solution: Program6.m is developed to solve the equation 

with a1, a2, a3, a4, and a5 as input data. The program gives the polynomial

coefficients as well as the roots of the equation as output.

>> program6

Solution of a quartic equation

Data:

a(1) = 1.000000e+000

a(2) = 0.000000e+000

a(3) = 0.000000e+000

a(4) = 8.000000e+000

a(5) = 1.200000e+001

Roots:

Root No. Real part Imaginary part

1 1.370907e+000 1.827094e+000

2 1.370907e+000 1.827094e+000

3 1.370907e+000 6.484572e 001

4 1.370907e+000 6.484572e 001

*

(x*2) + a4*x + a5 = 0

a1*(x*4) + a2*(x*3) + a3*

f(x) = x
4
- 8 x + 12 = 0

plot (t,y (:, 3));

xlabel ('t');

ylabel ('x2 (t)');

%dfunc5_15.m

function f = dfunc5_15(t,y)

f = zeros(4, 1);

f(1) = y(2);

f(2) = cos(3*t)  4*y(2) + y(4)  5*y(1) + 2*y(3);

f(3) = y(4);

f(4) = cos(3*t) + 0.5*y(2)  y(4) + y(1)  1.5*y(3);

*

E X A M P L E  5 . 2 1

CHAPTER SUMMARY

We considered the determination of the coupled equations of motion of two-degree-of-freedom sys-

tems. We determined the eigenvalues or natural frequencies of vibration, modal vectors, and the free-

vibration solutions. We presented the concepts of coordinate coupling, generalized coordinates, and

principal coordinates. We studied the forced-vibration analysis of the system under a harmonic force.
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We considered the transfer-function approach, Laplace transform method of solution and the fre-

quency transfer-function method. Finally, we presented the free- and forced-vibration solutions, of

two-degree-of-freedom systems using MATLAB.

Now that you have finished this chapter, you should be able to answer the review questions and solve

the problems given below.
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REVIEW QUESTIONS

5.1 Give brief answers to the following:

1. How do you determine the number of degrees of freedom of a lumped-mass system?

2. Define these terms: mass coupling, velocity coupling, elastic coupling.

3. Is the nature of the coupling dependent on the coordinates used?

4. How many degrees of freedom does an airplane in flight have if it is treated as (a) a rigid

body, and (b) an elastic body?

5. What are principal coordinates? What is their use?

6. Why are the mass, damping, and stiffness matrices symmetrical?

7. What is a node?

8. What is meant by static and dynamic coupling? How can you eliminate coupling of the

equations of motion?
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524 CHAPTER 5 TWO-DEGREE-OF-FREEDOM SYSTEMS

9. Define the impedance matrix.

10. How can we make a system vibrate in one of its natural modes?

11. What is a degenerate system? Give two examples of physical systems that are degenerate.

12. How many degenerate modes can a vibrating system have?

13. What is the difference between a general transfer function and a frequency transfer function?

14. How many natural frequencies can be zero for an unrestrained two-degree-of-freedom

system?

5.2 Indicate whether each of the following statements is true or false:

1. The normal modes can also be called principal modes.

2. The generalized coordinates are linearly dependent.

3. Principal coordinates can be considered as generalized coordinates.

4. The vibration of a system depends on the coordinate system.

5. The nature of coupling depends on the coordinate system.

6. The principal coordinates avoid both static and dynamic coupling.

7. The use of principal coordinates helps in finding the response of the system.

8. The mass, stiffness, and damping matrices of a two-degree-of-freedom system are symmetric.

9. The characteristics of a two-degree-of-freedom system are used in the design of dynamic

vibration absorber.

10. Semidefinite systems are also known as degenerate systems.

11. A semidefinite system cannot have nonzero natural frequencies.

12. The generalized coordinates are always measured from the equilibrium position of the body.

13. During free vibration, different degrees of freedom oscillate with different phase angles.

14. During free vibration, different degrees of freedom oscillate at different frequencies.

15. During free vibration, different degrees of freedom oscillate with different amplitudes.

16. The relative amplitudes of different degrees of freedom in a two-degree-of-freedom system

depend on the natural frequency.

17. The modal vectors of a system denote the normal modes of vibration.

18. The characteristic polynomial of a two-degree-of-freedom undamped system will be a

quadratic in 

19. The characteristic polynomial of a two-degree-of-freedom damped system can be a

quadratic in 

20. The equations of motion of a two-degree-of-freedom system can be expressed in terms of

the displacement of either of the two masses.

5.3 Fill in each of the following blanks with the appropriate word:

1. The free vibration of a two-degree-of-freedom system under arbitrary initial excitation

can be found by superposing the two _____ modes of vibration.

2. The motion of a two-degree-of-freedom system is described by two _____ coordinates.

3. When the forcing frequency is equal to one of the natural frequencies of the system, a

phenomenon known as _____ occurs.

4. The amplitudes and phase angles are determined from the _____ conditions of the system.

5. For a torsional system, _____ and _____ are analogous to the masses and linear springs,

respectively, of a mass-spring system.

6. The use of different generalized coordinates lead to different types of _____.

7. A semidefinite system has at least one _____ body motion.

8. The elastic coupling is also known as _____ coupling.

9. The inertia coupling is also known as _____ coupling.

10. The damping coupling is also known as _____ coupling.

s
2
.

s
2
.
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11. The equations of motion of a system will be _____ when principal coordinates are used.

12. The Routh-Hurwitz criterion can be used to investigate the _____ of a system.

13. The equations of motion of a two-degree-of-freedom system are uncoupled only when

the two masses are not _____ connected.

14. The vibration of a system under initial conditions only is called _____ vibration.

15. The vibration of a system under external forces is called _____ vibration.

16. The order of a system is same as the order of the _____ polynomial of the system.

17. The response of an unrestrained system is composed of rigid-body motion and _____

motion.

5.4 Select the most appropriate answer out of the choices given:

1. When a two-degree-of-freedom system is subjected to a harmonic force, the system

vibrates at the

a. frequency of applied force

b. smaller natural frequency

c. larger natural frequency

2. The number of degrees of freedom of a vibrating system depends on

a. number of masses

b. number of masses and degrees of freedom of each mass

c. number of coordinates used to describe the position of each mass

3. A two-degree-of-freedom system has

a. one normal mode

b. two normal modes

c. many normal modes

4. The equations of motion of a two-degree-of-freedom system are in general

a. coupled

b. uncoupled

c. linear

5. Mechanical impedance is

a.

b.

c.

6. The impedance matrix, can be used to find the solution as

a.

b.

c.

7. The configuration of a system vibrating at one of its natural frequencies is called

a. natural mode b. natural frequency c. solution

8. The equations of motion of a two-degree-of-freedom system are in general in the form of

a. coupled algebraic equations

b. coupled differential equations

c. uncoupled equations

X
!
= [Z(iv)] X

!

0

X
!
= [Z(iv)]  F

!

0

X
!
= [Z(iv)] 

-
 

1 F
!

0

[Z(iv)],

-v
2mrs + ivcrs + krs

b
Xr(iv)

Xs(iv)
r

[mrs]x
!$

+ [crs]x
!#

+ [krs]x
!

Zrs(iv)
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5.5 Match the items in the two columns below:

1. Static coupling a. Only the mass matrix is nondiagonal

2. Inertial coupling b. The mass and damping matrices are nondiagonal

3. Velocity coupling c. Only the stiffness matrix is nondiagonal

4. Dynamic coupling d. Only the damping matrix is nondiagonal

5.6 Match the data given in the left column with the frequency equations given in the right col-

umn for a two-degree-of-freedom system governed by the equations of motion:

1. a.

2. b.

3. c.

4. d.

5. e. 2v
4
- 5v

2
+ 1 = 0J0 = 4, kt = 1

8v
4
- 10v

2
+ 1 = 0J0 = 1, kt = 4

v
4
- 10v

2
+ 8 = 0J0 = 2, kt = 2

v
4
- 5v

2
+ 2 = 0J0 = 2, kt = 1

32v
4
- 20v

2
+ 1 = 0J0 = 1, kt = 2

 2J0u
$

2 - ktu1 + ktu2 = 0

 J0u
$

1 - 2ktu1 - ktu2 = 0

PROBLEMS

Section 5.2 Equations of Motion for Forced Vibration

5.1 Derive the equations of motion of the system shown in Fig. 5.20.

5.2 Derive the equations of motion of the system shown in Fig. 5.21.

m2

m1

k2c2

k1c1

y(t) * input

x2(t)

x1(t)

y(t)

FIGURE 5.20
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5.3 Two masses and each connected by two springs of stiffness k, are connected by a

rigid massless horizontal rod of length l as shown in Fig. 5.22. (a) Derive the equations of

motion of the system in terms of the vertical displacement of the C.G. of the system, x(t), and

the rotation about the C.G. of the system, (b) Find the natural frequencies of vibration

of the system for and k = 1000 N/m.m 1 = 50 kg, m2 = 200 kg,

u(t).

m2,m1

ct2

Mt
J2 J1

kt2
kt1

FIGURE 5.21

x(t)

Rigid,
massless rod

x1(t) x2(t)

u(t)

k

m1

k

k k

m2

l

O

FIGURE 5.22

5.4 A two-mass system consists of a piston of mass connected by two elastic springs, that

moves inside a tube as shown in Fig. 5.23. A pendulum of length l and end mass is con-

nected to the piston as shown in Fig. 5.23. (a) Derive the equations of motion of the system

in terms of and (b) Derive the equations of motion of the system in terms of the

and (c) Find the natural frequencies of vibration of the system.

Section 5.3 Free-Vibration Analysis of an Undamped System

5.5 Find the natural frequencies of the system shown in Fig. 5.24, with 

and Determine the response of the system when N/m, kg,

and the initial values of the displacements of the masses and are 1 and respectively.-1,m2m1

m = 20k = 1000k2 = 2k.k1 = k,

m2 = 2m,m1 = m,

x2(t).x1(t)

u(t).x1(t)

m2

m 1,
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5.6 Set up the differential equations of motion for the double pendulum shown in Fig. 5.25, using

the coordinates and and assuming small amplitudes. Find the natural frequencies, the

ratios of amplitudes, and the locations of nodes for the two modes of vibration when

and 

5.7 Determine the natural modes of the system shown in Fig. 5.26 when 

5.8 A machine tool, having a mass of kg and a mass moment of inertia of

is supported on elastic supports, as shown in Fig. 5.27. If the stiffnesses of

the supports are given by N/mm and N/mm, and the supports are

located at m and m, find the natural frequencies and mode shapes of the

machine tool.

l2 = 0.8l1 = 0.5

k2 = 2000k1 = 3000

J0 = 300 kg-m2,

m = 1000

k1 = k2 = k3 = k.

l1 = l2 = l.m1 = m2 = m

x2x1

k1 k2

x1

m

x2

m2

l

u(t)

FIGURE 5.23

m1

k1

m2

k2

Base

x1(t)

x2(t)

FIGURE 5.24
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y

xm

k
2

k
3

k
1

45

45

FIGURE 5.26

m, J
0

k
1

k
2

l
1

l
2

FIGURE 5.27

m
1

m
2

x
1

x
2

y
1

l
1

l
2

u
1

u
2

FIGURE 5.25
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5.9 An electric overhead traveling crane, consisting of a girder, trolley, and wire rope, is shown

in Fig. 5.28. The girder has a flexural rigidity (EI) of and a span (L) of 30 ft.

The rope is made of steel and has a length (l) of 20 ft. The weights of the trolley and the load

lifted are 8000 lb and 2000 lb, respectively. Find the area of cross section of the rope such

that the fundamental natural frequency is greater than 20 Hz.

6 * 1012 lb-in.2

5.10 An overhead traveling crane can be modeled as indicated in Fig. 5.28. Assuming that the girder 

has a span of 40 m, an area moment of inertia (I) of and a modulus of elasticity (E) of 

the trolley has a mass of 1000 kg, the load being lifted has a mass 

of 5000 kg, and the cable through which the mass is lifted has a stiffness (k) of 

N/m, determine the natural frequencies and mode shapes of the system.

5.11 The drilling machine shown in Fig. 5.29(a) can be modeled as a two-degree-of-freedom sys-

tem as indicated in Fig. 5.29(b). Since a transverse force applied to mass or mass 

causes both the masses to deflect, the system exhibits elastic coupling. The bending stiff-

nesses of the column are given by (see Section 6.4 for the definition of stiffness influence

coefficients)

Determine the natural frequencies of the drilling machine.

5.12 One of the wheels and leaf springs of an automobile, traveling over a rough road, is shown in

Fig. 5.30. For simplicity, all the wheels can be assumed to be identical and the system can be

idealized as shown in Fig. 5.31. The automobile has a mass of kg and the leaf

springs have a total stiffness of kN/m. The wheels and axles have a mass of

and the tires have a stiffness of If the road surface varies sinu-

soidally with an amplitude of and a period of find the critical velocities

of the automobile.

l = 6 m,Y = 0.1 m

k2 = 500 kN/m.m2 = 300 kg

k1 = 400

m1 = 1000

k11 =
768

7
 
EI

l3
,  k12 = k21 = -  

240

7
 
EI

l3
,  k22 =

96

7
 
EI

l3

m2m1

3.0 * 105

(m2)(m2)

(m1)2.06 * 1011 N/m2,

0.02 m4,

m1

kg

m2

k

m1

m2

k

Girder;
kg, E, I

(a) (b)

Trolley

Wire 
rope

Load
lifted

FIGURE 5.28
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m2

m1

Column

l

x1(t)

x2(t)

l

2

(b)(a)

FIGURE 5.29 (Photo courtesy of Atlas-Clausing 

division.)

FIGURE 5.30

5.13 Derive the equations of motion of the double pendulum shown in Fig. 5.25, using the coordi-

nates and Also find the natural frequencies and mode shapes of the system for

and 

5.14 Find the natural frequencies and mode shapes of the system shown in Fig. 5.24 for

and 

5.15 The normal modes of a two-degree-of-freedom system are orthogonal if 

Prove that the mode shapes of the system shown in Fig. 5.5(a) are orthogonal.

5.16 Find the natural frequencies of the system shown in Fig. 5.6 for 

and m2 = 1 kg.m1 = 2 kg,k3 = 200 N/m,k2 = 500 N/m,

k1 = 300 N/m,

X(1)T[m] X
!
(2)

= 0.

k1 = k2 = k.m1 = m2 = m

l1 = l2 = l.m1 = m2 = m

u2.u1
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532 CHAPTER 5 TWO-DEGREE-OF-FREEDOM SYSTEMS

5.17 Find the natural frequencies and mode shapes of the system shown in Fig. 5.24 for

and 

5.18 Derive expressions for the displacements of the masses in Fig. 5.6 when 

2, and 2, 3.

5.19 For the system shown in Fig. 5.6, 

and an initial velocity of 20 m/s is imparted to mass Find the resulting

motion of the two masses.

5.20 For Problem 5.17, calculate and for the following initial conditions:

a.

b.

5.21 A two-story building frame is modeled as shown in Fig. 5.32. The girders are assumed to be

rigid, and the columns have flexural rigidities and with negligible masses. The stiff-

ness of each column can be computed as

EI2,EI1

x1(0) = 0.2, x 
#

1(0) = x2(0) = 0, x 
#

2(0) = 5.0.

x1(0) = 0.2, x 
#

1(0) = x2(0) = x 
#

2(0) = 0.

x2(t)x1(t)

m1.k3 = 3000 N/m,

k2 = 1000 N/m,k1 = 2000 N/m,m2 = 2 kg,m1 = 1 kg,

ki = 50,000 lb/in., i = 1,i = 1,

mi = 25 lb-sec2/in.,

k2 = 6000 N/m.m1 = m2 = 1 kg, k1 = 2000 N/m,

m1 (Automobile)

l

Y

k1 (Leaf springs)

m2 (Wheels and axles)

k2 (Tires)

v

FIGURE 5.31

h2

h1

x2(t)

x1(t)

m2

m1

EI2EI2

EI1EI1

F2(t)

F1(t)

FIGURE 5.32
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For and determine the natural frequen-

cies and mode shapes of the frame.

5.22 Figure 5.33 shows a system of two masses attached to a tightly stretched string, fixed at both

ends. Determine the natural frequencies and mode shapes of the system for 

and l1 = l2 = l3 = l.

m1 = m2 = m

EI1 = EI2 = EI,m1 = 2m, m2 = m, h1 = h2 = h,

24EIi

hi
3

,  i = 1, 2

l1

l3

l2

m2

m1

FIGURE 5.33

5.23 Find the normal modes of the two-story building shown in Fig. 5.32 when 

and where and represent the total equivalent stiffnesses of

the lower and upper columns, respectively.

5.24 A hoisting drum, having a weight is mounted at the end of a steel cantilever beam of

thickness t, width a, and length b, as shown in Fig. 5.34. The wire rope is made of steel and

has a diameter of d and a suspended length of l. If the load hanging at the end of the rope is

derive expressions for the natural frequencies of the system.W2,

W1,

k2k1k2 = k,m2 = m, k1 = 3k,

m1 = 3m,

l

b

W1

W2 W2

d

t

a

(a) (b)

FIGURE 5.34
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534 CHAPTER 5 TWO-DEGREE-OF-FREEDOM SYSTEMS

5.25 Determine the initial conditions of the system shown in Fig. 5.24 for which the system

vibrates only at its lowest natural frequency for the following data: 

5.26 The system shown in Fig. 5.24 is initially disturbed by holding the mass stationary and

giving the mass a downward displacement of 0.1 m. Discuss the nature of the resulting

motion of the system.

5.27 Design the cantilever beam supporting the hoisting drum and the wire rope carrying the load

in Problem 5.24 in order to have the natural frequencies of the system greater than 10 Hz

when and and 

5.28 Find the free-vibration response of the two-degree-of-freedom system shown in Fig. 5.6 with

and for the initial conditions and

5.29 Find the free-vibration response of the two-degree-of-freedom system shown in Fig. 5.6

with and for the initial conditions and 

5.30 Using the results of Example 5.1, verify that the mode shapes satisfy the following relations,

known as orthogonality relations:

5.31 Two identical pendulums, each with mass m and length l, are connected by a spring of stiff-

ness k at a distance d from the fixed end, as shown in Fig. 5.35.

a. Derive the equations of motion of the two masses.

b. Find the natural frequencies and mode shapes of the system.

c. Find the free-vibration response of the system for the initial conditions 

and 

d. Determine the condition(s) under which the system exhibits a beating phenomenon.

u

#

2(0) = 0.u2(0) = 0,  u
#

1(0) = 0,
u1(0) = a,

 X
!
(1)T

[k]X
!
(1)

= c1v1
2,  X

!
(2)T

[k]X
!
(2)

= c2v2
2

X
!
(2)T

[m]X
!
(2)

= c2 = constant

X
!
(1)T

[m]X
!
(1)

= c1 = constantX
!
(1)T

[m]X
!
(2)

= 0, X
!
(1) 

T X
!
(2)

= 0,

x
#

2(0) = 0.
x2(0) = x

#

1(0) =x1(0) = 1m = 2n = 1, k = 8,

x 
#

2(0) = 1.
x1(0) = 1, x2(0) = x 

#

1(0) = 0,m = 2n = 1, k = 8,

l = 60 in.W2 = 500 lb, b = 30 in.,W1 = 1000 lb

m2

m1

m2 = 2m.m1 = m,
k2 = 2k,k1 = k,

P

m

u1(t)

Q

m

k

u2(t)
d

l

FIGURE 5.35

5.32 The motor-pump system shown in Fig. 5.36(a) is modeled as a rigid bar of mass 

and mass moment of inertia The foundation of the system can be replaced

by two springs of stiffness and Determine the natural fre-

quencies of the system.

k2 = 200 N/m.k1 = 500 N/m

J0 = 100 kg-m2.
m = 50 kg
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5.33 An airplane standing on a runway is shown in Fig. 5.37. The airplane has a mass

and a mass moment of inertia If the values of stiff-

ness and damping constant are and for the main landing gear

and and for the nose landing gear, (a) derive the equations of

motion of the airplane, and (b) find the undamped natural frequencies of the system.

c2 = 5kN-s/mk2 = 5 kN/m

c1 = 2 kN-s/mk1 = 10 kN/m

J0 = 50 * 106 kg-m2.m = 20,000 kg

(a)

Motor Pump

Base

Foundation

x1(t)
x2(t)

x(t)

k2k1

C.G.

C.G.u(t) m, J0

(b)

FIGURE 5.36 Motor-pump system on springs.

Main landing gear Nose landing gear

m, J0

C.G.

l2l1

FIGURE 5.37

5.34 The mass and stiffness matrices and the mode shapes of a two-degree-of-freedom system are

given by

If the first natural frequency is given by determine the stiffness coefficients 

and and the second natural frequency of vibration, v2.k22

k 12v1 = 1.7000,

[m] = B
1 0

0 4
R ,  [k] = B

12 -k12

-k12 k22

R ,  X(1)
= b

1

9.1109
r ,  X(2)

= b
-9.1109

1
r
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536 CHAPTER 5 TWO-DEGREE-OF-FREEDOM SYSTEMS

5.35 The mass and stiffness matrices and the mode shapes of a two-degree-of-freedom system are

given by

If the first natural frequency is given by determine the masses and and

the second natural frequency of the system.

Section 5.4 Torsional System

5.36 Determine the natural frequencies and normal modes of the torsional system shown in

Fig. 5.38 for and J2 = 2J1.kt2 = 2kt1

m2m 1v1 = 1.4142,

[m] = B
m1 0

0 m2
R ,  [k] = B

27 -3

-3 3
R ,  X(1)

= b
1

1
r ,  X(2)

= b
-1

1
r

J
1

J
2

kt1
kt2

FIGURE 5.38

5.37 Determine the natural frequencies of the system shown in Fig. 5.39 by assuming that the rope

passing over the cylinder does not slip.

m
0

x(t)

u(t)

k
1 k

2

m

r

FIGURE 5.39
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5.38 Find the natural frequencies and mode shapes of the system shown in Fig. 5.8(a) by assum-

ing that and 

5.39 Determine the normal modes of the torsional system shown in Fig. 5.9 when 

and 

Section 5.5 Coordinate Coupling and Principal Coordinates

5.40 A simplified ride model of the military vehicle in Fig. 5.40(a) is shown in Fig. 5.40(b). This

model can be used to obtain information about the bounce and pitch modes of the vehicle. If

the total mass of the vehicle is m and the mass moment of inertia about its C.G. is derive

the equations of motion of the vehicle using two different sets of coordinates, as indicated in

Section 5.5.

J0,

J2 = 5J0.kt2 = 5kt, J1 = J0,

kt1 = kt,

kt1 = kt2 = kt3 = kt.J1 = J0, J2 = 2J0,

(a) Military vehicle (b) Simplified ride model

Sprung (vehicle body) mass

Suspension springs Shock absorbers

++

P

Unsprung (running gear) mass
e

A

c1 c2k1 k2

BC.G.

m, J0

FIGURE 5.40

l2

l1

m1 m2

k

FIGURE 5.41

5.41 Find the natural frequencies and the amplitude ratios of the system shown in Fig. 5.41.

5.42 A rigid rod of negligible mass and length 2l is pivoted at the middle point and is constrained

to move in the vertical plane by springs and masses, as shown in Fig. 5.42. Find the natural

frequencies and mode shapes of the system.
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538 CHAPTER 5 TWO-DEGREE-OF-FREEDOM SYSTEMS

5.43 An airfoil of mass m is suspended by a linear spring of stiffness k and a torsional spring of

stiffness in a wind tunnel, as shown in Fig. 5.43. The C.G. is located at a distance of e from

point O. The mass moment of inertia of the airfoil about an axis passing through point O is

Find the natural frequencies of the airfoil.J0.

kt

x(t)
k

k

k

m

2m2m

l l

(t)*

FIGURE 5.42

k

kt
C.G.

O

e

FIGURE 5.43

5.44 The expansion joints of a concrete highway, which are located at 15-m intervals, cause a

series of impulses to affect cars running at a constant speed. Determine the speeds at

which bounce motion and pitch motion are most likely to arise for the automobile of

Example 5.7.

5.45 Consider the overhead traveling crane described in Problem 5.9 (Fig. 5.28). If the rails on

both sides of the girder have a sinusoidally varying surface in the z direction (perpendicular

to the page), as shown in Fig. 5.44, set up the equations and the initial conditions for finding

the vibration response of the load lifted (m) in the vertical direction. Assume that the veloc-

ity of the crane is 30 ft/min in the z direction.
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5.46 An automobile is modeled with a capability of pitch and bounce motions, as shown in Fig.

5.45. It travels on a rough road whose surface varies sinusoidally with an amplitude of 0.05 m

and a wavelength of 10 m. Derive the equations of motion of the automobile for the fol-

lowing data: radius of 

velocity = 50 km/hr.kr = 22 kN/m,kf = 18 kN/m,

l2 = 1.5 m,l1 = 1.0 m,gyration = 0.9 m,mass = 1,000 kg,

10 ft

2 in.
0 z

FIGURE 5.44

l1 l2

(a)

(b)

x

C.G.

C.G.

kr
kf

Reference

Bounce

Pitch

kf kr

u

FIGURE 5.45

5.47 A steel shaft, of diameter 2 in., is supported on two bearings and carries a pulley and a

motor, as shown in Fig. 5.46. The weights of the pulley and the motor are 200 lb and 500 lb,

respectively. A transverse load applied at any point along the length of the shaft results in

the deflection of all points on the shaft, hence the system exhibits elastic coupling. The

stiffness coefficients are given by (see Section 6.4 for the definition of stiffness influence

coefficients)

Determine the natural frequencies of the system in bending vibration for inches.l = 90

k11 =

1296

5
 
EI

l3
,  k12 = k21 =

324

5
 
EI

l3
,  k22 =

216

5
 
EI

l3
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5.48 A simplified model of a mountain bike with a rider is shown in Fig. 5.47. Discuss methods of

finding the vibratory response of the bicycle due to the unevenness of the terrain using a two-

degree-of-freedom model.

Pulley Motor

Shaft, 2-in. diameter

1 2

l

3
l

3
l

3

FIGURE 5.46

FIGURE 5.47

M05_RAO08193_05_SE_C05.qxd  8/21/10  4:34 PM  Page 540



PROBLEMS 541

5.49 A uniform rigid bar of length l and mass m is supported on two springs and is subjected to a

force as shown in Fig. 5.48. (a) Derive the equations of motion of the bar

for small displacements. (b) Discuss the nature of coupling in the system.

F(t) = F0 sin vt,

l

2

5l
6

l

Rigid bar
G

k 2k

F(t) * F0 sin vt

FIGURE 5.48

5.50 A trailer of mass M, connected to a wall through a spring of stiffness k and a damper of

damping coefficient c, slides on a frictionless surface, as shown in Fig. 5.49. A uniform rigid

bar, pin-connected to the trailer, can oscillate about the hinge point, O. Derive the equations

of motion of the system under the applied forces F(t) and indicated in Fig. 5.49.Mt(t)

F(t)

x(t)

k

c

Trailer,
mass M

O

G

Mt(t)

u(t)

Rigid bar, length l, mass m

FIGURE 5.49

5.51 A trailer of mass M is connected to a wall through a spring of stiffness and can move on a

frictionless horizontal surface, as shown in Fig. 5.50. A uniform cylinder of mass m, con-

nected to the wall of the trailer by a spring of stiffness can roll on the floor of the trailer

without slipping. Derive the equations of motion of the system and discuss the nature of cou-

pling present in the system.

Section 5.6 Forced-Vibration Analysis

5.52 The weights of the tup, frame, anvil (along with the workpiece), and foundation block in a

forging hammer (Fig. 5.51) are 5000 lb, 40,000 lb, 60,000 lb, and 140,000 lb, respectively.

k2,

k1
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The stiffnesses of the elastic pad placed between the anvil and the foundation block and the

isolation placed underneath the foundation (including the elasticity of the soil) are lb/in.

and lb/in., respectively. If the velocity of the tup before it strikes the anvil is 15

ft/sec, find (a) the natural frequencies of the system, and (b) the magnitudes of displacement

of the anvil and the foundation block. Assume the coefficient of restitution as 0.5 and damp-

ing to be negligible in the system.

5.53 Find (a) the natural frequencies of the system, and (b) the responses of the anvil and the foun-

dation block of the forging hammer shown in Fig. 5.51 when the time history of the force

applied to the anvil is as shown in Fig. 5.52. Assume the following data:

Mass of anvil and 

Mass of foundation block = 250 Mg

frame = 200 Mg

3 * 10
6

6 * 10
6

k1

k2

Trailer,
mass M

Cylinder,
mass m

O

r

FIGURE 5.50

Tup (hammer)

Frame

Workpiece

Anvil

Stiffness of
elastic pad (k2)

Isolation
(k1)

Foundation
(concrete) block

2 m

FIGURE 5.51
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Stiffness of the elastic 

Stiffness of the 

and 

5.54 Derive the equations of motion for the free vibration of the system shown in Fig. 5.53. Assum-

ing the solution as express the characteristic equation in the form

Discuss the nature of possible solutions, and x2(t).x1(t)

a0s4
+ a1s

3
+ a2s2

+ a3s + a4 = 0

xi(t) = Cie
st, i = 1, 2,

T = 0.5 sF0 = 105 N

soil = 75 MN/m

pad = 150 MN/m

F(t)

F
0

O T
t

FIGURE 5.52

c
1

k
1

m
1

x
1
(t)

c
2

k
2

m
2

x
2
(t)

c
3

k
3

FIGURE 5.53
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5.55 Find the displacements and in Fig. 5.53 for 

and using the initial conditions

and 

5.56 A centrifugal pump, having an unbalance of me, is supported on a rigid foundation of mass

through isolator springs of stiffness as shown in Fig. 5.54. If the soil stiffness and

damping are and find the displacements of the pump and the foundation for the fol-

lowing data: 

and speed of pump = 1200 rpm.c2 = 200 lb-sec/in.,k2 = 1000 lb/in.,

m2g = 2000 lb,k1 = 2000 lb/in.,m1g = 800 lb,e = 6 in.,mg = 0.5 lb,

c2,k2

k1,m2

x
#

1(0) = x
#

2(0) = 0.x1(0) = 0.2 m, x2(0) = 0.1 m,

c1 = c2 = c3 = 2000 N-s/mk1 = k2 = k3 = 10,000 N/m,

m2 = 2 kg,m1 = 1 kg,x2(t)x1(t)

5.57 A reciprocating engine of mass is mounted on a fixed-fixed beam of length l, width a,

thickness t, and Young s modulus E, as shown in Fig. 5.55. A spring-mass system is

suspended from the beam as indicated in the figure. Find the relation between and that

leads to no steady-state vibration of the beam when a harmonic force, is

developed in the engine during its operation.3

5.58 Find the steady-state response of the system shown in Fig. 5.24 by using the mechanical

impedance method, when the mass is subjected to the force in the

direction of 

5.59 Find the steady-state response of the system shown in Fig. 5.24 when the base is subjected to

a displacement 

5.60 The mass of the two-degree-of-freedom system shown in Fig. 5.24 is subjected to a force

Assuming that the surrounding air damping is equivalent to find

the steady-state response of the two masses. Assume 

and 

5.61 Determine the steady-state vibration of the system shown in Fig. 5.5(a), assuming that

and F2(t) = F20 cos vt.c1 = c2 = c3 = 0, F1(t) = F10 cos vt,

v = 1 rad/s.

m1 = m2 = 1 kg, k1 = k2 = 500 N/m,

c = 200 N-s/m,F0 cos vt.

m1

y(t) = Y0 cos vt.

x1(t).

F(t) = F0 sin vtm1

F1(t) = F0 cos vt,

k2m2

(k2, m2)

m1

Centrifugal pump
(mass, m1)

Isolator
springs
(stiffness,
k1)

Foundation
(mass, m2)

Soil
(stiffness, k2;
damping, c2)

m2

m1

k2

k1

c2

FIGURE 5.54

3The spring-mass system added to make the amplitude of the first mass zero is known as a vibration
absorber.  A detailed discussion of vibration absorbers is given in Section 9.11.

(k2, m2)
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t x1(t)k2

m1

F1(t) * F0 cos vt

x2(t)

m2

l

2

l

2

FIGURE 5.55

5.62 In the system shown in Fig. 5.24, the mass is excited by a harmonic force having a maxi-

mum value of 50 N and a frequency of 2 Hz. Find the forced amplitude of each mass for

and 

5.63 Find the response of the two masses of the two-story building frame shown in Fig. 5.32 under

the ground displacement m. Assume the equivalent stiffness of the lower

and upper columns to be 800 N/m and 600 N/m, respectively, and 

5.64 Find the forced-vibration response of the system shown in Fig. 5.15 when is a step

force of magnitude 5 N using the Laplace transform method. Assume 

and 

Section 5.7 Semidefinite Systems

5.65 Determine the equations of motion and the natural frequencies of the system shown in Fig. 5.56.

5.66 Two identical circular cylinders, of radius r and mass m each, are connected by a spring, as

shown in Fig. 5.57. Determine the natural frequencies of oscillation of the system.

5.67 The differential equations of motion for a two-degree-of-freedom system are given by

Derive the condition to be satisfied for the system to be degenerate.

 a2x 
$

2 + b2x1 + c2x2 = 0

 a1x 
$

1 + b1x1 + c1x2 = 0

k = 100 N/m.x2(0) = x 
#

2(0) = 0, m = 1 kg,

x1(0) = x
#

1(0) =

F1(t)

m1 = m2 = 50 kg.

y(t) = 0.2 sin pt

k2 = 2000 N/m.m1 = 10 kg, m2 = 5 kg, k1 = 8000 N/m,

m1
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5.68 Find the angular displacements and of the system shown in Fig. 5.58 for the initial

conditions and u
#

1(t = 0) = u

#

2(t = 0) = 0.u1(t = 0) = u1(0), u2(t = 0) = u2(0),

u2(t)u1(t)

m
1

x
1

x
2

m
2
,
 
J

0

rk

FIGURE 5.56

r r

m m

k

FIGURE 5.57

kt

J
1

J
2

u
1

u
2

FIGURE 5.58

5.69 Determine the normal modes of the system shown in Fig. 5.9 with Show that the

system with can be treated as a single-degree-of-freedom system by using the coor-

dinate 

5.70 A turbine is connected to an electric generator through gears, as shown in Fig. 5.59. The

mass moments of inertia of the turbine, generator, gear 1, and gear 2 are given, respectively,

by 3000, 2000, 500, and Shafts 1 and 2 are made of steel and have diameters

30 cm and 10 cm and lengths 2 cm and 1.0 m, respectively. Find the natural frequencies of

the system.

5.71 A hot-air balloon of mass m is used to lift a load, Mg, by means of 12 equally spaced elastic

ropes, each of stiffness k (see Fig. 5.60). Find the natural frequencies of vibration of the balloon

in vertical direction. State the assumptions made in your solution and discuss their validity.

5.72 A turbine of mass moment of inertia of 4 lb-in.- is connected to an electric generator of

mass moment of inertia of 2 lb-in.- by a hollow steel shaft of inner diameter 1 in., outersec2

sec2

1000 kg-m2
.

a = u1 - u2.

kt1 = 0

kt1 = 0.
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diameter 2 in., and length 15 in. (similar to the system in Fig. 5.17(c)). If the turbine is sud-

denly stopped while delivering horsepower of 100 at a speed of 6000 rpm, the transmitted

torque drops to zero. Find the resulting angular displacements of the turbine and the genera-

tor. Assume damping to be negligible in the system.

5.73 Figure 5.61 shows a 3000-lb car connected to a 2000-lb trailer by a flexible hitch having a

stiffness of 1000 lb/in. Assuming that both the car and the trailer can move freely on the

roadway, determine the natural frequencies and mode shapes of vibration of the system.

5.74 Find the response of the car-trailer system described in Problem 5.73 if the values of initial dis-

placement and velocity are 6 in. and 0 in./sec for the car and and 0 in./sec for the trailer.-3 in.

Turbine

Shaft 1

Shaft 2

Electric generator

Gear 1, 20 teeth

Gear 2, 30 teeth

FIGURE 5.59

Balloon,
mass m

12 Elastic ropes,
stiffness k each

Weight (Mg)

45

FIGURE 5.60
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548 CHAPTER 5 TWO-DEGREE-OF-FREEDOM SYSTEMS

5.75 Two pulleys are driven by a belt as shown in Fig. 5.62. If the pulleys have radii and 

and mass moments of inertia and respectively, determine the natural frequencies of

the pulley drive system. Assume the stiffness of the belt on each side as k as indicated in

Fig. 5.62.

J2,J1

r2r1

J2
J1

r2

belt

k

k

r1

FIGURE 5.62

kM

m

FIGURE 5.61

Section 5.8 Self-Excitation and Stability Analysis

5.76 The transient vibrations of the drive line developed during the application of a cone (friction)

clutch lead to unpleasant noise. To reduce the noise, a flywheel having a mass moment of

inertia is attached to the drive line through a torsional spring and a viscous torsional

damper as shown in Fig. 5.63. If the mass moment of inertia of the cone clutch is and

the stiffness and damping constant of the drive line are given by and respectively,

derive the relations to be satisfied for the stable operation of the system.

ct1,kt1

J1ct2,

kt2J2

Drive line

Flywheel, J2

Load
Prime
mover

Cone
clutch, J1

ct2kt2

u2

u1

FIGURE 5.63

M05_RAO08193_05_SE_C05.qxd  8/21/10  4:35 PM  Page 548



PROBLEMS 549

5.77 A uniform rigid bar of mass m is connected to the wall of a trailer by a spring of stiffness k

(see Fig. 5.64). The trailer has a mass 5m, is connected to a spring of stiffness 2k, and moves

on a frictionless surface. Derive the conditions necessary for the stability of the system.

x(t)

u(t)

k

G

O2k

Rigid bar,
length l, mass m

Trailer, mass 5m

FIGURE 5.64

m1 m2

x1(t) x2(t)

c k

f1(t) * F0x1(t)
.

f2(t) * 0

FIGURE 5.65

5.78 A two-degree-of-freedom system consists of masses and connected to a damper and a

spring as shown in Fig. 5.65. If the mass is subjected to a force proportional to its veloc-

ity, determine the conditions for the stability of the system.f1(t) = ax
#

1(t),

m 1

m2m 1

Section 5.9 Transfer-Function Approach

5.79 Derive the fourth-order differential equations of motion of the two-degree-of-freedom sys-

tem shown in Fig. 5.5(a) in terms of and separately.

Hint: Take inverse Laplace transforms of Eqs. (5.56) and (5.57).

5.80 a. Suggest a method of solving the fourth-order differential equations derived in Problem

5.79 (in terms of or ).

b. How can we apply the known initial conditions and while solv-

ing the fourth-order differential equation in terms of ?

5.81 Derive expressions for the Laplace transform of and for the system shown in

Fig. 5.5(a) for the following data:

function, and Assume the initial conditions of both

and as zero.x2(t)x1(t)

f2(t) = 0.c3 = 0, f1(t) = F0u(t) = step

m1 = 1, m2 = 2, k1 = 4, k2 = 2, k3 = 0, c1 = 1, c2 = 2,

x2(t)x1(t)

x1(t)

x
#

2(0)x1(0), x2(0), x
#

1(0)

x2(t)x1(t)

x2(t)x1(t)
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550 CHAPTER 5 TWO-DEGREE-OF-FREEDOM SYSTEMS

5.82 Derive expressions for the Laplace transform of and for the system shown in

Fig. 5.5(a) for the following data:

function. Assume the initial conditions of both

and as zero.

Section 5.10 Solutions Using Laplace Transform

5.83 Find the free-vibration response of the system shown in Fig. 5.5(a) using Laplace transform

approach for the following data: 

Assume the initial conditions as and 

Plot the responses and 

5.84 Find the free-vibration response of the system shown in Fig. 5.5(a) using Laplace transform

approach for the following data: 

Assume the initial conditions as and 

Plot the responses and 

5.85 Find the free-vibration response of the system shown in Fig. 5.5(a) using Laplace transform

approach for the following data: 

Assume the initial conditions as and 

Plot the responses and 

5.86 Find the free-vibration response of the system shown in Fig. 5.5(a) using Laplace transform

approach for the following data: 

Assume the initial conditions as and 

Plot the responses and 

5.87 Find the response of the system shown in Fig. 5.66 with and

for the following initial conditions using Laplace transform:

i.

ii. x1(0) = 0.10, x2(0) = -0.05, x
#

1(0) = 0, x
#

2(0) = 0

x1(0) = 0.05, x2(0) = 0.10, x
#

1(0) = 0, x
#

2(0) = 0

k2 = 20

m1 = 2, m2 = 1, k 1 = 40,

x2(t).x1(t)

x
#

1(0) = x
#

2(0) = 0.x1(0) = 1, x2(0) = 0,c3 = 0.

m 1 = 1, m2 = 8, k 1 = 8, k2 = 4, k3 = 0, c1 = 0, c2 = 0,

x2(t).x1(t)

x
#

1(0) = x
#

2(0) = 0.x1(0) = 1, x2(0) = 0,c3 = 0.

m 1 = 2, m2 = 8, k 1 = 8, k2 = 4, k3 = 0, c1 = 0, c2 = 0,

x2(t).x1(t)

x
#

1(0) = x
#

2(0) = 0.x1(0) = 1, x2(0) = 0,c3 = 0.

m 1 = 2, m2 = 4, k 1 = 8, k2 = 4, k 3 = 0, c1 = 0, c2 = 2,

x2(t).x1(t)

x
#

1(0) = x
#

2(0) = 0.x1(0) = 1, x2(0) = 0,c3 = 0.

m 1 = 2, m2 = 4, k 1 = 8, k2 = 4, k3 = 0, c1 = 0, c2 = 0,

x2(t)x1(t)

F0u(t) = stepc3 = 0, f1(t) = 0, f2(t) =

m1 = 1, m2 = 2, k1 = 4, k2 = 2, k3 = 0, c1 = 1, c2 = 2,

x2(t)x1(t)

m2 * 1 kg

m1 * 2 kg

k2 * 20 N/m

k1 * 40 N/m

FIGURE 5.66
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Section 5.11 Solutions Using Frequency Transfer Functions

5.88 Find the steady-state response of the system considered in Example 5.13 by assuming

and and neglecting damping.

5.89 Find the steady-state response of the system considered in Example 5.13 by assuming

and and neglecting damping.

Section 5.12 Examples Using MATLAB

5.90 Find the response of the system shown in Fig. 5.5(a) using a numerical procedure when

and is a rectangular pulse of

magnitude 500 N and duration 0.5 sec. Assume and

and zero initial conditions.

5.91 (a) Find the roots of the frequency equation of the system shown in Fig. 5.5 with the follow-

ing data: (b) If

the initial conditions are determine the dis-

placements and of the masses.

5.92 Write a computer program for finding the steady-state response of a two-degree-of-freedom sys-

tem under the harmonic excitation and using Eqs. (5.29) and (5.35).

Use this program to find the response of a system with 

and 

5.93 Find and plot the free-vibration response of the system shown in Fig. 5.24 for the following

data: 

5.94 Find and plot the free-vibration response of the system shown in Fig. 5.24 for the following

data: 

5.95 Solve the following eigenvalue problem using MATLAB:

5.96 Find and plot the response of the following two-degree-of-freedom system using MATLAB:

The initial conditions are and 

5.97 Using MATLAB, solve Problem 5.90. Use the MATLAB function stepfun for the rectangu-

lar pulse.

5.98 Using MATLAB, solve Problem 5.91 (a).

5.99 Using MATLAB, solve Problem 5.92. Plot the steady-state responses of masses and 

5.100 Using MATLAB, find the roots of the equation x4
- 32x3

+ 244x2
- 20x - 1200 = 0.

m22.m11

x
#

2(0) = 0.x1(0) = 1, x 
#

1(0) = 0, x2(0) = -1,

B
2 0

0 10
R b

x
$

1

x
$

2
r + B

20  -5

-5 5
R b

x
#

1

x
#

2
r + B

50  -10

-10 10
R b

x1

x2
r = b

2 sin 3t

5 cos 5t
r

B
25 * 106

-5 * 106

-5 * 106 5 * 106R b
x1

x2
r = v

2
B

10000 0

0 5000
R b

x1

x2
r

x 
#

1(0) = 1, x 
#

2(0) = -2.

x2(0) = 2,x1(0) = 1,m2 = 1 kg,m1 = 2 kg,k2 = 500 N/m,k1 = 1000 N/m,

x 
#

2(0) = 0.

x2(0) = 0,x1(0) = 1,m2 = 1 kg,m1 = 2 kg,k2 = 500 N/m,k1 = 1000 N/m,

v = 5 rad/s.F20 = 2 lb,F10 = 1 lb,

k12 = -20 lb/in.,k22 = 20 lb/in.,k11 = 40 lb/in.,c12 = c22 = 0,c11 = 1.0 lb-s/in.,

m12 = 0,m11 = m22 = 0.1 lb-s2/in.,

j = 1, 2Fj(t) = Fj0eivt

x2(t)x1(t)

x1(0) = x2(0) = 2 in., x
#

1(0) = x
#

2(0) = 0,

c1 = c2 = c3 = 0.k3 = 0,k1 = k2 = 18 lb/in.,m1 = m2 = 0.2 lb-s2/in.,

k = 2000 N/m,

m = 10 kg, c1 = c2 = c3 = 0,

F1(t)k1 = k, k2 = 2k, k3 = k, m1 = 2m, m2 = m, F2(t) = 0,

p2(t) = P02 sin vtp1(t) = P01 sin vt

p2(t) = P0 sin vtp1(t) = 0
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552 CHAPTER 5 TWO-DEGREE-OF-FREEDOM SYSTEMS

DESIGN PROJECTS

5.101 A step-cone pulley with a belt drive (Fig. 5.67) is used to change the cutting speeds in a lathe.

The speed of the driving shaft is 350 rpm and the speeds of the output shaft are 150, 250,

450, and 750 rpm. The diameters of the driving and the driven pulleys, corresponding to

150 rpm output speed, are 250 mm and 1000 mm, respectively. The center distance between

the shafts is 5 m. The mass moments of inertia of the driving and driven step cones are 0.1

and respectively. Find the cross-sectional area of the belt to avoid resonance with

any of the input/output speeds of the system. Assume the Young s modulus of the belt mate-

rial as 1010 N/m2
.

0.2 kg-m2
,

W W W W

 N  350

 N1  750

 N2  450

 N3  250

 N4  150

 N1  750

5 m

FIGURE 5.67

5.102 The masses of the tup, frame (along with the anvil and the workpiece), and concrete block in

the forging hammer shown in Fig. 5.51 are 1000 kg, 5000 kg, and 25000 kg, respectively.

The tup drops onto the workpiece from a height of 2 m. Design suitable springs and for

the following conditions: (a) The impact is inelastic that is, the tup will not rebound after

striking the workpiece. (b) The natural frequencies of vibration of the forging hammer

should be greater than 5 Hz. (c) The stresses in the springs should be smaller than the yield

stress of the material with a factor of safety of at least 1.5. Assume that the elasticity of the

soil is negligible.

k2k1
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Joseph Louis Lagrange (1736 1813) was an Italian-born mathematician famous
for his work on theoretical mechanics. He was made professor of mathematics in
1755 at the Artillery School in Turin. Lagrange s masterpiece, his Méchanique,
contains what are now known as Lagrange s equations,  which are very useful in
the study of vibrations. His work on elasticity and strength of materials, where he
considered the strength and deflection of struts, is less well known.
(Courtesy of Dirk J. Struik, A Concise History of Mathematics, 2nd ed., Dover
Publications, New York, 1948.)
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554 CHAPTER 6 MULTIDEGREE-OF-FREEDOM SYSTEMS

Multidegree-of-freedom systems are the topic of this chapter. The modeling of continu-

ous systems as multidegree-of-freedom systems is presented. The equations of a gen-

eral n-degree-of-freedom system are derived using Newton s second law of motion.

Because the solution of the equations of motion in scalar form involve complicated alge-

braic manipulations, we use matrix representation for multidegree-of-freedom systems.

By expressing the coupled set of n equations in matrix form, the mass, damping, and stiff-

ness matrices are identified. The derivation of equations using influence coefficients is

also presented. The stiffness, flexibility, and inertia influence coefficients are presented

from first principles. The expressions for potential and kinetic energies and their use in

deriving the equations of motion based on Lagrange s equations are presented. The con-

cepts of generalized coordinates and generalized forces are presented. After expressing

the free-vibration equations in matrix form, the eigenvalue problem is derived in matrix

form. The solution of the eigenvalue problem using the solution of the characteristic

(polynomial) equation is outlined to determine the natural frequencies and mode shapes

(or normal modes) of the system. The concepts of orthogonality of normal modes, modal

matrix, and orthonormalization of the mass and stiffness matrices are introduced. The

expansion theorem and the unrestrained or semidefinite systems are also presented. The

free vibration of undamped systems using modal vectors and the forced vibration of

undamped systems using modal analysis are considered with illustrative examples. The

equations of motion for the forced vibration of viscously damped systems are considered

through the introduction of Rayleigh s dissipation function. The equations of motion are

uncoupled for proportionally damped systems, and the solution of each of the uncoupled

equations is outlined through the Duhamel integral. The self-excitation and stability analy-

sis of multidegree-of-freedom systems is considered using Ruth-Hurwitz stability criterion.

Finally, MATLAB solutions are presented for the free and forced vibration of multidegree-

of-freedom systems.

Learning Objectives

After you have finished studying this chapter, you should be able to do the following:

* Formulate the equations of motion of multidegree-of-freedom systems using New-

ton s second law, influence coefficients, or Lagrange s equations.

* Express the equation of motion in matrix form.

* Find the natural frequencies of vibration and the modal vectors by solving the eigen-

value problem.

* Determine the free- and forced-vibration response of undamped systems using modal

analysis.

* Use proportional damping to find the response of damped systems.

* Analyze the stability characteristics of multidegree-of-freedom systems using the

Routh-Hurwitz criterion.

* Solve free- and forced-vibration problems using MATLAB.
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6.2 MODELING OF CONTINUOUS SYSTEMS AS MULTIDEGREE-OF-FREEDOM SYSTEMS 555

6.1 Introduction
As stated in Chapter 1, most engineering systems are continuous and have an infinite

number of degrees of freedom. The vibration analysis of continuous systems requires the

solution of partial differential equations, which is quite difficult. For many partial differ-

ential equations, in fact, analytical solutions do not exist. The analysis of a multidegree-

of-freedom system, on the other hand, requires the solution of a set of ordinary

differential equations, which is relatively simple. Hence, for simplicity of analysis, con-

tinuous systems are often approximated as multidegree-of-freedom systems.

All the concepts introduced in the preceding chapter can be directly extended to the case

of multidegree-of-freedom systems. For example, there is one equation of motion for each

degree of freedom; if generalized coordinates are used, there is one generalized coordinate

for each degree of freedom. The equations of motion can be obtained from Newton s second

law of motion or by using the influence coefficients defined in Section 6.4. However, it is

often more convenient to derive the equations of motion of a multidegree-of-freedom system

by using Lagrange s equations.

There are n natural frequencies, each associated with its own mode shape, for a system

having n degrees of freedom. The method of determining the natural frequencies from the

characteristic equation obtained by equating the determinant to zero also applies to these

systems. However, as the number of degrees of freedom increases, the solution of the char-

acteristic equation becomes more complex. The mode shapes exhibit a property known as

orthogonality, which can be utilized for the solution of undamped forced-vibration prob-

lems using a procedure known as modal analysis. The solution of forced-vibration problems

associated with viscously damped systems can also be found conveniently by using a con-

cept called proportional damping.

6.2 Modeling of Continuous Systems as Multidegree-of-Freedom Systems
Different methods can be used to approximate a continuous system as a multidegree-of-

freedom system. A simple method involves replacing the distributed mass or inertia of the

system by a finite number of lumped masses or rigid bodies. The lumped masses are assumed

to be connected by massless elastic and damping members. Linear (or angular) coordinates

are used to describe the motion of the lumped masses (or rigid bodies). Such models are

called lumped-parameter or lumped-mass or discrete-mass systems. The minimum number

of coordinates necessary to describe the motion of the lumped masses and rigid bodies

defines the number of degrees of freedom of the system. Naturally, the larger the number of

lumped masses used in the model, the higher the accuracy of the resulting analysis.

Some problems automatically indicate the type of lumped-parameter model to be

used. For example, the three-story building shown in Fig. 6.1(a) automatically suggests

using a three-lumped-mass model, as indicated in Fig. 6.1(b). In this model, the inertia of

the system is assumed to be concentrated as three point masses located at the floor levels,

and the elasticities of the columns are replaced by the springs. Similarly, the radial drilling
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556 CHAPTER 6 MULTIDEGREE-OF-FREEDOM SYSTEMS

m3

m2

m1

(a) (b)

k3

k2

k1

FIGURE 6.1 Three-story building.

machine shown in Fig. 6.2(a) can be modeled using four lumped masses and four spring

elements (elastic beams), as shown in Fig. 6.2(b).

Another popular method of approximating a continuous system as a multidegree-of-

freedom system involves replacing the geometry of the system by a large number of small

elements. By assuming a simple solution within each element, the principles of compati-

bility and equilibrium are used to find an approximate solution to the original system. This

method, known as the finite element method, is considered in detail in Chapter 12.

m2

m4m1 m3

(b)

Elastic
beam

(a)

Head

Arm

Base
Column

FIGURE 6.2 Radial drilling machine. (Photo courtesy of South Bend Lathe Corp.)
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6.3 USING NEWTON S SECOND LAW TO DERIVE EQUATIONS OF MOTION 557

6.3 Using Newton s Second Law to Derive Equations of Motion
The following procedure can be adopted to derive the equations of motion of a multidegree-

of-freedom system using Newton s second law of motion:

1. Set up suitable coordinates to describe the positions of the various point masses and

rigid bodies in the system. Assume suitable positive directions for the displacements,

velocities, and accelerations of the masses and rigid bodies.

2. Determine the static equilibrium configuration of the system and measure the displace-

ments of the masses and rigid bodies from their respective static equilibrium positions.

3. Draw the free-body diagram of each mass or rigid body in the system. Indicate the

spring, damping, and external forces acting on each mass or rigid body when positive

displacement and velocity are given to that mass or rigid body.

4. Apply Newton s second law of motion to each mass or rigid body shown by the free-

body diagram as

(6.1)

or

(6.2)

where denotes the sum of all forces acting on mass and indicates the

sum of moments of all forces (about a suitable axis) acting on the rigid body of mass

moment of inertia 

The procedure is illustrated in the following examples.

Ji.

©j  Mijmi©j  Fij

Ji u

$

i = a
j

 Mij (for rigid body of inertia Ji)

mi x
$

i = a
j

 Fij (for mass mi)

E X A M P L E  6 . 1
Equations of Motion of a Spring-Mass-Damper System

Derive the equations of motion of the spring-mass-damper system shown in Fig. 6.3(a).

Solution:

Approach: Draw free-body diagrams of masses and apply Newton s second law of motion. The

coordinates describing the positions of the masses, are measured from their respective static

equilibrium positions, as indicated in Fig. 6.3(a). The free-body diagram of a typical interior mass 

is shown in Fig. 6.3(b) along with the assumed positive directions for its displacement, velocity, and

acceleration. The application of Newton s second law of motion to mass gives

or

(E.1) + (ki + ki+1)xi - ki+1xi+1 = Fi ;              i = 2, 3, Á , n - 1

 mix
$

i - cix
#
i-1 + (ci + ci+1) x

#
i - ci+1x

#
i+1 - kixi-1

 + ci+1 (x
#
i+1 - x

#
i) + Fi ;              i = 2, 3, Á , n - 1

 mix
$

i = -  ki (xi - xi-1) + ki+1 (xi+1 - xi) - ci (x
#
i - x

#
i-1)

mi

mi

xi(t),

M06_RAO08193_5_SE_C06.qxd  8/21/10  4:50 PM  Page 557



558 CHAPTER 6 MULTIDEGREE-OF-FREEDOM SYSTEMS

m1 m2 mi mj mn

k1

x1

F1(t)

c1

k2

c2

ki

ci

kj

cj

kn

cn

kn 1

cn 1

ki(xi  
xi  1)

F2(t) Fi (t)

Fi(t)

mi

Fj (t) Fn(t)

Point 1
x2

Point 2
xi

Point i
xj

Point j
xn

Point n

ci(xi  
xi  1)

ki  1(xi 1  
xi)

ci  1(xi 1  
xi)

(a)

(b)

xi, xi, xi

FIGURE 6.3 Spring-mass-damper system.

The equations of motion of the masses and can be derived from Eq. (E.1) by setting 

along with and along with respectively:

(E.2)

(E.3)

Notes:

1. The equations of motion, Eqs. (E.1) to (E.3), of Example 6.1 can be expressed in matrix form as

(6.3)

where [m], [c], and [k] are called the mass, damping, and stiffness matrices, respectively, and

are given by

(6.4)

(6.5) [c] = G

(c1 + c2) -  c2 0 Á 0 0

-  c2 (c2 + c3) -  c3
Á 0 0

0  -  c3 (c3 + c4) Á 0 0
# # # Á # #
# # # Á # #
# # # Á # #

0 0 0 Á -  cn (cn + cn+1)

W

 [m] = E

m1 0 0 Á 0 0

0 m2 0 Á 0 0

0 0 m3
Á 0 0

o

0 0 0 Á 0 mn

U

[m]x
$
:

+ [c]x
#
:

+ [k] x: = F
!

 mnx
$

n - cnx
#
n-1 + (cn + cn+1)x

#
n - knxn-1 + (kn + kn+1)xn = Fn

 m1x
$

1 + (c1 + c2)x
#
1 - c2x

#
2 + (k1 + k2)x1 - k2x2 = F1

xn+1 = 0,i = nx0 = 0

i = 1mnm1
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(6.6)

and and are the displacement, velocity, acceleration, and force vectors, given by

(6.7)

2. For an undamped system (with all ), the equations of motion reduce to

(6.8)

3. The spring-mass-damper system considered above is a particular case of a general n-degree-of-

freedom spring-mass-damper system. In their most general form, the mass, damping, and stiff-

ness matrices are given by

(6.9)

(6.10) [c] = F

c11 c12 c13
Á c1n

c12 c22 c23
Á c2n

# # # Á #

# # # Á #

# # # Á #

c1n c2n c3n
Á cnn

V

 [m] = F

m11 m12 m13
Á m1n

m12 m22 m23
Á m2n

#

#

#

m1n m2n m3n
Á mnn

V

[m]x

$
:

+ [k] x: = F
!

ci = 0, i = 1, 2, Á , n + 1

x

$
:

= f

x
$

1(t)

x
$

2(t)
#

#

#

x
$

n(t)

v ,  F
!
= f

F1(t)

F2(t)
#

#

#

Fn(t)

v

x
:

= f

x1(t)

x2(t)
#

#

#

xn(t)

v ,  x
#
:

= f

x
#
1(t)

x
#
2(t)
#

#

#

x
#
n(t)

v ,

F
!

x
!
, x
!#

, x
!$

,

[k] = G

(k1 + k2) -  k2 0 Á 0 0

-  k2 (k2 + k3) -  k3
Á 0 0

0  -  k3 (k3 + k4) Á 0 0
#

#

#

0 0 0 Á -  kn (kn + kn+1)

W
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and

(6.11)

As stated in Section 5.5, if the mass matrix is not diagonal, the system is said to have mass

or inertia coupling. If the damping matrix is not diagonal, the system is said to have damp-

ing or velocity coupling. Finally, if the stiffness matrix is not diagonal, the system is said to

have elastic or static coupling. Both mass and damping coupling are also known as dynamic

coupling.

4. The differential equations of the spring-mass system considered in Example 6.1 (Fig. 6.3(a)) can

be seen to be coupled; each equation involves more than one coordinate. This means that the

equations cannot be solved individually one at a time; they can only be solved simultaneously. In

addition, the system can be seen to be statically coupled, since stiffnesses are coupled that is,

the stiffness matrix has at least one nonzero off-diagonal term. On the other hand, if the mass

matrix has at least one off-diagonal term nonzero, the system is said to be dynamically coupled.

Further, if both the stiffness and mass matrices have nonzero off-diagonal terms, the system is

said to be coupled both statically and dynamically.

*

[k] = F

k11 k12 k13
Á k1n

k12 k22 k23
Á k2n

#

#

#

k1n k2n k3n
Á knn

V

E X A M P L E  6 . 2
Equations of Motion of a Trailer Compound Pendulum System

Derive the equations of motion of the trailer compound pendulum system shown in Fig. 6.4(a).

Solution:

Approach: Draw the free-body diagrams and apply Newton s second law of motion.

The coordinates x(t) and are used to describe, respectively, the linear displacement of the

trailer and the angular displacement of the compound pendulum from their respective static equilib-

rium positions. When positive values are assumed for the displacements x(t) and velocities 

and and accelerations and the external forces on the trailer will be the applied force

F(t), the spring forces and and the damping forces and as shown in Fig. 6.4(b). The

external forces on the compound pendulum will be the applied torque and the gravitational

force mg, as shown in Fig. 6.4(b). The inertia forces that act on the trailer and the compound pendu-

lum are indicated by the dashed lines in Fig. 6.4(b). Note that the rotational motion of the compound

pendulum about the hinge O induces a radially inward force (toward O) and a normal force

(perpendicular to OC) as shown in Fig. 6.4(b). The application of Newton s second law for

translatory motion in the horizontal direction gives

(E.1) Mx
$
+ mx

$
+ m 

l

2
 u

$

 cos u - m 

l

2
 u
 #2 sin u =  - k1x - k2x - c1x

 #
- c2x 

#
+ F(t)

m 
l
2 u

$
m 

l
2 u

 #2

Mt(t)

c2x 
#
,c1x

 #k2x,k1x

u

$

(t),x
$
(t)u

 #
(t),

x 
#
(t)u(t),

u(t)

M06_RAO08193_5_SE_C06.qxd  8/23/10  4:46 PM  Page 560



6.3 USING NEWTON S SECOND LAW TO DERIVE EQUATIONS OF MOTION 561

Similarly the application of Newton s second law for rotational motion about hinge O yields

(E.2)

Notes:

1. The equations of motion, Eqs. (E.1) and (E.2), can be seen to be nonlinear due to the presence

of the terms involving and 

2. Equations (E.1) and (E.2) can be linearized if the term involving is assumed negligibly

small and the displacements are assumed small so that and The linearized

equations can be derived as

(E.3) + (c1 + c2) x 
#
= F(t)

 (M + m)x
$
+ +m 

l

2
*u
$

+ (k1 + k2)x

sin u L u.cos u L 1
(u

 #
)2 sin u

(u
 #
)2 sin u. sin u, cos u,

+m 

l

2
 u

$

*  

l

2
+ +m 

l2

12
*  u

$

+ (mx
$
) 

l

2
 cos u = -  (mg) 

l

2
 sin u + Mt(t)

x(t), F(t)k1

c1

k2

c2

Trailer, mass M

O

C

Mt(t)

u(t)

Compound pendulum,
mass m, length l

l
2

y

(a)

(b)

k1x

 x, x, x, F(t)

c1x

k2x

c2x

(M  
m)g

2

(M  
m)g

2

Mg

mg

Mx

mx

O

C Jcu

 u, u, u, Mt(t)

m
2

2

m u

u

l

l

2

FIGURE 6.4 Compound pendulum and trailer system.
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and

(E.4)

*

6.4 Influence Coefficients

The equations of motion of a multidegree-of-freedom system can also be written in terms of

influence coefficients, which are extensively used in structural engineering. Basically, one set

of influence coefficients can be associated with each of the matrices involved in the equations

of motion. The influence coefficients associated with the stiffness and mass matrices are,

respectively, known as the stiffness and inertia influence coefficients. In some cases, it is more

convenient to rewrite the equations of motion using the inverse of the stiffness matrix (known

as the flexibility matrix) or the inverse of the mass matrix. The influence coefficients corre-

sponding to the inverse stiffness matrix are called the flexibility influence coefficients, and

those corresponding to the inverse mass matrix are known as the inverse inertia coefficients.

+
ml

2
*  x
$
+ +

ml2

3
*  u

$

+ +
mgl

2
*  u = Mt(t)

6.4.1

Stiffness

Influence

Coefficients

For a simple linear spring, the force necessary to cause a unit elongation is called the stiff-

ness of the spring. In more complex systems, we can express the relation between the dis-

placement at a point and the forces acting at various other points of the system by means of

stiffness influence coefficients. The stiffness influence coefficient, denoted as is defined

as the force at point i due to a unit displacement at point j when all the points other than the

point j are fixed. Using this definition, for the spring-mass system shown in Fig. 6.5, the

total force at point i, can be found by summing up the forces due to all displacements

as

(6.12)Fi = a
n

j=1
 kij xj,  i = 1, 2, Á , n

xj ( j = 1, 2, Á , n)
Fi,

kij,

m1 m2 mi mj mn

k1

x1

F1(t)

k2 ki kj kn kn*1

ki(xi + xi+1)

F2(t) Fi(t)

Fi(t)

mi

Fj(t) Fn(t)

Point 1

x2

Point 2

xi
Point i

xj
Point j

xn
Point n

ki * 1(xi*1 + xi)

(a)

(b)

*xi, * xi

FIGURE 6.5 Multidegree-of-freedom spring-mass system.
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Equation (6.12) can be stated in matrix form as

(6.13)

where and are the displacement and force vectors defined in Eq. (6.7) and [k] is the

stiffness matrix given by

(6.14)

The following aspects of stiffness influence coefficients are to be noted:

1. Since the force required at point i to cause a unit deflection at point j and zero deflection

at all other points is the same as the force required at point j to cause a unit deflection at

point i and zero deflection at all other points (Maxwell s reciprocity theorem [6.1]), we

have 

2. The stiffness influence coefficients can be calculated by applying the principles of sta-

tics and solid mechanics.

3. The stiffness influence coefficients for torsional systems can be defined in terms of

unit angular displacement and the torque that causes the angular displacement. For

example, in a multirotor torsional system, can be defined as the torque at point i

(rotor i) due to a unit angular displacement at point j and zero angular displacement at

all other points.

The stiffness influence coefficients of a multidegree-of-freedom system can be determined

as follows:

1. Assume a value of one for the displacement ( to start with) and a value of zero

for all other displacements By definition, the set of

forces will maintain the system in the assumed configuration

Then the static equilib-

rium equations are written for each mass and the resulting set of n equations solved to

find the n influence coefficients 

2. After completing step 1 for the procedure is repeated for 

The following examples illustrate the procedure.

j = 2, 3, Á , n.j = 1,

kij (i = 1, 2, Á , n).

(xj = 1, x1 = x2 = Á = xj-1 = xj+1 = Á = xn = 0).
kij (i = 1, 2, Á , n)

x1, x2, Á , xj-1, xj+1, Á , xn.
j = 1xj

kij

kij = kji.

[k] = D

k11 k12
Á k1n

k21 k22
Á k2n

o

kn1 kn2
Á knn

T

F
!

x
!

F
!
= [k]x

!

E X A M P L E  6 . 3

Stiffness Influence Coefficients

Find the stiffness influence coefficients of the system shown in Fig. 6.6(a).

Solution:

Approach: Use the definition of and static equilibrium equations.

Let and denote the displacements of the masses and respectively. The

stiffness influence coefficients of the system can be determined in terms of the spring stiffnesseskij

m3,m1, m2,x3x1, x2,

kij

M06_RAO08193_5_SE_C06.qxd  8/21/10  4:50 PM  Page 563



564 CHAPTER 6 MULTIDEGREE-OF-FREEDOM SYSTEMS

m1 m2

x1

k1 k2 k3

x2

m3

x3

(a)

m1 m2

x1 + 1 x2 + 0 x3 + 0

k1 k2

k11 k21 k31

m3

k3

(b)

m1 m2

x1 + 0 x2 + 1 x3 + 0

k1 k2

k12 k22 k32

m3

k3

(d)

m1 m2

x1 + 0 x2 + 0 x3 + 1

k1 k2

k13 k23 k33

m3

k3

(f)

m1 m2

k1x1

+ k1

k2(x2 * x1)

k11 k21 k31

m3

k3(x3 * x2)

(c)

+ *k2 + 0

m1 m2

k1x1

+ 0

k2(x2 * x1)

k12 k22 k32

m3

k3(x3 * x2)

(e)

+ k2 + *k3

m1 m2

k1x1

+ 0

k2(x2 * x1)

k13 k23 k33

m3

k3(x3 * x2)

(g)

+ 0 + k3

FIGURE 6.6 Determination of stiffness influence coefficients.
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and as follows. First, we set the displacement of equal to one and the dis-

placements of and equal to zero as shown in Fig. 6.6(b). The set of forces

is assumed to maintain the system in this configuration. The free-body diagrams of

the masses corresponding to the configuration of Fig. 6.6(b) are indicated in Fig. 6.6(c). The equilib-

rium of forces for the masses and in the horizontal direction yields

(E.1)

(E.2)

(E.3)

The solution of Eqs. (E.1) to (E.3) gives

(E.4)

Next the displacements of the masses are assumed as and as shown in

Fig. 6.6(d). Since the forces are assumed to maintain the system in this configura-

tion, the free-body diagrams of the masses can be developed as indicated in Fig. 6.6(e). The force

equilibrium equations of the masses are:

(E.5)

(E.6)

(E.7)

The solution of Eqs. (E.5) to (E.7) yields

(E.8)

Finally the set of forces is assumed to maintain the system with and

(Fig. 6.6(f)). The free-body diagrams of the various masses in this configuration are shown in

Fig. 6.6(g), and the force equilibrium equations lead to

(E.9)

(E.10)

(E.11)

The solution of Eqs. (E.9) to (E.11) yields

(E.12)

Thus the stiffness matrix of the system is given by

(E.13)

*

[k] = C

(k1 + k2) -  k2 0

-  k2 (k2 + k3) -  k3

0  -  k3 k3

S

k13 = 0,         k23 = -
 
k3,         k33 = k3

Mass m3: k33 = k3

 Mass m2: k23 + k3 = 0

Mass m1: k13 = 0

x3 = 1

x1 = 0, x2 = 0,ki3  (i = 1, 2, 3)

k12 = -
 
k2,         k22 = k2 + k3,         k32 = -

 
k3

Mass m3: k32 = -
 
k3

 Mass m2: k22 - k3 = k2

 Mass m1: k12 + k2 = 0

ki2 (i = 1, 2, 3)

x3 = 0,x1 = 0, x2 = 1,

k11 = k1 + k2,         k21 = -
 
k2,         k31 = 0

 Mass m3: k31 = 0

 Mass m2: k21 = -
 
k2

Mass m1: k1 = -
 
k2 + k11

m3m1, m2,

ki1 (i = 1, 2, 3)

(x2 = x3 = 0),m3m2

(x1 = 1)m1k3k1, k2,
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E X A M P L E  6 . 4

Stiffness Matrix of a Frame

Determine the stiffness matrix of the frame shown in Fig. 6.7(a). Neglect the effect of axial stiffness

of the members AB and BC.

Solution: Since the segments AB and BC of the frame can be considered as beams, the beam force-

deflection formulas can be used to generate the stiffness matrix of the frame. The forces necessary to

cause a displacement along one coordinate while maintaining zero displacements along other

coordinates of a beam are indicated in Fig. 6.7(b) [6.1, 6.8]. In Fig. 6.7(a), the ends A and C are fixed

and hence the joint B will have three possible displacements x, y, and as indicated. The forces

necessary to maintain a unit displacement along x direction and zero displacement along y and 

directions at the joint B are given by (from Fig. 6.7(b))

Similarly, when a unit displacement is given along y direction at joint B with zero displacements along

x and directions, the forces required to maintain the configuration can be found from Fig. 6.7(b) as

Finally, the forces necessary to maintain a unit displacement along direction and zero displace-

ments along x and y directions at joint B can be seen, from Fig. 6.7(b), as

 Mu = +
4 EI

l
*

BC

+ +
4 EI

l
*

BA

=
2 EI

l
+

8 EI

l
=

10 EI

l

 Fx = +
6 EI

l2
*

BC

=
3 EI

2 l2
, Fy = -

 
+

6 EI

l2
*

BA

= -  

12 EI

l3

u

Fx = 0,         Fy = +
12 EI

l3
*

BA

=
24 EI

l3
, Mu = -  +

6 EI

l2
*

BA

= -  

12 EI

l2

u

Fx = +
12EI

l3
*

BC

=
3EI

2 l3
,    Fy = 0,          Mu = +

6EI

l2
*

BC

=
3EI

2 l2

u

u,

A B

y

x

C

E, 2I, l

E, I, 2l

E, I, l

w1

u1
u

u1

F1

F1 +

M1

w2

u2

F2

M2

12EIw1

l3
F2 +

*12EIw1

l3

F2 +

*6EIu1

l2

w1M1 +

6EIw1

l2

F1 +

6EIu1

l2

M1 +

4EIu1

l

M2 +

6EIw1

l2

M2 +

2EIu1

l

(a) (b)

FIGURE 6.7 Stiffness matrix of a frame.
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Thus the stiffness matrix, [k], is given by

where

*

F
!
= c

Fx

Fy

Mu

s ,          x
!
= c

x

y

u

s ,          [k] =
EI

l3
 E

3

2
0

3l

2

0 24  -12l

3l

2
-12l 10l2

U

F
!
= [k]x

!

6.4.2
Flexibility
Influence
Coefficients

As seen in Examples 6.3 and 6.4, the computation of stiffness influence coefficients

requires the application of the principles of statics and some algebraic manipulation. In

fact, the generation of n stiffness influence coefficients for any specific j

requires the solution of n simultaneous linear equations. Thus n sets of linear equations

(n equations in each set) are to be solved to generate all the stiffness influence coefficients

of an n-degree-of-freedom system. This implies a significant computational effort for large

values of n. The generation of the flexibility influence coefficients, on the other hand,

proves to be simpler and more convenient. To illustrate the concept, consider again the

spring-mass system shown in Fig. 6.5.

Let the system be acted on by just one force and let the displacement at point i

(i.e., mass ) due to be The flexibility influence coefficient, denoted by is

defined as the deflection at point i due to a unit load at point j. Since the deflection

increases proportionately with the load for a linear system, we have

(6.15)

If several forces act at different points of the system, the total deflec-

tion at any point i can be found by summing up the contributions of all forces 

(6.16)

Equation (6.16) can be expressed in matrix form as

(6.17)

where and are the displacement and force vectors defined in Eq. (6.7) and [a] is the

flexibility matrix given by

(6.18)[a] = D

a11 a12
Á a1n

a21 a22
Á a2n

o

an1 an2
Á ann

T

F
!

x:

x: = [a] F
!

xi = a
n

j=1
 xij = a

n

j=1
 aijFj, i = 1, 2, Á , n

Fj: 
Fj   

(j = 1, 2, Á , n)

xij = aijFj

aij,xij.Fjmi

Fj,

k1j, k2j, Á , knj
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The following characteristics of flexibility influence coefficients can be noted:

1. An examination of Eqs. (6.17) and (6.13) indicates that the flexibility and stiffness

matrices are related. If we substitute Eq. (6.13) into Eq. (6.17), we obtain

(6.19)

from which we can obtain the relation

(6.20)

where [I] denotes the unit matrix. Equation (6.20) is equivalent to

(6.21)

That is, the stiffness and flexibility matrices are the inverse of one another. The use of

dynamic stiffness influence coefficients in the vibration of nonuniform beams is dis-

cussed in reference [6.10].

2. Since the deflection at point i due to a unit load at point j is the same as the deflection

at point j due to a unit load at point i for a linear system (Maxwell s reciprocity theo-

rem [6.1]), we have 

3. The flexibility influence coefficients of a torsional system can be defined in terms of

unit torque and the angular deflection it causes. For example, in a multirotor torsional

system, can be defined as the angular deflection of point i (rotor i) due to a unit

torque at point j (rotor j).

The flexibility influence coefficients of a multidegree-of-freedom system can be deter-

mined as follows:

1. Assume a unit load at point j ( to start with). By definition, the displacements of

the various points resulting from this load give the flexibility influ-

ence coefficients, Thus can be found by applying the simple

principles of statics and solid mechanics.

2. After completing Step 1 for the procedure is repeated for 

3. Instead of applying Steps 1 and 2, the flexibility matrix, [a], can be determined by

finding the inverse of the stiffness matrix, [k], if the stiffness matrix is available.

The following examples illustrate the procedure.

j = 2, 3, Á , n.j = 1,

aijaij, i = 1, 2, Á , n.
i (i = 1, 2, Á , n)

j = 1

aij

aij = aji.

[k] = [a] 
- 1, [a] = [k] 

- 1

[a][k] = [I]

x: = [a] F
!

= [a][k] x:

E X A M P L E  6 . 5
Flexibility Influence Coefficients

Find the flexibility influence coefficients of the system shown in Fig. 6.8(a).

Solution: Let and denote the displacements of the masses and respectively.

The flexibility influence coefficients of the system can be determined in terms of the spring

stiffnesses and as follows. Apply a unit force at mass and no force at other masses

as shown in Fig. 6.8(b). The resulting deflections of the masses andm1, m2,(F1 = 1, F2 = F3 = 0),

m1k3k1, k2,

aij

m3,m1, m2,x3x1, x2,
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m1 m2

x1
k1 k2 k3

x2

m3

x3

(a)

m1 m2

x1 + a11 x2 + a21 x3 + a31

k1 k2

F1 + 1 F2 + 0 F3 + 0

F1 + 0 F2 + 1 F3 + 0

F1 + 0 F2 + 0 F3 + 1

F1 + 1 F2 + 0 F3 + 0

m3

k3

(b)

m1 m2

x1 + a12 x2 + a22 x3 + a32

x1 + a13 x2 + a23 x3 + a33

k1 k2

m3

k3

(d)

m1 m2

k1 k2

m3

k3

(f)

m1 m2k1a11
k2(a21 * a11) k3(a31 * a21)

F1 + 0 F2 + 1 F3 + 0

k1a12
k2(a22 * a12) k3(a32 * a22)

F1 + 0 F2 + 0 F3 + 1

k1a13
k2(a23 * a13) k3(a33 * a 23)

m3

(c)

m1 m2 m3

(e)

m1 m2 m3

(g)

FIGURE 6.8 Determination of flexibility influence coefficients.
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( and ) are, by definition, and respectively (see Fig. 6.8b). The free-body

diagrams of the masses are shown in Fig. 6.8(c). The equilibrium of forces in the horizontal direction

for the various masses gives the following:

(E.1)

(E.2)

(E.3)

The solution of Eqs. (E.1) to (E.3) yields

(E.4)

Next, we apply a unit force at mass and no force at masses and as shown in Fig. 6.8(d).

These forces cause the masses and to deflect by and 

respectively (by definition of ), as shown in Fig. 6.8(d). The free-body diagrams of the masses,

shown in Fig. 6.8(e), yield the following equilibrium equations:

(E.5)

(E.6)

(E.7)

The solution of Eqs. (E.5) to (E.7) gives

(E.8)

Finally, when we apply a unit force to mass and no force to masses and the masses deflect

by and as shown in Fig. 6.8(f). The resulting free-body diagrams of

the various masses (Fig. 6.8(g)) yield the following equilibrium equations:

(E.9)

(E.10)

(E.11)

The solution of Eqs. (E.9) to (E.11) gives the flexibility influence coefficients as

(E.12)

It can be verified that the stiffness matrix of the system, given by Eq. (E.13) of Example 6.3, can also

be found from the relation 

*

[k] = [a] 
-

 
1.

a13 =
1

k1

, a23 =
1

k1

+
1

k2

, a33 =
1

k1

+
1

k2

+
1

k3

ai3

 Mass m3: k3(a33 - a23) = 1

 Mass m2: k2(a23 - a13) = k3(a33 - a23)

Mass m1: k1a13 = k2(a23 - a13)

x3 = a33,x1 = a13, x2 = a23,

m2,m1m3

a12 =
1

k1

,           a22 =
1

k1

+
1

k2

,          a32 =
1

k1

+
1

k2

 Mass m3: k3(a32 - a22) = 0

 Mass m2: k2(a22 - a12) = k3(a32 - a22) + 1

Mass m1: k1(a12) = k2(a22 - a12)

ai 2

x3 = a32,x1 = a12, x2 = a22,m3m1, m2,

m3,m1m2

a11 =
1

k1

, a21 =
1

k1

, a31 =
1

k1

Mass m3: k3(a31 - a21) = 0

 Mass m2: k2(a21 - a11) = k3(a31 - a21)

Mass m1: k1a11 = k2(a21 - a11) + 1

a31,a11, a21,x3x1, x2,m3
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E X A M P L E  6 . 6
Flexibility Matrix of a Beam

Derive the flexibility matrix of the weightless beam shown in Fig. 6.9(a). The beam is simply sup-

ported at both ends, and the three masses are placed at equal intervals. Assume the beam to be uni-

form with stiffness EI.

Solution: Let and denote the total transverse deflection of the masses and 

respectively. From the known formula for the deflection of a pinned-pinned beam [6.2], the influence

coefficients can be found by applying a unit load at the location of and zero load

at the locations of and (see Fig. 6.9(b)):

(E.1)

Similarly, by applying a unit load at the locations of and separately (with zero load at other

locations), we obtain

(E.2)

and

(E.3)

Thus the flexibility matrix of the system is given by

(E.4)[a] =

l3

768EI
 C

9 11 7

11 16 11

7 11 9

S

a31 = a13 =
7

768
  

l3

EI
,  a32 = a23 =

11

768
  

l3

EI
,  a33 =

9

768
  

l3

EI

a21 = a12 =

11

768
  

l3

EI
,  a22 =

1

48
  

l3

EI
,  a23 =

11

768
  

l3

EI

m3m2

a11 =
9

768
  

l3

EI
,  a12 =

11

768
  

l3

EI
,  a13 =

7

768
  

l3

EI

m3m2

m1a1j(j = 1, 2, 3)

m3,m1, m2,x3x1, x2,

F1 * 1

a11

x1(t) x2(t) x3(t)

l

a21

a31

F2 * 1

a12 a22

a32

F3 * 1

a13 a23

a33

(b)(a)

m1 m2 m3

l

4

l

4

l

4

l

4

FIGURE 6.9 Beam deflections.

*
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572 CHAPTER 6 MULTIDEGREE-OF-FREEDOM SYSTEMS

The elements of the mass matrix, are known as the inertia influence coefficients.

Although it is more convenient to derive the inertia influence coefficients from the expres-

sion for kinetic energy of the system (see Section 6.5), the coefficients can be computed

using the impulse-momentum relations. The inertia influence coefficients 

are defined as the set of impulses applied at points respectively, to produce a

unit velocity at point j and zero velocity at every other point (that is, 

). Thus, for a multidegree-of-freedom system, the total impulse

at point can be found by summing up the impulses causing the velocities 

as

(6.22)

Equation (6.22) can be stated in matrix form as

(6.23)

where and are the velocity and impulse vectors given by

(6.24)

and [m] is the mass matrix given by

(6.25)

It can be verified easily that the inertia influence coefficients are symmetric for a linear

system that is, The following procedure can be used to derive the inertia

influence coefficients of a multidegree-of-freedom system.

1. Assume that a set of impulses are applied at various points so as

to produce a unit velocity at point j ( with to start with) and a zero

velocity at all other points By defini-

tion, the set of impulses denote the inertia influence coefficients

mij  (i = 1, 2, Á , n).

fij (i = 1, 2, Á , n)

(x 
#
1 = x 

#
2 =

Á x 
#
j-1 = x 

#
j+1 =

Á =  x 
#
n = 0).

j = 1x 
#
j = 1

i (i = 1, 2, Á , n)fij

mij = mji.

[m] = F

m11 m12
Á m1n

m21 m22
Á m2n

# # Á #

# # Á #

# # Á #

mn1 mn2
Á mnn

V

x:
#
 
= f

x 
#
1

x 
#
2

#

#

#

x 
#
n

v ,          F
:

= f

F1

F2

#

#

#

F n

v

F
:

x:
#

F
:

= [m]x
!.

Fi = a
n

j=1

 mij x
 #

j

1, 2, Á , n)
x 
#
j 
(j =i, Fi,

x 
#
j-1 = x 

#
j+1 =

Á =  x 
#
n = 0

x 
#
j = 1, x 

#
1 = x 

#
2 =

Á =
1, 2, Á , n,

m1j, m2j, Á , mnj

mij

mij,6.4.3

Inertia Influence

Coefficients
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6.4 INFLUENCE COEFFICIENTS 573

2. After completing step 1 for the procedure is repeated for 

Note that if denotes an angular coordinate, then represents an angular velocity

and indicates an angular impulse. The following example illustrates the procedure of

generating mij.
Fj

x 
#

jxj

j = 2, 3, Á , n.j = 1,

E X A M P L E  6 . 7

Inertia Influence Coefficients

Find the inertia influence coefficients of the system shown in Fig. 6.4(a).

Solution:

Approach: Use the definition of along with impulse-momentum relations.

Let x(t) and denote the coordinates to define the linear and angular positions of the trailer

(M) and the compound pendulum (m). To derive the inertia influence coefficients, impulses of mag-

nitudes and are applied along the directions x(t) and to result in the velocities and

Then the linear impulse-linear momentum equation gives

(E.1)

and the angular impulse-angular momentum equation (about O) yields

(E.2)

Next, impulses of magnitudes and are applied along the directions x(t) and to obtain

the velocities and Then the linear impulse-linear momentum relation provides

(E.3)

and the angular impulse-angular momentum equation (about O) gives

(E.4)

Thus the mass or inertia matrix of the system is given by

(E.5)

*

[m] = D

M + m
ml

2

ml

2

ml2

3

T

m22 = ¢
ml2

3
 (1)

m12 = m (1) a
l

2
b

u
 #
= 1.x 

#
= 0

u(t)m22m12

m21 = m(1) 

l

2

m11 = (M + m)(1)

u
 #
= 0.

x 
#
= 1u(t)m21m11

u(t)
mij
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574 CHAPTER 6 MULTIDEGREE-OF-FREEDOM SYSTEMS

6.5 Potential and Kinetic Energy Expressions in Matrix Form
Let denote the displacement of mass and the force applied in the direction of at

mass in an n-degree-of-freedom system similar to the one shown in Fig. 6.5.

The elastic potential energy (also known as strain energy or energy of deformation) of

the ith spring is given by

(6.26)

The total potential energy can be expressed as

(6.27)

Since

(6.28)

Eq. (6.27) becomes

(6.29)

Equation (6.29) can also be written in matrix form as1

(6.30)

where the displacement vector is given by Eq. (6.7) and the stiffness matrix is given by

(6.31)

The kinetic energy associated with mass is, by definition, equal to

(6.32)Ti =
1

2
 mix

 #
i
2

mi

[k] = D

k11 k12 Á k1n
k21 k22 Á k2n
o

kn1 kn2 Á knn

T

V =
1

2
 x
:T

 [k] x
:

V =
1

2
 a
n

i=1
 ¢a

n

j=1
 kijxj xi =

1

2
 a
n

i=1
 a
n

j=1
 kijxixj

Fi = a
n

j=1
 kijxj

V = a
n

i=1

 Vi =
1

2
 a
n

i=1

 Fixi

Vi =
1

2
 Fixi

mi

xiFimixi

1Since the indices i and j can be interchanged in Eq. (6.29), we have the relation kij = kji.
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6.5 POTENTIAL AND KINETIC ENERGY EXPRESSIONS IN MATRIX FORM 575

The total kinetic energy of the system can be expressed as

(6.33)

which can be written in matrix form as

(6.34)

where the velocity vector is given by

and the mass matrix [m] is a diagonal matrix given by

(6.35)

If generalized coordinates discussed in Section 6.6, are used instead of the physical

displacements the kinetic energy can be expressed as

(6.36)

where is the vector of generalized velocities, given by

(6.37)

and [m] is called the generalized mass matrix, given by

(6.38)

with The generalized mass matrix given by Eq. (6.38) is full, as opposed to the

diagonal mass matrix of Eq. (6.35).

mij = mji.

[m] = D

m11 m12
Á m1n

m21 m22
Á m2n

o

mn1 mn2
Á mnn

T

q
#
:

= d

q
#
1

q
#
2

o

q
#
n

t

q
#
:

T =
1

2
 q
#
:T[m]q

#
:

(xi),
(qi),

[m] = D

m1 0

m2

0 mn

T

x
#
:

= d

x 
#
1

x 
#
2

o

x 
#
n

t

x
#
:

T =
1

2
 x
#
:T[m]x

#
:

T = a
n

i=1
 Ti =

1

2
 a
n

i=1
 mix

 #
i
2
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576 CHAPTER 6 MULTIDEGREE-OF-FREEDOM SYSTEMS

It can be seen that the potential energy is a quadratic function of the displacements, and

the kinetic energy is a quadratic function of the velocities. Hence they are said to be in qua-

dratic form. Since kinetic energy, by definition, cannot be negative and vanishes only when

all the velocities vanish, Eqs. (6.34) and (6.36) are called positive definite quadratic forms

and the mass matrix [m] is called a positive definite matrix. On the other hand, the potential

energy expression, Eq. (6.30), is a positive definite quadratic form, but the matrix [k] is pos-

itive definite only if the system is a stable one. There are systems for which the potential

energy is zero without the displacements or coordinates being zero. In these

cases the potential energy will be a positive quadratic function rather than positive definite;

correspondingly, the matrix [k] is said to be positive. A system for which [k] is positive and

[m] is positive definite is called a semidefinite system (see Section 6.12).

6.6 Generalized Coordinates and Generalized Forces

The equations of motion of a vibrating system can be formulated in a number of different

coordinate systems. As stated earlier, n independent coordinates are necessary to describe the

motion of a system having n degrees of freedom. Any set of n independent coordinates is

called generalized coordinates, usually designated by The generalized coordi-

nates may be lengths, angles, or any other set of numbers that define the configuration of the

system at any time uniquely. They are also independent of the conditions of constraint.

To illustrate the concept of generalized coordinates, consider the triple pendulum

shown in Fig. 6.10. The configuration of the system can be specified by the six coordinates

q1, q2, * , qn.

x1, x2, * , xn

x
1

x
2

x
3

y
1

y
2

y
3

l
1

l
2

l
3

m
1

m
2

m
3

x

y

O

u
1

u
2

u
3

FIGURE 6.10 Triple pendulum.
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However, these coordinates are not independent but are constrained

by the relations

(6.39)

Since the coordinates are not independent, they cannot be called gener-

alized coordinates. Without the constraints of Eq. (6.39), each of the masses and 

will be free to occupy any position in the x, y-plane. The constraints eliminate three degrees

of freedom from the six coordinates (two for each mass), and the system thus has only three

degrees of freedom. If the angular displacements are used to specify the

locations of the masses at any time, there will be no constraints on Thus

they form a set of generalized coordinates and are denoted as 

When external forces act on the system, its configuration changes. The new configu-

ration of the system can be obtained by changing the generalized coordinates by

where n denotes the number of generalized coordinates (or degrees

of freedom) of the system. If denotes the work done in changing the generalized coordi-

nate by the amount the corresponding generalized force can be defined as

(6.40)

where will be a force (moment) when is a linear (angular) displacement.

6.7 Using Lagrange s Equations to Derive Equations of Motion
The equations of motion of a vibrating system can often be derived in a simple manner in

terms of generalized coordinates by the use of Lagrange s equations [6.3]. Lagrange s

equations can be stated, for an n-degree-of-freedom system, as

(6.41)

where is the generalized velocity and is the nonconservative generalized

force corresponding to the generalized coordinate The forces represented by may

be dissipative (damping) forces or other external forces that are not derivable from a poten-

tial function. For example, if and represent the external forces acting on the

kth mass of the system in the x, y, and z directions, respectively, then the generalized force

can be computed as follows:

(6.42)Qj
(n)

= a
k

 +Fxk 

0xk

0qj
+ Fyk 

0yk

0qj
+ Fzk 

0zk

0qj
*

Qj
(n)

FzkFxk, Fyk,

Qj
(n)qj.

Qj
(n)q

#

j = 0qj/0t

d

dt
 +
0T

0q
#

j
* -

0T

0qj
+

0V

0qj
= Qj

(n), j = 1, 2, Á , n

qjQj

Qj =

Uj

dqj
, j = 1, 2, Á , n

Qjdqj,qj

Uj

dqj, j = 1, 2, Á , n,
qj

qj = uj, j = 1, 2, 3.

uj.mj 
( j = 1, 2, 3)

uj 
( j = 1, 2, 3)

m3m1, m2,

(xj, yj), j = 1, 2, 3

 (x3 - x2)2
+ (y3 - y2)2

= l3
2

 (x2 - x1)
2
+ (y2 - y1)

2
= l2

2

 x1
2
+ y1

2
= l1

2

(xj, yj), j = 1, 2, 3.
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where and are the displacements of the kth mass in the x, y, and z directions,

respectively. Note that for a torsional system, the force for example, is to be replaced by

the moment acting about the x-axis and the displacement by the angular displace-

ment about the x-axis in Eq. (6.42). For a conservative system, so Eq. (6.41)

takes the form

(6.43)

Equations (6.41) or (6.43) represent a system of n differential equations, one correspond-

ing to each of the n generalized coordinates. Thus the equations of motion of the vibrating

system can be derived, provided the energy expressions are available.

d

dt
 +
0T

0q
#

j
* -

0T

0qj
+

0V

0qj
= 0,  j = 1, 2, Á , n

Qj
(n)

= 0,(uxk)
xk(Mxk),

Fxk,
zkxk, yk,

EXAMPLE 6.8
Equations of Motion of a Torsional System

The arrangement of the compressor, turbine, and generator in a thermal power plant is shown in

Fig. 6.11. This arrangement can be considered as a torsional system where denote the mass

moments of inertia of the three components (compressor, turbine, and generator), indicate the

external moments acting on the components, and represent the torsional spring constants of the

shaft between the components, as indicated in Fig. 6.11. Derive the equations of motion of the system

using Lagrange s equations by treating the angular displacements of the components as generalized

coordinates.

Solution: Here and and the kinetic energy of the system is given by

(E.1)

For the shaft, the potential energy is equal to the work done by the shaft as it returns from the

dynamic configuration to the reference equilibrium position. Thus if denotes the angular displace-

ment, for a shaft having a torsional spring constant the potential energy is equal to the work done

in causing an angular displacement of the shaft:

(E.2)V =

L

u

0
(ktu) du =

1

2
 ktu

2

u

kt,
u

T =
1

2
 J1 u

 #

1
2
+

1

2
 J2 u

 #

2
2
+

1

2
 J3 u

 #

3
2

q3 = u3,q1 = u1, q2 = u2,

ui

kti

Mti

Ji

kt1 kt2 kt3

Mt1
u1

Mt3
u3

Mt2
u2

Compressor (J1) Turbine (J2) Generator (J3)

FIGURE 6.11 Torsional system.
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Thus the total potential energy of the system can be expressed as

(E.3)

There are external moments applied to the components, so Eq. (6.42) gives

(E.4)

from which we can obtain

(E.5)

Substituting Eqs. (E.1), (E.3), and (E.5) in Lagrange s equations, Eq. (6.41), we obtain for 

the equations of motion

(E.6)

which can be expressed in matrix form as

(E.7)

*

 C

J1 0 0

0 J2 0

0 0 J3

S c

u

$

1
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 J3u
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 J2u
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 J1u
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1 + (kt1 + kt2)u1 - kt2u2 = Mt1
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 Q3
(n)
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0u1

0u3
+ Mt2 

0u2

0u3
+ Mt3 

0u3

0u3
= Mt3

 Q2
(n)

= Mt1 

0u1

0u2
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0u2
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+ Mt3 

0u3

0u2
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 Q1
(n)
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0u2
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+ Mt3 

0u3
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Qj
(n)

= a
3

k=1
 Mtk 

0uk

0qj
= a

3

k=1
 Mtk 

0uk

0uj

V =
1

2
 kt1u1

2
+

1

2
 kt2(u2 - u1)

2
+

1

2
 kt3(u3 - u2)2

E X A M P L E  6 . 9
Lagrange s Equations

Derive the equations of motion of the trailer compound pendulum system shown in Fig. 6.4(a).

Solution: The coordinates x(t) and can be used as generalized coordinates to describe,

respectively, the linear displacement of the trailer and the angular displacement of the compound

pendulum. If a y-coordinate is introduced, for convenience, as shown in Fig. 6.4(a), the displacement

components of point C can be expressed as

(E.1)

(E.2) yC =
l

2
 cos u

 xC = x +
l

2
 sin u

u(t)
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Differentiation of Eqs. (E.1) and (E.2) with respect to time gives the velocities of point C as

(E.3)

(E.4)

The kinetic energy of the system, T, can be expressed as

(E.5)

where Using Eqs. (E.3) and (E.4), Eq. (E.5) can be rewritten as

(E.6)

The potential energy of the system, V, due to the strain energy of the springs and the gravitational

potential, can be expressed as

(E.7)

where the lowest position of point C is taken as the datum. Since there are nonconservative forces

acting on the system, the generalized forces corresponding to x(t) and are to be computed. The

force, X(t), acting in the direction of x(t) can be found from Eq. (6.42) as

(E.8)

where the negative sign for the terms and indicates that the damping forces oppose the

motion. Similarly, the force acting in the direction of can be determined as

(E.9)

where and By differentiating the expressions of T and V as required by Eqs. (6.41)

and substituting the resulting expressions, along with Eqs. (E.8) and (E.9), we obtain the equations of

motion of the system as
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1

2
 JCu

 #2

y
#
C = -  

l

2
 u
 #
 sin u

x 
#
C = x 

#
+

l

2
 u
 #
 cos u
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6.8 EQUATIONS OF MOTION OF UNDAMPED SYSTEMS IN MATRIX FORM 581

Equations (E.10) and (E.11) can be seen to be identical to those obtained using Newton s second law

of motion (Eqs. (E.1) and (E.2) in Example 6.2).

*

6.8 Equations of Motion of Undamped Systems in Matrix Form
We can derive the equations of motion of a multidegree-of-freedom system in matrix form

from Lagrange s equations.2

(6.44)

where is the nonconservative generalized force corresponding to the ith generalized

coordinate and is the time derivative of (generalized velocity). The kinetic and

potential energies of a multidegree-of-freedom system can be expressed in matrix form as

indicated in Section 6.5:

(6.45)

(6.46)

where is the column vector of the generalized coordinates

(6.47)

From the theory of matrices, we obtain, by taking note of the symmetry of [m],

(6.48)

where is the Kronecker delta ( if if ), is the column vector

of Kronecker deltas whose elements in the rows for which are equal to zero andj Z i
d

!
j Z ij = i and = 0dji = 1dji

 = m
:

i
T

 x
#
:

,  i = 1, 2, Á , n

 
0T

0x 
#
i

=
1

2
 d

!
 
T[m]x

#
:

+
1

2
 x
#
:T[m]d

!
= d

!
 
T[m]x

#
:

x
!
= f

x1

x2

xn

v

x
:

V =
1

2
 x
:

 
T[k] x

:

T =
1

2
 x
#
:T[m]x

#
:

xix
#
ixi

Fi

d

dt
 ¢
0T

0x 
#
i

-
0T

0xi
+

0V

0xi
= Fi,  i = 1, 2, Á n

2The generalized coordinates are denoted as instead of and the generalized forces as instead of in

Eq. (6.44).

Qi
 (n)Fiqixi
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582 CHAPTER 6 MULTIDEGREE-OF-FREEDOM SYSTEMS

whose element in the row is equal to 1, and is a row vector which is identical to

the ith row of the matrix [m]. All the relations represented by Eq. (6.48) can be expressed as

(6.49)

Differentiation of Eq. (6.49) with respect to time gives

(6.50)

since the mass matrix is not a function of time. Further, the kinetic energy is a function of

only the velocities and so

(6.51)

Similarly, we can differentiate Eq. (6.46), taking note of the symmetry of [k],

(6.52)

where is a row vector identical to the ith row of the matrix [k]. By substituting Eqs.

(6.50) to (6.52) into Eq. (6.44), we obtain the desired equations of motion in matrix form

(6.53)

where

(6.54)

Note that if the system is conservative, there are no nonconservative forces so the

equations of motion become

(6.55)

Note also that if the generalized coordinates are same as the actual (physical) dis-

placements, the mass matrix [m] is a diagonal matrix.

xi

[m]x
$
:

+ [k] x
:

= 0
!

Fi,

F
!
= f

F1

F2

Fn

v

[m]x
$
:

+ [k] x
:

= F
!

k
!

i
T

 = k
!

i
T x:,  i = 1, 2, Á , n

 
0V

0xi
=

1

2
 d

!
 
T[k] x

:

+
1

2
 x
:

 

T[k]d
!
= d

!
 
T[k] x

:

0T

0xi
= 0,  i = 1, 2, Á , n

x 
#
i,

d

dt
 ¢

0T

0x 
#
i

= m
:

i
T

 x
$
:

,  i = 1, 2, Á , n

0T

0x 
#
i
= m
:

i
T

 x
#
:

m
:

i
Ti = j
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6.9 EIGENVALUE PROBLEM 583

6.9 Eigenvalue Problem
The solution of Eq. (6.55) corresponds to the undamped free vibration of the system. In

this case, if the system is given some energy in the form of initial displacements or initial

velocities or both, it vibrates indefinitely, because there is no dissipation of energy. We can

find the solution of Eq. (6.55) by assuming a solution of the form

(6.56)

where is a constant and T is a function of time t. Equation (6.56) shows that the ampli-

tude ratio of two coordinates

is independent of time. Physically, this means that all coordinates have synchronous

motions. The configuration of the system does not change its shape during motion, but its

amplitude does. The configuration of the system, given by the vector

is known as the mode shape of the system. Substituting Eq. (6.56) into Eq. (6.55), we

obtain

(6.57)

Equation (6.57) can be written in scalar form as n separate equations

(6.58)

from which we can obtain the relations

(6.59)-  

T
$

(t)

T(t)
=

¢a
n

j=1
 kijXj

¢a
n

j=1
 mijXj

, i = 1, 2, Á , n

¢a
n

j=1
 mijXj  T

$
(t) + ¢a

n

j=1
 kijXj T(t) = 0, i = 1, 2, Á , n

[m]X
!

T
$

(t) + [k]X
!

T(t) = 0
!

X
!

= f

X1

X2

*

*

*

Xn

v

b
xi(t)

xj(t)
r

Xi

xi(t) = XiT(t),  i = 1, 2, Á , n
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584 CHAPTER 6 MULTIDEGREE-OF-FREEDOM SYSTEMS

Since the left side of Eq. (6.59) is independent of the index i, and the right side is independent

of t, both sides must be equal to a constant. By assuming this constant3 as we can write

Eq. (6.59) as

(6.60)

or

(6.61)

The solution of Eq. (6.60) can be expressed as

(6.62)

where and are constants, known as the amplitude and the phase angle, respectively.

Equation (6.62) shows that all the coordinates can perform a harmonic motion with the

same frequency and the same phase angle However, the frequency cannot take any

arbitrary value; it has to satisfy Eq. (6.61). Since Eq. (6.61) represents a set of n linear

homogeneous equations in the unknowns the trivial solution is

For a nontrivial solution of Eq. (6.61), the determinant of the

coefficient matrix must be zero. That is,

(6.63)

Equation (6.61) represents what is known as the eigenvalue or characteristic value problem,

Eq. (6.63) is called the characteristic equation, is known as the eigenvalue or the

characteristic value, and is called the natural frequency of the system.

The expansion of Eq. (6.63) leads to an nth-order polynomial equation in The solu-

tion (roots) of this polynomial or characteristic equation gives n values of It can be

shown that all the n roots are real and positive when the matrices [k] and [m] are symmetric

and positive definite [6.4], as in the present case. If denote the n roots in

ascending order of magnitude, their positive square roots give the n natural frequencies of

the system The lowest value is called the fundamental or first

natural frequency. In general, all the natural frequencies are distinct, although in some

cases two natural frequencies might possess the same value.

vi

(v1)v1 v2
Á vn.

v1
2, v2

2, Á , vn
2

v2.
v2.

v

v2

¢ = kij - v2mij = [k] - v2[m] = 0

¢X1 = X2 = Á = Xn = 0.
Xi(i = 1, 2, Á , n),

vf.v

fC1

T(t) = C1 cos (vt + f)

C[k] - v2[m] DX
!
= 0

!

 a
n

j=1

 (kij - v2mij)Xj = 0,  i = 1, 2, Á , n

 T
$

(t) + v2T(t) = 0

v2,

3The constant is assumed to be a positive number, so as to obtain a harmonic solution to the resulting Eq. (6.60).

Otherwise, the solution of T(t) and hence that of x(t) become exponential, which violates the physical limitations of

finite total energy.

v2,
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6.10 SOLUTION OF THE EIGENVALUE PROBLEM 585

6.10 Solution of the Eigenvalue Problem
Several methods are available to solve an eigenvalue problem. We shall consider an ele-

mentary method in this section.

6.10.1
Solution of the
Characteristic
(Polynomial)
Equation

Equation (6.61) can also be expressed as

(6.64)

where

(6.65)

By premultiplying Eq. (6.64) by we obtain

or

(6.66)

where [I] is the identity matrix and

(6.67)

is called the dynamical matrix. The eigenvalue problem of Eq. (6.66) is known as the

standard eigenvalue problem. For a nontrivial solution of the characteristic determinant

must be zero that is,4

(6.68)

On expansion, Eq. (6.68) gives an nth-degree polynomial in known as the

characteristic or frequency equation. If the degree of freedom of the system (n) is large,

the solution of this polynomial equation becomes quite tedious. We must use some

numerical method, several of which are available to find the roots of a polynomial

equation [6.5].

l,

¢ = l[I] - [D] = 0

X
!
,

[D] = [k] 
-

 
1[m]

l[I] X
!
= [D] X

!

Cl[I] - [D] D  X
!
= 0

!

[k] 
-

 
1,

l =
1

v
2

Cl[k] - [m] D  X
!
= 0

!

4By premultiplying Eq. (6.61) by the characteristic determinantal equation can be expressed as

¢ = v
2[I] - [m]-1[k] = 0.

[m]-1,
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586 CHAPTER 6 MULTIDEGREE-OF-FREEDOM SYSTEMS

E X A M P L E  6 . 1 0
Equations of Motion of a Three-Degree-of-Freedom System

State the free-vibration equations of motion of the system shown in Fig. 6.12.

Solution: By setting along with and for in Fig. 6.3(a),

the equations of motion of the system shown in Fig. 6.12, for forced vibration, can be obtained from Eq.

(6.3) as

(E.1)

where

(E.2)

By setting the free-vibration equations can be obtained as

(E.3)[m]x
$
+ [k]x = 0

F
!
= 0

!
,

[m] = C

m1 0 0

0 m2 0

0 0 m3

S ,         [k] = C

k1 + k2 -k2 0

-k2 k2 + k3 -k3

0 -k3 k3

S ,         F = c

F1(t)

F2(t)

F3(t)

s

[m]x
$
+ [k]x = F

i = 1, 2, Á , n, n + 1ci = 0kn+1 = 0n = 3

F
1
(t)

x
1

F
2
(t)

x
2

F
3
(t)

x
3

k
1

m
1

k
2

m
2

k
3

m
3

FIGURE 6.12 A three-degree-of-freedom spring-mass system.

*

E X A M P L E  6 . 1 1
Natural Frequencies of a Three-Degree-of-Freedom System

Find the natural frequencies and mode shapes of the system shown in Fig. 6.12 for 

and 

Solution: The dynamical matrix is given by

(E.1)[D] = [k] 
-

 
1[m] K [a][m]

m1 = m2 = m3 = m.

k1 = k2 = k3 = k
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6.10 SOLUTION OF THE EIGENVALUE PROBLEM 587

where the elements of the flexibility matrix can be obtained by setting in Eqs.

(E.8) and (E.12) of Example 6.5 and the mass matrix can be obtained by setting 

in the [m] shown in Eq. (E.2) of Examples 6.10 so that: 

(E.2)

and

(E.3)

Thus

(E.4)

By setting the characteristic determinant equal to zero, we obtain the frequency equation

(E.5)

where

(E.6)

By dividing throughout by Eq. (E.5) gives

(E.7)

where

(E.8)a =
m

kl
=

mv2

k

3

1 - a -  a -  a

-  a 1 - 2a -  2a

-  a -  2a 1 - 3a

3 = a
3 - 5a2 + 6a - 1 = 0

l,

l =
1

v
2

¢ = l[I] - [D] = 3 C

l 0 0

0 l 0

0 0 l

S -
m

k
 C

1 1 1

1 2 2

1 2 3

S 3 = 0

[D] = [k]-1[m] =
m

k
 C

1 1 1

1 2 2

1 2 3

S

[m] = mC

1 0 0

0 1 0

0 0 1

S

[a] = [k]-1 =  

1

k
 C

1 1 1

1 2 2

1 2 3

S

mi = m, i = 1, 2, 3

ki = k, i = 1, 2, 3
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588 CHAPTER 6 MULTIDEGREE-OF-FREEDOM SYSTEMS

The roots of the cubic equation (E.7) are given by

(E.9)

(E.10)

(E.11)

Once the natural frequencies are known, the mode shapes or eigenvectors can be calculated using

Eq. (6.66):

(E.12)

where

denotes the ith mode shape. The procedure is outlined below.

First Mode: By substituting the value of in Eq. (E.12), we obtain

That is,

(E.13)

Equation (E.13) denotes a system of three homogeneous linear equations in the three unknowns

and Any two of these unknowns can be expressed in terms of the remaining one. If

we choose, arbitrarily, to express and in terms of we obtain from the first two rows of

Eq. (E.13)

(E.14)

Once Eqs. (E.14) are satisfied, the third row of Eq. (E.13) is satisfied automatically. The solution of

Eqs. (E.14) can be obtained:

(E.15)X2
(1)

= 1.8019X1
(1) and X3

(1)
= 2.2470X1

(1)

 3.0489X2
(1)

- 2.0 X3
(1)

= X1
(1)

 X2
(1)

+ X3
(1)

= 4.0489X1
(1)

X1
(1),X3

(1)X2
(1)

X3
(1).X1

(1), X2
(1),

C

 4.0489 -1.0 -1.0

-1.0  3.0489 -2.0

-1.0 -2.0  2.0489

S c

X1
(1)

X2
(1)

X3
(1)

s = c

0

0

0

s

C 5.0489 

m

k
 C

1 0 0

0 1 0

0 0 1

S -
m

k
 C

1 1 1

1 2 2

1 2 3

S S c

X1
(1)

X2
(1)

X3
(1)

s = c

0

0

0

s

A i.e., l1 = 5.0489 
m
k Bv1

X
!
(i)

= c

X1
(i)

X2
(i)

X3
(i)

s

[li[I] - [D]] X
!
(i)

= 0
!
,  i = 1, 2, 3

 a3 =
mv3

2

k
= 3.2490,  v3 = 1.8025 

A
k

m

 a2 =
mv2

2

k
= 1.5553,  v2 = 1.2471 

A
k

m

 a1 =
mv1

2

k
= 0.19806,  v1 = 0.44504 

A
k

m
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Thus the first mode shape is given by

(E.16)

where the value of can be chosen arbitrarily.

Second Mode: The substitution of the value of in Eq. (E.12) leads to

that is,

(E.17)

As before, the first two rows of Eq. (E.17) can be used to obtain

(E.18)

The solution of Eqs. (E.18) leads to

(E.19)

Thus the second mode shape can be expressed as

(E.20)

where the value of can be chosen arbitrarily.

Third Mode: To find the third mode, we substitute the value of in Eq. (E.12)

and obtain

that is,

(E.21)C

-0.6922 -1.0 -1.0

-1.0 -1.6922 -2.0

-1.0 -2.0 -2.6922

S c

X1
(3)

X2
(3)

X3
(3)

s = c

0

0

0

s

C0.3078 

m

k
 C

1 0 0

0 1 0

0 0 1

S -
m

k
 C

1 1 1

1 2 2

1 2 3

S S c

X1
(3)

X2
(3)

X3
(3)

s = c

0

0

0

s

v3 A i.e., l3 = 0.3078 
m
k B

X1
(2)

X
!
(2)

= X1
(2)

c

1.0

0.4450

-  0.8020

s

X2
(2)

= 0.4450X1
(2) and X3

(2)
= -

 0.8020X1
(2)

 - 1.3570X2
(2)

- 2.0X3
(2)

= X1
(2)

 -X2
(2)

- X3
(2)

= 0.3570X1
(2)

C

-0.3570 -1.0 -1.0

-1.0 -1.3570 -2.0

-1.0 -2.0 -2.3570

S c

X1
(2)

X2
(2)

X3
(2)

s = c

0

0

0

s

C0.6430 

m

k
 C

1 0 0

0 1 0

0 0 1

S -
m

k
 C

1 1 1

1 2 2

1 2 3

S S c

X1
(2)

X2
(2)

X3
(2)

s = c

0

0

0

s

v2 A i.e., l2 = 0.6430 
m
k B

X1
(1)

X
!
(1)

= X1
(1)

c

1.0

1.8019

2.2470

s
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The first two rows of Eq. (E.21) can be written as

(E.22)

Equations (E.22) give

(E.23)

Hence the third mode shape can be written as

(E.24)

where the value of is arbitrary. The values of and are usually taken as 1, and the

mode shapes are shown in Fig. 6.13.

X1
(3)X1

(1), X1
(2),X1

(3)

X
!
(3)

= X1
(3)

c

1.0

-1.2468

0.5544

s

X2
(3)

= -1.2468X1
(3) and X3

(3)
= 0.5544X1

(3)

 -1.6922X2
(3)

- 2.0X3
(3)

= X1
(3)

 -X2
(3)

- X3
(3)

= 0.6922X1
(3)

First mode

Second mode

X
1
(3)

X
3
(3)

X
1
(2)

X
3
(2)

Third mode

X2
(2)

X
1
(1)

X
3
(1)

X
2
(1)

X
2
(3)

FIGURE 6.13 Mode shapes of three-

degree-of-freedom system.
*
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6.10.2
Orthogonality of
Normal Modes

In the previous section we considered a method of finding the n natural frequencies and

the corresponding normal modes or modal vectors We shall now see an important

property of the normal modes orthogonality.5 The natural frequency and the corre-

sponding modal vector satisfy Eq. (6.61) so that

(6.69)

If we consider another natural frequency and the corresponding modal vector they

also satisfy Eq. (6.61) so that

(6.70)

By premultiplying Eqs. (6.69) and (6.70) by and , respectively, we obtain, by

considering the symmetry of the matrices [k] and [m],

(6.71)

(6.72)

By subtracting Eq. (6.72) from Eq. (6.71), we obtain

(6.73)

In general, so Eq. (6.73) leads to6

(6.74)

From Eqs. (6.71) and (6.72), we obtain, in view of Eq. (6.74),

(6.75)

Equations (6.74) and (6.75) indicate that the modal vectors and are orthogonal

with respect to both mass and stiffness matrices.

X
!
(j)X

!
(i)

X
!
(j)T[k]X

!
(i)

= 0,  i Z j

X
!
(j)T[m]X

!
(i)

= 0,  i Z j

vi
2
Z vj

2,

(vi
2
- vj

2) X
!
(j)T[m]X

!
(i)

= 0

 vj
2 X

!
(i)T[m]X

!
(j)

K vj
2X
!
(j)T[m]X

!
(i)

= X
!
(i)T[k]X

!
(j)

 vi
2 X

!
(j)T[m]X

!
(i)

= X
!
(j)T[k]X

!
(i)

K X
!
(i)T[k]X

!
(j)

X
!
(i)T

X
!
(j)T

vj
2[m]X

!
(j)

= [k]X
!
(j)

X
!
(j),vj

vi
2[m]X

!
(i)

= [k]X
!
(i)

X
!
(i)

vi

X
!
(i).

vi

5Two vectors and are said to be orthogonal (perpendicular to one another if the vectors are defined in

two- or three-dimensional space) if the following relation is satisfied:

A vector is said to be normal if its magnitude is unity that is,

Thus the vectors and are said to be orthonormal if they satisfy the orthogonality and normality relations:

6In the case of repeated eigenvalues, the associated modal vectors are orthogonal to all the remaining

modal vectors but are not usually orthogonal to each other.

vi = vj,

X
!
(i)T

 X
!
(j)

= 0,  X
!
(i) 2

= X
!
(i)T

 X
!
(i)

= 1,  X
!
(j) 2

= X
!
(j)T

 X
!
(j)

= 1

X
!
(j)X

!
(i)

X
!
(i) 2

= X
!
(i)T

 X
!
(i)

= 1

X
!
(i)

X
!
(i)T

 X
!
(j)

= 0

X
!
(j)X

!
(i)
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592 CHAPTER 6 MULTIDEGREE-OF-FREEDOM SYSTEMS

When the left sides of Eqs. (6.74) and (6.75) are not equal to zero, but they do

yield the generalized mass and stiffness coefficients of the ith mode:

(6.76)

(6.77)

Equations (6.76) and (6.77) can be written in matrix form as

(6.78)

(6.79)

where [X] is called the modal matrix, in which the i th column corresponds to the i th modal

vector:

(6.80)

In many cases, we normalize the modal vectors such that is,

(6.81)

In this case the matrix reduces to

(6.82)

Note: If an eigenvector satisfies Eq. (6.81), it is said to be orthonormal with respect to

the mass matrix [m].

X
!
(i)

C

aKR D = C

a
vi

2
R D = D

v1
2 0

v2
2

0 vn
2

T

C

aKR D

X
!
(i)T[m]X

!
(i) = 1,  i = 1, 2, Á , n

C

aMR D = [I] thatX
!
(i)

[X] = [X
!
(1)X

!
(2) Á X

!
(n)]

 CaKR D = D

K11 0

K22

0 Knn

T = [X]T[k][X]

 CaMR D = D

M11 0

M22

0 Mnn

T = [X]T[m][X]

 Kii = X
!
(i)T[k]X

!
(i),  i = 1, 2, Á , n

 Mii = X
!
(i)T[m]X

!
(i),  i = 1, 2, Á , n

i = j,

E X A M P L E  6 . 1 2
Orthonormalization of Eigenvectors

Orthonormalize the eigenvectors of Example 6.11 with respect to the mass matrix.

Solution:

Approach: Multiply each eigenvector by a constant and find its value from the relation

i = 1, 2, 3.X
!
(i)T

[m]X
!
(i) = 1,
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The eigenvectors of Example 6.11 are given by

The mass matrix is given by

The eigenvector is said to be [m]-orthonormal if the following condition is satisfied:

(E.1)

Thus for Eq. (E.1) leads to

or

Similarly, for and Eq. (E.1) gives

and

*

m(X1
(3)

)2(1.02
+ 5-

 1.246862
+ 0.55442) = 1 or X1

(3)
=

0.5911

2m

m(X1
(2)

)2(1.02
+ 0.44502

+ 5-
 0.802062) = 1 or X1

(2)
=

0.7370

2m

i = 3,i = 2

X1
(1)

=
1

2m(9.2959)
=

0.3280

2m

m(X1
(1)

)2(1.02
+ 1.80192

+ 2.24702) = 1

i = 1,

X
!
(i)T[m]X

!
(i)

= 1

X
!
(i)

[m] = mC

1 0 0

0 1 0

0 0 1

S

X
!
(3) = X1

(3)
c

1.0

-1.2468

0.5544

s

X
!
(2) = X1

(2)
c

1.0

0.4450

-0.8020

s

X
!
(1) = X1

(1)
c

 1.0

 1.8019

 2.2470

s
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6.10.3
Repeated
Eigenvalues

When the characteristic equation possesses repeated roots, the corresponding mode shapes

are not unique. To see this, let and be the mode shapes corresponding to the

repeated eigenvalue and let be the mode shape corresponding to a dif-

ferent eigenvalue Equation (6.66) can be written as

(6.83)

(6.84)

(6.85)

By multiplying Eq. (6.83) by a constant p and adding to Eq. (6.84), we obtain

(6.86)

This shows that the new mode shape, which is a linear combination of

the first two, also satisfies Eq. (6.66), so the mode shape corresponding to is not unique.

Any corresponding to must be orthogonal to if it is to be a normal mode. If all

three modes are orthogonal, they will be linearly independent and can be used to describe

the free vibration resulting from any initial conditions.

The response of a multidegree-of-freedom system with repeated natural frequencies to

force and displacement excitation was presented by Mahalingam and Bishop [6.16].

X
!
(3)

lX
! l

(pX
!
(1)

+ X
!
(2)),

[D](pX
!
(1)

+ X
!
(2)) = l(pX

!
(1)

+ X
!
(2))

 [D]X
!
(3)

= l3X
!
(3)

 [D]X
!
(2)

= lX
!
(2)

 [D]X
!
(1)

= lX
!
(1)

l3.
X
!
(3)

l1 = l2 = l

X
!
(2)X

!
(1)

E X A M P L E  6 . 1 3
Repeated Eigenvalues

Determine the eigenvalues and eigenvectors of a vibrating system for which

Solution: The eigenvalue equation can be written in the form

(E.1)

where The characteristic equation gives

so

(E.2)l1 = 0,         l2 = 0,         l3 = 4

[k] - l[m] = l
2(l - 4) = 0

l = v
2.

C

(1 - l) -2 1

-2 2(2 - l) -2

1  -2 (1 - l)

S c

X1

X2

X3

s = c

0

0

0

s

[[k] - l[m]]X
!
= 0

!

[m] = C

1 0 0

0 2 0

0 0 1

S and [k] = C

1  -2 1

-2 4  -2

1  -2 1

S
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6.10 SOLUTION OF THE EIGENVALUE PROBLEM 595

Eigenvector for Using Eq. (E.1) gives

(E.3)

If is set equal to 1, Eqs. (E.3) give the eigenvector :

(E.4)

Eigenvector for The value or indicates that the system is degenerate

(see Section 6.12). Using in Eq. (E.1), we obtain

(E.5)

All these equations are of the form

Thus the eigenvector corresponding to can be written as

(E.6)

If we choose and we obtain

(E.7)

If we select and Eq. (E.6) gives

(E.8)X
!
(1)

= c

3

1

-1

s

X3
(1)

= -1,X2
(1)

= 1

X
!
(1)

= c

1

1

1

s

X3
(1)

= 1,X2
(1)

= 1

X
!
(1)

= c

2X2
(1)

- X3
(1)

X2
(1)

X3
(1)

s

l1 = l2 = 0

X1
(1)

= 2X2
(1)

- X3
(1)

 X1
(1)

- 2X2
(1)

+ X3
(1)

= 0

 -2X1
(1)

+ 4X2
(1)

- 2X3
(1)

= 0

 X1
(1)

- 2X2
(1)

+ X3
(1)

= 0

l1 = 0

l2 = 0l1 = 0l1 = l2 = 0: 

X
!
(3)

= c

1

-1

1

s

X
!
(3)X1

(3)

 X1
(3)

- 2X2
(3)

- 3X3
(3)

= 0

 -2X1
(3)

- 4X2
(3)

- 2X3
(3)

= 0

 -3X1
(3)

- 2X2
(3)

+ X3
(3)

= 0

l3 = 4,l3 = 4: 
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As shown earlier in Eq. (6.86), and are not unique: Any linear combination of and

will also satisfy the original Eq. (E.1). Note that given by Eq. (E.6) is orthogonal to of

Eq. (E.4) for all values of and since

*

6.11 Expansion Theorem
The eigenvectors, due to their property of orthogonality, are linearly independent.7 Hence

they form a basis in the n-dimensional space.8 This means that any vector in the n-dimen-

sional space can be expressed by a linear combination of the n linearly independent vectors.

If is an arbitrary vector in n-dimensional space, it can be expressed as

(6.87)

where are constants. By premultiplying Eq. (6.87) throughout by the value of

the constant can be determined as

(6.88)

where is the generalized mass in the ith normal mode. If the modal vectors are

normalized according to Eq. (6.81), is given by

(6.89)

Equation (6.89) represents what is known as the expansion theorem [6.6]. It is very useful

in finding the response of multidegree-of-freedom systems subjected to arbitrary forcing

conditions according to a procedure called modal analysis.

6.12 Unrestrained Systems
As stated in Section 5.7, an unrestrained system is one that has no restraints or supports

and that can move as a rigid body. It is not uncommon to see, in practice, systems that are

not attached to any stationary frame. A common example is the motion of two railway cars

ci = X
!
(i)T[m] x

:

,  i = 1, 2, Á , n

ci

X
!
(i)Mii

ci =
X
!
(i)T[m] x:

X
!
(i)T[m] X

!
(i)

=

X
!
(i)T[m] x:

Mii
,  i = 1, 2, Á , n

ci

X
!
(i)T[m],ci

x
:

= a
n

i=1
 ciX

!
(i)

x
:

X
!
(3)T[m]X

!
(1)

= (1   -1    1)C

1 0 0

0 2 0

0 0 1

S c

2X2
(1)

- X3
(1)

X2
(1)

X3
(1)

s = 0

X3
(1),X2

(1)
X
!
(3)X

!
(1)X

!
(2)

X
!
(1)X

!
(2)X

!
(1)

7A set of vectors is called linearly independent if no vector in the set can be obtained by a linear combination of

the remaining ones.
8Any set of n linearly independent vectors in an n-dimensional space is called a basis in that space.
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6.12 UNRESTRAINED SYSTEMS 597

with masses and and a coupling spring k. Such systems are capable of moving as

rigid bodies, which can be considered as modes of oscillation with zero frequency. For a

conservative system, the kinetic and potential energies are given by Eqs. (6.34) and (6.30),

respectively. By definition, the kinetic energy is always positive, so the mass matrix [m] is

a positive definite matrix. However, the stiffness matrix [k] is a semidefinite matrix: V is

zero without the displacement vector being zero for unrestrained systems. To see this,

consider the equation of motion for free vibration in normal coordinates:

(6.90)

For the solution of Eq. (6.90) can be expressed as

(6.91)

where and are constants. Equation (6.91) represents a rigid-body translation. Let the

modal vector of a multidegree-of-freedom system corresponding to the rigid body mode be

denoted by The eigenvalue problem, Eq. (6.64) can be expressed as

(6.92)

With Eq. (6.92) gives

That is,

(6.93)

If the system undergoes rigid-body translation, not all the components 

are zero that is, the vector is not equal to Hence, in order to satisfy Eq. (6.93), the

determinant of [k] must be zero. Thus the stiffness matrix of an unrestrained system (having

zero natural frequency) is singular. If [k] is singular, the potential energy is given by

(6.94)

by virtue of Eq. (6.93). The mode is called a zero mode or rigid-body mode. If we sub-

stitute any vector other than and for in Eq. (6.30), the potential energy Vx
:

0
!

X
!
(0)X

! X
!
(0)

V =
1

2
 X
!
(0)T

[k]X
!
(0)

0
!
.X

!
(0)

i = 1, 2, Á , n,Xi
(0)

,

 kn1X1
(0)

+ kn2X2
(0)

+ Á + knnXn
(0)

= 0

#

#

#
 k21X1

(0)
+ k22X2

(0)
+ Á + k2nXn

(0)
= 0

 k11X1
(0)

+ k12X2
(0)

+ Á + k1nXn
(0)

= 0

[k]X
!
(0)

= 0
!

v = 0,

v2[m]X
!
(0)

= [k]X
!
(0)

X
!
(0).

ba

q(t) = a + bt

v = 0,

q
$
(t) + v2q(t) = 0

x
:

m2m1
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598 CHAPTER 6 MULTIDEGREE-OF-FREEDOM SYSTEMS

becomes a positive quantity. The matrix [k] is then a positive semidefinite matrix. This is

why an unrestrained system is also called a semidefinite system.

Note that a multidegree-of-freedom system can have at most six rigid-body modes

with the corresponding frequencies equal to zero. There can be three modes for rigid-body

translation, one for translation along each of the three Cartesian coordinates, and three

modes for rigid-body rotation, one for rotation about each of the three Cartesian coordi-

nates. We can determine the mode shapes and natural frequencies of a semidefinite system

by the procedures outlined in Section 6.10.

E X A M P L E  6 . 1 4
Natural Frequencies of a Free System

Three freight cars are coupled by two springs, as shown in Fig. 6.14. Find the natural frequencies and

mode shapes of the system for and 

Solution: The kinetic energy of the system can be written as

(E.1)

where

and

(E.2)

The elongations of the springs and are and respectively, so the potential

energy of the system is given by

(E.3)

where

(E.4)[k] = C

k1 -  k1 0

-  k1 k1 + k2 -  k2

0  -  k2 k2

S

V =
1

2
 5k1(x2 - x1)

2
+ k2(x3 - x2)2

6 =
1

2
 x:T[k] x

:

(x3 - x2),(x2 - x1)k2k1

[m] = C

m1 0 0

0 m2 0

0 0 m3

S

x
:

= c

x1

x2

x3

s ,  x
#
:

= c

x  
#

1

x 
#

2

x  
#

3

s

T =
1

2
 (m1x

 #
1
2
+ m2x 

#

2
2
+ m3x

#

3
2) =

1

2
 x
#
:T[m]x

#
:

k1 = k2 = k.m1 = m2 = m3 = m

m
1

m
2

m
3

k
1

k
2

FIGURE 6.14 Semidefinite system.
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6.12 UNRESTRAINED SYSTEMS 599

It can be verified that the stiffness matrix [k] is singular. Furthermore, if we take all the displacement

components to be the same as (rigid-body motion), the potential energy V can be

seen to be equal to zero.

To find the natural frequencies and the mode shapes of the system, we express the eigenvalue

problem as

(E.5)

Since [k] is singular, we cannot find its inverse and the dynamical matrix 

Hence we set the determinant of the coefficient matrix of in Eq. (E.5) equal to zero. For 

and this yields

(E.6)

The expansion of the determinant in Eq. (E.6) leads to

(E.7)

By setting

(E.8)

Eq. (E.7) can be rewritten as

(E.9)

As the roots of Eq. (E.9) are

(E.10)

The first natural frequency can be observed to be zero in Eq. (E.10). To find the mode shapes, we

substitute the values of and into Eq. (E.5) and solve for and respectively.

For Eq. (E.5) gives

(E.11)

By fixing the value of one component of as 1 Eq. (E.11) can be solved to obtain

X2
(1)

= X1
(1)

= 1 and X3
(1)

= X2
(1)

= 1

X
!
(1) say, X1

(1)

 -  kX2
(1)

+ kX3
(1)

= 0

 -  kX1
(1)

+ 2kX2
(1)

- kX3
(1)

= 0

 kX1
(1)

- kX2
(1)

= 0

v1 = 0,

X
!
(3),X

!
(1), X

!
(2),v3v1, v2,

v1

 L3 = v3
2
=

3k

m

 L2 = v2
2
=

k

m

 L1 = v1
2
= 0

m Z 0,

mLaL -
k

m
b aL -

3k

m
b = 0

L = v
2

m3
v

6
- 4m2kv4

+ 3mk2
v

2
= 0

3

(k - v
2m) -  k 0

-  k (2k - v
2m) -  k

0  -  k (k - v
2m)

3 = 0

m1 = m2 = m3 = m,

k1 = k2 = kX
!

[D] = [k] 
-

 
1[m].[k] 

-
 
1

[[k] - v
2[m]]X

!
= 0

!

x1 = x2 = x3 = c
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600 CHAPTER 6 MULTIDEGREE-OF-FREEDOM SYSTEMS

Thus the first (rigid-body) mode corresponding to is given by

(E.12)

Note that the mode shape represents the rigid-body translation of the system (all masses undergo

the same displacement). Although the natural frequency (or the eigenvalue ) is zero, the corre-

sponding mode shape (or eigenvector) is not zero.

For Eq. (E.5) yields

(E.13)

By fixing the value of one component of as 1 Eq. (E.13) can be solved to obtain

Thus the second mode corresponding to is given by

(E.14)

For Eq. (E.5) gives

(E.15)

By fixing the value of one component of as 1 Eq. (E.15) can be solved to obtain

Thus the third mode corresponding to is given by

(E.16)

*

X
!
(3)

= c

1

-2

1

s

v3 = (3k/m)1/2X
!
(3)

X2
(3)

= -
 2X1

(3)
= -2 and X3

(3)
= -  

1

2
 X2

(3)
= 1

X
!
(3) say, X1

(3)

 -  kX2
(3)

- 2kX3
(3)

= 0

 -  kX1
(3)

- kX2
(3)

- kX3
(3)

= 0

 -  2kX1
(3)

- kX2
(3)

= 0

v3 = (3k/m)1/2,

X
!
(2)

= c

1

0

-1

s

v2 = (k/m)1/2X
!
(2)

X2
(2)

= 0 and X3
(2)

= -X1
(2)

= -1

X
!
(2) say, X1

(2)

 -  kX2
(2)

= 0

 -  kX1
(2)

+ kX2
(2)

- kX3
(2)

= 0

 -  kX2
(2)

= 0

v2 = (k/m)1/2,

X
!
(1)

v1
2

v1

X
!
(1)

X
!
(1)

= c

1

1

1

s

v1 = 0X
!
(1)
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6.13 FREE VIBRATION OF UNDAMPED SYSTEMS 601

6.13 Free Vibration of Undamped Systems
The equation of motion for the free vibration of an undamped system can be expressed in

matrix form as

(6.95)

The most general solution of Eq. (6.95) can be expressed as a linear combination of all

possible solutions given by Eqs. (6.56) and (6.62) as

(6.96)

where is the modal vector and is the corresponding natural frequency, and 

and are constants. The constants and can be evaluated from the

specified initial conditions of the system. If

(6.97)

denote the initial displacements and velocities given to the system, Eqs. (6.96) give

(6.98)

(6.99)

Equations (6.98) and (6.99) represent, in scalar form, 2n simultaneous equations which can

be solved to find the n values of and n values of fi (i = 1, 2, Á , n).Ai (i = 1, 2, Á , n)

x

#
:

(0) = -a
n

i=1

 X
!
(i)Aivi sin fi

 x
:

(0) = a
n

i=1

 X
!
(i)Ai cos fi

x
:

(0) = f

x1(0)

x2(0)

xn(0)

v and x
#
:

(0) = f

x 
#
1(0)

x 
#
2(0)

x 
#
n(0)

v

fi (i = 1, 2, Á , n)Aifi

AiviithX
!
(i)

x
:

(t) = a
n

i=1

 X
!
(i)Ai cos(vit + fi)

[m]x

$
:

+ [k] x
:

= 0
!

E X A M P L E  6 . 1 5
Free-Vibration Analysis of a Spring-Mass System

Find the free-vibration response of the spring-mass system shown in Fig. 6.12 corresponding to the

initial conditions Assume that 

and for 

Solution:

Approach: Assume free-vibration response as a sum of natural modes.

i = 1, 2, 3.mi = m

ki = kx 
#
i(0) = 0 (i = 1, 2, 3), x1(0) = x10, x2(0) = x3(0) = 0.
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602 CHAPTER 6 MULTIDEGREE-OF-FREEDOM SYSTEMS

The natural frequencies and mode shapes of the system are given by (see Example 6.11):

where the first component of each mode shape is assumed as unity for simplicity. The application of

the initial conditions, Eqs. (6.98) and (6.99), leads to

(E.1)

(E.2)

(E.3)

(E.4)

(E.5)

(E.6)

The solution of Eqs. (E.1) to (E.6) is given by9

and Thus the free-vibration solution of the system can be expressed as

(E.7) + 0.3493 cos¢1.8025 
A

k

m
  t R

 + 0.5431 cos¢1.2471 
A

k

m
  t

 x1(t) = x10 B0.1076 cos¢0.44504 
A

k

m
  t

f3 = 0.f2 = 0,f1 = 0,

A3 = 0.3493x10,A2 = 0.5431x10,A1 = 0.1076x10,

 -  1.0 
A

k

m
 A1 sin f1 + 1.0 

A
k

m
 A2 sin f2 - 1.0 

A
k

m
 A3 sin f3 = 0

 -  0.80192 
A

k

m
 A1 sin f1 - 0.55496 

A
k

m
 A2 sin f2 + 2.2474 

A
k

m
 A3 sin f3 = 0

 -  0.44504 
A

k

m
 A1 sin f1 - 1.2471 

A
k

m
 A2 sin f2 - 1.8025 

A
k

m
 A3 sin f3 = 0

 2.2470A1 cos f1 - 0.8020A2 cos f2 + 0.5544A3 cos f3 = 0

 1.8019A1 cos f1 + 0.4450A2 cos f2 - 1.2468A3 cos f3 = 0

 A1 cos f1 + A2 cos f2 + A3 cos f3 = x10

 X
!
(1)

= c

1.0

1.8019

2.2470

s ,  X
!
(2)

= c

 1.0

 0.4450

-0.8020

s ,  X
!
(3)

= c

 1.0

-1.2468

 0.5544

s

 v1 = 0.44504 
A

k

m
,  v2 = 1.2471 

A
k

m
,  v3 = 1.8025 

A
k

m

9Note that Eqs. (E.1) to (E.3) can be considered as a system of linear equations in the unknowns 

and while Eqs. (E.4) to (E.6) can be considered as a set of linear equations in the unknowns

A
k

m
 A1 sin f1,  A

k

m
 A2 sin f2,  and 

A
k

m
 A3 sin f3.

A3 cos f3,A2 cos f2,

A1 cos f1,
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(E.8)

(E.9)

*

6.14 Forced Vibration of Undamped Systems Using Modal Analysis
When external forces act on a multidegree-of-freedom system, the system undergoes

forced vibration. For a system with n coordinates or degrees of freedom, the governing

equations of motion are a set of n coupled ordinary differential equations of second order.

The solution of these equations becomes more complex when the degree of freedom of the

system (n) is large and/or when the forcing functions are nonperiodic.10 In such cases, a

more convenient method known as modal analysis can be used to solve the problem. In

this method, the expansion theorem is used, and the displacements of the masses are

expressed as a linear combination of the normal modes of the system. This linear transfor-

mation uncouples the equations of motion so that we obtain a set of n uncoupled differen-

tial equations of second order. The solution of these equations, which is equivalent to the

solution of the equations of n single-degree-of-freedom systems, can be readily obtained.

We shall now consider the procedure of modal analysis.

Modal Analysis. The equations of motion of a multidegree-of-freedom system under

external forces are given by

(6.100)[m]x
$
:

+ [k] x
:

= F
!

 + 0.1937 cos¢1.8025 
A

k

m
  t R

 - 0.4356 cos¢1.2471 
A

k

m
  t

 x3(t) = x10B0.2418 cos¢0.44504 
A

k

m
  t

 - 0.4355 cos¢1.8025 
A

k

m
  t R

 + 0.2417 cos¢1.2471 
A

k

m
  t

 x2(t) = x10 B0.1939 cos¢0.44504 
A

k

m
  t

10The dynamic response of multidegree-of-freedom systems with statistical properties is considered in reference [6.15].
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604 CHAPTER 6 MULTIDEGREE-OF-FREEDOM SYSTEMS

where is the vector of arbitrary external forces. To solve Eq. (6.100) by modal analysis,

it is necessary first to solve the eigenvalue problem.

(6.101)

and find the natural frequencies and the corresponding normal modes

According to the expansion theorem, the solution vector of Eq. (6.100)

can be expressed by a linear combination of the normal modes

(6.102)

where are time-dependent generalized coordinates, also known as

the principal coordinates or modal participation coefficients. By defining a modal matrix [X]

in which the jth column is the vector is,

(6.103)

Eq. (6.102) can be rewritten as

(6.104)

where

(6.105)

Since [X] is not a function of time, we obtain from Eq. (6.104)

(6.106)

Using Eqs. (6.104) and (6.106), we can write Eq. (6.100) as

(6.107)

Premultiplying Eq. (6.107) throughout by we obtain

(6.108)

If the normal modes are normalized according to Eqs. (6.74) and (6.75), we have

(6.109)

(6.110) [X]T[k][X] = [av2R]

 [X]T[m][X] = [I]

[X]T[m][X] q
$
:

+ [X]T[k][X] q
:

= [X]T F
!

[X]T,

[m][X] q
$
:

+ [k][X] q
:

= F
!

x
$
:

(t) = [X] q
$
:

(t)

q
!
(t) = d

q1(t)

q2(t)

o

qn(t)

t

x:(t) = [X] q
:

(t)

[X] = [X
!
(1)X

!
(2) Á  X

!
(n)]

X
!
(j) that

q1(t), q2(t), Á , qn(t)

x
:

(t) = q1(t)X
!
(1) + q2(t)X

!
(2) + Á + qn(t)X

!
(n)

X
!
(1), X

!
(2), Á , X

!
(n).

v1, v2, Á , vn

v
2[m]X

!
= [k]X

!

F
!
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6.14 FORCED VIBRATION OF UNDAMPED SYSTEMS USING MODAL ANALYSIS 605

By defining the vector of generalized forces associated with the generalized coordi-

nates as

(6.111)

Eq. (6.108) can be expressed, using Eqs. (6.109) and (6.110), as

(6.112)

Equation (6.112) denotes a set of n uncoupled differential equations of second order11

(6.113)

It can be seen that Eqs. (6.113) have precisely the form of the differential equation describing

the motion of an undamped single-degree-of-freedom system. The solution of Eqs. (6.113)

can be expressed (see Eq. (4.31)) as

(6.114)

The initial generalized displacements and the initial generalized velocities can be

obtained from the initial values of the physical displacements and physical velocities

as (see Problem 6.94):

(6.115)

(6.116)q
!#
(0) = [X]T[m]x

!#
(0)

q
!
(0) = [X]T[m]x

!
(0)

x
#
i(0)

xi(0)

q
#
i(0)qi(0)

 i = 1, 2, Á , n

 +
1

vi

 
3

t

0

Qi(t) sin vi (t - t)dt,

 qi(t) = qi(0) cos vit + ¢
q 
#
(0)

vi

sin vit

q
$

i(t) + vi
2qi(t) = Qi(t),  i = 1, 2, Á , n

q
$
:

(t) + [av2R] q
:

(t) = Q
!
(t)

Q
!
(t) = [X]T F

!
(t)

q:(t)

Q
!
(t)

11It is possible to approximate the solution vector by only the first modal vectors (instead of n vec-

tors as in Eq. (6.102)):

where

This leads to only r uncoupled differential equations

instead of n equations. The resulting solution will be an approximate solution. This procedure is called the

mode displacement method. An alternate procedure, mode acceleration method, for finding an approximate solu-

tion is indicated in Problem 6.92.

x
!
(t)

q
$

i(t) + vi
2qi(t) = Qi(t),  i = 1, 2, Á , r

[X] = [X
!
(1) X

!
(2) Á  X

!#
(r)] and q

!
(t) = d

q1(t)

q2(t)

o

qr(t)

t

x
!
(t)

n*1
=
 

[X]
n*r

q
!
(t)

r*1

r (r 6 n)x
!
(t)
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where

Once the generalized displacements are found, using Eqs. (6.114) to (6.116), the

physical displacements can be found with the help of Eq. (6.104).xi(t)

qi(t)

 x

#
:

(0) = d

x 
#
1(0)

x 
#
2(0)

o

x 
#
n(0)

t

 x
:

(0) = d

x1(0)

x2(0)

o

xn(0)

t ,

 q

#
:

(0) = d

q 
#
1(0)

q 
#
2(0)

o

q 
#
n(0)

t ,

 q
:

(0) = d

q1(0)

q2(0)

o

qn(0)

t ,

E X A M P L E  6 . 1 6
Free-Vibration Response Using Modal Analysis

Using modal analysis, find the free-vibration response of a two-degree-of-freedom system with equa-

tions of motion

(E.1)

Assume the following data: and

(E.2)

Solution: The natural frequencies and normal modes of the system are given by (see Example 5.3)

 v2 = 2.4495,   X
!
(2)

= b
1

-5
rX1

(2)

 v1 = 1.5811,   X
!
(1)

= b
1

2
rX1

(1)

x
:

(0) = b
x1(0)

x2(0)
r = b

1

0
r ,            x

#
:

(0) = b
x 
#
1(0)

x 
#
2(0)

r = b
0

0
r

m1 = 10, m2 = 1, k1 = 30, k2 = 5, k3 = 0,

B
m1 0

0 m2

R b
x 
$

1

x 
$

2
r + B

 k1 + k2 -  k2

-  k2 k2 + k3

R b
x1

x2
r = F

!
= b

0

0
r
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6.14 FORCED VIBRATION OF UNDAMPED SYSTEMS USING MODAL ANALYSIS 607

where and are arbitrary constants. By orthogonalizing the normal modes with respect to the

mass matrix, we can find the values of and as

or 

or 

Thus the modal matrix becomes

(E.3)

Using

(E.4)

Equation (E.1) can be expressed as (see Eq. (6.112)):

(E.5)

where Equation (E.5) can be written in scalar form as

(E.6)

The solution of Eq. (E.6) is given by (see Eq. 2.18):

(E.7)

where and denote the initial values of and respectively. Using the initial conditions

of Eq. (E.2), we can find (see Eqs. (6.115) and (6.116)):

(E.8)

(E.9) q
#
:

(0) = b
q
#
10(0)

q
#
20(0)

r = [X]T[m]x
#
:

(0) = b
0

0
r

 = B
0.2673 0.5346

0.1690  -  0.8450
R B

10 0

0 1
R b

1

0
r = b

2.673

1.690
r

 q
:

(0) = b
q10(0)

q20(0)
r = [X]T[m] x

:
(0)

q 
#
i(t),qi(t)q

#
i0qi0

qi(t) = qi0 cos vit +
q 
#
i0

vi

 sin vit

q
$

i(t) + vi
2qi(t) = 0,  i = 1, 2

Q
!
(t) = [X]T F

!
= 0

!
.

q

$
:

(t) + [av2R] q:(t) = Q
!
(t) = 0

!

x
:

(t) = [X] q:(t)

[X] = BX
!
(1) X

!
(2)

R = B
0.2673 0.1690

0.5346  -  0.8450
R

X1
(2) = 0.1690

X
!
(2)T

[m]X
!
(2) = 1Q (X1

(2)
)2 51  -56B

10 0

0 1
R b

   1

-5
r = 1

X1
(1)

= 0.2673

X
!
(1)T

[m]X
!
(1) = 1Q (X1

(1)
)2 51 26B

10 0

0 1
R b

1

2
r = 1

X1
(2)

X1
(1)

X1
(2)

X1
(1)
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608 CHAPTER 6 MULTIDEGREE-OF-FREEDOM SYSTEMS

Equations (E.7) to (E.9) lead to

(E.10)

(E.11)

Using Eqs. (E.4), we obtain the displacements of the masses and as

or

(E.12)

It can be seen that this solution is identical to the one obtained in Example 5.3 and plotted in

Example 5.17.

*

b
x1(t)

x2(t)
r = b

0.7145 cos 1.5811t + 0.2856 cos 2.4495t

1.4280 cos 1.5811t - 1.4280 cos 2.4495t
r

x
:

(t) = B
0.2673 0.1690

0.5346  -0.8450
R b

2.673 cos 1.5811t

1.690 cos 2.4495t
r

m2m1

 q2(t) = 1.690 cos 2.4495t

 q1(t) = 2.673 cos 1.5811t

E X A M P L E  6 . 1 7
Forced-Vibration Response of a Forging Hammer

The force acting on the workpiece of the forging hammer shown in Fig. 5.51 due to impact by the ham-

mer can be approximated as a rectangular pulse, as shown in Fig. 6.15(a). Find the resulting vibration

of the system for the following data: mass of the workpiece, anvil and frame mass of

the foundation block stiffness of the elastic pad and stiffness of

the soil Assume the initial displacements and initial velocities of the masses as zero.

Solution: The forging hammer can be modeled as a two-degree-of-freedom system as indicated in

Fig. 6.15(b). The equations of motion of the system can be expressed as

(E.1)[m]x
$
:

+ [k] x
:

= F
!
(t)

(k2) = 75 MN/m.

(k1) = 150 MN/m,(m2) = 250 Mg,

(m1) = 200 Mg,

F1(t), N

25,000

0 0.1
t, s

(a) (b)

m1

m2

k1

k2

x1(t)

x2(t)

F1(t)

FIGURE 6.15 Impact caused by forging hammer.
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6.14 FORCED VIBRATION OF UNDAMPED SYSTEMS USING MODAL ANALYSIS 609

where

Natural Frequencies and Mode Shapes: The natural frequencies of the system can be found by

solving the frequency equation

(E.2)

as

The mode shapes can be found as

Orthonormalization of Mode Shapes: The mode shapes are assumed as

where a and b are constants. The constants a and b can be determined by normalizing the vectors

and as

(E.3)

where denotes the modal matrix. Equation (E.3) gives and

which means that the new modal matrix (with normalized mode shapes)

becomes

Response in Terms of Generalized Coordinates: Since the two masses and are at rest at 

the initial conditions are hence Eqs. (6.115) and (6.116)

give Thus the generalized coordinates are given by the solu-

tion of the equations

(E.4)qi(t) =
1

vi

 
3

  t

0 
Qi(t) sin vi(t - t) dt, i = 1, 2

q1(0) = q2(0) = q
#
1(0) = q

#
2(0) = 0.

x1(0) = x2(0) = x
#
1(0) = x

#
2(0) = 0,

t = 0,m2m1

[X] = [X
!
(1)X

!
(2)] = B

1.6667     1.4907

1.3334  -1.4907
R * 10-3

1.4907 * 10-3,b =

a = 1.6667 * 10-3[X] = [X
!
(1)X

!
(2)]

[X]T [m] [X] = [I]

X
!
(2)X

!
(1)

X
!
(1)

= a b
1

0.8
r and X

!
(2)

= b b
1

-1
r

X
!
(1)

= b
1

0.8
r and X

!
(2)

= b
1

-1
r

v1 = 12.2474 rad/s          and        v2 = 38.7298 rad/s

-v
2[m] + [k] =

`
- v

2
B

2 0

0 2.5
R  105

+ B
150 -150

-150 225
R106

`
= 0

 F
!
(t) = b

F1(t)

0
r

 [k] = B
k1 -  k1

-  k1 k1 + k2

R = B
   150 -150

-150    225
R  MN/m

 [m] = B
m1 0

0 m2

R = B
200 0

0 250
R  Mg
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610 CHAPTER 6 MULTIDEGREE-OF-FREEDOM SYSTEMS

where

(E.5)

or

(E.6)

with for and 0 for Using Eq. (6.104), the displacements

of the masses can be found as

(E.7)

where

(E.8)

Note that the solution given by Eqs. (E.8) is valid for For there is no applied

force, hence the response is given by the free-vibration solution of an undamped single-degree-of-

freedom system (Eq. (2.18)) for and with and and and as

initial conditions for and respectively.

*

6.15 Forced Vibration of Viscously Damped Systems
Modal analysis, as presented in Section 6.14, applies only to undamped systems. In many

cases, the influence of damping upon the response of a vibratory system is minor and can

be disregarded. However, it must be considered if the response of the system is required

for a relatively long period of time compared to the natural periods of the system. Further,

if the frequency of excitation (in the case of a periodic force) is at or near one of the nat-

ural frequencies of the system, damping is of primary importance and must be taken into

account. In general, since the effects are not known in advance, damping must be consid-

ered in the vibration analysis of any system. In this section, we shall consider the equa-

tions of motion of a damped multidegree-of-freedom system and their solution using

Lagrange s equations. If the system has viscous damping, its motion will be resisted by a

force whose magnitude is proportional to that of the velocity but in the opposite direction.

It is convenient to introduce a function R, known as Rayleigh s dissipation function, in

q2(t),q1(t)

q
#
2(0.1)q2(0.1)q

#
1(0.1),q1(0.1)q2(t)q1(t)

t 7 0.1 s,0 0.1 s.

 q2(t) = 0.9622
3

 t

0 
 sin 38.7298 (t - t) dt = 0.02484 (1 -  cos 38.7298 t)

 q1(t) = 3.4021
3

 t

0 
sin 12.2474 (t - t) dt = 0.2778 (1 -  cos 12.2474 t)

b
x1(t)

x2(t)
r = [X] q

:

(t) = b
1.6667q1(t) + 1.4907q2(t)

1.3334q1(t) - 1.4907q2(t)
r  10-3 m

t 7 0.1 s.0 t 0.1 sF1(t) = 25000 N

 = b
1.6667 * 10-3F1(t)

1.4907 * 10-3F1(t)
r

 b
Q1(t)

Q2(t)
r = B

1.6667 1.3334

1.4907 -1.4907
R10-3

b
F1(t)

0
r

Q
!
(t) = [X]T F

!
(t)
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6.15 FORCED VIBRATION OF VISCOUSLY DAMPED SYSTEMS 611

deriving the equations of motion by means of Lagrange s equations [6.7]. This function is

defined as

(6.117)

where the matrix [c] is called the damping matrix and is positive definite, like the mass and

stiffness matrices. Lagrange s equations, in this case [6.8], can be written as

(6.118)

where is the force applied to mass By substituting Eqs. (6.30), (6.34), and (6.117)

into Eq. (6.118), we obtain the equations of motion of a damped multidegree-of-freedom

system in matrix form:

(6.119)

For simplicity, we shall consider a special system for which the damping matrix can be

expressed as a linear combination of the mass and stiffness matrices:

(6.120)

where and are constants. This is known as proportional damping because [c] is pro-

portional to a linear combination of [m] and [k]. By substituting Eq. (6.120) into Eq.

(6.119), we obtain

(6.121)

By expressing the solution vector as a linear combination of the natural modes of the

undamped system, as in the case of Eq. (6.104),

(6.122)

Eq. (6.121) can be rewritten as

(6.123)

Premultiplication of Eq. (6.123) by leads to

(6.124) + [X]T[k][X]q
!
= [X]TF

!

 [X]T[m][X]q
!$
+ [a[X]T[m][X] + b[X]T[k][X]]q

!#

[X]T

 + [k][X]q
!
(t) = F

!
(t)

 [m][X]q
!$
(t) + [a[m] + b[k]][X] q

!#
(t)

x
!
(t) = [X]q

!
(t)

x
!

[m]x
!$
+ [a[m] + b[k]]x

!#
+ [k]x

!
= F

!

ba

[c] = a[m] + b[k]

[m]x
!$
+ [c]x

!#
+ [k]x

!
= F

!

mi.Fi

d

dt
 +
0T

0x
#
i

* -
0T

0xi

+
0R

0x
#
i

+
0V

0xi

= Fi,  i = 1, 2, Á , n

R =
1

2
 x
#
:T[c]x

#
:
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612 CHAPTER 6 MULTIDEGREE-OF-FREEDOM SYSTEMS

If the eigenvectors are normalized according to Eqs. (6.74) and (6.75), Eq. (6.124)

reduces to

that is,

(6.125)

where is the ith natural frequency of the undamped system and

(6.126)

By writing

(6.127)

where is called the modal damping ratio for the ith normal mode, Eqs. (6.125) can be

rewritten as

(6.128)

It can be seen that each of the n equations represented by this expression is uncoupled from

all of the others. Hence we can find the response of the ith mode in the same manner as that

of a viscously damped single-degree-of-freedom system. The solution of Eqs. (6.128), when

can be expressed as

(6.129)

where

(6.130)vdi = vi21 - zi
2

 i = 1, 2, Á , n

 +
1

vdiL

t

0

 Qi(t)e-zivi(t-t) sin vdi(t - t) dt, 

 + b
1

vdi
 e-zivit sin vdit rq 

#
0(0)

 qi(t) = e-zivitb cos vdit +
zi

21 - zi
2
 sin vdit rqi(0)

zi 6 1,

q 
$

i(t) + 2ziviq
 #

i(t) + vi
2qi(t) = Qi(t),  i = 1, 2, Á , n

zi

a + vi
2b = 2zivi

Q
!
(t) = [X]T F

!
(t)

vi

 i = 1, 2, Á , n

 q 
$

i(t) + (a + vi
2b)q 

#
i(t) + vi

2qi(t) = Qi(t), 

[I] q
$
:

(t) + Ca[I] + b Cav
2R D D q

#
:

(t) + Cav
2R D q

:

(t) = Q
!
(t)

X
!
(j)
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6.15 FORCED VIBRATION OF VISCOUSLY DAMPED SYSTEMS 613

Note the following aspects of these systems:

1. The identification of the sources and magnitude of damping is difficult in most practical

problems. More than one type of damping Coulomb, viscous, and hysteretic may be

present in the system. In addition, the exact nature of damping, such as linear, quadratic,

cubic or other type of variation, is not known. Even when the source and nature of

damping are known, obtaining the precise magnitude is very difficult. For some practi-

cal systems, experimentally determined damping values may be available for use in

vibration analysis. Some damping, in the form of structural damping, is present in auto-

mobile, aerospace, and machine structures. Damping is introduced deliberately in

certain practical applications such as vehicle suspension systems, aircraft landing

gear, and machine isolation systems. Because the analysis of damped systems

involves lengthy mathematical manipulations, in many vibration studies damping is

either neglected or assumed to be proportional.

2. It has been shown by Caughey [6.9] that the condition given by Eq. (6.120) is suffi-

cient but not necessary for the existence of normal modes in damped systems. The

necessary condition is that the transformation that diagonalizes the damping matrix

also uncouples the coupled equations of motion. This condition is less restrictive than

Eq. (6.120) and covers more possibilities.

3. In the general case of damping, the damping matrix cannot be diagonalized simultane-

ously with the mass and stiffness matrices. In this case, the eigenvalues of the system are

either real and negative or complex with negative real parts. The complex eigenvalues

exist as conjugate pairs: the associated eigenvectors also consist of complex conjugate

pairs. A common procedure for finding the solution of the eigenvalue problem of a

damped system involves the transformation of the n coupled second-order equations of

motion into 2n uncoupled first-order equations [6.6].

4. The error bounds and numerical methods in the modal analysis of dynamic systems

are discussed in references [6.11, 6.12].

E X A M P L E  6 . 1 8
Equations of Motion of a Dynamic System

Derive the equations of motion of the system shown in Fig. 6.16.

Solution:

Approach: Use Lagrange s equations in conjunction with Rayleigh s dissipation function.

The kinetic energy of the system is

(E.1)

The potential energy has the form

(E.2)V =
1

2
 [k1x1

2
+ k2(x2 - x1)

2
+ k3(x3 - x2)

2]

T =
1

2
 (m1x

 #
1
2
+ m2x

 #
2
2
+ m3x

 #
3
2)
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k
1

k
2

k
3

c
1

c
2

c
3

c
5

c
4

m
1

m
2

m
3

F
1
(t) x

1
(t)

x
2
(t) F

2
(t)

x
3
(t) F

3
(t)

FIGURE 6.16 Three-degree-of-freedom

dynamic system.

and Rayleigh s dissipation function is

(E.3)

Lagrange s equations can be written as

(E.4)

By substituting Eqs. (E.1) to (E.3) into Eq. (E.4), we obtain the differential equations of motion

(E.5)

where

(E.6)

(E.7) [c] = C

c1 + c2 + c5 -  c2 -  c5

-  c2 c2 + c3 + c4 -  c3

-  c5 -  c3 c3 + c5

S

 [m] = C

m1 0 0

0 m2 0

0 0 m3

S

[m]x
!$
+ [c]x

!#
+ [k]x

!
= F

!

d

dt
 ¢

0T

0x 
#
i

-
0T

0xi

+
0R

0x 
#
i

+
0V

0xi

= Fi,  i = 1, 2, 3

R =
1

2
 [c1x

 #
1
2

+ c2(x 
#
2 - x 

#
1)

2
+ c3(x 

#
3 - x 

#
2)2

+ c4x 
#
2
2

+ c5(x 
#
3 - x 

#
1)

2]
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6.15 FORCED VIBRATION OF VISCOUSLY DAMPED SYSTEMS 615

(E.8)

(E.9)

*

 x
!
= c

x1(t)

x2(t)

x3(t)

s and F
!
= c

F1(t)

F2(t)

F3(t)

s

 [k] = C

k1 + k2 -  k2 0

-  k2 k2 + k3 -  k3

0  -  k3 k3

S

E X A M P L E  6 . 1 9
Steady-State Response of a Forced System

Find the steady-state response of the system shown in Fig. 6.16 when the masses are subjected to the

simple harmonic forces where Assume that 

and the damping ratio in each normal mode is given by

Solution: The (undamped) natural frequencies of the system (see Example 6.11) are given by

(E.1)

and the corresponding [m]-orthonormal mode shapes (see Example 6.12) are given by

(E.2)

Thus the modal vector can be expressed as

(E.3)[X] = [X
!
(1)X

!
(2)X

!
(3)] =

1

2m
 C

0.3280 0.7370 0.5911

0.5911 0.3280  -  0.7370

0.7370  -  0.5911 0.3280

S

 X
!
(3)

=
0.5911

2m
 c

  1.0

-  1.2468

  0.5544

s

 X
!
(1)

=
0.3280

2m
 c

1.0

1.8019

2.2470

s ,  X
!
(2)

=
0.7370

2m
 c

1.0

1.4450

-0.8020

s

 v3 = 1.8025 A
k

m

 v2 = 1.2471 A
k

m

 v1 = 0.44504 A
k

m

zi = 0.01, i = 1, 2, 3.

m3 = m, k1 = k2 = k3 = k, c4 = c5 = 0,

m1 = m2 =v = 1.752k/m.F1 = F2 = F3 = F0 cos vt,
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616 CHAPTER 6 MULTIDEGREE-OF-FREEDOM SYSTEMS

The generalized force vector

(E.4)

can be obtained where

(E.5)

If the generalized coordinates or the modal participation factors for the three principal modes are

denoted as and the equations of motion can be expressed as

(E.6)

The steady-state solution of Eqs. (E.6) can be written as

(E.7)

where

(E.8)

and

(E.9)

By substituting the values given in Eqs. (E.5) and (E.1) into Eqs. (E.8) and (E.9), we obtain

(E.10)

Finally the steady-state response can be found using Eq. (6.122).

*

 q30 = 0.92493 

F02m

k
,  f3 = tan-1(0.33827)

 q20 = 0.31429 

F02m

k
,  f2 = tan-1(-0.02988)

 q10 = 0.57815 

F02m

k
,  f1 = tan-1(-0.00544)

fi = tan-1
d

2zi 

v

vi

1 - ¢
v

vi

2
t

qi0 =
Qi0

vi
2

 
1

B b 1 - ¢
v

vi

2

r

2

+ ¢2zi 

v

vi

2

R

1/2

qi(t) = qi0 cos (vt - f),  i = 1, 2, 3

q
$

i(t) + 2ziviq
 #

i(t) + vi
2qi(t) = Qi(t),  i = 1, 2, 3

q3(t),q1(t), q2(t),

Q10 = 1.6561 
F0

2m
,  Q20 = 0.4739 

F0

2m
,  Q30 = 0.1821 

F0

2m

 = c

Q10

Q20

Q30

s  cos vt

 Q
!
(t) = [X]T F

!
(t) =

1

2m
 C

0.3280 0.5911 0.7370

0.7370 0.3280 -  0.5911

0.5911 -  0.7370 0.3280

S c

F0 cos vt

F0 cos vt

F0 cos vt

s
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6.16 Self-Excitation and Stability Analysis
In a number of damped vibratory systems, friction leads to negative damping instead of pos-

itive damping. This leads to the instability (or self-excited vibration) of the system. In gen-

eral, for an n-degree-of-freedom system shown in Fig. 6.17, the equations of motion will be

a set of second-order linear differential equations (as given by Eqs. (6.119) or (6.128)):

(6.131)

The method presented in Section 5.8 can be extended to study the stability of the system

governed by Eq. (6.131). Accordingly, we assume a solution of the form

or

(6.132)

where s is a complex number to be determined, is the amplitude of and

The real part of s determines the damping, and its imaginary part gives the natural fre-

quency of the system. The substitution of Eq. (6.132) into the free-vibration equations

(obtained by setting in Eq. (6.131)) leads to

(6.133)

For a nontrivial solution of the determinant of the coefficients of is set equal to zero,

which leads to the characteristic equation,  similar to Eq. (6.63):

(6.134)D(s) = [m]s2 + [c]s + [k] = 0

CjCj,

([m]s2 + [c]s + [k])C
!
est = 0

!

F
!
= 0

!

C
!
= d

C1

C2

o

Cn

t

xj,Cj

x
!
(t) = C

!
est

xj(t) = Cje
st,  j = 1, 2, Á , n

[m]x
!$
+ [c]x

!#
+ [k]x

!
= F

!

x
1

k
1

c
1

m
1F

1

x
2

k
2

c
2

m
2F

2

x
3

k
3

c
3

m
3F

3

FIGURE 6.17 Multidegree-of-freedom system.
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618 CHAPTER 6 MULTIDEGREE-OF-FREEDOM SYSTEMS

The expansion of Eq. (6.134) leads to a polynomial in s of order which can be

expressed in the form

(6.135)

The stability or instability of the system depends on the roots of the polynomial equation,

Let the roots of Eq. (6.135) be denoted as

(6.136)

If the real parts of all the roots are negative numbers, there will be decaying time functions,

in Eq. (6.132), hence the solution (system) will be stable. On the other hand, if one or

more roots have a positive real part, then the solution of Eq. (6.132) will contain one or

more exponentially increasing time functions hence the solution (system) will be unsta-

ble. If there is a purely imaginary root of the form it will lead to an oscillatory solu-

tion which represents a borderline case between stability and instability. If is a

multiple root, the above conclusion still holds unless it is a pure imaginary number, such as

In this case, the solution contains functions of the type which

increase with time. Thus the multiple roots with purely imaginary values indicate the insta-

bility of the system. Thus, in order for a linear system governed by Eq. (6.131) to be stable, it

is necessary and sufficient that the roots of Eq. (6.135) should have nonpositive real parts,

and that, if any purely imaginary root exists, it should not appear as a multiple root.

Since finding the roots of the polynomial equation (6.135) is a lengthy procedure, a sim-

plified procedure, known as the Routh-Hurwitz stability criterion [6.13, 6.14], can be used to

investigate the stability of the system. In order to apply this procedure, the following mth-order

determinant is defined in terms of the coefficients of the polynomial equation (6.135) as

(6.137)

Then the following subdeterminants, indicated by the dashed lines in Eq. (6.137), are defined:

(6.138)

(6.139)

(6.140) o

 T3 =
`

a1 a3 a5

a0 a2 a4

0 a1 a3

`

 T2 =
`

a1 a3

a0 a2
`

 T1 = a1

Tm = 7

a1 a3 a5 a7
Á a2m-1

a0 a2 a4 a6
Á a2m-2

0 a1 a3 a5
Á a2m-3

0 a0 a2 a4
Á a2m-4

0 0 a1 a3
Á a2m-5

o

# # # # Á am

7

Tm

eivjt, teivjt, t2eivjt, Á ,sj = ivj.

sjeivjt,

sj = ivj,

ebjt,

sj

ebjt,

bj

sj = bj + ivj,  j = 1, 2, Á , m

D(s) = 0.

D(s) = a0sm + a1s
m-1 + a2sm-2 + Á + am-1s + am = 0

m = 2n,
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6.17 EXAMPLES USING MATLAB 619

In constructing these subdeterminants, all the coefficients with or are to be

replaced by zeros. According to the Routh-Hurwitz criterion, a necessary and sufficient

condition for the stability of the system is that all the coefficients must be

positive and also all the determinants must be positive.

6.17 Examples Using MATLAB

T1, T2, Á , Tm

a0, a1, Á , am

i 6 0i 7 mai

E X A M P L E  6 . 2 0
Solution of Eigenvalue Problem

Find the eigenvalues and eigenvectors of the matrix (see Example 6.11):

Solution:

% Ex 6.20

>> A = [1 1 1; 1 2 2; 1 2 3]

A =

1 1 1

1 2 2

1 2 3

>> [V, D] = eig(A)

V =

0.5910 0.7370 0.3280

*0.7370 0.3280 0.5910

0.3280 *0.5910 0.7370

D =

0.3080 0 0

0 0.6431 0

0 0 5.0489

*

[A] = C

1 1 1

1 2 2

1 2 3

S

E X A M P L E  6 . 2 1
Free-Vibration Response of a Multidegree-of-Freedom System

Plot the free-vibration response, and of the system considered in Example 6.15

for the following data: and 

Solution: The free-vibration response of the masses, and is given by Eqs. (E.7)

to (E.9) of Example 6.15.

% Ex6_21.m

x10 = 1.0;

k = 4000;

m = 10;

for i = 1: 1001

t(i) = 5* (i-1) / 1000;

x1 (i) = x10 * ( 0.1076 * cos (0.44504 * sqrt (k/m) * t(i)) +

0.5431 * cos (1.2471*sqrt(k/m) *t(i)) + 0.3493 * 

cos (1.8025*sqrt (k/m) *t(i)) );

x3(t),x1(t), x2(t),

m = 10.x10 = 1.0, k = 4000,

x3(t),x1(t), x2(t),
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620 CHAPTER 6 MULTIDEGREE-OF-FREEDOM SYSTEMS

x2 (i) = x10 * ( 0.1939 * cos (0.44504 * sqrt (k/m) * t(i)) +

0.2417 * cos (1.2471*sqrt (k/m) *t(i))  0.4355 * 

cos (1.8025*sqrt (k/m) *t(i)) );

x3 (i) = x10 * ( 0.2418 * cos (0.44504 * sqrt(k/m) * t(i))

0.4356 * cos (1.2471*sqrt (k/m) *t(i)) + 0.1937 * 

cos (1.8025*sqrt (k/m) *t(i)) );

end

subplot (311);

plot (t, x1);

ylabel ('x1 (t) ');

subplot (312);

plot (t, x2);

ylabel ('x2 (t) ');

subplot (313);

plot (t, x3);

ylabel ('x3 (t) ');

xlabel ('t');

E X A M P L E  6 . 2 2
Forced-Vibration Response of a Multidegree-of-Freedom System

Find and plot the forced-vibration response of the forging hammer considered in Example 6.17 by

solving the governing differential equations. Assume the initial conditions to be zero.

1

0.5

0

*0.5

*1

x
1
(
t)

54.543.532.521.510.50

1

0.5

0

*0.5

*1

x
2
(
t)

54.543.532.521.510.50

1

0.5

0

*0.5

*1

x
3
(
t)

54.543.532.521.510.50

t

*
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6.17 EXAMPLES USING MATLAB 621

Solution: The governing equations are given by

(E.1)

with

where is a step function of magnitude 25000 N and duration 

Equations (E.1) can be expressed as a set of four coupled first-order differential equations as

where and

Using the initial values of all the following results can be obtained.

% Ex6_22.m

% This program will use the function dfunc6_21.m, they should

% be in the same folder

tspan = [0: 0.001: 10];

y0 = [0; 0; 0; 0];

[t, y] = ode23 ('dfunc6_21', tspan, y0);

subplot (211);

plot (t, y(:, 1));

xlabel ('t');

ylabel ('x1 (t) ');

subplot (212);

plot (t, y(:, 3));

xlabel ('t');

ylabel ('x2 (t) ');

% dfunc6_21.m

function f = dfunc6_21 (t, y)

f = zeros (4, 1);

m1 = 2*le5;

m2 = 2.5*le5;

k1 = 150 * le6;

k2 = 225 * le6;

F1 = 25000 * (stepfun (t, 0)  stepfun (t, 0.1));

f(1) = y(2);

f(2) = F1/m1 + k1 * y(3) /m1  k1 * y(1) /m1;

f(3) = y(4);

f(4) = k2 * y(3) /m2 + k1 * y(1) /m2;

yi = 0,

k2 = 225 * 106.

y1 = x1, y2 = x
#
1, y3 = x2, y4 = x

#
2, m1 = 2 * 105, m2 = 2.5 * 105, k1 = 150 * 106

 y
#
4 =

k1

m2

 y1 -
k2

m2

 y3

 y
#
3 = y4

 y
#
2 =

F1

m1

-
k1

m1

 y1 +
k1

m1

 y3

 y
#
1 = y2

0 t 0.1 s.F1(t)

[m] = 105
B

2 0

0 2.5
R ,         [k] = 106

B
150  -150

-150 225
R ,         F

!
(t) = b

F1(t)

0
r

[m]x
!$
(t) + [k]x

!
(t) = F

!
(t)
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622 CHAPTER 6 MULTIDEGREE-OF-FREEDOM SYSTEMS

*

E X A M P L E  6 . 2 3
Roots of a Polynomial Equation

Using MATLAB, find the roots of the polynomial

Solution:

>> roots ([1 *6 11 *6])

ans =

3.0000

2.0000

1.0000

>>

*

f(x) = x
3
- 6x

2
+ 11x - 6 = 0

0

*2

*4

*6

2

4

6

x
1
(
t)

109876543210

t

+ 10
*4

0

*5

5

x
2
(
t)

109876543210

t

+ 10
*4
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E X A M P L E  6 . 2 4
Forced-Vibration Response of a Damped System

Find the forced-vibration response of a damped multidegree-of-freedom system with equations of

motion

(E.1)

with

with and Assume zero initial conditions.v = 50.F0 = 50

f
!
= c

1

1

1

sF0 cos vt

[m] = C

100 0 0

0 10 0

0 0 10

S , [c] = 100C

   4 -2    0

-2   4 -2

   0 -2    2

S , [k] = 1000C

   8 -4    0

-4    8 -4

   0 -4    4

S

[m]x
!$
+ [c]x

!#
+ [k]x

!
= f

!

*2

0

2

4

*4

x
3
(
t)

109876543210

+ 10
*3

t

*2

0

2

4

*4

x
2
(
t)

109876543210

+ 10
*3

t

*0.5

0

0.5

1

*1

x
1
(
t)

109876543210

+ 10
*3

t
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624 CHAPTER 6 MULTIDEGREE-OF-FREEDOM SYSTEMS

Solution: Equations (E.1) can be rewritten as a set of six first-order differential equations

where and 

Using zero initial values of all the solution can be found as follows.

% Ex6_24.m

% This program will use the function dfunc6_23.m, they should

% be in the same folder

tspan = [0: 0.01: 10];

y0 = [0; 0; 0; 0; 0; 0];

[t, y] = ode23 ( dfunc6_23 , tspan, y0);

subplot (311);

plot (t, y (:, 1));

xlabel ('t');

ylabel ('x1 (t)');

subplot (312);

plot (t, y (:, 3));

xlabel ('t');

ylabel ('x2 (t)');

subplot (313);

plot (t, y (:, 5));

xlabel ('t');

ylabel ('x3 (t)');

% dfunc6_23.m

function f = dfunc6_23 (t, y)

f = zeros (6, 1);

F0 = 50.0;

w = 50.0;

f(1) = y(2);

f(2) = F0*cos(w*t)/100  400*y(2)/100 + 200*y(4)/100  8000*y(1)/100 

+ 4000*y(3)/100;

f(3) = y(4);

f(4) = F0*cos(w*t)/10 + 200*y(2)/10  400*y(4)/10 + 200*y(6)/10 

+ 4000*y(1)/10  8000*y(3)/10 + 4000*y(5)/10;

f(5) = y(6);

f(6) = F0*cos(w*t)/10 + 200*y(4)/10  200*y(6)/10 + 4000*y(3)/10

 4000*y(5)/10;

*

yi,

y6 = x
#

3.y1 = x1, y2 = x 
#

1, y3 = x2, y4 = x 
#

2, y5 = x3,

 y 
#

6 =
F0

10
 cos vt +

200

10
 y4 -

200

10
 y6 +

4000

10
 y3 -

4000

10
 y5

 y 
#

5 = y6

 y 
#

4 =
F0

10
 cos vt +

200

10
 y2 -

400

10
 y4 +

200

10
 y6 +

4000

10
 y1 -

8000

10
 y3 +

4000

10
 y5

 y 
#

3 = y4

 y 
#

2 =
F0

10
 cos vt -

400

10
 y2 +

200

10
 y4 -

8000

10
 y1 +

4000

10
 y3

 y 
#

1 = y2
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E X A M P L E  6 . 2 5
Program to Generate Characteristic Polynomial

Develop a general computer program, called Program7.m, to generate the characteristic polynomial

corresponding to a given square matrix. Use the program to generate the characteristic polynomial

corresponding to the matrix

Solution: Program7.m is developed to accept the following input data:

of the matrix [A]

matrix [A]

The following output is generated by the program:

of polynomial coefficients starting from the constant term.

>> program7

polynomial expansion of a determinantal equation

data: determinant A:

2.000000e+000 1.000000e+000 0.000000e+000

1.000000e+000 2.000000e+000 1.000000e+000

0.000000e+000 1.000000e+000 2.000000e+000

result: polynomial coefficients in

pcf(np)*(x^n)+pcf(n)*(x^(n 1))+...+pcf(2)+pcf(1)=0

4.000000e+000 1.000000e+001 6.000000e+000 1.000000e+000

*

pcf = vector

[a] = given

n = order

[A] = C

2 -1 0

-1 2 -1

0 -1 2

S

Program for Modal Analysis of Multidegree-of-Freedom Systems

Develop a MATLAB program, called Program8.m, to find the response of a multidegree-of-freedom

system using modal analysis. Use the program to find the solution of a system with the following data:

Mass matrix:

Modal matrix (with modes as columns; modes are not made m-orthogonal):

[ev] = C

1.0000 1.0000 1.0000

1.8019 0.4450 -1.2468

2.2470 -0.8020 0.5544

S

[m] = C

1 0 0

0 1 0

0 0 1

S

E X A M P L E  6 . 2 6
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626 CHAPTER 6 MULTIDEGREE-OF-FREEDOM SYSTEMS

Natural frequencies: 

Modal damping ratios: 

Vector of forces applied to different masses:

Initial conditions: 

Solution: Program8.m is developed to accept the following input data:

of freedom of the system

of modes to be used in the modal analysis

matrix of size 

matrix of size 

of size damping ratios vector

of size frequencies vector

of forces applied to masses, of size n

displacements of masses, vector of size n

velocities of masses, vector of size n

of time stations or integration points t1, t2, Á , tnstepnstep = number

xd0 = initial

x0 = initial

f = vector

nvec = naturalom = vector

nvec = modalz = vector

n * nvecev = modal

n * nxm = mass

nvec = number

n = degree

x
!
(0) = 0

!
, x
!#
(0) = 0

!

F
!
(t) = c

F0

F0

F0

s  cos vt;          F0 = 2.0,         v = 3.5

zi = 0.01, i = 1, 2, 3

v1 = 0.89008, v2 = 1.4942, v3 = 3.6050

0.50

*0.6

*0.4

*0.2

0

Coordinate 1

Coordinate 2

Coordinate 3

x
i

0.2

0.4

0.6

*0.8
1

t

1.5 2 2.5
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between consecutive time stations

of size nstep containing times 

The program gives the following output:

of size of masses at various time sta-

tions 

>> program8

Response of system using modal analysis

Coordinate 1

1.21920e 002 4.62431e 002 9.57629e 002 1.52151e 001 2.05732e 001

2.47032e 001 2.68028e 001 2.63214e 001 2.30339e 001 1.70727e 001

8.91432e 002 6.79439e 003 1.07562e 001 2.02928e 001 2.83237e 001

3.40630e 001 3.70023e 001 3.69745e 001 3.41725e 001 2.91231e-001

Coordinate 2

1.67985e 002 6.40135e 002 1.33611e 001 2.14742e 001 2.94996e 001

3.61844e 001 4.04095e 001 4.13212e 001 3.84326e 001 3.16843e 001

2.14565e 001 8.53051e 002 5.99475e 002 2.08242e 001 3.46109e 001

4.61071e 001 5.43061e 001 5.85566e 001 5.86381e 001 5.47871e 001

Coordinate 3

1.99158e 002 7.57273e 002 1.57485e 001 2.51794e 001 3.43491e 001

4.17552e 001 4.60976e 001 4.64416e 001 4.23358e 001 3.38709e 001

2.16699e 001 6.81361e 002 9.29091e 002 2.50823e 001 3.90355e 001

4.98474e 001 5.65957e 001 5.88490e 001 5.67173e 001 5.08346e 001

*

t1, t2, Á , tnstep

m1, m2, Á , mnn * nstep = displacementsx = matrix

t1, t2, Á , tnstept = array

delt = interval

CHAPTER SUMMARY

The analysis of multidegree-of-freedom systems require tedious algebraic manipulations. Matrix rep-

resentation can be used to simplify the manipulations. We derived the equations of motion using three

different approaches Newton s second law of motion, influence coefficients, and Lagrange s equa-

tions. We presented the computation of the natural frequencies by solving the eigenvalue problem. We

used modal analysis procedure for the free and forced vibration of undamped and proportionately

damped systems. Finally, we presented the free- and forced-vibration solution of multidegree-of-

freedom problems using MATLAB.

Now that you have finished this chapter, you should be able to answer the review questions and

solve the problems given below.
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628 CHAPTER 6 MULTIDEGREE-OF-FREEDOM SYSTEMS

REVIEW QUESTIONS

6.1 Give brief answers to the following:

1. Define the flexibility and stiffness influence coefficients. What is the relation between

them?

2. Write the equations of motion of a multidegree-of-freedom system in matrix form using

a. the flexibility matrix and

b. the stiffness matrix.

3. Express the potential and kinetic energies of an n-degree-of-freedom system, using matrix

notation.

4. What is a generalized mass matrix?

5. Why is the mass matrix [m] always positive definite?

6. Is the stiffness matrix [k] always positive definite? Why?
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7. What is the difference between generalized coordinates and Cartesian coordinates?

8. State Lagrange s equations.

9. What is an eigenvalue problem?

10. What is a mode shape? How is it computed?

11. How many distinct natural frequencies can exist for an n-degree-of-freedom system?

12. What is a dynamical matrix? What is its use?

13. How is the frequency equation derived for a multidegree-of-freedom system?

14. What is meant by the orthogonality of normal modes? What are orthonormal modal vectors?

15. What is a basis in n-dimensional space?

16. What is the expansion theorem? What is its importance?

17. Explain the modal analysis proceduce.

18. What is a rigid-body mode? How is it determined?

19. What is a degenerate system?

20. How can we find the response of a multidegree-of-freedom system using the first few

modes only?

21. Define Rayleigh s dissipation function.

22. Define these terms: proportional damping, modal damping ratio, modal participation factor.

23. When do we get complex eigenvalues?

24. What is the use of Routh-Hurwitz criterion?

6.2 Indicate whether each of the following statements is true or false:

1. For a multidegree-of-freedom system, one equation of motion can be written for each

degree of freedom.

2. Lagrange s equation cannot be used to derive the equations of motion of a multidegree-

of-freedom system.

3. The mass, stiffness, and damping matrices of a multidegree-of-freedom system are

always symmetric.

4. The product of stiffness and flexibility matrices of a system is always an identity matrix.

5. The modal analysis of a n-degree-of-freedom system can be conducted using r modes

with 

6. For a damped multidegree-of-freedom system, all the eigenvalues can be complex.

7. The modal damping ratio denotes damping in a particular normal mode.

8. A multidegree-of-freedom system can have six of the natural frequencies equal to zero.

9. The generalized coordinates will always have the unit of length.

10. The generalized coordinates are independent of the conditions of constraint of the

system.

11. The generalized mass matrix of a multidegree-of-freedom system is always diagonal.

12. The potential and kinetic energies of a multidegree-of-freedom system are always qua-

dratic functions.

13. The mass matrix of a system is always symmetric and positive definite.

14. The stiffness matrix of a system is always symmetric and positive definite.

15. The rigid body mode is also called the zero mode.

16. An unrestrained system is also known as a semidefinite system.

17. Newton s second law of motion can always be used to derive the equations of motion of

a vibrating system.

6.3 Fill in each of the following blanks with the appropriate word:

1. The spring constant denotes the _____ necessary to cause a unit elongation.

2. The flexibility influence coefficient denotes the deflection at point _____ due to a unit

load at point _____ .

aij

r 6 n.
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630 CHAPTER 6 MULTIDEGREE-OF-FREEDOM SYSTEMS

3. The force at point i due to a unit displacement at point j, when all the points other than the

point j are fixed, is known as _____ influence coefficient.

4. The mode shapes of a multidegree-of-freedom system are _____ .

5. The equations of motion of a multidegree-of-freedom system can be expressed in terms

of _____ coefficients.

6. Lagrange s equations are expressed in terms of _____ coordinates.

7. The value of the Kronecker delta is 1 for and _____ for 

8. The stiffness matrix of a semidefinite system is _____ .

9. A multidegree-of-freedom system can have at most _____ rigid-body modes.

10. When the solution vector is denoted as a linear combination of the normal modes as 

the generalized coordinates are also known as the _____ 

participation coefficients.

11. Any set of n linearly independent vectors in an n-dimensional space is called a _____ .

12. The representation of an arbitrary n-dimensional vector as a linear combination of n-lin-

early independent vectors is known as _____ theorem.

13. The _____ analysis is based on the expansion theorem.

14. The modal analysis basically _____ the equations of motion.

15. The eigenvalues of an n-degree-of-freedom system form a _____ in the n-dimensional space.

16. The application of Lagrange s equations requires the availability of _____ expressions.

17. The determinantal equation, is known as the _____ equation.

18. The symmetry of stiffness and flexibility matrices is due to the _____ reciprocity theorem.

19. Maxwell s reciprocity theorem states that the influence coefficients are _____ .

20. The stiffness matrix is positive definite only if the system is _____ .

21. During free vibration of an undamped system, all coordinates will have _____ motion.

22. In proportional damping, the damping matrix is assumed to be a linear combination of

the _____ and _____ matrices.

6.4 Select the most appropriate answer out of the choices given:

1. The number of distinct natural frequencies for an n-degree-of-freedom system can be

a. 1 b. c. n

2. The dynamical matrix, [D], is given by

a. b. c. [k][m]

3. The orthognolity of modes implies

a. only

b. only

c. and 

4. The modal matrix, [X], is given by

a.

b.

c. [X] = [k]-1[m]

[X] = E

X
!
(1)T

X
!
(2)T

o

X
!
(n)T

U

[X] = BX
!
(1) X

!
(2) Á X

!
(n)

R

X
!
(i)T[k]X

!
(j) = 0X

!
(i)T[m]X

!
(j) = 0

X
!
(i)T[k]X

!
(j) = 0

X
!
(i)T[m]X

!
( j) = 0

[m]-1[k][k]-1[m]

q

[k] - v
2[m] = 0,

qi(t)x
!
(t) = a

n

i=1
 qi(t)X

!
(i),

i Z j.i = j(dij)
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5. Rayleigh s dissipation function is used to generate a

a. stiffness matrix b. damping matrix c. mass matrix

6. The characteristic equation of an n-degree-of-freedom system is a

a. transcendental equation

b. polynomial of degree n

c. differential equation of order n

7. The fundamental natural frequency of a system is

a. the largest value b. the smallest value c. any value

8. Negative damping leads to

a. instability b. fast convergence c. oscillations

9. The Routh-Hurwitz criterion can be used to investigate the

a. convergence of a system

b. oscillations of a system

c. stability of a system

10. The stiffness and flexibility matrices are related as

a. b. c.

11. A system for which [k] is positive and [m] is positive definite is called a

a. semidefinite system

b. positive-definite system

c. indefinite system

12. of modal vectors implies

a.

b.

c.

13. Modal analysis can be used conveniently to find the response of a multidegree-of-

freedom system

a. under arbitrary forcing conditions

b. under free-vibration conditions

c. involving several modes

6.5 Match the items in the two columns below:

1. a. equal to zero yields the characteristic values

2. b. equal to when modes are normalized

3. c. kinetic energy of the system

4. d. equal to zero when modes are orthogonal

5. e. equal to the dynamical matrix [D]

6. f. strain energy of the system

7. g. equal to the applied force vector 

8. h. equal to one when modes are orthonormal[k] 
-

 
1[m]

F
!

[k] - v
2[m]

[m]x
$
:

+ [k] x:

[X]T[k][X]

X
!
(i)T[m]X

!
(i)

X
!
(i)T[m]X

!
(j)

[vi
2]

1

2
 X 

!
 
T[m]X

!

1

2
 X
!#

 T[m]X
!#

[X]T[m][X] = [vi
2]

X
!
(i)T[m]X

!
(j)

= 0

X
!
(i)T[m]X

!
(i)

= 0

[m]-orthogonality

[k] = [a]T[k] = [a] 
-

 
1[k] = [a]

M06_RAO08193_5_SE_C06.qxd  8/21/10  4:50 PM  Page 631



632 CHAPTER 6 MULTIDEGREE-OF-FREEDOM SYSTEMS

2m

m

k

O

2k

3k

Rigid bar, mass * 2m
c

x1(t)

Mt(t)
u(t)

F1(t)

F2(t)

x2(t)

l

4
3l
4

FIGURE 6.19

PROBLEMS

Section 6.3 Using Newton s Second Law to Derive Equations of Motions

6.1 6.5 Derive the equations of motion, using Newton s second law of motion, for each of the sys-

tems shown in Figs. 6.18 to 6.22.

m1 m3m2

x2(t)

x1(t) x3(t)

F2(t)

F1(t) F3(t)
5k

k kkk

FIGURE 6.18

6.6 An automobile is modeled as shown in Fig. 6.23. Derive the equations of motion using New-

ton s second law of motion.
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5m

F1(t)

F2(t)

x1(t) x3(t)

x2(t)

k

k k
Rigid bar, mass * 2m

c
F3(t)

2l 3l

A G

FIGURE 6.20

m

3m

x1(t)

x2(t)

x3(t)

F1(t)

F3(t)

F2(t)

k

2k

Pulley,
mass M,
mass moment
of inertia J0

3k

3r

r

O

u

FIGURE 6.21

6.7 The equations of motion derived using the displacements of the masses, and as

degrees of freedom in Fig. 6.12 (Example 6.10) lead to symmetric mass and stiffness matri-

ces in Eq. (E.3) of Example 6.10. Express the equations of motion, (E.3) of Example 6.10,

using and as degrees of freedom in the form:

where

Show that the resulting mass and stiffness matrices and are nonsymmetric.[k][m]

y
!
= c

y1

y2

y3

s

[m]y
$
+ [k]y

!
= 0

!

x3 - x2x1, x2 - x 1,

x 3x 1, x2

M1 cos vt u1
u2

u4

u3

G1

kt1

kt2

kt3

I1
I2

G3

Number of teeth on gear Gi * ni (i * 1 to 6)
Mass moment of inertia of gear Gi * Ii (i * 1 to 6)

G2

I4

G4

I6

G6I3

G5

I5

FIGURE 6.22

M06_RAO08193_5_SE_C06.qxd  8/21/10  4:50 PM  Page 633



634 CHAPTER 6 MULTIDEGREE-OF-FREEDOM SYSTEMS

Mass  M,
mass moment of inertia  JG

k2 k2

G

x3

x1F1

c2 c2

k1c1

m1

k1 c1

x2F2

m2

l1 l2

u

FIGURE 6.23

6.8 A simplified vibration analysis of an airplane considers bounce and pitch motions (Fig. 6.24(a)).

For this, a model consisting of a rigid bar (corresponding to the body of the airplane) sup-

ported on two springs (corresponding to the stiffnesses of the main and nose landing gears) as

shown in Fig. 6.24(b) is used. The analysis can be conducted using three different coordinate

systems as shown in Figs. 6.24(c) (e). Derive the equations of motion in the three coordinate

systems and identify the type of coupling associated with each coordinate system.

G

k1

a b

(a)

c

k2

(b)

k1 k2

m, J0

a b c

G
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FIGURE 6.24

m1

x1 x2

k1

m2

c2

c1

k2

FIGURE 6.25

(e)

(c)

k1(x  au) k2(x  bu)

x

u

k{x  (a  b  c)u} k(x  cu)

x

u

(d)

kx k{x  (a  b)u}

x

u

a b c

a b c

a b c

G

G

6.9 Consider the two-degree-of-freedom system shown in Fig. 6.25 with and

The masses and move on a rough surface for which the equivalent vis-

cous damping constants can be assumed as 

a. Derive the equations of motion of the system.

b. Find the natural frequencies and mode shapes of the undamped system.

6.10 For a simplified analysis of the vibration of an airplane in the vertical direction, a three-

degree-of-freedom model, as shown in Fig. 6.26, can be used. The three masses indicate the

c1 = c2 = 2.

m2m 1k1 = k2 = 4.

m 1 = m2 = 1
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l

x1 x3

m3

 m

m3  

 m

m2  5m

m2  5m

 m

m1

m1  

 m

k1  k

k1  k

3EI

l
3

k2  k

k
2  k

x2

l

(a)

(b)

(c)

3EI

l
3

x2x1 x3

FIGURE 6.26

masses of the two wings and the fuselage The stiffnesses 

correspond to the bending stiffnesses of the two wings, which can be modeled 

as cantilever beams so that 

a. Derive the equations of motion of the airplane using the three-degree-of-freedom model.

b. Using the equations of motion derived in part (a), find the natural frequencies and mode

shapes of the airplane. Give an interpretation of the results.

6.11 A simplified model of the main landing gear system of a small airplane is shown in Fig. 6.27

with and 

a. Find the equations of motion of the system.

b. Find the natural frequencies and the mode shapes of the system.

Section 6.4 Influence Coefficients

6.12 6.17 Derive the stiffness matrix of each of the systems shown in Figs. 6.18 to 6.23 using the indi-

cated coordinates.

6.18 Derive the flexibility matrix of the system shown in Fig. 5.39.

6.19 Derive the stiffness matrix of the system shown in Fig. 5.39.

k2 = 106 N/m.m1 = 100 kg, m2 = 5000 kg, k 1 = 104 N/m,

k1 = k2 = k =

3EI

l3
.

k1 = k2 = k

(m2 = 5m).(m1 = m 3 = m)
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m2

m1

k1

k2

m2

m1

k1

(b)(a)

k2

Airplane mass

Tire mass

Runway

Stiffness of
landing gear

Stiffness of tire

FIGURE 6.27

(GJ)1

Compressor
(Jd1)

(GJ)2 (GJ)3 (GJ)4

Generator
(Jd3)

Turbine
(Jd2)

l1 l2 l3 l4

u2u1
u3

FIGURE 6.28

m1 m2 m3

k1 k4k3k2

FIGURE 6.29

6.20 Derive the flexibility matrix of the system shown in Fig. 5.42.

6.21 Derive the stiffness matrix of the system shown in Fig. 5.42.

6.22 Derive the mass matrix of the system shown in Fig. 5.42.

6.23 Find the flexibility and stiffness influence coefficients of the torsional system shown in

Fig. 6.28. Also write the equations of motion of the system.

6.24 Find the flexibility and stiffness influence coefficients of the system shown in Fig. 6.29.

Also, derive the equations of motion of the system.
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m2

m1

m3

k3

k2 k1

FIGURE 6.32

6.25 An airplane wing, Fig. 6.30(a), is modeled as a three-degree-of-freedom lumped-mass sys-

tem, as shown in Fig. 6.30(b). Derive the flexibility matrix and the equations of motion of the

wing by assuming that all and that the root is fixed.Ai = A, (EI)i = EI, li = l

A1, (EI)1

x1

(a)

(b)

l1
l2

l3

A2, (EI)2

A3, (EI)3

x2 x3

l1 l2 l3

FIGURE 6.30

6.26 Determine the flexibility matrix of the uniform beam shown in Fig. 6.31. Disregard the mass

of the beam compared to the concentrated masses placed on the beam and assume all 

6.27 Derive the flexibility and stiffness matrices of the spring-mass system shown in Fig. 6.32

assuming that all the contacting surfaces are frictionless.

li = l.

m1 m2 m3

l1 l2 l3 l4

FIGURE 6.31

6.28 Derive the equations of motion for the tightly stretched string carrying three masses, as

shown in Fig. 6.33. Assume the ends of the string to be fixed.

6.29 Derive the equations of motion of the system shown in Fig. 6.34.

6.30 Four identical springs, each having a stiffness k, are arranged symmetrically at 90° from each

other, as shown in Fig. 2.65. Find the influence coefficient of the junction point in an arbi-

trary direction.
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6.31 Show that the stiffness matrix of the spring-mass system shown in Fig. 6.3(a) is a band

matrix along the diagonal.

6.32 6.36 Derive the mass matrix of each of the systems shown in Figs. 6.18 to 6.22 using the indicated

coordinates.

6.37 The inverse mass influence coefficient is defined as the velocity induced at point i due to

a unit impulse applied at point j. Using this definition, derive the inverse mass matrix of the

system shown in Fig. 6.4(a).

Section 6.6 Generalized Coordinates and Generalized Forces

6.38 For the four-story shear building shown in Fig. 6.35, there is no rotation of the horizontal sec-

tion at the level of floors. Assuming that the floors are rigid and the total mass is concentrated

at the levels of the floors, derive the equations of motion of the building using (a) Newton s sec-

ond law of motion and (b) Lagrange s equations.

Section 6.7 Using Lagrange s Equations to Derive Equations of Motion

6.39 Derive the equations of motion of the system shown in Fig. 6.36 by using Lagrange s equa-

tions with x and as generalized coordinates.

6.40 Derive the equations of motion of the system shown in Fig. 5.12(a), using Lagrange s equa-

tions with (a) and as generalized coordinates and (b) x and as generalized coordinates.

6.41 Derive the equations of motion of the system shown in Fig. 6.29 using Lagrange s equations.

6.42 Derive the equations of motion of the triple pendulum shown in Fig. 6.10 using Lagrange s

equations.

ux2x1

u

bij

m
1

x
1
(t)

m
2

x
2
(t)

m
3

x
3
(t)

P

P
l
1

l
2

l
3

l
4

FIGURE 6.33

m

k

m

k

k

3k2m

k

2k

FIGURE 6.34
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6.43 When an airplane (see Fig. 6.37(a)) undergoes symmetric vibrations, the fuselage can be ide-

alized as a concentrated central mass and the wings can be modeled as rigid bars carrying

end masses M, as shown in Fig. 6.37(b). The flexibility between the wings and the fuselage

can be represented by two torsional springs of stiffness each. (a) Derive the equations of

motion of the airplane, using Lagrange s equations with x and as generalized coordinates.u

kt

M0

k

m

m

l

x
u

FIGURE 6.36

l

M

x

kt

l

MM0

kt

(a)

(b)

u u

FIGURE 6.37

F4(t)

m4

c4k4/2

x4

F3(t)

m3

c3k3/2

k4/2
x3

F2(t)

m2

c2k2/2

k3/2
x2

F1(t)

m1

c1
k1/2

k2/2

k1/2

x1

FIGURE 6.35
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(b) Find the natural frequencies and mode shapes of the airplane. (c) Find the torsional spring

constant in order to have the natural frequency of vibration, in torsional mode, greater than 2

Hz when and 

6.44 6.48 Use Lagrange s equations to derive the equations of motion of each of the systems shown in

Figs. 6.18 to 6.22.

Section 6.9 Eigenvalue Problem

6.49 Set up the eigenvalue problem of Example 6.11 in terms of the coordinates 

and and solve the resulting problem. Compare the results obtained with

those of Example 6.11 and draw conclusions.

6.50 Derive the frequency equation of the system shown in Fig. 6.29.

Section 6.10 Solution of Eigenvalue Problem

6.51 Find the natural frequencies and mode shapes of the system shown in Fig. 6.6(a) when

and Plot the mode shapes.

6.52 Set up the matrix equation of motion and determine the three principal modes of vibration for

the system shown in Fig. 6.6(a) with and 

Check the orthogonality of the modes found.

6.53 Find the natural frequencies of the system shown in Fig. 6.10 with 

and 

6.54* (a) Find the natural frequencies of the system shown in Fig. 6.31 with 
and (b) Find the natural frequencies of the beam when 

the cross section is a solid circular section with diameter 2.5 cm, and

the material is steel. (c) Consider using a hollow circular, solid rectangular, or hollow rectan-

gular cross section for the beam to achieve the same natural frequencies as in (b). Identify the

cross section corresponding to the least weight of the beam.

6.55 The frequency equation of a three-degree-of-freedom system is given by

Find the roots of this equation.

6.56 Determine the eigenvalues and eigenvectors of the system shown in Fig. 6.29, taking

and 

6.57 Find the natural frequencies and mode shapes of the system shown in Fig. 6.29 for

and 

6.58 Find the natural frequencies and principal modes of the triple pendulum shown in Fig. 6.10,

assuming that and m1 = m2 = m3 = m.l1 = l2 = l3 = l

m3 = 2m.k1 = k2 = k3 = k4 = k, m1 = 2m, m2 = 3m,

m1 = m2 = m3 = m.k1 = k2 = k3 = k4 = k

3

l - 5 - 3 - 2

- 3 l - 6 - 4

- 1 - 2 l - 6

3 = 0

m = 10 kg, l = 0.5 m,

l1 = l2 = l3 = l4 = l/4.
m1 = m2 = m3 = m

m3 = 3 kg.m2 = 2 kg,m1 = 1 kg,l3 = 40 cm,
l2 = 30 cm,l1 = 20 cm,

m2 = m3 = m.k1 = 3k, k2 = k3 = k, m1 = 3m,

m3 = 3m.k1 = k, k2 = 2k, k3 = 3k, m1 = m, m2 = 2m,

q3 = x3 - x2,-  x1,
q1 = x1, q2 = x2

l = 6 m.M0 = 1000 kg, M = 500 kg,

*The asterisk denotes a problem with no unique answer.
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642 CHAPTER 6 MULTIDEGREE-OF-FREEDOM SYSTEMS

6.59 Find the natural frequencies and mode shapes of the system considered in Problem 6.27 with

and 

6.60 Show that the natural frequencies of the system shown in Fig. 6.6(a), with 

and are given by 

and Find the eigenvectors of the system.

6.61 Find the natural frequencies of the system considered in Problem 6.28 with 

and 

6.62 Find the natural frequencies and principal modes of the torsional system shown in Fig. 6.28

for and 

6.63 The mass matrix [m] and the stiffness matrix [k] of a uniform bar are

where is the density, A is the cross-sectional area, E is Young s modulus, and l is the length

of the bar. Find the natural frequencies of the system by finding the roots of the characteris-

tic equation. Also find the principal modes.

6.64 The mass matrix of a vibrating system is given by

and the eigenvectors by

Find the [m]-orthonormal modal matrix of the system.

6.65 For the system shown in Fig. 6.38, (a) determine the characteristic polynomial

(b) plot from to (using increments

), and (c) find and 

6.66 (a) Two of the eigenvectors of a vibrating system are known to be

Prove that these are orthogonal with respect to the mass matrix

[m] = C

1 0 0

0 2 0

0 0 3

S

c

0.2754946

0.3994672

0.4490562

s and c

0.6916979

0.2974301

-  0.3389320

s

v3
2.v1

2, v2
2,¢v2 = 0.2

v
2 = 4.0v

2 = 0¢(v2)¢(v2) = det [k] - v
2[m] ,

c

1

-  1

1

s ,    c

1

1

1

s , and c

0

1

2

s

[m] = C

1 0 0

0 2 0

0 0 1

S

r

[m] =
rAl

4
 C

1 0 0

0 2 0

0 0 1

S and [k] =
2AE

l
 C

1 -  1 0

-  1 2 -  1

0 -  1 1

S

l1 = l2 = l3 = l4 = l.(GJ)i = GJ, i = 1, 2, 3, 4, Jd1 = Jd2 = Jd3 = J0,

l1 = l2 = l3 = l4 = l.m2 = m, m3 = 3m,

m1 = 2m,

v3 = 1.342k/m.v2 = 2k/m,

v1 = 0.462k/m,m3 = m,m2 = 2m,m1 = 4m,k2 = k3 = k,

k1 = 3k,

k3 = 2k.m1 = m, m2 = 2m, m3 = m, k1 = k2 = k,
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PROBLEMS 643

Find the remaining [m]-orthogonal eigenvector. (b) If the stiffness matrix of the system is

given by

determine all the natural frequencies of the system, using the eigenvectors of part (a).

6.67 Find the natural frequencies of the system shown in Fig. 6.18 for 

6.68 Find the natural frequencies of the system shown in Fig. 6.19 with 

and 

6.69 Consider the eigenvalue problem

where

Find the natural frequencies by finding the roots of the characteristic equation

Compare your results with the ones obtained in Example 6.11.

[m]-1[k] - v
2[I] = 0

[k] = kC

  2 -1   0

-1   2 -1

  0 -1    1

S and [m] = mC

1 0 0

0 1 0

0 0 1

S

[[k] - v
2[m]] X

!
= 0

!

c = 100 N-s/m.k = 1000 N/m,

m = 1 kg, l = 1 m,

mi = m, i = 1, 2, 3.

C

6 -  4 0

-  4 10 0

0 0 6

S

m
1
 * 20

m
2
 * 10

k
1
 * 20

k
3
 * 10k

2
 * 10

k
5
 * 10k

4
 * 10

x
1
(t)

x
3
(t)x

2
(t)

m
3
 * 10

FIGURE 6.38
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644 CHAPTER 6 MULTIDEGREE-OF-FREEDOM SYSTEMS

6.70 Find the eigenvalues and eigenvectors of the following matrix:

Hint: The eigenvalue problem associated with the matrix [A] is defined as

where is the eigenvalue and is the eigenvector.

6.71 Consider the eigenvalue problem

where

Find the natural frequencies and mode shapes of the system:

a. by solving the equation

b. by solving the equation

Compare the two sets of results and give your observations.

6.72 Consider the eigenvalue problem:

(E.1)

a. Find the natural frequencies and mode shapes of the system.

b. Change the coordinates in Eq. (E.1) as and and express the eigenvalue 

problem in terms of the eigenvector solve it, and find the natural frequencies 

and mode shapes.

c. Compare the results found in parts (a) and (b) and give your observations.

6.73 Consider the eigenvalue problem:

(E.1)

where

[m] = B
1 0

0 4
R , [k] = B

   8 -2

-2    2
R , and l = v

2

l[m]X
!
= [k]X

!

Y
!

= b
Y1

Y2

r ,

X2 = 3 Y2X1 = Y1

v
2 B

1 0

0 2
R  b

X1

X2
r = B

   6 -2

-2    2
R b

X1

X2
r

[-v2[k]-1[m] + [I]]X
!
= 0

!

[[m]-1[k] - v
2[I]]X

!
= 0

!

[m] = B
2 0

0 1
R and [k] = B

  8 -4

-4    4
R

[[k] - v
2[m]] X

!
= 0

!

X
!

l

[[A] - l[I]]X
!
= 0

!

[A] = B
   8 -1

-4   4
R
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Equation (E.1) can be expressed as

where

is called the mass normalized stiffness matrix. Determine the mass normalized stiffness matrix

and use it to find the eigenvalues and orthonormal eigenvectors of the problem stated in Eq. (E.1).

Hint: The square root of a diagonal matrix [m], of order n, is given by

6.74 A symmetric positive definite matrix, such as the mass matrix of a multidegree-of-freedom

system, [m], can be expressed as the product of a lower triangular matrix, [L], and an upper

triangular matrix, as

(E.1)

using a procedure known as the Choleski method [6.18]. For a mass matrix of order 

Eq. (E.1) becomes

(E.2)

By carrying out the multiplication of the matrices on the right-hand side of Eq. (E.2) and

equating each of the elements of the resulting matrix to the corresponding element of

the matrix on the left-hand side of Eq. (E.2), the matrix [L] can be identified. Using this pro-

cedure, decompose the matrix

in the form 

Section 6.12 Unrestrained Systems

6.75 Find the natural frequencies and mode shapes of the system shown in Fig. 6.14 with

and k1 = k2 = k.m3 = 3m,m2 = 2m,m1 = m,

[L][L]T.

[m] = C

4 2 1

2 6 2

1 2 8

S

3 * 3

C

m11 m12 m13

m12 m22 m23

m13 m23 m33

S = C

L11 0 0

L21 L22 0

L31 L32 L33

S C

L11 L21 L31

0 L22 L32

0 0 L33

S

3 * 3,

[m] = [L][L]T
[L]T,

[m]
1
2 = E

2m11
Á 0

# Á #

# Á #

# Á #

0 Á 2mnn

U

[D] = a[m]
1
2b

-1

[k]a[m]
1
2b

-1

[D]X
!
= lX

!
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646 CHAPTER 6 MULTIDEGREE-OF-FREEDOM SYSTEMS

J
1
, u

1

J
2
, u

2

J
3
, u

3

kt1 kt2

FIGURE 6.39

6.76 Find the modal matrix for the semidefinite system shown in Fig. 6.39 for 

and kt2 = 2kt.kt1 = kt,

J1 = J2 = J3 = J0,

Section 6.13 Free Vibration of Undamped Systems

6.77 Find the free-vibration response of the spring-mass system shown in Fig. 6.29 for

for the initial conditions

and 

6.78 Find the free-vibration response of the triple pendulum shown in Fig. 6.10 for 

and for the initial conditions 

6.79 Find the free-vibration response of the tightly stretched string shown in Fig. 6.33 for

and Assume the initial conditions as

6.80 Find the free-vibration response of the spring-mass system shown in Fig. 6.6(a) for

and corresponding to the initial

conditions and 

6.81 Find the free-vibration response of the spring-mass system shown in Fig. 6.32 for

and corresponding to the initial condi-

tions and 

6.82 In the freight car system shown in Fig. 6.14, the first car acquires a velocity of due to an

impact. Find the resulting free vibration of the system. Assume and

6.83 Find the free-vibration response of a three-degree-of-freedom system governed by the equation

Assume the initial conditions as and 

Note: The natural frequencies and mode shapes of the system are given in Examples 6.11

and 6.12.

x
#
i(0) = 0; i = 1, 2, 3.xi(0) = 0.1

10C

1 0 0

0 1 0

0 0 1

S  x
!$
(t) + 100C

2 -1 0

-1 2 -1

0 -1 1

S  x
!
(t) = 0

!

k1 = k2 = k.

mi = m (i = 1, 2, 3)

x
#
0

x1(0) = x2(0) = x3(0) = x
#
1(0) = x

#
2(0) = 0.x

#
3(0) = x

#
30,

k3 = 2km1 = m, m2 = 2m, m3 = m, k1 = k2 = k,

x
#
2(0) = x

#
3(0) = 0.x

#
1(0) = x

#
10, xi(0) = 0 (i = 1, 2, 3),

m3 = 3mk1 = k, k2 = 2k, k3 = 3k, m1 = m, m2 = 2m,

x1(0) = x3(0) = 0, x2(0) = x20, x
#
i(0) = 0 (i = 1, 2, 3).

li = l (i = 1, 2, 3, 4).m1 = 2m, m2 = m, m3 = 3m,

u

#

i(0) = 0 (i = 1, 2, 3).u3(0) = u30,

u1(0) = u2(0) = 0,mi = m (i = 1, 2, 3)li = l (i = 1, 2, 3)

x2(0) = x3(0) = x
#
1(0) = x

#
2(0) = x

#
3(0) = 0.x1(0) = x10

ki = k (i = 1, 2, 3, 4), m1 = 2 m, m2 = 3 m, m3 = 2 m
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PROBLEMS 647

6.84 Using modal analysis, determine the free-vibration response of a two-degree-of-freedom

system with equations of motion

with initial conditions

6.85 Consider the free-vibration equations of an undamped two-degree-of-freedom system:

with

a. Find the orthonormal eigenvectors using the mass normalized stiffness matrix.

b. Determine the principal coordinates of the system and obtain the modal equations.

6.86 For the two-degree-of-freedom system considered in Problem 6.85, find the free-vibration

response, and using the modal equations derived in Problem 6.85 for the follow-

ing initial conditions: 

6.87 Find the free-vibration response of the three-degree-of-freedom airplane model considered in

Problem 6.10 for the following data: 

Assume that the initial conditions correspond to that of a gust which results in 

6.88 The free-vibration solution of a two-degree-of-freedom system can be determined by solving

the equations

(E.1)

with using the initial conditions

If and are the natural frequencies and and are the mode shapes of the system

obtained from the solution of the characteristic equation

(E.2)

with (characteristic roots), the solution of Eq. (E.1), can be found as a

linear combination of different solutions as:

(E.3)x
!

(t): C1u
!

1e
-iv1t + C2u

!

1e
+iv1t + C3u

!

2e-iv2t
+ C4u

!

2e+iv2t

x
!
(t),s = ;v1, ;v2

[[m]s2
+ [k]]u

!
= 0

!

u
!

2u
!

1v2v1

x
!
(t = 0) = x

!

0 = b
x10

x20
r           and         x

!#
(t = 0) = x

!#

0 = b
x
#
10

x
#
20
r .

x
!
= b

x1(t)

x2(t)
r ,

[m]x
$
:

+ [k]x
!
= 0

!

x2(0) = 0.1 m, x3(0) = 0, x
#
1(0) = x

#
2(0) = x

#
3 = 0.

x1(0) = 0,

m = 5000 kg, l = 5 m, E = 7 GPa, I = 8 * 10-6 m4.

x1(0) = 2, x2(0) = 3, x
#
1(0) = x

#
2(0) = 0.

x2(t),x1(t)

[m] = B
1 0

0 4
R and [k] = B

   8 -2

-2    2
R

[m]x
$
:

+ [k]x
!
= 0

!

x
!
(0) = b

1

0
r , x

!#
(0) = b

0

1
r

2B
1 0

0 1
R  x

!$
(t) + 8B

2 -1

-1 2
R  x

!
(t) = 0

!
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648 CHAPTER 6 MULTIDEGREE-OF-FREEDOM SYSTEMS

where are constants. Show that the solution in Eq. (E.3) can be expressed,

in equivalent form, as

(E.4)

where and are constants.

Section 6.14 Forced Vibration of Undamped Systems Using Modal Analysis 

6.89 Determine the amplitudes of motion of the three masses in Fig. 6.40 when a harmonic force

is applied to the lower left mass with 

and using the mode superposition method.v = 10 rad/s

k = 1000 N/m, F0 = 5 N,m = 1 kg,F(t) = F0 sin vt

f2A1, A2, f1,

x
!
(t) = A1 sin(v1t + f1)u

!

1 + A2 sin(v2t + f2)u
!

2

Ci, i = 1, 2, 3, 4,

2m

k

kk

mm

F(t)

FIGURE 6.40

6.90 (a) Determine the natural frequencies and mode shapes of the torsional system shown in 

Fig. 6.11 for and (b) If a torque 

with and acts on the generator find the amplitude of

each component. Assume and 

6.91 Using the results of Problems 6.24 and 6.56, determine the modal matrix [X] of the system

shown in Fig. 6.29 and derive the uncoupled equations of motion.

6.92 An approximate solution of a multidegree-of-freedom system can be obtained using the mode

acceleration method. According to this method, the equations of motion of an undamped sys-

tem, for example, are expressed as

(E.1)

and is approximated using the first r modes as

(E.2)
x
!$

n*1

= [X]
n*r  

q
!$

r*1

(r 6 n)x
!$

x
!
= [k] 

-
 
1(F

!
- [m]x

!$
)

J0 = 1 kg-m2.Mt1 = Mt2 = 0, kt = 100 N-m/rad,

(J3),v = 100 rad/s,Mt0 = 500 N-m

Mt3(t) = Mt0 cos vt,J1 = J2 = J3 = J0.kt1 = kt2 = kt3 = kt

M06_RAO08193_5_SE_C06.qxd  8/21/10  4:51 PM  Page 648



PROBLEMS 649

Since Eq. (E.1) can be written as

(E.3)

Find the approximate response of the system described in Example 6.19 (without damping),

using the mode acceleration method with 

6.93 Determine the response of the system in Problem 6.51 to the initial conditions 

and Assume 

6.94 Show that the initial conditions of the generalized coordinates can be expressed in

terms of those of the physical coordinates in modal analysis as

6.95 A simplified model of a bicycle with its rider is shown in Fig. 6.41. Find the vertical motion

of the rider when the bicycle hits an elevated road, as shown in the figure.

6.96 Find the response of the triple pendulum shown in Fig. 6.10 for and

when a moment, in the form of a rectangular pulse of magnitude 0.1

N-m and duration 0.1 s, is applied along the direction of Assume that the pendulum is at

rest at 

6.97 Find the response of the spring-mass system shown in Fig. 6.6(a) for 

and with and when a force,

in the form of a rectangular pulse of magnitude 1000 N and duration 0.25 s, is applied to

mass in the direction of 

6.98 Consider a two-degree-of-freedom system with the equations of motion 

with

[m] = B
1 0

0 4
R , [k] = B

   8 -2

-2    2
R , and f

!
(t) = b

f1(t)

f2(t)
r

[m]x
$
:

+ [k]x
!
= f

!
(t)

x1.m1

m = 2 kgk = 104 N/mm3 = 3mm2 = 2m,m1 = m,k3 = 3k,

k2 = 2k,k1 = k,

t = 0.

u3.

mi = 1 kg (i = 1, 2, 3)

li = 0.5 m (i = 1, 2, 3)

q
!
(0) = [X]T[m]  x

!
(0),          q

!#
(0) = [X]T [m]  x

!#
(0)

xi(t)

qi(t)

k/m = 1.x
#
3(0) = -1.x

#
1(0) = 0, x2(0) = 2, x

#
2(0) = 1, x3(0) = 1,

x1(0) = 1,

r = 1.

x
!
(t) = [k] 

-
 
1F

!
(t) - a

r

i=1
 

1

vi
2

 X
!
(i)

 q
$

i(t)

([k] - vi
2[m])X

!
(i)

= 0
!
,

0.05 m

m1 * 80 kg
(rider)

x1

x2

m2 * 40 kg
(bicycle)

k1 * 100 kN/m
(seat)

k2 * 50 kN/m
(tires)

FIGURE 6.41
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650 CHAPTER 6 MULTIDEGREE-OF-FREEDOM SYSTEMS

a. Derive the modal equations for the forced-vibration response of the system.

b. Determine the conditions to be satisfied by and in order to influence both the

modes.

Section 6.15 Forced Vibration of Viscously Damped Systems

6.99 Find the steady-state response of the system shown in Fig. 6.17 with 

and Assume that the spring and the damper are connected to

a rigid wall at the right end. Use the mechanical impedance method described in Section 5.6

for solution.

6.100 An airplane wing, Fig. 6.42(a), is modeled as a twelve-degree-of-freedom lumped-mass sys-

tem as shown in Fig. 6.42(b). The first three natural mode shapes, obtained experimentally,

are given below.

c4k4v = 1 rad/s.F0 = 10 N,

F1(t) = F0 cos vt,m1 = m2 = m3 = 1 kg,c1 = c2 = c3 = c4 = 1 N-s/m,=  100 N/m,

k1 = k2 = k3 = k4

f2(t)f1(t)

Degrees of Freedom

Mode Shape 0 1 2 3 4 5 6 7 8 9 10 11 12

X
!
(1) 0.0 0.126 0.249 0.369 0.483 0.589 0.686 0.772 0.846 0.907 0.953 0.984 1.000

X
!
(2) 0.0 -  0.375 -  0.697 -  0.922 -1.017 -  0.969 -  0.785 -  0.491 -  0.127 0.254 0.599 0.860 1.000

X
!
(3) 0.0 0.618 1.000 1.000 0.618 0.000 -  0.618 -  1.000 -  1.000 -  0.618 0.000 0.618 1.000

1

x0

(a)

x0
x1 x2 x3 x4 x5 x6 x7 x8 x9 x10 x11 x12

(b)

2 3 4 5 6 7 8 9 10 11 12

FIGURE 6.42
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PROBLEMS 651

The natural frequencies corresponding to the three mode shapes are given by

and If the fuselage of the airplane is sub-

jected to a known vertical motion derive the uncoupled equations for determining the

dynamic response of the wing by approximating it as a linear combination of the first three

normal modes. Hint: The equation of motion of the airplane wing can be written, similar to

Eq. (3.64), as

or

where is a unit vector.

Section 6.17 MATLAB Problems

6.101 Using MATLAB, find the eigenvalues and eigenvectors of a system with mass and stiffness

matrices given in Example 6.13.

6.102 Using MATLAB, find and plot the free-vibration response of the system described in Prob-

lem 6.79 for the following data: 

6.103 Using the MATLAB function ode23, find and plot the forced-vibration response of the sys-

tem described in Problem 6.89.

6.104 Using the MATLAB function roots, find the roots of the following equation:

6.105 Find the forced-vibration response of a viscously damped three-degree-of-freedom system

with equations of motion:

Assume zero initial conditions.

6.106 Using the MATLAB function ode23, solve Problem 6.99 and plot and 

6.107 Using Program7.m, generate the characteristic polynomial corresponding to the matrix

6.108 Using Program8.m, find the steady-state response of a three-degree-of-freedom system with

the following data:

 zi = 0.001,  i = 1, 2, 3

 v1 = 25.076 rad/s,         v2 = 53.578 rad/s,        v3 = 110.907 rad/s

[A] = C

5 3 2

3 6 4

1 2 6

S

x3(t).x1(t), x2(t),

10C

1 0 0

0 2 0

0 0 3

S  x
!$
(t) + 5C

3 -1 0

-1 4 -3

0 -3 3

S  x
!#
(t) + 20C

7 -3 0

-3 5 -2

0 -2 2

S  x
!
(t) = c

5 cos 2t

0

0

s

f(x) = x12
- 2 = 0

x20 = 0.5, P = 100, l = 5, m = 2.

u
!
1 = 51, 0, 0, Á , 06T

[m]x
!$
+ [c]x

!#
+ [k]x

!
= -x0[m]u

!
1

[m]x
!$
+ [c](x

!#
- x

#
0u
!
1) + [k]( x

!
- x0u

!
1) = 0

!

x0(t),

v3 = 1100 rad/s.v1 = 225 rad/s, v2 = 660 rad/s,
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652 CHAPTER 6 MULTIDEGREE-OF-FREEDOM SYSTEMS

6.109 Find and plot the response, and of a system with the following equations of

motion:

(E.1)

using the initial conditions:

Solve the differential equations, (E.1), numerically using a suitable MATLAB function.

6.110 Write a computer program for finding the eigenvectors using the known eigenvalues in Eq.

(6.61). Find the mode shapes of Problem 6.57 using this program.

6.111 Write a computer program for generating the [m]-orthonormal modal matrix [X]. The pro-

gram should accept the number of degrees of freedom, the normal modes, and the mass

matrix as input. Solve Problem 6.64 using this program.

6.112 The equations of motion of an undamped system in SI units are given by

Using subroutine MODAL, find the steady-state response of the system when 

6.113 Find the response of the system in Problem 6.112 by varying between 1 and 10 rad/s in

increments of 1 rad/s. Plot the graphs showing the variations of magnitudes of the first peaks

of with respect to 

6.114 Find the natural frequencies of vibration and the corresponding mode shapes of the beam

shown in Fig. 6.9 using the mass matrix

and the flexibility matrix given by Eq. (E.4) of Example 6.6.

[m] = C

m1 0 0

0 m2 0

0 0 m3

S K mC

1 0 0

0 1 0

0 0 1

S

v.xi(t), i = 1, 2, 3,

v

v = 5 rad/s.

C

2 0 0

0 2 0

0 0 2

S  x
!$
+ C

16 -8 0

-8 16 -8
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DESIGN PROJECT 653

DESIGN PROJECT

6.115 A heavy machine tool mounted on the first floor of a building, Fig. 6.43(a), has been mod-

eled as a three-degree-of-freedom system as indicated in Fig. 6.43(b). (a) For 

and find the steady-state

vibration of the system using the mechanical impedance method described in Section 5.6.

(b) If the maximum response of the machine tool head has to be reduced by 25 percent,

how should the stiffness of the mounting be changed? (c) Is there any better way of

achieving the goal stated in (b)? Provide details.

(k2)

(x3)

F(t) = 1000 cos 60t lb,mh = 2 lb-sec2/in.,mb = 10 lb-sec2/in.,

mf = 50 lb-sec2/in.,c1 = c2 = c3 = 10 lb-sec/in.,k3 = 2000 lb/in.,k2 = 500 lb/in.,

k1 = 5000 lb/in.,

Wall

Mounting

Floor
(equivalent mass, mf)

Machine tool head
(equivalent mass, mh)

Machine tool
base
(equivalent
mass, mb)

F(t), cutting force

Machine tool
head

Base and
mounting

Floor

mh

k3 c3

x3(t)

F(t)

(a)

(b)

x2(t)

x1(t)

mb

k2 c2

mf

k1 c1

FIGURE 6.43
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John William Strutt, Lord Rayleigh (1842 1919), was an English physicist who
held the positions of professor of experimental physics at Cambridge University,
professor of natural philosophy at the Royal Institution in London, president of the
Royal Society, and chancellor of Cambridge University. His works in optics and
acoustics are well known, with Theory of Sound (1877) considered as a standard
reference even today. The method of computing approximate natural frequencies
of vibrating bodies using an energy approach has become known as Rayleigh s
method. (Courtesy of Applied Mechanics Reviews.)

C H A P T E R  7

Determination of
Natural Frequencies
and Mode Shapes

Chapter Outline

Several methods of determining the natural frequencies and mode shapes of multidegree-

of-freedom systems are outlined in this chapter. Specifically, Dunkerley s formula, Rayleigh s

method, Holzer s method, the matrix iteration method, and Jacobi s method are presented.

Derivation of Dunkerley s formula is based on the fact that higher natural frequencies of

most systems are large compared to their fundamental frequencies. It gives an approximate
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7.1 INTRODUCTION 655

value, always smaller than the exact value, of the fundamental natural frequency.

Rayleigh s method, which is based on Rayleigh s principle, also gives an approximate

value of the fundamental natural frequency, which is always larger than the exact value.

Proof is given of Rayleigh s quotient and its stationariness in the neighborhood of an

eigenvalue. It is also shown that the Rayleigh s quotient is never lower than the first eigen-

value and never higher than the highest eigenvalue. Use of the static deflection curve in

estimating the fundamental natural frequencies of beams and shafts using Rayleigh s

method is presented. Holzer s method, based on a trial-and-error scheme, is presented to

find the natural frequencies of undamped, damped, semidefinite, or branched translational

and torsional systems. The matrix iteration method and its extensions for finding the small-

est, highest, and intermediate natural frequencies are presented. A proof for the conver-

gence of the method to the smallest frequency is given. Jacobi s method, which finds all

the eigenvalues and eigenvectors of real symmetric matrices, is outlined. The standard

eigenvalue problem is defined and the method of deriving it from the general eigenvalue

problem, based on the Choleski decomposition method, is presented. Finally, the use of

MATLAB in finding the eigenvalues and eigenvectors of multidegree-of-freedom systems

is illustrated with several numerical examples.

Learning Objectives

After you have finished studying this chapter, you should be able to do the following:

* Find the approximate fundamental frequency of a composite system in terms of the

natural frequencies of component parts using Dunkerley s formula.

* Understand Rayleigh s principle, and the properties of Rayleigh s quotient, and com-

pute the fundamental natural frequency of a system using Rayleigh s method.

* Find the approximate natural frequencies of vibration and the modal vectors by using

Holzer s method.

* Determine the smallest, intermediate, and highest natural frequencies of a system by

using matrix iteration method and its extensions (using matrix deflation procedure).

* Find all the eigenvalues and eigenvectors of a multidegree-of-freedom system using

Jacobi s method.

* Convert a general eigenvalue problem into a standard eigenvalue problem based on

the Choleski decomposition method.

* Solve eigenvalue problems using MATLAB.

7.1 Introduction

In the preceding chapter, the natural frequencies (eigenvalues) and the natural modes

(eigenvectors) of a multidegree-of-freedom system were found by setting the characteristic

determinant equal to zero. Although this is an exact method, the expansion of the charac-

teristic determinant and the solution of the resulting nth-degree polynomial equation to

obtain the natural frequencies can become quite tedious for large values of n. Several ana-

lytical and numerical methods have been developed to compute the natural frequencies and
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656 CHAPTER 7 DETERMINATION OF NATURAL FREQUENCIES AND MODE SHAPES

mode shapes of multidegree-of-freedom systems. In this chapter, we shall consider

Dunkerley s formula, Rayleigh s method, Holzer s method, the matrix iteration method,

and Jacobi s method. Dunkerley s formula and Rayleigh s method are useful only for esti-

mating the fundamental natural frequency. Holzer s method is essentially a tabular method

that can be used to find partial or full solutions to eigenvalue problems. The matrix itera-

tion method finds one natural frequency at a time, usually starting from the lowest value.

The method can thus be terminated after finding the required number of natural frequen-

cies and mode shapes. When all the natural frequencies and mode shapes are required,

Jacobi s method can be used; it finds all the eigenvalues and eigenvectors simultaneously.

7.2 Dunkerley s Formula
Dunkerley s formula gives the approximate value of the fundamental frequency of a com-

posite system in terms of the natural frequencies of its component parts. It is derived by

making use of the fact that the higher natural frequencies of most vibratory systems are

large compared to their fundamental frequencies [7.1 7.3]. To derive Dunkerley s formula,

consider a general n-degree-of-freedom system whose eigenvalues can be determined by

solving the frequency equation, Eq. (6.63):

or

(7.1)

For a lumped-mass system with a diagonal mass matrix, Eq. (7.1) becomes

that is,

(7.2)8

¢ -  

1

v
2
+ a11m1 a12m2

Á a1nmn

a21m1 ¢ -  

1

v
2
+ a22m2

Á a2nmn

o o o

an1m1 an2m2
Á ¢ -  

1

v
2
+ annmn

8 = 0

5 -  

1

v
2

 E

1 0 Á 0

0 1 Á 0

o

0 0 Á 1

U + E

a11 a12 Á a1n

a21 a22 Á a2n

o

an1 an2 Á ann

U E

m1 0 Á 0

0 m2
Á 0

o

0 0 Á mn

U 5 = 0

`
-

1

v
2

 [I] + [a][m]
`
= 0

- [k] + v
2[m] = 0
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7.2 DUNKERLEY S FORMULA 657

The expansion of Eq. (7.2) leads to

(7.3)

This is a polynomial equation of n th degree in Let the roots of Eq. (7.3) be denoted

as Thus

(7.4)

Equating the coefficient of in Eqs. (7.4) and (7.3) gives

(7.5)

In most cases, the higher frequencies are considerably larger than the fun-

damental frequency and so

Thus, Eq. (7.5) can be approximately written as

(7.6)

This equation is known as Dunkerley s formula. The fundamental frequency given by

Eq. (7.6) will always be smaller than the exact value. In some cases, it will be more conve-

nient to rewrite Eq. (7.6) as

(7.7)

where denotes the natural frequency of a single-degree-

of-freedom system consisting of mass and spring of stiffness The

use of Dunkerley s formula for finding the lowest frequency of elastic systems is presented

in references [7.4, 7.5].

kii, i = 1, 2, Á , n.mi
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1/2
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Á - an-1,nan,n-1mn-1mn) +

1

v2
*

n-2

 + (a11a22m1m2 + a11a33m1m3 +
Á + an-1,n-1annmn-1mn

 +
1

v
2
*

n

- (a11m1 + a22m2 +
Á + annmn) +

1

v
2
*

n-1

M07_RAO08193_5_SE_C07.QXD  8/21/10  5:17 PM  Page 657



658 CHAPTER 7 DETERMINATION OF NATURAL FREQUENCIES AND MODE SHAPES

E X A M P L E  7 . 1
Fundamental Frequency of a Beam

Estimate the fundamental natural frequency of a simply supported beam carrying three identical

equally spaced masses, as shown in Fig. 7.1.

Solution: The flexibility influence coefficients (see Example 6.6) required for the application of

Dunkerley s formula are given by

(E.1)

Using Eq. (7.6) thus gives

This value can be compared with the exact value of the fundamental frequency, (see

Problem 6.54)

 4.9326 
A

EI

ml3

 v1 M 4.75375 
A

EI

ml3

 
1

v1
2
M +

3

256
+

1

48
+

3

256
*  

ml3

EI
= 0.04427 

ml3

EI

m1 = m2 = m3 = m,

a11 = a33 =
3

256
 

l3

EI
, a22 =

1

48
 

l3

EI

1Rayleigh s method for continuous systems is presented in Section 8.7

m
1

m
2

l

m
3

l

4

l

4

l

4

l

4

x
1
(t) x

2
(t) x

3
(t)

FIGURE 7.1 Beam carrying masses.

*

7.3 Rayleigh s Method
Rayleigh s method was presented in Section 2.5 to find the natural frequencies of single-

degree-of-freedom systems. The method can be extended to find the approximate value of

the fundamental natural frequency of a discrete system.1 The method is based on

Rayleigh s principle, which can be stated as follows [7.6]:

The frequency of vibration of a conservative system vibrating about an equilibrium posi-

tion has a stationary value in the neighborhood of a natural mode. This stationary value,

in fact, is a minimum value in the neighborhood of the fundamental natural mode.

We shall now derive an expression for the approximate value of the first natural frequency

of a multidegree-of-freedom system according to Rayleigh s method.
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7.3 RAYLEIGH S METHOD 659

The kinetic and potential energies of an n-degree-of-freedom discrete system can be

expressed as

(7.8)

(7.9)

To find the natural frequencies, we assume harmonic motion to be

(7.10)

where denotes the vector of amplitudes (mode shape) and represents the natural fre-

quency of vibration. If the system is conservative, the maximum kinetic energy is equal to

the maximum potential energy:

(7.11)

By substituting Eq. (7.10) into Eqs. (7.8) and (7.9), we find

(7.12)

(7.13)

By equating and we obtain2

(7.14)

The right-hand side of Eq. (7.14) is known as Rayleigh s quotient and is denoted as R(X
!

).

v
2
=

X
!
 
T[k]X

!

X
!

 
T[m]X

!

Vmax,Tmax

 Vmax =
1

2
 X
!
 
T[k]X

!

 Tmax =
1

2
 X
!
 
T[m]X

!
v

2

Tmax = Vmax

vX
!

x
!
= X

!

 cos vt

 V =
1

2
 x
:  T[k] x

:

 T =
1

2
 x
!# T[m]x

!#

2Equation (7.14) can also be obtained from the relation Premultiplying this equation by 

and solving the resulting equation gives Eq. (7.14).

X 

!

 
T[k]X

!
= v

2[m]X
!
.

7.3.1
Properties
of Rayleigh s
Quotient

As stated earlier, has a stationary value when the arbitrary vector is in the neigh-

borhood of any eigenvector To prove this, we express the arbitrary vector in terms

of the normal modes of the system, as

(7.15)

Then

(7.16) + c3
2X
!
(3)T

 [k]X
!
(3)

+ Á

 X
!
  

T [k]X
!
= c1

2 X
!
(1)T

 [k]X
!
(1)

+ c2
2X
!
(2)T

 [k]X
!
(2)

X
!
= c1X

!
(1)

+ c2X
!
(2)

+ c3X
!
(3)

+ Á

X
!
(i),

X
!

X
!
(r).

X
!

R(X
!
)
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660 CHAPTER 7 DETERMINATION OF NATURAL FREQUENCIES AND MODE SHAPES

and

(7.17)

as the cross terms of the form and are zero by the

orthogonality property. Using Eqs. (7.16) and (7.17) and the relation

(7.18)

the Rayleigh s quotient of Eq. (7.14) can be expressed as

(7.19)

If the normal modes are normalized, this equation becomes

(7.20)

If differs little from the eigenvector the coefficient will be much larger than the

remaining coefficients and Eq. (7.20) can be written as

(7.21)

Since where is a small number for all Eq. (7.21) gives

(7.22)

where represents an expression in of the second order or higher. Equation (7.22)

indicates that if the arbitrary vector differs from the eigenvector by a small quantity

of the first order, differs from the eigenvalue by a small quantity of the second

order. This means that Rayleigh s quotient has a stationary value in the neighborhood of an

eigenvector.
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7.3 RAYLEIGH S METHOD 661

The stationary value is actually a minimum value in the neighborhood of the funda-

mental mode, To see this, let in Eq. (7.21) and write

(7.23)

Since, in general, for Eq. (7.23) leads to

(7.24)

which shows that Rayleigh s quotient is never lower than the first eigenvalue. By proceed-

ing in a similar manner, we can show that

(7.25)

which means that Rayleigh s quotient is never higher than the highest eigenvalue. Thus

Rayleigh s quotient provides an upper bound for and a lower bound for vn
2.v1

2
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) vn
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2
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2

b 1 + a
i=2,  3, Á

 ¢
ci

c1

2

r

r = 1X
!
(1).

7.3.2
Computation of
the
Fundamental
Natural
Frequency

Equation (7.14) can be used to find an approximate value of the first natural frequency 

of the system. For this, we select a trial vector to represent the first natural mode and

substitute it on the right-hand side of Eq. (7.14). This yields the approximate value of 

Because Rayleigh s quotient is stationary, remarkably good estimates of can be obtained

even if the trial vector deviates greatly from the true natural mode Obviously, the

estimated value of the fundamental frequency is more accurate if the trial vector 

chosen resembles the true natural mode closely. Rayleigh s method is compared with

Dunkerley s and other methods in Refs. [7.7 7.9].

X
!
(1)

(X
!
)v1

X
!
(1).X

! v1
2

v1
2.

X
!
(1)X

! (v1)

E X A M P L E  7 . 2
Fundamental Frequency of a Three-Degree-of-Freedom System

Estimate the fundamental frequency of vibration of the system shown in Fig. 7.2. Assume that

and the mode shape is

X
!

= c

1

2

3

s

m1 = m2 = m3 = m, k1 = k2 = k3 = k,
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Solution: The stiffness and mass matrices of the system are

(E.1)

(E.2)

By substituting the assumed mode shape in the expression for Rayleigh s quotient, we obtain

(E.3)

(E.4) v1 = 0.4629 
A
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=
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FIGURE 7.2 Three-

degree-of-freedom

spring-mass system.
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This value is 4.0225 percent larger than the exact value of The exact fundamental

mode shape (see Example 6.10) in this case is

(E.5)

*

X
!
(1)

= c

1.0000

1.8019

2.2470

s

0.44502k/m.

7.3.3
Fundamental
Frequency of
Beams and
Shafts

Although the procedure outlined above is applicable to all discrete systems, a simpler

equation can be derived for the fundamental frequency of the lateral vibration of a beam or

a shaft carrying several masses such as pulleys, gears, or flywheels. In these cases, the sta-

tic deflection curve is used as an approximation of the dynamic deflection curve.

Consider a shaft carrying several masses, as shown in Fig. 7.3. The shaft is assumed to

have negligible mass. The potential energy of the system is the strain energy of the

deflected shaft, which is equal to the work done by the static loads. Thus

(7.26)

where is the static load due to the mass and is the total static deflection of mass

due to all the masses. For harmonic oscillation (free vibration), the maximum kinetic

energy due to the masses is

(7.27)

where is the frequency of oscillation. Equating and we obtain
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FIGURE 7.3 Shaft carrying masses.
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E X A M P L E  7 . 3
Fundamental Frequency of a Shaft with Rotors

Estimate the fundamental frequency of the lateral vibration of a shaft carrying three rotors (masses),

as shown in Fig. 7.3, with 

and The shaft is made of steel with a solid circular cross section of diameter 10 cm.

Solution: From strength of materials, the deflection of the beam shown in Fig. 7.4 due to a static

load P [7.10] is given by

(E.1)

(E.2)

Deflection Due to the Weight of At the location of mass (with and

in Eq. (E.1)):

(E.3)

At the location of (with and in Eq. (E.2)):

(E.4)

At the location of (with and in Eq. (E.2)):

(E.5)

Deflection Due to the Weight of At the location of (with and 

in Eq. (E.1)):
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x = 1 m, b = 9 m,m1m1:

w(x) = e

Pbx

6EIl
 (l2

- b2
- x2);  0 x a

-  

Pa(l - x)

6EIl
 [a2

+ x2
- 2lx]; a x l

l4 = 2 m.

m1 = 20 kg, m2 = 50 kg, m3 = 40 kg, l1 = 1 m, l2 = 3 m, l3 = 4 m,

a b

l

P

x

FIGURE 7.4 Beam under static load.
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7.3 RAYLEIGH S METHOD 665

At the location of (with and in Eq. (E.1)):

(E.7)

At the location of (with and in Eq. (E.2)):

(E.8)

Deflection Due to the Weight of At the location of (with and in

Eq. (E.1)):

(E.9)

At the location of (with and in Eq. (E.1)):

(E.10)

At the location of (with and in Eq. (E.1)):

(E.11)

The total deflections of the masses and are

Substituting into Eq. (7.28), we find the fundamental natural frequency:

(E.12)

For the shaft, and and hence Eq. (E.12)

gives

*

v = 28.4482 rad/s

I = p(0.1)4/64 = 4.90875 * 10-6 m4E = 2.07 * 1011 N/m2

 = 0.0282222EI

 v = b

9.81(20 * 4862.49 + 50 * 14839.26 + 40 * 9201.78)EI

20 * (4862.49)2
+ 50 * (14839.26)2

+ 40 * (9201.78)2
r

1/2

 w3 = w3 + w3 + w3
Ô
=

9201.78

EI

 w2 = w2 + w2 + w2
Ô
=

14839.26

EI

 w1 = w1 + w1 + w1
Ô
=

4862.49

EI

m3m1, m2,

w3
Ô
=

(40 * 9.81)(2)(8)

6EI(10)
 (100 - 4 - 64) =

3348.48

EI

l = 10 mx = 8 m, b = 2 m,m3

w2
Ô
=

(40 * 9.81)(2)(4)

6EI(10)
 (100 - 4 - 16) =

4185.6

EI

l = 10 mx = 4 m, b = 2 m,m2

w1
Ô
=

(40 * 9.81)(2)(1)

6EI(10)
 (100 - 4 - 1) =

1242.6

EI

l = 10 mx = 1 m, b = 2 m,m1m3:

w3 = -

(50 * 9.81)(4)(2)

6EI(10)
 [16 + 64 - 2(10)(8)] =

5232.0

EI

l = 10 ma = 4 m, x = 8 m,m3

w2 =

(50 * 9.81)(6)(4)

6EI(10)
 (100 - 36 - 16) =

9417.6

EI

l = 10 mx = 4 m, b = 6 m,m2
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7.4 Holzer s Method
Holzer s method is essentially a trial-and-error scheme to find the natural frequencies of

undamped, damped, semidefinite, fixed, or branched vibrating systems involving linear

and angular displacements [7.11, 7.12]. The method can also be programmed for computer

applications. A trial frequency of the system is first assumed, and a solution is found when

the assumed frequency satisfies the constraints of the system. This generally requires sev-

eral trials. Depending on the trial frequency used, the fundamental as well as the higher

frequencies of the system can be determined. The method also gives the mode shapes.

7.4.1
Torsional
Systems

Consider the undamped torsional semidefinite system shown in Fig. 7.5. The equations of

motion of the discs can be derived as follows:

(7.29)

(7.30)

(7.31)

Since the motion is harmonic in a natural mode of vibration, we assume that 

in Eqs. (7.29) to (7.31) and obtain

(7.32)

(7.33)

(7.34)

Summing these equations gives

(7.35)

Equation (7.35) states that the sum of the inertia torques of the semidefinite system must

be zero. This equation can be treated as another form of the frequency equation, and the

trial frequency must satisfy this requirement.

a
3

i=1

 v2
Ji®i = 0

 v2
J3®3 = kt2(®3 - ®2)

 v2
J2®2 = kt1(®2 - ®1) + kt2(®2 - ®3)

 v2
J1®1 = kt1(®1 - ®2)

®i cos(vt + f)

ui =

 J3u
 $

3 + kt2(u3 - u2) = 0

 J2u
 $

2 + kt1(u2 - u1) + kt2(u2 - u3) = 0

 J1u
 $

1 + kt1(u1 - u2) = 0

kt1

J1

J2

J3

kt2

Shaft 1 Shaft 2

u1
u2

u3

FIGURE 7.5 Torsional semidefinite

system.
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7.4 HOLZER S METHOD 667

In Holzer s method, a trial frequency is assumed, and is arbitrarily chosen as unity.

Next, is computed from Eq. (7.32), and then is found from Eq. (7.33). Thus we obtain

(7.36)

(7.37)

(7.38)

These values are substituted in Eq. (7.35) to verify whether the constraint is satisfied. If

Eq. (7.35) is not satisfied, a new trial value of is assumed and the process repeated.

Equations (7.35), (7.37), and (7.38) can be generalized for an n-disc system as follows:

(7.39)

(7.40)

Thus the method uses Eqs. (7.39) and (7.40) repeatedly for different trial frequencies. If the

assumed trial frequency is not a natural frequency of the system, Eq. (7.39) is not satisfied.

The resultant torque in Eq. (7.39) represents a torque applied at the last disc. This torque 

is then plotted for the chosen When the calculation is repeated with other values of the

resulting graph appears as shown in Fig. 7.6. From this graph, the natural frequencies of the

system can be identified as the values of at which The amplitudes 

corresponding to the natural frequencies are the mode shapes of the system.1, 2, Á , n)
®i  (i =Mt = 0.v

v,v.
Mt

 ®i = ®i-1 -
v

2

kti-1
+a

i-1

k=1
Jk®k* ,  i = 2, 3, Á , n

 a
n

i=1
 v2Ji®i = 0

v

 ®3 = ®2 -
v

2

kt2
 (J1®1 + J2®2)

 ®2 = ®1 -
v

2J1®1

kt1

 ®1 = 1

®3®2

®1v

Mt * Mt3

0.19 + 10
7

,0.63 + 10
7

0

w
2
 * 707.5

w
3
 * 1224.7w

1
 * 0

w

FIGURE 7.6 Resultant torque versus

frequency.

M07_RAO08193_5_SE_C07.QXD  8/21/10  5:18 PM  Page 667



668 CHAPTER 7 DETERMINATION OF NATURAL FREQUENCIES AND MODE SHAPES

Holzer s method can also be applied to systems with fixed ends. At a fixed end, the

amplitude of vibration must be zero. In this case, the natural frequencies can be found by

plotting the resulting amplitude (instead of the resultant torque) against the assumed fre-

quencies. For a system with one end free and the other end fixed, Eq. (7.40) can be used for

checking the amplitude at the fixed end. An improvement of Holzer s method is presented

in references [7.13, 7.14].

E X A M P L E  7 . 4
Natural Frequencies of a Torsional System

The arrangement of the compressor, turbine, and generator in a thermal power plant is shown in

Fig. 7.7. Find the natural frequencies and mode shapes of the system.

Solution: This system represents an unrestrained or free-free torsional system. Table 7.1 shows its

parameters and the sequence of computations. The calculations for the trial frequencies 

and 710 are shown in this table. The quantity denotes the torque to the right of Station 3Mt320, 700,

v = 0, 10,

Stiffness,
kt1 * 4 MN-m/rad

Stiffness,
kt2 * 2 MN-m/rad

Turbine
(J2 * 6 kg-m2)

Compressor
(J1 * 8 kg-m2)

Generator
(J3 * 4 kg-m2)

FIGURE 7.7 Free-free torsional system.

TABLE 7.1

Parameters 

of the System Quantity

Trial

1 2 3 Á 71 72

0 10 20 700 710

v
2 0 100 400 490000 504100

Station 1:

J1 = 8 ®1 1.0 1.0 1.0 1.0 1.0

kt1 = 4 * 106 Mt1 = v
2J1®1 0 800 3200 0.392E7 0.403E7

Station 2:

J2 = 6 ®2 = 1 -
Mt1

kt1

1.0 0.9998 0.9992 0.0200 -0.0082

kt2 = 2 * 106 Mt2 = Mt1 + v
2J2®2 0 1400 5598 0.398E7 0.401E7

Station 3:

J3 = 4 ®3 = ®2 -
Mt2

kt2

1.0 0.9991 0.9964 -1.9690 -2.0120

Kt3 = 0 Mt3 = Mt2 + v
2J3®3 0 1800 7192 0.119E6 -0.494E5
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7.4 HOLZER S METHOD 669

(generator), which must be zero at the natural frequencies. Figure 7.6 shows the graph of versus

Closely spaced trial values of are used in the vicinity of to obtain accurate values of the

first two flexible mode shapes, shown in Fig. 7.8. Note that the value corresponds to the rigid-

body rotation.

*

v = 0
Mt3 = 0vv.

Mt3

1.0 0.99

0

Compressor Turbine Generator

+1.0

+0.001

+2.0

+1.0

+2.0
w3 * 1224.7

w2 * 707.5

FIGURE 7.8 First two flexible modes.

7.4.2
Spring-Mass
Systems

Although Holzer s method has been extensively applied to torsional systems, the proce-

dure is equally applicable to the vibration analysis of spring-mass systems. The equations

of motion of a spring-mass system (see Fig. 7.9) can be expressed as

(7.41)

(7.42)

For harmonic motion, where is the amplitude of mass and

Eqs. (7.41) and (7.42) can be written as

(7.43)

(7.44)Á

 = -  v
2m1X1 + k2(X2 - X3)

 v2m2X2 = k1(X2 - X1) + k2(X2 - X3)

 v2m1X1 = k1(X1 - X2)

mi,Xixi(t) = Xi cos vt,

Á

 m2x 
$

2 + k1(x2 - x1) + k2(x2 - x3) = 0

 m1x 
$

1 + k1(x1 - x2) = 0

m1 m2

k1

X1 * 1

m3

k2

mn

kn+1

X2 X3 Xn

FIGURE 7.9 Free-free spring mass system.
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670 CHAPTER 7 DETERMINATION OF NATURAL FREQUENCIES AND MODE SHAPES

The procedure for Holzer s method starts with a trial frequency and the amplitude of

mass as Equations (7.43) and (7.44) can then be used to obtain the amplitudes

of the masses 

(7.45)

(7.46)

(7.47)

As in the case of torsional systems, the resultant force applied to the last (nth) mass can be

computed as follows:

(7.48)

The calculations are repeated with several other trial frequencies The natural frequen-

cies are identified as those values of that give for a free-free system. For this, it is

convenient to plot a graph between F and using the same procedure for spring-mass sys-

tems as for torsional systems.

7.5 Matrix Iteration Method

The matrix iteration method assumes that the natural frequencies are distinct and well sep-

arated such that The iteration is started by selecting a trial vector 

which is then premultiplied by the dynamical matrix [D]. The resulting column vector is

then normalized, usually by making one of its components equal to unity. The normalized

column vector is premultiplied by [D] to obtain a third column vector, which is normalized

in the same way as before and becomes still another trial column vector. The process is

repeated until the successive normalized column vectors converge to a common vector: the

fundamental eigenvector. The normalizing factor gives the largest value of 

that is, the smallest or the fundamental natural frequency [7.15]. The convergence of the

process can be explained as follows.

According to the expansion theorem, any arbitrary n-dimensional vector can

be expressed as a linear combination of the n orthogonal eigenvectors of the system

(7.49)

where are constants. In the iteration method, the trial vector is selected

arbitrarily and is therefore a known vector. The modal vectors although unknown, are

constant vectors because they depend upon the properties of the system. The constants ci

X
!
(i),

X
!

1c1, c2, Á , cn

X
!

1 = c1X
!
(1)

+ c2X
!
(2)

+ Á + cnX
!
(n)

X
!
(i), i = 1, 2, Á , n:

X
:

1

l = 1/v2

X
:

1,v1 6 v2 6
Á 6  vn.

v,

F = 0v

v.

F = a
n

i=1

 v2miXi

 Xi = Xi-1 -
v

2

ki-1

 +a
i-1

k=1

 mkXk* , i = 2, 3, Á , n

 X3 = X2 -
v

2

k2

 (m1X1 + m2X2)

 X2 = X1 -
v

2m1 X1

k1

m2, m3, Á , mi:

X1 = 1.m1

v
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7.5 MATRIX ITERATION METHOD 671

are unknown numbers to be determined. According to the iteration method, we premulti-

ply by the matrix [D]. In view of Eq. (7.49), this gives

(7.50)

Now, according to Eq. (6.66), we have

(7.51)

Substitution of Eq. (7.51) into Eq. (7.50) yields

(7.52)

where is the second trial vector. We now repeat the process and premultiply by [D]

to obtain, by Eqs. (7.49) and (6.66),

(7.53)

By repeating the process we obtain, after the rth iteration,

(7.54)

Since the natural frequencies are assumed to be a sufficiently large

value of r yields

(7.55)

Thus the first term on the right-hand side of Eq. (7.54) becomes the only significant one.

Hence we have

(7.56)

which means that the trial vector becomes identical to the fundamental modal

vector to within a multiplicative constant. Since

(7.57)X
!

r =
c1

v1
2(r-1)

 X
!
(1)

(r + 1)th

X
!

r+1 =
c1

v1
2r

 X
!
(1)

1

v1
2r
W

1

v2
2r
W Á W

1

vn
2r

v1 6 v2 6
Á 6 vn,

 =
c1

v1
2r

 X
!
(1)

+
c2

v2
2r

 X
!
(2)

+ Á +
cn

vn
2r

 X
!
(n)

 [D]X
!

r = X
!

r+1

 =
c1

v1
4
 X
!
(1)

+
c2

v2
4
 X
!
(2)

+ Á +
cn

vn
4
 X
!
(n)

 [D]X
!

2 = X
!

3

X
!

2X
!

2

 =
c1

v1
2
 X
!
(1)

+
c2

v2
2
 X
!
(2)

+ Á +
cn

vn
2
 X
!
(n)

 [D]X
!

1 = X
!

2

[D]X
!
(i)
= li[I]X

!
(i)
=

1

vi
2

 X
!
(i); i = 1, 2, Á , n

[D]X
!

1 = c1[D]X
!
(1)

+ c2[D]X
!
(2)

+ Á + cn[D]X
!
(n)

X
!

1
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672 CHAPTER 7 DETERMINATION OF NATURAL FREQUENCIES AND MODE SHAPES

the fundamental natural frequency can be found by taking the ratio of any two corre-

sponding components in the vectors and 

(7.58)

where and are the ith elements of the vectors and respectively.X
!

r+1,X
!

rXi, r+1Xi, r

v1
2
M

Xi, r

Xi, r+1

,  for any i = 1, 2, Á , n

X
!

r+1:X
!

r

v1

Discussion

1. In the above proof, nothing has been said about the normalization of the successive trial

vectors Actually, it is not necessary to establish the proof of convergence of the

method. The normalization amounts to a readjustment of the constants in

each iteration.

2. Although it is theoretically necessary to have for the convergence of the

method, in practice only a finite number of iterations suffices to obtain a reasonably

good estimate of 

3. The actual number of iterations necessary to find the value of to within a desired

degree of accuracy depends on how closely the arbitrary trial vector resembles the

fundamental mode and on how well and are separated. The required number

of iterations is less if is very large compared to 

4. The method has a distinct advantage in that any computational errors made do not

yield incorrect results. Any error made in premultiplying by [D] results in a vector

other than the desired one, But this wrong vector can be considered as a new trial

vector. This may delay the convergence but does not produce wrong results.

5. One can take any set of n numbers for the first trial vector and still achieve conver-

gence to the fundamental modal vector. Only in the unusual case in which the trial

vector is exactly proportional to one of the modes does the method fail

to converge to the first mode. In such a case, the premultiplication of by [D]

results in a vector proportional to itself.X
!
(i)

X
!
(i)

X
!
(i) (i Z 1)X

!

1

X
!

1

X
!

i+1.

X
!

i

v1.v2

v2v1X
!
(1)

X
!

1

v1

v1.

r: q

c1, c2, Á , cn

X
!

i.

7.5.1
Convergence
to the Highest
Natural
Frequency

To obtain the highest natural frequency and the corresponding mode shape or eigenvec-

tor by the matrix iteration method, we first rewrite Eq. (6.66) as

(7.59)

where is the inverse of the dynamical matrix [D] given by

(7.60)

Now we select any arbitrary trial vector and premultiply it by to obtain an

improved trial vector The sequence of trial vectors obtained by pre-

multiplying by converges to the highest normal mode It can be seen that the

procedure is similar to the one already described. The constant of proportionality in this

case is instead of 1/v2.v
2

X
!
(n).[D] 

-
 
1

X
!

i+1 (i = 1, 2, Á )X
!

2.

[D] 
-

 
1X

!

1

[D] 

-1
= [m]-1[k]

[D] 
-

 
1

[D] 
-1 X

!
= v

2[I]X
!
= v

2X
!

X
!
(n)

vn
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7.5 MATRIX ITERATION METHOD 673

7.5.2
Computation
of Intermediate
Natural
Frequencies

Once the first natural frequency (or the largest eigenvalue ) and the corre-

sponding eigenvector are determined, we can proceed to find the higher natural

frequencies and the corresponding mode shapes by the matrix iteration method. Before we

proceed, it should be remembered that any arbitrary trial vector premultiplied by [D]

would lead again to the largest eigenvalue. It is thus necessary to remove the largest eigen-

value from the matrix [D]. The succeeding eigenvalues and eigenvectors can be obtained

by eliminating the root from the characteristic or frequency equation

(7.61)

A procedure known as matrix deflation can be used for this purpose [7.16]. To find the

eigenvector by this procedure, the previous eigenvector is normalized with

respect to the mass matrix such that

(7.62)

The deflated matrix is then constructed as

(7.63)

where Once is constructed, the iterative scheme

(7.64)

is used, where is an arbitrary trial eigenvector.X
!
1

X
!
r+1 = [Di]X

!
r

[Di][D1] = [D].

[Di] = [Di-1] - li-1 X
!
(i-1)

 X
!
(i-1)T[m], i = 2, 3, Á , n

[Di]

X
!
(i-1)T[m]X

!
(i-1) = 1

X
!
(i-1)X

!
(i)

[D] - l[I] = 0

l1

X
!
(1)

l1 = 1/v1
2

v1

E X A M P L E  7 . 5
Natural Frequencies of a Three-Degree-of-Freedom System

Find the natural frequencies and mode shapes of the system shown in Fig. 7.2 for 

and by the matrix iteration method.

Solution: The mass and stiffness matrices of the system are given in Example 7.2. The flexibility

matrix is

(E.1)

and so the dynamical matrix is

(E.2)[k] 
-

 
1[m] =

m

k
 C

1 1 1

1 2 2

1 2 3

S

[a] = [k] 
-

 
1 =

1

k
 C

1 1 1

1 2 2

1 2 3

S

m1 = m2 = m3 = m

k1 = k2 = k3 = k
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The eigenvalue problem can be stated as

(E.3)

where

(E.4)

and

(E.5)

First Natural Frequency: By assuming the first trial eigenvector or mode shape to be

(E.6)

the second trial eigenvector can be obtained:

(E.7)

By making the first element equal to unity, we obtain

(E.8)

and the corresponding eigenvalue is given by

(E.9)

The subsequent trial eigenvector can be obtained from the relation

(E.10)

and the corresponding eigenvalues are given by

(E.11)l1 M X1, i+1

X
!

i+1 = [D]X
!

i

l1 M 3.0 or v1 M 0.5773 
A

k

m

X
!

2 = 3.0c

1.0000

1.6667

2.0000

s

X
!

2 = [D]X
!

1 = c

3

5

6

s

X
!

1 = c

1

1

1

s

l =
k

m
# 1

v
2

[D] = C

1 1 1

1 2 2

1 2 3

S

[D]X
!

= lX
!
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7.5 MATRIX ITERATION METHOD 675

where is the first component of the vector before normalization. The various trial

eigenvectors and eigenvalues obtained by using Eqs. (E.10) and (E.11) are shown in the table

below.

X
!

i+1X1, i+1

i with X1, i = 1X
!

i X
!

i+1 = [D]X
!

i L1 M X1, i*1 V1

1 c

1

1

1

s c

3

5

6

s 3.0 0.5773  
A

k

m

2 c

1.00000

1.66667

2.00000

s c

4.66667

8.33333

10.33333

s 4.66667 0.4629  

A
k

m

3 c

1.0000

1.7857

2.2143

s c

5.00000

9.00000

11.2143

s 5.00000 0.4472  
A

k

m

.

.

.

7 c

1.00000

1.80193

2.24697

s c

5.04891

9.09781

11.34478

s 5.04891 0.44504 
A

k

m

8 c

1.00000

1.80194

2.24698

s c

5.04892

9.09783

11.34481

s 5.04892 0.44504 
A

k

m

It can be seen that the mode shape and the natural frequency converged (to the fourth decimal place)

in eight iterations. Thus the first eigenvalue and the corresponding natural frequency and mode shape

are given by

(E.12)

Second Natural Frequency: To compute the second eigenvalue and the eigenvector, we must first

produce a deflated matrix:

(E.13)[D2] = [D1] - l1X
!
(1)X

!
(1)T[m]

 X
!
(1)

= c

1.00000

1.80194

2.24698

s

 l1 = 5.04892,  v1 = 0.44504 
A

k

m
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This equation, however, calls for a normalized vector satisfying Let the nor-

malized vector be denoted as

where is a constant whose value must be such that

(E.14)

from which we obtain Hence the first normalized eigenvector is

(E.15)

Next we use Eq. (E.13) and form the first deflated matrix:

(E.16)

Since the trial vector can be chosen arbitrarily, we again take

(E.17)

By using the iterative scheme

(E.18)

we obtain 

(E.19)X
!

2 = c

0.25763

0.05847

-  0.16201

s = 0.25763 c

1.00000

0.22695

-  0.62885

s

X
!

2

X
!

i+1 = [D2]X
!

i

X
!

1 = c

1

1

1

s

 = C

0.45684 0.02127 -  0.22048

0.02127 0.23641 -  0.19921

-  0.22048 -  0.19921 0.25768

S

 [D2] = C

1 1 1

1 2 2

1 2 3

S - 5.04892c

0.32799

0.59102

0.73699

s c

0.32799

0.59102

0.73699

s

T

C

1 0 0

0 1 0

0 0 1

S

X
!
(1)

= m-1/2
c

0.32799

0.59102

0.73699

s

a = 0.32799m-1/2.

 = a
2m(9.29591) = 1

 X
!
(1)T[m]X

!
(1)

= a
2m c

1.00000

1.80194

2.24698

s

T

C

1 0 0

0 1 0

0 0 1

S c

1.00000

1.80194

2.24698

s

a

X
!
(1)

= ac

1.00000

1.80194

2.24698

s

X
!
(1)T[m]X

!
(1)

= 1.X
!
(1)
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Hence can be found from the general relation

(E.20)

as 0.25763. Continuation of this procedure gives the results shown in the table below.

l2 M X1, i+1

l2

i X

!

i with X1, i + 1 X

!

i*1 + [D2]X
!

i L2 M X1, i*1 V2

1 c

1

1

1

s c

0.25763

0.05847

-  0.16201

s 0.25763 1.97016 
A

k

m

2 c

1.00000

0.22695

-  0.62885

s c

0.60032

0.20020

-  0.42773

s 0.60032 1.29065 
A

k

m

.

.

.

10 c

1.00000

0.44443

-  0.80149

s c

0.64300

0.28600

-  0.51554

s 0.64300 1.24708 
A

k

m

11 c

1.00000

0.44479

-  0.80177

s c

0.64307

0.28614

-  0.51569

s 0.64307 1.24701 
A

k

m

Thus the converged second eigenvalue and the eigenvector are

(E.21)

Third Natural Frequency: For the third eigenvalue and the eigenvector, we use a similar procedure.

The detailed calculations are left as an exercise to the reader. Note that before computing the deflated

matrix we need to normalize by using Eq. (7.62), which gives

(E.22)

*

X
!
(2)

= m-1/2
c

0.73700

0.32794

-  0.59102

s

X
!
(2)[D3],

X
!
(2)

= c

1.00000

0.44496

-  0.80192

s

 l2 = 0.64307, v2 = 1.24701 
A

k

m
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7.6 Jacobi s Method

The matrix iteration method described in the preceding section produces the eigenvalues

and eigenvectors of matrix [D] one at a time. Jacobi s method is also an iterative method

but produces all the eigenvalues and eigenvectors of [D] simultaneously, where

is a real symmetric matrix of order The method is based on a theorem

in linear algebra stating that a real symmetric matrix [D] has only real eigenvalues and that

there exists a real orthogonal matrix [R] such that is diagonal [7.17]. The

diagonal elements are the eigenvalues, and the columns of the matrix [R] are the eigenvec-

tors. According to Jacobi s method, the matrix [R] is generated as a product of several rota-

tion matrices [7.18] of the form

(7.65)

where all elements other than those appearing in columns and rows i and j are identical

with those of the identity matrix [I]. If the sine and cosine entries appear in positions (i, i),

(i, j), (j, i), and (j, j), then the corresponding elements of can be computed as

follows:

(7.66)

(7.67)

(7.68)

If is chosen to be

(7.69)

then it makes Thus each step of Jacobi s method reduces a pair of off-

diagonal elements to zero. Unfortunately, in the next step, while the method reduces a new

pair of zeros, it introduces nonzero contributions to formerly zero positions. However, suc-

cessive matrices of the form

[R2]T[R1]
T[D][R1][R2],  [R3]

T[R2]T[R1]
T[D][R1][R2][R3], Á

dij = d ji = 0.

tan 2u = ¢

2dij

dii - djj

u

 d jj = dii sin2 u -  2dij sin u cos u + djj cos2 u

 d ij = dji = (djj - dii) sin u cos u + dij( cos2 u -  sin2 u)

 d ii = dii cos2 u + 2dij sin u cos u + djj sin2 u

[R1]
T[D][R1]

[R1]
n *  n

= H

1 0

0 1

cos u -  sin u

sin u cos u

1

X 

 

ith row

jth row

jth columnith column

[R]T[D][R]

n * n.[D] = [dij]
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7.6 JACOBI S METHOD 679

converge to the required diagonal form; the final matrix [R], whose columns give the

eigenvectors, then becomes

(7.70)[R] = [R1][R2][R3] Á

E X A M P L E  7 . 6
Eigenvalue Solution Using Jacobi Method

Find the eigenvalues and eigenvectors of the matrix

using Jacobi s method.

Solution: We start with the largest off-diagonal term, in the matrix [D] and try to reduce it

to zero. From Eq. (7.69),

Next we try to reduce the largest off-diagonal term of namely, to zero.

Equation (7.69) gives

 [D ] = [R2]T[D¿][R2] = C

0.5133313 0.1632584 0.0

0.1632584 0.4384472 0.0566057

0.0 0.0566057 5.0482211

S

 [R2] = C

 0.9448193 0.0 0.3275920

 0.0 1.0 0.0

-  0.3275920 0.0 0.9448193

S

 u2 =
1

2
 tan-1

¢
2d13

d11 - d33

=
1

2
 tan-1 ¢

2.8072352

1.0 - 4.5615525
= -  19.122686°

d13 = 1.4036176[D ]

 [D¿] = [R1]
T[D][R1] = C

1.0 0.1727932 1.4036176

0.1727932 0.4384472 0.0

1.4036176 0.0 4.5615525

S

 [R1] = C

1.0 0.0 0.0

0.0 0.7882054 0.6154122

0.0 -  0.6154122 0.7882054

S

 u1 =
1

2
 tan-1 ¢

2d23

d22 - d33

=
1

2
 tan-1 ¢

4

2 - 3
= -  37.981878°

d23 = 2,

[D] = C

1 1 1

1 2 2

1 2 3

S
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The largest off-diagonal element in is can be obtained from Eq. (7.69) as

Assuming that all the off-diagonal terms in are close to zero, we can stop the process here. The

diagonal elements of give the eigenvalues (values of ) as 0.6433861, 0.3083924, and

5.0482211. The corresponding eigenvectors are given by the columns of the matrix [R], where

The iterative process can be continued for obtaining a more accurate solution. The present eigenval-

ues can be compared with the exact values: 0.6431041, 0.3079786, and 5.0489173.

*

7.7 Standard Eigenvalue Problem
In the preceding chapter, the eigenvalue problem was stated as

(7.71)

which can be rewritten in the form of a standard eigenvalue problem [7.19] as

(7.72)

where

(7.73)

and

(7.74)l =
1

v
2

[D] = [k] 
-

 
1[m]

[D] X
!
= lX

!

[k]X
!
= v

2[m]X
!

[R] = [R1][R2][R3] = C

0.7389969 -  0.5886994 0.3275920

0.3334301 0.7421160 0.5814533

-  0.5854125 -  0.3204631 0.7447116

S

1/v2[D ]

[D ]

 [D ] = [R3]
T[D ][R3] = C

0.6433861 0.0 0.0352699

0.0 0.3083924 0.0442745

0.0352699 0.0442745 5.0482211

S

 [R3] = C

0.7821569 -  0.6230815 0.0

0.6230815  0.7821569 0.0

0.0  0.0 1.0

S

 u3 =
1

2
 tan-1 ¢

2d12

d11 - d22

=
1

2
 tan-1 ¢

0.3265167

0.5133313 - 0.4384472
= 38.541515°

u3d12 = 0.1632584.[D ]
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In general, the matrix [D] is nonsymmetric, although the matrices [k] and [m] are both sym-

metric. Since Jacobi s method (described in Section 7.6) is applicable only to symmetric

matrices [D], we can adopt the following procedure [7.18] to derive a standard eigenvalue

problem with a symmetric matrix [D].

Assuming that the matrix [k] is symmetric and positive definite, we can use Choleski

decomposition (see Section 7.7.1) and express [k] as

(7.75)

where [U] is an upper triangular matrix. Using this relation, the eigenvalue problem of Eq.

(7.71) can be stated as

(7.76)

Premultiplying this equation by we obtain

(7.77)

By defining a new vector as

(7.78)

Eq. (7.77) can be written as a standard eigenvalue problem

(7.79)

where

(7.80)

Thus, to formulate [D] according to Eq. (7.80), we first decompose the symmetric matrix [k]

as shown in Eq. (7.75), find and as outlined in the next section,

and then carry out the matrix multiplication as stated in Eq. (7.80). The solution of the eigen-

value problem stated in Eq. (7.79) yields and We then apply inverse transformation

and find the desired eigenvectors:

(7.81)X
!
(i)

= [U] 
-1Y

!
(i)

Y
!
(i).li

([U]T)-1 = ([U] 
-1)T[U] 

-1

[D] = ([U]T)-1[m][U] 
-1

[D]Y
!
= lY

!

Y
!

= [U]X
!

Y
!

l[U]X
!

= ([U]T)-1[m]X
!
= ([U]T)-1[m][U] 

-1[U]X
!

([U]T)-1,

l[U]T[U]X
!
= [m]X

!

[k] = [U]T[U]

7.7.1
Choleski
Decomposition

Any symmetric and positive definite matrix [A] of order can be decomposed

uniquely [7.20]:

(7.82)[A] = [U]T[U]

n * n
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where [U] is an upper triangular matrix given by

(7.83)

with

(7.84)

Inverse of the Matrix [U]. If the inverse of the upper triangular matrix [U] is denoted as

the elements can be determined from the relation

(7.85)

which gives

(7.86)

Thus the inverse of [U] is also an upper triangular matrix.

 aij = 0,  i 7 j

 aij =
-1

uii

 ¢ a
j

k= i+1

 uikakj ,  i 6 j

 aii =
1

uii

[U][U] 
-

 
1 = [I]

aij[aij],

 uij = 0,  i 7 j

 uii = ¢aii - a
i-1

k=1

 uki
2

1/2

, i = 2, 3, Á , n

 uij =
1

uii

 ¢aij - a
i-1

k=1

 ukiukj ,  i = 2, 3, Á , n and j = i + 1, i + 2, Á , n

 u1j =
a1j

u11

, j = 2, 3, Á , n

 u11 = (a11)
1/2

[U] = E

u11 u12 u13
Á u1n

0 u22 u23
Á u2n

0 0 u33
Á u3n

o

0 0 0 Á unn

U

E X A M P L E  7 . 7
Decomposition of a Symmetric Matrix

Decompose the matrix

into the form of Eq. (7.82).

[A] = C

5 1 0

1 3 2

0 2 8

S
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Solution: Equation (7.84) gives

where

Since for we have

*

[U] = C

2.2360680 0.4472136 0.0

0.0 1.6733201 1.1952286

0.0 0.0 2.5634799

S

i 7 j,uij = 0

 u33 = (8 - 02
- 1.19522862)1/2

= 2.5634799

 u23 = (a23 - u12u13)/u22 = (2 - 0.4472136 * 0)/1.6733201 = 1.1952286

 u33 = [a33 - u13
2
- u23

2 ]1/2

 u22 = [a22 - u12
2 ]1/2

= (3 - 0.44721362)1/2
= 1.6733201

 u13 = a13/u11 = 0

 u12 = a12/u11 = 1/2.236068 = 0.4472136

 u11 = 2a11 = 25 = 2.2360680

7.7.2
Other Solution
Methods

Several other methods have been developed for finding the numerical solution of an eigen-

value problem [7.18, 7.21]. Bathe and Wilson [7.22] have done a comparative study of some

of these methods. Recent emphasis has been on the economical solution of large eigenprob-

lems [7.23, 7.24]. The estimation of natural frequencies by the use of Sturm sequences is

presented in references [7.25] and [7.26]. An alternative way to solve a class of lumped

mechanical vibration problems using topological methods is presented in reference [7.27].

7.8 Examples Using MATLAB

E X A M P L E  7 . 8
Solution of an Eigenvalue Problem

Using MATLAB, find the eigenvalues and eigenvectors of the matrix

Solution:

>> A=[3 1 0; 2 4 3; 0 1 1]

A =

3 1 0

2 4 3

0 1 1

>> [V, D] = eig (A)

[A] = C

3 -1 0

-2 4 -3

0 -1 1

S
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V =

0.3665 0.8305 0.2262

0.9080 0.4584 0.6616

0.2028 0.3165 0.7149

D =

5.4774 0 0

0 2.4481 0

0 0 0.0746

>>

*

E X A M P L E  7 . 9
Using a Program for Jacobi s Method to Solve an Eigenvalue Problem

Develop a general program, called Program9.m, to implement Jacobi s method to find the eigen-

values and eigenvectors of a symmetric matrix. Use the program to find the eigenvalues and eigen-

vectors of the matrix

Solution: Program9.m is developed to accept the following data:

of the matrix

specification, a small quantity on the order of 

number of iterations permitted

The program gives the eigenvalues and eigenvectors of the matrix d.

>> program9

Eigenvalue solution by Jacobi Method

Given matrix

1.00000000e+000 1.00000000e+000 1.00000000e+000

1.00000000e+000 2.00000000e+000 2.00000000e+000

1.00000000e+000 2.00000000e+000 3.00000000e+000

Eigen values are

5.04891734e+000 6.43104132e 001 3.07978528e 001

Eigen vectors are

First Second Third

3.27984948e 001 7.36976229e 001 5.91009231e 001

5.91009458e 001 3.27985278e 001 7.36975900e 001

7.36976047e 001 5.91009048e 001 3.27985688e 001

*

 itmax = maximum

10-5 eps = convergence

 d = given matrix of order n * n

 n = order

[A] = C

1 1 1

1 2 2

1 2 3

S

E X A M P L E  7 . 1 0
Program for an Eigenvalue Solution Using the Matrix Iteration Method

Develop a general computer program, called Program10.m, to implement the matrix iteration

method. Use the program to find the eigenvalues and eigenvectors of the matrix [A] given in

Example 7.9.
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Solution: Program10.m is developed to accept the following input data:

of the matrix d

matrix of order 

guess vector of order n

of eigenvalues and eigenvectors to be determined

matrix of order 

requirement, a small quantity on the order of 

The program gives the following output:

of size nvec, containing the computed natural frequencies

of size containing the computed eigenvectors (columns)

>> program10

Solution of eigenvalue problem by 

matrix iteration method

Natural frequencies:

4.450424e 001 1.246983e+000 1.801938e+000

Mode shapes (Columnwise):

1.000000e+000 1.000000e+000 1.000000e+000

1.801937e+000 4.450328e 001 1.247007e+000

2.246979e+000 8.019327e 001 5.549798e 001

*

n * nvec, eig = array

 freq = array

10-5 eps = convergence

n * n xm = mass

 nvec = number

 xs = initial

n * n d = given

 n = order

E X A M P L E  7 . 1 1
Program for Solving a General Eigenvalue Problem

Develop a general program, called Program11.m , to solve a general eigenvalue problem. Use the

program to find the solution of the general eigenvalue problem

where

Solution: Program11.m is developed to solve the problem by first converting it to

the form of a special eigenvalue problem where [D] is equal to and

The program is developed to accept the following input data:

of the problem (size of mass and stiffness matrices)

matrix of size 

matrix of size nd * nd bm = mass

nd * nd bk = stiffness

 nd = size

[k] = [U]T[U].

([U]T) 
-

 
1[m][U] 

-
 
1[D]Y

!
=

1
v

2 [I]Y
!
,

[k]X
!

= v
2[m]X

!

[k] = C

2 -1 0

-1 2 -1

0 -1 1

S , [m] = C

1 0 0

0 1 0

0 0 1

S

[k]X
!

= v
2[m]X

!
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The program gives the upper triangular matrix of [bk], the inverse of the upper triangular matrix [ui],

the matrix [uti] [bm] [ui] where [uti] is the transpose of [ui], and the eigenvalues and eigenvectors of

the problem.

>> program11

Upper triangular matrix [U]:

1.414214e+000 7.071068e 001 0.000000e+000

0.000000e+000 1.224745e+000 8.164966e 001

0.000000e+000 0.000000e+000 5.773503e 001

Inverse of the upper triangular matrix:

7.071068e 001 4.082483e 001 5.773503e 001

0.000000e+000 8.164966e 001 1.154701e+000

0.000000e+000 0.000000e+000 1.732051e+000

Matrix [UMU] = [UTI] [M] [UI]:

5.000000e 001 2.886751e 001 4.082483e 001

2.886751e 001 8.333333e 001 1.178511e+000

4.082483e 001 1.178511e+000 4.666667e+000

Eigenvectors:

5.048917e+000 6.431041e 001 3.079785e 001

Eigenvectors (Columnwise):

7.369762e 001 5.910090e 001 3.279853e 001

1.327985e+000 2.630237e 001 4.089910e 001

1.655971e+000 4.739525e 001 1.820181e 001

*

CHAPTER SUMMARY

The determination of natural frequencies (eigenvalues) and mode shapes (eigenvectors) of multidegree-

of-freedom systems is a tedious procedure. Because the fundamental (lowest) natural frequency and

the corresponding mode shape are most important in many applications, we presented several meth-

ods of finding the approximate value of the fundamental frequency and the mode shape. We dis-

cussed Dunkerley s formula, Rayleigh s method, Holzer s method, and matrix iteration method. We

also outlined the extension on the matrix iteration method to find the intermediate as well as the

highest natural frequency and the mode shapes. For finding all the eigenvalues and eigenvectors

simultaneously, we discussed Jacobi s method. Since most mathematical methods require the eigen-

value problem in standard form, we outlined a method of converting a general eigenvalue problem

into the standard form. Finally, we presented the solution of eigenvalue problem of multidegree-of-

freedom systems using MATLAB.

Now that you have finished this chapter, you should be able to answer the review questions and

solve the problems given below.
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7.25 G. Longbottom and K. F. Gill, The estimation of natural frequencies by use of Sturm

sequences,  International Journal of Mechanical Engineering Education, 1976, Vol. 4,

pp. 319 329.

7.26 K. K. Gupta, Solution of eigenvalue problems by Sturm sequence method,  International

Journal for Numerical Methods in Engineering, 1972, Vol. 4, pp. 379 404.

7.27 W. K. Chen and F. Y. Chen, Topological analysis of a class of lumped vibrational systems,

Journal of Sound and Vibration, 1969, Vol. 10, pp. 198 207.

REVIEW QUESTIONS

7.1 Give brief answers to the following:

1. Name a few methods for finding the fundamental natural frequency of a multidegree-of-

freedom system.

2. What is the basic assumption made in deriving Dunkerley s formula?

3. What is Rayleigh s principle?

4. State whether we get a lower bound or an upper bound to the fundamental natural fre-

quency if we use (a) Dunkerley s formula and (b) Rayleigh s method.

5. What is Rayleigh s quotient?

6. What is the basic principle used in Holzer s method?

7. What is the matrix iteration method?

8. Can we use any trial vector in the matrix iteration method to find the largest natural

frequency?

9. Using the matrix iteration method, how do you find the intermediate natural frequencies?

10. What is the difference between the matrix iteration method and Jacobi s method?

11. What is a rotation matrix? What is its purpose in Jacobi s method?

12. What is a standard eigenvalue problem?

13. What is the role of Choleski decomposition in deriving a standard eigenvalue problem?

14. How do you find the inverse of an upper triangular matrix?

7.2 Indicate whether each of the following statements is true or false:

1. The fundamental frequency given by Durkerley s formula will always be larger than the

exact value.

2. The fundamental frequency given by Rayleigh s method will always be larger than the

exact value.

3. is a standard eigenvalue problem.

4. is a standard eigenvalue problem.

5. Jacobi s method can find the eigenvalues of only symmetric matrices.

6. Jacobi s method uses rotation matrices.

7. The matrix iteration method requires the natural frequencies to be distinct and well

separated.

8. In the matrix iteration method, any computational error will not yield incorrect results.

9. The matrix iteration method will never fail to converge to higher frequencies.

10. When Rayleigh s method is used for a shaft carrying several rotors, the static deflection

curve can be used as the appropriate mode shape.

11. Rayleigh s method can be considered to be same as the conservation of energy for a

vibrating system.

[A]X
!

= l[I][B]X
!

[A]X
!

= l[B]X
!

X1
:
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7.3 Fill in each of the following blanks with the appropriate word:

1. Any symmetric positive definite matrix [A] can be decomposed as 

where [U] is _____ triangular matrix.

2. The method of decomposing a symmetric positive definite matrix [A] as 

is known as _____ method.

3. Each step of Jacobi s method reduces a pair of off-diagonal elements to _____.

4. The _____ theorem permits the representation of any vector as a linear combination of

the eigenvectors of the system.

5. If the matrix iteration method converges to the smallest eigenvalue with 

the method converges to the _____ eigenvalue with 

6. Rayleigh s quotient provides _____ bound to and _____ bound to 

7. Rayleigh s quotient has a stationary value in the neighborhood of an _____.

8. For a shaft carrying masses Rayleigh s method gives the natural frequency as

where denote the _____ deflections of respectively.

9. Holzer s method is basically a _____ method.

10. _____ method is more extensively applied to torsional systems, although the method is

equally applicable to linear systems.

11. The computation of higher natural frequencies, based on the matrix iteration method,

involves a process known as matrix _____.

7.4 Select the most appropriate answer out of the choices given:

1. When the trial vector

is used for the solution of the eigenvalue problem,

the next trial vector, given by the matrix iteration method isX
!
(2),

C

1 1 2

1 2 2

1 2 3

S  X
!
= l X

!

X
!
(1)

= c

1

1

1

s

m1, m2, Á ,w1, w2, Á

v = b
g(m1w1 + m2w2 +

Á )

m1w1
2
+ m2w2

2 
+ Á

r

1/2

m1, m2, Á ,

vn
2.v1

2

[D] 
-

 
1X
!
= mX

!
.

[D]X
!

= lX
!

,

[A] = [U]T[U]

[A] = [U]T[U],

a. b. c. c

3

3

3

sc

1

1

1

sc

3

5

6

s

2. For a semidefinite system, the final equation in Holzer s method denotes the

a. amplitude at the end as zero

b. sum of inertia forces as zero

c. equation of motion
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3. Dunkerley s formula is given by

a.

b.

c.

4. Rayleigh s quotient is given by

1

v1
2
L k11m1 + k22m2 +   

Á + knnmn

1

v1
2
L a11m1 + a22m2 +   

Á + annmn

v1
2
L a11m1 + a22m2 +   

Á + annmn

PROBLEMS

Section 7.2 Dunkerley s Formula

7.1 Estimate the fundamental frequency of the beam shown in Fig. 6.9 using Dunkerley s formula

for the following data: (a) and (b) 

7.2 Find the fundamental frequency of the torsional system shown in Fig. 6.11, using Dunker-

ley s formula for the following data: (a) and (b)

kt3 = 3kt.kt2 = 2kt,kt1 = kt,J3 = 3J0;J2 = 2J0,J1 = J0,

J1 = J2 = J3 = J0; kt1 = kt2 = kt3 = kt;

m1 = m3 = m, m2 = 5m.m1 = m3 = 5m, m2 = m

a. b. c.

X
!
 
T[k]X

!

#

X
!

 
T[m]X

!#
X
!
 
T[m]X

!

X
!

 
T[k]X

!
X
!
 
T[k]X

!

X
!

 
T[m]X

!

5. Rayleigh s quotient satisfies the following relation:

a. b. c. R(X
!
) Ú v1

2R(X
!
) Ú vn

2R(X
!
) v1

2

6. For a vibrating system with and the mode shape

closest to the fundamental mode, according to the Rayleigh s quotient,

is given byR(X
!
) =

X
!
 
T[k]X

!

X
!

 
T[m]X

! ,

[m] = c
1 0

0 1
d ,[k] = c

2 -1

-1 2
d

a. b. c. e
-1

   1
fe

  1

-1
fX

!

= e
1

1
f

7.5 Match the items in the two columns below:

1. Dunkerley s formula

2. Rayleigh s method

3. Holzer s method

4. Matrix iteration method

5. Jacobi s method

a. Finds the natural frequencies and mode shapes of

the system, one at a time, using several trial values

for each frequency.

b. Finds all the natural frequencies using trial vectors

and matrix deflation procedure.

c. Finds all the eigenvalues and eigenvectors simulta-

neously without using trial vectors.

d. Finds the approximate value of the fundamental

frequency of a composite system.

e. Finds the approximate value of the fundamental

frequency of a system that is always larger than the

true value.
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7.3 Estimate the fundamental frequency of the shaft shown in Fig. 7.3, using Dunkerley s for-

mula for the following data: 

7.4 The natural frequency of vibration, in bending, of the wing of a military aircraft is found to

be 20 Hz. Find the new frequency of bending vibration of the wing when a weapon, weigh-

ing 2000 lb, is attached at the tip of the wing, as shown in Fig. 7.10. The stiffness of the wing

tip, in bending, is known to be 50,000 lb/ft.

m1 = m, m2 = 2m, m3 = 3m, l1 = l2 = l3 = l4 = l/4.

Bending axis

FIGURE 7.10

7.5 In an overhead crane (see Fig. 7.11) the trolley weighs ten times the weight of the girder.

Using Dunkerley s formula, estimate the fundamental frequency of the system.

l

2

Trolley

Girder

l

2

FIGURE 7.11

7.6 Using Dunkerley s formula, determine the fundamental natural frequency of the stretched

string system shown in Fig. 5.33 with and 

7.7* Design a minimum-weight tubular section for the shaft shown in Fig. 7.3 to achieve a funda-

mental frequency of vibration of 0.5 Hz. Assume 

and 

7.8 A uniform simply supported beam carries two masses and with as

shown in Fig. 7.12. Find the fundamental natural frequency of the beam using Dunkerley s

method.

m2 = 3m 1m2m 1

E = 2.07 * 1011 N/m2.l4 = 2 m,l3 = 4 m,l1 = 1 m, l2 = 3 m,

m3 = 40 kg,m2 = 50 kg,m1 = 20 kg,

l1 = l2 = l3 = l.m1 = m2 = m

*The asterisk denotes a problem with no unique answer.
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l

3

l

3

l

3

m
1

m
2

FIGURE 7.12

h
2

k
1

k
1

h
1

k
2

x
1

k
2

m
2

m
1

x
2

FIGURE 7.14

l

3

l

3

l

3

m
1

m
2

FIGURE 7.13

Section 7.3 Rayleigh s Method

7.10 Using Rayleigh s method, determine the first natural frequency of vibration of the system

shown in Fig. 7.2. Assume and 

7.11 Using Rayleigh s method, find the fundamental natural frequency of the torsional system

shown in Fig. 6.11. Assume that and 

7.12 Using Rayleigh s method, solve Problem 7.6.

7.13 Using Rayleigh s method, determine the fundamental natural frequency of the system shown

in Fig. 5.33 when 

7.14 A two-story shear building is shown in Fig. 7.14 in which the floors are assumed to be rigid.

Using Rayleigh s method, compute the first natural frequency of the building for m1 = 2m,

m1 = m, m2 = 5m, l1 = l2 = l3 = l.

kt1 = kt2 = kt3 = kt.J1 = J0, J2 = 2J0, J3 = 3J0,

m1 = m, m2 = 2m, m3 = 3m.k1 = k, k2 = 2k, k3 = 3k,

7.9 A uniform fixed-fixed beam carries two masses and with as shown in

Fig. 7.13. Find the fundamental natural frequency of the beam using Dunkerley s method.

m2 = m 1m2m 1
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and Assume the first mode configuration to be

the same as the static equilibrium shape due to loads proportional to the floor weights.

7.15 Prove that Rayleigh s quotient is never higher than the highest eigenvalue.

7.16 Figure 7.15 shows a steel stepped cantilever beam. The steps have square cross sections of

size 4 in. in. and each with a length of 50 in. Assuming the Young s mod-

ulus as psi and the unit weight as for the material of the

beam, determine the fundamental natural frequency of bending vibration of the beam using

Rayleigh s method. Assume the deflection of the beam as

where C is a constant.

y(x) = C a1 - cos 

px

2l
b

g = 0.283 lbf/in.3E = 30 * 106
2 in. * 2 in.* 4

k1 = k2 = 3EI/h3.m2 = m, h1 = h2 = h,

l
2
* 50 in.

l
2
* 50 in.

Cross section: 
4 in. + 4 in. Cross section: 

2 in. + 2 in.

y(x)

O x

FIGURE 7.15

xO

y(x)

A

y

z

A

6 in.

4 in.

Section A-A

O

5 in.

1
2

3   in.

FIGURE 7.16

7.17 A uniform simply supported beam of length 100 in. with a hollow rectangular section is

shown in Fig. 7.16. Assuming a deflection shape of

find the natural frequency of transverse vibration of the beam. The material of the beam has

a Young s modulus of psi and a unit weight of g = 0.283 lbf/in3.E = 30 * 106

y(x) = C sin 
px

l
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7.18 A uniform fixed-fixed beam of length 1 with a rectangular cross section is shown in

Fig. 7.17. Assuming the Young s modulus as E and unit weight as for the material of the

beam and the deflection shape as

Determine the natural frequency of the beam.

y(x) = C a1 - cos 

2px

l
b

g

w * h

y(x)

h

l w

y

z
xO O

Cross section

FIGURE 7.17

Section 7.4 Holzer s Method

7.19 Using Holzer s method, find the natural frequencies and mode shapes of the system

shown in Fig. 6.14, with and

7.20 The stiffness and mass matrices of a vibrating system are given by

Using Holzer s method, determine all the principal modes and the natural frequencies.

7.21 For the torsional system shown in Fig. 6.11, determine a principal mode and the correspond-

ing frequency by Holzer s method. Assume that and 

7.22 Using Holzer s method, find the natural frequencies and mode shapes of the shear building

shown in Fig. 7.14. Assume that and

7.23 Using Holzer s method, find the natural frequencies and mode shapes of the system shown

in Fig. 6.39. Assume that and 

7.24 A uniform shaft carries three rotors as shown in Fig. 7.18 with mass moments of inertia

and The torsional stiffnesses of the segments between

the rotors are given by and Determine the

natural frequencies and mode shapes of the system using Holzer s method.

kt2 = 10,000 N-m/rad.kt1 = 20,000 N-m/rad

J3 = 10 kg-m2.J1 = J2 = 5 kg-m2

1 * 106 N-m/rad.

kt1 = kt2 =J1 = 10 kg-m2, J2 = 5 kg-m2, J3 = 1 kg-m2,

k = 3EI/h3.

m1 = 2m, m2 = m, h1 = h2 = h, k1 = 2k, k2 = k,

J1 = J2 = J3 = J0.kt1 = kt2 = kt3 = kt

[k] = kC

2 -1 0

-1 2 -1

0 -1 3

S , [m] = mC

1 0 0

0 1 0

0 0 2

S

k2 = 4000 N/m.

k1 = 8000 N/m,m3 = 200 kg,m2 = 20 kg,m1 = 100 kg,
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J
1

J
2

J
3

Kt2Kt1

FIGURE 7.18

7.25 A uniform shaft carries three rotors as shown in Fig. 7.18 with mass moments of inertia

and The torsional stiffnesses of the segments

between the rotors are given by and Deter-

mine the natural frequencies and mode shapes of the system using Holzer s method.

7.26 The mass and stiffness matrices of a three-degree-of-freedom spring-mass system are given by

Determine the natural frequencies and mode shapes of the system using Holzer s method.

Section 7.5 Matrix Iteration Method

7.27 The largest eigenvalue of the matrix

is given by Using the matrix iteration method, find the other eigenvalues and

all the eigenvectors of the matrix. Assume 

7.28 The mass and stiffness matrices of a spring-mass system are known to be

Using the matrix iteration method, find the natural frequencies and mode shapes of the system.

7.29 Using the matrix iteration method, find the natural frequencies and mode shapes of the

system shown in Fig. 6.6 with and 

7.30 Using the matrix iteration method, find the natural frequencies of the system shown in

Fig. 6.28. Assume that and for to 4.

7.31 Using the matrix iteration method, solve Problem 7.6.

7.32 The stiffness and mass matrices of a vibrating system are given by

[k] = k D

4 -2 0 0

-2 3 -1 0

0 -1 2 -1

0 0 -1 1

T and [m] = m D

3 0 0 0

0 2 0 0

0 0 1 0

0 0 0 1

T

i = 1(GJ)i = GJJd1 = Jd2 = Jd3 = J0, li = l,

m1 = m2 = m3 = m.k1 = k, k2 = 2k, k3 = 3k,

[m] = m C

1 0 0

0 1 0

0 0 2

S and [k] = k C

2 -1 0

-1 3 -2

0 -2 2

S

[m] = [I].

l1 = 10.38068.

[D] = C

2.5 -  1 0

-  1      5 -22

0 -22 10

S

[m] = C

3 0 0

0 2 0

0 0 1

S and [k] = C

   2 -1   0

-1   2 -1

  0 -1    1

S

k t2 = 60,000 N-m/rad.kt1 = 20,000 N-m/rad

J3 = 25 kg-m2.J1 = 5 kg-m2, J2 = 15 kg-m2
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Using the matrix iteration method, find the fundamental frequency and the mode shape of

the system.

7.33 The mass and stiffness matrices of an airplane in flight, with a three-degree-of-freedom

model for vertical motion (similar to Fig. 6.26) are given by

Determine the highest natural frequency of vibration of the airplane using the matrix itera-

tion method.

7.34 The mass and flexibility matrices of a three-degree-of-freedom system are given by

Find the lowest natural frequency of vibration of the system using the matrix iteration

method.

7.35 For the system considered in Problem 7.34, determine the highest natural frequency of

vibration of the system using the matrix iteration method.

7.36 Find the middle natural frequency of vibration of the system considered in Problems 7.34

and 7.35 using the matrix iteration method.

Section 7.6 Jacobi s Method

7.37 Using Jacobi s method, find the eigenvalues and eigenvectors of the matrix

7.38 Using Jacobi s method, find the eigenvalues and eigenvectors of the matrix

7.39 Using Jacobi s method, find the eigenvalues of the matrix [A] given by

[A] = D

4 -2 6 4

-2 2  -1 3

6 -1 22 13

4 3 13 46

T

[D] = C

3 2 1

2 2 1

1 1 1

S

[D] = C

3 -2 0

-2 5 -3

0 -3 3

S

[m] = C

1 0 0

0 2 0

0 0 1

S and [a] = [k]-1
= C

1 1 1

1 2 2

1 2 3

S

[m] = C

1 0 0

0 4 0

0 0 1

S and [k] = C

  3 -3   0

-3   6 -3

   0 -3    3

S
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Section 7.7 Standard Eigenvalue Problem

7.40 Using the Choleski decomposition technique, decompose the matrix given in Problem 7.39.

7.41 Using the decomposition find the inverse of the following matrix:

7.42 Using Choleski decomposition, find the inverse of the following matrix:

7.43 Convert Problem 7.32 to a standard eigenvalue problem with a symmetric matrix.

7.44 Using the Choleski decomposition technique, express the following matrix as the product of

two triangular matrices:

Section 7.8 MATLAB Problems

7.45 Using MATLAB, find the eigenvalues and eigenvectors of the following matrix:

7.46 Using MATLAB, find the eigenvalues and eigenvectors of the following matrix:

7.47 Using Program9.m, find the eigenvalues and eigenvectors of the matrix [D] given in

Problem 7.27.

7.48 Using Program10.m, determine the eigenvalues and eigenvectors of the matrix [D] given in

Problem 7.38.

7.49 Using Program11.m, find the solution of the general eigenvalue problem given in Problem

7.32 with 

7.50 Find the eigenvalues and eigenvectors of the following matrix using MATLAB:

[A] = C

2 2 2

2 5 5

2 5 12

S

k = m = 1.

[A] = C

-5 2 1

1 -9 -1

2 -1 7

S

[A] = C

3 -2 0

-2 5 -3

0 -1 1

S

[A] = C

16 -20 -24

-20 89 -50

-24 -50 280

S

[A] = C

2 5 8

5 16 28

8 28 54

S

[A] = C

5 -1 1

-1 6 -4

1 -4 3

S

[A] = [U]T[U],
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7.51 Solve the following eigenvalue problem using MATLAB:

v
2
C

3 0 0

0 2 0

0 0 1

SX
!

= C

10 -4 0

-4 6 -2

0 -2 2

SX
!

Girders

30 ft

Trolley
(weight * 40,000 lb)

x2

x1

Wire ropeWall
(rigid)

Load lifted
(10,000 lb)

20 ft

FIGURE 7.20

DESIGN PROJECTS

7.52 A flywheel of mass and a pulley of mass are to be mounted on a

shaft of length as shown in Fig. 7.19. Determine their locations and to maxi-

mize the fundamental frequency of vibration of the system.

l2l1l = 2 m,

m2 = 50 kgm1 = 100 kg

l

l1 l2

m1 * 100 kg
m2 * 50 kg

FIGURE 7.19

7.53 A simplified diagram of an overhead traveling crane is shown in Fig. 7.20. The girder, with

square cross section, and the wire rope, with circular cross section, are made up of steel.

Design the girders and the wire rope such that the natural frequencies of the system are

greater than the operating speed, 1500 rpm, of an electric motor located in the trolley.
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Stephen Prokf yevich Timoshenko (1878 1972), a Russian-born engineer who
emigrated to the United States, was one of the most widely known authors of
books in the field of elasticity, strength of materials, and vibrations. He held the
chair of mechanics at the university of Michigan and later at Stanford University,
and he is regarded as the father of engineering mechanics in the United States.
The improved theory he presented in 1921 for the vibration of beams has become
known as the Timoshenko beam theory. (Courtesy of Applied Mechanics

Reviews.)

C H A P T E R  8

Continuous
Systems

699

Chapter Outline

The vibration analysis of continuous systems, which are also known as distributed systems,

is considered in this chapter. The equations of motion of continuous systems will be partial

differential equations. The equations of motion of several continuous systems, including the

transverse vibration of a tightly stretched string or cable, longitudinal vibration of a bar, tor-

sional vibration of a shaft or rod, the lateral vibration of beams, and transverse vibration of

a membrane are derived by considering the free-body diagram of an infinitesimally small
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700 CHAPTER 8 CONTINUOUS SYSTEMS

element of the particular system and applying the Newton s second law of motion. The free-

vibration solution of the system is found by assuming harmonic motion and applying the

relevant boundary conditions. The solution gives infinite number of natural frequencies and

the corresponding mode shapes. The free-vibration displacement of the system is found as a

linear superposition of the mode shapes, the constants involved being determined from the

known initial conditions of the system. In the case of transverse vibration of a string of infi-

nite length, the traveling-wave solution is presented. In the case of the longitudinal vibration

of a bar, the vibration response under an initial force is also found. In the case of the trans-

verse vibration of beams, all the common boundary conditions are summarized and the

orthogonality of normal modes is proved. The forced vibration of beams is presented using

the mode superposition method. The effect of axial force on the natural frequencies and

mode shapes of beams is considered. The thick beam theory, also called the Timoshenko

beam theory, is presented by considering the effects of rotary inertia and shear deformation.

The free vibration of rectangular membranes is presented. Rayleigh s method, based on

Rayleigh s quotient, for finding the approximate fundamental frequencies of continuous

systems is outlined. The extension of the method, known as the Rayleigh-Ritz method, is

outlined for determining approximate values of several frequencies. Finally, MATLAB

solutions are presented for the free and forced vibration of typical continuous systems.

Learning Objectives

After you have finished studying this chapter, you should be able to do the following:

* Derive the equation of motion of a continuous system from the free-body diagram of

an infinitesimally small element of the system and Newton s second law.

* Find the natural frequencies and mode shapes of the system using harmonic solution.

* Determine the free-vibration solution using a linear superposition of the mode shapes

and the initial conditions.

* Find the free-vibration solutions of string, bar, shaft, beam, and membrane problems.

* Express the vibration of an infinite string in the form of traveling waves.

* Determine the forced-vibration solution of continuous systems using mode 

superposition method.

* Find the effects of axial force, rotary inertia, and shear deformation on the vibration

of beams.

* Apply the Rayleigh and Rayleigh-Ritz methods to find the approximate natural 

frequencies of continuous systems.

* Use MATLAB to find the natural frequencies, mode shapes, and forced response of

continuous systems.

8.1 Introduction

We have so far dealt with discrete systems where mass, damping, and elasticity were

assumed to be present only at certain discrete points in the system. In many cases, known

as distributed or continuous systems, it is not possible to identify discrete masses, dampers,

M08_RAO08193_5_SE_C08.qxd  8/21/10  6:03 PM  Page 700



8.2 TRANSVERSE VIBRATION OF A STRING OR CABLE 701

or springs. We must then consider the continuous distribution of the mass, damping, and

elasticity and assume that each of the infinite number of points of the system can vibrate.

This is why a continuous system is also called a system of infinite degrees of freedom.

If a system is modeled as a discrete one, the governing equations are ordinary differen-

tial equations, which are relatively easy to solve. On the other hand, if the system is modeled

as a continuous one, the governing equations are partial differential equations, which are

more difficult. However, the information obtained from a discrete model of a system may not

be as accurate as that obtained from a continuous model. The choice between the two models

must be made carefully, with due consideration of factors such as the purpose of the analysis,

the influence of the analysis on design, and the computational time available.

In this chapter, we shall consider the vibration of simple continuous systems

strings, bars, shafts, beams, and membranes. A more specialized treatment of the vibra-

tion of continuous structural elements is given in references [8.1 8.3]. In general, the

frequency equation of a continuous system is a transcendental equation that yields an infi-

nite number of natural frequencies and normal modes. This is in contrast to the behavior

of discrete systems, which yield a finite number of such frequencies and modes. We need

to apply boundary conditions to find the natural frequencies of a continuous system. The

question of boundary conditions does not arise in the case of discrete systems except in an

indirect way, because the influence coefficients depend on the manner in which the sys-

tem is supported.

8.2 Transverse Vibration of a String or Cable

8.2.1
Equation of
Motion

Consider a tightly stretched elastic string or cable of length l subjected to a transverse

force f(x, t) per unit length, as shown in Fig. 8.1(a). The transverse displacement of the

string, w(x, t), is assumed to be small. Equilibrium of the forces in the z direction gives

(see Fig. 8.1(b)):

The net force acting on an element is equal to the inertia force acting on the element, or

(8.1)

where P is the tension, is the mass per unit length, and is the angle the deflected string

makes with the x-axis. For an elemental length dx,

(8.2)

(8.3)

and

(8.4)sin (u + du) M tan (u + du) =
0w

0x
+
0

2w

0x2
 dx

 sin u M  tan u =
0w

0x

dP =
0P

0x
 dx

ur

(P + dP) sin(u + du) + f dx - P sin u = r dx 

0
2w

0t2

M08_RAO08193_5_SE_C08.qxd  8/21/10  6:03 PM  Page 701



702 CHAPTER 8 CONTINUOUS SYSTEMS

z, w (x, t)

z, w(x, t)

f(x, t)

f(x, t)

O

x

dx

l

x

O
x

dx

A

A
P

P  dP

x

B

B

w w  dw

x  dx

ds

u  du

(a)

(b)

u

FIGURE 8.1 A vibrating string.

Hence the forced-vibration equation of the nonuniform string, Eq. (8.1), can be simplified to

(8.5)

If the string is uniform and the tension is constant, Eq. (8.5) reduces to

(8.6)

If we obtain the free-vibration equation

(8.7)

or

(8.8)c2
 

0
2
w

0x2
=

0
2
w

0t2

P 

0
2
w(x, t)

0x2
= r 

0
2
w(x, t)

0t2

f(x,t) = 0,

P 

0
2
w(x, t)

0x2
+ f(x, t) = r 

0
2
w(x, t)

0t2

0

0x
 BP 

0w(x, t)

0x
R + f(x, t) = r(x) 

0
2
w(x, t)

0t2
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8.2 TRANSVERSE VIBRATION OF A STRING OR CABLE 703

where

(8.9)

Equation (8.8) is also known as the wave equation.

c = +
P

r
*

1/2

8.2.2
Initial and
Boundary
Conditions

The equation of motion, Eq. (8.5) or its special forms (8.6) and (8.7), is a partial differen-

tial equation of the second order. Since the order of the highest derivative of w with respect

to x and t in this equation is two, we need to specify two boundary and two initial condi-

tions in finding the solution w(x, t). If the string has a known deflection and veloc-

ity at time the initial conditions are specified as

(8.10)

If the string is fixed at an end, say the displacement w must always be zero, and so

the boundary condition is

(8.11)

If the string or cable is connected to a pin that can move in a perpendicular direction as

shown in Fig. 8.2, the end cannot support a transverse force. Hence the boundary condition

becomes

(8.12)P(x) 

0w(x, t)

0x
= 0

w(x = 0, t) = 0,  t Ú 0

x = 0,

 
0w

0t
 (x, t = 0) = w 

#
w
#

0(x)

 w(x, t = 0) = w0(x)

t = 0,w
#

0(x)

w0(x)

P

P

z, w

Slot

Slot

x

*w

*x *w

*x

FIGURE 8.2 String connected to pins at

the ends.
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If the end is free and P is a constant, then Eq. (8.12) becomes

(8.13)

If the end is constrained elastically as shown in Fig. 8.3, the boundary condition

becomes

(8.14)

where is the spring constant.k'

P(x) 

0w(x, t)

0x
`

x= l
= - k'w(x, t) x= l,  t Ú 0

x = l

0w(0, t)

0x
= 0,  t Ú 0

x = 0

z, w

x

l

k

FIGURE 8.3 String with elastic constraint.

8.2.3
Free Vibration 
of a Uniform
String

The free-vibration equation, Eq. (8.8), can be solved by the method of separation of vari-

ables. In this method, the solution is written as the product of a function W(x) (which

depends only on x) and a function T(t) (which depends only on t) [8.4]:

(8.15)

Substitution of Eq. (8.15) into Eq. (8.8) leads to

(8.16)

Since the left-hand side of this equation depends only on x and the right-hand side depends

only on t, their common value must be a constant say, a so that

(8.17)

The equations implied in Eq. (8.17) can be written as

(8.18)
d2W

dx2
-

a

c2
 W = 0

c2

W
  

d2W

dx2
=

1

T
 

d2T

dt2
= a

c2

W
  

d2W

dx2
=

1

T
 

d2T

dt2

w(x, t) = W(x)T(t)
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8.2 TRANSVERSE VIBRATION OF A STRING OR CABLE 705

(8.19)

Since the constant a is generally negative (see Problem 8.9), we can set and

write Eqs. (8.18) and (8.19) as

(8.20)

(8.21)

The solutions of these equations are given by

(8.22)

(8.23)

where is the frequency of vibration and the constants A, B, C, and D can be evaluated

from the boundary and initial conditions.

v

T(t)  = C cos vt + D sin vt

W(x) = A cos 
vx

c
+ B sin 

vx

c

d2T

dt2
+ v

2T  = 0

d2W

dx2
+
v

2

c2
 W = 0

a = -v
2

d2T

dt2
- aT  = 0

8.2.4
Free Vibration 
of a String with
Both Ends Fixed

If the string is fixed at both ends, the boundary conditions are for

all time Hence, from Eq. (8.15), we obtain

(8.24)

(8.25)

In order to satisfy Eq. (8.24), A must be zero in Eq. (8.22). Equation (8.25) requires that

(8.26)

Since B cannot be zero for a nontrivial solution, we have

(8.27)

Equation (8.27) is called the frequency or characteristic equation and is satisfied by sev-

eral values of The values of are called the eigenvalues (or natural frequencies or

characteristic values) of the problem. The nth natural frequency is given by

or

(8.28)vn =
ncp

l
,  n = 1, 2, Á

vnl

c
= np,  n = 1, 2, Á

vv.

sin 

vl

c
= 0

B sin 
vl

c
= 0

W(l) = 0

W(0) = 0

t Ú 0.
w(0, t) = w(l, t) = 0
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wn

x

l

O

wn

x

wn

x

l

l

O

O

l

2

l

3 3

n * 1

n * 2

n * 3

l2

FIGURE 8.4 Mode shapes of a string.

The solution corresponding to can be expressed as

(8.29)

where and are arbitrary constants. The solution is called the nth mode of

vibration or nth harmonic or nth normal mode of the string. In this mode, each point of the

string vibrates with an amplitude proportional to the value of at that point, with the cir-

cular frequency The function is called the nth normal mode, or

characteristic function. The first three modes of vibration are shown in Fig. 8.4. The mode

corresponding to is called the fundamental mode, and is called the fundamental

frequency. The fundamental period is

The points at which for all times are called nodes. Thus the fundamental mode has

two nodes, at and the second mode has three nodes, at and

etc.

The general solution of Eq. (8.8), which satisfies the boundary conditions of Eqs. (8.24)

and (8.25), is given by the superposition of all wn(x, t):

x = l;
x = 0, x = l/2,x = l;x = 0

wn = 0

t1 =
2p

v1
=

2l

c

v1n = 1

Wn(x)vn = (ncp)/l.
Wn

wn(x, t)DnCn

wn(x, t) = Wn(x)Tn(t) = sin 

npx

l
 BCn cos 

ncpt

l
+ Dn sin 

ncpt

l
R

vnwn(x, t)
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8.2 TRANSVERSE VIBRATION OF A STRING OR CABLE 707

(8.30)

This equation gives all possible vibrations of the string; the particular vibration that occurs

is uniquely determined by the specified initial conditions. The initial conditions give

unique values of the constants and If the initial conditions are specified as in Eq. (8.10),

we obtain

(8.31)

(8.32)

which can be seen to be Fourier sine series expansions of and in the interval

The values of and can be determined by multiplying Eqs. (8.31) and

(8.32) by and integrating with respect to x from 0 to l:

(8.33)

(8.34)

Note: The solution given by Eq. (8.30) can be identified as the mode superposition method

since the response is expressed as a superposition of the normal modes. The procedure is

applicable in finding not only the free-vibration solution but also the forced-vibration solu-

tion of continuous systems.

Dn =
2

ncpL

 l

0

w 
#

0(x) sin 
npx

l
 dx

Cn =
2

l L

 l

0

w0(x) sin 
npx

l
 dx

sin(npx/l)
DnCn0 x l.

w 
#

0(x)w0(x)

 a
q

n=1

 

ncp

l
Dn sin 

npx

l
= w 

#
w
#

0(x)

 a
q

n=1
 Cn sin 

npx

l
= w0(x)

Dn.Cn

 = a
q

n=1
 sin 

npx

l
 BCn cos 

ncpt

l
+ Dn sin 

ncpt

l
R

 w(x, t) = a
q

n=1
 wn(x, t)

E X A M P L E  8 . 1
Dynamic Response of a Plucked String

If a string of length l, fixed at both ends, is plucked at its midpoint as shown in Fig. 8.5 and then

released, determine its subsequent motion.

Solution: The solution is given by Eq. (8.30) with and given by Eqs. (8.33) and (8.34),

respectively. Since there is no initial velocity, and so Thus the solution of Eq.

(8.30) reduces to

(E.1)w(x, t) = a
q

n=1
  Cn sin 

npx

l
 cos 

ncpt

l

Dn = 0.w 
#

0(x) = 0,

DnCn
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where

(E.2)

The initial deflection is given by

(E.3)

By substituting Eq. (E.3) into Eq. (E.2), can be evaluated:

(E.4)

By using the relation

(E.5)

the desired solution can be expressed as

(E.6)

In this case, no even harmonics are excited.

*

w(x, t) =
8h

p
2
b sin 

px

l
 cos 

pct

l
-

1

9
 sin 

3px

l
 cos 

3pct

l
+ Ár

sin 
np

2
= (-1)(n-1)/2,  n = 1, 3, 5, Á

 =
c

8h

p
2n2

 sin 
np

2
 for n = 1, 3, 5, Á

0 for n = 2, 4, 6, Á

 Cn =
2

l
 b
L

 l/2

0

 
2hx

l
 sin 

npx

l
  dx +

L

 l

l/2

 
2h

l
  (l - x) sin 

npx

l
  dx r

Cn

w0(x) = d

2hx

l
  for 0 x

l

2

2h(l - x)

l
 for 

l

2
x l

w0(x)

Cn =
2

l L

 l

0
 
w0(x) sin 

npx

l
 dx

l

2

l

2

l

h

x
O

w
0
(x, 0)

FIGURE 8.5 Initial deflection of the string.
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8.2 TRANSVERSE VIBRATION OF A STRING OR CABLE 709

8.2.5
Traveling-Wave
Solution

The solution of the wave equation, Eq. (8.8), for a string of infinite length can be

expressed as [8.5]

(8.35)

where and are arbitrary functions of and respectively. To show

that Eq. (8.35) is the correct solution of Eq. (8.8), we first differentiate Eq. (8.35):

(8.36)

(8.37)

Substitution of these equations into Eq. (8.8) reveals that the wave equation is satisfied. In

Eq. (8.35), and represent waves that propagate in the positive and

negative directions of the x-axis, respectively, with a velocity c.

For a given problem, the arbitrary functions and are determined from the initial

conditions, Eq. (8.10). Substitution of Eq. (8.35) into Eq. (8.10) gives, at 

(8.38)

(8.39)

where the prime indicates differentiation with respect to the respective argument at 

(that is, with respect to x). Integration of Eq. (8.39) yields

(8.40)

where is a constant. Solution of Eqs. (8.38) and (8.40) gives and 

(8.41)

(8.42)

By replacing x by and respectively, in Eqs. (8.41) and (8.42), we

obtain the total solution:

(8.43) =
1

2
 [w0(x - ct) + w0(x + ct)] +

1

2cL

x+ct

x-ct

w
 #
w

#
0(x¿) dx¿

 w(x, t) = w1(x - ct) + w2(x + ct)

(x + ct),(x - ct)

 w2(x) =
1

2
 Bw0(x) +

1

cL

x

x0

ww
#
 

 #  
0(x¿) dx¿R

 w1(x) =
1

2
 Bw0(x) -

1

cL

x

x0

w
 #
w

#
 0(x¿) dx¿R

w2:w1x0

-w1(x) + w2(x) =
1

cL

x

x0

w
 #

0(x¿) dx¿

t = 0

-cw1(x) + cw2(x) = w
 #

0(x)

w1(x) + w2(x)  = w0(x)

t = 0,

w2w1

w2(x + ct)w1(x - ct)

0
2
w(x, t)

0t
2

= c
2
w1(x - ct) + c

2
w2(x + ct)

0
2
w(x, t)

0x
2

= w1(x - ct) + w2(x + ct)

(x + ct),(x - ct)w2w1

w(x, t) = w1(x - ct) + w2(x + ct)
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The following points should be noted:

1. As can be seen from Eq. (8.43), there is no need to apply boundary conditions to the

problem.

2. The solution given by Eq. (8.43) can be expressed as

(8.44)

where denotes the waves propagating due to the known initial displacement

with zero initial velocity, and represents waves traveling due only to

the known initial velocity with zero initial displacement.

The transverse vibration of a string fixed at both ends excited by the transverse impact

of an elastic load at an intermediate point was considered in [8.6]. A review of the literature

on the dynamics of cables and chains was given by Triantafyllou [8.7].

8.3 Longitudinal Vibration of a Bar or Rod

w 
#

0(x)
wV(x, t)w0(x)

wD(x, t)

w(x, t) = wD(x, t) + wV(x, t)

8.3.1
Equation of
Motion and
Solution

Consider an elastic bar of length l with varying cross-sectional area A(x), as shown in

Fig. 8.6. The forces acting on the cross sections of a small element of the bar are given by

P and with

(8.45)

where is the axial stress, E is Young s modulus, u is the axial displacement, and is

the axial strain. If f(x, t) denotes the external force per unit length, the summation of the

forces in the x direction gives the equation of motion

(8.46)(P + dP) + f dx - P = rA dx 
0

2u

0t2

0u/0xs

P = sA = EA 

0u

0x

P + dP

O

z

x

a c

b d
x

l

dx

(a) (b)

a*

c*c

a

b*

d*d

dx

u

b

P P + dP

u + du

Equilibrium
position

Displaced
position

FIGURE 8.6 Longitudinal vibration of a bar.

M08_RAO08193_5_SE_C08.qxd  8/23/10  5:06 PM  Page 710



8.3 LONGITUDINAL VIBRATION OF A BAR OR ROD 711

where is the mass density of the bar. By using the relation and Eq.

(8.45), the equation of motion for the forced longitudinal vibration of a nonuniform bar,

Eq. (8.46), can be expressed as

(8.47)

For a uniform bar, Eq. (8.47) reduces to

(8.48)

The free-vibration equation can be obtained from Eq. (8.48), by setting as

(8.49)

where

(8.50)

Note that Eqs. (8.47) to (8.50) can be seen to be similar to Eqs. (8.5), (8.6), (8.8), and (8.9),

respectively. The solution of Eq. (8.49), which can be obtained as in the case of Eq. (8.8),

can thus be written as

(8.51)u(x, t) = U(x)T(t) K ¢A
'

 cos 

vx

c
+ B

'
 sin 

vx

c
 (C cos vt + D sin vt)

1

c =
A

E

r

c2
 

0
2u

0x2
 (x, t) =

0
2u

0t2
 (x, t)

f = 0,

EA 

0
2u

0x2
 (x, t) + f(x, t) = rA 

0
2u

0t2
 (x, t)

0

0x
 BEA(x) 

0u(x, t)

0x
R + f(x, t) = r(x)A(x) 

0
2u

0t2
 (x, t)

dP = (0P/0x) dxr

End Conditions
of Bar

Boundary
Conditions

Frequency
Equation

Mode Shape
(Normal Function)

Natural
Frequencies

u(0, t) , 0

u(0, t) , 0

u(l, t) , 0

(l, t) , 0
+u

+x

(l, t) , 0
+u

+x

(0, t) , 0
+u

+x

cos     , 0
vl

c

sin     , 0
vl

c

sin     , 0
vl

c

Un (x) , Cn sin (2n * 1) px
2l

Un (x) , Cn cos npx
l

Un (x) , Cn cos npx
l

(2n * 1) pc
2l

vn , ;

npc

l
vn , ;

npc

l
vn , ;

n , 0, 1, 2, . . .

n , 0, 1, 2, . . .

n , 1, 2, 3, . . .

Fixed-free

Free-free

Fixed-fixed

FIGURE 8.7 Common boundary conditions for a bar in longitudinal vibration.

1We use and in this section; A is used to denote the cross-sectional area of the bar.B
'

A
'
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where the function U(x) represents the normal mode and depends only on x and the func-

tion T(t) depends only on t. If the bar has known initial axial displacement and ini-

tial velocity the initial conditions can be stated as

(8.52)

The common boundary conditions and the corresponding frequency equations for the lon-

gitudinal vibration of uniform bars are shown in Fig. 8.7.

 
0u

0t
 (x, t = 0) = u

#

0(x)

 u(x, t = 0) = u0(x)

u
#

0(x),

u0(x)

E X A M P L E  8 . 2
Boundary Conditions for a Bar

A uniform bar of cross-sectional area A, length l, and Young s modulus E is connected at both ends

by springs, dampers, and masses, as shown in Fig. 8.8(a). State the boundary conditions.

Solution: The free-body diagrams of the masses and are shown in Fig. 8.8(b). From this, we

find that at the left end the force developed in the bar due to positive u and must be

equal to the sum of spring, damper, and inertia forces:

(E.1)

Similarly at the right end the force developed in the bar due to positive u and must be

equal to the negative sum of spring, damper, and inertia forces:

(E.2)AE 

0u

0x
  (l, t) = -k2u(l, t) - c2 

0u

0t
 (l, t) - m2 

0
2u

0t2
 (l, t)

0u/0x(x = l),

AE 

0u

0x
  (0, t) = k1u(0, t) + c1 

0u

0t
  (0, t) + m1 

0
2u

0t2
  (0, t)

0u/0x(x = 0),

m2m1

k1 k2

c1 c2m1 m2

x , 0 x , l

(a)

(b)

+u

+x
AE

+u

+x
AE

k1u k2u

m1 m2

+u

+x
*x, *u, *

Free-body diagram of mass m1 Free-body diagram of mass m2

m1u m2u

c2uc1u

FIGURE 8.8 Bar connected to springs-masses-dampers at ends.

*
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8.3.2
Orthogonality 
of Normal
Functions

The normal functions for the longitudinal vibration of bars satisfy the orthogonality relation

(8.53)

where and denote the normal functions corresponding to the ith and jth natural

frequencies and respectively. When and 

are assumed as solutions, Eq. (8.49) gives

(8.54)

and

(8.55)

where and Multiplication of Eq. (8.54) by and Eq. (8.55) by 

gives

(8.56)

(8.57)

Subtraction of Eq. (8.57) from Eq. (8.56) and integration from 0 to l results in

(8.58)

The right-hand side of Eq. (8.58) can be proved to be zero for any combination of bound-

ary conditions. For example, if the bar is fixed at and free at 

(8.59)

(8.60)

Thus due to being zero (Eq. (8.60)) and 

due to U being zero (Eq. (8.59)). Equation (8.58) thus reduces to Eq. (8.53), which is also

known as the orthogonality principle for the normal functions.

(Ui Uj - Uj Ui) x=0 = 0U(UiUj - UjUi) x= l = 0

0u

0x
 (l, t) = 0,  t Ú 0 or U¿(l) = 0

u(0, t)  = 0,  t Ú 0 or U(0) = 0

x = l,x = 0

 = -  

c2

vi
2 - vj

2
  [UiUj - UjUi] `

0

l

 
L

l

0
 Ui Uj dx = -  

c2

vi
2 - vj

2L

l

0

(Ui Uj - Uj Ui) dx

 c2Uj Ui + vj
2UjUi = 0

 c2Ui Uj + vi
2UiUj = 0

Ui

UjUj =
d2Uj

dx2
.Ui =

d2Ui

dx2

c2 
d2Uj(x)

dx2
+ vj

2
 Uj(x) = 0 or c2 Uj (x) + vj

2
 Uj (x) = 0

c2 
d2Ui(x)

dx2
+ vi

2 Ui(x) = 0 or c2
 Ui (x) + vi

2
 Ui(x) = 0

u(x, t) = Uj(x)T(t)u(x, t) = Ui(x)T(t)vj,vi

Uj 
(x)Ui(x)

L

l

0
  Ui(x)Uj 

(x) dx = 0
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714 CHAPTER 8 CONTINUOUS SYSTEMS

E X A M P L E  8 . 3

Free Vibrations of a Fixed-Free Bar

Find the natural frequencies and the free-vibration solution of a bar fixed at one end and free at the

other.

Solution: Let the bar be fixed at and free at so that the boundary conditions can be

expressed as

(E.1)

(E.2)

The use of Eq. (E.1) in Eq. (8.51) gives while the use of Eq. (E.2) gives the frequency equation

(E.3)

The eigenvalues or natural frequencies are given by

or

(E.4)

Thus the total (free-vibration) solution of Eq. (8.49) can be written, using the mode superposition

method, as

(E.5)

where the values of the constants and can be determined from the initial conditions, as in Eqs.

(8.33) and (8.34):

(E.6)

(E.7)

*

 Dn =
4

(2n + 1)pcL

l

0

u
#

0(x) sin  
(2n + 1)px

2l
 dx

 Cn =
2

l L

l

0

u0(x) sin  
(2n + 1)px

2l
 dx

DnCn

 = a
q

n=0
 sin 

(2n + 1)px

2l
 BCn cos 

(2n + 1)pct

2l
+ Dn sin 

(2n + 1)pct

2l
R

 u(x, t) = a
q

n=0
 un(x, t)

vn =

(2n + 1)pc

2l
,  n = 0, 1, 2, Á

vnl

c
= (2n + 1) 

p

2
,  n = 0, 1, 2, Á

B
'

 

v

c
 cos 

vl

c
= 0 or  cos 

vl

c
= 0

A
'
= 0,

0u

0x
 (l, t) = 0,  t Ú 0

u(0, t) = 0,  t Ú 0

x = l,x = 0

M08_RAO08193_5_SE_C08.qxd  8/23/10  5:08 PM  Page 714



8.3 LONGITUDINAL VIBRATION OF A BAR OR ROD 715

E X A M P L E  8 . 4
Natural Frequencies of a Bar Carrying a Mass

Find the natural frequencies of a bar with one end fixed and a mass attached at the other end, as in

Fig. 8.9.

Solution: The equation governing the axial vibration of the bar is given by Eq. (8.49) and the

solution by Eq. (8.51). The boundary condition at the fixed end 

(E.1)

leads to in Eq. (8.51). At the end the tensile force in the bar must be equal to the iner-

tia force of the vibrating mass M, and so

(E.2)

With the help of Eq. (8.51), this equation can be expressed as

That is,

or

(E.3)

where

(E.4)

and

(E.5)b =
AEl

c2M
=

Arl

M
=

m

M

a =
vl

c

a tan a = b

AEv

c
 cos 

vl

c
= Mv2 sin 

vl

c

AE 

v

c
 cos 

vl

c
 (C cos vt + D sin vt) = Mv2 sin 

vl

c
 (C cos vt + D sin vt)

AE 

0u

0x
 (l, t) = -M 

0
2u

0t2
 (l, t)

x = l,A
'
= 0

u(0, t) = 0

(x = 0)

O x

l

M

r, A, E

FIGURE 8.9 Bar carrying an end mass.
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716 CHAPTER 8 CONTINUOUS SYSTEMS

where m is the mass of the bar. Equation (E.3) is the frequency equation (in the form of a transcen-

dental equation) whose solution gives the natural frequencies of the system. The first two natural fre-

quencies are given in Table 8.1 for different values of the parameter 

Note: If the mass of the bar is negligible compared to the mass attached, 

In this case

and the frequency equation (E.3) can be taken as

This gives the approximate value of the fundamental frequency

where

represents the static elongation of the bar under the action of the load Mg.

*

ds =
Mgl

EA

v1 =
c

l
 b1/2

=

c

l
 a
rAl

M
b

1/2

= a
EA

lM
b

1/2

= a
g

ds
b

1/2

a
v l

c
b

2

= b

tan 

vl

c
M

vl

c

c = a
E

r
b

1/2

= a
EAl

m
b

1/2

: q and a =

vl

c
: 0

m M 0,

b.

TABLE 8.1

Values of the Mass Ratio B

0.01 0.1 1.0 10.0 100.0

Value of a1 +v1 =
a1c

l
* 0.1000 0.3113 0.8602 1.4291 1.5549

Value of a2 +v2 =
a2c

l
* 3.1448 3.1736 3.4267 4.3063 4.6658

E X A M P L E  8 . 5
Vibrations of a Bar Subjected to Initial Force

A bar of uniform cross-sectional area A, density modulus of elasticity E, and length l is fixed at

one end and free at the other end. It is subjected to an axial force at its free end, as shown in

Fig. 8.10(a). Study the resulting vibrations if the force is suddenly removed.F0

F0

r,
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8.3 LONGITUDINAL VIBRATION OF A BAR OR ROD 717

Solution: The tensile strain induced in the bar due to is

Thus the displacement of the bar just before the force is removed (initial displacement) is given by

(see Fig. (8.10b))

(E.1)

Since the initial velocity is zero, we have

(E.2)

The general solution of a bar fixed at one end and free at the other end is given by Eq. (E.5) of

Example 8.3:

(E.3)

where and are given by Eqs. (E.6) and (E.7) of Example 8.3. Since we obtain 

By using the initial displacement of Eq. (E.1) in Eq. (E.6) of Example 8.3, we obtain

Dn = 0.u
#

0 = 0,DnCn

 = a

q

n=0

 sin 

(2n + 1)px

2l
 BCn cos 

(2n + 1)pct

2l
+ Dn sin 

(2n + 1)pct

2l
R

 u(x, t) = a

q

n=0
 un(x, t)

u
#

0 =
0u

0t
 (x, 0) = 0,  0 x l

u0 = u(x, 0) = ex =
F0x

EA
,  0 x l

F0

e =
F0

EA

F0

O x

l

d0

F0

(a)

(b)

x * 0 x * lx

u0(x)

d0 *

F0l

EA

FIGURE 8.10 Bar subjected to an axial

force at end.
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718 CHAPTER 8 CONTINUOUS SYSTEMS

(E.4)

Thus the solution becomes

(E.5)

Equations (E.3) and (E.5) indicate that the motion of a typical point at on the bar is com-

posed of the amplitudes

corresponding to the circular frequencies

*

8.4 Torsional Vibration of a Shaft or Rod

Figure 8.11 represents a nonuniform shaft subjected to an external torque f(x, t) per unit

length. If denotes the angle of twist of the cross section, the relation between the

torsional deflection and the twisting moment is given by [8.8]

(8.61)

where G is the shear modulus and GJ(x) is the torsional stiffness, with J(x) denoting the

polar moment of inertia of the cross section in the case of a circular section. If the mass

polar moment of inertia of the shaft per unit length is the inertia torque acting on an ele-

ment of length dx becomes

If an external torque f (x, t) acts on the shaft per unit length, the application of Newton s

second law yields the equation of motion:

(8.62)

By expressing as

0Mt

0x
 dx

dMt

(Mt + dMt) + f dx - Mt = I0 dx 
0

2
u

0t2

I0 dx 

0
2
u

0t2

I0,

Mt(x, t) = GJ(x) 
0u

0x
 (x, t)

Mt(x, t)
u(x, t)

(2n + 1)pc

2l

Cn sin 

(2n + 1)px0

2l

x = x0

u(x, t) =
8F0 

l

EAp2a
q

n=0
 

(-1)n

(2n + 1)2
 sin 

(2n + 1) px

2l
 cos 

(2n + 1) pct

2l

Cn =
2

l L

l

0

F0x

EA
 #  sin 

(2n + 1) px

2l
 dx =

8F0 
l

EAp2
  

(-1)n

(2n + 1)2
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8.4 TORSIONAL VIBRATION OF A SHAFT OR ROD 719

and using Eq. (8.61), the forced torsional vibration equation for a nonuniform shaft can be

obtained:

(8.63)

For a uniform shaft, Eq. (8.63) takes the form

(8.64)

which, in the case of free vibration, reduces to

(8.65)

where

(8.66)

Notice that Eqs. (8.63) to (8.66) are similar to the equations derived in the cases of trans-

verse vibration of a string and longitudinal vibration of a bar. If the shaft has a uniform

cross section, Hence Eq. (8.66) becomes

(8.67)c =
A

G

r

I0 = rJ.

c =
A

GJ

I0

c2
 

0
2
u

0x2
 (x, t) =

0
2
u

0t2
 (x, t)

GJ 

0
2
u

0x2
 (x, t) + f(x, t) = I0  

0
2
u

0t2
 (x, t)

0

0x
 BGJ(x) 

0u

0x
 (x, t)R + f(x, t) = I0(x)  

0
2
u

0t2
 (x, t)

dxx

l

O

(a)

Mt(x, t)

f(x, t) dx

Mt(x, t) * dMt(x, t)
u(x, t)

u(x, t) * du(x, t)

dx

(b)

x

FIGURE 8.11 Torsional vibration of a shaft.
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720 CHAPTER 8 CONTINUOUS SYSTEMS

If the shaft is given an angular displacement and an angular velocity at 

the initial conditions can be stated as

(8.68)

The general solution of Eq. (8.65) can be expressed as

(8.69)

The common boundary conditions for the torsional vibration of uniform shafts are indicated

in Fig. 8.12 along with the corresponding frequency equations and the normal functions.

u(x, t) = aA cos 
vx

c
+ B sin 

vx

c
b (C cos vt + D sin vt)

0u

0t
 (x, t = 0) = u

 #

0(x)

 u(x, t = 0) = u0(x)

t = 0,u
 #

0(x)u0(x)

End Conditions
of Shaft

Boundary
Conditions

Frequency
Equation

Mode Shape
(Normal Function)

Natural
Frequencies

cos     , 0
vl

c

sin     , 0
vl

c

sin     , 0
vl

c

(2n * 1) pc

2l
vn , ;

npc

l
vn , ;

npc

l
vn , ;

n , 0, 1, 2, . . .

n , 0, 1, 2, . . .

n , 1, 2, 3, . . .

Fixed-free

Free-free

Fixed-fixed

u(0, t) , 0

u(0, t) , 0

u(l, t) , 0

(l, t) , 0
+u

+x

(l, t) , 0
+u

+x

(0, t) , 0
+u

+x

 

      (x) , Cn sin (2n * 1) px

2l

    (x) , Cn cos npx

l

   (x) , Cn cos npx

l

u

u

u

FIGURE 8.12 Boundary conditions for uniform shafts (rods) subjected to torsional vibration.

E X A M P L E  8 . 6
Natural Frequencies of a Milling Cutter

Find the natural frequencies of the plane milling cutter shown in Fig. 8.13 when the free end of the

shank is fixed. Assume the torsional rigidity of the shank as GJ and the mass moment of inertia of the

cutter as 

Solution: The general solution is given by Eq. (8.69). From this equation, by using the fixed

boundary condition we obtain The boundary condition at can be stated as

(E.1)

That is,

BGJ 

v

c
 cos 

vl

c
= BI0 

v
2 sin 

vl

c

GJ 

0u

0x
  (l, t) = -I0  

0
2
u

0t2
  (l, t)

x = lA = 0.u(0, t) = 0,

I0.
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8.5 LATERAL VIBRATION OF BEAMS 721

or

(E.2)

where Equation (E.2) can be expressed as

(E.3)

The solution of Eq. (E.3), and thus the natural frequencies of the system, can be obtained as in the

case of Example 8.4.

*

8.5 Lateral Vibration of Beams

a tan a = b where a =
vl

c
 and b =

J' rod

I0

J
' rod = Jrl.

vl

c
 tan 

vl

c
=

Jrl

I0
=

J'rod

I0

Shank

Milling cutter

l

FIGURE 8.13 Plane milling cutter.

8.5.1
Equation of
Motion

Consider the free-body diagram of an element of a beam shown in Fig. 8.14, where M(x, t)

is the bending moment, V(x, t) is the shear force, and f(x, t) is the external force per unit

length of the beam. Since the inertia force acting on the element of the beam is

the force equation of motion in the z direction gives

(8.70)

where is the mass density and A(x) is the cross-sectional area of the beam. The moment

equation of motion about the y-axis passing through point O in Fig. 8.14 leads to

(8.71)(M + dM) - (V + dV) dx + f(x, t) dx 
dx

2
- M = 0

r

-  (V + dV) + f(x, t) dx + V = rA(x) dx 

0
2w

0t2
  (x, t)

rA(x) dx 
0

2w

0t2
 (x, t)
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722 CHAPTER 8 CONTINUOUS SYSTEMS

By writing

and disregarding terms involving second powers in dx, Eqs. (8.70) and (8.71) can be written as

(8.72)

(8.73)

By using the relation from Eq. (8.73), Eq. (8.72) becomes

(8.74)

From the elementary theory of bending of beams (also known as the Euler-Bernoulli or

thin beam theory), the relationship between bending moment and deflection can be

expressed as [8.8]

(8.75)

where E is Young s modulus and I(x) is the moment of inertia of the beam cross section

about the y-axis. Inserting Eq. (8.75) into Eq. (8.74), we obtain the equation of motion for

the forced lateral vibration of a nonuniform beam:

(8.76)
0

2

0x2
 cEI(x) 

0
2w

0x2
  (x, t) d + rA(x)  

0
2w

0t2
  (x, t) = f(x, t)

M(x, t) = EI(x)  

0
2w

0x2
  (x, t)

-  

0
2M

0x2
 (x, t) + f(x, t) = rA(x)  

0
2w

0t2
  (x, t)

V = 0M/0x

0M

0x
 (x, t) - V(x, t) = 0

 -  

0V

0x
  (x, t) + f(x, t) = rA(x)  

0
2w

0t2
  (x, t)

dV =
0V

0x
 dx and dM =

0M

0x
 dx

dxx
dxx

xl

f(x, t)

f(x, t)

(a) (b)

z

w(x, t)
w(x, t)

V(x, t)

M(x, t) M(x, t) * dM(x, t)

V(x, t) * dV(x, t)

O O+

FIGURE 8.14 A beam in bending.
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8.5 LATERAL VIBRATION OF BEAMS 723

For a uniform beam, Eq. (8.76) reduces to

(8.77)

For free vibration, and so the equation of motion becomes

(8.78)

where

(8.79)c =
A

EI

rA

c2
 

0
4
w

0x4
  (x, t) +

0
2
w

0t2
 (x, t) = 0

f(x, t) = 0,

EI 

0
4
w

0x4
 (x, t) + rA  

0
2
w

0t2
 (x, t) = f(x, t)

8.5.2

Initial

Conditions

Since the equation of motion involves a second-order derivative with respect to time and a

fourth-order derivative with respect to x, two initial conditions and four boundary condi-

tions are needed for finding a unique solution for w(x, t). Usually, the values of lateral dis-

placement and velocity are specified as and at so that the initial

conditions become

(8.80) 
0w

0t
 (x, t = 0) = w

#

0(x)

 w(x, t = 0) = w0(x)

t = 0,w
 #

0(x)w0(x)

8.5.3

Free Vibration

The free-vibration solution can be found using the method of separation of variables as

(8.81)

Substituting Eq. (8.81) into Eq. (8.78) and rearranging leads to

(8.82)

where is a positive constant (see Problem 8.45). Equation (8.82) can be written as

two equations:

(8.83)

(8.84)

where

(8.85)b4
=
v2

c2
=
rAv2

EI

d2T(t)

dt2
+ v2T(t) = 0

d4W(x)

dx4
- b4W(x) = 0

a = v2

c2

W(x)
  

d4W(x)

dx4
= -  

1

T(t)
  

d2T(t)

dt2
= a = v2

w(x, t) = W(x)T(t)
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724 CHAPTER 8 CONTINUOUS SYSTEMS

The solution of Eq. (8.84) can be expressed as

(8.86)

where A and B are constants that can be found from the initial conditions. For the solution

of Eq. (8.83), we assume

(8.87)

where C and s are constants, and derive the auxiliary equation as

(8.88)

The roots of this equation are

(8.89)

Hence the solution of Eq. (8.83) becomes

(8.90)

where and are constants. Equation (8.90) can also be expressed as

(8.91)

or

(8.92)

where and in each case, are different constants. The constants 

and can be found from the boundary conditions. The natural frequencies of the beam

are computed from Eq. (8.85) as

(8.93)

The function W(x) is known as the normal mode or characteristic function of the beam and

is called the natural frequency of vibration. For any beam, there will be an infinite num-

ber of normal modes with one natural frequency associated with each normal mode. The

unknown constants to in Eq. (8.91) or (8.92) and the value of in Eq. (8.93) can be

determined from the boundary conditions of the beam as indicated below.

bC4C1

v

v = b2 
A

EI

rA
= (bl)2 

A
EI

rAl4

C4

C1, C2, C3,C4,C1, C2, C3,

 + C3(sin bx + sinh bx) + C4(sin bx - sinh bx)

 W(x) = C1(cos bx + cosh bx) + C2(cos bx - cosh bx)

W(x) = C1 cos bx + C2 sin bx + C3 cosh bx + C4 sinh bx

C4C1, C2, C3,

W(x) = C1e
bx

+ C2e- 
bx

+ C3e
ibx

+ C4e- 
ibx

s1,2 = ;b,  s3, 4 = ; ib

s4
- b4

= 0

W(x) = Cesx

T(t) = A cos vt + B sin vt

8.5.4
Boundary
Conditions

The common boundary conditions are as follows:

1. Free end:

 Bending moment = EI 

0
2w

0x2
= 0
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8.5 LATERAL VIBRATION OF BEAMS 725

(8.94)

2. Simply supported (pinned) end:

(8.95)

3. Fixed (clamped) end:

(8.96)

The frequency equations, the mode shapes (normal functions), and the natural fre-

quencies for beams with common boundary conditions are given in Fig. 8.15

[8.13, 8.17]. We shall now consider some other possible boundary conditions for a

beam.

4. End connected to a linear spring, damper, and mass (Fig. 8.16(a)): When the end of a

beam undergoes a transverse displacement w and slope with velocity 

and acceleration the resisting forces due to the spring, damper, and mass are

proportional to w, and respectively. This resisting force is balanced by

the shear force at the end. Thus

(8.97)

where for the left end and for the right end of the beam. In addition, the

bending moment must be zero; hence

(8.98)

5. End connected to a torsional spring, torsional damper, and rotational inertia (Fig.

8.16(b)): In this case, the boundary conditions are

(8.99)

where for the left end and for the right end of the beam, and

(8.100)
0

0x
 BEI 

0
2w

0x2
R = 0

-1a = +1

EI 

0
2w

0x2
= aBkt 

0w

0x
+ ct 

0
2w

0x0t
+ I0 

0
3w

0x0t2
R

EI 

0
2w

0x2
= 0

+1a = -1

0

0x
 ¢EI 

0
2w

0x2
= aBkw + c 

0w

0t
+ m 

0
2w

0t2
R

0
2w/0t2,0w/0t,

0
2w/0t2,

0w/0t0w/0x.

Deflection = 0,  Slope =
0w

0x
= 0

Deflection = w = 0,  Bending moment = EI 

0
2w

0x2
= 0

 Shear force =
0

0x
 ¢EI

0
2w

0x2
= 0
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726 CHAPTER 8 CONTINUOUS SYSTEMS

End Conditions
of Beam

Frequency
Equation Mode Shape (Normal Function)

Pinned-pinned

Free-free

Fixed-fixed

Fixed-free

Fixed-pinned

Pinned-free

Value of bnl

sin bnl  0

cos bnl · cosh bnl  1

cos bnl · cosh bnl  1

cos bnl · cosh bnl  1

tan bnl  tanh bnl  0

tan bnl  tanh bnl  0

Wn(x)  Cn[sin bnx] b1l  p

b2l  2p
b3l  3p
b4l  4p

b1l    4.730041
b2l    7.853205
b3l  10.995608
b4l  14.137165

b1l    4.730041
b2l    7.853205
b3l  10.995608
b4l  14.137165

b1l    1.875104
b2l    4.694091
b3l    7.854757
b4l  10.995541

b1l    3.926602
b2l    7.068583
b3l  10.210176
b4l  13.351768

(bl    0 for rigid- 
body mode)

b1l    3.926602
b2l    7.068583
b3l  10.210176
b4l  13.351768
(bl    0 for rigid- 
body mode)

Wn(x)  Cn[sin bnx  sinh bnx

 an (cos bnx  cosh bnx)]

Wn(x)  Cn[sinh b nx nx  sin bnx

 an (cosh bnx  cos bnx)]

where

where

an 
sin bnl  sinh bnl

cosh bnl  cos bnl

Wn(x)  Cn[sin bnx  sinh bnx

 an (cos bnx  cosh bnx)]
where

an 
sin bnl  sinh bnl

cos bnl  cosh bnl

Wn(x)  Cn[sin bnx  sinh bnx

 an (cosh bnx  cos bnx)]
where

an 
sin bnl  sinh bnl

cos bnl  cosh bnl

Wn(x)  Cn[sin bnx  an sinh bnx]

where

an 
sin bnl

sinh bnl

an 
sinh bnl  sin bnl

cos bnl  cosh bnl

FIGURE 8.15 Common boundary conditions for the transverse vibration of a beam.

8.5.5
Orthogonality 
of Normal
Functions

The normal functions W(x) satisfy Eq. (8.83):

(8.101)

Let and be the normal functions corresponding to the natural frequencies 

and , so that

(8.102)c2 

d4Wi

dx4
- vi

2Wi = 0

vj(i Z j)

viWj(x)Wi(x)

c2  

d4W

dx4
 (x) - v

2W(x) = 0
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(a)

(b)

k1c1

m1

k2 c2

m2

Beam

x = 0 x = l

x = 0 x = l

Beamkt1 kt2

ct1 ct2
I01 I02

FIGURE 8.16 Beams connected with springs-dampers-masses at ends.

and

(8.103)

Multiplying Eq. (8.102) by and Eq. (8.103) by subtracting the resulting equations

one from the other, and integrating from 0 to l gives

or

(8.104)

where a prime indicates differentiation with respect to x. The right-hand side of Eq. (8.104)

can be evaluated using integration by parts to obtain

(8.105)
L

l

0
WiWj dx = -  

c2

vi
2
- vj

2
 [WiW

Ô

j - WjW
Ô

i + WjWi - WiWj ]
`

0

l

L

l

0
WiWj dx = -  

c2

vi
2
- vj

2L

l

0
(Wi Wj - WiWj ) dx

L

l

0
Bc2

 

d4Wi

dx4
 Wj - vi

2WiWjR  dx -

L

l

0
Bc2

 

d4Wj

dx4
 Wi - vj

2WjWiR  dx = 0

Wi,Wj

c2
 

d4Wj

dx4
- vj

2Wj = 0
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728 CHAPTER 8 CONTINUOUS SYSTEMS

The right-hand side of Eq. (8.105) can be shown to be zero for any combination of free,

fixed, or simply supported end conditions. At a free end, the bending moment and shear

force are equal to zero so that

(8.106)

For a fixed end, the deflection and slope are zero:

(8.107)

At a simply supported end, the bending moment and deflection are zero:

(8.108)

Since each term on the right-hand side of Eq. (8.105) is zero at or for any

combination of the boundary conditions in Eqs. (8.106) to (8.108), Eq. (8.105) reduces to

(8.109)

which proves the orthogonality of normal functions for the transverse vibration of beams.

L

l

0
WiWj dx = 0

x = lx = 0

W = 0,  W = 0

W = 0,  W¿ = 0

W = 0,  W = 0

E X A M P L E  8 . 7
Natural Frequencies of a Fixed-Pinned Beam

Determine the natural frequencies of vibration of a uniform beam fixed at and simply sup-

ported at 

Solution: The boundary conditions can be stated as

(E.1)

(E.2)

(E.3)

(E.4)

Condition (E.1) leads to

(E.5)

in Eq. (8.91), while Eqs. (E.2) and (8.91) give

or

(E.6)b[C2 + C4] = 0

dW

dx
`

x=0
= b[-   C1 sin bx + C2 cos bx + C3 sinh bx + C4 cosh bx]x=0 = 0

C1 + C3 = 0

EI 

d2W

dx2
 (l) = 0 or d2W

dx2
 (l) = 0

W(l) = 0

dW

dx
 (0) = 0

W(0) = 0

x = l.
x = 0
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8.5 LATERAL VIBRATION OF BEAMS 729

Thus the solution, Eq. (8.91), becomes

(E.7)

Applying conditions (E.3) and (E.4) to Eq. (E.7) yields

(E.8)

(E.9)

For a nontrivial solution of and the determinant of their coefficients must be zero that is,

(E.10)

Expanding the determinant gives the frequency equation

or

(E.11)

The roots of this equation, give the natural frequencies of vibration

(E.12)

where the values of satisfying Eq. (E.11) are given in Fig. 8.15. If the value of 

corresponding to is denoted as it can be expressed in terms of from Eq. (E.8) as

(E.13)

Hence Eq. (E.7) can be written as

(E.14)

The normal modes of vibration can be obtained by the use of Eq. (8.81)

(E.15)

with given by Eq. (E.14). The general or total solution of the fixed-simply supported beam

can be expressed by the sum of the normal modes:

(E.16)

*

w(x, t) = a

q

n=1
 wn(x, t)

Wn(x)

wn(x, t) = Wn(x) (An cos vnt + Bn sin vnt)

Wn(x) = C1nB(cos bnx - cosh bnx) - ¢
cos bnl - cosh bnl

sin bnl - sinh bnl
(sin bnx - sinh bnx)R

C2n = -
 
C1n¢

cos bnl - cosh bnl

sin bnl - sinh bnl

C1nC2n,bn

C2bnl, n = 1, 2, Á

vn = (bnl)2
 ¢

EI

rAl4

1/2

,  n = 1, 2, Á

bnl,

tan bl = tanh bl

cos bl sinh bl - sin bl cosh bl = 0

`

(cos bl - cosh bl) (sin bl - sinh bl)

-  (cos bl + cosh bl) -  (sin bl + sinh bl)
`
= 0

C2,C1

-C1(cos bl + cosh bl) - C2(sin bl + sinh bl) = 0

C1(cos bl - cosh bl) + C2(sin bl - sinh bl)  = 0

W(x) = C1(cos bx - cosh bx) + C2(sin bx - sinh bx)
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730 CHAPTER 8 CONTINUOUS SYSTEMS

8.5.6

Forced Vibration

The forced-vibration solution of a beam can be determined using the mode superposition

principle. For this, the deflection of the beam is assumed as

(8.110)

where is the nth normal mode or characteristic function satisfying the differential

equation (Eq. 8.101)

(8.111)

and is the generalized coordinate in the nth mode. By substituting Eq. (8.110) into

the forced-vibration equation, Eq. (8.77), we obtain

(8.112)

In view of Eq. (8.111), Eq. (8.112) can be written as

(8.113)

By multiplying Eq. (8.113) throughout by integrating from 0 to l, and using the

orthogonality condition, Eq. (8.109), we obtain

(8.114)

where is called the generalized force corresponding to 

(8.115)

and the constant b is given by

(8.116)

Equation (8.114) can be identified to be, essentially, the same as the equation of motion of

an undamped single-degree-of-freedom system. Using the Duhamel integral, the solution

of Eq. (8.114) can be expressed as

(8.117) +
1

rAbvn3

 t

0 
Qn (t) sin vn(t - t) dt

 qn(t) = An cos vnt + Bn sin vnt

b =
3

 l

0 
Wn

2(x) dx

Qn(t) =
3

 l

0 
f(x, t)Wn(x) dx

qn(t)Qn(t)

d2qn(t)

dt2
+ vn

2 qn(t) =
1

rAb
 Qn(t)

Wm(x),

a
q

n=1
 vn

2Wn(x)qn(t) + a
q

n=1
 Wn(x) 

d2qn(t)

dt2
=

1

rA
  f(x, t)

EI a
q

n=1

d4Wn(x)

dx4
 qn(t) + rA a

q

n=1
 Wn(x) 

d2qn(t)

dt2
= f(x, t)

qn(t)

EI 

d4Wn(x)

dx4
- vn

2
 r AWn(x) = 0;         n = 1, 2, Á

Wn(x)

w(x, t) = a
q

n=1
 Wn(x)qn(t)
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8.5 LATERAL VIBRATION OF BEAMS 731

where the first two terms on the right-hand side of Eq. (8.117) represent the transient or

free vibration (resulting from the initial conditions) and the third term denotes the steady-

state vibration (resulting from the forcing function). Once Eq. (8.117) is solved for

the total solution can be determined from Eq. (8.110).n = 1, 2, Á ,

E X A M P L E  8 . 8
Forced Vibration of a Simply Supported Beam

Find the steady-state response of a pinned-pinned beam subject to a harmonic force 

applied at as shown in Fig. 8.17.

Solution: Approach: Mode superposition method.

The normal mode functions of a pinned-pinned beam are given by (see Fig. 8.15; also Problem 8.33)

(E.1)

where

(E.2)

The generalized force given by Eq. (8.115), becomes

(E.3)

The steady-state response of the beam is given by Eq. (8.117)

(E.4)

where

(E.5)

The solution of Eq. (E.4) can be expressed as

(E.6)

Thus the response of the beam is given by Eq. (8.110):

(E.7)w(x, t) =
2f0

rAl
 a
q

n=1
 

1

vn
2
- v2

 sin 
npa

l
 sin 

npx

l
 sin vt

qn(t) =
2f0

rAl
 

sin npa
l

vn
2
- v2

 sin vt

b =
L

 l

0
Wn

2(x) dx =
L

 l

0
sin2 bnx dx =

l

2

qn(t) =
1

rAbvnL

 t

0
Qn(t) sin vn (t - t) dt

Qn(t) =
L

 l

0
f(x, t) sin bnx dx = f0 sin 

npa

l
 sin vt

Qn(t),

bnl = np

Wn(x) = sin bnx = sin 

npx

l

x = a,
f(x, t) = f0 sin vt

l

a

f
0
 sin vt

FIGURE 8.17 Pinned-pinned beam under

harmonic force. *
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732 CHAPTER 8 CONTINUOUS SYSTEMS

8.5.7

Effect of Axial

Force

The problem of vibrations of a beam under the action of axial force finds application in

the study of vibrations of cables and guy wires. For example, although the vibrations of

a cable can be found by treating it as an equivalent string, many cables have failed due to

fatigue caused by alternating flexure. The alternating flexure is produced by the regular

shedding of vortices from the cable in a light wind. We must therefore consider the

effects of axial force and bending stiffness on lateral vibrations in the study of fatigue

failure of cables.

To find the effect of an axial force P(x, t) on the bending vibrations of a beam, con-

sider the equation of motion of an element of the beam, as shown in Fig. 8.18. For the ver-

tical motion, we have

(8.118)

and for the rotational motion about 0,

(8.119)

For small deflections,

sin(u + du) M u + du = u +
0u

0x
 dx =

0w

0x
+
0

2
w

0x2
 dx

(M + dM) - (V + dV) dx + f dx 
dx

2
- M = 0

-  (V + dV) + f dx + V + (P + dP) sin(u + du) - P sin u = rA dx 
0

2
w

0t2

dxx

dxx

f(x, t)

P(x, t)

w(x, t)

O
u

O

VM

P

x

x

f dx

V V
x

dx

P P
x

dx

M M
x

dx

u 
u

x
dx

FIGURE 8.18 An element of a beam under axial load.

M08_RAO08193_5_SE_C08.qxd  8/21/10  6:03 PM  Page 732



8.5 LATERAL VIBRATION OF BEAMS 733

With this, Eqs. (8.118), (8.119), and (8.75) can be combined to obtain a single differential

equation of motion:

(8.120)

For the free vibration of a uniform beam, Eq. (8.120) reduces to

(8.121)

The solution of Eq. (8.121) can be obtained using the method of separation of variables as

(8.122)

Substitution of Eq. (8.122) into Eq. (8.121) gives

(8.123)

By assuming the solution W(x) to be

(8.124)

in Eq. (8.123), the auxiliary equation can be obtained:

(8.125)

The roots of Eq. (8.125) are

(8.126)

and so the solution can be expressed as (with absolute value of )

(8.127)

where the constants to are to be determined from the boundary conditions.C4C1

W(x) = C1 cosh s1x + C2 sinh s1x + C3 cos s2x + C4 sin s2x

s2

s1
2, s2

2
=

P

2EI
; ¢

P2

4E2I2
+
rAv2

EI

1/2

s4
-

P

EI
 s2

-
rAv2

EI
= 0

W(x) = Cesx

EI 

d4W

dx4
- P 

d2W

dx2
- rAv2W = 0

w(x, t) = W(x) (A cos vt + B sin vt)

EI 

0
4
w

0x4
+ rA 

0
2
w

0t2
- P 

0
2
w

0x2
= 0

0
2

0x2
 BEI 

0
2
w

0x2 R
+ rA 

0
2
w

0t2
- P 

0
2
w

0x2
= f

E X A M P L E  8 . 9
Beam Subjected to an Axial Compressive Force

Find the natural frequencies of a simply supported beam subjected to an axial compressive force.

Solution: The boundary conditions are

(E.1)

(E.2)
d2W

dx2
 (0) = 0

W(0)  = 0
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734 CHAPTER 8 CONTINUOUS SYSTEMS

(E.3)

(E.4)

Equations (E.1) and (E.2) require that in Eq. (8.127), and so

(E.5)

The application of Eqs. (E.3) and (E.4) to Eq. (E.5) leads to

(E.6)

Since for all values of the only roots to this equation are

(E.7)

Thus Eqs. (E.7) and (8.126) give the natural frequencies of vibration:

(E.8)

Since the axial force P is compressive, P is negative. Further, from strength of materials, the smallest

Euler buckling load for a simply supported beam is given by [8.9]

(E.9)

Thus Eq. (E.8) can be written as

(E.10)

The following observations can be made from the present example:

1. If the natural frequency will be same as that of a simply supported beam given in Fig. 8.15.

2. If the natural frequency (see Eq. (E.8)) reduces to that of a taut string.

3. If the natural frequency increases as the tensile force stiffens the beam.

4. As the natural frequency approaches zero for 

*

n = 1.P: P cri,
P 7 0,
EI = 0,
P = 0,

vn =
p

2

l2
 +

EI

rA
*

1/2

+n4
- n2

 

P

P cri

*

1/2

P cri =
p

2EI

l2

vn =
p

2

l2
 
A

EI

rA
 +n4

+
n2Pl2

p
2EI

*

1/2

s2l = np,  n = 0, 1, 2, Á

s1l Z 0,sinh s1l 7 0

sinh s1l # sin s2l = 0

W(x) = C2 sinh s1x + C4 sin s2x

C1 = C3 = 0

d2W

dx2
 (l)  = 0

W(l)  = 0

8.5.8
Effects of Rotary
Inertia and
Shear
Deformation

If the cross-sectional dimensions are not small compared to the length of the beam, we

need to consider the effects of rotary inertia and shear deformation. The procedure, pre-

sented by Timoshenko [8.10], is known as the thick beam theory or Timoshenko beam the-

ory. Consider the element of the beam shown in Fig. 8.19. If the effect of shear

deformation is disregarded, the tangent to the deflected center line coincides with the

normal to the face (since cross sections normal to the center line remain normal evenQ¿R¿
O¿T
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8.5 LATERAL VIBRATION OF BEAMS 735

after deformation). Due to shear deformation, the tangent to the deformed center line 

will not be perpendicular to the face The angle between the tangent to the

deformed center line and the normal to the face denotes the shear deforma-

tion of the element. Since positive shear on the right face acts downward, we have,

from Fig. 8.19,

(8.128)

where denotes the slope of the deflection curve due to bending deformation alone. Note

that because of shear alone, the element undergoes distortion but no rotation.

The bending moment M and the shear force V are related to and w by the formulas2

(8.129)

and

(8.130)

where G denotes the modulus of rigidity of the material of the beam and k is a con-

stant, also known as Timoshenko s shear coefficient, which depends on the shape of

V = kAGg = kAG+f -
0w

0x
*

M = EI 
0f

0x

f

f

g = f -
0w

0x

Q¿R¿

(O¿N)(O¿T)
gQ¿R¿.

O¿T

2Equation (8.129) is similar to Eq. (8.75). Equation (8.130) can be obtained as follows:

or

This equation is modified as by introducing a factor k on the right-hand side to take care of the shape

of the cross section.

V = kAGg

V = gGA

Shear force = Shear stress * Area = Shear strain * Shear modulus * Area

dx

M + dM

N

w

V
M

V * dV

z,w

Q,

O,

P,

S,

R,

D
T +w

+x

+
2
w

+t2
rA dx

+
2f

+t2
rI dx

O

f

f
g

FIGURE 8.19 An element of Timoshenko

beam.
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736 CHAPTER 8 CONTINUOUS SYSTEMS

the cross section. For a rectangular section the value of k is 5/6; for a circular section

it is 9/10 [8.11].

The equations of motion for the element shown in Fig. 8.19 can be derived as follows:

1. For translation in the z direction:

(8.131)

2. For rotation about a line passing through point D and parallel to the y-axis:

(8.132)

Using the relations

along with Eqs. (8.129) and (8.130) and disregarding terms involving second powers in dx,

Eqs. (8.131) and (8.132) can be expressed as

(8.133)

(8.134)

By solving Eq. (8.133) for and substituting the result in Eq. (8.134), we obtain the

desired equation of motion for the forced vibration of a uniform beam:

 EI 
0

4w

0x4
+ rA 

0
2w

0t2
- rIa1 +

E

kG
b  

0
4w

0x2 
0t2

+
r2I

kG
 
0

4w

0t4

0f/0x

 EI 
0

2f

0x2
- kAG +f -

0w

0x
* = rI 

0
2f

0t2

 -  kAG +
0f

0x
-
0

2w

0x2 *
+ f(x, t) = rA 

0
2w

0t2

dV =
0V

0x
 dx and dM =

0M

0x
 dx

 = rI(x) dx 
0

2f

0t2
K Rotary inertia of the element

 + f(x, t) dx 
dx

2
- M(x, t)

 [M(x, t) + dM(x, t)] + [V(x, t) + dV(x, t)] dx

 K Translational inertia of the element

 = rA(x) dx 
0

2w

0t2
 (x, t)

 -  [V(x, t) + dV(x, t)] + f(x, t) dx + V(x, t)
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(8.135)

For free vibration, and Eq. (8.135) reduces to

(8.136)

The following boundary conditions are to be applied in the solution of Eq. (8.135) or

(8.136):

1. Fixed end:

2. Simply supported end:

3. Free end:

kAGa
0w

0x
- fb = EI 

0f

0x
= 0

EI 
0f

0x
= w = 0

f = w = 0

EI 
0

4
w

0x4
+ rA 

0
2
w

0t2
- rIa1 +

E

kG
b  

0
4
w

0x2 
0t2

+
r2I

kG
 
0

4
w

0t4
= 0

f = 0,

 +
EI

kAG
 
0

2f

0x2
-

rI

kAG
 
0

2f

0t2
- f = 0

E X A M P L E  8 . 1 0
Natural Frequencies of a Simply Supported Beam

Determine the effects of rotary inertia and shear deformation on the natural frequencies of a simply

supported uniform beam.

Solution: By defining

(E.1)

Eq. (8.136) can be written as

(E.2)

We can express the solution of Eq. (E.2) as

(E.3)w(x, t) = C sin 
npx

l
 cos vnt

a2 
0

4
w

0x4
+

0
2
w

0t2
- r2

a1 +
E

kG
b  

0
4
w

0x2 
0t2

+
rr2

kG
 
0

4
w

0t4
= 0

a2
=

EI

rA
 and r2

=
I

A

M08_RAO08193_5_SE_C08.qxd  8/21/10  6:03 PM  Page 737



738 CHAPTER 8 CONTINUOUS SYSTEMS

which satisfies the necessary boundary conditions at and Here, C is a constant and

is the nth natural frequency. By substituting Eq. (E.3) into Eq. (E.2), we obtain the frequency

equation:

(E.4)

It can be seen that Eq. (E.4) is a quadratic equation in and for any given n there are two values of

that satisfy Eq. (E.4). The smaller value corresponds to the bending deformation mode, while the

larger one corresponds to the shear deformation mode.

The values of the ratio of given by Eq. (E.4) to the natural frequency given by the classical

theory (in Fig. 8.15) are plotted for three values of E/kG in Fig. 8.20 [8.22].3

Note the following aspects of rotary inertia and shear deformation:

1. If the effect of rotary inertia alone is considered, the resulting equation of motion does not

contain any term involving the shear coefficient k. Hence we obtain (from Eq. (8.136)):

(E.5)

In this case the frequency equation (E.4) reduces to

(E.6)vn
2
=

a
2n4

p
4

l4
+1 +

n2
p

2r2

l2
*

EI 
0

4w

0x4
+ rA 

0
2w

0t2
- rI 

0
4w

0x2 
0t2

= 0

vn

vn

vn
2,

vn
4
+
rr2

kG
* - vn

2
+1 +

n2
p

2r2

l2
+

n2
p

2r2

l2
 

E

kG
* + +

a
2n4

p
4

l4
* = 0

vn

x = l.x = 0

1.0

0.8

0.6

0.4

0.2

0.2 0.4 0.6 0.8 1.0 1.20

For
E

kG
* 1

For
E

kG
* 2
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l
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E

kG
* 3

v
n
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 E
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(E

.4
)

v
n
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e
n
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y
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ss

ic
a
l 

th
e
o

ry

FIGURE 8.20 Variation of frequency.

3The theory used for the derivation of the equation of motion (8.76), which disregards the effects of rotary inertia

and shear deformation, is called the classical or Euler-Bernoulli or thin beam theory.
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2. If the effect of shear deformation alone is considered, the resulting equation of motion does

not contain the terms originating from in Eq. (8.134). Thus we obtain the equa-

tion of motion

(E.7)

and the corresponding frequency equation

(E.8)

3. If both the effects of rotary inertia and shear deformation are disregarded, Eq. (8.136) reduces

to the classical equation of motion, Eq. (8.78),

(E.9)

and Eq. (E.4) to

(E.10)

*

vn
2
=
a2n4p4

l4

EI 
0

4w

0x4
+ rA 

0
2w

0t2
= 0

vn
2
=

a2n4p4

l4
+1 +

n2p2r2

l2
  

E

kG
*

EI 
0

4w

0x4
+ rA 

0
2w

0t2
-

EIr

kG
 
0

4w

0x2 
0t2

= 0

rI(02f/0t2)

The transverse vibration of tapered beams is presented in references [8.12, 8.14]. The nat-

ural frequencies of continuous beams are discussed by Wang [8.15]. The dynamic response

of beams resting on elastic foundation is considered in reference [8.16]. The effect of sup-

port flexibility on the natural frequencies of beams is presented in [8.18, 8.19]. A treatment

of the problem of natural vibrations of a system of elastically connected Timoshenko

beams is given in reference [8.20]. A comparison of the exact and approximate solutions of

vibrating beams is made by Hutchinson [8.30]. The steady-state vibration of damped

beams is considered in reference [8.21].

8.6 Vibration of Membranes
A membrane is a plate that is subjected to tension and has negligible bending resistance.

Thus a membrane bears the same relationship to a plate as a string bears to a beam. A

drumhead is an example of a membrane.

8.5.9
Other Effects

8.6.1
Equation 
of Motion

To derive the equation of motion of a membrane, consider the membrane to be bounded by

a plane curve S in the xy-plane, as shown in Fig. 8.21. Let f(x, y, t) denote the pressure load-

ing acting in the z direction and P the intensity of tension at a point that is equal to the

product of the tensile stress and the thickness of the membrane. The magnitude of P is usually
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740 CHAPTER 8 CONTINUOUS SYSTEMS

constant throughout the membrane, as in a drumhead. If we consider an elemental area dx dy,

forces of magnitude P dx and P dy act on the sides parallel to the y- and x-axes, respectively,

as shown in Fig. 8.21. The net forces acting along the z direction due to these forces are

The pressure force along the z direction is f(x, y, t) dx dy, and the inertia force is

where is the mass per unit area. The equation of motion for the forced transverse

vibration of the membrane can be obtained as

(8.137)P+
0

2w

0x2
+

0
2w

0y2
* + f = r 

0
2w

0t2

r(x, y)

r(x, y) 

0
2w

0t2
 dx dy

+P 
0

2w

0y2
 dx dy* and +P 

0
2w

0x2
 dx dy*

y

x

P,dx
P,dx

P,dx

P,dx

P,dyP,dy

P,dy

P,dy

S
Y2

Y1

X2X1

x z

z

O

O

O

dx

dy

Section X1X2

Section Y1Y2

f(x, y, t)

f(x, y, t)

y

dy
dx

+w

+y

+w

+x

*
+

+y
+w

+y
+w

+y
dy

*
+

+x
+w

+x
+w

+x
dx

FIGURE 8.21 A membrane under uniform tension.
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8.6 VIBRATION OF MEMBRANES 741

If the external force Eq. (8.137) gives the free-vibration equation

(8.138)

where

(8.139)

Equations (8.137) and (8.138) can be expressed as

(8.140)

and

(8.141)

where

(8.142)

is the Laplacian operator.

§
2
=

0
2

0x2
+

0
2

0y2

c2 
§

2
w =

0
2
w

0t2

P §2
w + f = r 

0
2
w

0t2

c = +
P

r
*

1/2

c2
+
0

2
w

0x2
+

0
2
w

0y2
* =

0
2
w

0t2

f(x, y, t) = 0,

8.6.2
Initial and
Boundary
Conditions

Since the equation of motion, Eq. (8.137) or (8.138), involves second-order partial deriva-

tives with respect to each of t, x, and y, we need to specify two initial conditions and four

boundary conditions to find a unique solution of the problem. Usually, the displacement

and velocity of the membrane at are specified as and Hence the

initial conditions are given by

(8.143)

The boundary conditions are of the following types:

1. If the membrane is fixed at any point on a segment of the boundary, we have

(8.144)

2. If the membrane is free to deflect transversely (in the z direction) at a different point

of the boundary, then the force component in the z direction must be zero. Thus

(8.145)P 
0w

0n
 (x2, y2, t) = 0,  t Ú 0

(x2, y2)

w(x1, y1, t) = 0,  t Ú 0

(x1, y1)

0w

0t
 (x, y, 0) =

#
w
#
0(x, y)

w(x, y, 0) = w0(x, y)

w
#

0(x, y).w0(x, y)t = 0
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742 CHAPTER 8 CONTINUOUS SYSTEMS

where represents the derivative of w with respect to a direction n normal to the

boundary at the point 

The solution of the equation of motion of the vibrating membrane was presented in

references [8.23 8.25].

(x2, y2).
0w/0n

E X A M P L E  8 . 1 1
Free Vibrations of a Rectangular Membrane

Find the free-vibration solution of a rectangular membrane of sides a and b along the x- and y-axes,

respectively.

Solution: By using the method of separation of variables, w(x, y, t) can be assumed to be

(E.1)

By using Eqs. (E.1) and (8.138), we obtain

(E.2)

(E.3)

(E.4)

where and are constants related to as follows:

(E.5)

The solutions of Eqs. (E.2) to (E.4) are given by

(E.6)

(E.7)

(E.8)

where the constants to A, and B can be determined from the boundary and initial conditions.

*

C4,C1

 T(t) = A cos vt + B sin vt

 Y(y) = C3 cos by + C4 sin by

 X(x) = C1 cos ax + C2 sin ax

b2
=
v2

c2
- a2

v2b2a2

 
d2T(t)

dt2
+ v2T(t) = 0

 
d2Y(y)

dy2
+ b2Y(y) = 0

 
d2X(x)

dx2
+ a2X(x) = 0

w(x, y, t) = W(x, y)  T(t) = X(x)  Y(y)  T(t)

8.7 Rayleigh s Method
Rayleigh s method can be applied to find the fundamental natural frequency of continuous

systems. This method is much simpler than exact analysis for systems with varying distri-

butions of mass and stiffness. Although the method is applicable to all continuous systems,
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8.7 RAYLEIGH S METHOD 743

we shall apply it only to beams in this section.4 Consider the beam shown in Fig. 8.14. In

order to apply Rayleigh s method, we need to derive expressions for the maximum kinetic

and potential energies and Rayleigh s quotient. The kinetic energy of the beam can be

expressed as

(8.146)

The maximum kinetic energy can be found by assuming a harmonic variation 

(8.147)

The potential energy of the beam V is the same as the work done in deforming the beam.

By disregarding the work done by the shear forces, we have

(8.148)

where M is the bending moment given by Eq. (8.75) and is the slope of the deformed

beam given by Thus Eq. (8.148) can be rewritten as

(8.149)

Since the maximum value of w(x, t) is W(x), the maximum value of V is given by

(8.150)

By equating to we obtain Rayleigh s quotient:

(8.151)R(v) = v2
=
L

 l

0
EI+

d2W(x)

dx2 *

2

 dx

L

 l

0
rA(W(x))2 dx

Vmax,Tmax

Vmax =
1

2L

 l

0
EI(x)+

d2W(x)

dx2 *

2

 dx

V =
1

2L

 l

0
+EI 

0
2
w

0x2 *
 
0

2
w

0x2
 dx =

1

2L

 l

0
EI+

0
2
w

0x2 *

2

 dx

u =
0w

0x
.

u

V =
1

2L

 l

0
M du

Tmax =
v2

2 L

 l

0
rA(x)W2(x) dx

W(x) cos vt:
w(x, t) =

T =
1

2L

 l

0
w 
# 2 dm =

1

2L

 l

0
w 
# 2rA(x) dx

4An integral equation approach for the determination of the fundamental frequency of vibrating beams is pre-

sented by Penny and Reed [8.26].
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Thus the natural frequency of the beam can be found once the deflection W(x) is known. In

general, W(x) is not known and must therefore be assumed. Generally, the static equilib-

rium shape is assumed for W(x) to obtain the fundamental frequency. It is to be noted that

the assumed shape W(x) unintentionally introduces a constraint on the system (which

amounts to adding additional stiffness to the system), and so the frequency given by

Eq. (8.151) is higher than the exact value [8.27].

For a stepped beam, Eq. (8.151) can be more conveniently written as

(8.152)

where and correspond to the ith step (i = 1, 2, Á ).liEi, Ii, Ai,

 =

E1I1
L

 l1

0
+

d2W

dx2 *

2

 dx + E2I2
L

 l2

l1

+
d2W

dx2 *

2

 dx + Á

rA1
L

 l1

0
W2 dx + rA2

L

 l2

l1

W2 dx + Á

 R(v) = v
2

E X A M P L E  8 . 1 2
Fundamental Frequency of a Tapered Beam

Find the fundamental frequency of transverse vibration of the nonuniform cantilever beam shown in

Fig. 8.22, using the deflection shape 

Solution: The given deflection shape can be verified to satisfy the boundary conditions of the beam.

The cross-sectional area A and the moment of inertia I of the beam can be expressed as

(E.1)A(x) =
hx

l
,  I(x) =

1

12
 +

hx

l
*

3

W(x) = (1 - x/l)2.

h

x

z y

O

l
1

FIGURE 8.22 Tapered cantilever beam.
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Thus Rayleigh s quotient gives

or

(E.2)

The exact value of the frequency for this case [8.2] is known to be

(E.3)

Thus the value of given by Rayleigh s method can be seen to be 3.0503 percent higher than the

exact value.

*

8.8 The Rayleigh-Ritz Method
The Rayleigh-Ritz method can be considered an extension of Rayleigh s method. It is

based on the premise that a closer approximation to the exact natural mode can be obtained

by superposing a number of assumed functions than by using a single assumed function, as

in Rayleigh s method. If the assumed functions are suitably chosen, this method provides

not only the approximate value of the fundamental frequency but also the approximate val-

ues of the higher natural frequencies and the mode shapes. An arbitrary number of func-

tions can be used, and the number of frequencies that can be obtained is equal to the

number of functions used. A large number of functions, although it involves more compu-

tational work, leads to more accurate results.

In the case of transverse vibration of beams, if n functions are chosen for approximat-

ing the deflection W(x), we can write

(8.153)

where are known linearly independent functions of the spatial

coordinate x, which satisfy all the boundary conditions of the problem, and 

are coefficients to be found. The coefficients are to be determined so that the assumedci

c1, c2, Á , cn

w1(x), w2(x), Á , wn(x)

W(x) = c1w1(x) + c2w2(x) + Á + cnwn(x)

v1

v1 = 1.5343+
Eh2

rl4
*

1/2

v = 1.5811+
Eh2

rl4
*

1/2

v
2
=

L

 l

0
E+

h3x3

12l3
* +

2

l2
*

2

dx

L

 l

0
r+

hx

l
* +1 -

x

l
*

4

 dx

= 2.5 
Eh2

rl4
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functions provide the best possible approximation to the natural modes. To obtain

such approximations, the coefficients are adjusted and the natural frequency is made sta-

tionary at the natural modes. For this we substitute Eq. (8.153) in Rayleigh s quotient,

Eq. (8.151), and the resulting expression is partially differentiated with respect to each of

the coefficients To make the natural frequency stationary, we set each of the partial

derivatives equal to zero and obtain

(8.154)

Equation (8.154) denotes a set of n linear algebraic equations in the coefficients 

and also contains the undertermined quantity This defines an algebraic eigenvalue prob-

lem similar to the ones that arise in multidegree-of-freedom systems. The solution of this

eigenvalue problem generally gives n natural frequencies and n eigen-

vectors, each containing a set of numbers for For example, the ith eigenvector

corresponding to may be expressed as

(8.155)

When this eigenvector the values of is substituted into Eq. (8.153), we

obtain the best possible approximation to the ith mode of the beam. A method of reducing

the size of the eigenproblem in the Rayleigh-Ritz method is presented in reference [8.28].

A new approach, which combines the advantages of the Rayleigh-Ritz analysis and the

finite element method is given in reference [8.29]. The basic Rayleigh-Ritz procedure is

illustrated with the help of the following example.

c1
(i), c2

(i), Á , cn
(i)

C
!
(i) = d

c1
(i)

c2
(i)

o

cn
(i)

t

vi

c1, c2, Á , cn.

vi
2, i = 1, 2, Á , n,

v
2.

c1, c2, Á , cn

0(v2)

0ci

= 0,  i = 1, 2, Á , n

ci.

ci

wi(x)

E X A M P L E  8 . 1 3
First Two Frequencies of a Tapered Beam

Find the natural frequencies of the tapered cantilever beam of Example 8.12 by using the Rayleigh-

Ritz method.

Solution: We assume the deflection functions to be

(E.1)

(E.2) w2(x) =
x

l
¢1 -

x

l

2

 w1(x) = ¢1 -
x

l

2

wi(x)
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(E.3)

If we use the one-term approximation

(E.4)

the fundamental frequency will be the same as the one found in Example 8.12. Now we use the two-

term approximation

(E.5)

Rayleigh s quotient is given by

(E.6)

where

(E.7)

and

(E.8)

If Eq. (E.5) is substituted, Eq. (E.6) becomes a function of and The conditions that make or

R[W(x)] stationary are

(E.9)

(E.10)

These equations can be rewritten as

(E.11)

(E.12) 
0X

0c2
-

X

Y
 
0Y

0c2
=

0X

0c2
- v

2 
0Y

0c2
= 0

 
0X

0c1
-

X

Y
 
0Y

0c1
=

0X

0c1
- v

2 
0Y

0c1
= 0

 
0(v2)

0c2
=

Y 
0X

0c2
- X 

0Y

0c2

Y2
= 0

 
0(v2)

0c1
=

Y 
0X

0c1
- X 

0Y

0c1

Y2
= 0

v
2c2.c1

Y =
L

 l

0
rA(x)[W(x)]2 dx

X =
L

 l

0
EI(x)+

d2W(x)

dx2
*

2

 dx

R[W(x)] = v
2
=

X

Y

W(x) = c1 +1 -
x

l
*

2

+ c2 
x

l
 +1 -

x

l
*

2

W(x) = c1 +1 -
x

l
*

2

o

 w3(x) =
x2

l2
+1 -

x

l
*

2
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By substituting Eq. (E.5) into Eqs. (E.7) and (E.8), we obtain

(E.13)

(E.14)

With the help of Eqs. (E.13) and (E.14), Eqs. (E.11) and (E.12) can be expressed as

(E.15)

where

(E.16)

By setting the determinant of the matrix in Eq. (E.15) equal to zero, we obtain the frequency equation

(E.17)

The roots of Eq. (E.17) are given by and Thus the natural frequencies of

the tapered beam are

(E.18)

and

(E.19)

*

8.9 Examples Using MATLAB

v2 M 4.9936 ¢
Eh2

rl4

1/2

v1 M 1.5367 ¢
Eh2

rl4

1/2

v
'2 = 8.6492.v

' 1 = 2.6599

1

8820
 v
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4
-
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1400
 v
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2
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v
'
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=

3v2
rl4
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c2
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0

0
r

 Y = rhl ¢
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2
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+
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2
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+

2c1c2

105

 X =
Eh3

3l3
 ¢

c1
2

4
+

c2
2

10
+

c1c2

5

E X A M P L E  8 . 1 4
Plotting the Forced-Vibration Response of a Simply Supported Beam

Using MATLAB, plot the steady-state response of the pinned-pinned beam considered in Example

8.8, Eq. (E.7), for and 5.n = 1, 2,
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Solution: The MATLAB program to plot Eq. (E.7) of Example 8.8 at with and 5

is given below.

%Ex8_14.m

x = 20;

f0 = 100;

a = 10;

A = 1;

1 = 40;

ro = 0.283/386.4;

w = 100;

n = 1;

wn = (n2) * 360.393674;

for i = 1: 1001

t(i) = 3 * (i 1)/1000;

w1(i) = ( 2*f0/(ro*A*1) )*sin (n*pi*a/1)*sin (n*pi*x/1)*sin

(w*t(i))/(wn2 w2);

end

n = 2;

for i = 1: 1001

t(i) = 3 * (i 1)/1000;

w2(i) = ( 2*f0/(ro*A*1) )*( sin (pi*a/1)*sin (pi*x/1)*sin 

(w*t(i))/(360.3936742 w2)+sin (2*pi*a/1)*sin

(2*pi*x/1)*sin (w*t(i))/((2*360.393674)2 w2) );

end

n = 1, 2,x = 20

0.05

0.05

0

0 0.5 1.51 2 32.5

x = 20, n = 1

w
(
x
, 
t)

0.05

0.05

0

0 0.5 1.51 2 32.5

x = 20, n = 1, 2

w
(
x
, 
t)

0.04

0.02

0.04

0.02

0

0 0.5 1.51 2 32.5

x = 20, n = 1, 2, 5

w
(
x
, 
t)

t
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for i = 1: 1001

t(i) = 3 * (i 1)/1000;

w3(i) = ( 2*f0/(ro*A*1) )*( sin (pi*a/1)*sin (pi*x/1)*sin 

(w*t(i))/(360.393674^2 w^2)+sin (2*pi*a/1)+sin 

(2*pi*x/1)*sin (w*t(i))/((2*360.393674)2 w2)+sin 

(5*pi*a/1)*sin (5*pi*x/1)*sin (w*t(i))/

((5*360.393674)2 w2) );

end

subplot ( 311 );

plot(t,w1);

ylabel( w(x,t) );

title( x = 20, n = 1 );

subplot ( 312 );

plot(t,w2);

ylabel( w(x,t) );

title( x = 20, n = 1, 2 );

subplot( 313 );

plot(t,w3);

xlabel( t );

ylabel( w(x,t) );

title( x = 20, n = 1, 2, 5 );

*

E X A M P L E  8 . 1 5
Solution of a Frequency Equation

Using MATLAB, find the root(s) of the frequency equation corresponding to the fixed-pinned beam

with the starting value of 

Solution:

>> x = fzero(inline( tan(y) tanh(y) ), 3.0)

x =

3.92660231204792

>> tan (x)  tanh (x)

ans =

4.440892098500626e 016

*

bnl = 3.0.

tan bnl - tanh bnl = 0

E X A M P L E  8 . 1 6
Program to Find the Roots of Transcendental and Nonlinear Equations

Develop a general MATLAB program, called Program12.m, for finding the roots of nonlinear and

transcendental equations. Use the program to find the root of the equation

(E.1)tan bl - tanh bl = 0
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Solution: Program12.m is developed to accept the following input data:

of roots to be determined

guess for the first root

increment to be used in searching for the root

number of subintervals to be used (usual value: 50)

number of iterations permitted in finding a root (usual value: 100)

requirement (usual value: )

The given nonlinear equation is to be defined in a subprogram called function.m. The program gives

the computed roots as output.

>> programs12

Roots of nonlinear equation

Data:

n = 5

xs = 2.000000e+000

xinc = 1.000000e 001

nint = 50

iter = 100

eps = 1.000000e 006

Roots

3.926602e+000

7.068583e+000

1.021018e+001

1.335177e+001

1.649336e+001

*

10
- 6eps = convergence

iter = maximum

nint = maximum

xinc = initial

xs = initial

n = number

CHAPTER SUMMARY

We have studied the method of deriving the equation of motion of continuous systems such as string,

bar, shaft, beam and membrane. We presented methods of finding the natural frequencies, mode

shapes, and free-vibration solution using the relevant boundary and initial conditions. We outlined a

method of analyzing the forced vibration of beams using the mode superposition method. In addi-

tion, we presented the effects of axial force, rotary inertia, and shear deformation on the vibration of

beams. We studied the Rayleigh and Rayleigh-Ritz methods to find the approximate natural frequen-

cies of continuous systems. Finally, we presented the use of MATLAB in finding the free- forced-

vibration solutions of continuous systems.

Now that you have finished this chapter, you should be able to answer the review questions and

solve the problems given below.
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REVIEW QUESTIONS

8.1 Give brief answers to the following:

1. How does a continuous system differ from a discrete system in the nature of its equation

of motion?

2. How many natural frequencies does a continuous system have?

3. Are the boundary conditions important in a discrete system? Why?

4. What is a wave equation? What is a traveling-wave solution?

5. What is the significance of wave velocity?

6. State the boundary conditions to be specified at the simply supported end of a beam if (a)

thin-beam theory is used and (b) Timoshenko beam theory is used.

7. State the possible boundary conditions at the ends of a string.

8. What is the main difference in the nature of the frequency equations of a discrete system

and a continuous system?

9. What is the effect of a tensile force on the natural frequencies of a beam?

10. Under what circumstances does the frequency of vibration of a beam subjected to an

axial load become zero?

11. Why does the natural frequency of a beam become lower if the effects of shear deforma-

tion and rotary inertia are considered?

12. Give two practical examples of the vibration of membranes.

13. What is the basic principle used in Rayleigh s method?

14. Why is the natural frequency given by Rayleigh s method always larger than the true

value of 

15. What is the difference between Rayleigh s method and the Rayleigh-Ritz method?

16. What is Rayleigh s quotient?

8.2 Indicate whether each of the following statements is true or false:

1. Continuous systems are the same as distributed systems.

2. Continuous systems can be considered to have an infinite number of degrees of freedom.

3. The governing equation of a continuous system is an ordinary differential equation.

4. The free-vibration equations corresponding to the transverse motion of a string, the lon-

gitudinal motion of a bar, and the torsional motion of a shaft have the same form.

5. The normal modes of a continuous system are orthogonal.

6. A membrane has zero bending resistance.

7. Rayleigh s method can be considered as a method of conservation of energy.

v1?
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8. The Rayleigh-Ritz method assumes that the solution is a series of functions that satisfy

the boundary conditions of the problem.

9. For a discrete system, the boundary conditions are to be applied explicitly.

10. The Euler-Bernoulli beam theory is more accurate than the Timoshenko theory.

8.3 Fill in each of the following blanks with appropriate words:

1. The free-vibration equation of a string is also called a _____ equation.

2. The frequency equation is also known as the _____ equation.

3. The method of separation of variables is used to express the free-vibration solution of a

string as a _____ of function of x and function of t.

4. Both boundary and _____ conditions are to be specified to find the solution of a vibrat-

ing continuous system.

5. In the wave-solution the first term represents the

wave that propagates in the _____ directions of x.

6. The quantities EI and GJ are called the _____ and _____ stiffnesses, respectively.

7. The thin beam theory is also known as the _____ theory.

8. The lateral vibration of a thin beam is governed by a _____ order partial differential

equation in spatial variable.

9. When a beam is subjected to an axial force (tension), it _____ the natural frequency.

10. The Timoshenko beam theory can be considered as _____ beam theory.

11. A drumhead can be considered as a _____.

12. A string has the same relationship to a beam as a membrane bears to a _____.

13. Rayleigh s method can be used to estimate the _____ natural frequency of a continuous

system.

14. denotes the _____ in a beam.

15. For a discrete system, the governing equations are _____ differential equations.

16. An axial tensile load increases the bending _____ of a beam.

17. The _____ energy of a beam is denoted by 

18. The _____ energy of a beam is denoted by 

8.4 Select the most appropriate answer out of the choices given:

1. The frequency equation of a continuous system is a

a. polynomial equation

b. transcendental equation

c. differential equation

2. The number of natural frequencies of a continuous system is

1

2L

l

0

EI+
0

2
w

0x2
*

2

 dx.

1

2L

l

0

rA+
0w

0t
*

2

 dx.

EI 
0

2
w

0x2

w(x, t) = w1(x - ct) + w2(x + ct),

a. infinite b. one c. finite

3. When the axial force approaches the Euler buckling load, the fundamental frequency of

the beam reaches

a. infinity b. the frequency of a taut string c. zero
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4. The value of the Timoshenko shear coefficient depends on the following:

a. shape of the cross section

b. size of the cross section

c. length of the beam

5. A Laplacian operator is given by

a.

b.

c.

6. The boundary condition corresponding to the free end of a bar in longitudinal vibration is

given by

a.

b.

c.

7. The orthogonality of normal functions of the longitudinal vibration of a bar is given by

a.

b.

c.

8.5 Match the items in the two columns below regarding boundary conditions for a thin beam:

1. Free end

2. Pinned end

3. Fixed end

4. Elastically restrained end

L

 l

0
(Ui(x) + Uj(x)) dx = 0

L

 l

0
AUiUj - UjUi B  dx = 0

L

 l

0
Ui(x)Uj(x) dx = 0

AE 
0u

0x
  (0, t) - u(0, t) = 0

0u

0x
 (0, t) = 0

u(0, t) = 0

0
2

0x2
+

0
2

0y2

0
2

0x2
+

0
2

0y2
+ 2 

0
2

0x 0y

0
2

0x 0y

a. shear force equals the 

spring force

b.

c.

d. Bending moment = 0; shear force = 0
Deflection = 0; bending moment = 0
Deflection = 0; slope = 0

Bending moment = 0;

8.6 Match the items in the two columns below regarding a uniform beam:

1.

2.

3.

4. W = 0
W = 0
W¿ = 0
W = 0 a. Zero bending moment

b. Zero transverse displacement

c. Zero shear force

d. Zero slope
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l

k

2

k

2

m

FIGURE 8.23

8.7 Match the items in the two columns below regarding the wave equation 

1.

2.

3. c = +
G

r
*

1/2

c = +
E

r
*

1/2

c = +
P

r
*

1/2

c2 
0

2w

0x2
=

0
2w

0t2
:

PROBLEMS

Section 8.2 Transverse Vibration of a String or Cable

8.1 Determine the velocity of wave propagation in a cable of mass when stretched

by a tension 

8.2 A steel wire of 2 mm diameter is fixed between two points located 2 m apart. The tensile

force in the wire is 250 N. Determine (a) the fundamental frequency of vibration and (b) the

velocity of wave propagation in the wire.

8.3 A stretched cable of length 2 m has a fundamental frequency of 3000 Hz. Find the frequency

of the third mode. How are the fundamental and third mode frequencies changed if the ten-

sion is increased by 20 percent?

8.4 Find the time it takes for a transverse wave to travel along a transmission line from one tower

to another one 300 m away. Assume the horizontal component of the cable tension as 30,000

N and the mass of the cable as 2 kg/m of length.

8.5 A cable of length l and mass per unit length is stretched under a tension P. One end of the

cable is connected to a mass m, which can move in a frictionless slot, and the other end is

fastened to a spring of stiffness k, as shown in Fig. 8.23. Derive the frequency equation for

the transverse vibration of the cable.

r

P = 4000 N.

r = 5 kg/m

a. Longitudinal vibration of a bar

b. Torsional vibration of a shaft

c. Transverse vibration of a string
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2000 m

FIGURE 8.24

8.6 The cord of a musical instrument is fixed at both ends and has a length 2 m, diameter

0.5 mm, and density Find the tension required in order to have a fundamental

frequency of (a) 1 Hz and (b) 5 Hz.

8.7 A cable of length l and mass per unit length is stretched under a tension P. One end of the

cable is fixed and the other end is connected to a pin, which can move in a frictionless slot.

Find the natural frequencies of vibration of the cable.

8.8 Find the free-vibration solution of a cord fixed at both ends when its initial conditions are

given by

and

8.9 Prove that the constant a in Eqs. (8.18) and (8.19) is negative for common boundary condi-

tions. Hint: Multiply Eq. (8.18) by W(x) and integrate with respect to x from 0 to l.

8.10* The cable between two electric transmission towers has a length of 2000 m. It is clamped at

its ends under a tension P (Fig. 8.24). The density of the cable material is If the

first four natural frequencies are required to lie between 0 and 20 Hz, determine the neces-

sary cross-sectional area of the cable and the initial tension.

8890 kg/m3
.

0w

0t
 (x, 0) = 2a a1 -

x

l
b for l

2
x l

w(x, 0) = 0,  0w

0t
 (x, 0) =

2ax

l
 for 0 x

l

2

r

7800 kg/m3
.

*The asterisk denotes a problem with no unique answer.

8.11 If a string of length l, fixed at both ends, is given an initial transverse displacement of h at

and then released, determine its subsequent motion. Compare the deflection shapes

of the string at times and by considering the first four

terms of the series solution.

8.12 A cord of length l is made to vibrate in a viscous medium. Derive the equation of motion

considering the viscous damping force.

8.13 Determine the free-vibration solution of a string fixed at both ends under the initial condi-

tions and (0w/0t) (x, 0) = 0.w(x, 0) = w0 sin  (px/l)

l/ct = 0, l/(4c), l/(3c), l/(2c),

x = l/3
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FIGURE 8.25

Floor

500 m

Tower

Tower

Cables
A

Fx

Fy
A+

C+

D+

B+

B

D

t
C

h

w

h * 50 m

l * span

FIGURE 8.26 A suspension bridge

8.14 The strings of a guitar (Fig. 8.25) are made of music wire with diameter 0.05 mm, weight

density and Young s modulus 207 GPa. If the lengths of two of the strings are

given by 0.60 m and 0.65 m, determine the fundamental natural frequencies of the strings if

the tension in each string is 5 * 10
4
 N.

76.5 kN/m3
,

8.15 The vertical and horizontal forces (reactions) at joints A and B of a typical cable of the sus-

pension bridge shown in Fig. 8.26 are given by and 

The cables are made of steel with a weight density of If the effective diameter

of the cable is 25 cm, find the first two natural frequencies of vibration of the cable in the

vertical direction. State the assumptions involved in the solution.

76.5 kN/m3
.

Fy = 1.1 * 10
6
 N.Fx = 2.8 * 10

6
 N

Section 8.3 Longitudinal Vibration of a Bar or Rod

8.16 Derive an equation for the principal modes of longitudinal vibration of a uniform bar having

both ends free.

8.17 Derive the frequency equation for the longitudinal vibration of the systems shown in

Fig. 8.27.
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k

x * 0 x * l

FIGURE 8.28

M2

M1

r, A, E, l

M

r, A, E, l

(a)

r, A, E, l

(b) (c)

k1

k2

k

FIGURE 8.27

8.18* A thin bar of length l and mass m is clamped at one end and free at the other. What mass M

must be attached to the free end in order to decrease the fundamental frequency of longitu-

dinal vibration by 50 percent from its fixed-free value?

8.19 Show that the normal functions corresponding to the longitudinal vibration of the bar shown

in Fig. 8.28 are orthogonal.

8.20 Derive the frequency equation for the longitudinal vibration of a stepped bar having two dif-

ferent cross-sectional areas and over lengths and respectively. Assume fixed-free

end conditions.

8.21 A steel shaft of diameter d and length l is fixed at one end and carries a propeller of mass m

and mass moment of inertia at the other end (Fig. 8.29). Determine the fundamental nat-

ural frequency of vibration of the shaft in (a) axial vibration, and (b) torsional vibration.

Data: d = 5 cm, l = 1 m, m = 100 kg, J0 = 10 kg-m2.

J0

l2,l1A2A1
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ct1

kt1

I
01

x * 0

ct2

kt2

I
02

x * l

FIGURE 8.30

Section 8.4 Torsional Vibration of a Shaft or Rod

8.22 A torsional system consists of a shaft with a disc of mass moment of inertia mounted at its

center. If both ends of the shaft are fixed, find the response of the system in free torsional

vibration of the shaft. Assume that the disc is given a zero initial angular displacement and

an initial velocity of 

8.23 Find the natural frequencies for torsional vibration of a fixed-fixed shaft.

8.24 A uniform shaft of length l and torsional stiffness GJ is connected at both ends by torsional

springs, torsional dampers, and discs with inertias, as shown in Fig. 8.30. State the boundary

conditions.

u
 #

0.

I0

8.25 Solve Problem 8.23 if one end of the shaft is fixed and the other free.

8.26 Derive the frequency equation for the torsional vibration of a uniform shaft carrying rotors

of mass moment of inertia and one at each end.

8.27 An external torque is applied at the free end of a fixed-free uniform

shaft. Find the steady-state vibration of the shaft.

8.28 Find the fundamental frequency for torsional vibration of a shaft of length 2 m and diameter

50 mm when both the ends are fixed. The density of the material is and the mod-

ulus of rigidity is 

8.29 A uniform shaft, supported at and rotating at an angular velocity is suddenly

stopped at the end If the end is free, determine the subsequent angular dis-

placement response of the shaft.

Section 8.5 Lateral Vibration of Beams

8.30 Compute the first three natural frequencies and the corresponding mode shapes of the

transverse vibrations of a uniform beam of rectangular cross section 

with and for the following cases:

(a) when both ends are simply supported; (b) when both ends are built-in (clamped);

(c) when one end is fixed and the other end is free; and (d) when both ends are free. Plot the

mode shapes.

8.31 Derive an expression for the natural frequencies for the lateral vibration of a uniform fixed-

free beam.

8.32 Prove that the normal functions of a uniform beam, whose ends are connected by springs as

shown in Fig. 8.31, are orthogonal.

r = 7.83 * 103 kg/m3l = 2 m, E = 20.5 * 1010 N/m2,
(100 mm * 300 mm)

x = lx = 0.
v,x = 0

0.8 * 1011 N/m2.
7800 kg/m3

Mt(t) = Mt0 cos vt

I02I01
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k
2

k
1

r, E, A, I

l

~ ~

FIGURE 8.32

k

x * 0

x * lkt

FIGURE 8.31

8.33 Derive an expression for the natural frequencies for the transverse vibration of a uniform

beam with both ends simply supported.

8.34 Derive the expression for the natural frequencies for the lateral vibration of a uniform beam

suspended as a pendulum, neglecting the effect of dead weight.

8.35 Find the cross-sectional area (A) and the area moment of inertia (I ) of a simply supported

steel beam of length 1 m for which the first three natural frequencies lie in the range

1500 5000 Hz.

8.36 A uniform beam, simply supported at both ends, is found to vibrate in its first mode with an

amplitude of 10 mm at its center. If 

and  determine the maximum bending moment in the beam.

8.37 Derive the frequency equation for the transverse vibration of a uniform beam resting on

springs at both ends, as shown in Fig. 8.32. The springs can deflect vertically only, and the

beam is horizontal in the equilibrium position.

l = 1 m,r = 7.83 * 103 kg/m3,

E = 20.5 * 1010 N/m2,I = 1000 mm4,A = 120 mm2,

8.38 A simply supported uniform beam of length l carries a mass M at the center of the beam.

Assuming M to be a point mass, obtain the frequency equation of the system.

8.39 A uniform fixed-fixed beam of length 2l is simply supported at the middle point. Derive the

frequency equation for the transverse vibration of the beam.

8.40 A simply supported beam carries initially a uniformly distributed load of intensity Find

the vibration response of the beam if the load is suddenly removed.

8.41 Estimate the fundamental frequency of a cantilever beam whose cross-sectional area and

moment of inertia vary as

where x is measured from the free end.

A(x) = A0 
x

l
 and I(x) = I 

x

l

f0.
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l
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l

2

FIGURE 8.33

1 m

2 cm dia.

100e
*0.1t

 N

FIGURE 8.34

8.42 (a) Derive a general expression for the response of a uniform beam subjected to an arbitrary

force. (b) Use the result of part (a) to find the response of a uniform simply supported beam

under the harmonic force applied at Assume the initial conditions as

8.43 Derive Eqs. (E.5) and (E.6) of Example 8.10.

8.44 Derive Eqs. (E.7) and (E.8) of Example 8.10.

8.45 Prove that the constant a in Eq. (8.82) is positive for common boundary conditions. Hint:

Multiply Eq. (8.83) by W(x) and integrate with respect to x from 0 to l.

8.46 Find the response of a simply supported beam subject to a uniformly distributed harmoni-

cally varying load.

8.47 A fixed-fixed beam carries an electric motor of mass 100 kg and operational speed 3000 rpm

at its midspan, as shown in Fig. 8.33. If the motor has a rotational unbalance of 0.5 kg-m,

determine the steady-state response of the beam. Assume the length of the beam as 

cross section as and the material as steel.10 cm * 10 cm,
l = 2 m,

w(x, 0) = (0w/0t)(x, 0) = 0.
x = a.F0 sin vt

8.48 A steel cantilever beam of diameter 2 cm and length 1 m is subjected to an exponentially

decaying force N at the free end, as shown in Fig. 8.34. Determine the steady-state

response of the beam. Assume the density and Young s modulus of steel as and

respectively.210 * 109 N/m2,
7500 kg/m3

100e- 
0.1t

8.49 Find the steady-state response of a cantilever beam that is subjected to a suddenly applied

step bending moment of magnitude at its free end.

8.50 A cantilever beam of length l, density Young s modulus E, area of cross section A, and

area moment of inertia I carries a concentrated mass M at its free end. Derive the frequency

equation for the transverse vibration of the beam.

8.51 Consider a railway car moving on a railroad track as shown in Fig. 8.35(a). The track can be

modeled as an infinite beam resting on an elastic foundation and the car can be idealized as a

r,

M0
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v0t

v0

x * 0

F0(x, t)

Beam

Soil stiffness (k)

(b)

(a)

v0

FIGURE 8.35

moving load (see Fig. 8.35b). If the soil stiffness per unit length is k, and the constant

velocity of the car is show that the equation of motion of the beam can be expressed as

Indicate a method of solving the equation of motion if the moving load is assumed to be

constant in magnitude.

8.52 Find the first two natural frequencies of vibration in the vertical direction of the floor of the

suspension bridge shown in Fig. 8.26 under the following assumptions:

1. The floor can be considered as a uniform beam with simple supports at both ends C and D.

2. The floor has a width (w) 12 m, thickness (t) 0.75 m and weight, including the supporting

girders, 3000 N/m.

3. The Young s modulus of the floor is 175 GPa.

8.53 A uniform beam of length 2l is fixed at the left end, supported on a simple support at the

middle, and free at the right end as shown in Fig. 8.36. Derive the frequency equation for

determining the natural frequencies of vibration of the continuous beam.

EI 
0

4w(x, t)

0x4
+ rA 

0
2w(x, t)

0t2
+ kw(x, t) = F0(x - v0 

t)

v0,

F0(x, t)

l l

FIGURE 8.36
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FIGURE 8.37
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B
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l
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FIGURE 8.38

8.54 A uniform fixed-fixed beam of length 2l is supported on a pin joint at the midpoint as shown

in Fig. 8.37. Derive the frequency equation for determining the natural frequencies of vibra-

tion of the continuous beam.

8.55 The L-shaped frame shown in Fig. 8.38 is fixed at the end A and free at end C. The two seg-

ments of the frame, AB and BC, are made of the same material with identical square cross

sections. Indicate a procedure for finding the natural frequencies of in-plane vibration of the

frame by treating the two segments as beams.

Hint: Identify the boundary conditions at A and C and the conditions to be satisfied at point B.

Section 8.6 Vibration of Membranes

8.56 Starting from fundamentals, show that the equation for the lateral vibration of a circular

membrane is given by

8.57 Consider a rectangular membrane of sides a and b supported along all the edges. (a) Derive

an expression for the deflection w(x, y, t) under an arbitrary pressure f(x, y, t). (b) Find the

response when a uniformly distributed pressure is applied to a membrane that is initially

at rest.

8.58 Find the free-vibration solution and the natural frequencies of a rectangular membrane that

is clamped along all the sides. The membrane has dimensions a and b along the x and y

directions, respectively.

f0

0
2w

0r2
+

1

r
 
0w

0r
+

1

r2
 
0

2w

0u
2
=

r

P
 
0

2w

0t2
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8.59 Find the free-vibration response of a rectangular membrane of sides a and b subject to the

following initial conditions:

8.60 Find the free-vibration response of a rectangular membrane of sides a and b subjected to the

following initial conditions:

Assume that the edges of the membrane are fixed.

8.61 Compare the fundamental natural frequencies of transverse vibration of membranes of the

following shapes: (a) square; (b) circular; and (c) rectangular with sides in the ratio of 2:1.

Assume that all the membranes are clamped around their edges and have the same area,

material, and tension.

8.62 Using the equation of motion given in Problem 8.56, find the natural frequencies of a circu-

lar membrane of radius R clamped around the boundary at 

Section 8.7 Rayleigh s Method

8.63 Find the fundamental natural frequency of a fixed-fixed beam using the static deflection

curve

where is a constant.

8.64 Solve Problem 8.63 using the deflection shape where is a

constant.

8.65 Find the fundamental natural frequency of vibration of a uniform beam of length l that is

fixed at one end and simply supported at the other end. Assume the deflection shape of the

beam to be same as the static deflection curve under its self weight. Hint: The static deflec-

tion of a uniform beam under self weight is governed by

where is the density, g is the acceleration due to gravity, and A is the area of cross section of

the beam. This equation can be integrated for any known boundary conditions of the beam.

8.66 Determine the fundamental frequency of a uniform fixed-fixed beam carrying a mass M at

the middle by applying Rayleigh s method. Use the static deflection curve for W(x).

r

EI 
d4W(x)

dx4
= rgA

c0W(x) = c0a1 - cos 

2px

l
b ,

c0

W(x) =
c0x2

24EI
 (l - x)2

r = R.

w(x, y, 0) = 0

0w

0t
 (x, y, 0) = w 

#

0 sin 

px

a
 sin 

2py

b

s , 0 x a

0 y b

 
0w

0t
 (x, y, 0) = 0,  0 x a,  0 y b

 w(x, y, 0) = w0 sin 

px

a
 sin 

py

b
,  0 x a,  0 y b
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x

l

kt

k

O

FIGURE 8.39

x
l

m(x), EA(x)

O

FIGURE 8.40

8.67 Applying Rayleigh s method, determine the fundamental frequency of a cantilever beam (fixed

at ) whose cross-sectional area A(x) and moment of inertia I(x) vary as 

and 

8.68 Using Rayleigh s method, find the fundamental frequency for the lateral vibration of the

beam shown in Fig. 8.39. The restoring force in the spring k is proportional to the deflection,

and the restoring moment in the spring is proportional to the angular deflection.kt

I(x) = I0x/l.
A(x) = A0x/lx = l

8.69 Using Rayleigh s method, estimate the fundamental frequency for the lateral vibration of a

uniform beam fixed at both the ends. Assume the deflection curve to be

8.70 Find the fundamental frequency of longitudinal vibration of the tapered bar shown in

Fig. 8.40, using Rayleigh s method with the mode shape

The mass per unit length is given by

and the stiffness by

EA(x) = 2EA0a1 -

x

l
b

m(x) = 2m0a1 -

x

l
b

U(x) = c1 sin 

px

2l

W(x) = c1a1 - cos 

2px

l
b
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8.71 Approximate the fundamental frequency of a rectangular membrane supported along all the

edges by using Rayleigh s method with

Hint:

8.72 Using Rayeigh s method, determine the fundamental natural frequency of the system shown

in Fig. 8.41.

V =
P

2O B a
0w

0x
b

2

+ a
0w

0y
b

2

R  dx dy and T =
r

2O a
0w

0t
b

2

 dx dy

W(x, y) = c1xy(x - a)(y - b).

Steel shaft,
dia. 5 cm

Disc, mass moment of inertia 5 kg-m2

0.8 m 0.2 m

FIGURE 8.41

Section 8.8 The Rayleigh-Ritz Method

8.73 Estimate the fundamental frequency of a fixed-fixed string, assuming the mode shape (a)

and (b) 

8.74 Estimate the fundamental frequency for the longitudinal vibration of a uniform bar fixed at

and free at by assuming the mode shapes as (a) and (b)

8.75 A stepped bar, fixed at and free at has a cross-sectional area of 2A for

and A for Assuming the mode shape

estimate the first two natural frequencies of longitudinal vibration.

8.76 Solve Problem 8.70 using the Rayleigh-Ritz method with the mode shape

8.77 Find the first two natural frequencies of a fixed-fixed uniform string of mass density per

unit length stretched between and with an initial tension P. Assume the deflec-

tion functions

 w2(x) = x2(l - x)2

 w1(x) = x(l - x)

x = lx = 0
r

U(x) = c1 sin 

px

2l
+ c2 sin 

3px

2l

U(x) = c1 sin 

px

2l
+ c2 sin 

3px

2l

l/3 x l.0 x 6 l/3
x = l,x = 0

U(x) = c1(x/l) + c2(x/l)2.
U(x) = c1(x/l)x = lx = 0

W(x) = c1x(l - x) + c2x2(l - x)2.W(x) = c1x(l - x)
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768 CHAPTER 8 CONTINUOUS SYSTEMS

Section 8.9 MATLAB Problems

8.78 Using Program12.m, solve Example 8.4.

8.79 Using Program12.m, find the first five natural frequencies of a thin fixed-fixed beam.

8.80 Using MATLAB, plot the dynamic response of the plucked string, Eq. (E.6) of Example 8.1,

at Data: 

8.81 Write a computer program for finding numerically the mode shapes of thin fixed-simply

supported beams by using the known values of the natural frequencies.

h = 0.1 m, l = 1.0 m, c = 100 m/s.x = l/2.

DESIGN PROJECT

8.82 A vehicle, of weight moving at a constant speed on a bridge (Fig. 8.42(a)) can be mod-

eled as a concentrated load travelling on a simply supported beam as shown in Fig. 8.42(b).

The concentrated load can be considered as a uniformly distributed load over an infini-

tesimal length and can be expressed as a sum of sine terms using Fourier sine series

expansion (of the distributed load). Find the transverse displacement of the bridge as a sum

of the responses due to each of the moving harmonic load components. Assume the initial

conditions of the bridge as w(x, 0) = 0w/0t(x, 0) = 0.

2¢

F0

F0,

l

v

x0 * vt

F0

F0/2+

v

l

x0 * vt

l

+ +

(b)

(a)

(c)

FIGURE 8.42
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Leonhard Euler (1707 1783) was a Swiss mathematician who became a court
mathematician and later a professor of mathematics in Saint Petersburg, Russia. He
produced many works in algebra and geometry and was interested in the geometri-
cal form of deflection curves in strength of materials. Euler s column buckling load
is quite familiar to mechanical and civil engineers, and Euler s constant and Euler s
coordinate system are well known to mathematicians. He derived the equation of
motion for the bending vibrations of a rod (Euler-Bernoulli theory) and presented
a series form of solution, as well as studying the dynamics of a vibrating ring.
(Courtesy of Dirk J. Struik, A Concise History of Mathematics, 2nd ed., Dover
Publications, New York, 1948.)
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We studied all the aspects of modeling and analysis of vibrating systems in the previous

chapters. We will now consider methods of eliminating or reducing unwanted vibration.

The acceptable levels of vibration must be known before we can quantify the levels to be

eliminated or reduced. The vibration nomograph and vibration criteria which indicate accept-

able levels of vibration are outlined at the beginning. The vibration to be eliminated or

reduced can be in the form of one or more forms of disturbance displacement, velocity,

M09_RAO08193_5_SE_C09.qxd  8/22/10  1:01 PM  Page 769



770 CHAPTER 9 VIBRATION CONTROL

acceleration, and transmitted force. The following methods are discussed to

eliminate/reduce vibration at the source:

* Balancing of rotating machines single- and two-plane balancing.

* Controlling the response and stability of rotating shafts.

* Balancing of reciprocating engines.

* Reducing vibration caused by impacts due to clearances in the joints of machines and

mechanisms.

The following methods are discussed to reduce transmission of vibration from the source:

* Changing the natural frequency of the system when the forcing frequency cannot be

altered.

* Introducing a power-dissipation mechanism by adding dashpots or viscoelastic

materials.

* Designing an isolator which changes the stiffness/damping of the system.

* Using an active control technique.

* Designing a vibration absorber by adding an auxiliary mass to absorb the vibration

energy of the original mass.

Finally, the solution of various vibration-control problems using MATLAB is presented

with numerical examples.

Learning Objectives

After you have finished studying this chapter, you should be able to do the following:

* Use vibration nomographs and vibration criteria to determine the levels of vibration to

be controlled or reduced.

* Apply one- and two-plane balancing techniques for eliminating vibration (unbalance).

* Control the vibration caused by the unbalance in rotating shafts.

* Reduce the unbalance in reciprocating engines.

* Design vibration and shock isolations for systems with fixed base as well as vibrat-

ing base.

* Design active vibration-control systems.

* Design undamped and damped vibration absorbers.

* Use MATLAB for solving vibration-control problems.

9.1 Introduction

There are numerous sources of vibration in an industrial environment: impact processes

such as pile driving and blasting; rotating or reciprocating machinery such as engines,

compressors, and motors; transportation vehicles such as trucks, trains, and aircraft; the

flow of fluids; and many others. The presence of vibration often leads to excessive wear of
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9.2 VIBRATION NOMOGRAPH AND VIBRATION CRITERIA 771

bearings, formation of cracks, loosening of fasteners, structural and mechanical failures,

frequent and costly maintenance of machines, electronic malfunctions through fracture

of solder joints, and abrasion of insulation around electric conductors causing shorts.

The occupational exposure of humans to vibration leads to pain, discomfort, and reduced

efficiency. Vibration can sometimes be eliminated on the basis of theoretical analysis.

However, the manufacturing costs involved in eliminating the vibration may be too high;

a designer must compromise between an acceptable amount of vibration and a reason-

able manufacturing cost. In some cases the excitation or shaking force is inherent in the

machine. As seen earlier, even a relatively small excitation force can cause an undesir-

ably large response near resonance, especially in lightly damped systems. In these cases,

the magnitude of the response can be significantly reduced by the use of isolators and

auxiliary mass absorbers [9.1]. In this chapter, we shall consider various techniques of

vibration control that is, methods involving the elimination or reduction of vibration.

9.2 Vibration Nomograph and Vibration Criteria
The acceptable levels of vibration are often specified in terms of the response of an

undamped single-degree-of-freedom system undergoing harmonic vibration. The bounds

are shown in a graph, called the vibration nomograph, which displays the variations of

displacement, velocity, and acceleration amplitudes with respect to the frequency of

vibration. For the harmonic motion

(9.1)

the velocity and accelerations are given by

(9.2)

(9.3)

where is the circular frequency (rad/s), f is the linear frequency (Hz), and X is the ampli-

tude of displacement. The amplitudes of displacement (X), velocity and accelera-

tion are related as

(9.4)

(9.5)

By taking logarithms of Eqs. (9.4) and (9.5), we obtain the following linear relations:

(9.6)

(9.7) ln vmax = -
 
ln amax - ln (2pf)

 ln vmax = ln (2pf) + ln X

 amax = -
 
4 p

2f2X = -  2 pfvmax

 vmax = 2pfX

1amax2

1vmax2

v

 a(t) = x 
$
(t) = -  v2X sin vt = -4 p

2f2X sin vt

 v(t) = x 
#
(t) = vX cos vt = 2pfX cos vt

x(t) = X sin vt
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It can be seen that for a constant value of the displacement amplitude (X), Eq. (9.6)

shows that varies with as a straight line with slope Similarly, for a

constant value of the acceleration amplitude Eq. (9.7) indicates that 

varies with as a straight line with slope These variations are shown as a

nomograph in Fig. 9.1. Thus every point on the nomograph denotes a specific sinusoidal

(harmonic) vibration.

-1.ln (2pf)

ln vmax(amax),

+1.ln (2pf)ln vmax
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FIGURE 9.1 Vibration nomograph and vibration criteria [9.2].
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Since the vibration imparted to a human or machine is composed of many frequen-

cies rarely of just one frequency the root mean square values of x(t), v(t), and a(t) are

used in the specification of vibration levels.

The usual ranges of vibration encountered in different scientific and engineering

applications are given below [9.2]:

1. Atomic vibrations: displacement to 

2. Microseisms or minor tremors of earth s crust: to 1 Hz, displacement

to This vibration also denotes the threshold of disturbance

of optical, electronic, and computer equipment.

3. Machinery and building vibration: to 100 Hz, displacement ampli-

tude to 1 mm. The threshold of human perception falls in the frequency range

1 to 8 Hz.

4. Swaying of tall buildings: to 5 Hz, displacement 

10 to 1000 mm.

Vibration severity of machinery is defined in terms of the rms value of the vibration veloc-

ity in ISO 2372 [9.3]. The ISO definition identifies 15 vibration severity ranges in the

velocity range 0.11 71 mm/s for four classes of machines: (1) small, (2) medium, (3)

large, and (4) turbomachine. The vibration severity of class 3 machines, including large

prime movers, is shown in Fig. 9.1. In order to apply these criteria, the vibration is to be

measured on machine surfaces such as bearing caps in the frequency range 10 1000 Hz.

ISO DP 4866 [9.4] gives the vibration severity for whole-building vibration under

blasting and steady-state vibration in the frequency range 1 100 Hz. For the vibration

from blasting, the velocity is to be measured at the building foundation nearest the blast,

and for the steady-state vibration, the peak velocity is to be measured on the top floor.

The limits given are 3 5 mm/s for threshold of damage and 5 30 mm/s for minor dam-

age. The vibration results reported by Steffens [9.5] on structural damage are also shown

in Fig. 9.1.

The vibration limits recommended in ISO 2631 [9.6] on human sensitivity to vibra-

tion are also shown in Fig. 9.1. In the United States an estimated 8 million workers are

exposed to either whole-body vibration or segmented vibration to specific body parts.

The whole-body vibration may be due to transmission through a supporting structure

such as the seat of a helicopter, and the vibration to specific body parts may be due to

work processes such as compacting, drilling, and chain-saw operations. Human toler-

ance of whole-body vibration is found to be lowest in the 4 8 Hz frequency range. The

segmental vibration is found to cause localized stress injuries to different body parts at

different frequencies, as indicated in Fig. 9.2. In addition, the following effects have

been observed at different frequencies [9.7]: motion sickness (0.1 1 Hz), blurring vision

(2 20 Hz), speech disturbance (1 20 Hz), interference with tasks (0.5 20 Hz), and after-

fatigue (0.2 15 Hz).

The acceptable vibration levels for laboratories that maintain reference standards are

also shown in Fig. 9.1.

amplitude =Frequency range = 0.1

= 0.01

Frequency = 10

10
-3

 mm.amplitude = 10
-5

Frequency = 0.1

10
-6

 mm.amplitude = 10 
-

    

8Frequency = 10
12

 Hz,
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E X A M P L E  9 . 1

Head (25 Hz)
Eyeballs (30 60 Hz)

Chest wall (60 Hz)

Arm (16 30 Hz)

Hand
(50 150 Hz)

Legs (2 20 Hz)

Spine
(10 12 Hz)

Pelvic mass
Buttocks
(4 8 Hz)

FIGURE 9.2 Vibration frequency sensitivity of different parts of

human body.

Helicopter Seat Vibration Reduction

The seat of a helicopter, with the pilot, weighs 1000 N and is found to have a static deflection of

10 mm under self weight. The vibration of the rotor is transmitted to the base of the seat as harmonic

motion with frequency 4 Hz and amplitude 0.2 mm.

a. What is the level of vibration felt by the pilot?

b. How can the seat be redesigned to reduce the effect of vibration?

Solution:

a. By modeling the seat as an undamped single-degree-of-freedom system, we can compute the

following:

Stiffness = k =

W

dst

=

1000

0.01
= 105 N/m

Mass = m = 1000/9.81 = 101.9368 kg
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9.3 REDUCTION OF VIBRATION AT THE SOURCE 775

Since the seat is subject to harmonic base excitation, the amplitude of vibration felt by the pilot

(mass of the seat) is given by Eq. (3.68) with 

(E.1)

where Y is the amplitude of base displacement. Equation (E.1) yields

The amplitudes of velocity and acceleration felt by the pilot are given by 

and Corre-

sponding to the frequency 4 Hz, Fig. 9.1 shows that the amplitude of motion of 0.3616 mm

may not cause much discomfort. However, the velocity and acceleration levels at the same fre-

quency (4 Hz) are not acceptable for a comfortable ride.

b. To bring the vibration level to an acceptable level, let us try to bring the acceleration felt by the

pilot from the level to Using 

we obtain This leads to

This gives the new natural frequency of the seat as

Using the relation with the new stiffness is given by

This implies that the stiffness of the seat is to be reduced from to

4722.9837 N/m. This can be accomplished by using a softer material for the seat or by using a

different spring design. Alternatively, the desired acceleration level can be achieved by increas-

ing the mass of the seat. However, this solution is not usually acceptable, as it increases the

weight of the helicopter.

*

9.3 Reduction of Vibration at the Source

The first thing to be explored to control vibrations is to try to alter the source so that it pro-

duces less vibration. This method may not always be feasible. Some examples of the

sources of vibration that cannot be altered are earthquake excitation, atmospheric turbu-

lence, road roughness, and engine combustion instability. On the other hand, certain

105 N/mk = 4722.9837 N/m.

m = 101.9368 kg,vn = 2k/m

vn =
v

3.6923
=

8 p

3.6923
= 6.8068 rad/s

X

Y
=

0.01583

0.2
= ;  

1

1 - r2
 or r = 3.6923

X = 0.01583 mm.-(8p)2X,

amax = 10 mm/s2
= -(2 pf)2X =0.01 m/s2.0.2284 m/s2

X = 228.4074 mm/s2
= 0.2284 m/s2.v2X = (2pf)2(5)(0.3616) = 9.0887 mm/s,

vX = 2pfX = 2(p)

X =
0.2

1 - 1.24622
= 0.3616 mm

X = ;  
Y

1 - r2

z = 0:

Frequency ratio = r =
v

vn
=

4.9849

4.0
= 1.2462

Natural frequency = vn = A
k

m
= B

105

101.9368
= 31.3209 rad/s = 4.9849 Hz
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sources such as unbalance in rotating or reciprocating machines can be altered to reduce

the vibrations. This can be achieved, usually, by using either internal balancing or an

increase in the precision of machine elements. The use of close tolerances and better sur-

face finish for machine parts (which have relative motion with respect to one another)

make the machine less susceptible to vibration. Of course, there may be economic and

manufacturing constraints on the degree of balancing that can be achieved or the precision

with which the machine parts can be made. We shall consider the analysis of rotating and

reciprocating machines in the presence of unbalance as well as the means of controlling

the vibrations that result from unbalanced forces.

9.4 Balancing of Rotating Machines
The presence of an eccentric or unbalanced mass in a rotating disc causes vibration, which

may be acceptable up to a certain level. If the vibration caused by an unbalanced mass is

not acceptable, it can be eliminated either by removing the eccentric mass or by adding an

equal mass in such a position that it cancels the effect of the unbalance. In order to use this

procedure, we need to determine the amount and location of the eccentric mass experi-

mentally. The unbalance in practical machines can be attributed to such irregularities as

machining errors and variations in sizes of bolts, nuts, rivets, and welds. In this section, we

shall consider two types of balancing: single-plane or static balancing and two-plane or

dynamic balancing [9.9, 9.10].

9.4.1
Single-Plane
Balancing

Consider a machine element in the form of a thin circular disc, such as a fan, flywheel, gear,

and a grinding wheel mounted on a shaft. When the center of mass is displaced from the

axis of rotation due to manufacturing errors, the machine element is said to be statically

unbalanced. To determine whether a disc is balanced or not, mount the shaft on two low-

friction bearings, as shown in Fig. 9.3(a). Rotate the disc and permit it to come to rest. Mark

the lowest point on the circumference of the disc with chalk. Repeat the process several

times, each time marking the lowest point on the disc with chalk. If the disc is balanced, the

chalk marks will be scattered randomly all over the circumference. On the other hand, if the

disc is unbalanced, all the chalk marks will coincide.

The unbalance detected by this procedure is known as static unbalance. The static

unbalance can be corrected by removing (drilling) metal at the chalk mark or by adding a

weight at 180° from the chalk mark. Since the magnitude of unbalance is not known, the

amount of material to be removed or added must be determined by trial and error. This pro-

cedure is called single-plane balancing,  since all the mass lies practically in a single

plane. The amount of unbalance can be found by rotating the disc at a known speed and

measuring the reactions at the two bearings (see Fig. 9.3(b)). If an unbalanced mass m is

located at a radius r of the disc, the centrifugal force will be Thus the measured

bearing reactions and give m and r:

(9.8)F1 =

a2

l
 mrv2, F2 =

a1

l
 mrv2

F2F1

mrv2.

v
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Bearing 1

Bearing 1

Bearing 2

Bearing 2

(a)

(b)

Disc

Disc

m
r

a1

a2
l

mrv
2F1 * mrv

2a2

l

F2 * mrv
2a1

l

FIGURE 9.3 Single-plane balancing of a disc.

Another procedure for single-plane balancing, using a vibration analyzer, is illustrated in

Fig. 9.4. Here, a grinding wheel (disc) is attached to a rotating shaft that has bearing at A

and is driven by an electric motor rotating at an angular velocity 

Before starting the procedure, reference marks, also known as phase marks, are placed

both on the rotor (wheel) and the stator, as shown in Fig. 9.5(a). A vibration pickup is

placed in contact with the bearing, as shown in Fig. 9.4, and the vibration analyzer is set to

a frequency corresponding to the angular velocity of the grinding wheel. The vibration sig-

nal (the displacement amplitude) produced by the unbalance can be read from the indicat-

ing meter of the vibration analyzer. A stroboscopic light is fired by the vibration analyzer

at the frequency of the rotating wheel. When the rotor rotates at speed the phase mark

on the rotor appears stationary under the stroboscopic light but is positioned at an angle 

from the mark on the stator, as shown in Fig. 9.5(b), due to phase lag in the response. Both

the angle and the amplitude (read from the vibration analyzer) caused by the original

unbalance are noted. The rotor is then stopped, and a known trial weight W is attached to

the rotor, as shown in Fig. 9.5(b). When the rotor runs at speed the new angular positionv,

Auu

u

v,

v.
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Reference
mark

Grinding wheel
(rotor)

Direction of original
unbalance

0 0

u
f a

Trial
weight

Trial
weight

0

(a) (b) (c)

0

(d)

FIGURE 9.5 Use of phase marks.

of the rotor phase mark and the vibration amplitude caused by the combined

unbalance of rotor and trial weight, are noted (see Fig. 9.5(c)).1

Now we construct a vector diagram to find the magnitude and location of the correction

mass for balancing the wheel. The original unbalance vector is drawn in an arbitrary

direction, with its length equal to as shown in Fig. 9.6. Then the combined unbalance

vector is drawn as at an angle from the direction of with a length of 

The difference vector in Fig. 9.6 then represents the unbalance vector

due to the trial weight W. The magnitude of can be computed using the law of cosines:

(9.9)

Since the magnitude of the trial weight W and its direction relative to the original unbal-

ance ( in Fig. 9.6) are known, the original unbalance itself must be at an angle awayaa

Aw = [Au
2
+ Au+w

2
- 2AuAu+w cos (f - u)]1/2

A
!

w

A
!

w = A
!

u+w - A
!

u

Au+w.A
!

uf - uA
!

u+w

Au,

A
!

u

Au+w,f

Motor

Vibration
analyzer

Bearing, A
Vibration pick-up

Stroboscope

Grinding wheel
(rotor)

FIGURE 9.4 Single-plane balancing using vibration analyzer.

1Note that if the trial weight is placed in a position that shifts the net unbalance in a clockwise direction, the sta-

tionary position of the phase mark will be shifted by exactly the same amount in the counterclockwise direction,

and vice versa.
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Original unbalance
(unknown)

Direction of
balancing weight

O

Position of
trial weight

(known)

f  u

A
w
  Au w 

 Au Au w

Au

A
w

a

FIGURE 9.6 Unbalance due to trial weight W.

from the position of the trial weight, as shown in Fig. 9.5(d). The angle can be obtained

from the law of cosines:

(9.10)

The magnitude of the original unbalance is located at the same radial

distance from the rotation axis of the rotor as the weight W. Once the location and magni-

tude of the original unbalance are known, correction weight can be added to balance the

wheel properly.

W0 = (Au/Aw) #W,

a = cos-1 c

Au
2
+ Aw

2
- Au+w

2

2AuAw

d

a

9.4.2
Two-Plane
Balancing

The single-plane balancing procedure can be used for balancing in one plane that is, for

rotors of the rigid disc type. If the rotor is an elongated rigid body, as shown in Fig. 9.7,

the unbalance can be anywhere along the length of the rotor. In this case, the rotor can be

balanced by adding balancing weights in any two planes [9.10, 9.11]. For convenience,

the two planes are usually chosen as the end planes of the rotor (shown by dashed lines in

Fig. 9.7).

To see that any unbalanced mass in the rotor can be replaced by two equivalent unbal-

anced masses (in any two planes), consider a rotor with an unbalanced mass m at a distance

Plane L Plane R

Rigid rotor

Bearing,
A

Bearing,
B

FIGURE 9.7 Two-plane balancing 

of a rotor.
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l

3

l

(a)

F * mv
2
R

R
m

l

(b)

F2 * m2v
2
RF1 * m1v

2
R

R

m1 m2

v

v

FIGURE 9.8 Representation of an unbalanced mass

as two equivalent unbalanced masses.

l/3 from the right end, as shown in Fig. 9.8(a). When the rotor rotates at a speed of the

force due to the unbalance will be where R is the radius of the rotor. The unbal-

anced mass m can be replaced by two masses and located at the ends of the rotor, as

shown in Fig. 9.8(b). The forces exerted on the rotor by these masses are and

For the equivalence of force in Figs. 9.8(a) and (b), we have

(9.11)

For the equivalence of moments in the two cases, we consider moments about the right end

so that

(9.12)

Equations (9.11) and (9.12) give and Thus any unbalanced

mass can be replaced by two equivalent unbalanced masses in the end planes of the

rotor.

We now consider the two-plane balancing procedure using a vibration analyzer. In

Fig. 9.9, the total unbalance in the rotor is replaced by two unbalanced weights and 

in the left and the right planes, respectively. At the rotor s operating speed the vibration

amplitude and phase due to the original unbalance are measured at the two bearings A and

B, and the results are recorded as vectors and The magnitude of the vibration vector

is taken as the vibration amplitude, while the direction of the vector is taken as the negative

V
!

B.V
!

A

v,

URUL

m2 = 2m/3.m1 = m/3

mv2R 

l

3
= m1v

2Rl or m = 3m1

mv2R = m1v
2R + m2v

2R or m = m1 + m2

F2 = m2v
2R.

F1 = m1v
2R

m2,m1

F = mv2R,

v,
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9.4 BALANCING OF ROTATING MACHINES 781

of the phase angle observed under stroboscopic light with reference to the stator reference

line. The measured vectors and can be expressed as

(9.13)

(9.14)

where can be considered as a vector, reflecting the effect of the unbalance in plane j

on the vibration at bearing i Note that and all the vectors

are unknown in Eqs. (9.13) and (9.14).

As in the case of single-plane balancing, we add known trial weights and take mea-

surements to obtain information about the unbalanced masses. We first add a known

weight in the left plane at a known angular position and measure the displacement and

phase of vibration at the two bearings while the rotor is rotating at speed We denote

these measured vibrations as vectors as

(9.15)

(9.16)

By subtracting Eqs. (9.13) and (9.14) from Eqs. (9.15) and (9.16), respectively, and solving,

we obtain2

(9.17) A
!

AL =
V
!

A - V
!

A

W
!

L

 V
!

B = A
!

BL1U
!

L + W
!

L2 + A
!

BR U
!

R

 V
!

A = A
!

AL1U
!

L + W
!

L2 + A
!

AR U
!

R

v.
W
!

L

A
!

ij

U
!

L,  U
!

R,(i = A, B).(j = L, R)
A
!

ij

 V
!

B = A
!

BLU
!

L + A
!

BRU
!

R

 V
!

A = A
!

ALU
!

L + A
!

ARU
!

R

V
!

BV
!

A

Left plane
L

Right plane

UL

A

R

B

UR

FIGURE 9.9 Two-plane balancing.

2It can be seen that complex subtraction, division, and multiplication are often used in the computation of the bal-

ancing weights. If

we can rewrite and as and where 

and Then the formulas for complex subtraction, division, and multiplication are [9.12]:

 A
!
# B

!
= 1a1b1 - a2b22 + i1a2b1 + a1b22

 
A
!

B
! =

(a1b1 + a2b2) + i(a2b1 - a1b2)

(b1
2 + b2

2)

 A
!
- B

!
= 1a1 - b12 + i1a2 - b22

b2 = b sin uB.
b1 = b cos uB,a2 = a sin uA,a1 = a cos uA,B

!
= b1 + ib2,A

!
= a1 + ia2B

!
A
!

A
!
= aluA and B

!
= bluB
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(9.18)

We then remove and add a known weight in the right plane at a known angular

position and measure the resulting vibrations while the rotor is running at speed The

measured vibrations can be denoted as vectors:

(9.19)

(9.20)

As before, we subtract Eqs. (9.13) and (9.14) from Eqs. (9.19) and (9.20), respectively,

to find

(9.21)

(9.22)

Once the vector operators are known, Eqs. (9.13) and (9.14) can be solved to find the

unbalance vectors and 

(9.23)

(9.24)

The rotor can now be balanced by adding equal and opposite balancing weights in

each plane. The balancing weights in the left and right planes can be denoted vectori-

ally as and It can be seen that the two-plane balancing proce-

dure is a straightforward extension of the single-plane balancing procedure. Although

high-speed rotors are balanced during manufacture, usually it becomes necessary to

rebalance them in the field due to slight unbalances introduced due to creep, high-

temperature operation, and the like. Figure 9.10 shows a practical example of two-plane

balancing.

B
!

R = -  U
!

R.B
!

L = -  U
!

L

 U
!

R =
A
!

BLV
!

A - A
!

ALV
!

B

A
!

BLA
!

AR - A
!

ALA
!

BR

 U
!

L =
A
!

BRV
!

A - A
!

ARV
!

B

A
!

BRA
!

AL - A
!

ARA
!

BL

U
!

R:U
!

L

A
!

ij

 A
!

BR =
V
!

B - V
!

B

W
!

R

 A
!

AR =
V
!

A - V
!

A

W
!

R

 V
!

B = A
!

BR1U
!

R + W
!

R2 + A
!

BLU
!

L

 V
!

A = A
!

AR1U
!

R + W
!

R2 + A
!

ALU
!

L

v.

W
!

RW
!

L

 A
!

BL =
V
!

B - V
!

B

W
!

L
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E X A M P L E  9 . 2

FIGURE 9.10 Two-plane balancing. (Courtesy of Bruel and Kjaer Instruments, Inc., Marl-

borough, MA.)

Two-Plane Balancing of Turbine Rotor

In the two-plane balancing of a turbine rotor, the data obtained from measurement of the original

unbalance, the right-plane trial weight, and the left-plane trial weight are shown below. The dis-

placement amplitudes are in mils (1/1000 inch.) Determine the size and location of the balance

weights required.

Condition

Vibration (Displacement) 

Amplitude Phase Angle

At Bearing A At Bearing B At Bearing A At Bearing B

Original unbalance 8.5 6.5 60° 205°

added 

at 270° from 

reference mark

WL = 10.0 oz 6.0 4.5 125° 230°

added 

at 180° from 

reference mark

WR = 12.0 oz 6.0 10.5 35° 160°
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Solution: The given data can be expressed in vector notation as

Equations (9.17) and (9.18) give

The use of Eqs. (9.21) and (9.22) leads to

The unbalance weights can be determined from Eqs. (9.23) and (9.24):

Thus the required balance weights are given by

 B

!

R = -  U

!

R = 12.1773 + i5.45922 = 5.8774l248.2559°

 B

!

L = -  U

!

L = 18.2930 - i5.68792 = 10.0561l145.5548°

 = -  2.1773 - i5.4592

 U

!

R =
1-1.9096 + i1.78982 - 13.5540 + i3.85902

1-  0.1018 + i0.00632 - 1-  0.3252 - i0.38402
=

11.6443 - i2.06932

10.2234 + i0.39032

 = -8.2930 + i5.6879

 U

!

L =
15.2962 + i0.19412 - 11.2237 - i1.77212

1-  0.3252 - i0.38402 - 1-  0.1018 + i0.00632
=

14.0725 + i1.96612

1-  0.2234 - i0.39032

 A

!

BR =
V

!

B - V

!

B

W

!

R

=
-  3.9758 + i6.3382

-12.0000 + i0.0000
= 0.3313 - i0.5282

 A

!

AR =
V

!

A - V

!

A

W

!

R

=
0.6649 - i3.9198

-  12.0000 + i0.0000
= -  0.0554 + i0.3266

 A

!

BL =
V

!

B - V

!

B

W

!

L

=
2.9985 - i0.7002

0.0000 - i10.0000
= 0.0700 + i0.2998

 A

!

AL =
V

!

A - V

!

A

W

!

L

=
-  7.6915 - i2.4463

0.0000 - i10.0000
= 0.2446 - i0.7691

 W

!

R = 12.0l180° = -  12.0000 + i0.0000

 W

!

L = 10.0l270° = 0.0000 - i10.0000

 V

!

B = 10.5l160° = -  9.8668 + i3.5912

 V

!

A = 6.0l35° = 4.9149 + i3.4472

 V

!

B = 4.5l230° = -  2.8926 - i3.4472

 V

!

A = 6.0l125° = -  3.4415 + i4.9149

 V

!

B = 6.5l205° = -  5.8910 - i2.7470

 V

!

A = 8.5l60° = 4.2500 + i7.3612
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9.5 WHIRLING OF ROTATING SHAFTS 785

This shows that the addition of a 10.0561-oz weight in the left plane at 145.5548° and a 5.8774-oz

weight in the right plane at 248.2559° from the reference position will balance the turbine rotor. It is

implied that the balance weights are added at the same radial distance as the trial weights. If a bal-

ance weight is to be located at a different radial position, the required balance weight is to be modi-

fied in inverse proportion to the radial distance from the axis of rotation.

*

9.5 Whirling of Rotating Shafts
In the previous section, the rotor system the shaft as well as the rotating body was

assumed to be rigid. However, in many practical applications, such as turbines, compres-

sors, electric motors, and pumps, a heavy rotor is mounted on a lightweight, flexible shaft

that is supported in bearings. There will be unbalance in all rotors due to manufacturing

errors. These unbalances as well as other effects, such as the stiffness and damping of the

shaft, gyroscopic effects, and fluid friction in bearings, will cause a shaft to bend in a com-

plicated manner at certain rotational speeds, known as the whirling, whipping, or critical

speeds. Whirling is defined as the rotation of the plane made by the line of centers of the

bearings and the bent shaft. We consider the aspects of modeling the rotor system, critical

speeds, response of the system, and stability in this section [9.13 9.14].

9.5.1
Equations of
Motion

Consider a shaft supported by two bearings and carrying a rotor or disc of mass m at the

middle, as shown in Fig. 9.11. We shall assume that the rotor is subjected to a steady-state

excitation due to mass unbalance. The forces acting on the rotor are the inertia force due to

the acceleration of the mass center, the spring force due to the elasticity of the shaft, and

the external and internal damping forces.3

3Any rotating system responds in two different ways to damping or friction forces, depending upon whether the

forces rotate with the shaft or not. When the positions at which the forces act remain fixed in space, as in the case

of damping forces (which cause energy losses) in the bearing support structure, the damping is called stationary

or external damping. On the other hand, if the positions at which they act rotate with the shaft in space, as in the

case of internal friction of the shaft material, the damping is called rotary or internal damping.

y

x

O

C

Rotor or disc Shaft

FIGURE 9.11 Shaft carrying a rotor.
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786 CHAPTER 9 VIBRATION CONTROL

Let O denote the equilibrium position of the shaft when balanced perfectly, as shown

in Fig. 9.12. The shaft (line CG) is assumed to rotate with a constant angular velocity 

During rotation, the rotor deflects radially by a distance (in steady state). The

rotor (disc) is assumed to have an eccentricity a so that its mass center (center of gravity)

G is at a distance a from the geometric center, C. We use a fixed coordinate system (x and

y fixed to the earth) with O as the origin for describing the motion of the system. The angu-

lar velocity of the line OC, is known as the whirling speed and, in general, is

not equal to The equations of motion of the rotor (mass m) can be written as

(9.25)

The various forces in Eq. (9.25) can be expressed as follows:

(9.26)

where denotes the radius vector of the mass center G given by

(9.27)

with x and y representing the coordinates of the geometric center C and and denoting

the unit vectors along the x and y coordinates, respectively. Equations (9.26) and (9.27)

lead to

(9.28)

(9.29) Elastic force: F
!

e = -k1xi
!
+ yj

!
2

 F
!

i = m[1x
$

- av2 cos vt2i
!
+ 1y

$
- av2 sin vt2j

!
]

j
!

i
!

R
!

= 1x + a cos vt2i
!

+ 1y + a sin vt2j
!

R
!

Inertia force: F
!

i = mR
$!

 + External damping force 1F
!

de2

 + Internal damping force 1F
!

di2

 Inertia force 1F
!

i2 = Elastic force 1F
!

e2

v.
u
 #

= du/dt,

A = OC
v.

a sin vt

Rotor in displaced
condition

a cos vt

a

vt
f

u

G

x

y R
C

O

A

x(i)

y( j)

FIGURE 9.12 Rotor with eccentricity.
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9.5 WHIRLING OF ROTATING SHAFTS 787

where k is the stiffness of the shaft.

(9.30)

where is the internal or rotary damping coefficient:

(9.31)

where c is the external damping coefficient. By substituting Eqs. (9.28) to (9.31) into

Eq. (9.25), we obtain the equations of motion in scalar form:

(9.32)

(9.33)

These equations of motion, which describe the lateral vibration of the rotor, are coupled

and are dependent on the speed of the steady-state rotation of the shaft, By defining a

complex quantity w as

(9.34)

where and by adding Eq. (9.32) to Eq. (9.33) multiplied by i, we obtain a sin-

gle equation of motion:

(9.35)mw
$

+ 1ci + c2w
#

+ kw - ivciw = mv2a eivt

i = 1-121/2,

w = x + iy

v.

 my
$

+ 1ci + c2y
#
+ ky - ci 

vx = mv2a sin vt

 mx
$

+ 1ci + c2x
#
+ kx - civy = mv2a cos vt

External damping force: F
!

de = -c1x
#
i
!
+ y

#
j
!
2

ci

Internal damping force: F
!

di = -ci [1x
#
+ vy2i

!
+ 1y

#
+ vx2j

!
]

9.5.2
Critical Speeds

A critical speed is said to exist when the frequency of the rotation of a shaft equals one of

the natural frequencies of the shaft. The undamped natural frequency of the rotor system

can be obtained by solving Eqs. (9.32), (9.33), or (9.35), retaining only the homogeneous

part with This gives the natural frequency of the system (or critical speed of

the undamped system):

(9.36)

When the rotational speed is equal to this critical speed, the rotor undergoes large deflec-

tions, and the force transmitted to the bearings can cause bearing failures. A rapid transition

of the rotating shaft through a critical speed is expected to limit the whirl amplitudes, while

a slow transition through the critical speed aids the development of large amplitudes. Refer-

ence [9.15] investigates the behavior of the rotor during acceleration and deceleration

through critical speeds. A FORTRAN computer program for calculating the critical speeds

of rotating shafts is given in reference [9.16].

vn = a
k

m
b

1/   2

ci = c = 0.
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9.5.3
Response of the
System

To determine the response of the rotor, we assume the excitation to be a harmonic force

due to the unbalance of the rotor. In addition, we assume the internal damping to be negli-

gible Then, we can solve Eqs. (9.32) and (9.33) (or equivalently, Eq. (9.35)) and

find the rotor s dynamic whirl amplitudes resulting from the mass unbalance. With 

Eq. (9.35) reduces to

(9.37)

The solution of Eq. (9.37) can be expressed as

(9.38)

where and are constants. Note that the first term on the right-hand side of

Eq. (9.38) contains a decaying exponential term representing a transient solution and the

second term denotes a steady-state circular motion (whirl). By substituting the steady-state

part of Eq. (9.38) into Eq. (9.37), we can find the amplitude of the circular motion (whirl) as

(9.39)

and the phase angle as

(9.40)

where

By differentiating Eq. (9.39) with respect to and setting the result equal to zero, we can

find the rotational speed at which the whirl amplitude becomes a maximum:

(9.41)

where is given by Eq. (9.36). It can be seen that the critical speed corresponds exactly

to the natural frequency only when the damping (c) is zero. Furthermore, Eq. (9.41)

shows that the presence of damping, in general, increases the value of the critical speed

compared to A plot of Eqs. (9.39) and (9.40) is shown in Fig. 9.13 [9.14]. Since the

forcing function is proportional to we normally expect the vibration amplitude to

increase with the speed However, the actual amplitude appears as shown in Fig. 9.13.

From Eq. (9.39), we note that the amplitude of circular whirl A at low speeds is determined

v.

v2,

vn.

vn

vn

v L
vn

21 - 2z2

v

v

r =
v

vn

,  vn = A
k

m
,  and  z =

c

22km
.

f = tan-1
a

cv

k - mv2
b = tan-1 a

2zr

1 - r2
b

A =
mv2a

[(k - mv2)2
+ v2c2]1/  2

=
ar2

[(1 - r2)2
+ (2zr)2]1/   2

fC, b, A,

w(t) = Ce- 
(at+b)

+ Aei(vt-f)

mw
$

+ cw
#
+ kw = mv2aeivt

ci = 0,

1ci = 02.
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9.5 WHIRLING OF ROTATING SHAFTS 789

by the spring constant k, since the other two terms, and are small. Also, the

value of the phase angle can be seen to be 0° from Eq. (9.40) for small values of As 

increases, the amplitude of the response reaches a peak, since resonance occurs at

Around resonance, the response is essentially limited by the damping term.

The phase lag is 90° at resonance. As the speed increases beyond the response is

dominated by the mass term in Eq. (9.39). Since this term is 180° out of phase with

the unbalanced force, the shaft rotates in a direction opposite to that of the unbalanced

force, hence the response of the shaft will be limited.

Notes

1. Equation (9.38) implicitly assumes a condition of forward synchronous whirl under

steady state (that is, ). As a general case, if the steady-state solution of Eq. (9.37)

is assumed as the solution can be obtained as with

representing the forward synchronous whirl and denoting a back-

ward synchronous whirl. For simple rotors, such as the one shown in Fig. 9.11, only

forward synchronous whirl occurs in practice.

2. To determine the bearing reactions, we first find the deflection of the mass center of

the disc from the bearing axis, R in Fig. 9.12, as

(9.42)R2
= A2

+ a2
+ 2Aa cos f

g = -  vg = +v

g = ;v,w(t) = Aei(gt-f),

u
#

= v

m2v4
vn,v

k - mv2
= 0.

vv.f

c2v2,mv2

Spring
(k)

dominates

Mass
(m)

dominates
Damping

(c)
controls

Resonance

0 

90 

180 

P
h

a
se

 l
a
g
, 
f

A
m

p
li

tu
d

e
, 

*
A

*

O
v

FIGURE 9.13 Plots of Eqs. (9.39) 

and (9.40).
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In view of Eqs. (9.39) and (9.40), Eq. (9.42) can be rewritten as

(9.43)

The bearing reactions can then be determined from the centrifugal force, The vibra-

tion and balancing of unbalanced flexible rotors are presented in references [9.17, 9.18].

m v2
 R.

R = a c
1 + 12zr22

11 - r2
2

2
+ 12zr22

d

1/   2

9.5.4
Stability
Analysis

Instability in a flexible rotor system can occur due to several factors like internal friction,

eccentricity of the rotor, and the oil whip in the bearings. As seen earlier, the stability of the

system can be investigated by considering the equation governing the dynamics of the sys-

tem. Assuming the characteristic equation corresponding to the homogeneous

part of Eq. (9.35) can be written as

(9.44)

With Eq. (9.44) becomes

(9.45)

This equation is a particular case of the more general equation

(9.46)

A necessary and sufficient condition for the system governed by Eq. (9.46) to be stable,

according to Routh-Hurwitz criterion, is that the following inequalities are satisfied:

(9.47)

and

(9.48)

Noting that and from

Eq. (9.45), the application of Eqs. (9.47) and (9.48) leads to

(9.49)

and

(9.50)km1ci + c2
2
- m2

1v2ci
2
2 7 0

m1ci + c2 7 0

q0 = -
 
vci,p0 = k,q1 = ci + c,p1 = 0,q2 = 0,p2 = -m,

4

p2 p1 p0 0

q2 q1 q0 0

0 p2 p1 p0

0 q2 q1 q0

4 7 0

- `

p2 p1

q2 q1
` 7 0

1p2 + iq22l
2
+ 1p1 + iq12l + 1p0 + iq02 = 0

-  ml2
+ 1ci + c2il + k - ivci = 0

s = il,

ms2
+ 1ci + c2s + k - ivci = 0

w(t) = est,
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Equation (9.49) is automatically satisfied, while Eq. (9.50) yields the condition

(9.51)

This equation also shows that internal and external friction can cause instability at rotating

speeds above the first critical speed of v = A
k

m
.

A
k

m
 a1 +

c

ci

b - v 7 0

E X A M P L E  9 . 3
Whirl Amplitude of a Shaft Carrying an Unbalanced Rotor

A shaft, carrying a rotor of weight 100 lb and eccentricity 0.1 in., rotates at 1200 rpm. Determine

(a) the steady-state whirl amplitude and (b) the maximum whirl amplitude during start-up conditions

of the system. Assume the stiffness of the shaft as and the external damping ratio as 0.1.

Solution: The forcing frequency of the rotor (rotational speed of the shaft) is given by

The natural frequency of the system can be determined as

and the frequency ratio as

(a) The steady-state amplitude is given by Eq. (9.39):

(E.1)

(E.2)

(b) During start-up conditions, the frequency (speed) of the rotor, passes through the natural fre-

quency of the system. Thus, using in Eq. (E.1), we obtain the whirl amplitude as

*

A r=1 =
a

2z
=

0.1

210.12
= 0.5 in.

r = 1

v,

 =
10.1211.429522

411 - 1.42952
2

2 + 12 * 0.1 * 1.429522
= 0.18887 in.

 A =
ar2

411 - r2
2

2 + 12zr22

r =
v

vn

=
125.6640

87.9090
= 1.4295

vn = A
k

m
= C

2.0 * 105

1100/386.42
= 87.9090 rad/s

v =
1200 * 2p

60
= 40p = 125.6640 rad/s

2 * 105 lb/in.
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9.6 Balancing of Reciprocating Engines
The essential moving elements of a reciprocating engine are the piston, the crank, and the

connecting rod. Vibrations in reciprocating engines arise due to (1) periodic variations of

the gas pressure in the cylinder and (2) inertia forces associated with the moving parts

[9.19]. We shall now analyze a reciprocating engine and find the unbalanced forces caused

by these factors.

9.6.1
Unbalanced
Forces Due to
Fluctuations in
Gas Pressure

Figure 9.14(a) is a schematic diagram of a cylinder of a reciprocating engine. The engine

is driven by the expanding gas in the cylinder. The expanding gas exerts on the piston a

pressure force F, which is transmitted to the crankshaft through the connecting rod. The

reaction to the force F can be resolved into two components: one of magnitude 

acting along the connecting rod, and the other of magnitude acting in a horizontal

direction. The force induces a torque which tends to rotate the crankshaft. (In

Fig. 9.14(b), acts about an axis perpendicular to the plane of the paper and passes

through point Q.)

(9.52)Mt = a
F

cos f
b  r cos u

Mt

Mt,F/cos f
F tan f,

F/cos f,

h

r

F

P F tan f

(a) (b) (c)

P

F tan f

u

F tan f

cos f

f

F

cos f
F

cos f
F

Q Q

F
F

F

F tan f

FIGURE 9.14 Forces in a reciprocating engine.
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For force equilibrium of the overall system, the forces at the bearings of the crankshaft will

be F in the vertical direction and in the horizontal direction.

Thus the forces transmitted to the stationary parts of the engine are as follows:

1. Force F acting upward at the cylinder head

2. Force acting toward the right at the cylinder head

3. Force F acting downward at the crankshaft bearing Q

4. Force acting toward the left at the crankshaft bearing

These forces are shown in Fig. 9.14(c). Although the total resultant force is zero, there is a

resultant torque on the body of the engine, where h can be found from the

geometry of the system:

(9.53)

Thus the resultant torque is given by

(9.54)

As expected, and given by Eqs. (9.52) and (9.54) can be seen to be identical, which

indicates that the torque induced on the crankshaft due to the gas pressure on the piston is

felt at the support of the engine. Since the magnitude of the gas force F varies with time,

the torque also varies with time. The magnitude of force F changes from a maximum

to a minimum at a frequency governed by the number of cylinders in the engine, the type

of the operating cycle, and the rotating speed of the engine.

MQ

MQMt

MQ =
Fr cos u

cos f

h =
r cos u

sin f

MQ = Fh tan f

F tan f

F tan f

F tan f

9.6.2
Unbalanced
Forces Due to
Inertia of the
Moving Parts

Acceleration of the Piston. Figure 9.15 shows the crank (of length r), the connecting

rod (of length l), and the piston of a reciprocating engine. The crank is assumed to rotate in

an anticlockwise direction at a constant angular speed of as shown in Fig. 9.15. If we

consider the origin of the x-axis (O) as the uppermost position of the piston, the

displacement of the piston P corresponding to an angular displacement of the crank of

can be expressed as in Fig. 9.15. The displacement of the piston P corresponding

to an angular displacement of the crank from its topmost position (origin O) can be

expressed as

(9.55)

But

(9.56)l sin f = r sin u = r sin vt

 = r + l - r cos vt - l41 - sin2 f

 xp = r + l - r cos u - l cos f

u = vt

u = vt

v,
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and hence

(9.57)

By substituting Eq. (9.57) into Eq. (9.55), we obtain

(9.58)

Due to the presence of the term involving the square root, Eq. (9.58) is not very convenient

in further calculation. Equation (9.58) can be simplified by noting that, in general, 

and by using the expansion relation

(9.59)21 - e M 1 -
e

2

r/l 6
1

4

xp = r + l - r cos vt - lC1 -
r

2

l
2
 sin2

 vt

cos f = a1 -
r

2

l
2

 sin2vtb

1/  2

u  vt

v

x

y

r

Q

B

A

O

l

C

xp

P

f

FIGURE 9.15 Motions of crank,

connecting rod, and piston.
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Hence Eq. (9.58) can be approximated as

(9.60)

or, equivalently,

(9.61)

Equation (9.61) can be differentiated with respect to time to obtain expressions for the

velocity and the acceleration of the piston:

(9.62)

(9.63)

Acceleration of the Crankpin. With respect to the xy coordinate axes shown in Fig.

9.15, the vertical and horizontal displacements of the crankpin C are given by

(9.64)

(9.65)

Differentiation of Eqs. (9.64) and (9.65) with respect to time gives the velocity and accel-

eration components of the crankpin as

(9.66)

(9.67)

(9.68)

(9.69)

Inertia Forces. Although the mass of the connecting rod is distributed throughout its

length, it is generally idealized as a massless link with two masses concentrated at its

ends the piston end and the crankpin end. If and denote the total mass of the

piston and of the crankpin (including the concentrated mass of the connecting rod)

respectively, the vertical component of the inertia force for one cylinder is given by

(9.70)Fx = mpx
$

p + mcx
$

c

1Fx2

mcmp

 y 
$

c = -rv2 sin vt

 x 
$

c = rv2 cos vt

 y
#

c = rv cos vt

 x 
#

c = rv sin vt

 yc = CB = r sin vt

 xc = OA + AB = l + r11 - cos vt2

 x
$

p = rv2
acos vt +

r

l
 cos 2vtb

 x
#

p = rvasin vt +
r

2l
 sin 2vtb

xp = ra1 +
r

2l
b - racos vt +

r

4l
 cos 2vtb

xp M r11 - cos vt2 +
r2

2l
 sin2

vt
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By substituting Eqs. (9.63) and (9.68) for the accelerations of P and C, Eq. (9.70) becomes

(9.71)

It can be observed that the vertical component of the inertia force consists of two parts.

One part, known as the primary part, has a frequency equal to the rotational frequency of

the crank The other part, known as the secondary part, has a frequency equal to twice

the rotational frequency of the crank.

Similarly, the horizontal component of inertia force for a cylinder can be obtained

(9.72)

where and is given by Eq. (9.69). Thus

(9.73)

The horizontal component of the inertia force can be observed to have only a primary part.

Fy = -
 
mcrv

2 sin vt

y
$

cy
$

p = 0

Fy = mpy
$

p + mcy
$

c

v.

Fx = 1mp + mc2rv2 cos vt + mp 

r2
v

2

l
 cos 2vt

9.6.3
Balancing of
Reciprocating
Engines

The unbalanced or inertia forces on a single cylinder are given by Eqs. (9.71) and (9.73). In

these equations, and represent the equivalent reciprocating and rotating masses,

respectively. The mass is always positive, but can be made zero by counterbalancing

the crank. It is therefore possible to reduce the horizontal inertia force to zero, but the ver-

tical unbalanced force always exists. Thus a single-cylinder engine is inherently unbalanced.

In a multicylinder engine, it is possible to balance some or all of the inertia forces and

torques by proper arrangement of the cranks. Figure 9.16(a) shows the general arrange-

ment of an N-cylinder engine (only six cylinders, are shown in the figure). The

lengths of all the cranks and connecting rods are assumed to be r and l, respectively, and

the angular velocity of all the cranks is taken to be a constant, The axial displacement

and angular orientation of ith cylinder from those of the first cylinder are assumed to be 

and respectively; For force balance, the total inertia force in the x and

y directions must be zero. Thus

(9.74)

(9.75)

where and are the vertical and horizontal components of inertia force of cylin-

der i given by (see Eqs. (9.71) and (9.73)):

(9.76)

(9.77) 1Fy2i = -  1mc2i 
rv2 sin1vt + ai2

 1Fx2i = 1mp + mc2irv
2 cos1vt + ai2 + 1mp2i 

r2
v

2

l
 cos12vt + 2ai2

(Fy)i(Fx)i

 1Fy2total = a
N

i=1
1Fy2i = 0

 1Fx2total = a
N

i=1
1Fx2i = 0

i = 2, 3, Á , N.li,
ai

v.

N = 6,

Fy

mcmp

mcmp
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For simplicity, we assume the reciprocating and rotating masses for each cylinder to be

same that is, and for Without loss of general-

ity, Eqs. (9.74) and (9.75) can be applied at time Thus the conditions necessary for

the total force balance are given by

(9.78)

(9.79)

The inertia forces and of the i th cylinder induce moments about the y- and x-axes,

respectively, as shown in Fig. 9.16(b). The moments about the z- and x-axes are given by

(9.80)

(9.81) Mx = a
N

i=2
 1Fy2ili = 0

 Mz = a
N

i=2
 1Fx2ili = 0

(Fy)i(Fx)i

a
N

i=1
 sin ai = 0

a
N

i=1
 cos ai = 0 and a

N

i=1
 cos 2ai = 0

t = 0.
i = 1, 2, Á , N.(mc)i = mc(mp)i = mp

2

(b)

(a)

1
1

a3

a6

6

3

5

4

x

x

x
(Fx)i

(Fy)i

O

yz
O

z

y

2

Reference plane

3 4 5 6

l2
l3

l4
l5

l6

Cylinder iCylinder 1

li

FIGURE 9.16 Arrangement of an N-cylinder engine.
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By substituting Eqs. (9.76) and (9.77) into Eqs. (9.80) and (9.81) and assuming we

obtain the necessary conditions to be satisfied for the balancing of moments about the z-

and x-axes as

(9.82)

(9.83)

Thus we can arrange the cylinders of a multicylinder reciprocating engine so as to satisfy

Eqs. (9.78), (9.79), (9.82), and (9.83); it will be completely balanced against the inertia

forces and moments.

9.7 Control of Vibration
In many practical situations, it is possible to reduce but not eliminate the dynamic forces

that cause vibrations. Several methods can be used to control vibrations. Among them, the

following are important:

1. Controlling the natural frequencies of the system and avoiding resonance under exter-

nal excitations.

2. Preventing excessive response of the system, even at resonance, by introducing a

damping or energy-dissipating mechanism.

3. Reducing the transmission of the excitation forces from one part of the machine to

another by the use of vibration isolators.

4. Reducing the response of the system by the addition of an auxiliary mass neutralizer

or vibration absorber.

We shall now consider the details of these methods.

9.8 Control of Natural Frequencies
It is well known that whenever the frequency of excitation coincides with one of the nat-

ural frequencies of the system, resonance occurs. The most prominent feature of resonance

is a large displacement. In most mechanical and structural systems, large displacements

indicate undesirably large strains and stresses, which can lead to the failure of the system.

Hence in any system resonance conditions must be avoided. In most cases, the excitation

frequency cannot be controlled, because it is imposed by the functional requirements of the

system or machine. We must concentrate on controlling the natural frequencies of the sys-

tem to avoid resonance.

a
N

i=2

 li sin ai = 0

a
N

i=2

 li cos ai = 0 and a
N

i=2

 li cos 2ai = 0

t = 0,
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As indicated by Eq. (2.14), the natural frequency of a system can be changed by vary-

ing either the mass m or the stiffness k.4 In many practical cases, however, the mass cannot

be changed easily, since its value is determined by the functional requirements of the sys-

tem. For example, the mass of a flywheel on a shaft is determined by the amount of energy

it must store in one cycle. Therefore, the stiffness of the system is the factor that is most

often changed to alter its natural frequencies. For example, the stiffness of a rotating shaft

can be altered by varying one or more of its parameters, such as materials or the number

and location of support points (bearings).

9.9 Introduction of Damping
Although damping is disregarded so as to simplify the analysis, especially in finding the

natural frequencies, most systems possess damping to some extent. The presence of damp-

ing is helpful in many cases. In systems such as automobile shock absorbers and many

vibration-measuring instruments, damping must be introduced to fulfill the functional

requirements [9.20 9.21].

If the system undergoes forced vibration, its response or amplitude of vibration tends

to become large near resonance if there is no damping. The presence of damping always

limits the amplitude of vibration. If the forcing frequency is known, it may be possible to

avoid resonance by changing the natural frequency of the system. However, the system or

the machine may be required to operate over a range of speeds, as in the case of a variable-

speed electric motor or an internal combustion engine. It may not be possible to avoid res-

onance under all operating conditions. In such cases, we can introduce damping into the

system to control its response, by the use of structural materials having high internal damp-

ing, such as cast iron or laminated or sandwich materials.

In some structural applications, damping is introduced through joints. For example,

bolted and riveted joints, which permit slip between surfaces, dissipate more energy com-

pared to welded joints, which do not permit slip. Hence a bolted or riveted joint is desirable

to increase the damping of the structure. However, bolted and riveted joints reduce the stiff-

ness of the structure, produce debris due to joint slip, and cause fretting corrosion. In spite of

this, if a highly damped structure is desired, bolted or riveted joints should not be ignored.

4Although this statement is made with reference to a single-degree-of-freedom system, it is generally true even

for multidegree-of-freedom and continuous systems.

Use of Viscoelastic Materials. The equation of motion of a single-degree-of-freedom

system with internal damping, under harmonic excitation can be expressed as

(9.84)

where is called the loss factor (or loss coefficient), which is defined as (see Section 2.6.4)

(9.85)

h =
1¢W/2p2

W
= a

Energy dissipated during 1 cycle of harmonic displacement/radian

Maximum strain energy in cycle
b

h

mx
$
+ k11 + ih2x = F0e

ivt

F(t) = F0e
ivt,
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The amplitude of the response of the system at resonance is given by

(9.86)

since the stiffness is proportional to the Young s modulus 

The viscoelastic materials have larger values of the loss factor and hence are used to

provide internal damping. When viscoelastic materials are used for vibration control, they

are subjected to shear or direct strains. In the simplest arrangement, a layer of viscoelastic

material is attached to an elastic one. In another arrangement, a viscoelastic layer is sand-

wiched between the elastic layers. This arrangement is known as constrained layer damp-

ing.5 Damping tapes, consisting of thin metal foil covered with a viscoelastic adhesive, are

used on existing vibrating structures. A disadvantage with the use of viscoelastic materials

is that their properties change with temperature, frequency, and strain. Equation (9.86)

shows that a material with the highest value of gives the smallest resonance ampli-

tude. Since the strain is proportional to the displacement x and the stress is proportional to

Ex, the material with the largest value of the loss factor will be subjected to the smallest

stresses. The values of loss coefficient for some materials are given below:

(Eh)

(k = aE; a = constant).

F0

kh
=

F0

aEh

(v = vn)

5It appears that constrained layer damping was used, possibly unknowingly, as far back as the seventeenth century,

in the manufacture of violins [9.22]. Antonio Stradivari (1644 1737), the renowned Italian violin manufacturer,

bought the wood necessary for the manufacture of violins from Venice. The varnish used for sealing the wood was

made from a mixture of resin and ground gem stones. This varnish stone particles in resin matrix acted as a

form of constrained layer (friction mechanism) that created enough damping to explain why many of his violins

had a rich, full tone.

Material Loss Factor (H)

Polystyrene 2.0

Hard rubber 1.0

Fiber mats with matrix 0.1

Cork 0.13 0.17

Aluminum 1 * 10-4

Iron and steel 2-6 * 10-4

The damping ratios obtainable with different types of construction/arrangement are

indicated below:

Type of Construction/Arrangement

Equivalent Viscous Damping 

Ratio (%)

Welded construction 1 4

Bolted construction 3 10

Steel frame 5 6

Unconstrained viscoelastic layer on steel-concrete girder 4 5

Constrained viscoelastic layer on steel-concrete girder 5 8
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9.10 Vibration Isolation

Vibration isolation is a procedure by which the undesirable effects of vibration are reduced

[9.22 9.24]. Basically, it involves the insertion of a resilient member (or isolator) between

the vibrating mass (or equipment or payload) and the source of vibration so that a reduction

in the dynamic response of the system is achieved under specified conditions of vibration

excitation. An isolation system is said to be active or passive depending on whether or not

external power is required for the isolator to perform its function. A passive isolator consists

of a resilient member (stiffness) and an energy dissipator (damping). Examples of passive

isolators include metal springs, cork, felt, pneumatic springs, and elastomer (rubber)

springs. Figure 9.17 shows typical spring and pneumatic mounts that can be used as pas-

sive isolators, and Fig. 9.18 illustrates the use of passive isolators in the mounting of a

high-speed punch press [9.25]. The optimal synthesis of vibration isolators is presented in

references [9.26 9.30]. An active isolator is comprised of a servomechanism with a sensor,

signal processor, and actuator.

(a)

(c)

(b)

FIGURE 9.17 (a) Undamped spring mount; (b) damped spring mount; (c) pneumatic

rubber mount. (Courtesy of Sound and Vibration.)
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FIGURE 9.18 High-speed punch press mounted

on pneumatic rubber mounts. (Courtesy of Sound and

Vibration.)

Vibration isolation can be used in two types of situations. In the first type, the founda-

tion or base of a vibrating machine is protected against large unbalanced forces. In the sec-

ond type, the system is protected against the motion of its foundation or base.

The first type of isolation is used when a mass (or a machine) is subjected to a force or

excitation. For example, in forging and stamping presses, large impulsive forces act on the

object to be formed or stamped. These impacts are transmitted to the base or foundation of

the forging or stamping machine, which can damage not only the base or foundation but

also the surrounding or nearby structures and machines. They can also cause discomfort to

operators of these machines. Similarly, in the case of reciprocating and rotating machines,

the inherent unbalanced forces are transmitted to the base or foundation of the machine.

In such cases, the force transmitted to the base, varies harmonically, and the result-

ing stresses in the foundation bolts also vary harmonically, which might lead to fatigue

Ft(t),
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9.10 VIBRATION ISOLATION 803

failure. Even if the force transmitted is not harmonic, its magnitude is to be limited to safe

permissible values. In these applications, we can insert an isolator (in the form of stiffness

and/or damping) between the mass being subjected to force or excitation and the base or

foundation to reduce the force transmitted to the base or foundation. This is called force

isolation. In many applications, the isolator is also intended to reduce the vibratory

motion of the mass under the applied force (as in the case of forging or stamping

machines). Thus both force and displacement transmissibilities become important for this

of isolators.

The second type of isolation is used when a mass to be protected against the motion or

excitation of its base or foundation. When the base is subjected to vibration, the mass m

will experience not only a displacement x(t) but also a force The displacement of the

mass x(t) is expected to be smaller than the displacement of the base y(t). For example, a

delicate instrument or equipment is to be protected from the motion of its container or

package (as when the vehicle carrying the package experiences vibration while moving on

a rough road). The force transmitted to the mass also needs to be reduced. For example, the

package or container is to be designed properly to avoid transmission of large forces to the

delicate instrument inside to avoid damage. The force experienced by the instrument or

mass m (same as the force transmitted to mass m) is given by

(9.87)

where y(t) is the displacement of the base, is the relative displacement of the

spring, and is the relative velocity of the damper. In such cases, we can insert

an isolator (which provides stiffness and /or damping) between the base being subjected to

force or excitation and the mass to reduce the motion and/or force transmitted to the mass.

Thus both displacement isolation and force isolation become important in this case also.

It is to be noted that the effectiveness of an isolator depends on the nature of the force

or excitation. For example, an isolator designed to reduce the force transmitted to the base

or foundation due to impact forces of forging or stamping may not be effective if the distur-

bance is a harmonic unbalanced force. Similarly, an isolator designed to handle harmonic

excitation at a particular frequency may not be effective for other frequencies or other types

of excitation such as step-type excitation.

x
#
(t) - y

#
(t)

x(t) - y(t)

Ft(t) = mx
$
(t) = k5x(t) - y(t)6 + c5x

#
(t) - y

#
(t)6

Ft(t).

(a)

k c
Rigid base or
foundation

m
Vibrating
machine

x(t)

(b)

k c

Base
(package)

m
Delicate
instrument
or machine

x(t)

y(t)

FIGURE 9.19 Vibration isolation.
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9.10.1
Vibration
Isolation System
with Rigid
Foundation

Reduction of the Force Transmitted to Foundation. When a machine is bolted directly

to a rigid foundation or floor, the foundation will be subjected to a harmonic load due to

the unbalance in the machine in addition to the static load due to the weight of the

machine. Hence an elastic or resilient member is placed between the machine and the rigid

foundation to reduce the force transmitted to the foundation. The system can then be

idealized as a single-degree-of-freedom system, as shown in Fig. 9.20(a). The resilient

member is assumed to have both elasticity and damping and is modeled as a spring k and a

dashpot c, as shown in Fig. 9.20(b). It is assumed that the operation of the machine gives

rise to a harmonically varying force The equation of motion of the

machine (of mass m) is given by

(9.88)

Since the transient solution dies out after some time, only the steady-state solution will be

left. The steady-state solution of Eq. (9.88) is given by (see Eq. (3.25))

(9.89)

where

(9.90)

and

(9.91)

The force transmitted to the foundation through the spring and the dashpot, is given by

(9.92)Ft1t2 = kx1t2 + cx 
#
1t2 = kX cos1vt - f2 - cvX sin1vt - f2

Ft(t),

f = tan-1 a
vc

k - mv2
b

X =
F0

[(k - mv2)2
+ v2c2]1/  2

x1t2 = X cos 1vt - f2

mx 
$
+ cx 

#
+ kx = F0 cos vt

F(t) = F0 cos vt.

Foundation or baseFoundation or base

(a)

x(t)

k c

Machine (m)

Resilient
member Resilient

member

(b)

x(t)
F(t) * F0 cos vtF(t) * F0 cos vt

Machine (m)

FIGURE 9.20 Machine and resilient member on rigid

foundation.
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9.10 VIBRATION ISOLATION 805

The magnitude of the total transmitted force is given by

(9.93)

The transmissibility or transmission ratio of the isolator is defined as the ratio of the

magnitude of the force transmitted to that of the exciting force:

(9.94)

where is the frequency ratio. The variation of with the frequency ratio is

shown in Fig. 9.21. In order to achieve isolation, the force transmitted to the foundation

needs to be less than the excitation force. It can be seen, from Fig. 9.21, that the forcing

frequency has to be greater than times the natural frequency of the system in order to

achieve isolation of vibration.

22

r =
v

vn
Tfr =

v

vn

 =

L

1 + 12zr22

[1 - r2]2
+ 12zr22

M

1/2

 Tf =
FT

F0
= e

k2
+ v2c2

1k - mv2
2

2
+ v2c2

f

1/2

(Tf)

 =
F01k2

+ v2c2
2

1/2

[(k - mv2)2
+ v2c2]1/2

 FT = [(kx)2
+ (cx 

#
)2]1/2

= X4k2
+ v2c2

(FT)

0.0
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FIGURE 9.21 Variation of transmission

ratio with r.1Tf2

M09_RAO08193_5_SE_C09.qxd  8/22/10  1:01 PM  Page 805



806 CHAPTER 9 VIBRATION CONTROL

For small values of damping ratio and for frequency ratio the force transmis-

sibility, given by Eq. (9.94), can be approximated as

(9.95)

Notes

1. The magnitude of the force transmitted to the foundation can be reduced by decreas-

ing the natural frequency of the system 

2. The force transmitted to the foundation can also be reduced by decreasing the damp-

ing ratio. However, since vibration isolation requires the machine should

pass through resonance during start-up and stopping. Hence, some damping is essen-

tial to avoid infinitely large amplitudes at resonance.

3. Although damping reduces the amplitude of the mass (X) for all frequencies, it

reduces the maximum force transmitted to the foundation only if 

Above that value, the addition of damping increases the force transmitted.

4. If the speed of the machine (forcing frequency) varies, we must compromise in choos-

ing the amount of damping to minimize the force transmitted. The amount of damping

should be sufficient to limit the amplitude X and the force transmitted while passing

through the resonance, but not so much to increase unnecessarily the force transmitted

at the operating speed.

Reduction of the Vibratory Motion of the Mass. In many applications, the isolation

is required to reduce the motion of the mass (machine) under the applied force. The

displacement amplitude of the mass m due to the force F(t), given by Eq. (9.90), can be

expressed as:

(9.96)

where is called, in the present context, the displacement transmissibility or amplitude

ratio and indicates the ratio of the amplitude of the mass, X, to the static deflection under the

constant force The variation of the displacement transmissibility with the fre-

quency ratio r for several values of the damping ratio is shown in Fig. 9.22. The following

observations can be made from Fig. 9.22:

1. The displacement transmissibility increases to a maximum value at (Eq. (3.33)):

(9.97)

Equation (9.97) shows that, for small values of damping ratio the displacement

transmissibility (or the amplitude of the mass) will be maximum at or v L vn.r L 1

z,

r = 21 - 2z2

z

F0, dst =
F0

k
.

X

dst

Td =
X

dst

=
kX

F0

=
1

2(1 - r2)2
+ (2zr)2

Ft

r 6 22.(Ft)

r 7 22,

(vn).

Tf =
Ft

F
L

1

r2
- 1

 or r2
L

1 + Tf

Tf

r 7 1,z
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FIGURE 9.22 Variation of displacement transmissibility 

with r.

(Td)

Spring Support for Exhaust Fan

An exhaust fan, rotating at 1000 rpm, is to be supported by four springs, each having a stiffness of K.

If only 10 percent of the unbalanced force of the fan is to be transmitted to the base, what should be

the value of K? Assume the mass of the exhaust fan to be 40 kg.

Solution: Since the transmissibility has to be 0.1, we have, from Eq. (9.94),

(E.1)0.1 = E

1 + a2z 

v

vn

b

2

e 1 - a
v

vn

b

2

f

2

+ a2z 

v

vn

b

2
U

1/2

Thus the value of is to be avoided in practice. In most cases, the excitation fre-

quency is fixed and hence we can avoid by altering the value of the natural

frequency which can be accomplished by changing the value of either or

both of m and k.

2. The amplitude of the mass, X, approaches zero as r increases to a large value. The rea-

son is that at large values of r, the applied force F(t) varies very rapidly and the inertia

of the mass prevents it from following the fluctuating force.

vn =
A

k

m

r L 1v

r L 1

E X A M P L E  9 . 4
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where the forcing frequency is given by

(E.2)

and the natural frequency of the system by

(E.3)

By assuming the damping ratio to be we obtain from Eq. (E.1),

(E.4)

To avoid imaginary values, we need to consider the negative sign on the right-hand side of Eq. (E.4).

This leads to

or

*

Design of an Undamped Isolator

A 50-kg mass is subjected to the harmonic force Design an undamped iso-

lator so that the force transmitted to the base does not exceed 5% of the applied force. Also, find the

displacement amplitude of the mass of the system with isolation.

Solution: By setting the value of force transmissibility as 0.05 and using Eq. (9.95) gives

(E.1)

Using the definition of r, along with the values of and Eq. (E.1) yields

or

(E.2)k =
v2m

r2
=

(1202)(50)

21
= 34.2857 * 103 N/m

r2
=
v2

vn
2
=
v2m

k

v = 120 rad/s,m = 50 kg

r2
L

1 + Tf

Tf
=

1 + 0.05

0.05
= 21

z = 0,

F(t) = 1000 cos 120t N.

K = 9969.6365 N/m

331.1561

2K
= 3.3166

0.1 =
;1

e 1 - a
104.72 * 3.1623

2K
b

2

f

z = 0,

vn = a
k

m
b

1/2

= a
4K

40
b

1/2

=
2K

3.1623

v =
1000 * 2p

60
= 104.72 rad/s

E X A M P L E  9 . 5
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9.10 VIBRATION ISOLATION 809

The displacement amplitude of the mass of the system with isolation can be found from Eq. (9.96),

with 

(E.3)

*

Design Chart for Isolation:

The force transmitted to the base or ground by a source of vibration (vibrating mass) is given

by Eq. (9.94) and is shown in Fig. 9.21 as a graph between and As

noted earlier, vibration isolation reduction of the force transmitted to the ground can be

achieved for In the region low values of damping are desired for more

effective isolation. For large values of r and low values of the term becomes very

small and can be neglected in Eq. (9.94) for simplicity. Thus Eq. (9.94) can be approximated

as shown in Eq. (9.95) for and small.

By defining the natural frequency of vibration of the undamped system as

(9.98)

and the exciting frequency as

(9.99)

where is the static deflection of the spring and N is the frequency in cycles per minute

or revolutions per minute (rpm) of rotating machines such as electric motors and turbines,

Eqs. (9.95) to (9.99) can be combined to obtain

(9.100)

where is used to indicate the quality of the isolator and denotes the percent

reduction achieved in the transmitted force. Equation (9.100) can be rewritten as

(9.101)

Equation (9.101) can be used to generate a graph between log N and log as a series of

straight lines for different values of R, as shown in Fig. 9.23. This graph serves as a design

chart for selecting a suitable spring for the isolation.

dst

N =
30

pC
g

dst

 a
2 - R

1 - R
b = 29.9092 A

2 - R

dst11 - R2

R = 1 - Tf

r =
v

vn
=

2pN

60 A
dst

g
= A

2 - R

1 - R

dst

v =
2pN

60

v

vn = A
k

m
= A

g

dst

zr 7 22

(2 zr)2z,
r 7 12,r 7 12.

r = v/vn.Tf = FT/F0

X =
F0

k
 

1

(r2
- 1)

=
1000

34.2857 * 103
 

1

(21 - 1)
= 1.4583 * 10-3 m

z = 0:
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Isolator for Stereo Turntable

A stereo turntable, of mass 1 kg, generates an excitation force at a frequency of 3 Hz. If it is sup-

ported on a base through a rubber mount, determine the stiffness of the rubber mount to reduce the

vibration transmitted to the base by 80 percent.

Solution: Using and Eq. (9.105) gives

or

dst = 0.1657 m

180 = 29.9092 

A
2 - 0.80

dst 
11 - 0.802

R = 0.80,N = 3 * 60 = 180 cpm

E X A M P L E  9 . 6
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FIGURE 9.23 Isolation efficiency.
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9.10 VIBRATION ISOLATION 811

The static deflection of the rubber mount can be expressed, in terms of its stiffness (k), as

which gives the stiffness of the rubber mount as

*

Isolation of systems with rotating unbalance:

A common source of forced harmonic force is imbalance in rotating machines such as tur-

bines, centrifugal pumps, and turbogenerators. Imbalance in a rotating machine implies that

the axis of rotation does not coincide with the center of mass of the whole system. Even a

very small eccentricity can cause a large unbalanced force in high-speed machines such as

turbines. A typical rotating system with an unbalance is shown in Fig. 9.24. Here the total

mass of the system is assumed to be M and the unbalanced mass is considered as a point

mass m located at the center of mass of the system (which has an eccentricity of e from the

center of rotation) as shown in Fig. 9.24. If the unbalanced mass rotates at an angular

velocity and the system is constrained to move in the vertical direction, the equation of

motion of the system is given by

(9.102)Mx
$

+ cx
#
+ kx = F0 sin vt K mev2 sin vt

v

0.1657 =

119.812

k
 or k = 59.2179 N/m

dst =

mg

k

c

x(t)

(M  m)

G
m

e

O

v

k

2

k

2

FIGURE 9.24 A system with rotating unbalance.
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812 CHAPTER 9 VIBRATION CONTROL

6The available clearance space that permits the system to undergo the induced deflection freely during vibration

is called the rattle space or clearance. If the rattle space is too small to accommodate the deflection of the system,

the system will undergo impacts (as it hits the surrounding or nearby surface or object) in each cycle of vibration.

Using the force transmissibility of the system can be found from Eq. (9.88).

However, the presence of in results in the following equation for the force trans-

missibility due to rotating unbalance:

or

(9.103)
Ft

mevn
2
= r2

b
1 + (2zr)2

(1 - r2)2
+ (2zr)2 r

1
2

Tf =
Ft

F0
 =

Ft

mev2
=

Ft

mer2vn
2

(Tf)
F0v2

F0 = mev2,

E X A M P L E  9 . 7
Centrifugal Pump with Rotating Unbalance Rattle Space

A centrifugal pump, with a mass of 50 kg and rotational speed of 3000 rpm, is mounted in the mid-

dle of a simply supported beam of length 100 cm, width 20 cm, and thickness 0.5 cm. The damping

ratio of the system (beam) can be assumed as The impeller (rotating part) of the pump has

a mass of 5 kg with an eccentricity of 1 mm. If the maximum deflection of the beam is is constrained

to be less than the available rattle space6 of 3 mm. Determine whether the support system of the pump

is adequate.

Solution: The bending stiffness or spring constant of the simply supported beam is given by

where the moment of inertia of the beam cross section can be computed as

Using the spring constant of the beam can be found as

Using the density of steel as the mass of the beam can be determined as

mb = 7.85(100)(20)(0.5) = 7850 gram = 7.85 kg

(mb)7.85 gram/cm3,

k =

48(207 * 109)(20.8333 * 10-10)

(1.03)
= 206,999.6688 N/m

E = 207 * 109 Pa,

I =
1

12
 wt3

=

(20)(0.053)

12
= 0.208333 cm4

= 20.8333 * 10-10 m4

k =
48EI

l3

z = 0.05.

M09_RAO08193_5_SE_C09.qxd  8/22/10  1:01 PM  Page 812



9.10 VIBRATION ISOLATION 813

The total mass of the system (M) is equal to the mass of the pump plus the effective mass of the beam

at its center (equal to see Problem 2.86):

The natural frequency of the system is given by

The impeller (rotor) speed of 3000 rpm gives Thus the fre-

quency ratio (r) becomes

The amplitude of the forcing function is

Using the steady-state amplitude of the pump can be found from Eq. (9.96), using 

for as

The static deflection of the beam under the weight of the pump can be determined as

Thus the total deflection of the system is

This deflection is less than the rattle space of 3 mm. As such the support system of the pump is ade-

quate. In case the value of exceeds the rattle space, we need to redesign (modify) the support

system. This can be achieved by changing the spring constant (dimensions) of the beam and/or by

introducing a damper.

*

dtotal

dtotal = X + dpump = 9.662 * 10-5
+ 236.9569 * 10-5

= 246.6231 * 10-5 m = 2.4662 mm

dpump =

Wpump

k
=

(50)(9.81)

206999.6688
= 236.9569 * 10-5 m

 =
493.4825

206999.6688
 

1

24.6629
= 9.6662 * 10-5 m

 X =
mev2

k
 

1

2(1 - r2)2
+ (2zr)2

=
493.4825

206999.6688
 

1

2(1 - 25.6577)2
+ 52(0.05)(5.0653)62

F0,
mev2z = 0.05,

mev2
= 5(10-3)(314.162) = 493.4825 N

r =
v

vn
=

314.16

62.0215
= 5.0653;  r2

= 25.6577

v = 2p(3000)/60 = 314.16 rad/s.

vn = A
k

M
= A

206999.6688

53.8128
= 62.0215 rad/s

M = mpump +
17

35
 mb = 50 +

17

35
 (7.85) = 53.8128 kg

17

35
 mb;
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9.10.2
Vibration
Isolation System
with Base
Motion

In some applications, the base of the system is subjected to a vibratory motion. For example,

the base or foundation of a machine such as a turbine in a power plant may be subjected to

ground motion during an earthquake. In the absence of a suitably designed isolation system,

the motion of the base transmitted to the mass (turbine) might cause damage and power

failure. Similarly, a delicate instrument (mass) may have to be protected from a force or

shock when the package containing the instrument is dropped from a height accidentally.

Also, if the instrument is to be transported, the vehicle carrying it may experience vibration

as it travels on a rough road with potholes. In this case, also, proper isolation is to be used

to protect the instrument against excessive displacement or force transmitted from the base

motion.

For a single-degree-of-freedom system with base excitation, shown in Fig. 9.19(b), the

analysis was presented in Section 3.6. When the base of the system is subjected to a har-

monic motion, the equation of motion is given by Eq. (3.75):

(9.104)

where denotes the displacement of the mass relative to the base. If the base

motion is harmonic, then the motion of the mass will also be harmonic. Hence the dis-

placement transmissibility, is given by Eq. (3.68):

(9.105)

where X and Y denote the displacement amplitudes of the mass and the base, respectively,

and the right-hand-side expression can be identified to be the same as that in Eq. (9.94).

Note that Eq. (9.105) is also equal to the ratio of the maximum steady-state accelerations

of the mass and the base. The variation of the displacement transmissibility with the fre-

quency ratio (r) for different values of the damping ratio is shown in Fig. 9.25. The fol-

lowing observations can be made from Fig. 9.25:

1. For an undamped system, the displacement transmissibility approaches infinity at reso-

nance Thus the undamped isolator (stiffness) is to be designed to ensure that

the natural frequency of the system is away from the excitation frequency 

2. For a damped system, the displacement transmissibility (and hence the displacement

amplitude) attains a maximum for frequency ratios close to 1. The maximum dis-

placement amplitude of the mass can be larger than the amplitude of base motion

that is, the base motion can get amplified by a large factor.

3. The displacement transmissibility is close to 1 for small values of the frequency ratio

(r) and is exactly equal to 1 at 

4. The displacement amplitude is larger than 1 for and smaller than 1 for

Note that a smaller damping ratio corresponds to a larger for and

a smaller for Thus, if the damping of the system cannot be altered, the

natural frequency of the system (stiffness) can be changed to achieve a value of

r 7 22.

r 7 22.Td

r 6 22Tdr 7 22.

r 6 22

r = 22.

(v).(vn)

(r = 1).

(z)

Td =
X

Y
= b

1 + (2zr)2

(1 - r2)2
+ (2zr)2

r

1/2

Td =
X

Y
,

z = x - y

mz
$
+ cz

#
+ kz = -my

$

y(t) = Y sin vt,
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9.10 VIBRATION ISOLATION 815

If denotes the magnitude of the force transmitted to the mass by the spring and the

damper, the force transmissibility of the system is given by Eq. (3.74):

(9.106)

where kY is used to make the force transmissibility dimensionless. Note that once the

displacement transmissibility, or the displacement amplitude of the mass (X) is com-

puted using Eq. (9.105), the force transmitted to the mass, can be determined using

the relation

(9.107)

The variation of the force transmissibility with the frequency ratio (r) for different values

of the damping ratio is shown in Fig. 9.26. The following observations can be made

from Fig. 9.26:

1. The force transmissibility will be 2 at the frequency ratio for all values of

the damping ratio 

2. For a lower damping ratio corresponds to a lower value of force transmissibility.

3. For for any specific value of the damping ratio, the force transmissibility

increases with r. This behavior is opposite to that of displacement transmissibility.

4. The force transmissibility is close to zero at small values of the frequency ratio r and

attains a maximum at values of r close to 1.

r 7 22,

r 7 22,

(z).

r = 22(Tf)

(z)

Ft

kY
= r2

 

X

Y
  or  Ft = kr2X

Ft,
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Ft
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Isolation from Vibrating Base

A vibrating system is to be isolated from its vibrating base. Find the required damping ratio that must

be achieved by the isolator to limit the displacement transmissibility to Assume the system

to have a single degree of freedom.

Solution: By setting Eq. (9.105) gives

or

*

z =
1

24Td
2
- 1

=
1

2215
= 0.1291

Td =
41 + 12z22

2z

v = vn,

Td = 4.

E X A M P L E  9 . 9
Design of Isolation for a Precision Machine with Base Motion

A precision machine used for the manufacture of integrated circuits, having a mass of 50 kg, is

placed on a work bench (as base). The ground vibration transmitted by a nearby internal combustion

engine causes the base (all four corners of the bench) to vibrate at a frequency of 1800 rpm. Helical

E X A M P L E  9 . 8
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9.10 VIBRATION ISOLATION 817

springs, with a damping ratio of and a relationship of bilinear load (P) to deflection (x)

given by

(E.1)

(P in newtons and x in meters) are available for use as isolators at the four corners of the base. If no

more than 10% of the vibration of the base is to be transmitted to the precision machine, determine a

method of achieving the isolation.

Solution: Since the displacement transmissibility is required to be 0.1, Eq. (9.105), for 

gives

(E.2)

The simplification of Eq. (E.2) yields a quadratic equation in as

(E.3)

The solution of Eq. (E.3) gives

which gives the positive value of r as Using the excitation frequency of

and the frequency ratio of the required natural frequency of the system can be deter-

mined as

(E.4)

Equation (E.4) gives 

We assume that that one helical spring is installed at each corner of the base (under the four

corners of the work bench). Because the expected deflection of the springs is unknown, the correct

stiffness of the springs (out of the two possible values) is unknown. Hence we use the relation (see

Eq. (2.28)):

(E.5)vn =
A

g

dst

 or 56.7776 =
A

9.81

dst

vn = 56.7776 rad/s.

r = 3.3199 =
v

vn

=
188.496

vn

r = 3.3199,

v =

2p(1800)

60
= 188.496 rad/s

3.3199.

r2
= 11.0218, -8.9822

r4
- 2.0396r2

- 99 = 0

r
2

Td =
X

Y
= 0.1 =

B
1 + {2(0.01)r}2

(1 - r2)2
+ {2(0.01)r}2

z = 0.01,

P = b
50,000x;   0 x 8 * 10-3

105x - 4 * 105;   8 * 10-3 x 13 * 10-3

z = 0.01
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818 CHAPTER 9 VIBRATION CONTROL

to find the static deflection of the system as

Since all the four springs experience the static load acting on each spring can be found from Eq.

(E.1) as

The total load on the four springs is Because the weight of the machine is

in order to achieve the total load of 608.62 N, we need to add a weight

of to the system. This weight, in the form of a rectangular steel plate,

is to be attached at the bottom of the machine, so that the total vibrating mass becomes 62.0408 kg

(with a weight of 608.62 N).

*

609.62 - 490.50 = 118.12 N

50 g = 50(9.81) = 490.5 N,

4 * 152.155 = 608.62 N.

P = 50000(3.0431 * 10-3) = 152.155 N

dst,

dst =
9.81

56.77762
= 3.0431 * 10-3 m

(dst)

E X A M P L E  9 . 1 0
Isolation System for a System with Base Motion

A printed circuit board (PCB) made of fiber-reinforced plastic composite material is used for the

computer control of an automobile engine. It is attached to the chassis of the computer, which is

fixed to the frame of the automobile as shown in Fig. 9.27(a). The frame of the automobile and the

chassis of the computer are subject to vibration at the engine speed of 3000 rpm. If it is required to

achieve a displacement transmissibility of no more than 10% at the PCB, design a suitable isolation

system between the chassis of the computer and the frame of the automobile. Assume that the chas-

sis of the computer is rigid with a mass of 0.25 kg.

Data of PCB: Length (l): 25 cm, width (w): 20 cm, thickness (t): 0.3 cm, mass per unit surface

area: Young s modulus (E): damping ratio: 0.01.

Solution: The PCB is assumed to be fixed to the chassis of the computer as a cantilever beam. Its

mass is given by The equivalent mass at the free end of the

cantilever is is (see Example 2.9):

Using the moment of inertia of the cross section of the PCB

the stiffness of the PCB as a cantilever beam can be computed as

kb =
3EI

l3
=

3(15 * 109)(45 * 10-8)

(0.25)3
= 1.296 * 106 N/m

I =
1

12
 wt3

=
1

12
 (0.20)(0.003)3

= 45 * 10-8 m4

mb =
33

140
 mPCB =

33

140
 (2.5) = 0.5893 kg

mb

25 * 20 * 0.005 = 2.5 kg.(mPCB)

15 * 109 N/m2,0.005 kg/cm2,
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9.10 VIBRATION ISOLATION 819

The natural frequency of the PCB is given by

The frequency of vibration of the base (chassis of the computer) is

v =

2p(3000)

60
= 312.66 rad/s

vn =
A

kb

mb

=
A

1.296 * 106

0.5893
= 1482.99 rad/s

PCB

(a)

(b)

(c)

Frame

Chassis of
computer

t

l

PCB

Frame

Chassis of
computer

t

l

c k

Frame

c

m

k

FIGURE 9.27
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820 CHAPTER 9 VIBRATION CONTROL

The frequency ratio is given by

Using the damping ratio the displacement transmissibility can be determined from

Eq. (9.105):

(E.1)

This value of exceeds the maximum permissible value of 10%. Hence we design an

isolator (with stiffness k and damping constant c) between the chassis of the computer and the frame

of the automobile as shown in Fig. 9.27(b). If we model the PCB with stiffness and mass as

before, the addition of the isolator makes the problem a two-degree-of-freedom system. For simplicity,

we model the cantilever beam (PCB) as a rigid mass with no elasticity. This leads to the single-degree-of-

freedom system shown in Fig. 9.27(c), where the equivalent mass m is given by

Assuming a damping ratio of 0.01, for the required displacement transmissibility of 10%, the fre-

quency ratio r can be determined from the relation

(E.2)

By squaring both sides of Eq. (E.2) and rearranging the terms, we obtain

(E.3)

The positive root of Eq. (E.3) is or The stiffness of the isolator is given by

The damping constant of the isolator can be computed as

*

c = 2z2mk = 2(0.01)2(2.75)(24390.7309) = 5.1797 N-s/m

k =
mv2

r2
=

(2.75)(312.662)

11.0218
= 24,390.7309 N/m

r = 3.3199.r
2
= 11.0218

r4
- 2.0396r2

- 99 = 0

Td = 0.1 = b

1 + [2(0.01)r]2

(1 - r2)2
+ [2(0.01)r]2

r

1
2

m = mPCB + mchassis = 2.5 + 0.25 = 2.75 kg

mbkb

Td = 104.65%

 = 1.0465

 = b

1 + [2(0.01)(0.2108)]2

(1 - 0.21082)2
+ [2(0.01)(0.2108)]2

r

 Td =
X

Y
= b

1 + (2zr)2

(1 - r2)2
+ (2zr)2

r

1
2

z = 0.01,

r =
v

vn
=

312.66

1482.99
= 0.2108
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9.10 VIBRATION ISOLATION 821

9.10.3
Vibration
Isolation System
with Flexible
Foundation

In many practical situations, the structure or foundation to which the isolator is connected

moves when the machine mounted on the isolator operates. For example, in the case of a

turbine supported on the hull of a ship or an aircraft engine mounted on the wing of an air-

plane, the area surrounding the point of support also moves with the isolator. In such cases,

the system can be represented as having two degrees of freedom. In Fig. 9.28, and 

denote the masses of the machine and the supporting structure that moves with the isolator,

respectively. The isolator is represented by a spring k, and the damping is disregarded for

the sake of simplicity. The equations of motion of the masses and are

(9.108)

By assuming a harmonic solution of the form

Eqs. (9.108) give

(9.109)

The natural frequencies of the system are given by the roots of the equation

(9.110)

The roots of Eq. (9.110) are given by

(9.111)v1
2
= 0,  v2

2
=

1m1 + m22k

m1m2

3

1k - m1v
2
2 -k

-k 1k - m2v
2
2

3 = 0

X11k - m1v
2
2 - X2k = F0

-X1k + X21k - m2v
2
2 = 0

f

xj = Xj cos vt,  j = 1, 2

 m2x
$

2 + k1x2 - x12 = 0

 m1x
$

1 + k1x1 - x22 = F0  cos vt

m2m1

m2m1

Isolator
(k)

F(t) * F0 cos vt

Machine (m1)
x1(t)

x2(t)

Supporting structure (m2)

FIGURE 9.28 Machine with isolator

on a flexible foundation.
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822 CHAPTER 9 VIBRATION CONTROL

Figure 9.29 shows a more realistic situation in which the base of the isolator, instead of

being completely rigid or completely flexible, is partially flexible [9.34]. We can define the

mechanical impedance of the base structure, as the force at frequency required to

produce a unit displacement of the base (as in Section 3.5):

Z1v2 =
Applied force of frequency v

Displacement

vZ(v),

9.10.4
Vibration
Isolation System
with Partially
Flexible
Foundation

The value corresponds to rigid-body motion, since the system is unconstrained. In

the steady state, the amplitudes of and are governed by Eq. (9.109), whose solution

yields

(9.112)

The force transmitted to the supporting structure is given by the amplitude of 

(9.113)

The transmissibility of the isolator is given by

(9.114)

where is the natural frequency of the system given by Eq. (9.111). Equation (9.114)

shows, as in the case of an isolator on a rigid base, that the force transmitted to the founda-

tion becomes less as the natural frequency of the system is reduced.v2

v2

 =
m2

1m1 + m22
 +

1

1 -
v

2

v
2
2

*

 =
1

a
m1 + m2

m2
-

m1v
2

k
b

 =
-  m2kv2

[(k - m1v
2) (k - m2v

2) - k2]

 Tf =
Ft

F0

(Tf)

Ft = -
 
m2v

2X2 =
-  m2kv2F0

[(k - m1v
2) (k - m2v

2) - k2]

m2x
$

2:(Ft)

 X2 =
kF0

[(k - m1v
2) (k - m2v

2) - k2]

 X1 =

1k - m2v
2
2F0

[(k - m1v
2) (k - m2v

2) - k2]

m2m1

v1 = 0
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9.10 VIBRATION ISOLATION 823

Isolator
(k)

F(t) * F0 cos vt
Machine (m1)

x1(t)

x2(t)Supporting
structure (m2)

Partially flexible
with mechanical
impedance Z(v)

FIGURE 9.29 Machine with isolator on a

partially flexible foundation.

7If the base is completely flexible with an unconstrained mass of and Eqs. (9.115) to

(9.117) lead to Eq. (9.109).

m2, Z(v) = -v
2m2,

The equations of motion are given by7

(9.115)

(9.116)

By substituting the harmonic solution

(9.117)

into Eqs. (9.115) and (9.116), and can be obtained as in the previous case:

(9.118)

The amplitude of the force transmitted is given by

(9.119)Ft = X2Z(v) =

kZ1v2F0

[Z(v) (k - m1v
2) - km1v

2]

 X2 =
kF0

[Z(v)(k - m1v
2) - km1v

2]

 X1 =

[k + Z(v)]X2

k
=

[k + Z(v)]F0

[Z(v) (k - m1v
2) - km1v

2]

X2X1

xj1t2 = Xj cos vt,  j = 1, 2

 k1x2 - x12 = -x2Z1v2

 m1x
$

1 + k1x1 - x22 = F0 cos vt
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9.10.5

Shock Isolation

As stated earlier, a shock load involves the application of a force for a short duration, usu-

ally for a period of less than one natural time period of the system. The forces involved in

forge hammers, punch presses, blasts, and explosions are examples of shock loads. Shock

isolation can be defined as a procedure by which the undesirable effects of shock are

reduced. We noted that vibration isolation under a harmonic disturbance (input) occurs

for the frequency ratio with a smaller value of the damping ratio leading to

better isolation. On the other hand, shock isolation must occur over a wide range of fre-

quencies, usually with large values of Thus a good vibration isolation design proves to

be a poor shock isolation design and vice versa. In spite of the differences, the basic prin-

ciples involved in shock isolation are similar to those of vibration isolation; however, the

equations are different due to the transient nature of the shock.

A short-duration shock load F(t), applied over a time period T, can be treated as an

impulse 

(9.121)

Since this impulse acts on the mass m, the principle of impulse-momentum can be applied

to find the velocity imparted to the mass (v) as

(9.122)

This indicates that the application of a short-duration shock load can be considered as

equivalent to giving an initial velocity to the system. Thus the response of the system under

the shock load can be determined as the free-vibration solution with a specified initial

velocity. By assuming the initial conditions as and the

free-vibration solution of a viscously damped single-degree-of-freedom system (displace-

ment of the mass m) can be found from Eq. (2.72) as

(9.123)x1t2 =
ve- 

zvnt

vd
 sin vdt

x 
#
(0) = x 

#

0 = v,x(0) = x0 = 0

v =
F

m

F =

3

 T

0 

 F1t2 dt

F:

z.

(z)r 7 12,

and the transmissibility of the isolator by

(9.120)

In practice, the mechanical impedance depends on the nature of the base structure. It

can be found experimentally by measuring the displacement produced by a vibrator that

applies a harmonic force on the base structure. In some cases for example, if an isolator

is resting on a concrete raft on soil the mechanical impedance at any frequency can be

found in terms of the spring-mass-dashpot model of the soil.

v

Z(v)

Tf =
Ft

F0
=

kZ(v)

[Z(v) (k - m1v
2) - km1v

2]
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E X A M P L E  9 . 1 1

Isolation Under Shock

An electronic instrument of mass 20 kg is subject to a shock in the form of a step velocity of

2 m/s. If the maximum allowable values of deflection (due to clearance limit) and acceleration

are specified as 20 mm and 25 g, respectively, determine the spring constant of an undamped

shock isolator.

Solution: The electronic instrument supported on the spring can be considered as an undamped

system subject to base motion (in the form of step velocity). The mass vibrates at the natural

frequency of the system with the magnitudes of velocity and acceleration given by

(E.1)

(E.2)

where X is the amplitude of displacement of the mass. Since the maximum value of (step) velocity is

specified as 2 m/s and the maximum allowable value of X is given to be 0.02 m, Eq. (E.1) yields

(E.3)X =
x 
#

max

vn

6 0.02 or vn 7
x 
#

max

X
=

2

0.02
= 100 rad/s

 x
$

max = -X vn
2

 x 
#

max = X vn

where is the frequency of damped vibrations. The force transmitted to

the foundation, due to the spring and the damper is given by

(9.124)

Using Eq. (9.123), can be expressed as

(9.125)

where

(9.126)

Equations (9.125) and (9.126) can be used to find the maximum value of the force trans-

mitted to the foundation.

For longer-duration shock loads, the maximum transmitted force can occur while the

shock is being applied. In such cases, the shock spectrum, discussed in Section 4.6, can be

used to find the maximum force transmitted to the foundation.

The following examples illustrate different approaches that can be used for the design

of shock isolators.

f = tan-1 a
cvd

k - czvn

b

Ft1t2 =
v

vd

 41k - czvn2
2
+ 1cvd2

2 e- 
zvnt sin1vd t + f2

Ft(t)

Ft1t2 = kx1t2 + cx 
#
1t2

Ft(t),

vd = 11 - z2 vn
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E X A M P L E  9 . 1 2
Isolation Under Step Load

A sensitive electronic instrument of mass 100 kg is supported on springs and packaged for ship-

ment. During shipping, the package is dropped from a height that effectively applied a shock load

of intensity to the instrument, as shown in Fig. 9.30(a). Determine the stiffness of the springs

used in the package if the maximum deflection of the instrument is required to be less than

2 mm. The response spectrum of the shock load is shown in Fig. 9.30(b) with and

Solution: The response spectrum, indicating the maximum response of an undamped single-degree-

of-freedom system subject to the given shock, is given by

(E.1)

where is the natural frequency of the system:

(E.2)

and k is the stiffness of the springs used in the package. Using the known

data, Eq. (E.1) can be expressed as

(E.3)

By using the equality sign, Eq. (E.3) can be rearranged as

(E.4)
100

2k
 4211 - cos 0.022k2 - 2 * 10-6k + 1 = 0

xmaxk

1000
= 1 +

1

0.1 2k  10.12
 42 11 - cos 2(0.11k2 10.12)

2

1000
  a

k

1000
b

F0 = 1000 N, t0 = 0.1 s,

vn = A
k

m
= A

k

100
= 0.12k

vn

xmaxk

F0

= 1 +
1

vnt0
22 11 - cos 2vnt02

t0 = 0.1 s.

F0 = 1000 N

F0

Similarly, using the maximum specified value of as 25 g, Eq. (E.2) gives

(E.4)

Equations (E.3) and (E.4) give By selecting the value of in

the middle of the permissible range as 105.3681 rad/s, the stiffness of the spring (isolator) can be

found as

(E.5)

*

k = mvn
2
= 20 1105.368122

= 2.2205 * 105 N/m

vn100 rad/s vn 110.7362 rad/s.

Xvn
2 25 19.812 = 245.25 m/s2  or  vn A

x
$

max

X
= A

245.25

0.02
= 110.7362 rad/s

x
$

max
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F(t)

t

t0O

k

m

F(t)

F0

(a)

(b)

1.0
0

1.5

2.0

2.01.0 3.0 4.0

vnt0

2p

x
m

a
x
k

F
0

vnt0

1
1 + *2 (1 * cos vnt0)

FIGURE 9.30 Shock load on electronic instrument.

The root of Eq. (E.4) gives the desired stiffness value as The following

MATLAB program can be used to find the root of Eq. (E.4):

>> x=1000:1:10000000;

>> f='(100/sqrt(x))*sqrt(2*(1 cos(0.02*sqrt(x)))) 0.000002*x+1';

>> root=fzero(f,100000)

root =

6.2615e+005

>>

*

k = 6.2615 * 10
5 N/m.

9.10.6

Active Vibration

Control

A vibration isolation system is called active if it uses external power to perform its func-

tion. It consists of a servomechanism with a sensor, signal processor, and an actuator, as

shown schematically in Fig. 9.31 [9.31 9.33]. This system maintains a constant distance

(l) between the vibrating mass and the reference plane. As the force F(t) applied to the

system (mass) varies, the distance l tends to vary. This change in l is sensed by the sensor

and a signal, proportional to the magnitude of the excitation (or response) of the vibrating
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828 CHAPTER 9 VIBRATION CONTROL

body, is produced. The signal processor produces a command signal to the actuator based

on the sensor signal it receives. The actuator develops a motion or force proportional to

the command signal. The actuator motion or force will control the base displacement such

that the distance l is maintained at the desired constant value.

Different types of sensors are available to create feedback signals based on the dis-

placement, velocity, acceleration, jerk, or force. The signal processor may consist of a

passive mechanism, such as a mechanical linkage, or an active electronic or fluidic net-

work that can perform functions such as addition, integration, differentiation, attenuation,

or amplification. The actuator may be a mechanical system such as a rack-and-pinion or

ball screw mechanism, a fluidic system, or piezoelectric and electromagnetic force gener-

ating system. Depending on the types of sensor, signal processor, and actuator used, an

active vibration control system can be called electromechanical, electrofluidic, electro-

magnetic, piezoelectric, or fluidic.

Analysis: Consider a single-degree-of-freedom system in which the mass m is subjected to

an applied force f(t) as shown in Fig. 9.31. If we use an active control system to control the

vibration of the mass m, the actuator will be designed to exert a control force so that

the equation of motion of the system becomes

(9.127)

Most commonly, the sensor (computer) measures the displacement x and the velocity of

the mass in real time (continuously). The computer computes the control force nec-

essary to control the motion and commands the actuator to exert the force on the

mass m.

Usually the computer is programmed to generate the control force proportional to the

displacement x(t) and the displacement derivative or velocity of the mass so that

(9.128)fc(t) = -gpx - gdx
#

x
#
(t)

fc(t)
fc(t)

x
#

mx
$

+ cx
#
+ kx = F(t) = f(t) + fc(t)

fc(t)

Passive
system

x(t) F(t)

m

k c

Control signal

Actuator

Active control
system

Motion
sensor

Control law
electronics
(computer)

Sensor signal

FIGURE 9.31 Active vibration isolation system.
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9.10 VIBRATION ISOLATION 829

where and are constants whose values are to be determined and programmed into the

computer by the designer. The constants and are known as control gains, with 

denoting the proportional gain and indicating the derivative or rate gain. The control

algorithm in this case is known as the proportional and derivative (PD) control. By substi-

tuting Eq. (9.128) into Eq. (9.127), we obtain

(9.129)

which shows that acts like additional (or artificial) damping and like additional (or

artificial) stiffness. Equation (9.129), known as the closed-loop equation, can be solved to

find the response characteristics of the system. For example, the new (effective) natural

frequency is given by

(9.130)

and the new (effective) damping ratio by

(9.131)

The new (effective) time constant of the system, for is given by

(9.132)

Thus the functioning of the active vibration control system can be described as follows:

Given the values of m, c, and k, compute the control gains and to achieve the desired

values of or In practice, the response of the system is continuously monitored, the

computations are done, and the actuator is made to apply the control force to the mass in

real time so that the response of the system lies within the stated limits. Note that the

gains and can be positive or negative depending on the measured and desired

responses.

gdgp

fc

t.vn, z,
gdgp

t =
2m

c + gd

z 1,

z =
c + gd

22m(k + gp)

vn = +

k + gp

m
*

1
2

gpgd

mx
$

+ (c + gd)x
#
+ (k + gp)x = f(t)

gd

gpgdgp

gdgp

E X A M P L E  9 . 1 3
Vibration Control of a Precision Electronic System

It is proposed to control the vibration of a precision electronic system supported on an elastic pad

(with no damping) by either a passive or an active method. The system has a mass of 15 kg and a nat-

ural frequency of 20 rad/s. It is estimated that the system requires a damping ratio of to

control the vibration. Assume that the available dashpots can provide damping constants only in the

range 0 c 400 N-s/m.

z = 0.85
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Solution: First, we investigate the use of an available dashpot to control the vibration (passive

control). From the known natural frequency of the system, we can find the stiffness of the elastic

pad as

(E.1)

The required damping ratio of the system gives the necessary damping constant (c) as

(E.2)

Since the available dashpots can provide damping constant values up to 400 N-s/m only, we cannot

achieve the desired control using passive damping.

Thus we consider an active control system to create the required amount of damping into the

system. Let the control force be of the form so that the damping ratio, alternate form of

Eq. (9.131), can be expressed (with ):

(E.3)

By adding the available dashpot, with a damping constant of 400 N-s/m, Eq. (E.3) can be rewritten as

or

This gives the value of the damping constant to be provided by the active control (also known as

derivative gain) as 

*

gd = 110 N-s/m.

gd = 110 N-s/m

400 + gd = 2mzvn = 2(15)(0.85)(20) = 510 N-s/m

2zvn =

c + gd

m

gp = 0

fc = -gdx
#
,

z =
c

22km
= 0.85 or c = 2z2km = 2(0.85)26000(15) = 510 N-s/m

vn = A
k

m
 or k = mvn

2
= 15(20)2

= 6000 N/m

E X A M P L E  9 . 1 4
Active Control of a System with Rotating Unbalance

A single-degree-of-freedom system consists of a damping 

and The mass is subjected to a rotating unbalanced force

given by The following observations can be made from the given data:

(i) The natural frequency of the system, is close to the fre-

quency of the disturbance, 

(ii) The damping ratio of the system is small with a value of

z =
c

22km
=

4000

22[6(106)(160)]
= 0.06667

v = 60p = 188.4955 rad/s.

vn = A
k

m
= B

6(106)

150
= 200 rad/s,

f(t) = 100 sin 60pt N.

stiffness (k) = 6 * 106 N/m.4000 N-s/m,

constant (c) =mass (m) = 150 kg,
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9.10 VIBRATION ISOLATION 831

It is desired to change the natural frequency of the system to 100 rad/s and the damping ratio to 0.5.

Because the values of k and c of the system cannot be altered, it is proposed to use an active control

system. Determine the control gains required to achieve the desired values of and Also find the

magnitude of the response and the actuator force of the system in the steady state.

Solution: When an active control system is used with control gains and the natural frequency

of the system can be expressed as

or

This implies that the stiffness of the system is to be reduced to The new damping

ratio of the system is given by

or

This implies that the damping of the system is to be increased to 15000 N-s/m.

The equation of motion of the actively controlled system can be written as

(E.1)

which, in this case, takes the form

(E.2)

From Eq. (E.1), the general transfer function of the system can be expressed as (see Section 3.12)

(E.3)

The magnitude of the steady-state response of the system corresponding to Eq. (E.3) is given by (see

Section 3.13)

(E.4)X =

f0

C(k - mv2)2
+ (cv)2

D

 
1
2

X(s)

F(s)
=

1

ms2
+ cs + k

150x
$
+ 15000x

#
+ 1.5(106)x = f(t) = 100 sin 60pt

mx
$
+ cx

#
+ kx = f(t) = f0 sin vt

gd = 15000 - 4000 = 11000 N-s/m

z = 0.5 =

c + gd

22km
=

4000 + gd

22[1.5(106)](150)

1.5 * 106 N/m.

gp = 150(104) - 6(106) = -4.5(106) N/m

vn = 100 = B
6(106) + gp

150

gd,gp

z.vn
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832 CHAPTER 9 VIBRATION CONTROL

In the present case, and 

Thus Eq. (E.4) gives

The actuator (control) force, at steady state can be obtained from the relation

(E.5)

as

*

9.11 Vibration Absorbers

The vibration absorber, also called dynamic vibration absorber, is a mechanical device

used to reduce or eliminate unwanted vibration. It consists of another mass and stiffness

attached to the main (or original) mass that needs to be protected from vibration. Thus

the main mass and the attached absorber mass constitute a two-degree-of-freedom system,

hence the vibration absorber will have two natural frequencies. The vibration absorber is

commonly used in machinery that operates at constant speed, because the vibration

absorber is tuned to one particular frequency and is effective only over a narrow band of

frequencies. Common applications of the vibration absorber include reciprocating tools,

such as sanders, saws, and compactors, and large reciprocating internal combustion

engines which run at constant speed (for minimum fuel consumption). In these systems,

the vibration absorber helps balance the reciprocating forces. Without a vibration

absorber, the unbalanced reciprocating forces might make the device impossible to

hold or control. Vibration absorbers are also used on high-voltage transmission lines. In

 = 156.1289 N

 = 254.5(106)62
+ 511000(188.4955)62 (31.5113(10-6))

 = 4.5(106) - 11000(188.4955)i (31.5113(10-6))

 Ft(iv) = 4.5(106) - 11000iv X(iv)

Ft(s)

F(s)
=

Ft(s)

X(s)
 
X(s)

F(s)
=

k + cs

ms2
+ cs + k

Ft,

 = 31.5113(10-6) N

 =
150

4.7602(106)

 X =
150

B51.5(106) - 150(188.4955)2
6

2
+ 515000(188.4955)62

R

1
2

188.4955 rad/s.

v =k = 1.5 * 106 N-s/m,c = 15000 N-s/m,m = 150 kg,f0 = 100 N,

M09_RAO08193_5_SE_C09.qxd  8/22/10  1:01 PM  Page 832



9.11 VIBRATION ABSORBERS 833

Transmission line

Vibration absorber

FIGURE 9.32

this case, the dynamic vibration absorbers, in the form of dumbbell-shaped devices

(Fig. 9.32), are hung from transmission lines to mitigate the fatigue effects of wind-

induced vibration.

A machine or system may experience excessive vibration if it is acted upon by a force

whose excitation frequency nearly coincides with a natural frequency of the machine or

system. In such cases, the vibration of the machine or system can be reduced by using a

vibration neutralizer or dynamic vibration absorber, which is simply another spring-mass

system. The dynamic vibration absorber is designed such that the natural frequencies of

the resulting system are away from the excitation frequency. We shall consider the analysis

of a dynamic vibration absorber by idealizing the machine as a single-degree-of-freedom

system.

9.11.1
Undamped
Dynamic
Vibration
Absorber

When we attach an auxiliary mass to a machine of mass through a spring of stiffness

the resulting two-degree-of-freedom system will look as shown in Fig. 9.33. The equa-

tions of motion of the masses and are

(9.133)

By assuming harmonic solution,

(9.134)

we can obtain the steady-state amplitudes of the masses and as

(9.135)

(9.136) X2 =
k2F0

1k1 + k2 - m1v
2
21k2 - m2v

2
2 - k2

2

 X1 =

1k2 - m2v
2
2F0

1k1 + k2 - m1v
2
21k2 - m2v

2
2 - k2

2

m2m1

xj1t2 = Xj sin vt,  j = 1, 2

 m2x
$

2 + k21x2 - x12 = 0

 m1x
$

1 + k1x1 + k21x1 - x22 = F0 sin vt

m2m1

k2,

m1m2
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834 CHAPTER 9 VIBRATION CONTROL

We are primarily interested in reducing the amplitude of the machine In order to

make the amplitude of zero, the numerator of Eq. (9.135) should be set equal to zero.

This gives

(9.137)

If the machine, before the addition of the dynamic vibration absorber, operates near its

resonance, Thus if the absorber is designed such that

(9.138)

the amplitude of vibration of the machine, while operating at its original resonant frequency,

will be zero. By defining

as the natural frequency of the machine or main system, and

(9.139)v2 = a
k2

m2

b

1/2

dst =
F0

k1

,  v1 = a
k1

m1

b

1/2

v
2
=

k2

m2

=

k1

m1

v
2
M v1

2
= k1/m1.

v
2
=

k2

m2

m1

(X1).

Isolator
(k1/2)

Isolator
(k1/2)

k2

x1(t)

x2(t)

F0 sin vt

Machine (m1)

Rigid base

Dynamic vibration
absorber

FIGURE 9.33 Undamped dynamic vibration 

absorber.
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9.11 VIBRATION ABSORBERS 835

as the natural frequency of the absorber or auxiliary system, Eqs. (9.135) and (9.136) can

be rewritten as

(9.140)

(9.141)

Figure 9.34 shows the variation of the amplitude of vibration of the machine with

the machine speed The two peaks correspond to the two natural frequencies of the

composite system. As seen before, at At this frequency, Eq. (9.141) gives

(9.142)

This shows that the force exerted by the auxiliary spring is opposite to the impressed force

and neutralizes it, thus reducing to zero. The size of the dynamic vibra-

tion absorber can be found from Eqs. (9.142) and (9.138):

(9.143)

Thus the values of and depend on the allowable value of X2.m2k2

k2X2 = m2v
2X2 = -F0

X1(k2X2 = -F0)

X2 = -  

k1

k2

 dst = -  

F0

k2

v = v1.X1 = 0

(v/v1).

1X1/dst2

 
X2

dst

=
1

c1 +
k2

k1

- a
v

v1

b

2

d c1 - a
v

v2

b

2

d -
k2

k1

 
X1

dst

=

1 - a
v

v2

b

2

c1 +
k2

k1

- a
v

v1

b

2

d c1 - a
v

v2

b

2

d -
k2

k1

8

4

0

12

16

0.70.6 1.00.8 0.9 1.1 1.2 1.3

v1

v

With absorber With absorber

Without absorber

X
1

d
s
t

+1
+2

m2

m1

1

20
*

v1 * v2

FIGURE 9.34 Effect of undamped vibration absorber 

on the response of machine.
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836 CHAPTER 9 VIBRATION CONTROL

It can be seen from Fig. 9.34 that the dynamic vibration absorber, while eliminating

vibration at the known impressed frequency introduces two resonant frequencies 

and at which the amplitude of the machine is infinite. In practice, the operating fre-

quency must therefore be kept away from the frequencies and The values of

and can be found by equating the denominator of Eq. (9.134) to zero. Noting that

(9.144)

and setting the denominator of Eq. (9.140) to zero leads to

(9.145)

The two roots of this equation are given by

(9.146)

which can be seen to be functions of and 

Notes

1. It can be seen, from Eq. (9.146), that is less than and is greater than the

operating speed (which is equal to the natural frequency, ) of the machine. Thus

the machine must pass through during start-up and stopping. This results in

large amplitudes.

2. Since the dynamic absorber is tuned to one excitation frequency the steady-state

amplitude of the machine is zero only at that frequency. If the machine operates at other

frequencies or if the force acting on the machine has several frequencies, then the

amplitude of vibration of the machine may become large.

3. The variations of and as functions of the mass ratio are
shown in Fig. 9.35 for three different values of the frequency ratio It can be
seen that the difference between and increases with increasing values of
m2/m1.

Æ2Æ1

v2/v1.
m2/m1Æ2/v2Æ1/v2

1v2,

Æ1

v1

Æ2Æ1

1v2/v12.1m2/m12

a
Æ1

v2

b

2

a
Æ2

v2

b

2 u =

e c1 + a1 +
m2

m1

b a
v2

v1

b

2

d

< e c1 + a1 +
m2

m1

b a
v2

v1

b

2

d

2

- 4a
v2

v1

b

2

f

1/2

f

2a
v2

v1

b

2

a
v

v2

b

4

a
v2

v1

b

2

- a
v

v2

b

2

c1 + a1 +
m2

m1

b a
v2

v1

b

2

d + 1 = 0

k2

k1

=
k2

m2

  
m2

m1

  
m1

k1

=
m2

m1

 a
v2

v1

b

2

Æ2Æ1

Æ2.Æ1v

Æ2,

Æ1v,
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0.0

0.2

0.4

0.6

0.8

1.0

1.2

1.4

1.6

1.8

2.0

2.2

2.4

2.6

2

v
2

v
2

+
1

+
a
n

d

v2 v1

v21+
for * 2.0

v2 v1

v22+
for * 2.0

v2 v1

v21+
for * 1.0

v2 v1

v22+
for * 1.0

v2 v1

v22+
for * 0.5

v2 v1

v21+
for * 0.5

0 0.2 0.4 0.6 0.8 1.0

m2

m1

FIGURE 9.35 Variations of and given by Eq. (9.146).Æ2Æ1

E X A M P L E  9 . 1 5
Vibration Absorber for Diesel Engine

A diesel engine, weighing 3000 N, is supported on a pedestal mount. It has been observed that the

engine induces vibration into the surrounding area through its pedestal mount at an operating speed

of 6000 rpm. Determine the parameters of the vibration absorber that will reduce the vibration when

mounted on the pedestal. The magnitude of the exciting force is 250 N, and the amplitude of motion

of the auxiliary mass is to be limited to 2 mm.

Solution: The frequency of vibration of the machine is

Since the motion of the pedestal is to be made equal to zero, the amplitude of motion of the auxiliary

mass should be equal and opposite to that of the exciting force. Thus from Eq. (9.143), we obtain

(E.1)F0 = m2v
2X2

f =
6000

60
= 100 Hz or v = 628.32 rad/s
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838 CHAPTER 9 VIBRATION CONTROL

Motor Generator

Vibration

absorber

FIGURE 9.36 Motor-generator set.

Substitution of the given data yields

Therefore The spring stiffness can be determined from Eq. (9.138):

Therefore, 

*

k2 = 1628.3222
10.316652 = 125009 N/m.

v
2
=

k2

m2

k2m2 = 0.31665 kg.

250 = m2 1628.3222
10.0022

E X A M P L E  9 . 1 6

Absorber for Motor-Generator Set

A motor-generator set, shown in Fig. 9.36, is designed to operate in the speed range of 2000 to

4000 rpm. However, the set is found to vibrate violently at a speed of 3000 rpm due to a slight unbal-

ance in the rotor. It is proposed to attach a cantilever mounted lumped-mass absorber system to elim-

inate the problem. When a cantilever carrying a trial mass of 2 kg tuned to 3000 rpm is attached to

the set, the resulting natural frequencies of the system are found to be 2500 rpm and 3500 rpm.

Design the absorber to be attached (by specifying its mass and stiffness) so that the natural frequen-

cies of the total system fall outside the operating-speed range of the motor-generator set.

Solution: The natural frequencies of the motor-generator set and of the absorber are given by

(E.1)

The resonant frequencies and of the combined system are given by Eq. (9.146). Since the

absorber is tuned, (corresponding to 3000 rpm). Using the notation

m =
m2

m1

,  r1 =
Æ1

v2

,  and r2 =
Æ2

v2

v1 = v2 = 314.16 rad/s1m = 2 kg2

Æ2Æ1

v1 = A
k1

m1

,  v2 = A
k2

m2

v2v1

M09_RAO08193_5_SE_C09.qxd  8/22/10  1:01 PM  Page 838



9.11 VIBRATION ABSORBERS 839

Eq. (9.146) becomes

(E.2)

Since and are known to be 261.80 rad/s (or 2500 rpm) and 366.52 rad/s (or 3500 rpm),

respectively, we find that

Hence

or

(E.3)

Since Eq. (E.3) gives and The

specified lower limit of is 2000 rpm or 209.44 rad/s, and so

With this value of Eq. (E.3) gives and 

With these values, the second resonant frequency can be found from

which gives larger than the specified upper limit of 4000 rpm. The spring stiff-

ness of the absorber is given by

*

k2 = v2
2m2 = 1314.1622

110.32272 = 1.0188 * 106 N/m

Æ2 M 4499.4 rpm,

r2
2
= a1 +

m

2
b + Ca1 +

m

2
b

2

- 1 = 2.2497

m2 = m110.69422 = 10.3227 kg.m = m2/m1 = 0.6942r1,

r1 =
Æ1

v2

=
209.44

314.16
= 0.6667

Æ1

m1 = m2/0.1345 = 14.8699 kg.m = m2/m1 = 0.1345r1 = 0.8333,

m = a
r1

4
+ 1

r1
2

b - 2

r1
2
= a1 +

m

2
b - Ca1 +

m

2
b

2

- 1

 r2 =
Æ2

v2

=
366.52

314.16
= 1.1667

 r1 =
Æ1

v2

=
261.80

314.16
= 0.8333

Æ2Æ1

r1
2, r2

2
= a1 +

m

2
b < Ca1 +

m

2
b

2

- 1
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Machine (m1)

Isolator
(k1/2)

Isolator
(k1/2)

x1(t)

Rigid base

Dynamic vibration absorber

F0 sin vt

x2(t)

m2

k2 c2

FIGURE 9.37 Damped dynamic vibration absorber.

9.11.2
Damped
Dynamic
Vibration
Absorber

The dynamic vibration absorber described in the previous section removes the original res-

onance peak in the response curve of the machine but introduces two new peaks. Thus the

machine experiences large amplitudes as it passes through the first peak during start-up

and stopping. The amplitude of the machine can be reduced by adding a damped vibration

absorber, as shown in Fig. 9.37. The equations of motion of the two masses are given by

(9.147)

(9.148)

By assuming the solution to be

(9.149)

the steady-state solution of Eqs. (9.147) and (9.148) can be obtained:

(9.150)

(9.151)

By defining

 f = va/vn = Ratio of natural frequencies

 vn
2
= k1/m1 = Square of natural frequency of main mass

 va
2
= k2/m2 = Square of natural frequency of the absorber

 dst = F0/k1 = Static deflection of the system

 m = m2/m1 = Mass ratio = Absorber mass/main mass

 X2 =

X11k2 + ivc22

1k2 - m2v
2
+ ivc22

 X1 =

F01k2 - m2v
2
+ ic2v2

[1k1 - m1v
2
21k2 - m2v

2
2 - m2k2v

2] + ivc21k1 - m1v
2
- m2v

2
2

xj1t2 = Xje
ivt,  j = 1, 2

 m2x
$

2 + k21x2 - x12 + c21x
#

2 - x
#

12 = 0

 m1x
$

1 + k1x1 + k21x1 - x22 + c21x
#

1 - x
#

22 = F0  sin vt
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FIGURE 9.38 Effect of damped vibration absorber on the

response of the machine.

the magnitudes, and can be expressed as

(9.152)

and

(9.153)

Equation (9.152) shows that the amplitude of vibration of the main mass is a function of 

f, g, and The graph of

against the forced frequency ratio is shown in Fig. 9.38 for and 

for a few different values of 

If damping is zero then resonance occurs at the two undamped reso-

nant frequencies of the system, a result that is already indicated in Fig. 9.34. When the

damping becomes infinite the two masses and are virtually clamped

together, and the system behaves essentially as a single-degree-of-freedom system with a

mass of and stiffness of In this case also, resonance occurs

with at

g =
v

vn
=

1

21 + m
= 0.9759

X1: q

k1.(m1 + m2) = (21/20) m

m2m1(z = q),

(c2 = z = 0),
z.

m = 1/20f = 1g = v/vn

`
X1

dst
`

z.
m,

X2

dst

= c

12zg2
2
+ f4

12zg2
2
1g2

- 1 + mg2
2

2
+ 5mf2g2

- 1g2
- 121g2

- f2
26

2
d

1/2

X1

dst

= c

12zg2
2
+ 1g2

- f2
2

2

12zg2
2
1g2

- 1 + mg2
2

2
+ 5mf2g2

- 1g2
- 121g2

- f2
26

2
d

1/2

X2,X1

 z = c2/cc = Damping ratio

 cc = 2m2vn = Critical damping constant

 g = v/vn = Forced frequency ratio
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FIGURE 9.39 Tuned vibration absorber.

Thus the peak of is infinite for as well as for Somewhere in between

these limits, the peak of will be a minimum.

Optimally Tuned Vibration Absorber. It can be seen from Fig. 9.38 that all the curves

intersect at points A and B regardless of the value of damping. These points can be located

by substituting the extreme cases of and into Eq. (9.152) and equating the

two. This yields

(9.154)

The two roots of Eq. (9.154) indicate the values of the frequency ratio, and

corresponding to the points A and B. The ordinates of A and B can be found

by substituting the values of and respectively, into Eq. (9.146). It has been observed

[9.35] that the most efficient vibration absorber is one for which the ordinates of the points

A and B are equal. This condition requires that [9.35]

(9.155)

An absorber satisfying Eq. (9.155) can be correctly called the tuned vibration absorber.

Although Eq. (9.155) indicates how to tune an absorber, it does not indicate the optimal

value of the damping ratio and the corresponding value of The optimal value of 

can be found by making the response curve as flat as possible at peaks A and B. This

can be achieved by making the curve horizontal at either A or B, as shown in Fig. 9.39. For

this, first Eq. (9.155) is substituted into Eq. (9.152) to make the resulting equation applica-

ble to the case of optimum tuning. Then the modified Eq. (9.152) is differentiated with

X1/dst

zX1/dst.z

f =
1

1 + m

gB,gA

gB = vB/v,
gA = vA/v

g4 - 2g2 a
1 + f2 + mf2

2 + m
b +

2f2

2 + m
= 0

z = qz = 0

X1

c2 = q .c2 = 0X1
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respect to g to find the slope of the curve of By setting the slope equal to zero at

points A and B, we obtain

(9.156)

and

(9.157)

A convenient average value of given by Eqs. (9.156) and (9.157) is used in design so that

(9.158)

The corresponding optimal value of becomes

(9.159)

Notes
1. It can be seen from Eq. (9.153) that the amplitude of the absorber mass is always

much greater than that of the main mass Thus the design should be able to

accommodate the large amplitudes of the absorber mass.

2. Since the amplitudes of are expected to be large, the absorber spring needs to

be designed from a fatigue point of view.

3. Most vibration absorbers used in practical applications are undamped. If damping is

added, it defeats the purpose of the vibration absorber, which is to eliminate unwanted

vibration. In a damped vibration absorber, the amplitude of vibration of the main mass

will be nonzero. Damping is to be added only in situations in which the frequency

band in which the absorber is effective is too narrow for operation.

4. Additional work relating to the optimum design of vibration absorbers can be found in
references [9.36 9.39].

9.12 Examples Using MATLAB

(k2)m2

(X1).

(X2)

a
X1

dst

b

optimal

= a
X1

dst

b

max

=
A

1 +
2

m

a
X1

dst

b

zoptimal
2

=
3m

811 + m23

z2

z2
=

me 3 +
A

m

m + 2
f

811 + m23
 for point B

z2
=

me 3 -
A

m

m + 2
f

811 + m23
 for point A

X1/dst.

E X A M P L E  9 . 1 7
Plotting of Transmissibility

Using MATLAB, plot the variation of transmissibility of a single-degree-of-freedom system with the

frequency ratio, given by Eq. (9.94), corresponding to and 0.5.z = 0.0, 0.1, 0.2, 0.3, 0.4,
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0
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6

zeta * 0.1

zeta * 0.2

zeta * 0.3

zeta * 0.4

zeta * 0.5

w/wn

T
r

Solution: The following MATLAB program plots the variation of transmissibility as a function of

the frequency ratio using Eq. (9.94):

%Exam 9 17

for j = 1 : 5

kesi = j * 0.1;

for i = 1 : 1001

w_wn(i) = 3 * (i  1)/1000;

T(i) = sqrt((1 + (2 * kesi * w_wn(i)) ^ 2)/((1  w_wn(i) ^ 2) 

^ 2 + b

2 * kesi * w_wn(i) ^2));

end;

plot(w_wn, T);

hold on;

end;

xlabel ('w/w_n');

ylabel('Tr');

gtext('zeta = 0.1');

gtext('zeta = 0.2');

gtext('zeta = 0.3');

gtext('zeta = 0.4');

gtext('zeta = 0.5');

title('Ex9.2');

grid on;

*
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E X A M P L E  9 . 1 8
Vibration Amplitudes of Masses of Vibration Absorber

Using MATLAB, plot the variations of vibration amplitudes of the main and auxiliary masses of a

vibration absorber, Eqs. (9.140) and (9.141), as functions of the frequency ratio.

Solution: Equations (9.140) and (9.141) are plotted for the following data: 

and 0.5, and 0.1.

f = 1;

%------    zeta = 0.1, mu=0.05 -------------------------------------b

-------

zeta = 0.1;

mu = 0.05;

g = 0.6 : 0.001 : 1.3;

tzg2 = (2.*zeta.*g).^2 ;%---   tzg2 = (2*zeta*g)^2

g2_f2_2 = (g.^2-f.^2).^2 ;% g2_f2_2 = (g^2-f^2)^2

g2_1mug2_2 = (g.^2-1+mu.*g.^2).^2;

muf2g2 = mu.*f.^2*g.^2 ;

g2_1 = g.^2-1 ;

g2_f2 = g.^2-f.^2 ;

x1r =sqrt((tzg2+g2_f2_2)./(tzg2.*g2_1mug2_2+(muf2g2-g2_1.*g2_f2).^2));

x2r =sqrt((tzg2+f.^4)./(tzg2.*g2_1mug2_2+(muf2g2-g2_1.*g2_f2).^2));

plot(g,x1r)

hold on

plot(g,x2r);

hold on

%------    zeta = 0.1, mu=0.01 -------------------------------------b

------

zeta = 0.1;

mu = 0.1; 0.001:1.3;

g = 0.6:

tzg2 = (2.*zeta.*g).^2 ;% --- tzg2 = (2*zeta*g)^2

g2_f2_2 = (g.^2-f.^2).^2 ;% g2_f2_2 = (g^2-f^2)^2

g2_1mug2_2 = (g.^2-1+mu.*g.^2).^2;

muf2g2 = mu.*f.^2*g.^2 ;

g2_1 = g.^2-1 ;

g2_f2 = g.^2-f.^2 ;

x1r =sqrt((tzg2+g2_f2_2)./(tzg2.*g2_1mug2_2+(muf2g2-g2_1.*g2_f2).^2));

x2r =sqrt((tzg2+f.^4)./(tzg2.*g2_1mug2_2+(muf2g2-g2_1.*g2_f2).^2));

plot(g,x1r,'-.');

hold on

plot(g,x2r,'-.');

hold on

%------   zeta = 0.5, mu=0.05 -------------------------------------b

------

zeta = 0.5;

mu = 0.05;

g = 0.6 : 0.001 : 1.3;

tzg2 = (2.*zeta.*g).^2 ;% --- tzg2 = (2*zeta*g)^2

g2_f2_2 = (g.^2-f.^2).^2) ;% g2_f2_2 = (g^2-f^2)^2

g2_1mug2_2 = (g.^2-1+mu.*g.^2).^2;

muf2g2 = mu.*f.^2*g.^2;

g2_1 = g.^2-1 ;

g2_f2 = g.^2-f.^2;

x1r =sqrt((tzg2+g2_f2_2)./(tzg2.*g2_1mug2_2+(muf2g2-g2_1.*g2_f2).^2));

x2r =sqrt((tzg2+f.^4)./(tzg2.*g2_1mug2_2+(muf2g2-g2_1.*g2_f2).^2));

plot(g,x1r,' ');

hold on

m = m2/m1 = 0.05

f = va/vn = 1, z = 0.1
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plot(g,x2r,' ');

hold on

%------    zeta = 0.5, mu=0.1 --------------------------------------b

------

zeta = 0.5;

mu = 0.1;

g = 0.6 : 0.001 : 1.3;

tzg2 = (2.*zeta.*g).^2 ;% --- tzg2 = (2*zeta*g)^2

g2_f2_2 = (g.^2-f.^2).^2 ;% g2_f2_2 = (g^2-f^2)^2

g2_1mug2_2 = (g.^2-1+mu.*g.^2).^2 ;

muf2g2 = mu.*f.^2*g.^2 ;

g2_1 = g.^2-1 ;

g2_f2 = g.^2-f.^2 ;

x1r =sqrt((tzg2+g2_f2_2)./(tzg2.*g2_1mug2_2+(muf2g2-g2_1.*g2_f2).^2));

x2r =sqrt((tzg2+f.^4)./(tzg2.*g2 1mug2 2+(muf2g2-g2 1.*g2 f2).^2));

plot(g,x1r,':');

hold on

plot(g,x2r,':');

xlabel('g')

ylabel('X1r and X2r')

axis ([0.6 1.3 0 16])

X2r, zeta * 0.1, mu * 0.1

X1r, zeta * 0.1, mu * 0.1

X2r
zeta * 0.1
mu * 0.05

X2r
zeta * 0.5
mu * 0.1

X2r
zeta * 0.5
mu * 0.05

X1r
zeta * 0.5
mu * 0.05

X1r
zeta * 0.5
mu * 0.1

X1r
zeta * 0.1
mu * 0.05

16

14

12

10

8

6

4

2

0
0.6 0.7 0.8 0.9 1 1.1 1.2 1.3

X
1
r 

a
n

d
 X

2
r

g

*
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E X A M P L E  9 . 1 9
Resonant Frequencies of Vibration Absorber

Using MATLAB, plot the variations of the resonant frequency ratios given by Eq. (9.146) with the

mass ratio, 

Solution: The ratios and given by Eq. (9.146), are plotted for 1.0, and

2.0 over the range of to 1.

%------ omega2/omega1=0.5 ------------------------------------------b

---

omega21=0.5

m21 = 0:0.001:1.0

X11 = sqrt(((1 + (1+m21)*omega21.^2) +((1+(1+m21).*omega21.^2).^2-b

4.*omega21.^2).^0.5)...

/(2.*omega21.^2))

plot(m21,X11,':')

axis([0 1.0 0.0 2.6])

hold on

X12 = sqrt(((1+(1+m21)*omega21.^2) - ((1 + (1+m21).*omega21.^2).^2-b

4.*omega21.^2).^0.5)...

/(2.*omega21.^2))

plot(m21,X12,':')

hold on

%------ omega2/omega1=1.0 ------------------------------------------b

---

omega21=1.0

m21 = 0:0.001:1.0

X21 = sqrt(((1+(1+m21)*omega21.^2) +((1+(1+m21).*omega21.^2).^2-b

4.*omega21.^2).^0.5)...

/(2.*omega21.^2))

plot(m21,X21,'-')

axis([0 1.0 0.0 2.6])

hold on

X22 = sqrt(((1+(1+m21)*omega21.^2) -((1+(1+m21).*omega21.^2).^2-b

4.*omega21.^2).^0.5)...

/(2.*omega21.^2))

plot(m21,X22,'-')

hold on

%------ omega2/omega1=2.0 ------------------------------------------b

---

omega21=2.0

m21 = 0 : 0.001 : 1.0

X31 = sqrt(((1+(1+m21)*omega21.^2) +((1+(1+m21).*omega21.^2).^2).b

^2 4.*omega21.^2).^0.5)...

/ (2.*omega21.^2))

plot(m21,X31,' .')

axis([0 1.0 0.0 2.6])

hold on

X32 = sqrt(((1+(1+m21)*omega21.^2) -((1+(1+m21).*omega21.^2).^2 4.b

*omega21.^2) .^0.5)...

/(2.*omega21.^2))

plot(m21,X32,' .')

hold on

xlabel ('mr')

ylabel ('OM1 and OM2')

m2/m1 = 0

v2/v1 = 0.5,Æ2/v2,Æ1/v2

m2/m1.
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*

E X A M P L E  9 . 2 0
Two-Plane Balancing

Develop a general MATLAB program called Program13.m for the two-plane balancing of rotating

machines. Use the program to solve Example 9.2.

Solution: Program13.m is developed to accept the vectors and as

input in the form of two-dimensional arrays VA, VB, VAP, VBP, VAPP, VBPP, WL, WR, BL, and BR,

respectively. The program gives the vectors and as output in the form of two-dimensional

arrays BL and BR indicating the magnitude and position of the balancing weights in the left and right

planes, respectively. The listing of the program and the output are given below.

%=====================================================================

%

% Program13.m

% Two-plane balancing

%

%=====================================================================

% Run Program13  in MATLAB command window. Progrm13.m, balan.m,

vsub.m,

% vdiv.m and vmult.m should be in the same folder,and set the

MATLAB path

% to this folder.

% following 8 lines contain problem-dependent data

va=[8.5 60];

vap=[6 125];

wl=[10 270];

vb=[6.5 205];

BRBL

W
!

RV
!

 A, V
!

B, V
!

A , V
!

B, V
!

A , V
!

B , W
!

L,

2.5

2

1.5

1

0.5

0
0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

OM2 for mr * 0.5

OM2 for mr * 1.0

OM2 for mr * 2.0

OM1 for mr * 1.0

OM1 for mr * 2.0

OM1 for mr * 0.5

O
M

1
 a

n
d

 O
M

2

mr
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vbp=[4.5 230];

vapp=[6 35];

vbpp=[10.5 160];

wr=[12 180];

% end of problem-dependent data

[bl,br]=balan(va,vb,vap,vbp,vapp,vbpp,wl,wr);

fprintf(' Results of two-plane balancing \n\n');

fprintf('Left-plane balancing weight Right-plane balancing weight');

fprintf('\n\n');

fprintf('Magnitude=%8.6f Magnitude=%8.6f \n\n',b1(1),br(1));

fprintf('Angel=%8.6f Angle=%8.6f \n\n',b1(2),br(2));

%=====================================================================

%

%Function Balan.m

%

%=====================================================================

function [b1,br]=balan(va,vb,vap,vbp,vapp,vbpp,wl,wr);

pi=180/3.1415926;

va(2)=va(2)/pi;

p(1)=va(1);

p(2)=va(2);

va(1)=p(1)*cos(p(2));

va(2)=p(1)*sin(p(2));

vb(2)=vb(2)/pi;

p(1)=vb(1);

p(2)=vb(2);

vb(1)=p(1)*cos(p(2));

vb(2)=p(1)*sin(p(2));

vap(2)=vap(2)/pi;

p(1)=vap(1);

p(2)=vap(2);

vap(1)=p(1)*cos(p(2));

vap(2)=p(1)*sin(p(2));

vbp(2)=vbp(2)/pi;

p(1)=vbp(1);

p(2)=vbp(2);

vbp(1)=p(1)*cos(p(2));

vbp(2)=p(1)*sin(p(2));

vapp(2)=vapp(2)/pi;

p(1)=vapp(1);

p(2)=vapp(2);

vapp(1)=p(1)*cos(p(2));

vapp(2)=p(1)*sin(p(2));

vbpp(2)=vbpp(2)/pi;

p(1)=vbpp(1);

p(2)=vbpp(2);

vbpp(1)=p(1)*cos(p(2));

vbpp(2)=p(1)*sin(p(2));

w1(2)=w1(2)/pi;

p(1)=w1(1);

p(2)=w1(2);

w1(1)=p(1)*cos(p(2));

w1(2)=p(1)*sin(p(2));

wr(2)=wr(2)/pi;

p(1)=wr(1);

p(2)=wr(2);

wr(1)=p(1)*cos(p(2));

wr(2)=p(1)*sin(p(2));

[r]=vsub(vap,va);

[aal]=vdiv(r,wl);

[s]=vsub(vbp,vb);

[abl]=vdiv(s,wl);

[p]=vsub(vapp,va);

[aar]=vdiv(p,wr);

[q]=vsub(vbpp,vb);

[abr]=vdiv(q,wr);
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[ar1]=sqrt(aar(1)^2+aar(2)^2);

[ar2]=atan(aar(2)/aar(1))*pi;

[al1]=sqrt(aal(1)^2+aal(2)^2);

[al2]=atan(aal(2)/aal(1))*pi;

[r]=vmult(abl,va);

[s]=vmult(aal,vb);

[vap]=vsub(r,s);

[r]=vmult(aar,abl);

[s]=vmult(aal,abr);

[vbp]=vsub(r,s);

[ur]=vdiv(vap,vbp);

[r]=vmult(abr,va);

[s]=vmult(aar,vb);

[vap]=vsub(r,s);

[r]=vmult(abr,aal);

[s]=vmult(aar,abl);

[vbp]=vsub(r,s);

[ul]=vdiv(vap,vbp);

bl(1)=sqrt(ul(1)^2+ul(2)^2);

a1=ul(2)/ul(1);

bl(2)=atan(ul(2)/ul(1));

br(1)=sqrt(ur(1)^2+ur(2)^2);

a2=ur(2)/ur(1);

br(2)=atan(ur (2)/ur (1));

bl(2)=bl(2)*pi;

br(2)=br(2)*pi;

bl(2)=bl(2)+180;

br(2)=br(2)+180;

%=====================================================================

%

%Function vdiv.m

%

%=====================================================================

function [c]=vdiv(a,b);

c(1)=(a(1)*b(1)+a(2)*b(2))/(b(1)^2+b(2)^2);

c(2)=(a(2)*b(1) a(1)*b(2))/(b(1)^2+b(2)^2);

%=====================================================================

%

%Function vmult.m

%

%=====================================================================

function [c]=vmult(a,b);

c(1)=a(1)*b(1) a(2)*b(2);

c(2)=a(2)*b(1)+a(1)*b(2);

%=====================================================================

%

%Function vsub.m

%

%=====================================================================

function [c]=vsub(a,b);

c(1)=a(1) b(1);

c(2)=a(2) b(2);

Results of two-plane balancing

Left-plane balancing weight Right-plane balancing weight

Magnitude=10.056139 Magnitude=5.877362

Angle=145.554799 Angle=248.255931

*
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CHAPTER SUMMARY

We discussed the use of vibration nomographs and vibration criteria to determine acceptable levels

of vibration. We presented several methods, such as balancing of rotating and reciprocating

machines, to eliminate/reduce vibration at the source. We outlined methods of changing mass and/or

stiffness and dissipating energy by adding damping. We discussed methods of designing vibration

isolators, vibration absorbers, and active vibration-control systems. We presented the solution of

vibration-control problems using MATLAB.

Now that you have finished this chapter, you should be able to answer the review questions and

solve the problems given below.
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REVIEW QUESTIONS

9.1 Give brief answers to the following:

1. Name some sources of industrial vibration.

2. What are the various methods available for vibration control?

3. What is single-plane balancing?

4. Describe the two-plane balancing procedure.

5. What is whirling?

6. What is the difference between stationary damping and rotary damping?

7. How is the critical speed of a shaft determined?

8. What causes instability in a rotor system?

9. What considerations are to be taken into account for the balancing of a reciprocating

engine?

10. What is the function of a vibration isolator?

11. What is a vibration absorber?

12. What is the difference between a vibration isolator and a vibration absorber?

13. Does spring mounting always reduce the vibration of the foundation of a machine?

14. Is it better to use a soft spring in the flexible mounting of a machine? Why?

15. Is the shaking force proportional to the square of the speed of a machine? Does the vibra-

tory force transmitted to the foundation increase with the speed of the machine?

16. Why does dynamic balancing imply static balancing?

17. Explain why dynamic balancing can never be achieved by a static test alone.

18. Why does a rotating shaft always vibrate? What is the source of the shaking force?

19. Is it always advantageous to include a damper in the secondary system of a dynamic

vibration absorber?

20. What is active vibration isolation?

21. Explain the difference between passive and active isolation.

9.2 Indicate whether each of the following statements is true or false:

1. Vibration can cause structural and mechanical failures.

2. The response of a system can be reduced by the use of isolators and absorbers.

3. Vibration control means the elimination or reduction of vibration.

4. The vibration caused by a rotating unbalanced disc can be eliminated by adding a suit-

able mass to the disc.

5. Any unbalanced mass can be replaced by two equivalent unbalanced masses in the end

planes of the rotor.

6. The oil whip in the bearings can cause instability in a rotor system.

7. The natural frequency of a system can be changed by varying its damping.

8. The stiffness of a rotating shaft can be altered by changing the location of its bearings.

9. All practical systems have damping.
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10. High loss factor of a material implies less damping.

11. Passive isolation systems require external power to function.

12. The transmissibility is also called the transmission ratio.

13. The force transmitted to the foundation of an isolator with rigid foundation can never be

infinity.

14. Internal and external friction can cause instability in a rotating shaft at speeds above the

first critical speed.

9.3 Fill in each of the following blanks with the appropriate word:

1. Even a small excitation force can cause an undesirably large response near _____.

2. The use of close tolerances and better surface finish for machine parts tends to make a

machine _____ susceptible to vibration.

3. The presence of unbalanced mass in a rotating disc causes _____.

4. When the speed of rotation of a shaft equals one of the natural frequencies of the shaft, it

is called _____ speed.

5. The moving elements of a reciprocating engine are the crank, the connecting rod, and

the _____.

6. The vertical component of the inertia force of a reciprocating engine has primary and

_____ parts.

7. Laminated structures have _____ damping.

8. Materials with a large value of the loss factor are subject to _____ stress.

9. Vibration isolation involves insersion of a resilient member between the vibrating mass

and the _____ of vibration.

10. Cork is a _____ isolator.

11. An active isolator consists of a sensor, a signal processor, and an _____.

12. Vibration neutralizer is also known as dynamic vibration _____.

13. Although an undamped vibration absorber removes the original resonance peak of the

response, it introduces _____ new peaks.

14. The single-plane balancing is also known as _____ balancing.

15. Phase marks are used in _____ plane balancing using a vibration analyzer.

16. Machine errors can cause _____ in rotating machines.

17. The combustion instabilities are a source of _____ in engines.

18. The deflection of a rotating shaft becomes very large at the _____ speed.

19. Oil whip in bearings can cause _____ in a flexible rotor system.

9.4 Select the most appropriate answer out of the multiple choices given:

1. An example of a source of vibration that cannot be altered is:

a. atmospheric turbulance

b. hammer blow

c. tire stiffness of an automobile.

2. The two-plane balancing is also known as:

a. static balancing

b. dynamic balancing

c. proper balancing

3. The unbalanced force caused by an eccentric mass m rotating at an angular speed and

located at a distance r from the axis of rotation is

a. b. c. mrv2mgv2mr2v2

v
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4. The following material has high internal damping:

a. cast iron b. copper c. brass

5. Transmissibility is the ratio of

a. force transmitted and exciting force

b. force applied and the resulting displacement

c. input displacement and output displacement

6. Mechanical impedance is the ratio of

a. force transmitted and exciting force

b. force applied and force transmitted

c. applied force and displacement

7. Vibration can be eliminated on the basis of theoretical analysis

a. sometimes b. always c. never

8. A long rotor can be balanced by adding weights in

a. a single plane b. any two planes c. two specific planes

9. The damping caused by the internal friction of a shaft material is called

a. stationary damping

b. external damping

c. rotary damping

10. The damping caused by the bearing support structure of a rotating shaft is called

a. stationary damping

b. internal damping

c. rotary damping

11. An undamped vibration absorber removes the original resonance peak but introduces

a. one new peak b. two new peaks c. several new peaks

9.5 Match the items in the two columns below.

1. Control natural frequency

2. Avoid excessive response 

at resonance

3. Reduce transmission of 

excitation force from one 

part to another

4. Reduce response of the system

a. Introduce damping

b. Use vibration isolator

c. Add vibration absorber

d. Avoid resonance

PROBLEMS

Section 9.2 Vibration Criteria

9.1 An automobile moving on a rough road, in the form of a sinusoidal surface, is modeled as a

spring-mass system, as shown in Fig. 9.40. The sinusoidal surface has a wave length of 5 m

and an amplitude of If the mass of the automobile, including the passengers, is

1500 kg and the stiffness of the suspension system (k) is 400 kN/m, determine the range of

speed (v) of the automobile in which the passengers perceive the vibration. Suggest possible

methods of improving the design for a more comfortable ride of the passengers.

Y = 1 mm.
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y

(a) (b)

x

y

zmc

rc

m2

r2

m3

m1

r1

r3

u3

u2 uc
u1

m1

m2

m3

FIGURE 9.41

m * 1500 kg

k * 400 kN/m

v km/h

x(t)

Y * 1 mm

L * 5 m

FIGURE 9.40

9.2 The root mean square value of a signal is defined as

Using this definition, find the root mean square values of the displacement 

velocity and acceleration corresponding to 

Section 9.4 Balancing of Rotating Machines

9.3 Two identical discs are connected by four bolts of different sizes and mounted on a shaft, as

shown in Fig. 9.41. The masses and locations of three bolts are as follows:

x(t) = X cos vt.(x
$

rms)(x 
#

rms),

(xrms),

xrms = e
lim

T: q

  

1

TL

T

0

 x2
1t2 dt f

1/2

x(t), xrms,
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and and 

and Find the mass and location of the fourth bolt

( and ), which results in the static balance of the discs.

9.4 Four holes are drilled in a uniform circular disc at a radius of 4 in. and angles of 0°, 60°,

120°, and 180°. The weight removed at holes 1 and 2 is 4 oz each and the weight removed at

holes 3 and 4 is 5 oz each. If the disc is to be balanced statically by drilling a fifth hole at a

radius of 5 in., find the weight to be removed and the angular location of the fifth hole.

9.5 Three masses, weighing 0.5 lb, 0.7 lb, and 1.2 lb, are attached around the rim, of diameter 30

in., of a flywheel at the angular locations 100°, and 190°, respectively. Find the

weight and the angular location of the fourth mass to be attached on the rim that leads to the

dynamic balance of the flywheel.

9.6 The amplitude and phase angle due to original unbalance in a grinding wheel operating at

1200 rpm are found to be 10 mils and 40° counterclockwise from the phase mark. When a

trial weight is added at 65° clockwise from the phase mark and at a radial distance

2.5 in. from the center of rotation, the amplitude and phase angle are observed to be 19 mils

and 150° counterclockwise. Find the magnitude and angular position of the balancing

weight if it is to be located 2.5 in. radially from the center of rotation.

9.7 An unbalanced flywheel shows an amplitude of 6.5 mils and a phase angle of 15° clockwise

from the phase mark. When a trial weight of magnitude 2 oz is added at an angular position

45° counterclockwise from the phase mark, the amplitude and the phase angle become 8.8

mils and 35° counterclockwise, respectively. Find the magnitude and angular position of the

balancing weight required. Assume that the weights are added at the same radius.

9.8 In order to determine the unbalance in a grinding wheel, rotating clockwise at 2400 rpm, a

vibration analyzer is used and an amplitude of 4 mils and a phase angle of 45° are observed

with the original unbalance. When a trial weight oz is added at 20° clockwise from

the phase mark, the amplitude becomes 8 mils and the phase angle 145°. If the phase angles

are measured counterclockwise from the right-hand horizontal, calculate the magnitude and

location of the necessary balancing weight.

9.9 A turbine rotor is run at the natural frequency of the system. A stroboscope indicates that the

maximum displacement of the rotor occurs at an angle 229° in the direction of rotation. At

what angular position must mass be removed from the rotor in order to improve its balancing?

9.10 A rotor, having three eccentric masses in different planes, is shown in Fig. 9.42. The axial,

radial, and angular locations of mass are given by and respectively, for

If the rotor is to be dynamically balanced by locating two masses and at

radii and at the angular locations and as shown in Fig. 9.42, derive expres-

sions for and 

9.11 The rotor shown in Fig. 9.43(a) is balanced temporarily in a balancing machine by adding

the weights in the plane A and in the plane D at a

radius of 3 in., as shown in Fig. 9.43(b). If the rotor is permanently balanced by drilling

holes at a radius of 4 in. in planes B and C, determine the position and amount of material to

be removed from the rotor. Assume that the adjustable weights to will be removed

from the planes A and D.

9.12 Weights of 2 lb, 4 lb, and 3 lb are located at radii 2 in., 3 in., and 1 in. in the planes C, D, and

E, respectively, on a shaft supported at the bearings B and F, as shown in Fig. 9.44. Find the

weights and angular locations of the two balancing weights to be placed in the end planes A

and G so that the dynamic load on the bearings will be zero.

W4W1

W3 = W4 = 0.2 lbW1 = W2 = 0.2 lb

ub2.ub1,mb2rb2,mb1rb1,

ub2,ub1rb2rb1

mb2mb1i = 1, 2, 3.

ui,li, ri,mi

W = 4

W = 6 oz

u = 10°,

ucmc, rc,

m3 = 25 grams, r3 = 130 mm, u3 = 290°.

u2 = 220°;u1 = 40°; m2 = 15 grams, r2 = 90 mm,m1 = 35 grams, r1 = 110 mm,
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A B C D

4* 4*16*

30

30

60

W3

W4

W2

W1

y

x
3*

(a) (b)

FIGURE 9.43

B A
y

y

x

m2 m2

mb2

mb1

rb2

rb1

r3

r2

r1

m3
m3

m1 m1mb2

mb1

z

l2
l3lb2

u2

u1

u3

ub2

ub1

l1

FIGURE 9.42

A

B

C D E

F

G

D

E

C

v

16* 8* 32* 24* 16* 8*

3*

2*

1*

2 lb

3 lb

4 lb

30 40 

FIGURE 9.44
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Amplitude (mils) Phase Angle

Condition Bearing A Bearing B Bearing A Bearing B

Original unbalance 5 4 100° 180°

added at 30° in the left planeWL = 2 oz 6.5 4.5 120° 140°

added at 0° in the right planeWR = 2 oz 6 7 90° 60°

9.13 The data obtained in a two-plane balancing procedure are given in the table below. Deter-

mine the magnitude and angular position of the balancing weights, assuming that all angles

are measured from an arbitrary phase mark and all weights are added at the same radius.

9.14 Figure 9.45 shows a rotating system in which the shaft is supported in bearings at A and B.

The three masses and are connected to the shaft as indicated in the figure. (a)

Find the bearing reactions at A and B if the speed of the shaft is 1000 rpm. (b) Determine the

locations and magnitudes of the balancing masses to be placed at a radius of 0.25 m in the

planes L and R, which can be assumed to pass through the bearings A and B.

m3m1, m2,

20
cm

30
cm

40
cm

20
cm

m1 * 50 g

r1 * 8 cm
r2 * 5 cm

r3 * 6 cm

m2 * 20 g

m3 * 40 g

y
L

A

z

x
B

R

30 20 

FIGURE 9.45

Section 9.5 Whirling of Rotating Shafts

9.15 A flywheel, with a weight of 100 lb and an eccentricity of 0.5 in., is mounted at the center of

a steel shaft of diameter 1 in. If the length of the shaft between the bearings is 30 in. and the

rotational speed of the flywheel is 1200 rpm, find (a) the critical speed, (b) the vibration

amplitude of the rotor, and (c) the force transmitted to the bearing supports.

9.16 Derive the expression for the stress induced in a shaft with an unbalanced concentrated mass

located midway between two bearings.

9.17 A steel shaft of diameter 2.5 cm and length 1 m is supported at the two ends in bearings. It

carries a turbine disc, of mass 20 kg and eccentricity 0.005 m, at the middle and operates at

6000 rpm. The damping in the system is equivalent to viscous damping with 

Determine the whirl amplitude of the disc at (a) operating speed, (b) critical speed, and (c)

1.5 times the critical speed.

z = 0.01.
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4* 2* 2* 4*

1 2 3 4

Reference plane

1 v

2

3

4

FIGURE 9.46

9.18 Find the bearing reactions and the maximum bending stress induced in the shaft at (a) oper-

ating speed, (b) critical speed, and (c) 1.5 times the critical speed for the shaft-rotor system

described in Problem 9.17.

9.19 Solve Problem 9.17 by assuming that the material of the shaft is aluminum rather than steel.

9.20 Solve Problem 9.18 by assuming that the material of the shaft is aluminum rather than steel.

9.21 A shaft, having a stiffness of 3.75 MN/m, rotates at 3600 rpm. A rotor, having a mass of 60

kg and an eccentricity of 2000 microns, is mounted on the shaft. Determine (a) the steady-

state whirl amplitude of the rotor and (b) the maximum whirl amplitude of the rotor during

start-up and stopping conditions. Assume the damping ratio of the system as 0.05.

Section 9.6 Balancing of Reciprocating Engines

9.22 The cylinders of a four-cylinder in-line engine are placed at intervals of 12 in. in the axial

direction. The cranks have the same length, 4 in., and their angular positions are given by 0°,

180°, 180°, and 0°. If the length of the connecting rod is 10 in. and the reciprocating weight

is 2 lb for each cylinder, find the unbalanced forces and moments at a speed of 3000 rpm,

using the center line through cylinder 1 as the reference plane.

9.23 The reciprocating mass, crank radius, and connecting-rod length of each of the cylinders in

a two-cylinder in-line engine are given by m, r, and l, respectively. The crank angles of the

two cylinders are separated by 180°. Find the unbalanced forces and moments in the engine.

9.24 A four-cylinder in-line engine has a reciprocating weight of 3 lb, a stroke of 6 in., and a

connecting-rod length of 10 in. in each cylinder. The cranks are separated by 4 in. axially and

90° radially, as shown in Fig. 9.46. Find the unbalanced primary and secondary forces and

moments with respect to the reference plane shown in Fig. 9.46 at an engine speed of 1500 rpm.

9.25 The arrangement of cranks in a six-cylinder in-line engine is shown in Fig. 9.47. The cylin-

ders are separated by a distance a in the axial direction, and the angular positions of the

cranks are given by and If the crank

length, connecting-rod length, and the reciprocating mass of each cylinder are r, l, and m,

respectively, find the primary and secondary unbalanced forces and moments with respect to

the reference plane indicated in Fig. 9.47.

a3 = a4 = 240°.a1 = a6 = 0°, a2 = a5 = 120°,
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9.26 A single-cylinder engine has a total mass of 150 kg. Its reciprocating mass is 5 kg, and the

rotating mass is 2.5 kg. The stroke (2r) is 15 cm, and the speed is 600 rpm. (a) If the engine

is mounted floating on very weak springs, what is the amplitude of vertical vibration of the

engine? (b) If the engine is mounted solidly on a rigid foundation, what is the alternating

force amplitude transmitted? Assume the connecting rod to be of infinite length.

Section 9.10 Vibration Isolation

9.27 An electronic instrument is to be isolated from a panel that vibrates at frequencies ranging

from 25 Hz to 35 Hz. It is estimated that at least 80 percent vibration isolation must be

achieved to prevent damage to the instrument. If the instrument weights 85 N, find the nec-

essary static deflection of the isolator.

9.28* An exhaust fan, having a small unbalance, weights 800 N and operates at a speed of 600 rpm.

It is desired to limit the response to a transmissibility of 2.5 as the fan passes through reso-

nance during start-up. In addition, an isolation of 90 percent is to be achieved at the operat-

ing speed of the fan. Design a suitable isolator for the fan.

9.29* An air compressor of mass 500 kg has an eccentricity of 50 kg-cm and operates at a speed

of 300 rpm. The compressor is to be mounted on one of the following mountings: (a) an iso-

lator consisting of a spring with negligible damping, and (b) a shock absorber having a

damping ratio of 0.1 and negligible stiffness. Select a suitable mounting and specify the

design details by considering the static deflection of the compressor, the transmission ratio,

and the amplitude of vibration of the compressor.

9.30 The armature of a variable-speed electric motor, of mass 200 kg, has an unbalance due to

manufacturing errors. The motor is mounted on an isolator having a stiffness of 10 kN/m

and a dashpot having a damping ratio of 0.15. (a) Find the speed range over which the ampli-

tude of the fluctuating force transmitted to the foundation will be larger than the exciting

force. (b) Find the speed range over which the transmitted force amplitude will be less than

10 percent of the exciting force amplitude.

9.31 A dishwashing machine weighing 150 lb operates at 300 rpm. Find the minimum static

deflection of an isolator that provides 60 percent isolation. Assume that the damping in the

isolator is negligible.

9.32 A washing machine of mass 50 kg operates at 1200 rpm. Find the maximum stiffness of an

isolator that provides 75 percent isolation. Assume that the damping ratio of the isolator is 7

percent.

*The asterisk denotes a problem with no unique answer.

a a a a a

2 3 4 5 61 1, 6
v

2, 5 3, 4

120 120 

120 

FIGURE 9.47
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9.33 It is found that an exhaust fan, of mass 80 kg and operating speed 1000 rpm, produces a

repeating force of 10,000 N on its rigid base. If the maximum force transmitted to the base is

to be limited to 2000 N using an undamped isolator, determine (a) the maximum permissible

stiffness of the isolator that serves the purpose; (b) the steady-state amplitude of the exhaust

fan with the isolator that has the maximum permissible stiffness; and (c) the maximum

amplitude of the exhaust fan with isolation during start-up.

9.34 It has been found that a printing press, of mass 300 kg and operating speed 3000 rpm, pro-

duces a repeating force of 30,000 N when attached to a rigid foundation. Find a suitable vis-

cously damped isolator to satisfy the following requirements: (a) the static deflection should

be as small as possible; (b) the steady-state amplitude should be less than 2.5 mm; (c) the

amplitude during start-up conditions should not exceed 20 mm; and (d) the force transmitted

to the foundation should be less than 10,000 N.

9.35 A compressor of mass 120 kg has a rotating unbalance of 0.2 kg-m. If an isolator of stiffness

0.5 MN/m and damping ratio 0.06 is used, find the range of operating speeds of the com-

pressor over which the force transmitted to the foundation will be less than 2500 N.

9.36 An internal combustion engine has a rotating unbalance of 1.0 kg-m and operates between

800 and 2000 rpm. When attached directly to the floor, it transmitted a force of 7,018 N at

800 rpm and 43,865 N at 2000 rpm. Find the stiffness of the isolator that is necessary to

reduce the force transmitted to the floor to 6,000 N over the operating-speed range of the

engine. Assume that the damping ratio of the isolator is 0.08, and the mass of the engine is

200 kg.

9.37 A small machine tool of mass 100 kg operates at 600 rpm. Find the static deflection of an

undamped isolator that provides 90 percent isolation.

9.38 A diesel engine of mass 300 kg and operating speed 1800 rpm is found to have a rotating

unbalance of 1 kg-m. It is to be installed on the floor of an industrial plant for purposes of

emergency power generation. The maximum permissible force that can be transmitted to the

floor is 8000 N and the only type of isolator available has a stiffness of 1 MN/m and a damp-

ing ratio of 5 percent. Investigate possible solutions to the problem.

9.39 The force transmitted by an internal combustion engine of mass 500 kg, when placed directly

on a rigid floor, is given by

Design an undamped isolator so that the maximum magnitude of the force transmitted to the

floor does not exceed 12,000 N.

9.40 Design the suspension of an automobile such that the maximum vertical acceleration felt

by the driver is less than 2g at all speeds between 40 and 80 mph while traveling on a

road whose surface varies sinusoidally as where u is the horizontal

distance in feet. The weight of the automobile, with the driver, is 1500 lb and the damp-

ing ratio of the suspension is to be 0.05. Use a single-degree-of-freedom model for the

automobile.

9.41 Consider a single-degree-of-freedom system with Coulomb damping (which offers a con-

stant friction force, ). Derive an expression for the force transmissibility when the mass is

subjected to a harmonic force, 

9.42 Consider a single-degree-of-freedom system with Coulomb damping (which offers a con-

stant friction force, ). Derive expressions for the absolute and relative displacement trans-

missibilities when the base is subjected to a harmonic displacement, y(t) = Y sin vt.

Fc

F(t) = F0 sin vt.

Fc

y(u) = 0.5 sin 2u ft,

Ft1t2 = 118000 cos 300t + 3600 cos 600 t2N
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9.43 When a washing machine, of mass 200 kg and an unbalance 0.02 kg-m, is mounted on an iso-

lator, the isolator deflects by 5 mm under the static load. Find (a) the amplitude of the washing

machine and (b) the force transmitted to the foundation at the operating speed of 1200 rpm.

9.44 An electric motor, of mass 60 kg, rated speed 3000 rpm, and an unbalance 0.002 kg-m, is to

be mounted on an isolator to achieve a force transmissibility of less than 0.25. Determine (a)

the stiffness of the isolator, (b) the dynamic amplitude of the motor, and (c) the force trans-

mitted to the foundation.

9.45 An engine is mounted on a rigid foundation through four springs. During operation, the

engine produces an excitation force at a frequency of 3000 rpm. If the weight of the engine

causes the springs to deflect by 10 mm, determine the reduction in the force transmitted to

the foundation.

9.46 A sensitive electronic system, of mass 30 kg, is supported by a spring-damper system on the

floor of a building that is subject to a harmonic motion in the frequency range 10 75 Hz. If

the damping ratio of the suspension is 0.25, determine the stiffness of the suspension if the

amplitude of vibration transmitted to the system is to be less than 15 percent of the floor

vibration over the given frequency range.

9.47 A machine weighing 2600 lb is mounted on springs. A piston of weight moves

up and down in the machine at a speed of 600 rpm with a stroke of 15 in. Considering the

motion to be harmonic, determine the maximum force transmitted to the foundation if (a)

and (b) 

9.48 A printed circuit board of mass 1 kg is supported to the base through an undamped isolator.

During shipping, the base is subjected to a harmonic disturbance (motion) of amplitude 2

mm and frequency 2 Hz. Design the isolator so that the displacement transmitted to the

printed circuit board is to be no more than 5 percent of the base motion.

9.49 An electronic instrument of mass 10 kg is mounted on an isolation pad. If the base of the iso-

lation pad is subjected to a shock in the form of a step velocity of 10 mm/s, find the stiffness

of the isolation pad if the maximum permissible values of deflection and acceleration of the

instrument are specified as 10 mm and 20g, respectively.

9.50 A water tank of mass kg is supported on a reinforced cement concrete column, as shown in

Fig. 9.48(a). When a projectile hits the tank, it causes a shock, in the form of a step force, as

shown in Fig. 9.48(b). Determine the stiffness of the column if the maximum deflection of the

tank is to be limited to 0.5 m. The response spectrum of the shock load is shown in Fig. 9.48(c).

9.51 A viscously damped single-degree-of-freedom system has a body (mass) weighing 60 lb with

a spring constant of 400 lb/in. It s base is subjected to harmonic vibration. (a) When the base

vibrates with an amplitude of 2.0 in. at resonance, the steady-state amplitude of the body is

found to be 5.0 in. Find the damping ratio of the system. (b) When the base vibrates at a fre-

quency of 10 Hz, the steady-state amplitude of the body is found to be 1.5 in. Find the mag-

nitude of the force transmitted to the base.

9.52 A single-degree-of-freedom system is used to represent an automobile, of mass m, damping

constant c, and stiffness k, which travels on a rough road that is in the form of a sinusoidal sur-

face with an amplitude Y and wavelength l. If the automobile travels at a velocity v, derive an

expression for the transmissibility of the vertical motion of the automobile mass (m).

9.53 A sensitive instrument of mass 100 kg is installed at a location that is subjected to harmonic

motion with frequency 20 Hz and acceleration If the instrument is supported on an

isolator having a stiffness and a damping ratio determine the

maximum acceleration experienced by the instrument.

z = 0.05,k = 25 * 104 N/m

0.5 m/s2.

105

k = 25000 lb/in.k = 10000 lb/in.,

w = 60 lb
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FIGURE 9.48

9.54 An electronic instrument of mass 20 kg is to be isolated from engine vibrations with fre-

quencies ranging from 1000 rpm to 3000 rpm. Find the stiffness of the undamped isolator to

be used to achieve a 90% isolation.

9.55 A delicate instrument weighing 200 N is suspended by four identical springs, each with stiff-

ness 50,000 N/m, in a rigid box as shown in Fig. 9.49. The box is transported by a truck. If

the truck is subjected to a vertical harmonic motion given by find the

maximum displacement, velocity, and acceleration experienced by the instrument.

9.56 A damped torsional system is composed of a shaft and a rotor (disk). The torsional stiffness

and the torsional damping constant of the shaft are given by and

The mass moment of inertia of the rotor is The rotor is

subjected to a harmonically varying torque of magnitude which results in a

steady-state angular displacement of 5°. Find the frequency of the harmonically varying

torque applied to the rotor and the maximum torque transmitted to the base or support of

the system.

Mt = 500 N-m,

J0 = 5 kg-m2
.ct = 100 N-m-s/rad.

k t = 6000 N-m/rad

y(t) = 0.02 sin 10tm,
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9.57 The force transmissibility of a damped single-degree-of-freedom system with base motion is

given by Eq. (9.106):

where is the magnitude of the force transmitted to the mass. Determine the frequency ratios (r)

at which the force transmissibility attains maximum and minimum values. Discuss your results.

9.58 Derive an expression for the relative displacement transmissibility, where for

a damped single-degree-of-freedom system subjected to the base motion, 

9.59 During operation, the compressor unit of a refrigerator, with mass 75 kg and rotational speed

900 rpm, experiences a dynamic force of 200 N. The compressor unit is supported on four

identical springs, each with a stiffness of k and negligible damping. Find the value of k if

only 15% of the dynamic force is to be transmitted to the support or base. Also, find the

clearance space to be provided to the compressor unit.

9.60 An electronic instrument, of mass 20 kg, is to be isolated to achieve a natural frequency of

15 rad/s and a damping ratio of 0.95. The available dashpots can produce a damping con-

stant (c) in the range 10 N-s/m to 80 N-s/m. Determine whether the desired damping ratio

can be achieved using a passive system. If a passive system cannot be used, design a suitable

active control system to achieve the desired damping ratio.

9.61 A damped single-degree-of-freedom system has a mass (m) of 5 kg, stiffness (k) of 20 N/m,

and a damping constant (c) of 5 N-s/m. Design an active controller to achieve a settling time

less than 15 s for the closed loop system.

Hint: The settling time is defined by Eqs. (4.68) and (4.69).

9.62 A damped single-degree-of-freedom system has an undamped natural frequency of 20 rad/s

and a damping ratio of 0.20. Design an active control system which achieves an undamped

natural frequency of 100 rad/s and a damping ratio of 0.8. Assume that the mass, stiffness,

and damping constant of the original system remain in place.

y(t) = Y sin vt.

Z = X - Y,
Z

Y
,

Ft

Tf =
Ft

kY
= r2

b

1 + (2zr)2

(1 - r2)2
+ (2zr)2

r

1
2

Rigid box

Truck bed

m

k

k

k

k
x(t)

y(t) * 0.02 sin 10 m

FIGURE 9.49
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Section 9.11 Vibration Absorbers

9.63 An air compressor of mass 200 kg, with an unbalance of 0.01 kg-m, is found to have a large

amplitude of vibration while running at 1200 rpm. Determine the mass and spring constant

of the absorber to be added if the natural frequencies of the system are to be at least 20 per-

cent from the impressed frequency.

9.64 An electric motor, having an unbalance of 2 kg-cm, is mounted at the end of a steel can-

tilever beam, as shown in Fig. 9.50. The beam is observed to vibrate with large amplitudes at

the operating speed of 1500 rpm of the motor. It is proposed to add a vibration absorber to

reduce the vibration of the beam. Determine the ratio of the absorber mass to the mass of the

motor needed in order to have the lower frequency of the resulting system equal to 75 per-

cent of the operating speed of the motor. If the mass of the motor is 300 kg, determine the

stiffness and mass of the absorber. Also find the amplitude of vibration of the absorber mass.

9.65* The pipe carrying feedwater to a boiler in a thermal power plant has been found to vibrate

violently at a pump speed of 800 rpm. In order to reduce the vibrations, an absorber consist-

ing of a spring of stiffness and a trial mass of 1 kg is attached to the pipe. This arrange-

ment is found to give the natural frequencies of the system as 750 rpm and 1000 rpm. It is

desired to keep the natural frequencies of the system outside the operating speed range of the

pump, which is 700 rpm to 1040 rpm. Determine the values of and that satisfy this

requirement.

m2k2

m2k2

k
2

m
2

v

FIGURE 9.50

9.66 A reciprocating engine is installed on the first floor of a building, which can be modeled as

a rigid rectangular plate resting on four elastic columns. The equivalent weight of the

engine and the floor is 2000 lb. At the rated speed of the engine, which is 600 rpm, the oper-

ators experience large vibration of the floor. It has been decided to reduce these vibrations

by suspending a spring-mass system from the bottom surface of the floor. Assume that the

spring stiffness is (a) Find the weight of the mass to be attached to absorb

the vibrations. (b) What will be the natural frequencies of the system after the absorber is

added?

9.67* Find the values of and in Problem 9.54 in order to have the natural frequencies of the

system at least 30 percent away from the forcing frequency.

m2k2

k2 = 5000 lb/in.
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9.68* A hollow steel shaft of outer diameter 2 in., inner diameter 1.5 in., and length 30 in. carries

a solid disc of diameter 15 in. and weight 100 lb. Another hollow steel shaft of length 20 in.,

carrying a solid disc of diameter 6 in. and weight 20 lb, is attached to the first disc, as shown

in Fig. 9.51. Find the inner and outer diameters of the shaft such that the attached shaft-disc

system acts as an absorber.

30 *

1.5 * 2 * J1 J2

20 *

FIGURE 9.51

1 m 0.5 m

FIGURE 9.52

9.69* A rotor, having a mass moment of inertia is mounted at the end of a steel

shaft having a torsional stiffness of 0.6 MN-m/rad. The rotor is found to vibrate violently

when subjected to a harmonic torque of 300 cos 200t N-m. A tuned absorber, consisting of a

torsional spring and a mass moment of inertia ( and ), is to be attached to the first rotor

to absorb the vibrations. Find the values of and such that the natural frequencies of the

system are away from the forcing frequency by at least 20 percent.

9.70 Plot the graphs of against and against as 

varies from 0 to 1.0 when and 10.0.

9.71 Determine the operating range of the frequency ratio for an undamped vibration

absorber to limit the value of to 0.5. Assume that and 

9.72 When an undamped vibration absorber, having a mass 30 kg and a stiffness k, is added to a

spring-mass system, of mass 40 kg and stiffness 0.1 MN/m, the main mass (40 kg mass) is

found to have zero amplitude during its steady-state operation under a harmonic force of

amplitude 300 N. Determine the steady-state amplitude of the absorber mass.

9.73 An electric motor, of mass 20 kg and operating speed 1350 rpm, is placed on a fixed-fixed

steel beam of width 15 cm and depth 12 cm, as shown in Fig. 9.52. The motor has a rotating

unbalance of 0.1 kg-m. The amplitude of vibration of the beam under steady-state operation

m2 = 0.1m1.v1 = v2X1/dst

v/v2

v2/v1 = 0.1

(m2/m1)(m2/m1)(Æ2/v2)(m2/m1)(Æ1/v2)

J2kt2

J2kt2

J1 = 15 kg-m2,
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868 CHAPTER 9 VIBRATION CONTROL

of the motor is suppressed by attaching an undamped vibration absorber underneath the

motor, as shown in Fig. 9.52. Determine the mass and stiffness of the absorber such that the

amplitude of the absorber mass is less than 2 cm.

9.74 A bridge is found to vibrate violently when a vehicle, producing a harmonic load of magni-

tude 600 N, crosses it. By modeling the bridge as an undamped spring-mass system with a

mass 15,000 kg and a stiffness 2 MN/m, design a suitable tuned damped vibration absorber.

Determine the improvement achieved in the amplitude of the bridge with the absorber.

9.75 A small motor, weighing 100 lb, is found to have a natural frequency of 100 rad/s. It is pro-

posed that an undamped vibration absorber weighing 10 lb be used to suppress the vibra-

tions when the motor operates at 80 rad/s. Determine the necessary stiffness of the absorber.

9.76 Consider the system shown in Fig. 9.53 in which a harmonic force acts on the mass m.

Derive the condition under which the steady-state displacement of mass m will be zero.

K1 K2

k
c

R

Disc, mass M

Rolls without slipping

Cord

m

F0 sin vt

x(t)

FIGURE 9.53

Section 9.12 MATLAB Problems

9.77 Using MATLAB, plot Eq. (9.94) for and 1 over the range 

9.78 Using MATLAB, plot Eqs. (9.140) and (9.141) for and 0.4, and

and 0.5 over the range 

9.79 Using MATLAB, plot the ratios and given by Eq. (9.146) for 

3.0, and 4.5 and to 1.

9.80 Using Program 13.m, solve Problem 9.13.

9.81 Write a computer program to find the displacement of the main mass and the auxiliary

mass of a damped dynamic vibration absorber. Use this program to generate the results of

Fig. 9.38.

m2/m1 = 0

v2/v1 = 1.5,Æ2/v
2

Æ1/v2

0.6 v/v1.m = 0.2

f = 1, z = 0.2, 0.3,

0 r 3.z = 0, 0.25, 0.5, 0.75,
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DESIGN PROJECT

9.82 Ground vibrations from a crane operation, a forging press, and an air compressor are trans-

mitted to a nearby milling machine and are found to be detrimental to achieving specified

accuracies during precision milling operations. The ground vibrations at the locations of the

crane, forging press, and air compressor are given by 

and respectively, where 

and The ground vibrations

travel at the shear wave velocity of the soil, which is equal to 980 ft/sec, and the amplitudes

attenuate according to the relation where is the amplitude at the source

and is the amplitude at a distance of r ft from the source. The crane, forging press, and air

compressor are located at a distance of 60 ft, 80 ft, and 40 ft, respectively, from the milling

machine. The equivalent mass, stiffness, and damping ratio of the machine tool head in ver-

tical vibration (at the location of the cutter) are experimentally determined to be 500 kg,

480 kN/m, and 0.15, respectively. The equivalent mass of the machine tool base is 1000 kg.

It is proposed that an isolator for the machine tool be used, as shown in Fig. 9.54, to improve

the cutting accuracies [9.2]. Design a suitable vibration isolator, consisting of a mass, spring,

and damper, as shown in Fig. 9.54(b), for the milling machine such that the maximum verti-

cal displacement of the milling cutter, relative to the horizontal surface being machined, due

to ground vibration from all the three sources does not exceed peak-to-peak.5 mm

Ar

A0Ar = A0e-0.005r,

zc = 0.1.va = 20 Hz,vf = 15 Hz,vc = 10 Hz,Aa = 25 mm,

Af = 30 mm,Ac = 20 mm,xa(t) = Aa sin vat,sin vft,

xf(t) = Afsin vct,xc(t) = Ace
-vczct

meq

mb * mi

keq ceq

ki ci

xcutter

xbase

xground

(a)

(b)

ki/2 ki/2ci
Isolator

Machine tool head (meq) 

Milling cutter

Horizontal surface
being machined

Machine tool base (mb)

Isolator (mass, mi)

FIGURE 9.54
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Gustav Robert Kirchhoff (1824 1887) was a German physicist and a friend of
the famous chemist Robert Wilhelm Bunsen. Kirchhoff started teaching at Berlin
University in 1848 and later moved to Heidelberg to occupy the chair of physics.
There in 1859, he made his major contribution to physics, namely, the experimen-
tal discovery and theoretical analysis of a fundamental law of electromagnetic
radiation. In addition, he made significant contributions to electrical circuits and
the theory of elasticity. He published his important paper on the theory of plates in
1850 in which a satisfactory theory for the bending vibration of plates, along with
the correct boundary conditions, was presented for the first time. In addition, he
presented a paper on the vibration of bars of variable cross section. He moved to
the University of Berlin in 1875 to occupy the chair of theoretical physics and
published his famous book on mechanics in 1876. (Photo courtesy of Applied

Mechanics Reviews.)
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Chapter Outline

In some practical situations, it might be difficult to develop a mathematical model of the

system and predict its vibration characteristics through an analytical study. In such cases,

we can use experimental methods to measure the vibration response of the system to a

known input. This helps in identifying the system in terms of its mass, stiffness, and
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10.1 INTRODUCTION 871

damping. This chapter presents the various aspects of vibration measurement and applica-

tions. The basic scheme of vibration measurement is outlined first. Descriptions are given of

transducers devices which transform physical variables into equivalent electrical signals

and of vibration pickups and frequency measuring instruments used for vibration measure-

ment. The working principles of mechanical and electrodynamic shakers or exciters, used

to excite a machine or system to study its dynamic characteristics, are introduced. Signal

analysis, which determines the response of a system under known excitation and presents

it in a convenient form, is outlined along with descriptions of spectrum analyzer, bandpass

filter, and bandwidth analyzers. The experimental modal analysis deals with the determi-

nation of natural frequencies, damping ratio, and mode shapes through vibration testing.

The necessary equipment, digital signal processing, analysis of random signals, determi-

nation of modal data from observed peaks and Nyquist plot, and determination of mode

shapes are described. Vibration severity criteria, machine maintenance techniques,

machine-condition monitoring techniques, and instrumentation systems are presented for

machine-condition monitoring and diagnosis. MATLAB programs are presented for plot-

ting Nyquist circle and the acceleration equation.

Learning Objectives

After you have finished studying this chapter, you should be able to do the following:

* Understand the various types of transducers, vibration pickups, and frequency mea-

suring instruments.

* Know the working principles of mechanical and electrodynamic shakers or exciters.

* Learn the process of signal analysis.

* Understand experimental modal analysis techniques to determine the natural frequen-

cies, damping ratio, and mode shapes.

* Know the various aspects of machine-condition monitoring.

* Use MATLAB for plotting Nyquist circles and implementing methods of analysis 

discussed.

10.1 Introduction

In practice the measurement of vibration becomes necessary for the following reasons:

1. The increasing demands of higher productivity and economical design lead to higher

operating speeds of machinery1 and efficient use of materials through lightweight

structures. These trends make the occurrence of resonant conditions more frequent

during the operation of machinery and reduce the reliability of the system. Hence the

periodic measurement of vibration characteristics of machinery and structures

becomes essential to ensure adequate safety margins. Any observed shift in the natural

1According to Eshleman, in reference [10.12], the average speed of rotating machines doubled from 1800 rpm

to 3600 rpm during the period between 1940 and 1980.
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872 CHAPTER 10 VIBRATION MEASUREMENT AND APPLICATIONS

frequencies or other vibration characteristics will indicate either a failure or a need for

maintenance of the machine.

2. The measurement of the natural frequencies of a structure or machine is useful in

selecting the operational speeds of nearby machinery to avoid resonant conditions.

3. The theoretically computed vibration characteristics of a machine or structure may be

different from the actual values due to the assumptions made in the analysis.

4. The measurement of frequencies of vibration and the forces developed is necessary in

the design and operation of active vibration-isolation systems.

5. In many applications, the survivability of a structure or machine in a specified vibra-

tion environment is to be determined. If the structure or machine can perform the

expected task even after completion of testing under the specified vibration environ-

ment, it is expected to survive the specified conditions.

6. Continuous systems are often approximated as multidegree-of-freedom systems for sim-

plicity. If the measured natural frequencies and mode shapes of a continuous system are

comparable to the computed natural frequencies and mode shapes of the multidegree-

of-freedom model, then the approximation will be proved to be a valid one.

7. The measurement of input and the resulting output vibration characteristics of a sys-

tem helps in identifying the system in terms of its mass, stiffness, and damping.

8. The information about ground vibrations due to earthquakes, fluctuating wind velocities

on structures, random variation of ocean waves, and road surface roughness are impor-

tant in the design of structures, machines, oil platforms, and vehicle suspension systems.

Vibration Measurement Scheme. Figure 10.1 illustrates the basic features of a vibration

measurement scheme. In this figure, the motion (or dynamic force) of the vibrating body is

converted into an electrical signal by the vibration transducer or pickup. In general, a

transducer is a device that transforms changes in mechanical quantities (such as displacement,

velocity, acceleration, or force) into changes in electrical quantities (such as voltage or

current). Since the output signal (voltage or current) of a transducer is too small to be recorded

directly, a signal conversion instrument is used to amplify the signal to the required value. The

output from the signal conversion instrument can be presented on a display unit for visual

inspection, or recorded by a recording unit, or stored in a computer for later use. The data can

then be analyzed to determine the desired vibration characteristics of the machine or structure.

Depending on the quantity measured, a vibration measuring instrument is called a

vibrometer, a velocity meter, an accelerometer, a phase meter, or a frequency meter. If the

instrument is designed to record the measured quantity, then the suffix meter  is to be

replaced by graph  [10.1]. In some application, we need to vibrate a machine or structure

to find its resonance characteristics. For this, electrodynamic vibrators, electrohydraulic

vibrators, and signal generators (oscillators) are used.

Vibrating
machine or
structure

Vibration
transducer or
pickup

Signal
conversion
instrument

Display unit,
recorder,
or computer

Data
analysis

FIGURE 10.1 Basic vibration measurement scheme.
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The following considerations often dictate the type of vibration-measuring instru-

ments to be used in a vibration test: (1) expected ranges of the frequencies and ampli-

tudes, (2) sizes of the machine/structure involved, (3) conditions of operation of the

machine/equipment/structure, and (4) type of data processing used (such as graphical dis-

play or graphical recording or storing the record in digital form for computer processing).

10.2 Transducers

A transducer is a device that transforms values of physical variables into equivalent elec-

trical signals. Several types of transducers are available; some of them are less useful than

others due to their nonlinearity or slow response. Some of the transducers commonly used

for vibration measurement are discussed below.

10.2.1

Variable-

Resistance

Transducers

In these transducers, a mechanical motion produces a change in electrical resistance (of a

rheostat, a strain gage, or a semiconductor), which in turn causes a change in the output

voltage or current. The schematic diagram of an electrical resistance strain gage is shown

in Fig. 10.2. An electrical resistance strain gage consists of a fine wire whose resistance

changes when it is subjected to mechanical deformation. When the strain gage is bonded to

a structure, it experiences the same motion (strain) as the structure and hence its resistance

change gives the strain applied to the structure. The wire is sandwiched between two sheets

of thin paper. The strain gage is bonded to the surface where the strain is to be measured.

The most common gage material is a copper-nickel alloy known as Advance. When the

surface undergoes a normal strain the strain gage also undergoes the same strain and

the resulting change in its resistance is given by [10.6]

(10.1)

where

 R = Initial resistance

 K = Gage factor for the wire

K =
¢R/R

¢L/L
= 1 + 2v +

¢r

r
 

L

¢L
L 1 + 2v

(P),

X

X
Electrical
leads

Backing
material
(thin paper)

Fine wire
(usually made of
Advance)

(a)

Fine wire

Cement

(b)

Section X X

Thin paper

FIGURE 10.2 Electric resistance strain gage.
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874 CHAPTER 10 VIBRATION MEASUREMENT AND APPLICATIONS

The value of the gage factor K is given by the manufacturer of the strain gage, hence the

value of can be determined, once and R are measured, as

(10.2)

In a vibration pickup2 the strain gage is mounted on an elastic element of a spring-

mass system, as shown in Fig. 10.3. The strain at any point on the cantilever (elastic mem-

ber) is proportional to the deflection of the mass, x(t), to be measured. Hence the strain

indicated by the strain gage can be used to find x(t). The change in resistance of the wire

can be measured using a Wheatstone bridge, potentiometer circuit, or voltage divider.

A typical Wheatstone bridge, representing a circuit which is sensitive to small changes in

the resistance, is shown in Fig. 10.4. A d.c. voltage V is applied across the points a and c.

The resulting voltage across the points b and d is given by [10.6]:

(10.3)

Initially the resistances are balanced (adjusted) so that the output voltage E is zero. Thus,

for initial balance, Eq. (10.3) gives

(10.4)

When the resistances change by small amounts the change in the output volt-

age can be expressed as

(10.5)

where

(10.6)r0 =
R1R2

1R1 + R22
2
=

R3R4

1R3 + R42
2

¢E L Vr0 a
¢R1

R1

-
¢R2

R2

+
¢R3

R3

-
¢R4

R4

b

¢E

1¢Ri2,1Ri2

R1R3 = R2R4

E = c
R1R3 - R2R4

1R1 + R221R3 + R42
d  V

¢R

P =
¢L

L
=

¢R

RK

¢RP

 ¢r = Change in resistivity of the wire L 0 for Advance

 r = Resistivity of the wire

 v = Poisson s ratio of the wire

 ¢L = Change in length of the wire

 L = Initial length of the wire

 ¢R = Change in resistance

2When a transducer is used in conjunction with other components that permit the processing and transmission of

the signal, the device is called a pickup.
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a

b

c

d

V

E

R1 R2

R4 R3

FIGURE 10.4 Wheatstone bridge.

If the strain gage leads are connected between the points a and b,

and and Eq. (10.5) gives

(10.7)

where is the initial resistance of the gage. Equations (10.2) and (10.7) yield

¢Rg

Rg

= PK =
¢E

Vr0

Rg

¢Rg

Rg

=
¢E

Vr0

¢R2 = ¢R3 = ¢R4 = 0,

R1 = Rg, ¢R1 = ¢Rg,

x(t)

m

Cantilever
beam

Strain
gage

Base

Leads

FIGURE 10.3 Strain gage as vibration pickup.
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or

(10.8)

Since the output voltage is proportional to the strain, it can be calibrated to read the strain

directly.

¢E = KVr0P

10.2.2

Piezoelectric

Transducers

Certain natural and manufactured materials like quartz, tourmaline, lithium sulfate, and

Rochelle salt generate electrical charge when subjected to a deformation or mechanical

stress (see Fig. 10.5(a)). The electrical charge disappears when the mechanical loading is

removed. Such materials are called piezoelectric materials and the transducers, which take

advantage of the piezoelectric effect, are known as piezoelectric transducers. The charge

generated in the crystal due to a force is given by

(10.9)

where k is called the piezoelectric constant, A is the area on which the force acts, and 

is the pressure due to The output voltage of the crystal is given by

(10.10)E = vtpx

Fx.

pxFx

Qx = kFx = kApx

Fx

Fx  Apx

E

Fx

t

(a)

(b)

Leads

Spring

Piezoelectric
discs

Base

Mass

FIGURE 10.5 Piezoelectric accelerometer.
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v

S S

E

N N

FIGURE 10.6 Basic idea behind

electrodynamic transducer.

where v is called the voltage sensitivity and t is the thickness of the crystal. The values of

the piezoelectric constant and voltage sensitivity for quartz are and

0.055 volt-meter/N, respectively [10.6]. These values are valid only when the perpendicu-

lar to the largest face is along the x-axis of the crystal. The electric charge developed and

the voltage output will be different if the crystal slab is cut in a different direction.

A typical piezoelectric transducer (accelerometer) is shown in Fig. 10.5(b). In this fig-

ure, a small mass is spring loaded against a piezoelectric crystal. When the base vibrates,

the load exerted by the mass on the crystal changes with acceleration, hence the output

voltage generated by the crystal will be proportional to the acceleration. The main advan-

tages of the piezoelectric accelerometer include compactness, ruggedness, high sensitivity,

and high frequency range [10.5, 10.8].

2.25 * 10-12 C/N

E X A M P L E  1 0 . 1
Output Voltage of a Piezoelectric Transducer

A quartz crystal having a thickness of 0.1 in. is subjected to a pressure of 50 psi. Find the output volt-

age if the voltage sensitivity is 0.055 V-m/N.

Solution: With and 

Eq. (10.10) gives

*

E = 10.055210.0025421344.7382 = 48.1599 volts

v = 0.055 V-m/N,px = 50 psi = 344.738 N/m2,t = 0.1 in. = 0.00254 m,

10.2.3
Electrodynamic
Transducers

When an electrical conductor, in the form of a coil, moves in a magnetic field as shown in

Fig. 10.6, a voltage E is generated in the conductor. The value of E in volts is given by

(10.11)E = Dlv
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where D is the magnetic flux density (teslas), l is the length of the conductor (meters), and

v is the velocity of the conductor relative to the magnetic field (meters/second). The mag-

netic field may be produced by either a permanent magnet or an electromagnet. Some-

times, the coil is kept stationary and the magnet is made to move. Since the voltage output

of an electromagnetic transducer is proportional to the relative velocity of the coil, they are

frequently used in velocity pickups.  Equation (10.11) can be rewritten as

(10.12)

where F denotes the force (newtons) acting on the coil while carrying a current I

(amperes). Equation (10.12) shows that the performance of an electrodynamic transducer

can be reversed. In fact, Eq. (10.12) forms the basis for using an electrodynamic transducer

as a vibration exciter  (see Section 10.5.2).

Dl =
E

v
=

F

I

10.2.4

Linear Variable

Differential

Transformer

Transducer

The schematic diagram of a linear variable differential transformer (LVDT) transducer is

shown in Fig. 10.7. It consists of a primary coil at the center, two secondary coils at the

ends, and a magnetic core that can move freely inside the coils in the axial direction. When

an a.c. input voltage is applied to the primary coil, the output voltage will be equal to the

difference of the voltages induced in the secondary coils. This output voltage depends on

the magnetic coupling between the coils and the core, which in turn depends on the axial

displacement of the core. The secondary coils are connected in phase opposition so that,

when the magnetic core is in the exact middle position, the voltages in the two coils will be

equal and 180° out of phase. This makes the output voltage of the LVDT as zero. When the

core is moved to either side of the middle (zero) position, the magnetic coupling will be

increased in one secondary coil and decreased in the other coil. The output polarity

depends on the direction of the movement of the magnetic core.

The range of displacement for many LVDTs on the market is from 0.0002 cm to 40 cm.

The advantages of an LVDT over other displacement transducers include insensitivity to

Ei

Displacement

Input
voltage

Primary
coil

Secondary coils

Core

Eo * Output
          voltage

FIGURE 10.7 Schematic diagram of an LVDT transducer.
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O

Displacement
of core

Output voltage

FIGURE 10.8 Linearity of voltage with 

displacement of core.

temperature and high output. The mass of the magnetic core restricts the use of the LVDT

for high-frequency applications [10.4].

As long as the core is not moved very far from the center of the coil, the output volt-

age varies linearly with the displacement of the core, as shown in Fig. 10.8; hence the

name linear variable differential transformer.

10.3 Vibration Pickups
When a transducer is used in conjunction with another device to measure vibrations, it is

called a vibration pickup. The commonly used vibration pickups are known as seismic

instruments. A seismic instrument consists of a mass-spring-damper system mounted on

the vibrating body, as shown in Fig. 10.9. Then the vibratory motion is measured by find-

ing the displacement of the mass relative to the base on which it is mounted.

The instrument consists of a mass m, a spring k, and a damper c inside a cage, which

is fastened to the vibrating body. With this arrangement, the bottom ends of the spring and

the dashpot will have the same motion as the cage (which is to be measured, y) and their

vibration excites the suspended mass into motion. Then the displacement of the mass rela-

tive to the cage, where x denotes the vertical displacement of the suspended

mass, can be measured if we attach a pointer to the mass and a scale to the cage, as shown

in Fig. 10.9.3

The vibrating body is assumed to have a harmonic motion:

(10.13)

The equation of motion of the mass m can be written as

(10.14)mx
$

+ c1x 
#
- y 

#
2 + k1x - y2 = 0

y1t2 = Y sin vt

z = x - y,

3The output of the instrument shown in Fig. 10.9 is the relative mechanical motion of the mass, as shown by the

pointer and the graduated scale on the cage. For high-speed operation and convenience, the motion is often con-

verted into an electrical signal by a transducer.
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x(t)

m

T
ck

y(t)

FIGURE 10.9 Seismic instrument.

By defining the relative displacement z as

(10.15)

Eq. (10.14) can be written as

(10.16)

Equations (10.13) and (10.16) lead to

(10.17)

This equation is identical to Eq. (3.75); hence the steady-state solution is given by

(10.18)

where Z and are given by (see Eqs. (3.76) and (3.77)):

(10.19)

(10.20)

(10.21)

and

(10.22)z =
c

2mvn

 r =
v

vn

 f = tan-1
a

cv

k - mv2
b = tan-1

a
2zr

1 - r2
b

 Z =
Yv2

[1k - mv2
2

2
+ c2v2]1/2

=
r2Y

[11 - r2
2

2
+ 12zr22]1/2

f

z1t2 = Z sin 1vt - f2

mz
$
+ cz 

#
+ kz = mv2Y sin vt

mz
$
+ cz 

#
+ kz = -my

$

z = x - y
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FIGURE 10.10 Response of a vibration-

measuring instrument.

The variations of Z and with respect to r are shown in Figs. 10.10 and 10.11. As will be

seen later, the type of instrument is determined by the useful range of the frequencies, indi-

cated in Fig. 10.10.

f

10.3.1

Vibrometer

A vibrometer or a seismometer is an instrument that measures the displacement of a vibrat-

ing body. It can be observed from Fig. 10.10 that when (range II).

Thus the relative displacement between the mass and the base (sensed by the transducer) is

essentially the same as the displacement of the base. For an exact analysis, we consider Eq.

(10.19). We note that

(10.23)z1t2 M Y sin1vt - f2

v/vn Ú 3Z/Y L 1
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E X A M P L E  1 0 . 2
Amplitude by Vibrometer

A vibrometer having a natural frequency of 4 rad/s and is attached to a structure that per-

forms a harmonic motion. If the difference between the maximum and the minimum recorded values

is 8 mm, find the amplitude of motion of the vibrating structure when its frequency is 40 rad/s.

Solution: The amplitude of the recorded motion Z is 4 mm. For and

and Eq. (10.19) gives

Thus the amplitude of vibration of the structure is 

*

Y = Z/1.0093 = 3.9631 mm.

Z =

Y(10)2

[(1 - 102)2
+ 52(0.2)(10))2]1/2

= 1.0093Y

vn = 4 rad/s, r = 10.0,

z = 0.2, v = 40.0 rad/s,

z = 0.2

if

(10.24)

A comparison of Eq. (10.23) with shows that z(t) gives directly the motion

y(t) except for the phase lag This phase lag can be seen to be equal to 180° for 

Thus the recorded displacement z(t) lags behind the displacement being measured y(t) by

time This time lag is not important if the base displacement y(t) consists of a

single harmonic component.

Since has to be large and the value of is fixed, the natural frequency

of the mass-spring-damper must be low. This means that the mass must be

large and the spring must have a low stiffness. This results in a bulky instrument, which is

not desirable in many applications. In practice, the vibrometer may not have a large value

of r and hence the value of Z may not be equal to Y exactly. In such a case, the true value

of Y can be computed by using Eq. (10.19), as indicated in the following example.

vn = 1k/m

vr = v/vn

t¿ = f/v.

z = 0.f.

y(t) = Y sin vt

r2

[(1 - r2)2
+ (2zr)2]1/2

L 1

10.3.2
Accelerometer

An accelerometer is an instrument that measures the acceleration of a vibrating body (see

Fig. 10.12). Accelerometers are widely used for vibration measurements [10.7] and also to

record earthquakes. From the accelerometer record, the velocity and displacements are

obtained by integration. Equations (10.18) and (10.19) yield

(10.25)-z(t)vn
2
=

1

[(1 - r2)2
+ (2zr)2]1/2

 5-Yv2 sin(vt - f)6
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FIGURE 10.12 Accelerometers.

(Courtesy of Bruel and Kjaer Instruments, Inc.,

Marlborough, MA.)

This shows that if

(10.26)

Eq. (10.25) becomes

(10.27)

By comparing Eq. (10.27) with we find that the term gives

the acceleration of the base except for the phase lag Thus the instrument can be made

to record (give) directly the value of The time by which the record lags the

acceleration is given by If consists of a single harmonic component, the time

lag will not be of importance.

The value of the expression on the left-hand side of Eq. (10.26) is shown plotted in

Fig. 10.13. It can be seen that the left-hand side of Eq. (10.26) lies between 0.96 and 1.04 for

if the value of lies between 0.65 and 0.7. Since r is small, the natural fre-

quency of the instrument has to be large compared to the frequency of vibration to be mea-

sured. From the relation we find that the mass needs to be small and the spring

needs to have a large value of k (i.e., short spring), so the instrument will be small in size. Due

vn = 1k/m,

z0 r 0.6

y
$

t¿ = f/v.

y
$
= -z(t)vn

2.

f.y
$
,

z(t)vn
2y

$
(t) = -  Yv2 sin vt,

-  z(t)vn
2
M -  Yv2 sin(vt - f)

1

[(1 - r2)2
+ (2zr)2]1/2

M 1
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FIGURE 10.13 Variation of lefthand side of 

Eq. (10.26) with r.

to their small size and high sensitivity, accelerometers are preferred in vibration measure-

ments. In practice, Eq. (10.26) may not be satisfied exactly; in such cases the quantity

can be used to find the correct value of the acceleration measured, as illustrated in the

following example.

1

[(1 - r
2
)

2
+ (2zr)

2
]

1/2

E X A M P L E  1 0 . 3
Design of an Accelerometer

An accelerometer has a suspended mass of 0.01 kg with a damped natural frequency of vibration of

150 Hz. When mounted on an engine undergoing an acceleration of 1g at an operating speed of

6000 rpm, the acceleration is recorded as by the instrument. Find the damping constant and

the spring stiffness of the accelerometer.

Solution: The ratio of measured to true accelerations is given by

(E.1)

which can be written as

(E.2)[(1 - r
2
)

2
+ (2zr)

2
] = (1/0.9684)

2
= 1.0663

1

[(1 - r
2
)

2
+ (2zr)

2
]

1/2
=

Measured value

True value
=

9.5

9.81
= 0.9684

9.5 m/s2
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The operating speed of the engine gives

The damped natural frequency of vibration of the accelerometer is

Thus

(E.3)

Equation (E.3) gives

(E.4)

Substitution of Eq. (E.4) into (E.2) leads to a quadratic equation in as

(E.5)

The solution of Eq. (E.5) gives

or

By choosing arbitrarily, the undamped natural frequency of the accelerometer can be

found as

Since we have

The damping constant can be determined from

*

c = 2mvnz = 210.01211368.8889210.72532 = 19.8571 N-s/m

k = mvn
2
= 10.01211368.888922

= 18738.5628 N/m

vn = 1k/m,

vn =
vd

41 - z2
=

942.48

41 - 0.72532
= 1368.8889 rad/s

z = 0.7253

z = 0.7253, 0.9547

z2
= 0.5260, 0.9115

1.5801z4
- 2.2714z2

+ 0.7576 = 0

z2

r = 0.666741 - z2 or r2
= 0.444411 - z2

2

v

vd

=
v

41 - z2vn

=
r

41 - z2
=

628.32

942.48
= 0.6667

vd = 41 - z2vn = 15012p2 = 942.48 rad/s

v =

6000(2p)

60
= 628.32 rad/s
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A velometer measures the velocity of a vibrating body. Equation (10.13) gives the velocity

of the vibrating body

(10.28)

and Eq. (10.18) gives

(10.29)

If

(10.30)

then

(10.31)

A comparison of Eqs. (10.28) and (10.31) shows that, except for the phase difference

gives directly provided that Eq. (10.30) holds true. In order to satisfy 

Eq. (10.30), r must be very large. In case Eq. (10.30) is not satisfied, then the velocity of

the vibrating body can be computed using Eq. (10.29).

y( 
#
t),f, z 

#
(t)

z 
#
(t) M vY cos(vt - f)

r
2

[(1 - r2)2
+ (2zr)2]1/2

M 1

z 
#
(t) =

r
2vY

[(1 - r2)2
+ (2zr)2]1/2

 cos(vt - f)

y
#
1t2 = vY cos vt

E X A M P L E  1 0 . 4
Design of a Velometer

Design a velometer if the maximum error is to be limited to 1 percent of the true velocity. The nat-

ural frequency of the velometer is to be 80 Hz and the suspended mass is to be 0.05 kg.

Solution: The ratio (R) of the recorded and the true velocities is given by Eq. (10.29):

(E.1)

The maximum of (E.1) occurs when (see Eq. (3.82))

(E.2)r = r* =
1

41 - 2z2

R =
r

2

[(1 - r2)2
+ (2zr)2]1/2

=

Recorded velocity

True velocity

10.3.3
Velometer
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Substitution of Eq. (E.2) into (E.1) gives

which can be simplified as

(E.3)

For an error of 1 percent, or 0.99, and Eq. (E.3) leads to

(E.4)

and

(E.5)

Equation (E.5) gives imaginary roots and Eq. (E.4) gives

or

We choose the value arbitrarily. The spring stiffness can be found as

since

The damping constant can be determined from

*

c = 2zvnm = 210.75510121502.656210.052 = 37.9556 N-s/m

vn = 8012p2 = 502.656 rad/s

k = mvn
2
= 0.051502.65622

= 12633.1527 N/m

z = 0.755101

z = 0.755101, 0.655607

z2
= 0.570178, 0.429821

z4
- z2

+ 0.255075 = 0

z4
- z2

+ 0.245075 = 0

R = 1.01

1

44z2
- 4z4

= R

a
1

1 - 2z2
b

A c1 - a
1

1 - 2z2
b d

2

+ 4z2
a

1

1 - 2z2
b

= R
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FIGURE 10.14 Phase-shift error.

10.3.4

Phase Distortion

As shown by Eq. (10.18), all vibration-measuring instruments exhibit phase lag. Thus the

response or output of the instrument lags behind the motion or input it measures. The time

lag is given by the phase angle divided by the frequency The time lag is not important if

we measure a single harmonic component. But, occasionally, the vibration to be recorded

is not harmonic but consists of the sum of two or more harmonic components. In such a

case, the recorded graph may not give an accurate picture of the vibration, because differ-

ent harmonics may be amplified by different amounts and their phase shifts may also be

different. The distortion in the waveform of the recorded signal is called the phase distor-

tion or phase-shift error. To illustrate the nature of the phase-shift error, we consider a

vibration signal of the form shown in Fig. 10.14(a) [10.10]:

(10.32)

Let the phase shift be 90° for the first harmonic and 180° for the third harmonic of Eq. (10.32).

The corresponding time lags are given by and 

The output signal is shown in Fig. 10.14(b). It can be seen that the output sig-

nal is quite different from the input signal due to phase distortion.

As a general case, let the complex wave being measured be given by the sum of several

harmonics as

(10.33)y(t) = a1 sin vt + a2 sin 2vt + Á

180°/(3v).

t2 = u2/(3v) =t1 = u1/v = 90°/v

y1t2 = a1 sin vt + a3 sin 3vt

v.
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If the displacement is measured using a vibrometer, its response to each component of the

series is given by an equation similar to Eq. (10.18), so that the output of the vibrometer

becomes

(10.34)

where

(10.35)

Since is large for this instrument, we can find from Fig. 10.11 that 

and Eq. (10.34) becomes

(10.36)

Thus the output record will be simply opposite to the motion being measured. This is

unimportant and can easily be corrected.

By using a similar reasoning, we can show, in the case of a velometer, that

(10.37)

for an input signal consisting of several harmonics. Next we consider the phase distortion

for an accelerometer. Let the acceleration curve to be measured be expressed, using

Eq. (10.33), as

(10.38)

The response or output of the instrument to each component can be found as in Eq. (10.34),

and so

(10.39)

where the phase lags are different for different components of the series in Eq. (10.39).

Since the phase lag varies almost linearly from 0° at to 90° at for 

(see Fig. 10.11), we can express as

(10.40)f M ar = a 
v

vn

= bv

f

z = 0.7r = 1r = 0f

fj

z
$
1t2 = -  a1v

2
 sin1vt - f12 - a212v22

 sin12vt - f22 - Á

y
$
(t) = -  a1v

2
 sin vt - a2(2v)

2
 sin 2vt - Á

z
 #
(t) M -y

 #
(t)

z(t) M -  [a1 sin vt + a2 sin 2vt + Á
 ] M -y(t)

j = 1, 2, Á ,

fj M p,v/vn

tan fj =

2zaj 
v

vn

b

1 - aj 
v

vn

b

2
,          j = 1, 2, Á

z(t) = a1 sin(vt - f1) + a2 sin(2vt - f2) + Á
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where and are constants. The time lag is given by

(10.41)

This shows that the time lag of the accelerometer is independent of the frequency for any

component, provided that the frequency lies in the range Since each compo-

nent of the signal has the same time delay or phase lag, we have, from Eq. (10.39),

(10.42)

where Note that Eq. (10.42) assumes that that is, even the

highest frequency involved, is less than This may not be true in practice. Fortu-

nately, no significant phase distortion occurs in the output signal, even when some of the

higher-order frequencies are larger than The reason is that, generally, only the first

few components are important to approximate even a complex waveform; the amplitudes

of the higher harmonics are small and contribute very little to the total waveform. Thus

the output record of the accelerometer represents a reasonably true acceleration being

measured [10.7, 10.11].

10.4 Frequency-Measuring Instruments

Most frequency-measuring instruments are of the mechanical type and are based on the

principle of resonance. Two kinds are discussed in the following paragraphs: the Fullarton

tachometer and the Frahm tachometer.

Single-Reed Instrument or Fullarton Tachometer. This instrument consists of a variable-

length cantilever strip with a mass attached at one of its ends. The other end of the strip is

clamped, and its free length can be changed by means of a screw mechanism (see Fig.

10.15(a)). Since each length of the strip corresponds to a different natural frequency, the

reed is marked along its length in terms of its natural frequency. In practice, the clamped

end of the strip is pressed against the vibrating body, and the screw mechanism is

manipulated to alter its free length until the free end shows the largest amplitude of

vibration. At that instant, the excitation frequency is equal to the natural frequency of the

cantilever; it can be read directly from the strip.

Multireed-Instrument or Frahm Tachometer. This instrument consists of a number of

cantilevered reeds carrying small masses at their free ends (see Fig. 10.15(b)). Each reed

has a different natural frequency and is marked accordingly. Using a number of reeds

makes it possible to cover a wide frequency range. When the instrument is mounted on a

vibrating body, the reed whose natural frequency is nearest the unknown frequency of the

vn.

vn.nv,

0 r 1t = t - b.

 = -  a1v
2 sin vt - a212v22

 sin 2vt - Á

 -  v2
z
$
1t2 = -  a1v

2
 sin1vt - vb2 - a212v22

 sin12vt - 2vb2 - Á

0 r 1.

t¿ =
f

v
=
bv

v
= b

b = a/vna
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l

(a) (b)

FIGURE 10.15 Frequency-measuring instruments.

FIGURE 10.16 A stroboscope. (Courtesy of Bruel and

Kjaer Instruments, Inc., Marlborough, MA.)

body vibrates with the largest amplitude. The frequency of the vibrating body can be found

from the known frequency of the vibrating reed.

Stroboscope. A stroboscope is an instrument that produces light pulses intermittently.

The frequency at which the light pulses are produced can be altered and read from the

instrument. When a specific point on a rotating (vibrating) object is viewed with the

stroboscope, it will appear to be stationary only when the frequency of the pulsating light

is equal to the speed of the rotating (vibrating) object. The main advantage of the

stroboscope is that it does not make contact with the rotating (vibrating) body. Due to the

persistence of vision, the lowest frequency that can be measured with a stroboscope is

approximately 15 Hz. A typical stroboscope is shown in Fig. 10.16.
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FIGURE 10.17 Vibration of a structure through (a) an inertia

force and (b) an elastic spring force.

10.5 Vibration Exciters

The vibration exciters or shakers can be used in several applications such as determination

of the dynamic characteristics of machines and structures and fatigue testing of materials.

The vibration exciters can be mechanical, electromagnetic, electrodynamic, or hydraulic

type. The working principles of mechanical and electromagnetic exciters are described in

this section.

10.5.1

Mechanical

Exciters

As indicated in Section 1.10 (Fig. 1.46), a Scotch yoke mechanism can be used to produce

harmonic vibrations. The crank of the mechanism can be driven either by a constant- or a

variable-speed motor. When a structure is to be vibrated, the harmonic force can be applied

either as an inertia force, as shown in Fig. 10.17(a), or as an elastic spring force, as shown
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FIGURE 10.18 Vibration excitation due to unbalanced force.

10.5.2
Electrodynamic
Shaker

The schematic diagram of an electrodynamic shaker, also known as the electromagnetic

exciter, is shown in Fig. 10.19(a). As stated in Section 10.2.3, the electrodynamic shaker

can be considered as the reverse of an electrodynamic transducer. When current passes

through a coil placed in a magnetic field, a force F (in Newtons) proportional to the current

I (in amperes) and the magnetic flux intensity D (in teslas) is produced which accelerates

the component placed on the shaker table:

(10.44)

where l is the length of the coil (in meters). The magnetic field is produced by a permanent

magnet in small shakers while an electromagnet is used in large shakers. The magnitude of

acceleration of the table or component depends on the maximum current and the masses of

F = DIl

in Fig. 10.17(b). These vibrators are generally used for frequencies less than 30 Hz and

loads less than 700 N [10.1].

The unbalance created by two masses rotating at the same speed in opposite directions

(see Fig. 10.18) can be used as a mechanical exciter. This type of shaker can be used to

generate relatively large loads between 250 and 25,000 N. If the two masses, of magnitude

m each, rotate at an angular velocity at a radius R, the vertical force F(t) generated is

given by

(10.43)

The horizontal components of the two masses cancel, hence the resultant horizontal

force will be zero. The force F(t) will be applied to the structure to which the exciter is

attached.

F(t) = 2mRv2 cos vt

v
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Exciter table

(a)

(b)

Coil

Magnet

Moving element

Flexible support

F

m

Acceleration Natural frequency
of the flexible support

Natural frequency
of the moving element

Constant acceleration

Operating range

Frequency

FIGURE 10.19 (a) Electrodynamic shaker. (b) Typical resonance character-

istics of an electrodynamic exciter.

the component and the moving element of the shaker. If the current flowing through the

coil varies harmonically with time (a.c. current), the force produced also varies harmoni-

cally. On the other hand, if direct current is used to energize the coil, a constant force is

generated at the exciter table. The electrodynamic exciters can be used in conjunction with

an inertia or a spring as in the case of Figs. 10.17(a) and (b) to vibrate a structure.

Since the coil and the moving element should have a linear motion, they are suspended

from a flexible support (having a very small stiffness) as shown in Fig. 10.19(a). Thus the
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electromagnetic exciter has two natural frequencies one corresponding to the natural

frequency of the flexible support and the other corresponding to the natural frequency of

the moving element, which can be made very large. These two resonant frequencies are

shown in Fig. 10.19(b). The operating-frequency range of the exciter lies between these

two resonant frequencies, as indicated in Fig. 10.19(b) [10.7].

The electrodynamic exciters are used to generate forces up to 30,000 N, displacements

up to 25 mm, and frequencies in the range of 5 to 20 kHz [10.1]. A practical electrody-

namic exciter is shown in Fig. 10.20.

10.6 Signal Analysis
In signal analysis, we determine the response of a system under a known excitation and

present it in a convenient form. Often, the time response of a system will not give much

useful information. However, the frequency response will show one or more discrete

frequencies around which the energy is concentrated. Since the dynamic characteristics

of individual components of the system are usually known, we can relate the distinct

frequency components (of the frequency response) to specific components [10.3].

For example, the acceleration-time history of a machine frame that is subjected to

excessive vibration might appear as shown in Fig. 10.21(a). This figure cannot be used

to identify the cause of vibration. If the acceleration-time history is transformed to the

FIGURE 10.20 An exciter with a general-

purpose head. (Courtesy of Bruel and Kjaer

Instruments, Inc., Marlborough, MA.)
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Acceleration

Time

(a)

Acceleration

Frequency
25 Hz

(b)

FIGURE 10.21 Acceleration history.

Spectrum or frequency analyzers can be used for signal analysis. These devices analyze a

signal in the frequency domain by separating the energy of the signal into various fre-

quency bands. The separation of signal energy into frequency bands is accomplished

through a set of filters. The analyzers are usually classified according to the type of filter

employed. For example, if an octave band filter is used, the spectrum analyzer is called an

octave band analyzer.

In recent years, digital analyzers have become quite popular for real-time signal analy-

sis. In a real-time frequency analysis, the signal is continuously analyzed over all the fre-

quency bands. Thus the calculation process must not take more time than the time taken to

collect the signal data. Real-time analyzers are especially useful for machinery health

monitoring, since a change in the noise or vibration spectrum can be observed at the same

time that change in the machine occurs. There are two types of real-time analysis proce-

dures: the digital filtering method and the fast Fourier transform (FFT) method [10.13].

10.6.1
Spectrum
Analyzers

frequency domain, the resulting frequency spectrum might appear as shown in Fig. 10.21(b),

where, for specificness, the energy is shown concentrated around 25 Hz. This frequency

can easily be related, for example, to the rotational speed of a particular motor. Thus the

acceleration spectrum shows a strong evidence that the motor might be the cause of vibra-

tion. If the motor is causing the excessive vibrations, changing either the motor or its speed

of operation might avoid resonance and hence the problem of excessive vibrations.
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10.6.2
Bandpass Filter

A bandpass filter is a circuit that permits the passage of frequency components of a signal

over a frequency band and rejects all other frequency components of the signal. A filter can

be built by using, for example, resistors, inductors, and capacitors. Figure 10.22 illustrates

the response characteristics of a filter whose lower and upper cutoff frequencies are and

respectively. A practical filter will have a response characteristic deviating from the

ideal rectangle, as shown by the full line in Fig. 10.22. For a good bandpass filter, the rip-

ples within the band will be minimum and the slopes of the filter skirts will be steep to

maintain the actual bandwidth close to the ideal value, For a practical filter,

the frequencies and at which the response is 3 dB4 below its mean bandpass response

are called the cutoff frequencies.

There are two types of bandpass filters used in signal analysis: the constant-percent band-

width filters and constant-bandwidth filters. For a constant-percent bandwidth filter, the ratio

of the bandwidth to the center (tuned) frequency, is a constant. The octave,51fu - fl2/fc,

fufl

B = fu - fl.

fu,
fl

0
+3

+10

+20

+30

+40
fl  fc *     fl fu  fu

Response (dB)

Frequency (Hz)

Ideal

Practical

Filter skirt

FIGURE 10.22 Response of a filter.

4A decibel (dB) of a quantity (such as power, P) is defined as

where P is the power and is a reference value of the power.

5An octave is the interval between any two frequencies whose frequency ratio is 2. Two fre-

quencies and are said to be separated by a number of octaves N when

where N can be an integer or a fraction. If we have an octave; if we get a one-third octave,

and so on.

N = 1/3,N = 1,

f2

f1
= 2N or N 1in octaves2 = log2 a

f2

f1
b

f2f1

1f2/f12,1f2 - f12,

Pref

Quantity in dB = 10 log10a
P

Pref

b

The digital filtering method is best suited for constant-percent bandwidth analysis, the FFT

method for constant-bandwidth analysis. Before we consider the difference between those

two approachers, we first discuss the basic component of a spectrum analyzer namely,

the bandpass filter.
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TABLE 10.1

Lower cutoff limit (Hz) 5.63 11.2 22.4 44.7 89.2 178 355 709 1410

Center frequency (Hz) 8.0 16.0 31.5 63.0 125 250 500 1000 2000

Upper cutoff limit (Hz) 11.2 22.4 44.7 89.2 178 355 709 1410 2820

0
*3
*10

*20

*30

*40
10 20 50 100 200 500 1000 2000 5000

Response (dB)

Frequency (Hz)

FIGURE 10.23 Response characteristic of a typical octave band filter set.

10.6.3
Constant-
Percent
Bandwidth
and Constant-
Bandwidth
Analyzers

The primary difference between the constant-percent bandwidth and constant-bandwidth

analyzers lies in the detail provided by the various bandwidths. The octave band filters,

whose upper cutoff frequency is twice the lower cutoff frequency, give a less detailed (too

coarse) analysis for practical vibration and noise encountered in machines. The one-half-

octave band filter gives twice the information but requires twice the amount of time to

obtain the data. A spectrum analyzer with a set of octave and one-third-octave filters can be

used for noise (signal) analysis. Each filter is tuned to a different center frequency to cover

the entire frequency range of interest. Since the lower cutoff frequency of a filter is equal

to the upper cutoff frequency of the previous filter, the composite filter characteristic will

appear as shown in Fig. 10.23. Figure 10.24 shows a real-time octave and fractional-octave

digital frequency analyzer. A constant-bandwidth analyzer is used to obtain a more

detailed analysis than in the case of a constant-percent bandwidth analyzer, especially in

the high-frequency range of the signal. The constant-bandwidth filter, when used with a

continuously varying center frequency, is called a wave or heterodyne analyzer. Hetero-

dyne analyzers are available with constant filter bandwidths ranging from one to several

hundred hertz. A practical heterodyne analyzer is shown in Fig. 10.25.

one-half-octave, and one-third-octave band filters are examples of constant-percent bandwidth

filters. Some of the cutoff limits and center frequencies of octave bands used in signal analysis

are shown in Table 10.1. For a constant-bandwidth filter, the bandwidth, is indepen-

dent of the center (tuned) frequency, fc.

fu - fl,

M10_RAO08193_5_SE_C10.qxd  8/22/10  1:11 PM  Page 898



10.6 SIGNAL ANALYSIS 899

FIGURE 10.24 Octave and fractional-octave digital frequency

analyzer. (Courtesy of Bruel and Kjaer Instruments, Inc., Marlborough, MA.)

FIGURE 10.25 Heterodyne

analyzer. (Courtesy of Bruel and Kjaer Instruments,

Inc., Marlborough, MA.)
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10.7 Dynamic Testing of Machines and Structures
The dynamic testing of machines (structures) involves finding their deformation at a criti-

cal frequency. This can be done using the following two approaches [10.3].

10.7.1
Using
Operational
Deflection-Shape
Measurements

In this method, the forced dynamic deflection shape is measured under the steady-state

(operating) frequency of the system. For the measurement, an accelerometer is mounted at

some point on the machine (structure) as a reference, and another moving accelerometer is

placed at several other points, and in different directions, if necessary. Then the magni-

tudes and the phase differences between the moving and reference accelerometers at all the

points under steady-state operation of the system are measured. By plotting these mea-

surements, we can find how the various parts of the machine (structure) move relative to

one another and also absolutely.

The deflection shape measured is valid only for the forces/frequency associated with

the operating conditions; as such, we cannot get information about deflections under other

forces and/or frequencies. However, the measured deflection shape can be quite useful. For

example, if a particular part or location is found to have excessive deflection, we can

stiffen that part or location. This, in effect, increases the natural frequency beyond the

operational frequency range of the system.

10.7.2
Using Modal
Testing

Since any dynamic response of a machine (structure) can be obtained as a combination of

its modes, a knowledge of the mode shapes, modal frequencies, and modal damping ratios

constitutes a complete dynamic description of the machine (structure). The experimental

modal analysis procedure is described in the following section.

10.8 Experimental Modal Analysis

10.8.1
The Basic Idea

Experimental modal analysis, also known as modal analysis or modal testing, deals with

the determination of natural frequencies, damping ratios, and mode shapes through vibra-

tion testing. Two basic ideas are involved:

1. When a structure, machine, or any system is excited, its response exhibits a sharp peak

at resonance when the forcing frequency is equal to its natural frequency when damp-

ing is not large.

2. The phase of the response changes by 180° as the forcing frequency crosses the nat-

ural frequency of the structure or machine, and the phase will be 90° at resonance.

10.8.2
The Necessary
Equipment

The measurement of vibration requires the following hardware:

1. An exciter or source of vibration to apply a known input force to the structure or

machine.

2. A transducer to convert the physical motion of the structure or machine into an elec-

trical signal.
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3. A signal conditioning amplifier to make the transducer characteristics compatible with

the input electronics of the digital data acquisition system.

4. An analyzer to perform the tasks of signal processing and modal analysis using suit-

able software.

Exciter. The exciter may be an electromagnetic shaker or an impact hammer. As

explained in Section 10.5.2, the electromagnetic shaker can provide large input forces

so that the response can be measured easily. Also the output of the shaker can be

controlled easily if it is of electromagnetic type. The excitation signal is usually of a

swept sinusoidal or a random type signal. In the swept sinusoidal input, a harmonic

force of magnitude F is applied at a number of discrete frequencies over a specific

frequency range of interest. At each discrete frequency, the structure or machine is

made to reach a steady state before the magnitude and phase of the response are

measured. If the shaker is attached to the structure or machine being tested, the mass of

the shaker will influence the measured response (known as the mass loading effect). As

such, care is to be taken to minimize the effect of the mass of the shaker. Usually the

shaker is attached to the structure or machine through a short thin rod, called a stringer,

to isolate the shaker, reduce the added mass, and apply the force to the structure or

machine along the axial direction of the stringer. This permits the control of the

direction of the force applied to the structure or machine.

The impact hammer is a hammer with a built-in force transducer in its head, as indi-

cated in Examples 4.7 and 4.8. The impact hammer can be used to hit or impact the struc-

ture or machine being tested to excite a wide range of frequencies without causing the

problem of mass loading. The impact force caused by the impact hammer, which is nearly

proportional to the mass of the hammer head and the impact velocity, can be found from

the force transducer embedded in the head of the hammer. As shown in Section 6.15, the

response of the structure or machine to an impulse is composed of excitations at each of

the natural frequencies of the structure or machine.

Although the impact hammer is simple, portable, inexpensive, and much faster to

use than a shaker, it is often not capable of imparting sufficient energy to obtain adequate

response signals in the frequency range of interest. It is also difficult to control the direc-

tion of the applied force with an impact hammer. A typical frequency response of a

structure or machine obtained using an impact hammer is shown in Fig. 10.26. The

shape of the frequency response is dependent on the mass and stiffness of both the ham-

mer and the structure or machine. Usually, the useful range of frequency excitation is

limited by a cutoff frequency, which implies that the structure or machine did not

receive sufficient energy to excite modes beyond The value of is often taken as the

frequency where the amplitude of the frequency response reduces by 10 to 20 dB from

its maximum value.

vcvc.

vc,

Transducer. Among the transducers, the piezoelectric transducers are most popular (see

Section 10.2.2). A piezoelectric transducer can be designed to produce signals pro-

portional to either force or acceleration. In an accelerometer, the piezoelectric material acts

as a stiff spring that causes the transducer to have a resonant or natural frequency. Usually,

the maximum measurable frequency of an accelerometer is a fraction of its natural
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FIGURE 10.26 Frequency response of an impulse created by an impact hammer.

frequency. Strain gages can also be used to measure the vibration response of a structure or

machine, as discussed in Section 10.2.1.

Signal Conditioner. Since the output impedance of transducers is not suitable for direct

input into the signal analysis equipment, signal conditioners, in the form of charge or

voltage amplifiers, are used to match and amplify the signals before signal analysis.

Analyzer. The response signal, after conditioning, is sent to an analyzer for signal pro-

cessing. A type that is commonly used is the fast Fourier transform (FFT) analyzer. Such an

analyzer receives analog voltage signals (representing displacement, velocity, acceleration,

strain, or force) from a signal-conditioning amplifier, filter, and digitizer for computations. It

computes the discrete frequency spectra of individual signals as well as cross-spectra between

the input and the different output signals. The analyzed signals can be used to find the natural

frequencies, damping ratios, and mode shapes in either numerical or graphical form.

The general arrangement for the experimental modal analysis of a structural or

mechanical system is shown in Fig. 10.27. Note that all the equipment is to be calibrated

before it is used. For example, an impact hammer is use more frequently in experimental

stress analysis. The reason is that it is more convenient and faster to use than a shaker. An

impact hammer consists of a force transducer or load cell built into the head (or tip) of the

hammer. The built in force transducer is to be calibrated dynamically whenever the head or

tip is changed. Similarly, the transducers, along with the signal conditioners, are to be cal-

ibrated with respect to magnitude and phase over the frequency range of interest.
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10.8.3
Digital Signal
Processing

The analyzer converts the analog time-domain signals, x(t), into digital frequency-domain

data using Fourier series relations, given by Eqs. (1.97) to (1.99), to facilitate digital com-

putation. Thus the analyzer accepts the analog output signals of accelerometers or force

transducers, x(t), and computes the spectral coefficients of these signals and using

Eqs. (1.97) to (1.99) in the frequency domain. The process of converting analog signals

into digital data is indicated in Fig. 10.28 for two representative signals. In Fig. 10.28,

x(t) denotes the analog signal and represents the corresponding digital record,

with indicating the ith discrete value of time. This process is performed by an analog-to-

digital (A/D) converter, which is part of a digital analyzer. If N samples of x(t) are collected

at discrete values of time, the data can be used to obtain the

discrete form of Fourier transform as

(10.45)xj = x1tj2 =
a0

2
+ a

N/2

i=1
aai cos  

2pitj

T
+ bi sin 

2pitj

T
b ;  j = 1, 2, Á , N

[x1(ti), x2(ti), Á , xN(ti)]ti,

ti

xi = x(ti)

bna0, an,

Elastic cord
(to simulate free-free
condition)

Force
transducer Accelerometer

Exciter (shaker)

Signal conditioner
(power amplifier)

Computer (acquires data and stores
frequency-response functions)

Spectrum (FFT) analyzer

Structure

FIGURE 10.27 Experimental modal analysis.
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x(t)

0
t

x(t)

0
t

(a)

0
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v1 v2 v3 v4 vn

0

xn

v1 vn

(b) 

0
tj

xj

0

xj

tj

(c) 

FIGURE 10.28 Representation of signals in different forms: (a) Signals in time domain.

(b) Signals in frequency domain. (c) Digital records of x(t).

where the digital spectral coefficients and are given by (see Eqs. (1.97) to (1.99))

(10.46)

(10.47)

(10.48)

with the number of samples N equal to some power of 2 (such as 256, 512, or 1024) which

is fixed for a given analyzer. Equations (10.46) to (10.48) denote N algebraic equations for

each of the N samples. The equations can be expressed in matrix form as

(10.49)

where is the vector of samples, 

is the vector of spectral coefficients, and [A] is the matrix composed of the coefficients

and of Eqs. (10.46) (10.48). The frequency content of the signal or

response of the system can be determined from the solution

(10.50)

where is computed efficiently using fast Fourier transform (FFT) by the analyzer.[A]-1

d
!

= [A] 
-1X

!

sin 

2pitj

T
cos 

2pitj

T

d
:

= 5a0 a1 a2
Á aN/2 b1 b2

Á bN/26
TX

!

= 5x1 x2 Á  xN6
T

X
!

= [A]d
!

 bi =
1

N
 a

N

j=1
xj sin  

2pitj

N

 ai =
1

N
 a

N

j=1
xj cos  

2pitj

N

 a0 =
1

N
 a

N

j=1
xj

bia0, ai,
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10.8.4
Analysis of
Random Signals

The input and output data measured by the transducers usually contain some random com-

ponent or noise that makes it difficult to analyze the data in a deterministic manner. Also,

in some cases random excitation is used in vibration testing. Thus random signal analysis

becomes necessary in vibration testing. If x(t) is a random signal, as shown in Fig. 10.29,

its average or mean, denoted as is defined as6

(10.51)

which, for a digital signal, can be expressed as

(10.52)

Corresponding to any random signal y(t), we can always define a new variable x(t) as

so that the mean value of x(t) is zero. Hence, without loss of general-

ity, we can assume the signal x(t) to have a zero mean and define the mean square value or

variance of x(t), denoted as as

(10.53)

which, for a digital signal with N samples of x(t) at can be expressed as

(10.54)

The root mean square (RMS) value of x(t) is given by

(10.55)xRMS = 4x2

x2
= lim

n:q
 
1

Na
N

j=1
x2

1tj2

t = t1, t2, Á , tN,

x2
1t2 = lim

N:q
 
1

TL

T

0
x2

1t2 dt

x2(t),

x(t) = y(t) - y(t),

x = lim
N:q

 
1

N
 a

N

j=1
x1tj2

x1t2 = lim
T:q

 
1

NL

T

0
x1t2 dt

x,

6A detailed discussion of random signals (processes) and random vibration is given in Chapter 14.

x(t)

t

FIGURE 10.29 A random signal, x(t).
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The autocorrelation function of a random signal x(t), denoted as R(t), gives a measure of

the speed with which the signal changes in the time domain and is defined as

(10.56)

which, for a digital signal, can be written as

(10.57)

where N is the number of samples, is the sampling interval, and n is an adjustable

parameter that can be used to control the number of points used in the computation. It can

be seen that R(0) denotes the mean square value, of x(t). The autocorrelation function

can be used to identify the presence of periodic components present (buried) in a random

signal. If x(t) is purely random, then as However, if x(t) is periodic or

has a periodic component, then R(t) will also be periodic.

The power spectral density (PSD) of a random signal x(t), denoted as gives a

measure of the speed with which the signal changes in the frequency domain and is defined

as the Fourier transform of R(t):

(10.58)

which, in digital form, can be expressed as

(10.59)

where represents the magnitude of the Fourier transform of the sampled data of

x(t). The definitions of autocorrelation and PSD functions can be extended for two differ-

ent signals, such as a displacement signal x(t) and an applied force signal f(t). This leads to

the cross-correlation function, and the cross-PSD 

(10.60)

(10.61)

Equations (10.60) and (10.61) permit the determination of the transfer functions of the

structure or machine being tested. In Eq. (10.60), if is replaced by wex(t + t),f(t + t)

Sxf1v2 =
1

2pL

q

-q
Rxf1t2e- 

ivt dt

Rxf1t2 = lim
T:q 

1

TL

T

0
x1t2f1t + t2 dt

Sxf(v):Rxf(t)

x(v) 2

S1¢v2 =
x1v2 2

N ¢t

S1v2 =
1

2pL

q

-q
R1t2e- 

ivt dt

S(v),

T: q .R(t): 0

x2,

¢t

R1n, ¢t2 =
1

N - n
 a
N-n

j=0
xjxj+n

R1t2 = x2 = lim
T:q

 
1

TL

T

0
x1t2x1t + t2 dt
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obtain which when used in Eq. (10.61), leads to The frequency-response

function, is related to the PSD functions as

(10.62)

(10.63)

(10.64)

with f(t) and x(t) denoting the random force input and the resulting output response,

respectively. given by Eq. (10.62), contains information about the magnitude of

the transfer function of the system (structure or machine), while and given

by Eqs. (10.63) and (10.64), contain information about both magnitude and phase. In vib-

ration testing, the spectrum analyzer first computes different spectral density functions

from the transducer output, and then computes the frequency-response functuion of

the system using Eqs. (10.63) and (10.64).

Coherence Function. A function, known as coherence function is defined as a

measure of the noise present in the signals as

(10.65)

Note that if the measurements of x and f are pure noises, then and if the measure-

ments of x and f are not contaminated at all with noise, then The plot of a typical

coherence function is shown in Fig. 10.30. Usually, near the natural frequency of

the system because the signals are large and are less influenced by the noise.

b L 1
b = 1.
b = 0,

b  1v2 = a

Sfx1v2

Sff1v2
b a

Sxf1v2

Sxx1v2
b =

Sxf1v2
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Sxx1v2Sff1v2

(b),

H(iv)

Sxx(v),Sxf(v)
Sxx(v),
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FIGURE 10.30 A typical coherence function.

10.8.5

Determination
of Modal Data

from Observed

Peaks

The frequency-response function, computed from Eq. (10.63) or (10.64), can be

used to find the natural frequencies, damping ratios, and mode shapes corresponding to all

resonant peaks observed in the plot of Let the graph of the frequency-response

function be as shown in Fig. 10.31, with its four peaks or resonances suggesting that the

system being tested can be modeled as a four-degree-of-freedom system. Sometimes it

H(iv).

H(iv),
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v1
v1

(1)
v1

(2)
v2 v3 v4 v

*H(iv1)*

*H(iv1)*

2

*H(iv)*

FIGURE 10.31 A typical graph of the frequency-response function of a structure or machine,

obtained using Eq. (10.63) or (10.64).

becomes difficult to assign the number of degrees of freedom to the system, especially

when the resonant peaks are closely spaced in the graph of which can be plotted by

applying a harmonic force of adjustable frequency at a specific point of the structure or

machine, measuring the response (for example, displacement) at another point, and finding

the value of the frequency-response function using Eq. (10.63) or (10.64). The graph of

similar to Fig. 10.31, can be plotted by finding the values of at a number of

frequencies of the applied harmonic force.

A simple method of finding the modal data involves the use of a single-degree-of-

freedom approach. In this method, the graph of is partitioned into several frequency

ranges with each range bracketing one peak, as shown in Fig. 10.31. Each partitioned fre-

quency range is then considered as the frequency-response function of a single-degree-of-

freedom system. This implies that the frequency-response function in each frequency

range is dominated by that specific single mode. As observed in Section 3.4, a peak

denotes a resonance point corresponding to a phase angle of 90°. Thus the resonant fre-

quencies can be identified as the peaks in the graph of which can be confirmed

from an observation of the values of the phase angle to be 90° at each of the peaks. The

damping ratio corresponding to peak j, with resonant frequency in Fig. 10.31 denotes

the modal damping ratio, This ratio can be found, using Eq. (3.45), as

(10.66)zj =
vj

(2)
- vj

(1)

2 vj

zj.
vj,

H(iv),

H(iv)

H(iv)H(iv),

H(iv),
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10.8 EXPERIMENTAL MODAL ANALYSIS 909

where and known as half-power points, lie on either side of the resonant fre-

quency and satisfy the relation

(10.67)

Note that actually represents the damped natural frequency of the system being tested.

However, when damping is small, can be considered approximately equal to the

undamped natural frequency of the system. When the system being tested is approximated

as a k-degree-of-freedom system ( for the system corresponding to Fig. 10.31), each

peak observed in the graph of is assumed to be a single-degree-of-freedom system,

and the k resonant frequencies (peaks) and the corresponding damping ratios are deter-

mined by repeating the above procedure (and using an application of Eq. (10.66)) k times.

H(iv)
k = 4

vj

vj

H1ivj
(1)

2 = H1ivj
(2)

2 =
H1ivj2

22

vj

vj
(2),vj

(1)

E X A M P L E  1 0 . 5
Determination of Damping Ratio from Bode Diagram

The graphs showing the variations of the magnitude of the response and its phase angle with the fre-

quency of a single-degree-of-freedom system, as indicated in Fig. 3.11, provides the frequency

response of the system. Instead of dealing with the magnitude curves directly, if the logarithms of the

magnitude ratios (in decibels) are used, the resulting plots are called Bode diagrams. Find the natural

frequency and the damping ratio of a system whose Bode diagram is shown in Fig. 10.32.

Solution: The natural frequency, which corresponds approximately to the peak response of the

system, can be seen to be 10 Hz and the peak response to be The half-power points-35 dB.
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FIGURE 10.32 Bode diagram.
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910 CHAPTER 10 VIBRATION MEASUREMENT AND APPLICATIONS

correspond to frequencies and , where the response amplitude is equal to 0.707 times the peak

response. From Fig. 10.32, the half-power points can be identified as and 

thus the damping ratio can be determined by using Eq. (10.66) as

*

The procedure described in this section for finding the modal parameters is basically a

visual approach. A more systematic, computer-based approach that can be implemented by

the analyzer in conjunction with suitable programming is presented in the next section.

z =
v2 - v1

2vn

=
10.5 - 9.6

2110.02
= 0.045

v2 = 10.5 Hz;v1 = 9.6 Hz

v2v1

10.8.6
Determination
of Modal Data
from Nyquist
Plot

According to in this method, a single mode is also assumed to dominate in the neighbor-

hood of its natural frequency in the frequency-response function. When the real and

imaginary parts of the frequency-response function of a single-degree-of-freedom system

(given by Eq. (3.54)) are plotted along the horizontal and vertical axes of a graph for a

range of frequencies, the resulting graph will be in the form of a circle, known as the

Nyquist circle or Nyquist plot. The frequency-response function, given by Eq. (3.54), can be

written as

(10.68)

where

(10.69)

(10.70)

(10.71)

During vibration testing, the analyzer has the driving frequency values and the corre-

sponding computed values of and from the measured data. The

graph between u and v resembles a circle for large values of damping while it increas-

ingly assumes the shape of a circle as the damping becomes smaller and smaller, as shown

in Fig. 10.33.

1z2,

v = Im (a)u = Re (a)

v

 v = Imaginary part of a1iv2 =
-2zr

11 - r
2
2

2
+ 4z2

r
2

 u = Real part of a1iv2 =
1 - r

2

11 - r
2
2

2
+ 4z2

r
2

 r =
v

vn

a1iv2 =
1

1 - r
2
+ i2zr

= u + iv
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10.8 EXPERIMENTAL MODAL ANALYSIS 911

Properties of Nyquist Circle. To identify the properties of the Nyquist circle, we first

observe that large values of u and v are attained in the vicinity of resonance, In that

region, we can replace in Eqs. (10.70) and (10.71) as

so that

(10.72)

(10.73)

It can be easily verified that u and v, given by Eqs. (10.72) and (10.73), satisfy the relation

(10.74)

which denotes the equation of a circle with its center at and radius 

The half-power points occur at which correspond to and 

These points are located at the two ends of the horizontal diameter of the circle, at which

point u has its maximum magnitude.

v =
1

4 z
.u = ;  

1

4 z
r = 1 ; z,

1

4 z
.Au = 0, v = -  

1

4z B

u
2
+ av +

1

4z
b

2

= a
1

4z
b

2

 v = Im 1a2 L
- z

2[11 - r2
2
+ z

2
]

 u = Re 1a2 L
1 - r

2[11 - r2
2
+ z

2
]

1 - r
2
= 11 + r2 11 - r2 L 2 11 - r2         and         2z r L 2 z

1 - r
2

r = 1.
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FIGURE 10.33 Nyquist circle.
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912 CHAPTER 10 VIBRATION MEASUREMENT AND APPLICATIONS

10.8.7
Measurement 
of Mode Shapes

To determine the mode shapes from vibration testing, we need to express the equations of

motion of the multidegree-of-freedom system in modal coordinates [10.18]. For this, we

first consider an undamped system.

Undamped Multidegree-of-Freedom System. The equations of motion of an undamped

multidegree-of-freedom system in physical coordinates are given by

(10.75)

For free harmonic vibration, Eq. (10.75) becomes

(10.76)

where is the i th natural frequency and is the corresponding mode shape. The orthog-

onality relations for the mode shapes can be expressed as

(10.77)

(10.78)

where [Y] is the modal matrix containing the modes as columns (N denotes

the number of degrees of freedom of the system, also equal to the number of measured nat-

ural frequencies or peaks), and are the elements of diag [M ] and diag [K], also called

the modal mass and modal stiffness, respectively, corresponding to mode i, and

(10.79)

When the forcing functions are harmonic, with Eq. (10.75)

yields

(10.80)x
!
1t2 = X

!
ei
'
v t= C[k] - v2 [m] D  

-1
F
!
ei
'

 v t K [a1v2]F
!
ei
'

  v t

i
'
= 1-1,f

!
(t) = F

!
ei
'
v t,

vi
2 =

Ki

Mi

KiMi

y
!
1, y
!
2, Á , y

!
N

 [Y]T[k][Y] = diag[K] K C
aKiRD

 [Y]T[m][Y] = diag[M] K C
aMiRD

y
!
ivi

C[k] - vi
2[m] Dy

!
i = 0

!

[m]x
!$
+ [k]x

!
= f

!

These observations can be used to find and Once the measured values of

the frequency-response function are available (with the applied force magnitude

fixed) for a range of driving frequencies instead of searching for the peak in the plot

of versus we can construct the Nyquist plot of Re against Im 

by using a least squares approach to fit a circle. This process also averages out the exper-

imental errors. The intersection of the fitted circle with the negative imaginary axis will

then correspond to The bandwidth, is given by the difference of 

the frequencies at the two horizontal diametral points, from which can be found as

z = a
v122 - v112

2vn
b .

z

1v(2) - v(1)
2,H1ivn2.

(H(iv))(H(iv))v,H(iv)
v,

H(iv)
z.vn (r = 1)
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10.8 EXPERIMENTAL MODAL ANALYSIS 913

where is called the frequency-response function or receptance matrix of the system.

Using the orthogonality relations of Eqs. (10.77) and (10.78), can be expressed as

(10.81)

An individual element of the matrix lying in row p and column q denotes the har-

monic response of one coordinate, caused by a harmonic force applied at another coor-

dinate, (with no other forces), and can be written as

(10.82)

where denotes the jth component of mode If the modal matrix [Y] is further nor-

malized (rescaled or mass-normalized) as

(10.83)

the shape of the modes will not change, but Eq. (10.82) becomes

(10.84)

Damped Multidegree-of-Freedom System. The equations of motion of a damped multi-

degree-of-freedom system in physical coordinates are given by

(10.85)

For simplicity, we assume proportional damping, so that the damping matrix [c] can be

expressed as

(10.86)

where a and b are constants. Then the undamped mode shapes of the system, and ,

diagonalize not only the mass and stiffness matrices, as indicated in Eqs. (10.77) and

(10.78), but also the damping matrix:

(10.87)[Y]T[c][Y] = diag [C] = C
aCiRD

f
!

iy
!
i

[c] = a[k] + b[m]

[m]x
!$
+ [c]x

!#
+ [k]x

!
= f

!

apq1v2 = a
N

i=1

Af
!

i Bp Af
!

i Bq

vi
2 - v2

f
!

1, f
!

2, Á , f
!

N

[£] K Cf
!

1 f
!

2 
Á f

!

N D = [Y][M]-1/2

y
!
i.( y

!
i)j

 = a
N

i=1
 

Ay
!
i Bp Ay

!
i Bq

Ki - v2Mi

 apq1v2 = [a1v2]pq =
Xp

Fq
`

with Fj=0; j=1, 2, . . . , N; jZq

Fq

Xp,
[a(v)]

[a1v2] = [Y] C[K] - v2 [M] D

-1
[Y]T

[a(v)]
[a(v)]
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914 CHAPTER 10 VIBRATION MEASUREMENT AND APPLICATIONS

Thus the mode shapes of the damped system will remain the same as those of the undamped

system, but the natural frequencies will change and in general become complex. When the

forcing vector is assumed to be harmonic in Eq. (10.85), the frequency-response function

or receptance can be derived as

(10.88)

When mass-normalized mode shapes are used (see Eq. 10.83), becomes

(10.89)

where is the damping ratio in mode i.

As indicated earlier, the element of the matrix in row p and column q,

denotes the transfer function between the displacement or response

at point and the input force at point of the system being tested (with all other

forces equal to zero). Since this transfer function denotes the ratio it is given by

Thus

(10.90)

If the peaks or resonant (natural) frequencies of the system are well separated, then the

term corresponding to the particular peak (ith peak) dominates all other terms in the sum-

mation of Eq. (10.88) or (10.89). By substituting in Eq. (10.89), we obtain

or

or

(10.91)

It can be seen that Eq. (10.91) permits the computation of the absolute value of 

using the measured values of the natural frequency damping ratio , and the trans-

fer function at peak i. To determine the sign of the element theAf
!
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10.9 MACHINE-CONDITION MONITORING AND DIAGNOSIS 915

phase plot of can be used. Since there are only N independent unknown compo-

nents of in the elements of the matrix N measurements of

are required to determine the mode shape corresponding to the modal fre-

quency This can be achieved by measuring the displacement or response of the system

at point q with input at point 1 first, at point 2 next, and at point N last.

10.9 Machine-Condition Monitoring and Diagnosis
Most machines produce low levels of vibration when designed properly. During operation,

all machines are subjected to fatigue, wear, deformation, and foundation settlement. These

effects cause an increase in the clearances between mating parts, misalignments in shafts,

initiation of cracks in parts, and unbalances in rotors all leading to an increase in the level

of vibration, which causes additional dynamic loads on bearings. As time progresses, the

vibration levels continue to increase, leading ultimately to the failure or breakdown of the

machine. The common types of faults or operating conditions that lead to increased levels

of vibration in machines include bent shafts, eccentric shafts, misaligned components,

unbalanced components, faulty bearings, faulty gears, impellers with faulty blades, and

loose mechanical parts.

Á ,

vi.

f
!
iHpq1vi2

C Af
!
i Bp Af

!
i Bq D = Cf

!
i f
!
i
T
Dpq,N2f

!
i

Hpq1vi2

10.9.1
Vibration
Severity Criteria

The vibration severity charts, given by standards such as ISO 2372, can be used as a guide

to determine the condition of a machine. In most cases, the root mean square (RMS) value

of the vibratory velocity of the machine is compared against the criteria set by the stan-

dards. Although it is very simple to implement this procedure, the overall velocity signal

used for comparison may not give sufficient warning of the imminent damage of the

machine.

10.9.2
Machine
Maintenance
Techniques

The life of a machine follows the classic bathtub curve shown in Fig. 10.34. Since the fail-

ure of a machine is usually characterized by an increase in vibration and/or noise level, the

vibration level also follows the shape of the same bathtub curve. The vibration level

decreases during the initial running-in period, then increases very slowly during the nor-

mal operating period due to the normal wear, and finally increases rapidly due to excessive

wear until failure or breakdown in the wearout period.

Three types of maintenance schemes can be used in practice:

1. Breakdown maintenance. The machine is allowed to fail, at which time the failed

machine is replaced by a new one. This strategy can be used if the machine is inex-

pensive to replace and the breakdown does not cause any other damage. Otherwise,

the cost of lost production, safety risks, and additional damage to other machines

make this scheme unacceptable.

2. Preventive maintenance. Maintenance is performed at fixed intervals such as every

3000 operating hours or once a year. The maintenance intervals are usually determined
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916 CHAPTER 10 VIBRATION MEASUREMENT AND APPLICATIONS

statistically from past experience. Although this method reduces the chance of unex-

pected breakdowns, it has been found to be uneconomical. The stoppage for mainte-

nance involves not only lost production time but also a high risk of introducing

imperfections due to human error. In addition, the probability of failure of a machine

component cannot be reduced by replacing it with a new one during the normal

wearout period.

3. Condition-based maintenance. The fixed-interval overhauls are replaced by fixed-

interval measurements that permit the observation of changes in the running condition

of the machine regularly. Thus the onset of fault conditions can be detected and their

developments closely followed. The measured vibration levels can be extrapolated in

order to predict when the vibration levels reach unacceptable values and when the

machine must be serviced. Hence this scheme is also known as predictive maintenance.

In this method, the maintenance costs are greatly reduced due to fewer catastrophic

failures, better utilization of spare parts, and elimination of the unnecessary preventive

maintenance. The vibration level (and hence the failure probability) of the machine due

to condition-based maintenance follows the shape indicated in Fig. 10.35.

10.9.3
Machine-
Condition
Monitoring
Techniques

Several methods can be used to monitor the condition of a machine, as indicated in

Fig. 10.36. Aural and visual methods are the basic forms of monitoring techniques in which

a skilled technician, having an intimate knowledge of machines, can identify a failure

simply by listening to the sounds and/or visually observing the large amplitudes of

vibration produced by a damaged machine. Sometimes a microphone or a stroboscope is

used to hear the machine noise. Similarly, devices ranging from magnifying glasses to

Time

Infant
mortality
(initial
running-in)
period

Useful (normal
operating) period

Wearout
(aging)
period

Deterioration
(failure
probability)

FIGURE 10.34 The bathtub curve for the life of a machine.
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maintenance
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(if no
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FIGURE 10.35 Condition-based maintenance.

Aural Visual Operational
variables

Temperature Wear
debris

Vibration

Machine-condition monitoring techniques

FIGURE 10.36 Machine-condition monitoring techniques.

stroboscopes are used to visually monitor the condition of a machine. Current and volt-

age monitoring can be used for the condition monitoring of electrical drives such as

large generators and motors.

In the operational-variables method of monitoring, also known as performance or duty-

cycle monitoring, the performance of a machine is observed with regard to its intended

duty. Any deviation from the intended performance denotes a malfunction of the machine.

Temperature monitoring involves measuring the operational or surface temperature of a

machine. This method can be considered as a kind of operational-variables method.

A rapid increase in the temperature of a component, occurring mostly due to wear, is an

indication of a malfunction such as inadequate lubricant in journal bearings. Temperature

monitoring uses such devices as optical pyrometers, thermocouples, thermography, and

resistance thermometers. In some cases, dye penetrants are used to identify cracks occurring
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Time- 
domain

techniques

Frequency- 
domain

techniques
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techniques

Waveform
Shaft orbits
Statistical analysis

Machine vibration monitoring techniques

FIGURE 10.37 Machine vibration monitoring

techniques.

Time-Domain Analysis

Time Waveforms. Time-domain analysis uses the time history of the signal (waveform).

The signal is stored in an oscilloscope or a real-time analyzer and any nonsteady or

transient impulses are noted. Discrete damages such as broken teeth in gears and cracks in

inner or outer races of bearings can be identified easily from the waveform of the casing

of a gearbox. As an example, Fig. 10.38 shows the acceleration signal of a single-stage

gearbox. The pinion of the gear pair is coupled to a 5.6-kW, 2865-rpm, AC electric motor.

Since the pinion (shaft) speed is 2865 rpm or 47.75 Hz, the period can be noted as

20.9 ms. The acceleration waveform indicates that pulses occur periodically with a period

of 20 ms approximately. Noting that this period is the same as the period of the pinion, the

origin of the pulses in the acceleration signal can be attributed to a broken gear tooth on

the pinion.

on the surface of a machine. This procedure requires the use of heat-sensitive paints,

known as thermographic paints, to detect surface cracks on hot surfaces. In such cases, the

most suitable paint matching the expected surface temperature is selected.

Wear debris is generated at relative moving surfaces of load-bearing machine elements.

The wear particles that can be found in the lubricating oils or grease can be used to assess

the extent of damage. As wear increases, the particles of the material used to construct

machine components such as bearings and gears can be found in increasing concentration.

Thus the severity of the wear can be assessed by observing the concentration (quantity),

size, shape, and color of the particles. Note that the color of the particles indicates how hot

they have been.

Vibration analysis is most commonly used for machine-condition monitoring. Vib-

ration in machines is caused by cyclic excitation forces arising from imbalances, wear,

or failure of parts. What type of changes occur in the vibration level, how these changes

can be detected, and how the condition of the machine is interpreted has been the topic

of several research studies in the past. The available vibration monitoring techniques can

be classified as shown in Fig. 10.37. These techniques are described in the following

section.

10.9.4
Vibration
Monitoring
Techniques
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FIGURE 10.38 Time-domain waveform of a faulty gearbox

[10.23].

Indices. In some cases, indices such as the peak level, the root mean square (RMS)

level, and the crest factor are used to identify damage in machine-condition monitoring.

Since the peak level occurs only once, it is not a statistical quantity and hence is not a

reliable index to detect damage in continuously operating systems. Although the RMS

value is a better index to detect damage in steady-state applications, it may not be

useful if the signal contains information from more than one component, as in the case

of vibration of a complete gearbox that consists of several gears, shafts, and bearings.

The crest factor, defined as the ratio of the peak to RMS level, includes information

from both the peak and the RMS levels. However, it may also not be able to identify

failure in certain cases. For example, if the failure occurs progressively, the RMS level

of the signal might be increasing gradually, although the crest factor might be showing

a decreasing trend.

Orbits. Sometimes, certain patterns known as Lissajous figures can be obtained by

displaying time waveforms obtained from two transducers whose outputs are shifted

by 90° in phase. Any change in the pattern of these figures or orbits can be used to

identify faults such as misalignment in shafts, unbalance in shafts, shaft rub, wear in

journal bearings, and hydrodynamic instability in lubricated bearings. Figure 10.39

illustrates a change in orbit caused by a worn bearing. The enlarged orbit diameter in

the vertical direction indicates that the bearing has become stiffer in the horizontal

direction that is, it has more bearing clearance in the vertical direction.

Statistical Methods

Probability Density Curve. Every vibration signal will have a characteristic shape for its

probability density curve. The probability density of a signal can be defined as the prob-

ability of finding its instantaneous amplitude within a certain range, divided by the range.

Usually, the waveform corresponding to good components will have a bell-shaped

probability density curve similar to normal distribution. Thus any significant deviation

from the bell shape can be associated with the failure of a component. Since the use of the
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920 CHAPTER 10 VIBRATION MEASUREMENT AND APPLICATIONS

probability density curve involves the comparison of variations in shape rather than

variations in amplitudes, it is very useful in the diagnosis of faults in machines.

Moments. In some cases, the moments of the probability density curve can be used for

the machine-condition monitoring. The moments of the curve are similar to mechanical

moments about the centroidal axis of the area. The first four moments of a probability

density curve (with proper normalization) are known as the mean, standard deviation,

skewness, and kurtosis, respectively. For practical signals, the odd moments are usually

close to zero and the even moments denote the impulsiveness of the signal. The fourth-

order moment, kurtosis, is commonly used in machine-condition monitoring. The kurtosis

is defined as

(10.92)

where f(x) is the probability density function of the instantaneous amplitude, x(t), at time

is the mean value, and is the standard deviation of x(t). Faults such as cracked races

and spalling of rollers and balls in bearings cause relatively large pulses in the time-

domain waveform of the signal, which in turn lead to large values of kurtosis. Thus an

increase in the value of kurtosis can be attributed to the failure of a machine component.

Frequency-Domain Analysis

Frequency Spectrum. The frequency-domain signal or frequency spectrum is a plot of

the amplitude of vibration response versus the frequency and can be derived by using

the digital fast Fourier analysis of the time waveform. The frequency spectrum provides

valuable information about the condition of a machine. The vibration response of a

machine is governed not only by its components but also by its assembly, mounting,
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FIGURE 10.39 Change in orbit due to a bearing failure

[10.23].

M10_RAO08193_5_SE_C10.qxd  8/22/10  1:11 PM  Page 920
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and installation. Thus the vibration characteristics of any machine are somewhat unique

to that particular machine; hence the vibration spectrum can be considered as the

vibration signature of that machine. As long as the excitation forces are constant or vary

by small amounts, the measured vibration level of the machine also remains constant or

varies by small amounts. However, as the machine starts developing faults, its vibration

level and hence the shape of the frequency spectrum change. By comparing the fre-

quency spectrum of the machine in damaged condition with the reference frequency

spectrum corresponding to the machine in good condition, the nature and location of the

fault can be detected. Another important characteristic of a spectrum is that each rotating

element in a machine generates identifiable frequency, as illustrated in Fig. 10.40; thus

the changes in the spectrum at a given frequency can be attributed directly to the

corresponding machine component. Since such changes can be detected more easily

compared to changes in the overall vibration levels, this characteristic will be very

valuable in practice.

Since the peaks in the spectrum relate to various machine components, it is necessary

to be able to compute the fault frequencies. A number of formulas can be derived to find

the fault frequencies of standard components like bearings, gearboxes, pumps, fans, and

pulleys. Similarly, certain standard fault conditions can be described for standard faults

such as unbalance, misalignment, looseness, oil whirl, and resonance.

Feedwater
pump
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(b)
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FIGURE 10.40 Relationship between machine components and the

vibration spectrum.
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Quefrency-Domain Analysis. Quefrency serves as the abscissa (x-axis) for a parameter

known as cepstrum, similar to frequency, that serves as the abscissa for the parameter

spectrum. Several definitions are available for the term cepstrum in the literature.

Originally, cepstrum was defined as the power spectrum of the logarithm of the power

spectrum. If x(t) denotes a time signal, its power spectrum, is given by

(10.93)

where denotes the Fourier transform of 

(10.94)

Thus the cepstrum, is given by

(10.95)

Later, the cepstrum was defined as the inverse Fourier transform of the logarithm of the

power spectrum, so that becomes

(10.96)

The word cepstrum is derived by rearranging the letters in the word spectrum. The reason

for this link is that the cepstrum is basically the spectrum of a spectrum. In fact, many of

the terms used in spectrum analysis have been modified for use in cepstrum analysis.

A few examples are given below:

Quefrency Frequency

Rahmonics Harmonics

Gamnitude Magnitude

Saphe Phase

From this, it is logical to see why quefrency serves as the abscissa of the cepstrum.

In practice, the choice of the definition of cepstrum is not critical, since both defini-

tions Eqs. (10.95) and (10.96) show distinct peaks in the same location if there is strong

periodicity in the (logarithmic) spectrum. The cepstrum is useful in machine-condition mon-

itoring and diagnosis, since it can detect any periodicity in the spectrum caused by the failure

of components, such as a blade in a turbine and a gear tooth in a gearbox. As an example, the

spectra and cepstra of two truck gearboxes, one in good condition and the other in bad con-

dition, running on a test stand with first gear in engagement, are shown in Figs. 10.41(a) to

(d). Note that in Fig. 10.41(a), the good gearbox shows no marked periodicity in its spectrum

while the bad gearbox indicates a large number of sidebands with an approximate spacing of

10 Hz in its spectrum (Fig. 10.41(b)). This spacing cannot be determined more accurately from

Fig. 10.41(b). Similarly, the cepstrum of the good gearbox does not indicate any quefrencies

prominently (Fig. 10.41(d)). However, the cepstrum of the bad gearbox (Fig. 10.41(c)) indi-

cates three prominant quefrencies at 28.1 ms (35.6 Hz), 95.9 ms (10.4 Hz), and 191.0 ms (5.2

Hz). The first series of rahmonics corresponding to 35.6 Hz has been identified to correspond

c1t2 = F -1 
5log SX1v26

c(t)

c1t2 = F5log SX1v26
2

c(t),

F5x1t26=
1

TL

T
2

- 
T
2

  x1t2eivt dt

56:F56

SX1v2 = F5x1t26 2

SX(v),
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FIGURE 10.41 Spectrum and cepstrum of a gearbox

[10.24].

to the input speed of the gearbox. The theoretical output speed is 5.4 Hz. Thus the rahmonics

corresponding to 10.4 Hz are not expected to be same as the second harmonic of the output

speed, which would be 10.8 Hz. A careful examination revealed that the rahmonics corre-

sponding to the frequency 10.4 Hz are same as the speed of the second gear. This indicates

that the second gear was at fault although the first gear was in engagement.
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924 CHAPTER 10 VIBRATION MEASUREMENT AND APPLICATIONS

10.9.6
Choice of
Monitoring
Parameter

Piezoelectric accelerometers are commonly used for measuring the vibration of machines.

They are preferred because of their smaller size, superior frequency and dynamic range,

reliability over long periods, and robustness. When an accelerometer is used as the vibra-

tion pickup, the velocity and displacements can be obtained from the integrators built into

the analyzer. Thus the user can choose between acceleration, velocity, and displacement

as the monitoring parameter. Although any of these three spectra can be used for the con-

dition monitoring of a machine, usually the velocity spectrum will be the flattest one

(indicating that the range of velocity amplitudes is the smallest). Since a change in the

amplitude of velocity can be observed easily in a flatter spectrum, velocity is commonly

used as the parameter for monitoring the condition of machines.

10.9.5
Instrumentation
Systems

Based on their degree of sophistication, three types of instrumentation systems can be used

for condition monitoring of machines the basic system, the portable system, and the

computer-based system. The first type, which can be labeled as the basic system, consists

of a simple pocket-sized vibration meter, a stroboscope, and a headset. The vibration meter

measures the overall vibration levels (RMS or peak values of acceleration or velocity) over

suitable frequency ranges, the stroboscope indicates the speed of the machine, and the

headset aids in hearing the machine vibration. The overall RMS velocity readings can be

compared with published severity charts and any need for condition-based maintenance

can be established. The overall vibration levels can also be plotted against time to find how

rapidly the condition of the machine is changing. The vibration meter can also be used in

conjunction with a pocket computer to collect and store the measurements. Sometimes, an

experienced operator can hear the vibration (sound) of a machine over a period of time and

find its condition. In some cases, faults such as misalignment, unbalance, or looseness of

parts can be observed visually.

The portable condition-monitoring system consists of a portable fast Fourier trans-

form (FFT) vibration analyzer based on battery power. This vibration analyzer can be

used for fault detection by recording and storing vibration spectra from each of the mea-

surement points. Each newly recorded spectrum can be compared with a reference spec-

trum that was recorded at that particular measurement point when the machine was

known to be in good condition. Any significant increase in the amplitudes in the new

spectrum indicates a fault that needs further investigation. The vibration analyzer also has

certain diagnostic capability to identify problems such as faulty belt drives and gearboxes

and loose bearings. When the fault diagnosed requires a replacement of parts, it can be

done by the operator. If a rotor requires balancing, the vibration analyzer can be used to

compute the locations and magnitudes of the correction masses necessary to rebalance the

rotor.

The computer-based condition-monitoring system is useful and economical when the

number of machines, the number of monitoring points, and the complexity of fault detection

increases. It consists of an FFT vibration analyzer coupled with a computer for maintaining

a centralized database that can also provide diagnostic capabilities. The data are stored on a

disk, allowing them to be used for spectrum comparison or for three-dimensional plots (see

Fig. 10.42). Certain computer-based systems use tape recorders to record vibration signals

from each machine at all the measurement points. These measurements can be played back

into the computer for storage and postprocessing.
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Frequency

Vibration level

Time
Trend
(increasing
vibration
level)

FIGURE 10.42 Three-dimensional plot of data.

E X A M P L E  1 0 . 6
Plotting of Nyquist Circle

Using MATLAB, plot the Nyquist circle for the following data:

a.

b.

Solution: Equations (10.70) and (10.71) are plotted along the horizontal and vertical axes. The

MATLAB program to plot the Nyquist circle is given below.

%Ex10_6.m

zeta = 0.05;

for i = 1: 10001

r(i) = 50 * (i 1) / 10000;

Re1(i) = ( 1 r(i)^2 )/( (1 r(i)^2)^2 + 4*zeta^2*r(i)^2 );

Im1(i) = 2*zeta*r(i)/( (1 r(i)^2)^2 + 4*zeta^2*r(i)^2 );

end

zeta = 0.75;

for i = 1: 10001

r(i) = 50 *(i 1) / 10000;

Re2(i) = ( 1 r(i)^2 )/( (1 r(i)^2)^2 + 4*zeta^2*r(i)^2 );

Im2(i) = 2*zeta*r(i)/( (1 r(i)^2)^2 + 4*zeta^2*r(i)^2 );

end

plot(Re1, Im1);

title('Nyquist plot: zeta = 0.05');

ylabel('Imaginary axis');

xlabel('Real axis');

pause;

plot(Re2, Im2);

title('Nyquist plot: zeta = 0.75');

ylabel('Imaginary axis');

xlabel('Real axis');

z = 0.05

z = 0.75

10.10 Examples Using MATLAB
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E X A M P L E  1 0 . 7
Plotting of Accelerometer Equation

Using MATLAB, plot the ratio of measured to true accelerations, given by

(E.1)

for 0.25, 0.5, 0.75, and 1.0.

Solution: The MATLAB program to plot Eq. (E.1) in the range is given below.

%Ex10_7.m

zeta = 0.0;

for i = 1: 101

r(i) = (i 1)/100;

f1(i) = 1/sqrt((1 r(i)^2)^2 + (2*zeta*r(i))^2);

end

zeta = 0.25;

for i = 1: 101

r(i) = (i 1)/100;

f2(i) = 1/sqrt( (1 r(i)^2)^2 + (2*zeta*r(i))^2 );

end

zeta = 0.5;

for i = 1: 101

r(i) = (i 1)/100;

f3(i) = 1/sqrt( (1 r(i)^2)^2 + (2*zeta*r(i))^2 );

end

zeta = 0.75;

for i = 1: 101

r(i) = (i 1)/100;

f4(i) = 1/sqrt( (1 r(i)^2)^2 + (2*zeta*r(i))^2 );

end

zeta = 1.0;

for i = 1: 101

r(i) = (i 1)/100;

f (i) = 1/sqrt( (1 r(i)^2)^2 + (2*zeta*r(i))^2 );

end

plot(r,f1);

axis([0 1 0 5]);

gtext('zeta = 0.00');

hold on;

plot(r,f2);

gtext('zeta = 0.25');

hold on;

plot(r,f3);

gtext('zeta = 0.50');

hold on;

plot(r,f4);

gtext('zeta = 0.75');

hold on;

plot(r,f5);

gtext('zeta = 1.00');

xlabel('r');

ylabel('f(r)');

0 r 1

z = 0.0,

f1r2 =
1

511 - r
2
2
2
+ 12zr2

2
6
1/2
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CHAPTER SUMMARY

In some practical applications, it might be difficult to develop a mathematical model, derive the gov-

erning equations, and conduct analysis to predict the vibration characteristics of the system. In such

cases, we can measure the vibration characteristics of the system under known input conditions and

develop a mathematical model of the system. We presented the various aspects of vibration measure-

ment and applications. We discussed the various types of transducers, vibration pickups, frequency

measuring instruments, and shakers (exciters) available for vibration measurement. We described

signal analysis and experimental modal analysis and determination of natural frequencies, damping

ratio, and mode shapes. We presented machine-condition monitoring and diagnosis techniques.

Finally, we presented MATLAB solutions for vibration-measurement-related analysis problems.

Now that you have finished this chapter, you should be able to answer the review questions and

solve the problems given below.
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REVIEW QUESTIONS

10.1 Give brief answers to the following:

1. What is the importance of vibration measurement?

2. What is the difference between a vibrometer and a vibrograph?

3. What is a transducer?

4. Discuss the basic principle on which a strain gage works.

5. Define the gage factor of a strain gage.

6. What is the difference between a transducer and a pickup?

7. What is a piezoelectric material? Give two examples of such material.

8. What is the working principle of an electrodynamic transducer?

9. What is an LVDT? How does it work?

10. What is a seismic instrument?

11. What is the frequency range of a seismometer?

12. What is an accelerometer?

13. What is phase-shift error? When does it become important?

14. Give two examples of a mechanical vibration exciter.

15. What is an electromagnetic shaker?

16. Discuss the advantage of using operational deflection shape measurement.

17. What is the purpose of experimental modal analysis?

18. Describe the use of the frequency-response function in modal analysis.

19. Name two frequency-measuring instruments.

20. State three methods of representing the frequency-response data.

21. How are Bode plots used?

22. How is a Nyquist diagram constructed?

23. What is the principle of mode superposition? What is its use in modal analysis?

24. State the three types of maintenance schemes used for machinery.

25. How are orbits used in machine diagnosis?

26. Define the terms kurtosis and cepstrum.

10.2 Indicate whether each of the following statements is true or false:

1. A strain gage is a variable-resistance transducer.

2. The value of the gage factor of a strain gage is given by the manufacturer.

3. The voltage output of an electromagnetic transducer is proportional to the relative veloc-

ity of the coil.

4. The principle of the electrodynamic transducer can be used in vibration exciters.

5. A seismometer is also known as a vibrometer.

6. All vibration-measuring instruments exhibit phase lag.

7. The time lag is important when measuring harmonic motion of frequency 

8. The Scotch yoke mechanism can be used as a mechanical shaker.

9. The time response of a system gives better information on energy distribution than does

the frequency response.

10. A spectrum analyzer is a device that analyzes a signal in the frequency domain.

11. The complete dynamic response of a machine can be determined through modal testing.

12. The damping ratio of a vibrating system can be found from the Bode diagram.

13. The spectrum analyzers are also known as fast Fourier transform (FFT) analyzers.

v.
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14. In breakdown maintenance, the machine is run until failure.

15. Time-domain waveforms can be used to detect discrete damages of machinery.

10.3 Fill in each of the following blanks with the appropriate word:

1. A device that transforms values of physical variables into equivalent electrical signals is

called a _____.

2. Piezoelectric transducers generate electrical _____ when subjected to mechanical stress.

3. A seismic instrument consists of a _____ system mounted on the vibrating body.

4. The instrument that measures the acceleration of a vibrating body is called _____.

5. _____ can be used to record earthquakes.

6. The instrument that measures the velocity of a vibrating body is called a _____.

7. Most mechanical frequency-measuring instruments are based on the principle of _____.

8. The Frahm tachometer is a device consisting of several _____ carrying masses at free ends.

9. The main advantage of a stroboscope is that it can measure the speed without making

_____ with the rotating body.

10. In real-time frequency analysis, the signal is continuously analyzed over all the _____

bands.

11. Real-time analyzers are useful for machinery _____ monitoring, since a change in the

noise or vibration spectrum can be observed immediately.

12. An _____ is the interval between any two frequencies whose frequency ratio

is 2.

13. The dynamic testing of a machine involves finding the _____ of the machine at a critical

frequency.

14. For vibration testing, the machine is supported to simulate a _____ condition of the sys-

tem so that rigid body modes can also be observed.

15. The excitation force is measured by a _____ cell.

16. The response of a system is usually measured by _____.

17. The frequency response of a system can be measured using _____ analyzers.

18. The condition of a machine can be determined using _____ severity charts.

19. The life of a machine follows the classic _____ curve.

20. The _____ observed in Lissajous figures can be used to identify machinery faults.

21. Cepstrum can be defined as the power spectrum of the logarithm of the _____.

10.4 Select the most appropriate answer out of the choices given:

1. When a transducer is used in conjunction with another device to measure vibration, it is

called a

a. vibration sensor b. vibration pickup c. vibration actuator

2. The instrument that measures the displacement of a vibrating body is called a

a. seismometer b. transducer c. accelerometer

3. The circuit that permits the passage of frequency components of a signal over a frequency

band and rejects all other frequency components is called a

a. bandpass filter b. frequency filter c. spectral filter

4. A decibel (dB) is a quantity, such as power (P), defined in terms of a reference value

as

a. b. c.
1

Pref

 log101P2log10a
P
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b10 log10a
P
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b

1Pref2,
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5. The following function plays an important role in the experimental modal analysis:

a. time-response function

b. modal-response function

c. frequency-response function

6. The method of subjecting a system to a known force as an initial condition and then

releasing is known as

a. step relaxation

b. excitation by electromagnetic shaker

c. impactor

7. The process of using an electrical signal, generalized by a spectrum analyzer, for apply-

ing a mechanical force on a system is known as

a. step relaxation

b. excitation by electromagnetic shaker

c. impactor

8. The procedure of using a hammer with a built-in load cell to apply load at different points

of a system is known as

a. step relaxation

b. excitation by electromagnetic shaker

c. impactor

9. During the initial running-in period, usually the deterioration of a machine

a. decreases b. increases c. remains constant

10. During the normal operating period, the deterioration of a machine usually

a. decreases b. increases c. remains constant

11. During the aging or wearout period, the deterioration of a machine usually

a. decreases b. increases c. remains constant

10.5 Match the items in the two columns below:

1. Piezoelectric accelerometer

2. Electrodynamic transducer

3. LVDT transducer

4. Fullarton tachometer

5. Stroboscope

PROBLEMS

Section 10.2 Transducers

10.1 A Rochelle salt crystal, having a voltage sensitivity of 0.098 V-m/N and thickness 2 mm,

produced an output voltage of 200 volts under pressure. Find the pressure applied to the

crystal.

Section 10.3 Vibration Pickups

10.2 A spring-mass system with and with negligible damping, is

used as a vibration pickup. When mounted on a structure vibrating with an amplitude of

4 mm, the total displacement of the mass of the pickup is observed to be 12 mm. Find the

frequency of the vibrating structure.

k = 10,000 N/m,m = 0.5 kg

a. produces light pulses intermittently

b. has high output and is insensitive to temperature

c. frequently used in velocity pickups

d. has high sensitivity and frequency range

e. variable-length cantilever with a mass at its free end
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10.3 The vertical motion of a machine is measured by using the arrangement shown in Fig. 10.43.

The motion of the mass m relative to the machine body is recorded on a drum. If the damp-

ing constant c is equal to and the vertical vibration of the machine body is given by

find the amplitude of motion recorded on the drum.y1t2 = Y sin vt,

ccri >22,

Machine body

m

c

x

y

k

FIGURE 10.43

10.4 It is proposed that the vibration of the foundation of an internal combustion engine be mea-

sured over the speed range 500 rpm to 1500 rpm using a vibrometer. The vibration is com-

posed of two harmonics, the first one caused by the primary inertia forces and the second

one by the secondary inertia forces in the engine. Determine the maximum natural frequency

of the vibrometer in order to have an amplitude distortion less than 2 percent.

10.5 Determine the maximum percent error of a vibrometer in the frequency-ratio range

with a damping ratio of 

10.6 Solve Problem 10.5 with a damping ratio of 

10.7 A vibrometer is used to measure the vibration of an engine whose operating-speed range is

from 500 to 2000 rpm. The vibration consists of two harmonics. The amplitude distortion

must be less than 3 percent. Find the natural frequency of the vibrometer if (a) the damping

is negligible and (b) the damping ratio is 0.6.

10.8 A spring-mass system, having a static deflection of 10 mm and negligible damping, is used

as a vibrometer. When mounted on a machine operating at 4000 rpm, the relative amplitude

is recorded as 1 mm. Find the maximum values of displacement, velocity, and acceleration

of the machine.

10.9 A vibration pickup has a natural frequency of 5 Hz and a damping ratio of Find the

lowest frequency that can be measured with a 1 percent error.

10.10 A vibration pickup has been designed for operation above a frequency level of 100 Hz with-

out exceeding an error of 2 percent. When mounted on a structure vibrating at a frequency of

100 Hz, the relative amplitude of the mass is found to be 1 mm. Find the suspended mass of

the pickup if the stiffness of the spring is 4000 N/m and damping is negligible.

10.11 A vibrometer has an undamped natural frequency of 10 Hz and a damped natural frequency

of 8 Hz. Find the lowest frequency in the range to infinity at which the amplitude can be

directly read from the vibrometer with less than 2 percent error.

10.12 Determine the maximum percent error of an accelerometer in the frequency-ratio range

with a damping ratio of 

10.13 Solve Problem 10.12 with a damping ratio of 0.75.

z = 0.0 6 r 0.65

z = 0.5.

z = 0.67.

z = 0.4 r 6 q
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934 CHAPTER 10 VIBRATION MEASUREMENT AND APPLICATIONS

10.14 Determine the necessary stiffness and the damping constant of an accelerometer if the max-

imum error is to be limited to 3 percent for measurements in the frequency range of 0 to 100

Hz. Assume that the suspended mass is 0.05 kg.

10.15 An accelerometer is constructed by suspending a mass of 0.1 kg from a spring of stiffness

10,000 N/m with negligible damping. When mounted on the foundation of an engine, the

peak-to-peak travel of the mass of the accelerometer has been found to be 10 mm at an

engine speed of 1000 rpm. Determine the maximum displacement, maximum velocity, and

maximum acceleration of the foundation.

10.16 A spring-mass-damper system, having an undamped natural frequency of 100 Hz and a

damping constant of 20 N-s/m, is used as an accelerometer to measure the vibration of a

machine operating at a speed of 3000 rpm. If the actual acceleration is and the

recorded acceleration is find the mass and the spring constant of the accelerometer.

10.17 A machine shop floor is subjected to the following vibration due to electric motors running

at different speeds:

If a vibrometer having an undamped natural frequency of 0.5 Hz, and a damped natural fre-

quency of 0.48 Hz is used to record the vibration of the machine shop floor, what will be the

accuracy of the recorded vibration?

10.18 A machine is subjected to the vibration

An accelerometer having a damped natural frequency of 80 rad/s and an undamped natural

frequency of 100 rad/s is mounted on the machine to read the acceleration directly in 

Discuss the accuracy of the recorded acceleration.

Section 10.4 Frequency-Measuring Instruments

10.19 A variable-length cantilever beam of rectangular cross section made of spring

steel, is used to measure the frequency of vibration. The length of the cantilever can be varied

between 2 in. and 10 in. Find the range of frequencies that can be measured with this device.

Section 10.8 Experimental Modal Analysis

10.20 Show that the real component of the harmonic response of a viscously damped single-degree-

of-freedom system (from X in Eq. 3.54) attains a maximum at

and a minimum at

10.21 Find the value of the frequency at which the imaginary component of the harmonic response of

a viscously damped single-degree-of-freedom system (from X in Eq. 3.54) attains a minimum.

R2 =
v2

vn

= 21 + 2z

R1 =
v1

vn

= 21 - 2z

1

16
 in. * 1 in.,

mm/s2.

x1t2 = 20 sin 50t + 5 sin 150t mm 1t in sec2

x1t2 = 20 sin 4pt + 10 sin 8pt + 5 sin 12pt mm

9 m/s2,

10 m/s2
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Vibration
velocity (in./sec)

Time (millisec)

3

7

6

5

4

40 50 60 70

1

0

*1

*2

*3

*4

*5

*6

*7

2

FIGURE 10.45 Response in time domain.

10.22 Construct the Nyquist diagram for a single-degree-of-freedom system with hysteretic damping.

10.23 The Bode plot of shaft vibration of a turbine obtained during coast-down is shown in

Fig. 10.44. Determine the damping ratio of the system when the static deflection of the shaft

is equal to 0.05 mil.

1.0

0.8

0.6

0.4

0.2

0 1 2 3 4 5 6 7 8 9 10 11 12P
e
a
k

-t
o

-p
e
a
k

 d
is

p
la

ce
m

e
n

t 
(m

il
s)

Shaft speed (1000 rpm)

FIGURE 10.44

10.24 The vibratory response at the bearing of an internal combustion engine is shown in Fig. 10.45.

Determine the equivalent viscous damping ratio of the system.
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936 CHAPTER 10 VIBRATION MEASUREMENT AND APPLICATIONS

x (mm) 1 2 3 4 5 6 7

f(x)
1

32

3

32

3

16

6

16

3

16

3

32

1

32

10.25 Suggest a method of using the Bode plot of phase angle versus frequency (Fig. 3.11(b)) to

identify the natural frequency and the damping ratio of the system.

Section 10.9 Machine-Condition Monitoring and Diagnosis

10.26 Two ball bearings, each with 16 balls, are used to support the shaft of a fan that rotates at 750

rpm. Determine the frequencies, in hertz, corresponding to the following defects:* cage,

inner race, outer race, and ball. Assume that , and 

10.27 Determine the defect frequencies in hertz* corresponding to roller, inner race, outer race,

and cage defects for a roller bearing with 18 rollers when installed in a machine that runs at

a speed of 1000 rpm. Assume and 

10.28 An angular contact thrust bearing consists of 18 balls, each of diameter 10 mm, and is

mounted on a shaft that rotates at 1500 rpm. If the contact angle of the bearing is 40° with a

pitch diameter 80 mm, find the frequencies corresponding to cage, ball, inner race, and outer

race faults.*

10.29 Find the value of kurtosis for a vibration signal that is uniformly distributed in the range

1 5 mm;

10.30 Find the value of kurtosis for a vibration amplitude that can be approximated as a discrete

random variable with the following probability mass function:

f1x2 =
1

4
;  1 x 5 mm

a = 20°.d = 2 cm, D = 15 cm,

a = 30°.d = 15 mm, D = 100 mm

Section 10.10 MATLAB Problems

10.31 Figure 10.46 shows the experimental transfer function of a structure. Determine the approx-

imate values of and zi.vi

*Each type of failure in ball and roller bearings generates frequency of vibration f (impact rate per minute) as fol-

lows. Inner race defect: outer race defect: ball or roller defect:

cage defect: , where or roller diameter, diameter,

angle, of balls or rollers, (rpm), and c =
d
D cos a.N = speedn = numbera = contact

D = pitchd = ballf =
1
2 

N11 - c2f =
DN

d  

c12 - c2;

f =
1
2 

nN11 - c2;f =
1
2 

nN11 + c2;
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v

u
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FIGURE 10.47
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FIGURE 10.46

10.32 The experimental Nyquist circle of a structure is shown in Fig. 10.47. Estimate the modal

damping ratio corresponding to this circle.
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938 CHAPTER 10 VIBRATION MEASUREMENT AND APPLICATIONS

m

y(t) * Y sin vt

FIGURE 10.48

DESIGN PROJECTS

10.33 Design a vibration exciter to satisfy the following requirements:

a. Maximum weight of the test 

b. Range of operating to 50 Hz

c. Maximum acceleration 

d. Maximum vibration peak to peak.

10.34 Frahm tachometers are particularly useful to measure the speeds of engines whose rotating

shafts are not easily accessible. When the tachometer is placed on the frame of a running

engine, the vibration generated by the engine will cause one of the reeds to vibrate notice-

ably when the engine speed corresponds to the resonant frequency of a reed. Design a com-

pact and lightweight Frahm tachometer with 12 reeds to measure engine speeds in the range

300 600 rpm.

10.35 A cantilever beam with an end mass m is fixed at the top of a multistory building to measure

the acceleration induced at the top of the building during wind and earthquake loads (see

Fig. 10.48). Design the beam (that is, determine the material, cross-sectional dimensions,

and the length of the beam) such that the stress induced in the beam should not exceed the

yield stress of the material under an acceleration of 0.2 g at the top of the building. Assume

that the end mass m is equal to one-half of the mass of the beam.

amplitude = 0.5 cm

level = 20 g

frequency = 10

specimen = 10 N
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Nathan Newmark (1910 1981) was an American engineer and a professor of
civil engineering at the University of Illinois at Champaign-Urbana. His research
in earthquake resistant structures and structural dynamics is widely known. The
numerical method he presented in 1959 for the dynamic response computation of
linear and nonlinear systems is known as the Newmark (Courtesy of
University of Illinois Urbane-Champaign).
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940 CHAPTER 11 NUMERICAL INTEGRATION METHODS IN VIBRATION ANALYSIS

When the differential equation governing the free or forced vibration of a system cannot be

integrated in closed form, a numerical approach is to be used for the vibration analysis. The

finite difference method, which is based on the approximation of the derivatives appearing

in the equation of motion and the boundary conditions, is presented. Specifically, the central

difference method is outlined for both single- and multidegree-of-freedom systems using

the central difference method. The free-vibration solution of continuous systems is also

considered using the finite difference method in the context of the longitudinal vibration of

bars and transverse vibration of beams with different boundary conditions. The fourth-order

Runge-Kutta method is presented for the solution of differential equations governing the

vibration of single- and multidegree-of-freedom systems. The Houbolt, Wilson, and Newmark

methods are presented for the general solution of multidegree-of-freedom systems. Finally,

Matlab programs are given for the solution of multidegree-of-freedom systems with several

numerical examples.

Learning Objectives

After you have finished studying this chapter, you should be able to do the following:

* Use the finite difference method for the solution of single- and multidegree-of-freedom

vibration problems.

* Solve the vibration problems of continuous systems using the finite difference method.

* Solve the differential equations associated with discrete (multidegree-of-freedom) sys-

tems using the fourth-order Runge-Kutta, Houbolt, Wilson, and Newmark methods.

* Use MATLAB functions for solving discrete and continuous vibration problems.

11.1 Introduction

When the differential equation of motion of a vibrating system cannot be integrated in

closed form, a numerical approach must be used. Several numerical methods are available

for the solution of vibration problems [11.1 11.3].1 Numerical integration methods have

two fundamental characteristics. First, they are not intended to satisfy the governing differ-

ential equation(s) at all time t but only at discrete time intervals apart. Second, a suit-

able type of variation of the displacement x, velocity and acceleration is assumed

within each time interval Different numerical integration methods can be obtained,

depending on the type of variation assumed for the displacement, velocity, and accelera-

tion, within each time interval We shall assume that the values of x and are known to

be and respectively, at time and that the solution of the problem is required

from to In the following, we subdivide the time duration T into n equal steps

so that and seek the solution at 

We shall derive formulas for finding the solution at from the

known solution at according to five different numerical integrationti-1 = 1i - 12¢t

ti = i ¢ttn = n ¢t = T.

t2 = 2 ¢t, Á ,t1 = ¢t,t0 = 0,¢t = T/n¢t

t = T.t = 0

t = 0x 
#
0,x0

x 
#

¢t.

¢t.

x
$

x 
#
,

¢t

1A numerical procedure using different types of interpolation functions for approximating the forcing function

F(t) was presented in Section 4.9.
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11.2 FINITE DIFFERENCE METHOD 941

schemes: (1) the finite difference method, (2) the Runge-Kutta method, (3) the Houbolt

method, (4) the Wilson method, and (5) the Newmark method. In the finite difference

and Runge-Kutta methods, the current displacement (solution) is expressed in terms of the

previously determined values of displacement, velocity, and acceleration, and the resulting

equations are solved to find the current displacement. These methods fall under the cate-

gory of explicit integration methods. In the Houbolt, Wilson, and Newmark methods, the

temporal difference equations are combined with the current equations of motion, and the

resulting equations are solved to find the current displacement. These methods belong to

the category of implicit integration methods.

11.2 Finite Difference Method

The main idea in the finite difference method is to use approximations to derivatives. Thus

the governing differential equation of motion and the associated boundary conditions, if

applicable, are replaced by the corresponding finite difference equations. Three types of

formulas forward, backward, and central difference formulas can be used to derive the

finite difference equations [11.4 11.6]. We shall consider only the central difference for-

mulas in this chapter, since they are most accurate.

In the finite difference method, we replace the solution domain (over which the solu-

tion of the given differential equation is required) with a finite number of points, referred

to as mesh or grid points, and seek to determine the values of the desired solution at these

points. The grid points are usually considered to be equally spaced along each of the inde-

pendent coordinates (see Fig. 11.1). By using Taylor s series expansion, and can

be expressed about the grid point i as

(11.1) xi+1 = xi + hx
 #

i +
h

2

2
 x
$

i +
h

3

6
  x
...

i +
Á

xi-1xi+1

x(t)

xi 3

xi 2

xi 1

xi
xi 1xi 2

ti 2

t  h

O ti 1
ti ti 1

ti 2
ti 3

t
i 2 i 1 i i 1 i 2 i 3

x(t)

h h h h

FIGURE 11.1 Grid points.
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942 CHAPTER 11 NUMERICAL INTEGRATION METHODS IN VIBRATION ANALYSIS

(11.2)

where and By taking two terms only and subtracting

Eq. (11.2) from Eq. (11.1), we obtain the central difference approximation to the first

derivative of x at 

(11.3)

By taking terms up to the second derivative and adding Eqs. (11.1) and (11.2), we obtain

the central difference formula for the second derivative:

(11.4)

11.3 Central Difference Method for Single-Degree-of-Freedom Systems
The governing equation of a viscously damped single-degree-of-freedom system is

(11.5)

Let the duration over which the solution of Eq. (11.5) is required be divided into n equal

parts of interval each. To obtain a satisfactory solution, we must select a time step

that is smaller than a critical time step 2 Let the initial conditions be given by

and 

Replacing the derivatives by the central differences and writing Eq. (11.5) at grid point

i gives

(11.6)m b
xi+1 - 2xi + xi-1

1¢t22
r + c b

xi+1 - xi-1

2 ¢t
r + kxi = Fi

x 
#
1t = 02 = x 

#
0.x1t = 02 = x0

¢tcri.¢t

h = ¢t

m 

d2x

dt2
+ c 

dx

dt
+ kx = F1t2

x 
$

i =
d2x

dt2
 `

ti

=
1

h2
 1xi+1 - 2xi + xi-12

x 
#
i =

dx

dt
 `

ti

=
1

2h
 1xi+1 - xi-12

t = ti:

h = ti+1 - ti = ¢t.xi = x1t = ti2

 xi-1 = xi - hx 
#
i +

h2

2
 x
$

i -
h3

6
  x
...

i +
Á

2Numerical methods that require the use of a time step smaller than a critical time step are said

to be conditionally stable [11.7]. If is taken to be larger than the method becomes unstable. This

means that the truncation of higher-order terms in the derivation of Eqs. (11.3) and (11.4) (or rounding-off in

the computer) causes errors that grow and make the response computations worthless in most cases. The crit-

ical time step is given by where is the natural period of the system or the smallest such

period in the case of a multidegree-of-freedom system [11.8]. Naturally, the accuracy of the solution always

depends on the size of the time step. By using an unconditionally stable method, we can choose the time step

with regard to accuracy only, not with regard to stability. This usually allows a much larger time step to be

used for any given accuracy.

tn¢tcri = tn/p,

¢tcri,¢t

1¢tcri21¢t2
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11.3 CENTRAL DIFFERENCE METHOD FOR SINGLE-DEGREE-OF-FREEDOM SYSTEMS 943

where and Solution of Eq. (11.6) for yields

(11.7)

This is called the recurrence formula. It permits us to calculate the displacement of the

mass if we know the previous history of displacements at and as well as the

present external force Repeated application of Eq. (11.7) yields the complete time his-

tory of the behavior of the system. Note that the solution of is based on the use of the

equilibrium equation at time is, Eq. (11.6). For this reason, this integration proce-

dure is called an explicit integration method. Certain care has to be exercised in applying

Eq. (11.7) for Since both and are needed in finding and the initial condi-

tions provide only the values of and we need to find the value of Thus the

method is not self-starting. However, we can generate the value of by using Eqs.

(11.3) and (11.4) as follows. By substituting the known values of and into Eq.

(11.5), can be found:

(11.8)

Application of Eqs. (11.3) and (11.4) at yields the value of 

(11.9)x-1 = x0 - ¢tx 
#
0 +

1¢t22

2
 x 
$

0

x-1:i = 0

x 
$

0 =
1

m
 [F1t = 02 - cx 

#
0 - kx0]

x
$

0

x 
#
0x0

x-1

x-1.x 
#
0,x0

x1,x-1x0i = 0.

ti that

xi+1

Fi.

ti-1,ti1xi+12

 + e
c

2 ¢t
-

m

1¢t22
f  xi-1 + Fi d

 xi+1 = d
1

m

1¢t22
+

c

2 ¢t

t c b
2m

1¢t22
- k r  xi

xi+1Fi = F1ti2.xi = x1ti2

E X A M P L E  1 1 . 1
Response of Single-Degree-of-Freedom System

Find the response of a viscously damped single-degree-of-freedom system subjected to a force

with the following data: and Assume the values of the

displacement and velocity of the mass at to be zero.t = 0

k = 1.F0 = 1, t0 = p, m = 1, c = 0.2,

F1t2 = F0 a1 - sin 

pt

2t0
b
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944 CHAPTER 11 NUMERICAL INTEGRATION METHODS IN VIBRATION ANALYSIS

Solution: The governing differential equation is

(E.1)

The finite difference solution of Eq. (E.1) is given by Eq. (11.7). Since the initial conditions are

Eq. (11.8) yields hence Eq. (11.9) gives Thus the solution of

Eq. (E.1) can be found from the recurrence relation

(E.2)

with and

The undamped natural frequency and the natural period of the system are given by

(E.3)

and

(E.4)

Thus the time step must be less than We shall find the solution of Eq. (E.1) by using

the time steps and The time step is used to illustrate

the unstable (diverging) behavior of the solution. The values of the response obtained at different

instants of time are shown in Table 11.1.

This example can be seen to be identical to Example 4.17. The results obtained by idealization

4 (piecewise linear type interpolation) of Example 4.17 are shown in Table 11.1 up to time in

the last column of the table. It can be observed that the finite difference method gives reasonably

accurate results with time steps and (which are smaller than ) but gives

diverging results with (which is larger than ).

*

¢tcri¢t = tn 
/2

¢tcritn 
/20¢t = tn 

/40

ti = p

ti

xi

¢t = tn 
/2 7 ¢tcritn 

/2.¢t = tn 
/40, tn 

/20,

tn 
/p = 2.0.¢t

tn =
2p

vn

= 2p

vn = a
k

m
b

1/2

= 1

Fi = F1ti2 = F0 +1 - sin 

ip ¢t

2t0
*

x0 = 0, x-1 = 1¢t22/2, xi = x1ti2 = x1i ¢t2,

 + e
c

2 ¢t
-

m

1¢t22
f  xi-1 + Fi d ,  i = 0, 1, 2, Á

 xi+1 =
1

c
m

1¢t22
+

c

2 ¢t
d

 c e
2m

1¢t22
- k f  xi

x-1 = 1¢t22/2.x
$

0 = 1;x0 = x 
#
0 = 0,

mx
$
+ cx 

#
+ kx = F1t2 = F0 a1 - sin 

pt

2t0
b
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11.4 RUNGE-KUTTA METHOD FOR SINGLE-DEGREE-OF-FREEDOM SYSTEMS 945

11.4 Runge-Kutta Method for Single-Degree-of-Freedom Systems
In the Runge-Kutta method, the approximate formula used for obtaining from is

made to coincide with the Taylor s series expansion of x at up to terms of order 

The Taylor s series expansion of x(t) at is given by

(11.10)

In contrast to Eq. (11.10), which requires higher-order derivatives, the Runge-Kutta method

does not require explicitly derivatives beyond the first [11.9 11.11]. For the solution of a

second-order differential equation, we first reduce it to two first-order equations. For exam-

ple, Eq. (11.5) can be rewritten as

(11.11)x
$
=

1

m
 [F1t2 - cx 

#
- kx] = f1x, x 

#
, t2

  + x 
#
 
#
 
#
 
#
 

1¢t24

4!
+ Á

 x1t + ¢t2 = x1t2 + x 
#  ¢t + x

$
 

1¢t22

2!
+ x 

#
 
#
 
#
 

1¢t23

3!

t + ¢t
1¢t2n.xi+1

xixi+1

TABLE 11.1 Comparison of Solutions of Example 11.1

Values of Obtained withxi * x1ti2

Time 1ti2 ¢t *
tn

40
¢t *

tn

20
¢t *

tn

2

Value of Given by Idealization 4

of Example 4.31

xi

0 0.00000 0.00000 0.00000 0.00000

p/10 0.04638 0.04935 0.04541

2p/10 0.16569 0.17169 0.16377

3p/10 0.32767 0.33627 0.32499

4p/10 0.50056 0.51089 0.49746

5p/10 0.65456 0.66543 0.65151

6p/10 0.76485 0.77491 0.76238

7p/10 0.81395 0.82185 0.81255

8p/10 0.79314 0.79771 0.79323

9p/10 0.70297 0.70340 0.70482

p 0.55275 0.54869 4.9348 0.55647

2p 0.19208 0.19898 -29.551

3p 2.7750 2.7679 181.90

4p 0.83299 0.83852 -1058.8

5p -  0.05926 -  0.06431 6253.1
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946 CHAPTER 11 NUMERICAL INTEGRATION METHODS IN VIBRATION ANALYSIS

By defining and Eq. (11.11) can be written as two first-order equations:

(11.12)

By defining

the following recurrence formula is used to find the values of at different grid points

according to the fourth-order Runge-Kutta method

(11.13)

where

(11.14)

(11.15)

(11.16)

(11.17)

The method is stable and self-starting that is, only the function values at a single previous

point are required to find the function value at the current point.

 K
:

4 = hF
:

1X
:

i + K
:

3, ti+12

 K
:

3 = hF
:

1X
:

i +
1
2 K
:

2,  ti +
1
2 h2

 K
:

2 = hF
:

1X
:

i +
1
2 K
:

1, ti +
1
2 h2

 K
:

1 = hF
:

 1X
:

i, ti2

X
:

i+1 = X
:

i +
1
6 [K
:

1 + 2K
:

2 + 2K
:

3 + K
:

4]

ti

X
:

1t2

X
:

1t2 = e
x11t2

x21t2
f and F

:

1t2 = e
x2

f1x1, x2, t2
f

 x 
#
2 = f1x1, x2, t2

 x 
#
1 = x2

x2 = x 
#
,x1 = x

E X A M P L E  1 1 . 2
Response of Single-Degree-of-Freedom System

Find the solution of Example 11.1 using the Runge-Kutta method.

Solution: We use a step size of and define

and

F
:

1t2 = e
x2

f1x1, x2, t2
f =

L

x 
#
1t2

1

m
 BF0¢1 - sin 

pt

2t0
- cx 

#
1t2 - kx1t2R M

X
:

1t2 = e
x11t2

x21t2
f = e

x1t2

x 
#
1t2

f

¢t = 0.3142
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TABLE 11.2

Step i Time ti x1 * x x2 * x
 

1 0.3142 0.045406 0.275591

2 0.6283 0.163726 0.461502

3 0.9425 0.324850 0.547296

o

19 5.9690 -  0.086558 0.765737

` 20 6.2832 0.189886 0.985565

From the known initial conditions, we have

The values of obtained according to Eq. (11.13) are shown in Table 11.2.X
:

i+1, i = 0, 1, 2, Á

X
:

0 = e
0

0
f

*

11.5 Central Difference Method for Multidegree-of-Freedom Systems
The equation of motion of a viscously damped multidegree-of-freedom system (see Eq.

(6.119)) can be expressed as

(11.18)

where [m], [c], and [k] are the mass, damping, and stiffness matrices, is the displacement

vector, and is the force vector. The procedure indicated for the case of a single-degree-of-

freedom system can be directly extended to this case [11.12, 11.13]. The central difference

formulas for the velocity and acceleration vectors at time are given by

(11.19)

(11.20)

which are similar to Eqs. (11.3) and (11.4). Thus the equation of motion, Eq. (11.18), at

time can be written as

(11.21) [m] 

1

1¢t22
 1 x
:

i+1 - 2x
:

i + x
:

i-12 + [c] 

1

2 ¢t
 1 x
:

i+1 - x
:

i-12 + [k] x
:

i = F
:

i

ti

x
!$
i =

1

1¢t22
 1x
!
i+1 - 2x

!
i + x

!
i-12

x
!#
i =

1

2 ¢t
 1x
!
i+1 - x

!
i-12

ti = i ¢t1x
!#
i and x

!$
i2

F
! x

!

[m] x
!$
+ [c] x

!#
+ [k] x

!
= F

!
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where 

and Equation (11.21) can be rearranged to obtain

or

(11.22)

Thus Eq. (11.22) gives the solution vector once and are known. Since Eq.

(11.22) is to be used for the evaluation of requires and Thus a

special starting procedure is needed to find For this, Eqs. (11.18) to

(11.20) are evaluated at to obtain

(11.23)

(11.24)

(11.25)

Equation (11.23) gives the initial acceleration vector as

(11.26)

and Eq. (11.24) gives the displacement vector at as

(11.27)x
:

1 = x
:

-1 + 2 ¢tx
!#

0

t1

x
!$

0 = [m]-1
1F
:

0 - [c] x
!#

0 - [k] x
:

0 2

 x
!$

0 =
1

1¢t22
 1 x
:

1 - 2 x
:

0 + x
:

-12

 x
!#

0 =
1

2 ¢t
 1 x
:

1 - x
:

-12

 [m] x
!$

0 + [c] x
!#

0 + [k] x
!
0 = F

!

0 = F
!
1t = 02

i = 0

x
!
-1 = x

!
1t = -¢t2.

x
:

-1.x
:

0x
:

1i = 1, 2, Á , n,

x
:

i-1x
:

ix
:

i+1

 - a
1

1¢t22
 [m] -

1

2 ¢t
 [c]b  x

:

i-1

 a
1

1¢t22
 [m] +

1

2 ¢t
 [c]b  x

:

i+1 = F
:

i - a[k] -
2

1¢t22
 [m]b  x

:

i

 + +
1

1¢t22
 [m] -

1

2 ¢t
 [c]*  x

:

i-1 = F
:

i

 +
1

1¢t22
 [m] +

1

2 ¢t
 [c]*  x

!
i+1 + + -

2

1¢t22
 [m] + [k]*  x

:

i

ti = i ¢t.

F
:

i = F
:

1t = ti2,x
:

i-1 = x
:

1t = ti-12,x
:

i = x
:

1t = ti2,x
:

i+1 = x
:

1t = ti+12,
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Substituting Eq. (11.27) for Eq. (11.25) yields

or

(11.28)

where is given by Eq. (11.26). Thus needed for applying Eq. (11.22) at is

given by Eq. (11.28). The computational procedure can be described by the following steps.

1. From the known initial conditions and compute

using Eq. (11.26).

2. Select a time step such that 

3. Compute using Eq. (11.28).

4. Find starting with from Eq. (11.22), as

(11.29)

where

(11.30)

If required, evaluate accelerations and velocities at 

(11.31)

and

(11.32)

Repeat Step 4 until (with ) is determined. The stability of the finite difference

scheme for solving matrix equations is discussed in reference [11.14].

i = nx
:

n+1

x
!#

i =
1

2 ¢t
  [ x
:

i+1 - x
:

i-1]

x
!$

i =
1

1¢t22
  [ x
:

i+1 - 2 x
:

i + x
:

i-1]

ti:

F
:

i = 1t = ti2

  - a
1

1¢t22
 [m] -

1

2 ¢t
 [c]b  x

:

i-1 d

 x
:

i+1 = c
1

1¢t22
 [m] +

1

2 ¢t
 [c] d

-1 

c F
:

i - a[k] -
2

1¢t22
 [m]b  x

:

i

i = 0,x
:

i+1 = x
:

1t = ti+12,

x
:

-1

¢t 6 ¢tcri.¢t

x
!$
1t = 02 = x

!$

0

x
!#
1t = 02 = x

!#

0,x
:

1t = 02 = x
:

0

i = 1x
:

-1x
!$

0

x
!
-1 = x

!
0 - ¢tx

!#

0 +
1¢t22

2
 x
!$

0

x
!$

0 =
2

1¢t22
 [¢tx

!#

0 - x
:

0 + x
:

-1]

x
:

1,
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E X A M P L E  1 1 . 3
Central Difference Method for a Two-Degree-of-Freedom System

Find the response of the two-degree-of-freedom system shown in Fig. 11.2 when the forcing

functions are given by and Assume the value of c as zero and the

initial conditions as 

Solution:

Approach: Use where is the smallest time period in the central difference method.

The equations of motion are given by

(E.1)

where

(E.2)

(E.3)

(E.4)

(E.5)

and

(E.6)

The undamped natural frequencies and the mode shapes of the system can be found by solving the

eigenvalue problem

x
:

1t2 = e
x11t2

x21t2
f

 F
:

1t2 = e
F11t2

F21t2
f = e

0

10
f

 [k] = c
k1 + k -  k

-  k k + k2

d = c
6 -  2

-  2 8
d

 [c] = c
c -  c

-  c c
d = c

0 0

0 0
d

 [m] = c
m1 0

0 m2

d = c
1 0

0 2
d

[m] x
!$
1t2 + [c] x

!#
1t2 + [k] x

:

1t2 = F
:

1t2

t¢t = t/10,

x
!#
1t = 02 = 0

:

.x
:

1t = 02 =

F2(t) = 10.F1(t) = 0

k
1 * 4

m
1 * 1 m

2 * 2

x
1
(t) x

2
(t)

F
1
(t) F

2
(t)

k * 2
k
2 * 6

c * 0

FIGURE 11.2 Two-degree-of-freedom system.
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(E.7)

The solution of Eq. (E.7) is given by

(E.8)

(E.9)

Thus the natural periods of the system are

We shall select the time step as The initial value of can be found as follows:

(E.10)

and the value of as follows:

(E.11)

Now Eq. (11.29) can be applied recursively to obtain The results are shown in

Table 11.3.

*

11.6 Finite Difference Method for Continuous Systems

x
:

1, x
:

2, Á  .

x
:

-1 = x
:

0 - ¢t x
!#

0 +
1¢t22

2
    x
!$

0 = e
0

0.1466
f

x
:

-1

 =
1

2
  c

2 0

0 1
d  e

0

10
f = e

0

5
f

 x
!$

0 = [m]-1
5F
:

- [k] x
:

06 = c
1 0

0 2
d

-1

e
0

10
f

x
!$

t2/10 = 0.24216.1¢t2

t1 =
2p

v1

= 3.4757 and t2 =
2p

v2

= 2.4216

v2 = 2.594620, X
:

122 = e
1.0000

-  0.3661
f

v1 = 1.807747, X
:

112 = e
1.0000

1.3661
f

c -  v
2 
c
1 0

0 2
d + c

6 -  2

-  2 8
d d e

X1

X2

f = e
0

0
f

11.6.1
Longitudinal
Vibration of 
Bars

Equation of Motion. The equation of motion governing the free longitudinal vibration

of a uniform bar (see Eqs. (8.49) and (8.20)) can be expressed as

(11.33)
d2U

dx2
+ a

2U = 0
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TABLE 11.3

Time (ti * i ¢t) x
!
i * x

!
(t * ti)

t1 e
0

0.1466
f

t2 e
0.0172

0.5520
f

t3 e
0.0931

1.1222
f

t4 e
0.2678

1.7278
f

t5 e
0.5510

2.2370
f

t6 e
0.9027

2.5470
f

t7 e
1.2354

2.6057
f

t8 e
1.4391

2.4189
f

t9 e
1.4202

2.0422
f

t10 e
1.1410

1.5630
f

t11 e
0.6437

1.0773
f

t12 e
0.0463

0.6698
f

where

(11.34)

To obtain the finite difference approximation of Eq. (11.33), we first divide the bar of

length l into equal parts each of length and denote the mesh points

as as shown in Fig. 11.3. Then, by denoting the value of U at mesh point

i as and using a formula for the second derivative similar to Eq. (11.4), Eq. (11.33) for mesh

point i can be written as

1

h2
 1Ui+1 - 2Ui + Ui-12 + a

2Ui = 0

Ui

1, 2, 3, Á , i, Á , n,

h = l/1n - 12n - 1

a
2 =

v
2

c2
=
rv

2

E
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l

U
1 
*  U

2
 *  U

3 
*         Ui  *                 Un *

U(x
1
) U(x

2
) U(x

3
)        U(xi)                U(xn)

1 2 3 i

x
1

x
2

x
3

xi xn

n

FIGURE 11.3 Division of a bar for

finite difference approximation.

or

(11.35)

where The application of Eq. (11.35) at mesh points leads

to the equations

(11.36)

which can be stated in matrix form as

(11.37)  g

U1

U2

U3

.

.

.

Un

w = g

0

0

0

.

.

.

0

w

 G

-1 (2 - l) -1 0 0 Á 0 0 0

0 -1 (2 - l) -1 0 Á 0 0 0

0 0 -1 (2 - l) -1 Á 0 0 0

. . . . . . . .

. . . . . Á . . .

. . . . . . . .

0 0 0 0 0 Á -1 (2 - l) -1

W

U3 - 12 - l2U2 + U1 = 0

U4 - 12 - l2U3 + U2 = 0

o       
Un - 12 - l2Un-1 + Un-2 = 0

i = 2, 3, Á , n - 1l = h2
a

2.

Ui+1 - 12 - l2Ui + Ui-1 = 0
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Boundary Conditions

Fixed End. The deflection is zero at a fixed end. Assuming that the bar is fixed at 

and we set in Eq. (11.37) and obtain the equation

(11.38)

where

(11.39)

(11.40)

and matrix of order 

Note that the eigenvalue problem of Eq. (11.38) can be solved easily, since the matrix

[A] is a tridiagonal matrix [11.15 11.17].

Free End. The stress is zero at a free end, so We can use a formula for

the first derivative similar to Eq. (11.3). To illustrate the procedure, let the bar be free at

and fixed at The boundary conditions can then be stated as

(11.41)

(11.42)

In order to apply Eq. (11.41), we need to imagine the function U(x) to be continuous

beyond the length of the bar and create a fictitious mesh point so that becomes

the fictitious displacement of the point The application of Eq. (11.35) at mesh point

yields

(11.43)U2 - 12 - l2 U1 + U-1 = 0

i = 1

x-1.

U-1-1

 Un = 0

 
dU

dx
`

1

M
U2 - U-1

2h
= 0 or U-1 = U2

x = l.x = 0

1dU2/1dx2 = 0.

n - 2.[I] = identity

U
:

= f

U2

U3

.

.

.

Un-1

v

[A] = G

2 -1 0 0 Á 0 0 0

-1 2 -1 0 Á 0 0 0

0 -1 2 -1 Á 0 0 0

. . . . Á . . .

. . . . Á . . .

. . . . Á . . .

0 0 0 0 Á 0 -1 2

W

[[A] - l[I]] U
:

= 0
:

U1 = Un = 0x = l,

x = 0

M11_RAO08193_5_SE_C11.QXD  8/22/10  1:22 PM  Page 954



11.6 FINITE DIFFERENCE METHOD FOR CONTINUOUS SYSTEMS 955

By incorporating the condition (Eq. 11.41), Eq. (11.43) can be written as

(11.44)

By adding Eqs. (11.44) and (11.37), we obtain the final equations:

(11.45)

where

(11.46)

and

(11.47)U
!

= f

U1
U2
.

.

.

Un-1

v

[A] = H

2 -2 0 0 Á 0 0 0

-1 2 -1 0 Á 0 0 0

0 -1 2 -1 Á 0 0 0

.

.

.

0 0 0 0 Á -1 2 -1

0 0 0 0 Á 0 -1 2

X

[[A] - l[I]]U
:

= 0
!

12 - l2 U1 - 2U2 = 0

U-1 = U2

11.6.2

Transverse

Vibration of

Beams

Equation of Motion. The governing differential equation for the transverse vibration of

a uniform beam is given by Eq. (8.83):

(11.48)

where

(11.49)b4
=

rAv2

EI

d4W

dx4
- b4W = 0
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By using the central difference formula for the fourth derivative,3 Eq. (11.48) can be writ-

ten at any mesh point i as

(11.50)

where

(11.51)

Let the beam be divided into equal parts with n mesh points and 

The application of Eq. (11.50) at the mesh points leads to the equations

(11.52)

Boundary Conditions

Fixed End. The deflection W and the slope (dW)/(dx) are zero at a fixed end. If the end

is fixed, we introduce a fictitious node on the left-hand side of the beam, as

shown in Fig. 11.4, and state the boundary conditions, using the central difference formula

for (dW)/(dx), as

 W1 = 0

-1x = 0

  g

W1

W2

W3

.

.

.

Wn

w = g

0

0

0
.

.

.

0

w

G

1 -4 (6 - l) -4 1 0 0

0 1 -4 (6 - l) -4 1 0

0 0 1 -4 (6 - l) -4 1
#

#

#

0 0 0 0 0 0 0

 

Á 0 0 0 0 0
Á 0 0 0 0 0
Á 0 0 0 0 0

Á 1 -4 (6 - l) -4 1

W

i = 3, 4, Á , n - 2
h = l/1n - 12.n - 1

l = h4
b

4

Wi+2 - 4Wi+1 + 16 - l2Wi - 4Wi-1 + Wi-2 = 0

3The central difference formula for the fourth derivative (see Problem 11.3) is given by

d4f

dx4
`

i
M

1

h4
 1fi+2 - 4fi+1 + 6fi - 4fi-1 + fi-22
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x , 0

x

W(x)

h h h h h h h h

x , l

+1 n+3 n+2 n+1 n*1n1 2 3 4

Node
numbers

Deflected center
line of the beam

FIGURE 11.4 Beam with fixed ends.

(11.53)

where denotes the value of W at node i. If the end is fixed, we introduce the ficti-

tious node on the right side of the beam, as shown in Fig. 11.4, and state the bound-

ary conditions as

(11.54)

Simply Supported End. If the end is simply supported (see Fig. 11.5), we have

(11.55)

Similar equations can be written if the end is simply supported.x = l

 
d

2
W

dx
2

`

1

=
1

h
2

 1W2 - 2W1 + W-12 = 0  or W-1 = -
 
W2

 W1 = 0

x = 0

 
dW

dx
`

n

=
1

2h
 1Wn+1 - Wn-12 = 0  or Wn+1 = Wn-1

 Wn = 0

n + 1

x = lWi

 
dW

dx
`

1

=
1

2h
 1W2 - W-12 = 0 or W-1 = W2

x , 0
x

W(x)

h h h h h h h h

x , l

+1 n+3 n+2 n+1 n*1n1 2 3 4

Deflected center
line of the beam

FIGURE 11.5 Beam with simply supported ends.
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E X A M P L E  1 1 . 4

Pinned-Fixed Beam

Find the natural frequencies of the simply supported-fixed beam shown in Fig. 11.7. Assume that the

cross section of the beam is constant along its length.

Solution: We shall divide the beam into four segments and express the governing equation

(E.1)

in finite difference form at each of the interior mesh points. This yields the equations

(E.2)

(E.3)

(E.4)

where and denote the values of W at the fictitious nodes 0 and 6, respectively, and

(E.5)l = h
4b4

=

h
4rAv2

EI

W6W0

 W2 - 4W3 + 16 - l2W4 - 4W5 + W6 = 0

 W1 - 4W2 + 16 - l2W3 - 4W4 + W5 = 0

 W0 - 4W1 + 16 - l2W2 - 4W3 + W4 = 0

d
4
W

dx
4
- b4

W = 0

Free End. Since bending moment and shear force are zero at a free end, we introduce two

fictitious nodes outside the beam, as shown in Fig. 11.6, and use central difference formulas

for approximating the second and the third derivatives of the deflection W. For example, if

the end is free, we have

(11.56) 
d

3
W

dx
3

`

1

=
1

2h
3

 1W3 - 2W2 + 2W-1 - W-22 = 0

 
d

2
W

dx
2

`

1

=
1

h
2

 1W2 - 2W1 + W-12 = 0

x = 0

x , 0
x

W(x)

h h h h h h h h h h

x , l

+1+2 n+3 n+2 n+1 n*2n*1n1 2 3 4

Deflected center
line of the beam

FIGURE 11.6 Beam with free ends.
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The boundary conditions at the simply supported end (mesh point 1) are

(E.6)

At the fixed end (mesh point 5) the boundary conditions are

(E.7)

With the help of Eqs. (E.6) and (E.7), Eqs. (E.2) to (E.4) can be reduced to

(E.8)

(E.9)

(E.10)

Equations (E.8) to (E.10) can be written in matrix form as

(E.11)

The solution of the eigenvalue problem (Eq. (E.11)) gives the following results:

(E.12)

(E.13)

(E.14)

*

 l3 = 12.2543,  v3 =
3.5006

h2
 

A
EI

rA
,  c

W2

W3

W4

s

132

= c

0.4498

-  0.6673

0.5936

s

 l2 = 5.0322,  v2 =
2.2433

h2
 

A
EI

rA
,  c

W2

W3

W4

s

122

= c

0.6723

-  0.1846

-  0.7169

s

 l1 = 0.7135,  v1 =
0.8447

h2
 

A
EI

rA
,  c

W2

W3

W4

s

112

= c

0.5880

0.7215

0.3656

s

C

15 - l2 -  4 1

-   4 16 - l2 -  4

1 -  4 17 - l2

S c

W2

W3

W4

s = c

0

0

0

s

 W2 - 4W3 + 17 - l2W4 = 0

 -  4W2 + 16 - l2W3 - 4W4 = 0

 15 - l2W2 - 4W3 + W4 = 0

 W6 = W4

 W5 = 0

 W0 = -
 
W2

 W1 = 0

0 1

h h

2 3 4
5

6

l * 4h

FIGURE 11.7 Simply supported-fixed

beam.
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11.7 Runge-Kutta Method for Multidegree-of-Freedom Systems
In the Runge-Kutta method, the matrix equations of motion, Eq. (11.18), are used to express

the acceleration vector as

(11.57)

By treating the displacements as well as velocities as unknowns, a new vector, is

defined as so that

(11.58)

Equation (11.58) can be rearranged to obtain

that is,

(11.59)

where

(11.60)

(11.61)

and

(11.62)

With this, the recurrence formula to evaluate at different grid points according to

the fourth order Runge-Kutta method becomes [11.10]

(11.63)

where

(11.64)

(11.65)

(11.66)

(11.67)K
:

4 = hf
:

1X
:

i + K
:

3, ti+12

K
:

3 = hf
:

1X
:

i +
1
2 K
:

2, ti +
1
2 h2

K
:

2 = hf
:

1X
:

i +
1
2 K
:

1, ti +
1
2 h2

K
:

1 = hf
:

1X
:

i, ti2

X
:

i+1 = X
:

i +
1
6 [K
:

1 + 2K
:

2 + 2K
:

3 + K
:

4]

tiX
:

1t2

F
!

'
1t2 = e

0
!

[m]-1F
!
1t2

f

 [A] = c
[0] [I]

-[m]-1[k] -[m]-1[c]
d

 f
:

1X
:

, t2 = [A]X
:

1t2 + F
!

'1t2

X
!#

1t2 = f
:

1X
:

, t2

X
!#

1t2 = c
[0] [I]

-[m]-1[k] -[m]-1[c]
d e

x
!
1t2

x
!#
1t2

f + e
0

[m]-1F
:

1t2
f

X
!#

= e
x
!#

x
!$ f = e

x
!#

[m]-1
1F
:

- [c]x
!#
- [k]x

:

2
f

X
:

1t2 = e
x
:

1t2

x
!#
1t2

f

X
:

1t2,

x
!$
1t2 = [m]-1

1F
:

1t2 - [c]x
!#
1t2 - [k]x

:

1t22
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E X A M P L E  1 1 . 5
Runge-Kutta Method for a Two-Degree-of-Freedom System

Find the response of the two-degree-of-freedom system considered in Example 11.3 using the fourth-

order Runge-Kutta method.

Solution:

Approach: Use the Runge-Kutta method with 

Using the initial conditions Eq. (11.63) is sequentially applied

with to obtain the results shown in Table 11.4.¢t = 0.24216

x
!
1t = 02 = x

!#
1t = 02 = 0

!
,

¢t = 0.24216.

*

TABLE 11.4

Time ti * i ¢t x
!
i * x

!
1t * ti2

t1 e
0.0014

0.1437
f

t2 e
0.0215

0.5418
f

t3 e
0.0978

1.1041
f

t4 e
0.2668

1.7059
f

t5 e
0.5379

2.2187
f

t6 e
0.8756

2.5401
f

t7 e
1.2008

2.6153
f

t8 e
1.4109

2.4452
f

t9 e
1.4156

2.0805
f

t10 e
1.1727

1.6050
f

t11 e
0.7123

1.1141
f

t12 e
0.1365

0.6948
f
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x
i*1

x
ix

i+1

x
i+2

,t ,t ,t

t
ti+2

t
i+1

t
i

t
i*1

FIGURE 11.8 Equally spaced grid

points.

11.8 Houbolt Method

We shall consider the Houbolt method with reference to a multidegree-of-freedom system.

In this method, the following finite difference expansions are employed:

(11.68)

(11.69)

To derive Eqs. (11.68) and (11.69), consider the function x(t). Let the values of x at the

equally spaced grid points and be

given by and respectively, as shown in Fig. 11.8 [11.18]. The Taylor s

series expansion, with backward step, gives several possibilities.

* With Step 

or

(11.70)

* With Step 

  +
12 ¢t2

2

2!
 x
$
1t + ¢t2 -

12 ¢t2
3

3!
 x
 
#
 
#
 
#
1t + ¢t2 + Á

 x1t - ¢t2 = x1t + ¢t2 - 12 ¢t2x
 #
1t + ¢t2

Size = 2 ¢t:

xi = xi+1 - ¢t x
 #

i +  1 +
1¢t2

2

2
 x
$

i +  1 -
1¢t2

3

6
 x
 
#
 
#
 
#
i +  1 + Á

 x1t2 = x1t + ¢t2 - ¢t x
 #
1t + ¢t2 +

1¢t2
2

2!
 x
$
1t + ¢t2 -

1¢t2
3

3!
 x
 
#
 
#
 
#
1t + ¢t2

Size = ¢t:

xi+1,xi,xi-1,xi-2,

ti+1 = ti + ¢tti,ti-1 = ti - ¢t,ti-2 = ti - 2 ¢t,

 x
!$

i+1 =
1

1¢t2
2

  12x
!
i+1 - 5x

!
i + 4x

!
i-1 - x

!
i-22

 x
!#

i+1 =
1

6 ¢t
 111x

!
i+1 - 18x

!
i + 9x

!
i-1 - 2x

!
i-22
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or

(11.71)

* With Step 

or

(11.72)

By considering terms up to only, Eqs. (11.70) to (11.72) can be solved to express

and in terms of and This gives and as in

[11.18]:

(11.73)

(11.74)

Equations (11.68) and (11.69) represent the vector form of these equations.

To find the solution at step we consider Eq. (11.18) at so that

(11.75)

By substituting Eqs. (11.68) and (11.69) into Eq. (11.75), we obtain

(11.76)

Note that the equilibrium equation at time Eq. (11.75), is used in finding the solution

through Eq. (11.76). This is also true of the Wilson and Newmark methods. For this

reason, these methods are called implicit integration methods.

X
:

i+1

ti+1,

 - a
4

1¢t22
 [m] +

3[c]

2 ¢t
bx
!
i-1 + a

1

1¢t22
 [m] +

[c]

3 ¢t
bx
!
i-2

 = F
!

i+1 + a
5

1¢t22
 [m] +

3

¢t
 [c]bx

!
i

a
2

1¢t22
 [m] +

11

6 ¢t
 [c] + [k]bx

!
i+1

[m] x
!$

i+1 + [c] x
!#

i+1 + [k] x
!
i+1 = F

!

i+1 K F
!
1t = ti+12

ti+1,i + 11x
!
i+12,

 x 
$

i+1 =
1

1¢t22
 12xi+1 - 5xi + 4xi-1 - xi-22

 x 
#
i+1 =

1

61¢t2
 111xi+1 - 18xi + 9xi-1 - 2xi-22

x
$

i+1x 
#
i+1xi+1.xi-2, xi-1, xi,x 

#
 
#
 
#
i+1x 

#
i+1, x

$
i+1,

1¢t23

xi-2 = xi+1 - 3 ¢t x 
#
i+1 +

9
2 1¢t22x 

$
i+1 -

9
2 1¢t23 x  

#
 
#
 
#
 
i+1 + Á

  +
13 ¢t22

2!
x
$
1t + ¢t2 -

13 ¢t23

3!
x 
#
 
#
 
#
1t + ¢t2 + Á

 x1t - 2 ¢t2 = x1t + ¢t2 - 13 ¢t2x 
#
1t + ¢t2

Size = 3 ¢t:

xi-1 = xi+1 - 2 ¢tx 
#
i+1 + 21¢t22x 

$
i+1 -

4
3  1¢t23 x  

#
 
#
 
#
 
i+1 + Á
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It can be seen from Eq. (11.76) that a knowledge of and is required to

find the solution Thus the values of and are to be found before attempting to

find the vector using Eq. (11.76). Since there is no direct method to find and we

cannot use Eq. (11.76) to find and This makes the method non self-starting. To start

the method, we can use the central difference method described in Section 11.5 to find 

and Once is known from the given initial conditions of the problem and and 

are known from the central difference method, the subsequent solutions can be

found by using Eq. (11.76).

The step-by-step procedure to be used in the Houbolt method is as follows:

1. From the known initial conditions and find 

using Eq. (11.26).

2. Select a suitable time step 

3. Determine using Eq. (11.28).

4. Find and using the central difference equation (11.29).

5. Compute starting with and using Eq. (11.76):

(11.77)

If required, evaluate the velocity and acceleration vectors and using Eqs. (11.68)

and (11.69).

x
!$

i+1x
!#

i+1

 + a
1

1¢t22
 [m] +

1

3 ¢t
 [c]bx

!
i-2f

 - a
4

1¢t22
 [m] +

3

2 ¢t
 [c]bx

!
i-1

 * e F
:

i+1 + a
5

1¢t22
 [m] +

3

¢t
 [c]bx

!
i

 x
!
i+1 = c

2

1¢t22
 [m] +

11

6 ¢t
 [c] + [k] d

-1

i = 2x
!
i+1,

x
!
2x

!
1

x
!
-1

¢t.

x
!$
1t = 02

x
!$

0 =x
!#
1t = 02 = x

!#

0,x
!
1t = 02 = x

!
0

x
!
3, x

!
4, Á

x
!
2x

!
1x

!
0x

!
2.

x
!
1

x
!
2.x

!
1

x
!
-2,x

!
-1x

!
1

x
!
-2x

!
-1x

!
i+1.

x
!
i-2x

!
i, x

!
i-1,

E X A M P L E  1 1 . 6
Houbolt Method for a Two-Degree-of-Freedom System

Find the response of the two-degree-of-freedom system considered in Example 11.3 using the Houbolt

method.

Solution

Approach: Use the Houbolt method with 

The value of can be found using Eq. (11.26):

x
!$

0 = e
0

5
f

x
!$

0

¢t = 0.24216.
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TABLE 11.5

Time ti * i ¢t x
!
i * x

!
1t * ti2

t1 e
0.0000

0.1466
f

t2 e
0.0172

0.5520
f

t3 e
0.0917

1.1064
f

t4 e
0.2501

1.6909
f

t5 e
0.4924

2.1941
f

t6 e
0.7867

2.5297
f

t7 e
1.0734

2.6489
f

t8 e
1.2803

2.5454
f

t9 e
1.3432

2.2525
f

t10 e
1.2258

1.8325
f

t11 e
0.9340

1.3630
f

t12 e
0.5178

0.9224
f

By using a value of Eq. (11.29) can be used to find and and then Eq. (11.77)

can be used recursively to obtain as shown in Table 11.5.

*

11.9 Wilson Method

The Wilson method assumes that the acceleration of the system varies linearly between two

instants of time. In particular, the two instants of time are taken as indicated in Fig. 11.9.

Thus the acceleration is assumed to be linear from time to time ti+u = ti + u ¢t,ti = i ¢t

x
!
3, x

!
4, Á ,

x
!
2,x

!
1¢t = 0.24216,
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where [11.19]. For this reason, this method is also called the Wilson method. If

this method reduces to the linear acceleration scheme [11.20].

A stability analysis of the Wilson method shows that it is unconditionally stable pro-

vided that In this section, we shall consider the Wilson method for a multidegree-

of-freedom system.

Since is assumed to vary linearly between and we can predict the value of

at any time 

(11.78)

By integrating Eq. (11.78), we obtain4

(11.79)

and

(11.80)

By substituting into Eqs. (11.79) and (11.80), we obtain

(11.81)

(11.82) x
!
i+u = x

!
1ti + u ¢t2 = x

!
i + u ¢t x

!#

i +
u

2
1¢t2

2

6
 1x
!$

i+u + 2x
!$

i2

 x
!#

i+u = x
!#
1ti + u ¢t2 = x

!#

i +
u ¢t

2
 1x
!$

i+u + x
!$

i2

t = u ¢t

x
!
1ti + t2 = x

!
i + x

!#

it +
1

2
 x
!$

it
2 +

t
3

6u ¢t
 1x
!$

i+u - x
!$

i2

x
!#
1ti + t2 = x

!#

i + x
!$

it +
t

2

2u ¢t
 1x
!$

i+u - x
!$

i2

x
!$
1ti + t2 = x

!$

i +
t

u ¢t
 1x
!$

i+u - x
!$

i2

ti + t, 0 t u ¢t:x
!$

ti+u,tix
!$
1t2

u Ú 1.37.

u = 1.0,

uu Ú 1.0

4 and have been substituted in place of the integration constants in Eqs. (11.79) and (11.80), respectively.x
!
ix

!#

i

x
i*1

x
i*u

x
i

t
i

t
i*1

 , 

t
i
 * +t

ti*u
 , 

t
i
 * u +t

**

**

**

FIGURE 11.9 Linear acceleration

assumption of the Wilson method.
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Equation (11.82) can be solved to obtain

(11.83)

By substituting Eq. (11.83) into Eq. (11.81), we obtain

(11.84)

To obtain the value of we consider the equilibrium equation (11.18) at time

and write

(11.85)

where the force vector is also obtained by using the linear assumption:

(11.86)

Substituting Eqs. (11.83), (11.84), and (11.86) for and Eq. (11.85) gives

(11.87)

which can be solved for 

The Wilson method can be described by the following steps:

1. From the known initial conditions and find using Eq. (11.26).

2. Select a suitable time step and a suitable value of ( is usually taken as 1.4).

3. Compute the effective load vector starting with 

(11.88)  + [c]a
3

u ¢t
 x
!
i + 2x

!#

i +
u ¢t

2
 x
!$

ib

 F
!

L i+u = F
!

i + u1F
!

i+1 - F
!

i2 + [m]a
6

u
2
1¢t22

 x
!
i +

6

u ¢t
 x
!#

i + 2x
!$

ib

i = 0:F
L

i+u,

uu¢t

x
!$

0x
!#

0,x
!
0

x
!
i+1.

   + e
6

u ¢t
 [m] + 2[c]fx

!#

i + e2[m] +
u ¢t

2
 [c] fx

!$

i

  = F
!

i + u1F
!

i+1 - F
!

i2 + e
6

u
2 
1¢t22

 [m] +
3

u ¢t
 [c] fx

!
i

 e
6

u
2
1¢t22

 [m] +
3

u ¢t
 [c] + [k] fx

!
i+1

F'i+u,x
!$

i+u, x
!#

i+u,

F'i+u = F
!

i + u1F
!

i+1 - F
!

i2

F'i+u

[m] x
!$

i+u + [c] x
!#

i+u + [k] x
!
i+u = F'i+u

ti+u = ti + u ¢t

xi+u,

x
!#

i+u =
3

u ¢t
 1x
!
i+u - x

!
i2 - 2x

!#

i -
u ¢t

2
 x
!$

i

x
!$

i+u =
6

u
2
1¢t22

 1x
!
i+u - x

!
i2 -

6

u ¢t
 x
!#

i - 2x
!$

i
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4. Find the displacement vector at time 

(11.89)

5. Calculate the acceleration, velocity, and displacement vectors at time 

(11.90)

(11.91)

(11.92) x
!
i+1 = x

!
i + ¢t x

!#

i +
1¢t22

6
 1x
!$

i+1 + 2x
!$

i2

 x
!#

i+1 = x
!#

i +
¢t

2
  1x

!$

i+1 + x
!$

i2

 x
!$

i+1 =
6

u
3
1¢t22

 1x
!
i+u - x

!
i2 -

6

u
2¢t

 x
!#

i + a1 -
3

u
bx

!$

i

ti+1:

x
!
i+u = c

6

u
2 
1¢t22

 [m] +
3

u ¢t
 [c] + [k] d

-1

 F
L

i+u

ti+u:

E X A M P L E  1 1 . 7
Wilson Method for a Two-Degree-of-Freedom System

Find the response of the system considered in Example 11.3, using the Wilson method with

Solution:

Approach: Use Wilson method with 

The value of can be obtained as in the case of Example 11.3:

Then, by using Eqs. (11.90) to (11.92) with a time step of we obtain the results indi-

cated in Table 11.6.

*

11.10 Newmark Method
The Newmark integration method is also based on the assumption that the acceleration

varies linearly between two instants of time. The resulting expressions for the velocity and

displacement vectors and for a multidegree-of-freedom system [11.21], are writ-

ten as in Eqs. (11.79) and (11.80):

(11.93)

(11.94) x
!
i+1 = x

!
i + ¢t x

!#

i + [1
1
2 - a2x

!$

i + ax
!$

i+1]1¢t22

 x
!#

i+1 = x
!#

i + [11 - b2x
!$

i + bx
!$

i+1] ¢t

x
!
i+1,x

!#

i+1

¢t = 0.24216,

x
!$

0 = e
0

5
f

x
!$

0

¢t = 0.24216.

u = 1.4.

u
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TABLE 11.6

Time ti * i ¢t x
!
i * x

!
1t * ti2

t1 e
0.0033

0.1392
f

t2 e
0.0289

0.5201
f

t3 e
0.1072

1.0579
f

t4 e
0.2649

1.6408
f

t5 e
0.5076

2.1529
f

t6 e
0.8074

2.4981
f

t7 e
1.1035

2.6191
f

t8 e
1.3158

2.5056
f

t9 e
1.3688

2.1929
f

t10 e
1.2183

1.7503
f

t11 e
0.8710

1.2542
f

t12 e
0.3897

0.8208
f

where the parameters and indicate how much the acceleration at the end of the inter-

val enters into the velocity and displacement equations at the end of the interval In fact,

and can be chosen to obtain the desired accuracy and stability characteristics [11.22].

When and Eqs. (11.93) and (11.94) correspond to the linear acceleration

method (which can also be obtained using in the Wilson method). When and

Eqs. (11.93) and (11.94) correspond to the assumption of constant acceleration

between and To find the value of the equilibrium equation (11.18) is consid-

ered at , so that

(11.95)[m] x
!$

i+1 + [c] x
!#

i+1 + [k] x
!
i+1 = F

!

i+1

t = ti+1

x
!$

i+1,ti+1.ti

a =
1
4,

b =
1
2u = 1

a =
1
6,b =

1
2

ba

¢t.

ba
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Equation (11.94) can be used to express in terms of and the resulting expression

can be substituted into Eq. (11.93) to express in terms of By substituting these

expressions for and into Eq. (11.95), we can obtain a relation for finding 

(11.96)

The Newmark method can be summarized in the following steps:

1. From the known values of and find using Eq. (11.26).

2. Select suitable values of and 

3. Calculate the displacement vector starting with and using Eq. (11.96).

4. Find the acceleration and velocity vectors at time 

(11.97)

(11.98)

It is important to note that unless is taken as there is a spurious damping intro-

duced, proportional to If is taken as zero, a negative damping results; this

involves a self-excited vibration arising solely from the numerical procedure. Similarly,

if is greater than a positive damping is introduced. This reduces the magnitude of

response even without real damping in the problem [11.21]. The method is uncondi-

tionally stable for and b Ú
1
2 .a Ú

1
41b +

1
2 2

2

1
2,b

b1b -
1
22.

1
2,b

 x
!#

i+1 = x
!#

i + 11 - b2 ¢t x
!$

i + b  ¢t  x
!$

i+1

 x
!$

i+1 =
1

a1¢t22
 1x
!
i+1 - x

!
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a ¢t
 x
!#

i - a
1

2a
- 1bx

!$

i

ti+1:

i = 0x
!
i+1,

b.¢t, a,

x
!$

0x
!#

0,x
!
0

 + a
b

a
- 2b  

¢t

2
 x
!$

ib f

 + [c]a
b

a ¢t
 x
!
i + a

b

a
- 1bx

!#

i

 * eF
!

i+1 + [m]a
1

a1¢t22
  x
!
i +

1

a ¢t
x
!#

i + a
1

2a
- 1bx

!$

ib

 x
!
i+1 = c

1

a1¢t22
 [m] +

b

a ¢t
 [c] + [k] d

-1

x
!
i+1:x

!$

i+1x
!#

i+1

x
!
i+1.x

!#

i+1

x
!
i+1,x

!$

i+1

E X A M P L E  1 1 . 8
Newmark Method for a Two-Degree-of-Freedom System

Find the response of the system considered in Example 11.3, using the Newmark method with 

and 

Solution

Approach: Use the Newmark method with ¢t = 0.24216.

b =
1
2 .

a =
1
6
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TABLE 11.7

Time ti * i ¢t x
!
i * x

!
1t * ti2

t1 e
0.0026

0.1411
f

t2 e
0.0246

0.5329
f

t3 e
0.1005

1.0884
f

t4 e
0.2644

1.6870
f

t5 e
0.5257

2.2027
f

t6 e
0.8530

2.5336
f

t7 e
1.1730

2.6229
f

t8 e
1.3892

2.4674
f

t9 e
1.4134

2.1137
f

t10 e
1.1998

1.6426
f

t11 e
0.7690

1.1485
f

t12 e
0.2111

0.7195
f

The value of can be found using Eq. (11.26):

With the values of and Eq. (11.96) gives the values of

as shown in Table 11.7.

*

x
!
i = x

!
1t = ti2,

¢t = 0.24216,a =
1

6
, b = 0.5,

x
!$

0 = e
0

5
f

x
!$

0
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MATLAB Solution of a Single-Degree-of-Freedom System

Using the MATLAB function ode23, solve Example 11.1.

Solution: Defining and Eq. (E.1) of Example 11.1 can be expressed as a set of two

first-order differential equations:

(E.1)

(E.2)

with initial conditions The MATLAB program to solve Eqs. (E.1) and (E.2) is

given below.

% Ex11_9.m

tspan = [0: 0.1: 5*pi];

x0 = [0; 0];

[t,x] = ode23 ('dfunc11_9', tspan, x0);

plot (t,x(:,1));

xlabel ('t');

ylabel ('x(t) and xd(t)');

gtext ('x(t)');

hold on;

plot (t,x(:,2), '--');

gtext ('xd(t)')

%dfunc11_9.m

function f = dfunc11_9(t,x)

m = 1;

k = 1;

c = 0.2;

t0 = pi;

F0 = 1;

f = zeros (2,1);

f(1) = x(2);

f(2) = (F0* (1 * sin(pi*t/(2*t0))) * c*x(2) * k*x(1) )/m;

x1102 = x2102 = 0.

x 
#

2 =

1

m
 cF0 a1 - sin 

pt

2t0
b - cx2 - kx1 d

x 
#

1 = x2

x2 = x 
#

,x1 = x

E X A M P L E  1 1 . 9

11.11 Examples Using MATLAB

0 2
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*0.5
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x
(
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(
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*
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EXAMPLE 11.10
MATLAB Solution of Multidegree-of-Freedom System

Using the MATLAB function ode23, solve Example 11.3.

Solution: The equations of motion of the two-degree-of-freedom system in Eq. (E.1) of Example 11.3

can be expressed as a system of four first-order differential equations in terms of

as

(E.1)

(E.2)

(E.3)

(E.4) =
1

2
  510 + 2 y1 - 8 y36 = 5 + y1 - 4 y3

 y 
#

4 =
1

m2

  5F21t2 + cy2 - cy4 + ky1 - 1k + k22y36

 y 
#

3 = y4

 y 
#

2 =
1

m1

  5F11t2 - cy2 + cy4 - 1k1 + k2y1 + ky36 = -
 
6y1 + y3

 y 
#

1 = y2

y1 = x1,  y2 = x 
#

1,  y3 = x2,  y4 = x 
#

2

0 5
*3

*2

*1

0

2

1

3

10 15 20

t (Solid line: x2(t); Dotted line: xd2(t))

25 30 35 40 45 50

0 5
*3

*2

*1

0

2

1

3

10 15 20

t (Solid line: x1(t); Dotted line: xd1(t))

x
1
(t

) 
a
n

d
 x
d

1
(t

)
x
2
(t

) 
a
n

d
 x
d

2
(t

)

25 30 35 40 45 50

with initial conditions The MATLAB program to solve Eqs. (E.1) to (E.4)

is given below.

% Ex11_10.m

tspan = [0: 0.05: 50];

y0 = [0; 0; 0; 0];

[t,y] = ode23 ('dfunc11_10', tspan, y0);

yi102 = 0, i = 1, 2, 3, 4.
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subplot (211);

plot (t,y(:,1));

xlabel ('t ( Solid line: x1 (t) Dotted line: xd1 (t) ) ');

ylabel ('x1 (t) amd xd1 (t)');

hold on;

plot (t,y(:, 2), '--');

subplot (212);

plot (t,y(:, 3));

xlabel ('t ( Solid line: x2 (t) Dotted line: xd2 (t) )');

ylabel ('x2 (t) amd xd2 (t) ');

hold on;

plot (t,y (:,4), '--');

%dfunc11_10.m

function f = dfunc11_10 (t,y)

m1 = 1;

m2 = 2;

k1 = 4;

k2 = 6;

k = 2;

c = 0;

F1 = 0;

F2 = 10;

f = zeros (4,1);

f(1) = y(2);

f(2) = ( F1 2 c*y(2) + c*y(4) * (k1+k) *y(1) + k*y(3) )/m1;

f(3) = y(4);

f(4) = ( F2 + c*y(2) * c*y(4) + k*y(1) * (k + k2) *y(3) )/m2;

*

EXAMPLE 11.11
Program to Implement Fourth-Order Runge-Kutta Method

Develop a general MATLAB program called Program14.m for solving a set of first-order differen-

tial equations using the fourth-order Runge-Kutta method. Use the program to solve Example 11.2.

Solution: Program14.m is developed to accept the following input data:

of first-order differential equations

values a vector of size n

incrementdt = time

xi102,xx = initial

n = number

10
*0.8

*0.6

*0.2

*0.4

0

X 0.2

0.4

0.6

0.8

1

2 3 4

Time

x(1)

x(2)

5 6 7
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EXAMPLE 11.12
Program for Central Difference Method

Using the central difference method, develop a general MATLAB program called Program15.m to

find the dynamic response of a multidegree-of-freedom system. Use the program to find the solution

of Example 11.3.

Solution: Program15.m is developed to accept the following input data:

of freedom of the system

matrix, of size n * nm = mass

n = degree

The program requires a subprogram to define the functions The program

gives the values of at different values of time t.

I Time(I) x(1) x(2)

1 1.570800e*001 1.186315e*002 1.479138e*001

2 3.141600e*001 4.540642e*002 2.755911e*001

3 4.712400e*001 9.725706e*002 3.806748e*001

4 6.283200e*001 1.637262e*001 4.615022e*001

5 7.854000e*001 2.409198e*001 5.171225e*001

.

.

.

36 5.654880e+000 *2.868460e*001 5.040887e*001

37 5.811960e+000 *1.969950e*001 6.388500e*001

38 5.969040e+000 *8.655813e*002 7.657373e*001

39 6.126120e+000 4.301693e*002 8.821039e*001

40 6.283200e+000 1.898865e*001 9.855658e*001

*

xi1t2, i = 1, 2, Á , n

fi1x
!
, t2, i = 1, 2, Á , n.

*10

x
(1
)

xdd(1)

x(1)

xd(1)

0 1 2 3 4 5 6

*5

0

5

10

*5

x
(2
)

Time

xdd(2)

xd(2)

x(2)

0 1 2 3 4 5 6

0

5
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EXAMPLE 11.13
Program for Houbolt Method

Using the Houbolt method, develop a general MATLAB program called Program16.m to find the

dynamic response of a multidegree-of-freedom system. Use the program to find the solution of

Example 11.6.

Solution: Program16.m is developed to accept the following input data:

delt = increment between time steps

nstep (nstp) = number of time steps at which solution is to be found

xdi = initial values of x
#

i, a vector of size n

xi = initial values of xi, a vector of size n

k = stiffness matrix, of size n * n

c = damping matrix, of size n * n

m = mass matrix, of size n * n

n = degree of freedom of the system

matrix, of size 

matrix, of size 

values of a vector of size n

values of a vector of size n

of time steps at which solution is to be found

between time steps

The program requires a subprogram to define the forcing functions at any time

t. It gives the values of the response at different time steps i as and 

Solution by central difference method

Given data:

n= 2 nstp= 24 delt=2.421627e*001

Solution:

step time x(i,1) xd(i,1) xdd(i,1) x(i,2) xd(i,2) xdd(i,2)

1 0.0000 0.0000e+000 0.0000e+000 0.0000e+000 0.0000e+000 0.0000e+000 5.0000e+000

2 0.2422 0.0000e+000 0.0000e+000 0.0000e+000 1.4661e*001 0.0000e+000 5.0000e+000

3 0.4843 1.7195e*002 3.5503e*002 2.9321e*001 5.5204e*001 1.1398e+000 4.4136e+000

4 0.7265 9.3086e*002 1.9220e*001 1.0009e+000 1.1222e+000 2.0143e+000 2.8090e+000

5 0.9687 2.6784e*001 5.1752e*001 1.6859e+000 1.7278e+000 2.4276e+000 6.0429e*001

.

.

.

21 4.8433 1.6034e+000 1.7764e+000 *4.0959e+000 2.2077e+000 1.6763e+000 *1.0350e+000

22 5.0854 1.6083e+000 6.5025e*001 *5.2053e+000 2.4526e+000 1.2813e+000 *2.2272e+000

23 5.3276 1.3349e+000 *5.5447e*001 *4.7444e+000 2.5098e+000 6.2384e*001 *3.2023e+000

24 5.5697 8.8618e*001 *1.4909e+000 *2.9897e+000 2.3498e+000 *2.1242e*001 *3.7043e+000

25 5.8119 4.0126e*001 *1.9277e+000 *6.1759e*001 1.9837e+000 *1.0863e+000 *3.5128e+000

*

 j = 1, 2, Á , n.

x
$

j1i2,xj1i2, x 
#

j1i2,

fi1t2, i = 1, 2, Á , n

delt = increment

nstep (nstp) = number

x
# i

,xdi = initial

xi,xi = initial

n * nk = stiffness

n * nc = damping
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The program requires a subprogram to define the forcing functions at any time

t. It gives the values of the response at different time stations i as and 

Solution by Houbolt method

Given data:

n= 2 nstp= 24 delt=2.421627e*001

Solution:

step time x(i,1) xd(i,1) xdd(i,1) x(i,2) xd(i,2) xdd(i,2)

1 0.0000 0.0000e+000 0.0000e+000 0.0000e+000 0.0000e+000 0.0000e+000 5.0000e+000

2 0.2422 0.0000e+000 0.0000e+000 0.0000e+000 1.4661e*001 0.0000e+000 5.0000e+000

3 0.4843 1.7195e*002 3.5503e*002 2.9321e*001 5.5204e*001 1.1398e+000 4.4136e+000

4 0.7265 9.1732e*002 4.8146e*001 1.6624e+000 1.1064e+000 2.4455e+000 6.6609e*001

5 0.9687 2.5010e*001 8.6351e*001 1.8812e+000 1.6909e+000 2.3121e+000 *1.5134e+000

.

.

.

21 4.8433 8.7373e*001 1.7900e+000 *1.7158e+000 1.7633e+000 1.3850e+000 *1.1795e+000

22 5.0854 1.2428e+000 1.1873e+000 *3.3403e+000 2.0584e+000 1.0125e+000 *1.9907e+000

23 5.3276 1.4412e+000 3.6619e*001 *4.1553e+000 2.2460e+000 4.9549e*001 *2.5428e+000

24 5.5697 1.4363e+000 *4.8458e*001 *4.0200e+000 2.2990e+000 *9.6748e*002 *2.7595e+000

25 5.8119 1.2410e+000 *1.1822e+000 *3.0289e+000 2.2085e+000 *6.8133e*001 *2.5932e+000

j = 1, 2, Á , n.

x
$

j1i2,x 
#

j1i2,xj1i2,

fi1t2, i = 1, 2, Á , n

*5

x
(1
)

xdd(1)

x(1)

xd(1)

0 1 2 3 4 5 6

0

5

*5

x
(2
)

Time

xdd(2)

xd(2)

x(2)

0 1 2 3 4 5 6

0

5

*
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CHAPTER SUMMARY

Numerical methods are to be used in situations where the differential equations governing free and

forced vibration cannot be solved to find closed-form solutions. We presented the finite difference

method for the solution of the governing equations of discrete and continuous systems. We outlined

the use of the fourth-order Runge-Kutta, Houbolt, Wilson, and Newmark methods for the solution of

vibration problems related to multidegree-of-freedom systems. Finally, we presented the use of

MATLAB for the numerical solution of vibration problems.

Now that you have finished this chapter, you should be able to answer the review questions and

solve the problems given below.
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REVIEW QUESTIONS

11.1 Give brief answers to the following:

1. Describe the procedure of the finite difference method.

2. Using Taylor s series expansion, derive the central difference formulas for the first and

the second derivatives of a function,

3. What is a conditionally stable method?

4. What is the main difference between the central difference method and the Runge-Kutta

method?

5. Why is it necessary to introduce fictitious mesh points in the finite difference method of

solution?

6. Define a tridiagonal matrix.

7. What is the basic assumption of the Wilson method?

8. What is a linear acceleration method?

9. What is the difference between explicit and implicit integration methods?

10. Can we use the numerical integration methods discussed in this chapter to solve nonlin-

ear vibration problems?

11.2 Indicate whether each of the following statements is true or false:

1. The grid points in the finite difference methods are required to be uniformly spaced.

2. The Runge-Kutta method is stable.

3. The Runge-Kutta method is self-starting.

4. The finite difference method is an implicit integration method.

5. The Newmark method is an implicit integration method.
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980 CHAPTER 11 NUMERICAL INTEGRATION METHODS IN VIBRATION ANALYSIS

6. For a beam with grid points the central difference equivalence of the

condition is 

7. For a beam with grid points the central difference approximation of a

simply supported end condition at grid point 1 is given by 

8. For a beam with grid points the central difference approximation of

yields 

11.3 Fill in each of the following blanks with the appropriate word:

1. Numerical methods are to be used when the equations of motion cannot be solved in

_____ form.

2. In finite difference methods, approximations are used for _____.

3. Finite difference equations can be derived using _____ different approaches.

4. In finite difference methods, the solution domain is to be replaced by _____ points.

5. The finite difference approximations are based on _____ series expansion.

6. Numerical methods that require the use of a time step smaller than a critical value

are said to be _____ stable.

7. In a conditionally stable method, the use of larger than makes the method _____.

8. A _____ formula permits the computation of from known values of 

11.4 Select the most appropriate answer out of the choices given:

1. The central difference approximation of at is given by

a.

b.

c.

2. The central difference approximation of at is given by

a.

b.

c.

3. An integration method in which the computation of is based on the equilibrium

equation at is known as

a. explicit method

b. implicit method

c. regular method

4. In a non self-starting method, we need to generate the value of the following quantity

using the finite difference approximations of and 

a. b. c.

5. Runge-Kutta methods find the approximate solutions of

a. algebraic equations b. differential equations c. matrix equations

x-1x
$
-1x 

#
-1

x
$

i:x 
#
i

ti

xi+1

1

h2
 1xi - xi-12

1

h2
 1xi+1 - xi-12

1

h2
 1xi+1 - 2xi + xi-12

tid2x/dt2

1

2h
 1xi+1 - xi-12

1

2h
 1xi - xi-12

1

2h
 1xi+1 - xi2

tidx/dt

xi-1.xi

¢tcri¢t
1¢tcri2

1¢t2

W2 - 2W1 + W-1 = 0.
d2W

dx2
`

1
= 0

-1, 1, 2, 3, Á ,
W-1 = W2.

-1, 1, 2, 3, Á ,

W-1 = W2.
dW

dx
`

1
= 0

-1, 1, 2, 3, Á ,

M11_RAO08193_5_SE_C11.QXD  8/22/10  1:22 PM  Page 980



PROBLEMS 981

PROBLEMS

Section 11.2 Finite Difference Approach

11.1 The forward difference formulas make use of the values of the function to the right of the

base grid point. Thus the first derivative at point is defined as

Derive the forward difference formulas for and at ti.1d4x2/1dt4
21d2x2/1dt2

2, 1d3x2/1dt3
2,

dx

dt
=

x1t + ¢t2 - x1t2

¢t
=

xi+1 - xi

¢t

i1t = ti2

6. The finite difference approximation of at is given by

a.

b.

c.

7. The finite difference method requires the use of finite difference approximations in

a. governing differential equation only

b. boundary conditions only

c. governing differential equation as well as boundary conditions

8. If a bar under longitudinal vibration is fixed at node 1, the forward difference formula

gives

a. b. c.

9. If a bar under longitudinal vibration is free at node 1, the forward difference formula

gives

a. b. c.

10. The central difference approximation of at grid point i with step

size h is

a.

b.

c.

11.5 Match the items in the two columns below:

1. Houbolt method

2. Wilson method

3. Newmark method

4. Runge-Kutta method

5. Finite difference method

6. Linear acceleration method

Wi+3 - 4Wi+1 + 16 - h4
b

4
2Wi - 4Wi-1 + Wi-3 = 0

Wi+2 - 6Wi+1 + 16 - h4
b

4
2Wi - 6Wi-1 + Wi-2 = 0

Wi+2 - 4Wi+1 + 16 - h4
b

4
2Wi - 4Wi-1 + Wi-2 = 0

d4W/dx4
- b

4W = 0

U1 = U-1U1 = U2U1 = 0

U1 = U-1U1 = U2U1 = 0

Ui+1 - 12 - a
2
2Ui + Ui-1 = 0

Ui+1 - 2Ui + Ui+1 = 0

Ui+1 - 12 - h2
a

2
2Ui + Ui-1 = 0

xid2U/dx2
+ a

2U = 0

a. Assumes that acceleration varies linearly between 

and 

b. Assumes that acceleration varies linearly between 

and can lead to negative damping

c. Based on the solution of equivalent system of 

first-order equations

d. Same as Wilson method with 

e. Uses finite difference expressions for and 

in terms of and 

f. Conditionally stable

xi+1xi-2, xi-1, xi,

x
$

i+1x 
#
i+1

u = 1

ti+1;
ti

ti + u ¢t; u Ú 1ti
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F(t)

200

0 0.2 0.6

t

FIGURE 11.10

11.2 The backward difference formulas make use of the values of the function to the left of the

base grid point. Accordingly, the first derivative at point is defined as

Derive the backward difference formulas for and at 

11.3 Derive the formula for the fourth derivative, according to the central differ-

ence method.

Section 11.3 Central Difference Method for Single-Degree-Of-Freedom Systems

11.4 Find the free vibratory response of an undamped single-degree-of-freedom system with

and using the central difference method. Assume and Com-

pare the results obtained with and with the exact solution 

11.5 Integrate the differential equation

using the backward difference formula with Assume the initial conditions as

and 

11.6 Find the free-vibration response of a viscously damped single-degree-of-freedom system

with using the central difference method. Assume that 

and 

11.7 Solve Problem 11.6 by changing c to 2.

11.8 Solve Problem 11.6 by taking the value of c as 4.

11.9 Find the solution of the equation where F(t) is as shown in

Fig. 11.10 for the duration Assume that and ¢t = 0.05.x0 = x 
#
0 = 00 t 1.

4x
$
+ 2x 

#
+ 3000x = F1t2,

¢t = 0.5.

x0 = 0, x 
#
0 = 1,m = k = c = 1,

x 
#
0 = 0.x0 = 1

¢t = 1.

-  
d2x

dt2
+ 0.1x = 0 for 0 t 10

x1t2 = sin t.¢t = 0.5¢t = 1

x 
#
0 = 1.x0 = 0k = 1,m = 1

1d4x2/1dt4
2,

ti.1d4x2/1dt4
21d2x2/1dt2

2, 1d3x2/1dt3
2,

dx

dt
=

x1t2 - x1t - ¢t2

¢t
=

xi - xi-1

¢t

i1t = ti2

11.10 Find the solution of a spring-mass-damper system governed by the equation

t with and Assume the initial val-

ues of x and to be zero and Compare the central difference solution with the

exact solution given in Example 4.9.

¢t = 0.5.x 
#

dF = 1.m = c = k = 1mx
$
+ cx 

#
+ kx = F1t2 = dF.
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Section 11.4 Runge-Kutta Method for Single-Degree-Of-Freedom Systems

11.11 Express the following nth-order differential equation as a system of n first-order differential

equations:

11.12 Find the solution of the following equations by using the fourth-order Runge-Kutta method

with 

(a)

(b)

11.13 The second-order Runge-Kutta formula is given by

where

Using this formula, solve the problem considered in Example 11.2.

11.14 The third-order Runge-Kutta formula is given by

where

and

Using this formula, solve the problem considered in Example 11.2.

11.15 Using the second-order Runge-Kutta method, solve the differential equation 

with the initial conditions and Use 

11.16 Using the third-order Runge-Kutta method, solve Problem 11.15.

11.17 Using the fourth-order Runge-Kutta method, solve Problem 11.15.

Section 11.5 Central Difference Method for Multidegree-Of-Freedom Systems

11.18 Using the central difference method, find the response of the two-degree-of-freedom system

shown in Fig. 11.2 when 

11.19 Using the central difference method, find the response of the system shown in Fig. 11.2

when and F21t2 = 0.F11t2 = 10 sin 5t

c = 2, F11t2 = 0, F21t2 = 10.

¢t = 0.01.x 
#
0 = 0.x0 = 5

x
$
+ 1000x = 0

K
:

3 = h F
:

1X
:

i - K
:

1 + 2K
:

2, ti + h2

 K
:

2 = hF
:

1X
:

i +
1
2 K
:

1,  ti +
1
2 h2

 K
:

1 = hF
:

1X
:

i, ti2

X
:

i+1 = X
:

i +
1
6 1K
:

1 + 4K
:

2 + K
:

32

K
:

1 = hF
:

1X
:

i, ti2 and K
:

2 = hF
:

1X
:

i + K
:

1, ti + h2

X
:

i+1 = X
:

i +
1
2 1K
:

1 + K
:

22

x 
#
= - tx2; x0 = 1.

x 
#
= x - 1.5e-0.5t; x0 = 1

¢t = 0.1:

an 

dnx

dtn + an-1 

dn-1x

dtn-1
+ Á + a1 

dx

dt
= g1x, t2
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984 CHAPTER 11 NUMERICAL INTEGRATION METHODS IN VIBRATION ANALYSIS

11.20 The equations of motion of a two-degree-of-freedom system are given by

and Assuming the initial conditions as

find the response of the system, using the central

difference method with 

Section 11.6 Central Difference Method for Continuous Systems

11.21 The ends of a beam are elastically restrained by linear and torsional springs, as shown in

Fig. 11.11. Using the finite difference method, express the boundary conditions.

¢t = 0.25.

x1102 = x 
#
1102 = x2102 = x 

#
2102 = 0,

x
$

2 - 2x1 + 4x2 = 20 sin 5t.2x
$

1 + 6x1 - 2x2 = 5

W(x)

kt1

x * 0 x * l

k1

hh h h hh h h
kt2

Deflected center line
of the beam

k2

x

FIGURE 11.11

11.22 Using the fourth-order Runge-Kutta method, solve Problem 11.20.

11.23 Find the natural frequencies of a fixed-fixed bar undergoing longitudinal vibration, using

three mesh points in the range 

11.24 Derive the finite difference equations governing the forced longitudinal vibration of a fixed-free

uniform bar, using a total of n mesh points. Find the natural frequencies of the bar, using 

11.25 Derive the finite difference equations for the forced vibration of a fixed-fixed uniform shaft

under torsion, using a total of n mesh points.

11.26 Find the first three natural frequencies of a uniform fixed-fixed beam.

11.27 Derive the finite difference equations for the forced vibration of a cantilever beam subjected

to a transverse force at the free end.

11.28 Derive the finite difference equations for the forced-vibration analysis of a rectangular mem-

brane, using m and n mesh points in the x and y directions, respectively. Assume the mem-

brane to be fixed along all the edges. Use the central difference formula.

Sections 11.7, 11.11 Runge-Kutta Method for Multidegree-Of-Freedom Systems and

MATLAB Problems

11.29 Using Program14.m (fourth-order Runge-Kutta method), solve Problem 11.18 with 

11.30 Using Program14.m (fourth-order Runge-Kutta method), solve Problem 11.19.

11.31 Using Program15.m (central difference method), solve Problem 11.20.

c = 1.

f1x, t2 = f0 cos vt

n = 4.

0 6 x 6 l.
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Section 11.8, 11.11 Houbolt Method

11.32 Using Program15.m (central difference method), solve Problem 11.18 with 

11.33 Using Program16.m (Houbolt method), solve Problem 11.19.

11.34 Using Program16.m (Houbolt method), solve Problem 11.20.

Section 11.9 Wilson Method

11.35 Using the Wilson method with solve Problem 11.18.

11.36 Using the Wilson method with solve Problem 11.19.

11.37 Using the Wilson method with solve Problem 11.20.

Section 11.10 Newmark Method

11.38 Using the Newmark method with and solve Problem 11.18.

11.39 Using the Newmark method with and solve Problem 11.19.

11.40 Using the Newmark method with and solve Problem 11.20.

Section 11.11 MATLAB Problems

11.41 Using MATLAB function ode23, solve the differential equation 

with 

11.42 The equations of motion of a two-degree-of-freedom system are given by

where denotes a rectangular pulse of magnitude 5 acting over Find the

solution of the equations using MATLAB.

11.43 Find the response of a simple pendulum numerically by solving the linearized equation:

with and plot the response, for Assume the initial conditions as

and Use the MATLAB function ode23

for numerical solution.

11.44 Find the response of a simple pendulum numerically by solving the exact equation:

with and plot the response, for Assume the initial conditions as

and Use the MATLAB function ode23

for numerical solution.

u
#

1t = 02 = u
#

0 = 1.5 rad/s.u1t = 02 = u0 = 1 rad

0 t 150.u1t2,
g

l
= 0.01

u
$

+

g

l
 sin u = 0

u
#

1t = 02 = u
#

0 = 1.5 rad/s.u1t = 02 = u0 = 1 rad

0 t 150.u1t2,
g

l
= 0.01

u
$

+

g

l
 u = 0

0 t 2.F11t2

c
2 0

0 4
d e

x
$

1

x
$

2

f + 5 c
2 -1

-1 3
d e

x1

x2

f = e
F11t2

0
f

x102 = x 
#
102 = 0.

5x
$

+ 4x 
#
+ 3x = 6 sin t

b =
1

2 ,a =
1

6

b =
1

2 ,a =
1

6

b =
1

2 ,a =
1

6

u = 1.4,

u = 1.4,

u = 1.4,

c = 1.
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11.45 Find the response of a simple pendulum numerically by solving the nonlinear equation:

with and plot the response, for Assume the initial conditions as

and Use the MATLAB function ode23

for numerical solution.

11.46 Write a subroutine WILSON for implementing the Wilson method. Use this program to find

the solution of Example 11.7.

11.47 Write a subroutine NUMARK for implementing the Newmark method. Use this subroutine to

find the solution of Example 11.8.

u

#

1t = 02 = u

#

0 = 1.5 rad/s.u1t = 02 = u0 = 1 rad

0 t 150.u1t2,
g

l
= 0.01

u

$

+

g

l
 +u -

u
3

6
* = 0

986 CHAPTER 11 NUMERICAL INTEGRATION METHODS IN VIBRATION ANALYSIS
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Aurel Boreslav Stodola (1859 1942) was a Swiss engineer who joined the Swiss
Federal Institute of Technology in Zurich in 1892 to occupy the chair of thermal
machinery. He worked in several areas including machine design, automatic con-
trols, thermodynamics, rotor dynamic, and steam turbines. He published one of
the most outstanding books, namely, Die Dampfturbin, at the turn of the century.
This book discussed not only the thermodynamic issues involved in turbine design
but also the aspects of fluid flow, vibration, stress analysis of plates, shells and
rotating discs, thermal stresses, and stress concentrations at holes and fillets, and
was translated into many languages. The approximate method he presented for the
computation of natural frequencies of beams has become known as the Stodola
method. (Photo courtesy of Applied Mechanics Reviews.)

C H A P T E R  1 2

Finite Element

Method

987

Chapter Outline

The finite element method is a numerical method that can be used for an accurate (but

approximate) solution of many complex vibration problems. The mass and stiffness matri-

ces and force vectors needed for the finite element analysis are derived for the basic one-

dimensional elements such as a bar in axial motion, a rod in torsional motion, and a beam
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988 CHAPTER 12 FINITE ELEMENT METHOD

in bending motion. For the analysis of problems involving one-dimensional elements in

two- and three-dimensional geometries (such as trusses and frames), the element matrices

are to be transformed into the relevant higher-dimensional space. The details of transfor-

mation of element matrices and vectors and the use of the resulting matrices and vectors

in formulating the finite element equations of motion for complex systems are explained.

The incorporation of the boundary conditions to the assembled system matrices and equa-

tions is also discussed. Examples are presented to illustrate the finite element method in

finding the natural frequencies of vibration of bars and beams and the stress analysis of a

simple two-dimensional truss. The use of consistent and lumped-mass matrices in the

finite element analysis of vibration problems is outlined with illustrative examples. Finally,

MATLAB programs are given to find the nodal displacements under specified axial loads,

the natural frequencies of vibration of a stepped bar, and the eigenvalue analysis of a

stepped beam.

Learning Objectives

After you have finished studying this chapter, you should be able to do the following:

* Identify the stiffness and mass matrices to be used for the solution of different types of

vibration problems.

* Transform the element matrices from local coordinate system to the global coordinate

system.

* Assemble the element matrices and apply the boundary conditions.

* Conduct static analysis of problems involving bar, rod, and beam elements.

* Conduct dynamic analysis of problems involving bar, rod, and beam elements to find

natural frequencies and mode shapes.

* Use consistent- and lumped-mass matrices in finite element vibration analysis.

* Use MATLAB for solving vibration problems using finite element analysis.

12.1 Introduction

The finite element method is a numerical method that can be used for the accurate solution

of complex mechanical and structural vibration problems [12.1, 12.2]. In this method, the

actual structure is replaced by several pieces or elements, each of which is assumed to

behave as a continuous structural member called a finite element. The elements are

assumed to be interconnected at certain points known as joints or nodes. Since it is very

difficult to find the exact solution (such as the displacements) of the original structure

under the specified loads, a convenient approximate solution is assumed in each finite ele-

ment. The idea is that if the solutions of the various elements are selected properly, they

can be made to converge to the exact solution of the total structure as the element size is

reduced. During the solution process, the equilibrium of forces at the joints and the com-

patibility of displacements between the elements are satisfied so that the entire structure

(assemblage of elements) is made to behave as a single entity.
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12.2 EQUATIONS OF MOTION OF AN ELEMENT 989

The basic procedure of the finite element method, with application to simple vibration

problems, is presented in this chapter. The element stiffness and mass matrices and force

vectors are derived for a bar element, a torsion element, and a beam element. The transfor-

mation of element matrices and vectors from the local to the global coordinate system is

presented. The equations of motion of the complete system of finite elements and the

incorporation of the boundary conditions are discussed. The concepts of consistent and

lumped-mass matrices are presented along with a numerical example. Finally, a computer

program for the eigenvalue analysis of stepped beams is presented. Although the tech-

niques presented in this chapter can be applied to more complex problems involving

two- and three-dimensional finite elements, only the use of one-dimensional elements is

considered in the numerical treatment.

12.2 Equations of Motion of an Element
For illustration, the finite element model of a plano-milling machine structure

(Fig. 12.1(a)) is shown in Fig. 12.1(b). In this model, the columns and the overarm are

represented by triangular plate elements and the cross-slide and the tool holder are rep-

resented by beam elements [12.3]. The elements are assumed to be connected to each

other only at the joints. The displacement within an element is expressed in terms of

the displacements at the corners or joints of the element. In Fig. 12.1(b), the transverse

displacement within a typical element e is assumed to be w(x, y, t). The values of w,

Beam
elements

Column

Overarm Tool holder

Column

Cross-slide

Cutter

(a) Plano-milling machine structure (b) Finite element model

x

zy

Bed

Fy
Fx

Fz

Cutting forces

Plate
elements

Element e

w3(t)

w1(t)

w9(t)

w7(t)

w8(t)

w2(t)
w4(t)

w6(t)

w5(t)
2

w(x, y, t)

1

f(x, y, t)

3

e

FIGURE 12.1 Finite element modeling.
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990 CHAPTER 12 FINITE ELEMENT METHOD

and at joints 1, 2, and 3 namely 

are treated as unknowns and

are denoted as The displacement w(x, y, t) can be ex-

pressed in terms of the unknown joint displacements in the form

(12.1)

where is called the shape function corresponding to the joint displacement

and n is the number of unknown joint displacements ( in Fig. 12.1(b)). If a

distributed load f(x, y, t) acts on the element, it can be converted into equivalent joint

forces If concentrated forces act at the joints, they can also be

added to the appropriate joint force We shall now derive the equations of motion

for determining the joint displacements under the prescribed joint forces By

using Eq. (12.1), the kinetic energy T and the strain energy V of the element can be

expressed as

(12.2)

(12.3)

where

and [m] and [k] are the mass and stiffness matrices of the element. By substituting 

Eqs. (12.2) and (12.3) into Lagrange s equations, Eq. (6.44), the equations of motion of the

finite element can be obtained as

(12.4)

where is the vector of joint forces and is the vector of joint accelerations given byW
!$

f
:

[m]W
!$

+ [k]W
:

= f
:

W
!
= e

w1(t)

w2(t)
.
.
.

wn(t)

u ,  W
!#

= e

w
 
#
1(t)

w
 #

2(t)
.
.
.

w 
#
n(t)

u = e

dw1/dt
dw2/dt

.

.

.

dwn/dt

u

 V =
1

2
 W
:T [k] W

:

 T =
1

2
 W
!#
T [m] W

!#

fi(t).wi(t)
fi(t).

fi(t) (i = 1, 2, Á , 9).

n = 9wi(t)
Ni(x, y)

w(x, y, t) = a
n

i=1
 Ni(x, y) wi(t)

wi(t)
w1(t), w2(t), w3(t), Á , w9(t).

(0w)/(0y)(x3, y3, t)(x1, y1, t), (0w)/(0y)(x1, y1, t), Á ,
w(x1, y1, t), (0w)/(0x)(0w)/(0y)(0w)/(0x),
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12.3 MASS MATRIX, STIFFNESS MATRIX, AND FORCE VECTOR 991

Note that the shape of the finite elements and the number of unknown joint displacements

may differ for different applications. Although the equations of motion of a single element,

Eq. (12.4), are not useful directly (as our interest lies in the dynamic response of the assem-

blage of elements), the mass matrix [m], the stiffness matrix [k], and the joint force vector 

of individual elements are necessary for the final solution. We shall derive the element

mass and stiffness matrices and the joint force vectors for some simple one-dimensional ele-

ments in the next section.

12.3 Mass Matrix, Stiffness Matrix, and Force Vector

f
:

W
!$

= e

w
$

1

w
$

2
.
.
.

w
$

n

u = e

d2
w1/dt2

d2
w2/dt2

.

.

.

d2
wn/dt2

u

12.3.1
Bar Element

Consider the uniform bar element shown in Fig. 12.2. For this one-dimensional element,

the two end points form the joints (nodes). When the element is subjected to axial loads

and the axial displacement within the element is assumed to be linear in x as

(12.5)

When the joint displacements and are treated as unknowns, Eq. (12.5) should

satisfy the conditions

(12.6)

Equations (12.5) and (12.6) lead to

a (t) = u1(t)

u (0, t) = u1(t),  u (l, t) = u2 
(t)

u2(t)u1(t)

u (x, t) = a (t) + b (t)x

f2(t),f1(t)

u1(t)

f1(t)
Joint 1

Joint 2

l

r, E, A

u2(t)

f2(t)

u(x, t)

f(x, t) x

x

FIGURE 12.2 Uniform bar element.
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992 CHAPTER 12 FINITE ELEMENT METHOD

and

(12.7)

Substitution for a(t) and b(t) from Eq. (12.7) into Eq. (12.5) gives

(12.8)

or

(12.9)

where

(12.10)

are the shape functions.

The kinetic energy of the bar element can be expressed as

(12.11)

where

is the density of the material and A is the cross-sectional area of the element.

By expressing Eq. (12.11) in matrix form,

(12.12)

where

u
!#
(t) = e

u 
#
1(t)

u 
#
2(t)

f

T(t) =
1

2
 u
!#
(t)T[m]u

!#
(t)

r

u 
#
1 =

du1(t)

dt
,  u 

#
2 =

du2(t)

dt

 =
1

2
  

rAl

3
 (u 

#
1
2

+ u 
#
1u

 #
2 + u 

#
2
2)

 =
1

2L

l

0
rA e a1 -

x

l
b  

du1(t)

dt
+ a

x

l
b  

du2(t)

dt
f

2

 dx

 T(t) =
1

2L

l

0
rA e

0 u(x, t)

0t
f

2

 dx

N1(x) = a1 -
x

l
b ,  N2(x) =

x

l

u(x, t) = N1(x)u1(t) + N2(x) u2(t)

u(x, t) = a1 -
x

l
b  u1(t) +

x

l
  u2(t)

a(t) + b(t)l = u2(t) or b(t) =
u2(t) - u1(t)

l
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12.3 MASS MATRIX, STIFFNESS MATRIX, AND FORCE VECTOR 993

and the superscript T indicates the transpose, the mass matrix [m] can be identified as

(12.13)

The strain energy of the element can be written as

(12.14)

where and E is Young s modulus. By expressing Eq. (12.14) in

matrix form as

(12.15)

where

the stiffness matrix [k] can be identified as

(12.16)

The force vector

can be derived from the virtual work expression. If the bar is subjected to the distributed

force f(x, t), the virtual work can be expressed as

 =
L

l

0
f(x, t) e a1 -

x

l
b  du1(t) + a

x

l
b  du2(t) f  dx

 dW(t) =
L

l

0
f(x, t) du(x, t) dx

dW

f
:

= e
f1(t)

f2(t)
f

[k] =
EA

l
 c

1 -1

-1 1
d

u
!
(t) = e

u1(t)

u2(t)
f and u

!
(t)T

= 5u1(t)u2(t)6

V(t) =
1

2
 u
!
 (t)T[k] u

!
 (t)

u1 = u1(t), u2 = u2(t),

 =
1

2
  

EA

l
 (u1

2
- 2u1u2 + u2

2)

 =
1

2L

l

0
EA e -  

1

l
  u1(t) +

1

l
  u2(t) f

2

 dx

 V(t) =
1

2L

l

0
EA e

0 u(x, t)

0x
f

2

 dx

[m] =
rAl

6
 c

2 1

1 2
d
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(12.17)

By expressing Eq. (12.17) in matrix form as

(12.18)

the equivalent joint forces can be identified as

(12.19)

f1(t) =
L

l

0
f(x, t) a1 -

x

l
b  dx

f2(t) =
L

l

0
f(x, t) a

x

l
b  dx

t

dW(t) = du
!
(t)T f

:

(t) K f1(t) du1(t) + f2(t) du2(t)

 + a

L

l

0
f(x, t) a

x

l
b  dxb  du2(t)

 = a

L

l

0
f(x, t) a1 -

x

l
b  dxb  du1(t)

12.3.2

Torsion Element

Consider a uniform torsion element with the x-axis taken along the centroidal axis, as

shown in Fig. 12.3. Let denote the polar moment of inertia about the centroidal axis and

GJ represent the torsional stiffness ( for a circular cross section). When the tor-

sional displacement (rotation) within the element is assumed to be linear in x as

(12.20)

and the joint rotations and are treated as unknowns, Eq. (12.20) can be

expressed, by proceeding as in the case of a bar element, as

(12.21)

where and are the same as in Eq. (12.10). The kinetic energy, the strain

energy, and the virtual work for pure torsion are given by

(12.22)

(12.23)

(12.24) dW(t) =
L

l

0
f(x, t) du (x, t) dx

 V(t) =
1

2L

l

0
GJe

0u(x, t)

0x
f

2

 dx

 T(t) =
1

2L

l

0
rIpe

0u(x, t)

0t
f

2

 dx

N2(x)N1(x)

u (x, t) = N1(x) u1(t) + N2(x) u2(t)

u2(t)u1(t)

u(x, t) = a(t) + b(t)x

J = Ip

Ip
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f1(t)

Joint 1 Joint 2

f(x, t) f2(t)

x

u1(t)
u(x, t)

u2(t)

x

l

r, Ip, G, A

FIGURE 12.3 Uniform torsion element.

where is the mass density and f(x, t) is the distributed torque per unit length. Using the

procedures employed in Section 12.3.1, we can derive the element mass and stiffness

matrices and the force vector:

(12.25)

(12.26)

(12.27) f
:

= e
f1(t)

f2(t)
f = d

L

l

0
f(x, t) a1 -

x

l
b  dx

L

l

0
f(x, t) a

x

l
b  dx

t

 [k] =
GJ

l
 c

1 -1

-1 1
d

 [m] =

rIp 
l

6
 c

2 1

1 2
d

r

12.3.3
Beam Element

We now consider a beam element according to the Euler-Bernoulli theory.1 Figure 12.4

shows a uniform beam element subjected to the transverse force distribution f(x, t). In this

case, the joints undergo both translational and rotational displacements, so the unknown

joint displacements are labeled as and Thus there will be linear

joint forces and corresponding to the linear joint displacements and 

and rotational joint forces (bending moments) and corresponding to the rota-

tional joint displacements and respectively. The transverse displacement within

the element is assumed to be a cubic equation in x (as in the case of static deflection of a

beam):

(12.28)w(x, t) = a(t) + b(t)x + c(t)x2
+ d(t)x3

w4(t),w2(t)
f4(t)f2(t)

w3(t)w1(t)f3(t)f1(t)
w4(t).w1(t), w2(t), w3(t),

1The beam element, according to the Timoshenko theory, was considered in references [12.4 12.7].
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Joint 1 Joint 2

r, A, I, E
l

x

x

f1(t) f3(t)

f2(t) w1(t)

w2(t)

f4(t)
w3(t)

w4(t)

w(x, t)

f(x, t)

FIGURE 12.4 Uniform beam element.

The unknown joint displacements must satisfy the conditions

(12.29)

Equations (12.28) and (12.29) yield

(12.30)

By substituting Eqs. (12.30) into Eq. (12.28), we can express w(x, t) as

(12.31) + a3 

x
2

l
2
- 2 

x
3

l
3
b  w3(t) + a -  

x
2

l
2
+

x
3

l
3
b  lw4(t)

 w(x, t) = a1 - 3 

x
2

l
2
+ 2 

x
3

l
3
b  w1(t) + a

x

l
- 2 

x
2

l
2
+

x
3

l
3
b  lw2(t)

 d(t) =
1

l
3

 [2w1(t) + w2(t)l - 2w3(t) + w4(t)l]

 c(t) =
1

l
2

 [-3w1(t) - 2w2(t)l + 3w3(t) - w4(t)l]

 b(t) = w2(t)

 a(t) = w1(t)

w(0, t) = w1(t),  0w

0x
 (0, t) = w2(t)

w(l, t) = w3(t),  0w

0x
 (l, t) = w4(t)

t
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This equation can be rewritten as

(12.32)

where are the shape functions given by

(12.33)

(12.34)

(12.35)

(12.36)

The kinetic energy, bending strain energy, and virtual work of the element can be ex-

pressed as

(12.37)

(12.38)

(12.39)

where is the density of the beam, E is Young s modulus, I is the moment of inertia of the

cross section, A is the area of cross section, and

w
!
(t) =

w1(t)

w2(t)

w3(t)

w4(t)

,  w
!#
(t) =

dw1/dt

dw2/dt

dw3/dt

dw4/dt

r

  dW(t) =
L

l

0
f(x, t) dw (x, t) dx K dw

!
 (t)

T
 f
:

(t)

 V(t) =
1

2L

l

0
EIe

0
2
w(x, t)

0x2
f

2

 dx K
1

2
 w
!
 (t)T[k]w

!
(t)

 T(t) =
1

2L

l

0
rAe

0w(x, t)

0t
f

2

 dx K
1

2
 w
!#
(t)T[m]w

!#
(t)

 N4(x) = -  la
x

l
b

2

+ la
x

l
b

3

 N3(x) = 3a
x

l
b

2

- 2a
x

l
b

3

 N2(x) = x - 2la
x

l
b

2

+ la
x

l
b

3

 N1(x) = 1 - 3a
x

l
b

2

+ 2a
x

l
b

3

Ni(x)

w(x, t) = a
4

i=1
 Ni 

(x)wi 
(t)
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By substituting Eq. (12.31) into Eqs. (12.37) to (12.39) and carrying out the necessary inte-

grations, we obtain

(12.40)

(12.41)

(12.42)

12.4 Transformation of Element Matrices and Vectors

As stated earlier, the finite element method considers the given dynamical system as an

assemblage of elements. The joint displacements of an individual element are selected in a

convenient direction, depending on the nature of the element. For example, for the bar ele-

ment shown in Fig. 12.2, the joint displacements and are chosen along the axial

direction of the element. However, other bar elements can have different orientations in an

assemblage, as shown in Fig. 12.5. Here x denotes the axial direction of an individual ele-

ment and is called a local coordinate axis. If we use and to denote the joint dis-

placements of different bar elements, there will be one joint displacement at joint 1, three

at joint 2, two at joint 3, and two at joint 4. However, the displacements of joints can be

specified more conveniently using reference or global coordinate axes X and Y. Then the

displacement components of joints parallel to the X- and Y-axes can be used as the joint

displacements in the global coordinate system. These are shown as 

in Fig. 12.5. The joint displacements in the local and the global coordinate system for a

typical bar element e are shown in Fig. 12.6. The two sets of joint displacements are related

as follows:

(12.43) u2(t) = U2j-1(t) cos u + U2j(t) sin u

 u1(t) = U2i-1(t) cos u + U2i(t) sin u

Ui(t), i = 1, 2, Á , 8

u2(t)u1(t)

u2(t)u1(t)

fi 
(t) =

L

l

0
f(x, t)Ni(x) dx,  i = 1, 2, 3, 4

[k] =
EI

l3
 +

12 6l -12 6l

6l 4l2
-6l 2l2

-12 -6l 12 -6l

6l 2l2
-6l 4l2

,

[m] =
rAl

420
 +

156 22l 54 -13l

22l 4l2 13l -3l2

54 13l 156 -22l

-13l -312
-22l 4l2

,

dw
!
(t) = -

dw1(t)

dw2(t)

dw3(t)

dw4(t)

* ,  f
:

(t) = -

f1(t)

f2(t)

f3(t)

f4(t)

*
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These can be rewritten as

(12.44)

where is the coordinate transformation matrix given by

(12.45)

and and are the vectors of joint displacements in the local and the global coordi-

nate system, respectively, and are given by

U
!

(t)u
!
(t)

[l] = c

cos u sin u 0 0

0 0 cos u sin u
d

[l]

u
!
(t) = [l] U

!

(t)

2

1

1 3

4

2
4

3
U4(t)

U7(t)

U8(t)Y

X

U2(t)

U1(t) U5(t)

U6(t)

u1(t)

u2(t)

u1(t) u2(t) u1(t)

u2(t)

Load

u2(t)

U3(t)

u1(t)

x

x

x

x

FIGURE 12.5 A dynamical system (truss) idealized

as an assemblage of four bar elements.

U2i(t)

U2j(t)

u1(t)

u2(t)

x

u

U2i*1(t)

U2j*1(t)

Y

X

i

j

e

x + local coordinate axis
X,Y + global coordinate axes

u1(t), u2(t) + local joint displacements
U2i*1(t), ... , U2j(t) + global joint displacements

FIGURE 12.6 Local and global joint displacements 

of element e.
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It is useful to express the mass matrix, stiffness matrix, and joint force vector of an element

in terms of the global coordinate system while finding the dynamical response of the com-

plete system. Since the kinetic and strain energies of the element must be independent of

the coordinate system, we have

(12.46)

(12.47)

where and denote the element mass and stiffness matrices, respectively, in the 

global coordinate system and is the vector of joint velocities in the global coordinate 

system, related to as in Eq. (12.44):

(12.48)

By inserting Eqs. (12.44) and (12.48) into (12.46) and (12.47), we obtain

(12.49)

(12.50)

Equations (12.49) and (12.50) yield

(12.51)

(12.52)

Similarly, by equating the virtual work in the two coordinate systems,

(12.53)

we find the vector of element joint forces in the global coordinate system 

(12.54)f
:

(t) = [l]T
 f
:

(t)

f
:

(t):

dW(t) = d u
!
(t)T

 f
:

(t) = d U
!

(t)T
 f
:

(t)

 [k] = [l]T[k][l]

 [ m ] = [l]T[m][l]

 V(t) =
1

2
  U
:

(t)T[l]T[k][l] U
:

(t) K
1

2
 U
:

(t)T[k] U
:

(t)

 T(t) =
1

2
 U
!#

(t)T[l]T[m][l] U
!#

(t) K
1

2
 U
!#

(t)T[ m ]U
!#

(t)

u
!#

(t) = [l]U
!#

(t)

u
!#

(t)

U
!#

(t)

[k][m]

 V(t) =
1

2
 u
!
(t)T[k] u

!
(t) =

1

2
 U
!

(t)T[k]U
!

(t)

 T(t) =
1

2
 u
!#

(t)T[m] u
!#

(t) =
1

2
 U
!#

(t)T[ m ]U
!#

(t)

u
!
(t) = e

u1(t)

u2(t)
f ,  U

!

(t) =

U2i-1(t)

U2i 
(t)

U2j-1(t)

U2j 
(t)
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Equations (12.51), (12.52), and (12.54) can be used to obtain the equations of motion of a

single finite element in the global coordinate system:

(12.55)

Although this equation is not of much use, since our interest lies in the equations of

motion of an assemblage of elements, the matrices and and the vector are use-

ful in deriving the equations of motion of the complete system, as indicated in the follow-

ing section.

12.5 Equations of Motion of the Complete System of Finite Elements
Since the complete structure is considered an assemblage of several finite elements, we

shall now extend the equations of motion obtained for single finite elements in the global

system to the complete structure. We shall denote the joint displacements of the complete

structure in the global coordinate system as or, equivalently, as a

column vector:

For convenience, we shall denote the quantities pertaining to an element e in the assem-

blage by the superscript e. Since the joint displacements of any element e can be identified

in the vector of joint displacements of the complete structure, the vectors and 

are related:

(12.56)

where is a rectangular matrix composed of zeros and ones. For example, for element

1 in Fig. 12.5, Eq. (12.56) becomes

(12.57)U
!
(1)(t) K -

U1(t)

U2(t)

U3(t)

U4(t)

* = +

1 0 0 0 0 0 0 0

0 1 0 0 0 0 0 0

0 0 1 0 0 0 0 0

0 0 0 1 0 0 0 0

, f

U1(t)

U2(t)
.

.

.

U8(t)

v

[A(e)]

U
!
(e)(t) = [A(e)] U

!

' (t)

U
!

' (t)U
!
(e)(t)

U
!

' (t) = f

U1(t)

U2(t)

.

.

.

UM(t)

v

U1(t), U2(t), Á , UM(t)

f
:

[k][ m ]

[ m ] U
!$

(t) + [k] U
!
(t) = f

:

(t)
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The kinetic energy of the complete structure can be obtained by adding the kinetic energies

of individual elements

(12.58)

where E denotes the number of finite elements in the assemblage. By differentiating Eq.

(12.56), the relation between the velocity vectors can be derived:

(12.59)

Substitution of Eq. (12.59) into (12.58) leads to

(12.60)

The kinetic energy of the complete structure can also be expressed in terms of joint velocities

of the complete structure :

(12.61)

where is called the mass matrix of the complete structure. A comparison of Eqs.

(12.60) and (12.61) gives the relation2

(12.62)

Similarly, by considering strain energy, the stiffness matrix of the complete structure, 

can be expressed as

(12.63)[K
'

] = a
E

e=1
 [A(e)]T[k(e)] [A(e)]

[K
'

],

[M
'

] = a
E

e=1
 [A(e)]T[ m 

(e)][A(e)]

[M
'

]

T =

1

2
 U

!#

'

T[M
'

]U
!#

'

U
!#

'

T =
1

2
  a

 E

e=1
 U

!#

'

T
[A(e)]T[ m 

(e)] [A(e)]U
!#

'

U
!#

(e)(t) = [A(e)] U
!#

'
(t)

T = a
E

e=1
 
1

2
  U

!#

(e)T
 [ m ]U

!#

(e)

2An alternative procedure can be used for the assembly of element matrices. In this procedure, each of the rows

and columns of the element (mass or stiffness) matrix is identified by the corresponding degree of freedom in the

assembled structure. Then the various entries of the element matrix can be placed at their proper locations in the

overall (mass or stiffness) matrix of the assembled system. For example, the entry belonging to the ith row (iden-

tified by the degree of freedom p) and the jth column (identified by the degree of freedom q) of the element matrix

is to be placed in the pth row and qth column of the overall matrix. This procedure is illustrated in Example 12.3.
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Finally the consideration of virtual work yields the vector of joint forces of the complete

structure, 

(12.64)

Once the mass and stiffness matrices and the force vector are known, Lagrange s equations

of motion for the complete structure can be expressed as

(12.65)

where is the stiffness matrix of the complete structure.

Note that the joint force vector in Eq. (12.65) was generated by considering only the

distributed loads acting on the various elements. If there is any concentrated load acting

along the joint displacement it must be added to the ith component of 

12.6 Incorporation of Boundary Conditions
In the preceding derivation, no joint was assumed to be fixed. Thus the complete structure

is capable of undergoing rigid-body motion under the joint forces. This means that is

a singular matrix (see Section 6.12). Usually the structure is supported such that the dis-

placements are zero at a number of joints, to avoid rigid-body motion of the structure. A

simple method of incorporating the zero displacement conditions is to eliminate the corre-

sponding rows and columns from the matrices and and the vector The final

equations of motion of the restrained structure can be expressed as

(12.66)

where N denotes the number of free joint displacements of the structure.

Note the following points concerning finite element analysis:

1. The approach used in the above presentation is called the displacement method of

finite element analysis because it is the displacements of elements that are directly

approximated. Other methods, such as the force method, the mixed method, and

hybrid methods, are also available [12.8, 12.9].

2. The stiffness matrix, mass matrix, and force vector for other finite elements, including

two-dimensional and three-dimensional elements, can be derived in a similar manner,

provided the shape functions are known [12.1, 12.2].

3. In the Rayleigh-Ritz method discussed in Section 8.8, the displacement of the contin-

uous system is approximated by a sum of assumed functions, where each function

denotes a deflection shape of the entire structure. In the finite element method, an

[M]
N*N

 U
!$

N*1

+ [K]
N*N

U
:

N*1
= F
:

N*1

F
!

' .[K
'

][M
'

]

[K
'

]

F
!

' .Ui(t),

F
!

'

[K
'

]

[M
'

]U
!$

'
+ [K

'
]U
!

'
= F

!

'

F
!

' = a
E

e=1
 [A(e)]T

 f
:

(e)

F
!

' :
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approximation using shape functions (similar to the assumed functions) is also used

for a finite element instead of the entire structure. Thus the finite element procedure

can also be considered a Rayleigh-Ritz method.

4. Error analysis of the finite element method can also be conducted [12.10].

E X A M P L E  1 2 . 1
Analysis of a Bar

Consider a uniform bar, of length 0.5 m, area of cross section Young s modulus 

200 GPa, and density which is fixed at the left end, as shown in Fig. 12.7.

a. Find the stress induced in the bar under an axial static load of 1000 N applied at joint 2 along 

b. Find the natural frequency of vibration of the bar.

Use a one-element idealization.

Solution:

a. Using the stiffness matrix of a bar element, Eq. (12.16), the equilibrium equations can be

written as

(E.1)

With Eq. (E.1) becomes

(E.2)

where is the displacement and is the unknown reaction at joint 1. To incorporate the

boundary condition we delete the first scalar equation (first row) and substitute 

in the resulting Eq. (E.2). This gives

(E.3)2 * 108u2 = 1000 or u2 = 500 * 10-8 m

u1 = 0u1 = 0,

f1u1

2 * 108 c
1 -1

-1 1
d e

u1

u2

f = e
f1

1000
f

A = 5 * 10-4,  E = 2 * 1011,  l = 0.5,  f2 = 1000,

AE

l
 c

1 -1

-1 1
d e

u1

u2

f = e
f1

f2

f

u2.

7850 kg/m3,

5 * 10-4 m2,

21 u1 u2

0.5 m

FIGURE 12.7 Uniform bar with two degrees of freedom.
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12.6 INCORPORATION OF BOUNDARY CONDITIONS 1005

The relation of stress versus strain gives

(E.4)

where denotes the change in length of the element and indicates the strain.

Equation (E.4) yields

(E.5)

b. Using the stiffness and mass matrices of the bar element, Eqs. (12.16) and (12.13), the eigen-

value problem can be expressed as

(E.6)

where is the natural frequency and and are the amplitudes of vibration of the bar at

joints 1 and 2, respectively. To incorporate the boundary condition we delete the first

row and first column in each of the matrices and vectors and write the resulting equation as

or

(E.7)

*

v =
B

3E

r l2
=
B

3(2 * 1011)

7850 (0.5)2
= 17, 485.2076 rad/s

AE

l
 U2 = v

2
 

r Al

6
 (2) U2

U1 = 0,
U2U1v

AE

l
 c

1 -1

-1 1
d e

U1

U2
f = v

2 
 

r Al

6
 c

2 1

1 2
d e

U1

U2
f

s = 2 * 1011
 a

500 * 10-8
- 0

0.5
b = 2 * 106 Pa

¢l

l
¢l = u2 - u1

s = Ee = E 

¢l

l
= Ea

u2 - u1

l
b

(e)(s)

E X A M P L E  1 2 . 2
Natural Frequencies of a Simply Supported Beam

Find the natural frequencies of the simply supported beam shown in Fig. 12.8(a) using one finite

element.

Solution: Since the beam is idealized using only one element, the element joint displacements are

the same in both local and global systems, as indicated in Fig. 12.8(b). The stiffness and mass

matrices of the beam are given by

(E.1)[K
'

] = [K(1)] =
EI

l3
 

12 6l -12 6l

6l 4l2
-6l 2l2

-12 -6l 12 -6l

6l 2l2
-6l 4l2

¥
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(E.2)

and the vector of joint displacements by

(E.3)

The boundary conditions corresponding to the simply supported ends ( and ) can be

incorporated3 by deleting the rows and columns corresponding to and in Eqs. (E.1) and (E.2).

This leads to the overall matrices

(E.4)

(E.5)

and the eigenvalue problem can be written as

(E.6)c
2EI

l
  c

2 1

1 2
d -

rAl3
v

2

420
 c

4 -3

-3 4
d d  e

W2

W4
f = e

0

0
f

[M] =

rAl3

420
 c

4 -3

-3 4
d

[K] =
2EI

l
 c

2 1

1 2
d

W3W1

W3 = 0W1 = 0

W
!

'
=

W1

W2

W3

W4

K

w
1
(1)

w2
(1)

w3
(1)

w4
(1)

[M
'

] = [M(1)] =

rAl

420
 

156 22l 54 -13l

22l 4l2 13l -3l2

54 13l 156 -22l

-13l -3l2
-22l 4l2

¥

3The bending moment cannot be set equal to zero at the simply supported ends explicitly, since there is no degree

of freedom (joint displacement) involving the second derivative of the displacement w.

l
(1)

 * l

w(x, t)

w4
(1) * W4

w2
(1) * W2

w3
(1) * W3w1

(1) * W1

l

(b)

(a)

1 2

21 x

FIGURE 12.8 Simply supported beam.

M12_RAO08193_5_SE_C12.QXD  8/22/10  1:34 PM  Page 1006



12.6 INCORPORATION OF BOUNDARY CONDITIONS 1007

By multiplying throughout by Eq. (E.6) can be expressed as

(E.7)

where

(E.8)

By setting the determinant of the coefficient matrix in Eq. (E.7) equal to zero, we obtain the fre-

quency equation

(E.9)

The roots of Eq. (E.9) give the natural frequencies of the beam as

(E.10)

(E.11)

These results can be compared with the exact values (see Fig. 8.15):

(E.12)

*

v1 = a
97.41EI

rAl4
b

1/2

,  v2 = a
1558.56EI

rAl4
b

1/2

 l2 = 3  or  v2 = a
2520EI

rAl4
b

1/2

 l1 =
1

7
  or  v1 = a

120EI

rAl4
b

1/2

`
2 - 4l 1 + 3l

1 + 3l 2 - 4l
` = (2 - 4l)2

- (1 + 3l)2
= 0

l =

rAl4v2

840EI

c
2 - 4l 1 + 3l

1 + 3l 2 - 4l
d  e

W2

W4
f = e

0

0
f

l/(2EI),

E X A M P L E  1 2 . 3

Stresses in a Two-Bar Truss

Find the stresses developed in the two members of the truss shown in Fig. 12.9(a), under a vertical

load of 200 lb at joint 3. The areas of cross section are for member 1 and for member 2,

and the Young s modulus is 

Solution

Approach: Derive the static equilibrium equations and solve them to find the joint displacements.

Use the elasticity relations to find the element stresses. Each member is to be treated as a bar

element. From Fig. 12.9(a), the coordinates of the joints can be found as

(X1, Y1) = (0, 10) in.;  (X2, Y2) = (0, 0) in.;  (X3, Y3) = (10, 5) in.

30 * 106 psi.
2 in.21 in.2

M12_RAO08193_5_SE_C12.QXD  8/22/10  1:34 PM  Page 1007



1008 CHAPTER 12 FINITE ELEMENT METHOD

10 in.

10 in.

(a)

(b)

5 in.200 lb

X

3

1

1

2

3

2

Element 2

Element 1

Y

U2

U1

U4

U3

U6

U5

X

X
x

x Fg3 + *200 lb

u2

u1

FIGURE 12.9 Two bar truss.

The modeling of the truss as an assemblage of two bar elements and the displacement degrees

of freedom of the joints are shown in Fig. 12.9(b). The lengths of the elements can be computed from

the coordinates of the ends (joints) as

 = 11.1803 in.

 l(1)
= 5(X3 - X1)

2
+ (Y3 - Y1)

2
6

1/2
= 5(10 - 0)2

+ (5 - 10)2
6

1/2
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(E.1)

The element stiffness matrices in the local coordinate system can be obtained as

(E.2)

The angle between the local x-coordinate and the global X-coordinate is given by

(E.3)

(E.4)

The stiffness matrices of the elements in the global (X, Y) coordinate system can be derived as

(E.5)

(E.6) = 5.3666 * 106  

D

3 4 5 6

0.8 0.4 -0.8 -0.4

0.4 0.2 -0.4 -0.2

-0.8 -0.4 0.8 0.4

-0.4 -0.2 0.4 0.2

T

3

4

5

6

 [k 
(2)] = [l(2)]T[k(2)][l(2)]

 = 2.6833 * 106  

D

1 2 5 6

0.8 -0.4 -0.8 0.4

-0.4 0.2 0.4 -0.2

-0.8 0.4 0.8 -0.4

0.4 -0.2 -0.4 0.2

T

1

2

5

6

 [k 
(1)] = [l(1)]T[k(1)][l(1)]

cos u2 =
X3 - X2

l(2)
=

10 - 0

11.1803
= 0.8944

sin u2 =
Y3 - Y2

l(2)
=

5 - 0

11.1803
= 0.4472

t  for element 2

cos u1 =
X3 - X1

l(1)
=

10 - 0

11.1803
= 0.8944

sin u1 =
Y3 - Y1

l(1)
=

5 - 10

11.1803
= -  0.4472

t  for element 1

 = 5.3666 * 106
 
 
c

1 -1

-1 1
d

 [k(2)] =
A(2)E(2)

l(2)
  c

1 -1

-1 1
d =

(2)(30 * 106)

11.1803
  c

1 -1

-1 1
d

 = 2.6833 * 106
 
 
c

1 -1

-1 1
d

 [k(1)] =
A(1)E(1)

l(1)
  c

1 -1

-1 1
d =

(1)(30 * 106)

11.1803
  c

1 -1

-1 1
d

 = 11.1803 in.

 l(2)
= 5(X3 - X2)2

+ (Y3 - Y2)2
6

1/2
= 5(10 - 0)2

+ (5 - 0)2
6

1/2
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1010 CHAPTER 12 FINITE ELEMENT METHOD

where

(E.7)

(E.8)

Note that the top and right-hand sides of Eqs. (E.5) and (E.6) denote the global degrees of freedom

corresponding to the rows and columns of the respective stiffness matrices. The assembled stiffness

matrix of the system, can be obtained, by placing the elements of and at their proper

places in as

(E.9)

The assembled force vector can be written as

(E.10)

where, in general, denote the forces applied at joint i along (X, Y) directions. Specifically,

and represent the reactions at joints 1 and 2, while lb

shows the external forces applied at joint 3. By applying the boundary conditions

(i.e., by deleting the rows and columns 1, 2, 3, and 4 in Eqs. (E.9) and (E.10)),

we get the final assembled stiffness matrix and the force vector as

(E.11)

        5 6

[K] = 2.6833 * 106
 c

2.4 0.4

0.4 0.6
d  

5

6

U1 = U2 = U3 = U4 = 0

(FX3, FY3) = (0, -200)(FX2, FY2)(FX1, FY1)
(FXi, FYi)

F
!

'
= f

FX1

FY1

FX2

FY2

FX3

FY3

v

            1    2   3   4    5    6

[K
'

] = 2.6833 * 106H

0.8 -0.4 -0.8 0.4

-0.4 0.2 0.4 -0.2

1.6 0.8 -1.6 -0.8

0.8 0.4 -0.8 -0.4

-0.8 0.4 -1.6 -0.8 (0.8 (-0.4

+1.6) +0.8)

0.4 -  0.2 -0.8 -0.4 (-0.4 (0.2

+0.8) +0.4)

X

1

2

3

4

5

6

[K
'

],
[k(2)][k(1)][K

'
]

 = c

0.8944 0.4472 0 0

0 0 0.8944 0.4472
d

 [l(2)] = c

cos u2 sin u2 0 0

0 0 cos u2 sin u2
d

 = c

0.8944 -0.4472 0 0

0 0 0.8944 -0.4472
d

 [l(1)] = c

cos u1 sin u1 0 0

0 0 cos u1 sin u1
d

M12_RAO08193_5_SE_C12.QXD  8/22/10  1:34 PM  Page 1010



12.6 INCORPORATION OF BOUNDARY CONDITIONS 1011

(E.12)

The equilibrium equations of the system can be written as

(E.13)

where The solution of Eq. (E.13) can be found as

(E.14)

The axial displacements of elements 1 and 2 can be found as

(E.15)

(E.16)

The stresses in elements 1 and 2 can be determined as

(E.17) =
(30 * 106)(83.3301 * 10-6)

11.1803
= 223.5989 psi 

 s(1) = E(1)P(1) = E(1)¢l(1)

l(1)
=

E(1)(u2 - u1)
(1)

l(1)

 = e
0

-41.6651 * 10-6 f  in.

 = c
0.8944 0.4472 0 0

0 0 0.8944 0.4472
d

0

0

23.2922 * 10-6

-139.7532 * 10-6

 e
u1

u2
f

(2)

= [l(2)]

U3

U4

U5

U6

 = e
0

83.3301 * 10-6 f  in.

 = c
0.8944 -0.4472 0 0

0 0 0.8944 -0.4472
d  

0

0

23.2922 * 10-6

-139.7532 * 10-6

 e
u1

u2
f

(1)

= [l(1)]d

U1

U2

U5

U6

t

U5 = 23.2922 * 10-6 in.,  U6 = -139.7532 * 10-6 in.

U
!
= e

U5

U6
f .

[K]U
!
= F

!

F
!
= e

0

-200
f

5

6
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1012 CHAPTER 12 FINITE ELEMENT METHOD

(E.18)

where denotes the stress, represents the strain, and indicates the change in length of

element 

*

12.7 Consistent- and Lumped-Mass Matrices
The mass matrices derived in Section 12.3 are called consistent-mass matrices. They are

consistent because the same displacement model that is used for deriving the element stiff-

ness matrix is used for the derivation of mass matrix. It is of interest to note that several

dynamic problems have been solved with simpler forms of mass matrices. The simplest

form of the mass matrix, known as the lumped-mass matrix, can be obtained by placing

point (concentrated) masses at node points i in the directions of the assumed displace-

ment degrees of freedom. The concentrated masses refer to translational and rotational

inertia of the element and are calculated by assuming that the material within the mean

locations on either side of the particular displacement behaves like a rigid body while the

remainder of the element does not participate in the motion. Thus this assumption excludes

the dynamic coupling that exists between the element displacements, hence the resulting

element mass matrix is purely diagonal [12.11].

mi

i (i = 1, 2).

¢l(i)
e

(i)
s

(i)

 =
(30 * 106)(-41.6651 * 10-6)

11.1803
= -111.7996 psi 

 s(2)
= E(2)

P
(2)

=
E(2)

¢l(2)

l(2)
=

E(2)(u2 - u1)
(2)

l(2)

12.7.1
Lumped-Mass
Matrix for a Bar
Element

By dividing the total mass of the element equally between the two nodes, the lumped-mass

matrix of a uniform bar element can be obtained as

(12.67)[m] =
rAl

2
 c

1 0

0 1
d

12.7.2
Lumped-Mass
Matrix for a
Beam Element

In Fig. 12.4, by lumping one-half of the total beam mass at each of the two nodes, along the

translational degrees of freedom, we obtain the lumped-mass matrix of the beam element as

(12.68)[m] =
rAl

2
 

1 0 0 0

0 0 0 0

0 0 1 0

0 0 0 0

¥
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12.7 CONSISTENT- AND LUMPED-MASS MATRICES 1013

Note that the inertia effect associated with the rotational degrees of freedom has been

assumed to be zero in Eq. (12.68). If the inertia effect is to be included, we compute the

mass moment of inertia of half of the beam segment about each end and include it at the

diagonal locations corresponding to the rotational degrees of freedom. Thus, for a uniform

beam, we have

(12.69)

and hence the lumped mass matrix of the beam element becomes

(12.70)[m] =
rAl

2
 F

1 0 0 0

0 a
l2

12
b 0 0

0 0 1 0

0 0 0 a
l2

12
b

V

I =

1

3
 a
rAl

2
b a

l

2
b

2

=

rAl3

24

12.7.3
Lumped-Mass
Versus
Consistent-Mass
Matrices

It is not obvious whether the lumped-mass matrices or consistent-mass matrices yield more

accurate results for a general dynamic response problem. The lumped-mass matrices are

approximate in the sense that they do not consider the dynamic coupling present between

the various displacement degrees of freedom of the element. However, since the lumped-

mass matrices are diagonal, they require less storage space during computation. On the

other hand, the consistent-mass matrices are not diagonal and hence require more storage

space. They, too, are approximate in the sense that the shape functions, which are derived

using static displacement patterns, are used even for the solution of dynamics problems.

The following example illustrates the application of lumped- and consistent-mass matrices

in a simple vibration problem.

E X A M P L E  1 2 . 4
Consistent- and Lumped-Mass Matrices of a Bar

Find the natural frequencies of the fixed-fixed uniform bar shown in Fig. 12.10 using consistent- and

lumped-mass matrices. Use two bar elements for modeling.

Solution: The stiffness and mass matrices of a bar element are

(E.1)

(E.2)

(E.3)[m]l =
rAl

2
 c
1 0

0 1
d

[m]c =
rAl

6
 c
2 1

1 2
d

[k] =
AE

l
 c

1 -1

-1 1
d
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where the subscripts c and l to the mass matrices denote the consistent and lumped matrices, respectively.

Since the bar is modeled by two elements, the assembled stiffness and mass matrices are given by

(E.4)

(E.5)

(E.6)

The dashed boxes in Eqs. (E.4) through (E.6) enclose the contributions of elements 1 and 2. The

degrees of freedom corresponding to the columns and rows of the matrices are indicated at the top

and the right-hand side of the matrices. The eigenvalue problem, after applying the boundary condi-

tions becomes

(E.7)

The eigenvalue can be determined by solving the equation

(E.8)

which, for the present case, becomes

(E.9)

and

(E.10)`
AE

l
 [2] - v

2
 

rAl

2
 [2] ` = 0 with lumped-mass matrices

`
AE

l
 [2] - v

2
 

rAl

6
 [4] ` = 0 with consistent-mass matrices

[K] - v
2[M] = 0

v
2

[[K] - v
2[M]] 5U26 = 506

U1 = U3 = 0,

     1  2  3

[M
'

]l =
rAl

2
  C

1 0 0

0 1 +1 0

0 0 1

S

1

2

3

=
rAl

2
  C

1 0 0

0 2 0

0 0 1

S

     1  2  3

[M
'

]c =
rAl

6
  C  

2 1 0

1 2 +2 1

0 1 2

S

1

2

3

=
rAl

6
  C

2 1 0

1 4 1

0 1 2

S

     1  2  3

[K
'

] =
AE

l
  C

1 -1 0

-1 1 +1 -1

0 -1 1

S

 
1

2

3

=
AE

l
  C

1 -1 0

-1 2 -1

0 -1 1

S

U1 U2 U3

Element 1 Element 2

l l

L

FIGURE 12.10 Fixed-fixed uniform bar.
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Equations (E.9) and (E.10) can be solved to obtain

(E.11)

(E.12)

These values can be compared with the exact value (see Fig. 8.7)

(E.13)

*

12.8 Examples Using MATLAB

v1 = p
A

E

rL2

 vl = A
2E

rl2
= 2.8284 

A
E

rL2

 vc = A
3E

rl2
= 3.4641 

A
E

rL2

E X A M P L E  1 2 . 5
Finite Element Analysis of a Stepped Bar

Consider the stepped bar shown in Fig. 12.11 with the following data: 

Write a MATLAB program to determine the following:

a. Displacements and under load 

b. Natural frequencies and mode shapes of bar

Solution: The assembled stiffness and mass matrices of the stepped bar are given by

(E.1)[K
'

] = H

A1E1

l1

-A1E1

l1
0 0

-A1E1

l1

A1E1

l1
+

A2E2

l2

-A2E2

l2
0

0
-A2E2

l2

A2E2

l2
+

A3E3

l3

-A3E3

l3

0 0
-A3E3

l3

A3E3

l3

X

p3 = 1000 Nu3u1, u2,

l3 = 0.25 m.l2 = 0.5 m,i = 1, 2, 3, l1 = 1 m,
r

i
= 7.8 * 103 kg/m3,i = 1, 2, 3,E

i
= 20 * 1010 Pa,A2 = 9 * 10-4 m2, A3 = 4 * 10-4 m2,

A1 = 16 * 10-4 m2,

u
0

u
1

u
2

u
3

p
3

l
3

l
2

l
1

A
1
, E

1
, r

1
A

2
, E

2
, r

2

A
3
, E

3
, r

3

FIGURE 12.11 Stepped bar.
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(E.2)

The system matrices [K ] and [M ] can be obtained by incorporating the boundary condition 

that is, by deleting the first row and first column in Eqs. (E.1) and (E.2).

a. The equilibrium equations under the load are given by

(E.3)

where

(E.4)

b. The eigenvalue problem can be expressed as

(E.5)

where [K ] is given by Eq. (E.4) and [M ] by

(E.6)

The MATLAB solution of Eqs. (E.3) and (E.5) is given below.

%--- Program Ex12_5.m

%---Initialization of values-------------

A1 = 16e 4 ;

A2 = 9e 4 ;

A3 = 4e 4 ;

E1 = 20e10 ;

E2 = E1 ;

E3 = E1 ;

R1 = 7.8e3 ;

R2 = R1 ;

R3 = R1 ;

[M] =
1

6
 C

2r1A1l1 + 2r2A2l2 r2A2l2 0

r2A2l2 2r2A2l2 + 2r3A3l3 r3A3l3
0 r3A3l3 2r3A3l3

S

c[K] - v
2[M] dU

!
= 0

!

U
!
= c

u1

u2

u3

s ,  P
!
= c

0

0

1000

s

[K] = G

A1E1

l1
+

A2E2

l2

-A2E2

l2
0

-A2E2

l2

A2E2

l2
+

A3E3

l3

-A3E3

l3

0
-A3E3

l3

A3E3

l3

W

[K]U
!

= P
!

p3 = 1000 N

u0 = 0

[M
'

] =
1

6
 D

2r1A1l1 r1A1l1 0 0

r1A1l1 2r1A1l1 + 2r2A2l2 r2A2l2 0

0 r2A2l2 2r2A2l2 + 2r3A3l3 r3A3l3
0 0 r3A3l3 2r3A3l3

T
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L1 = 1 ;

L2 = 0.5 ;

L3 = 0.25 ;

%---Definition of [K]-----------------

K11 = A1*E1/L1+A2*E2/L2 ;

K12 = A2*E2/L2 ;

K13 = 0 ;

K21 = K12 ;

K22 = A2*E2/L2+A3*E3/L3 ;

K23 = A3*E3/L3 ;

K31 = K13 ;

K32 = K23 ;

K33 = A3*E3/L3 ;

K = [ K11 K12 K13; K21 K22 K23; K31 K32 K33 ]

%---- Calculation of matrix

P = [ 0 0 1000]

U = inv(K)*P

%---- Definition of [M] -------------

M11 = (2*R1*A1*L1+2*R2*A2*L2) / 6;

M12 = (R2*A2*L2) / 6;

M13 = 0;

M21 = M12;

M22 = (2*R2*A2*L2+2*R3*A3*L3) / 6;

M23 = R3*A3*L3;

M31 = M13;

M32 = M23;

M33 = 2*M23;

M= [M11 M12 M13; M21 M22 M23; M31 M32 M33 ]

MI = inv (M)

KM = MI*K

%-------Calculation of eigenvector and eigenvalue-------

[L, V] = eig (KM)

>> Ex12_5

K =

680000000 -360000000 0

360000000 680000000 -320000000

0 320000000 320000000

P =

0

0

1000

U =

1.0e-005 *

0.3125

0.5903

0.9028
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M =

5.3300 0.5850 0

0.5850 1.4300 0.7800

0 0.7800 1.5600

MI =

0.2000 -0.1125 0.0562

0.1125 1.0248 -0.5124

0.0562 -0.5124 0.8972

KM =

1.0e+008*

1.7647 -1.6647 0.5399

4.4542 9.0133 -4.9191

2.2271 -6.5579 4.5108

L =

0.1384 0.6016 0.3946

0.7858 -0.1561 0.5929

0.6028 -0.7834 0.7020

V =

1.0e+009*

1.3571 0 0

0 0.1494 0

0 0 0.0224

>>

*

E X A M P L E  1 2 . 6
Program for Eigenvalue Analysis of a Stepped Beam

Develop a MATLAB program called Program17.m for the eigenvalue analysis of a fixed-fixed

stepped beam of the type shown in Fig. 12.12.

Solution: Program17.m is developed to accept the following input data:

of element (step) i

of inertia of element i

of cross section of element i

degree-of-freedom number corresponding to the local jth degree of freedom of

element i

modulus

density

The program gives the natural frequencies and mode shapes of the beam as output.

Natural frequencies of the stepped beams

1.6008e+002  6.1746e+002  2.2520e+003  7.1266e+003

Mode shapes

1 1.0333e 002 1.8915e 004 1.4163e 002 4.4518e 005

2 3.7660e 003 2.0297e 004 4.7109e 003 2.5950e 004

3 1.6816e 004 1.8168e 004 1.3570e 003 2.0758e 004

4 1.8324e 004 6.0740e 005 3.7453e 004 1.6386e 004

*

rho = mass

e = Young s

bj(i, j) = global

a(i) = area

xi(i) = moment

xl(i) = length
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x, X

W1

W2

W3

W4

W5

W6

W7

W8

2+ , 2+

l1 * 40+ l2 * 32+ l3 * 24+

1+ , 1+3+ , 3+

E * 30 , 106 psi, r * 0.283 lb/in.3

FIGURE 12.12 Stepped beam.

CHAPTER SUMMARY

The finite element method is a popular numerical procedure for finding accurate solutions of complex

practical systems. We presented an introduction to the method as applied to vibration problems. We

outlined the method of deriving stiffness and mass matrices of simple structural elements such as

bars, rods, and beams, the transformation of the matrices to global coordinate system, assembly of

element matrices, and solution of finite element equations. We presented the application of the

method through several static and dynamic (vibration) examples. The solution of finite-element-

based vibration problems using MATLAB is also considered.

Now that you have finished this chapter, you should be able to answer the review questions and

solve the problems given below.
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1020 CHAPTER 12 FINITE ELEMENT METHOD

REVIEW QUESTIONS

12.1 Give brief answers to the following:

1. What is the basic idea behind the finite element method?

2. What is a shape function?

3. What is the role of transformation matrices in the finite element method?

4. What is the basis for the derivation of transformation matrices?

5. How are fixed boundary conditions incorporated in the finite element equations?

6. How do you solve a finite element problem having symmetry in geometry and loading by

modeling only half of the problem?

7. Why is the finite element approach presented in this chapter called the displacement

method?

8. What is a consistent-mass matrix?

9. What is a lumped-mass matrix?

10. What is the difference between the finite element method and the Rayleigh-Ritz method?

11. How is the distributed load converted into an equivalent joint force vector in the finite

element method?

12.2 Indicate whether each of the following statements is true or false:

1. For a bar element of length l with two nodes, the shape function corresponding to node 2

is given by x/l.

2. The element stiffness matrices are always singular.

3. The element mass matrices are always singular.

4. The system stiffness matrix is always singular unless the boundary conditions are incor-

porated.

5. The system mass matrix is always singular unless the boundary conditions are incorpo-

rated.

6. The lumped-mass matrices are always diagonal.

7. The coordinate transformation of element matrices is required for all systems.

8. The element stiffness matrix in the global coordinate system, can be expressed

in terms of the local matrix [k] and the coordinate transformation matrix as

9. The derivation of system matrices involves the assembly of element matrices.

10. Boundary conditions are to be imposed to avoid rigid-body motion of the system.

[l]
T
[k][l].

[l]

[k],

12.9 H. Alaylioglu and R. Ali, Analysis of an automotive structure using hybrid stress finite

elements,  Computers and Structures, Vol. 8, 1978, pp. 237 242.

12.10 I. Fried, Accuracy of finite element eigenproblems,  Journal of Sound and Vibration, Vol. 18,

1971, pp. 289 295.

12.11 P. Tong, T. H. H. Pian, and L. L. Bucciarelli, Mode shapes and frequencies by the finite ele-

ment method using consistent and lumped matrices,  Computers and Structures, Vol. 1, 1971,

pp. 623 638.
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12.3 Fill in each of the following blanks with the appropriate word:

1. In the finite element method, the solution domain is replaced by several _____.

2. In the finite element method, the elements are assumed to be interconnected at certain

points known as _____.

3. In the finite element method, an _____ solution is assumed within each element.

4. The displacement within a finite element is expressed in terms of _____ functions.

5. For a thin beam element, _____ degrees of freedom are considered at each node.

6. For a thin beam element, the shape functions are assumed to be polynomials of degree

_____.

7. In the displacement method, the _____ of elements is directly approximated.

8. If the displacement model used in the derivation of the element stiffness matrices is also

used to derive the element mass matrices, the resulting mass matrix is called _____ mass

matrix.

9. If the mass matrix is derived by assuming point masses at node points, the resulting mass

matrix is called _____ mass.

10. The lumped-mass matrices do not consider the _____ coupling between the various dis-

placement degrees of freedom of the element.

11. Different orientations of finite elements require _____ of element matrices.

12.4 Select the most appropriate answer out of the choices given:

1. For a bar element of length l with two nodes, the shape function corresponding to node 1

is given by

a. b. c.

2. The simplest form of mass matrix is known as

a. lumped-mass matrix

b. consistent-mass matrix

c. global mass matrix

3. The finite element method is

a. an approximate analytical method

b. a numerical method

c. an exact analytical method

4. The stiffness matrix of a bar element is given by

a. b. c.

5. The consistent mass matrix of a bar element is given by

a. b. c.

6. The finite element method is similar to

a. Rayleigh s method

b. the Rayleigh-Ritz method

c. the Lagrange method

rAl

6
 c
1 0

0 1
d

rAl

6
 c

2 -1

-1 2
d

rAl

6
 c
2 1

1 2
d

EA

l
 c
1 0

0 1
d

EA

l
 c

1 -1

-1 1
d

EA

l
 c
1 1

1 1
d

a1 +
x

l
b

x

l
a1 -

x

l
b
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1022 CHAPTER 12 FINITE ELEMENT METHOD

7. The lumped-mass matrix of a bar element is given by

a. b. c.

8. The element mass matrix in the global coordinate system, can be expressed in terms

of the element mass matrix in local coordinate system [m] and the coordinate transfor-

mation matrix as

a. b. c.

12.5 Match the items in the two columns below. Assume a fixed-fixed bar with one middle node:

Element matrices: 

Steel bar: 

Aluminum bar: 

1. Natural frequency of steel bar 

given by lumped-mass matrices

2. Natural frequency of aluminum bar 

given by consistent-mass matrices

3. Natural frequency of steel bar 

given by consistent-mass matrices

4. Natural frequency of aluminum bar 

given by lumped-mass matrices

E = 10.3 * 106 lb/in.2, r = 0.0002536 lb-sec2/in.4, L = 12 in.

E = 30 * 106 lb/in.2, r = 0.0007298 lb-sec2/in.4, L = 12 in.

[k] =
AE

l
 c

1 -1

-1 1
d , [m]c =

rAl

6
 c

2 1

1 2
d , [m]l =

rAl

2
 c

1 0

0 1
d

3m4 = [l]T[m][l]3m4 = [m][l]3m4 = [l]T[m]

[l]

3m4,

rAl

2
 c

1 0

0 1
d

rAl

6
 c

2 1

1 2
drAl c

1 0

0 1
d

PROBLEMS

Section 12.3 Derivation of Element Matrices and Vectors

12.1 Derive the stiffness matrix of the tapered bar element (which deforms in the axial direction)

shown in Fig. 12.13. The diameter of the bar decreases from D to d over its length.

a. 58,528.5606 rad/sec

b. 47,501.0898 rad/sec

c. 58,177.2469 rad/sec

d. 47,787.9336 rad/sec

l

x dD

r, E

FIGURE 12.13
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PROBLEMS 1023

12.2 Derive the stiffness matrix of the bar element in longitudinal vibration whose cross-sectional

area varies as where is the area at the root (see Fig. 12.14).A0A(x) = A0e- 
(x/l),

x
x

l

O

A
0
e*(x/l)

FIGURE 12.14

P

z

t

x

b/2

b/2

B/2 O

B/2

l

FIGURE 12.15

12.4 Derive the stiffness and mass matrices of the planar frame element (general beam element)

shown in Fig. 12.16 in the global XY-coordinate system.

12.5 A multiple-leaf spring used in automobiles is shown in Fig. 12.17. It consists of five leaves,

each of thickness Consider only one-half of the spring for modeling using five

beam elements of equal length and derive the stiffness and mass matrices of each of the five

beam elements. The Young s modulus is psi and the specific weight is 

for the material.

0.283 lb/in.330 * 106

t = 0.25 in.

12.3 The tapered cantilever beam shown in Fig. 12.15 is used as a spring to carry a load P. Derive

the stiffness matrix of the beam using a one-element idealization. Assume 

and P = 1000 N.b = 10 cm, t = 2.5 cm, l = 2 m, E = 2.07 * 1011 N/m2,

B = 25 cm,
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1024 CHAPTER 12 FINITE ELEMENT METHOD

12.6 A seven-member planar truss (with pin joints) is shown in Fig. 12.18. Each of the seven

members has an area of cross section of and a Young s modulus of 207 GPa.

(a) Label the complete set of local and global nodal displacement degrees of freedom of the

truss. Assume the X and Y coordinates shown in Fig. 12.18 as global coordinates.

(b) Find the coordinate transformation matrix of each member.

(c) Find the local and global stiffness matrices of each member.

12.7 Find the stiffness and mass matrices of the beam supported on springs as shown in Fig. 12.19.

Model the beam using one finite element. Assume the material of the beam as steel with

a Young s modulus of 207 GPa and weight density of Neglect the weights of

the springs.

7650 N/m3
.

4 cm2

Y

XO

Joint 2

U6

U5

U4

Joint 1

U3

U2

U1

FIGURE 12.16 A frame element in global system.

5* 5* 5* 5* 5*

P P

Eye

Center bolt
t

w

FIGURE 12.17 A multiple-leaf spring.

M12_RAO08193_5_SE_C12.QXD  8/22/10  1:34 PM  Page 1024



PROBLEMS 1025

12.8 For the beam shown in Fig. 12.20, one end (point A) is fixed and a spring-mass system is

attached to the other end (point B). Assume the cross section of the beam to be circular with

radius 2 cm and the material of the beam to be steel with Young s modulus of 207 GPa and

weight density of Using two beam elements of equal length, derive the element

stiffness and mass matrices of the two elements.

Section 12.4 Transformation Matrix

12.9 Find the global stiffness matrix of each of the four bar elements of the truss shown in

Fig. 12.5 using the following data:

Nodal coordinates: 

Cross-sectional areas: 

Young s modulus of all members: 

12.10 For the seven-member planar truss considered in Problem 12.6 (Fig. 12.18), determine the

assembled stiffness matrix of the system before applying the boundary conditions.

30 * 106 lb/in.2.

A1 = A2 = A3 = A4 = 2 in.2.

(X4, Y4) = (200, 150) in.

(X3, Y3) = (100, 0) in.,(X2, Y2) = (50, 100) in.,(X1, Y1) = (0, 0),

7650 N/m3.

1000 N

500 N

7

3

X

Y

1 2

1500 N

4 5 6

1 m 1 m

60 60 60 

FIGURE 12.18

Beam

h
kt  500 N-m/rad

k  1000 N/m

h  5 cm

b  2 cm

Cross section

of beam2 m

FIGURE 12.19
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1026 CHAPTER 12 FINITE ELEMENT METHOD

Section 12.5 Assembly of Matrices and Vectors

12.11 Using the result of Problem 12.9, find the assembled stiffness matrix of the truss and formu-

late the equilibrium equations if the vertical downward load applied at node 4 is 1000 lb.

12.12 For the beam considered in Problem 12.8 (Fig. 12.20), derive the assembled stiffness and

mass matrices of the system.

Section 12.6 Application of Boundary Conditions and Solution of Problem

12.13 For the tapered beam considered in Problem 12.3 (Fig. 12.15), find the stress induced in the

beam using a one-element idealization.

12.14 For the multiple-leaf spring described in Problem 12.5 (Fig. 12.17), derive the assembled

stiffness and mass matrices. Consider only one-half of the spring for modeling using five beam

elements of equal length.

12.15 Find the nodal displacements of the crane shown in Fig. 12.21 when a vertically downward

load of 1000 lb is applied at node 4. The Young s modulus is and the cross-

sectional area is for elements 1 and 2 and for elements 3 and 4.1 in.22 in.2
30 * 10

6
 psi

A

u2 u4

u5

u1 u3

B

m

k * 1000 N/m

m * 100 kg

x

Beam

1 m

0.5 m

u7

u6

FIGURE 12.20

1
2

3

4

1 2

3

4

1

1

1
12

2

2

2

1000 lb

100+

100+

50+50+

25+

X

Y

FIGURE 12.21
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12.16 Find the tip deflection of the cantilever beam shown in Fig. 12.22 when a vertical load of

is applied at point Q using (a) a one-element approximation and (b) a two-

element approximation. Assume 

and k = 105 N/m.

E = 2.07 * 1011 Pa,b = 50 mm,h = 25 mm,l = 0.25 m,

P = 500 N

X

X

h

Q

k

l

b

r, A, I, E

Section X X

FIGURE 12.22

12.17 Find the stresses in the stepped beam shown in Fig. 12.23 when a moment of 1000 N-m is

applied at node 2 using a two-element idealization. The beam has a square cross section

between nodes 1 and 2 and between nodes 2 and 3. Assume the

Young s modulus as 2.1 * 1011 Pa.

25 * 25 mm50 * 50 mm

1000 N-m

0.25 m 0.40 m

1 2 3

FIGURE 12.23

12.18 Find the transverse deflection and slope of node 2 of the beam shown in Fig. 12.24 using a

two-element idealization. Compare the solution with that of simple beam theory.

P

1 2 3

l
4

3l
4

r, A, I, E

FIGURE 12.24
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1028 CHAPTER 12 FINITE ELEMENT METHOD

12.19 Find the displacement of node 3 and the stresses in the two members of the truss shown in

Fig. 12.25. Assume that the Young s modulus and the cross-sectional areas of the two mem-

bers are the same with and A = 1 in.2.E = 30 * 10
6
 psi

Cross section of arm

Cross section of column

Column

Arm

A

z

x

400 mm

415 mm

15 mm 550 mm

2.4 m

2 m

0.4 m

350 mm

FIGURE 12.26 A radial drilling-machine structure.

1

1 lb

3

2

25 in.

10 in.

FIGURE 12.25

12.20 A simplified model of a radial drilling machine is shown in Fig. 12.26. If a vertical force of

5000 N along the z-direction and a bending moment of 500 N-m in the xz-plane are devel-

oped at point A during a metal cutting operation, find the stresses developed in the machine.

Use two beam elements for the column and one beam element for the arm. Assume the

material of the machine as steel.

12.21 The crank in the slider-crank mechanism shown in Fig. 12.27 rotates at a constant clockwise

angular speed of 1000 rpm. Find the stresses in the connecting rod and the crank when the

pressure acting on the piston is 200 psi and The diameter of the piston is 12 in. and

the material of the mechanism is steel. Model the connecting rod and the crank by one beam

element each. The lengths of the crank and connecting rod are 12 in. and 48 in., respectively.

u = 30°.
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12.22 A water tank of weight W is supported by a hollow circular steel column of inner diameter

d, wall thickness t, and height l. The wind pressure acting on the column can be assumed

to vary linearly from 0 to as shown in Fig. 12.28. Find the bending stress induced in

the column under the loads using a one-beam element idealization. Data:

in., and Pmax = 100 psi.W = 10,000 lb, l = 40 ft, d = 2 ft, t = 1

Pmax

W

pmax

Column

Water tank

l

FIGURE 12.28

2 in.

3 in.

Section X X

X X u

X

X

0.5 in.

0.5 in.

p

FIGURE 12.27 A slider-crank mechanism.

12.23 For the seven-member planar truss considered in Problem 12.6 (Fig. 12.18), determine the

following:

(a) The system stiffness matrix after applying the boundary conditions.

(b) The nodal displacements of the truss under the loads indicated in Fig. 12.18.
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1030 CHAPTER 12 FINITE ELEMENT METHOD

12.24 Using one beam element, find the natural frequencies of the uniform pinned-free beam shown

in Fig. 12.29.

12.25 Using one beam element and one spring element, find the natural frequencies of the uniform,

spring-supported cantilever beam shown in Fig. 12.22.

12.26 Using one beam element and one spring element, find the natural frequencies of the system

shown in Fig. 12.30.

m

k 
El

l
3

l

r, A, I, E

m  rAl

FIGURE 12.30

l

r, A, I, E

FIGURE 12.29

12.27 Using two beam elements, find the natural frequencies and mode shapes of the uniform

fixed-fixed beam shown in Fig. 12.31.

r, A, I, E

L

2

L

2

FIGURE 12.31
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*An asterisk denotes a problem with no unique answer.

12.28* An electric motor, of mass and operating is fixed at the

middle of a clamped-clamped steel beam of rectangular cross section, as shown in Fig. 12.32.

Design the beam such that the natural frequency of the system exceeds the operating speed of

the motor.

speed = 1800 rpm,m = 100 kg

2 m

v

FIGURE 12.32

l l l

r, A, I, E

FIGURE 12.33

12.29 Find the natural frequencies of the beam shown in Fig. 12.33, using three finite elements of

length l each.

12.30 Find the natural frequencies of the cantilever beam carrying an end mass M shown in

Fig. 12.34, using a one-beam element idealization.

l

r, A, I, E

M * 10 rAlM

FIGURE 12.34
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1032 CHAPTER 12 FINITE ELEMENT METHOD

12.31 Find the natural frequencies of vibration of the beam shown in Fig. 12.35, using two beam

elements. Also find the load vector if a uniformly distributed transverse load p is applied to

element 1.

l1

x, X

y, Y

l2

r, E, A1, I1
r, E, A2, I2

FIGURE 12.35

12.32 Find the natural frequencies of a beam of length l, which is pin connected at and fixed

at using one beam element.

12.33 Find the natural frequencies of torsional vibration of the stepped shaft shown in

Fig. 12.36. Assume that 

and l1 = l2 = l.

r1 = r2 = r, G1 = G2 = G, Ip1 = 2Ip2 = 2Ip, J1 = 2J2 = 2J,

x = l,

x = 0

l2l1

r1, G1, Ip1, J1
r2, G2, Ip2, J2

FIGURE 12.36

12.34 Find the dynamic response of the stepped bar shown in Fig. 12.37(a) when its free end is

subjected to the load given in Fig. 12.37(b).

t

P(t)

P(t)

ll

Area * 4A Area * A

(a) (b)

P0

t0O

FIGURE 12.37
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12.35 Find the natural frequencies of a cantilever beam of length l, cross-sectional area A, moment

of inertia I, Young s modulus E, and density using one finite element.

12.36 Find the natural frequencies of vibration of the radial drilling machine considered in Prob-

lem 12.20 (Fig. 12.26).

12.37 Find the natural frequencies of the water tank considered in Problem 12.22 (Fig. 12.28)

using a one-beam element idealization.

12.38 Find the natural frequencies of vibration of the beam considered in Problem 12.7 using one

finite element (Fig. 12.19).

Section 12.7 Consistent- and Lumped-Mass Matrices

12.39 Derive the consistent- and lumped-mass matrices of the tapered bar element (which deforms

in the axial direction) shown in Fig. 12.13. The diameter of the bar decreases from D to d

over its length.

12.40 Find the natural frequencies of the stepped bar shown in Fig. 12.38 with the following data

using consistent- and lumped-mass matrices: 

and l1 = l2 = 50 in.rw = 0.283 lb/in.3,

E = 30 * 106 psi,A2 = 1 in.2,A1 = 2 in.2,

r,

U
3

l
2

l
1

A
1

A
2

U
2

U
1

FIGURE 12.38

12.41 Find the undamped natural frequencies of longitudinal vibration of the stepped bar shown

in Fig. 12.39 with the following data using consistent- and lumped-mass matrices:

and

r = 7.8 * 103 kg/m3.

A1 = 2A2 = 4A3 = 0.4 * 10-3 m2, E = 2.1 * 1011 N/m2,l1 = l2 = l3 = 0.2 m,

l
2

l
3

l
1

A
1

O

A
2 A

3

x, X

FIGURE 12.39

Section 12.8 MATLAB Problems

12.42 Consider the stepped bar shown in Fig. 12.11 with the following data: 

Pa, 

Using MATLAB, find the axial

displacements and under the load N.p3 = 500u3u1, u2,

l3 = 1 m.i = 1, 2, 3, l1 = 3 m, l2 = 2 m,7.8 * 103 kg/m3,

i = 1, 2, 3, ri =Ei = 2 * 1011A3 = 9 * 10-4 m2,A2 = 16 * 10-4 m2,

A1 = 25 * 10-4 m2,
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DESIGN PROJECTS

12.46 Derive the stiffness and mass matrices of a uniform beam element in transverse vibration

rotating at an angular velocity of rad/sec about a vertical axis as shown in Fig. 12.40(a).

Using these matrices, find the natural frequencies of transverse vibration of the rotor blade

of a helicopter (see Fig. 12.40(b)) rotating at a speed of 300 rpm. Assume a uniform rectan-

gular cross section and a length for the blade. The material of the blade is alu-

minum.

481 * 12

Æ

12.43 Using MATLAB, find the natural frequencies and mode shapes of the stepped bar described

in Problem 12.42.

12.44 Use Program17.m to find the natural frequencies of a fixed-fixed stepped beam, similar to

the one shown in Fig. 12.12, with the following data:

Cross sections of elements: 

Lengths of elements: 

Young s modulus of all elements: 

Weight density of all elements: 

12.45 Write a computer program for finding the assembled stiffness matrix of a general planar truss.

0.1lb/in.3
10

7
 lb/in.2

1, 2, 3: 30 , 20 , 10

1, 2, 3: 4 * 4 , 3 * 3 , 2 * 2

R l

O

Beam element. r, A, I, E

x

(a)

(b)

Rotor blade

*

FIGURE 12.40
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12.47 An electric motor weighing 1000 lb operates on the first floor of a building frame that can

be modeled by a steel girder supported by two reinforced concrete columns, as shown in

Fig. 12.41. If the operating speed of the motor is 1500 rpm, design the girder and the

columns such that the fundamental frequency of vibration of the building frame is greater

than the operating speed of the motor. Use two beam and two bar elements for the idealiza-

tion. Assume the following data:

 Columns: e = 4 * 106 psi,  r = 2.7 * 10-3 lbm/in.3

 Girder: E = 30 * 106 psi,  r = 8.8 * 10-3 lbm/in.3,  h/b = 2

Motor

Girder

Columns

18 ft

9 ft

9 ft

h

d

b

Cross section of girder

Cross section of columns

FIGURE 12.41
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1036

Jean Le Rond D Alembert (1717 1783), a French mathematician and physicist,
was abandoned by his mother as a newborn infant near the church of Saint Jean
Le Rond in Paris. In 1741, he published his famous Traite de Dynamique, which
contained the method that has become known as D Alembert s principle. D Alem-
bert was the first to use partial differential equations for the solution of vibrating-
string problems. His early brilliance led to his appointment as the secretaire

perpetuel (permanent secretary) of the French Academy, a position that secured
his place as the most influential man of science in France.
(Illustration of Dirk J. Struik, A Concise History of Mathematics, 2nd ed., Dover
Publications, New York, 1948.)

A P P E N D I X  A

Mathematical
Relations and
Material Properties

Some of the relationships from trigonometry, algebra, and calculus that are frequently used

in vibration analysis are given below.

 sin a + sin b = 2 sina
a + b

2
b  cosa

a - b

2
b

 sin a cos b =
1

2
 [sin1a + b2 + sin1a - b2]

 cos a cos b =
1

2
 [cos1a - b2 + cos1a + b2]

 sin a sin b =
1

2
 [cos1a - b2 - cos1a + b2]

 cos1a + b2 cos1a - b2 = cos2
a - sin2

b = cos2
b - sin2

a

 sin1a + b2 sin1a - b2 = sin2
a - sin2

b = cos2
b - cos2

a

 cos1a * b2 = cos a cos b + sin a sin b

 sin1a * b2 = sin a cos b * cos a sin b
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L

uv dx = u
L

v dx -

L
a

du

dxL
v dxb  dx

 
L

eax dx =
1

a
 eax

 
d

dx
 a

u

v

b =
1

v

  
du

dx
-

u

v
2

  
dv

dx
=

v 

du

dx
- u 

dv

dx

v
2

 
d

dx
 1uv2 = u 

dv

dx
+ v 

du

dx

 cosh2x - sinh2x = 1

 sinh x =
1

2
 1ex

- e-x
2,  cosh x =

1

2
 1ex

+ e-x
2

 sin x =
eix

- e-ix

2i
,  cos x =

eix
+ e-ix

2

 eix
= cos x + i sin x

 log ab
= b log a,  log10 x = 0.4343 loge x,  loge x = 2.3026 log10 x

 e = 2.71828183

 p = 3.14159265 rad,  1 rad = 57.29577951°,  1° = 0.017453292 rad

Law of cosines for triangles:  c2
= a2

+ b2
- 2ab cos C

cos 2a = 1 - 2 sin2 a = 2 cos2 a - 1 = cos2 a - sin2 a

sin2a + cos2a = 1

where  f1 = tan-1
 

A

B
,   f2 = tan-1

 

B

A

 = 4A2
+ B2 sin1a + f22

 A sin a + B cos a = 4A2
+ B2 cos1a - f12

 cos a - cos b = -2 sina
a + b

2
b  sina

a - b

2
b

 cos a + cos b = 2 cosa
a + b

2
b  cosa

a - b

2
b

 sin a - sin b = 2 cosa
a + b

2
b  sina

a - b

2
b
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1038 APPENDIX A MATHEMATICAL RELATIONS AND MATERIAL PROPERTIES

Complex algebra:

 
z1

z2

=
A1

A2

 ei1u1-u22

 z1z2 = A1A2ei1u1+u22

and  u = tan-1
c

A1 sin u1 + A2 sin u2

A1 cos u1 + A2 cos u2

d

with  A = [A1
2
+ A2

2
- 2A1A2 cos 1u1 - u22]

1

2

z1 + z2 = Aeiu

If  z1 = A1e
iu1  and  z2 = A2eiu2,

z1

z2

=

1x1x2 + y1y22 + i1x2y1 - x1y22

4x2
2
+ y2

2

z1z2 = 1x1x2 - y1y22 + i1x1y1 + x2y22

z1 * z2 = 1x1 * x22 + i 1y1 * y22

If  z1 = x1 + i y1  and  z2 = x2 + iy2,

z = x + iy K Aeiu  with  A = 4x2
+ y2  and  u = tan-1 a

y

x
b

Material Properties

Material Young s 

modulus (E)

Modulus of 

rigidity (G)

Poisson s 

ration ( )n

Specific 

weight 1r
w
2

Steel (Carbon 

steel)

psi; 

207 GPa

30 * 106 psi; 

79.3 GPa

11.5 * 106 0.292 0.282 lbf/in
3; 76.5 kN/m3

Aluminum 

(Aluminum alloys)
psi; 

71 GPa

10.3 * 106 psi; 

26.2 GPa

3.8 * 106 0.334 0.098 lbf/in
3; 26.6 kN/m3

Brass psi; 

106 GPa

15.4 * 106 psi; 

40 GPa

5.8 * 106 0.324 0.309 lbf/in
3; 83.8 kN/m3

Copper psi; 

119 GPa

17.2 * 106 psi; 

44.7 GPa

6.5 * 106 0.326 0.322 lbf/in
3; 87.3 kN/m3
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1039

Carl Gustov Jacob Jacobi (1804 1851), a German mathematician, was educated
at the University of Berlin and became a full professor at the University of
Konigsberg in 1832. The method he developed for finding the eigen solution of
real symmetric matrices has become known as the Jacobi method. He made sig-
nificant contributions to the fields of elliptic functions, number theory, differential
equations, and mechanics and introduced the definition of Jacobian in the theory
of determinants. (Courtesy of Dirk J. Struik, A Concise History of Mathematics,

2nd ed., Dover Publications, New York, 1948.)

A P P E N D I X  B

Deflection of Beams

and Plates

y1x2 =

Pbx

6EIl
 1l2

- x2
- b2

2;   0 x a

Pa1l - x2

6EIl
 12lx - x2

- a2
2;  a x l

a

l

Cantilever Beam
P

x

y

y1x2 =

Px2

6EI
 13a - x2;   0 x a

Pa 

2

6EI
 13x - a2;   a x l

a b

l

Simply Supported Beam
P

x

y

y1x2 =

Pb2x2

6EIl3
 [3 al - x13a + b2];  0 x a

Pa2
1l - x22

6EIl3
 [3 bl - 1l - x213b + a2];  a x l

a b

l

Fixed-fixed Beam
P

x

y
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ycenter =
Pr2

16pDP

Fixed Circular Plate

r

ycenter =
aPa2

Et3
  with  a = 0.1267  for  v = 0.3P

Square Plate Simply Supported on All Sides

a

a

ycenter =
aPa2

Et3
  with  a = 0.0611  for  v = 0.3

Square Plate Fixed on All Sides

a

a

P

y1x2 =
d

Same as in case of simply supported beam

for 0 x a and a x l

Pa

6EIl
 1l2

- a2
21x - l2;  l x l + c

x

a b c

Simply Supported Beam with Overhang

P

y

l

y1x2 =

Pax

6EIl
 1x2

- l2
2;  0 x l

P1x - l2

6EIl
 [a13x - l2 - 1x - l22];  l x l + a

x

l a

Simply Supported Beam with Overhanging Load

P

y

y1x2 =
P

12EI
 13 lx2

- 2 x3
2

Fixed-fixed Beam with End Displacement

x

P

EI

y

l

 and v = Poisson s ratio

 where D =
Et3

1211 - v
2
2
,  t = plate thickness,

 ycenter =
Pr2 

13 + v2

16pD 11 + v2P

Simply Supported Circular Plate

r

1040
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1041

Arthur Cayley (1821 1895) was a British mathematician and professor of mathe-
matics at Cambridge University. His greatest work, produced with James Joseph
Sylvester, was the development of the theory of invariants, which played a crucial
role in the theory of relativity. He made many important contributions to n-dimen-
sional geometry and invented and developed the theory of matrices. (Photo cour-
tesy of Dirk J. Struik, A Concise History of Mathematics, 2nd ed., Dover
Publications, New York, 1948.)

A P P E N D I X  C

Matrices

C.1 Definitions

Matrix. A matrix is a rectangular array of numbers. An array having m rows and n

columns enclosed in brackets is called an m-by-n matrix. If [A] is an matrix, it is

denoted as

(C.1)

where the numbers are called the elements of the matrix. The first subscript i denotes

the row and the second subscript j specifies the column in which the element appears.aij

aij

[A] = [aij] = F

a11 a12 . . . a1n
a21 a22 . . . a2n
.

.

.

am1 am2
. . . amn

V

m * n
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Square Matrix. When the number of rows (m) is equal to the number of columns (n),

the matrix is called a square matrix of order n.

Column Matrix. A matrix consisting of only one column that is, an matrix is

called a column matrix or more commonly a column vector. Thus if is a column vector

having m elements, it can be represented as

(C.2)

Row Matrix. A matrix consisting of only one row that is, a matrix is called a

row matrix or a row vector. If is a row vector, it can be denoted as

(C.3)

Diagonal Matrix. A square matrix in which all the elements are zero except those on the

principal diagonal is called a diagonal matrix. For example, if [A] is a diagonal matrix of

order n, it is given by

(C.4)

Identity Matrix. If all the elements of a diagonal matrix have a value 1, then the matrix

is called an identity matrix or unit matrix and is usually denoted as [I].

Zero Matrix. If all the elements of a matrix are zero, it is called a zero or null matrix and

is denoted as [0]. If [0] is of order it is given by

(C.5)[0] = c

0 0 0 0

0 0 0 0
d

2 * 4,

[A] = G

a11 0 0 . . . 0

0 a22 0 . . . 0

0 0 a33 . . . 0

.

.

.

0 0 0 . . . ann

W

:b; = [b1 b2
. . . bn]

:b;

1 * n

a
!
= f

a1

a2

.

.

.

am

v

a
!
m * 1

1042 APPENDIX C MATRICES

Z03_RAO08193_5_SE_APPC.QXD  8/22/10  1:43 PM  Page 1042



Symmetric Matrix. If the element in ith row and jth column is the same as the one in jth

row and ith column in a square matrix, it is called a symmetric matrix. This means that if

[A] is a symmetric matrix, we have For example,

(C.6)

is a symmetric matrix of order 3.

Transpose of a Matrix. The transpose of an matrix [A] is the matrix

obtained by interchanging the rows and columns of [A] and is denoted as Thus if

(C.7)

then is given by

(C.8)

Note that the transpose of a column matrix (vector) is a row matrix (vector), and vice versa.

Trace. The sum of the main diagonal elements of a square matrix is called

the trace of [A] and is given by

(C.9)

Determinant. If [A] denotes a square matrix of order n, then the determinant of [A] is

denoted as Thus

(C.10)

The value of a determinant can be found by obtaining the minors and cofactors of the

determinant.

[A] = 6

a11 a12 . . . a1n
a21 a22 . . . a2n
.

.

.

an1 an2 . . . ann

6

[A] .

Trace[A] = a11 + a22 + Á + ann

[A] = [aij]

[A]T = C

2 3

4 1

5 8

S

[A]T

[A] = c

2 4 5

3 1 8
d

[A]T.
n * mm * n

[A] = C

4 -1 -3

-1 0 7

-3 7 5

S

aji = aij.

C.1 DEFINITIONS 1043
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The minor of the element of the determinant of order n is a determinant of

order obtained by deleting the row i and the column j of the original determinant.

The minor of is denoted as 

The cofactor of the element of the determinant of order n is the minor of the

element with either a plus or a minus sign attached; it is defined as

(C.11)

where is the minor of For example, the cofactor of the element of

(C.12)

is given by

(C.13)

The value of a second-order determinant is defined as

(C.14)

The value of an nth-order determinant is defined as

or

(C.15)

For example, if

(C.16)det[A] = [A] =

2 2 3

4 5 6

7 8 9

det[A] = a
n

i=1
 aijbij for any specific column j

det[A] = a
n

j=1
 aijbij for any specific row i

[A]

det [A] = `

a11 a12

a21 a22
` = a11a22 - a12a21

[A]

b32 = 1-125M32 = - `

a11 a13

a21 a23
`

det[A] =

a11 a12 a13

a21 a22 a23

a31 a32 a33

a32aij.Mij

Cofactor of aij = bij = 1-12i+ jMij

aij,
[A]aij

Mij.aij

1n - 12

[A]aij

1044 APPENDIX C MATRICES
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C.1 DEFINITIONS 1045

then, by selecting the first column for expansion, we obtain

(C.17)

Properties of Determinants

1. The value of a determinant is not affected if rows (or columns) are written as columns

(or rows) in the same order.

2. If all the elements of a row (or a column) are zero, the value of the determinant is zero.

3. If any two rows (or two columns) are interchanged, the value of the determinant is

multiplied by 

4. If all the elements of one row (or one column) are multiplied by the same constant a,

the value of the new determinant is a times the value of the original determinant.

5. If the corresponding elements of two rows (or two columns) of a determinant are

proportional, the value of the determinant is zero. For example,

(C.18)

Adjoint Matrix. The adjoint matrix of a square matrix is defined as the

matrix obtained by replacing each element by its cofactor and then transposing. Thus

(C.19)

Inverse Matrix. The inverse of a square matrix [A] is written as and is defined by

the following relationship:

(C.20)

where for example, denotes the product of the matrix and [A]. The inverse

matrix of [A] can be determined (see reference [A.1]):

(C.21)[A]-1
=

adjoint [A]

det[A]

[A]-1[A]-1[A],

[A]-1[A] = [A][A]-1
= [I]

[A]-1

Adjoint  [A] = F

b11 b12
. . . b1n

b21 b22
. . . b2n

.

.

.

bn1 bn2
. . . bnn

V

T

= F

b11 b21
. . . bn1

b12 b22
. . . bn2

.

.

.

b1n b2n
. . . bnn

V

bijaij

[A] = [aij]

det[A] =

4 7 -  8

2 5 -  4

-  1 3 2

= 0

-1.

 = 2145 - 482 - 4118 - 242 + 7112 - 152 = -3

 det[A] = 2 `

5 6

8 9
` - 4 `

2 3

8 9
` + 7 `

2 3

5 6
`
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when det[A] is not equal to zero. For example, if

(C.22)

its determinant has a value The cofactor of is

(C.23)

In a similar manner, we can find the other cofactors and determine

(C.24)

Singular Matrix. A square matrix is said to be singular if its determinant is zero.

C.2 Basic Matrix Operations

Equality of Matrices. Two matrices [A] and [B], having the same order, are equal if and

only if for every i and j.

Addition and Subtraction of Matrices. The sum of the two matrices [A] and [B],

having the same order, is given by the sum of the corresponding elements. Thus if

we have for every i and j. Similarly, the

difference between two matrices [A] and [B] of the same order, [D], is given by

with for every i and j.

Multiplication of Matrices. The product of two matrices [A] and [B] is defined only if

they are conformable that is, if the number of columns of [A] is equal to the number of

rows of [B]. If [A] is of order and [B] is of order then the product

is of order and is defined by with

(C.25)

This means that is the quantity obtained by multiplying the ith row of [A] and the jth

column of [B] and summing these products. For example, if

cij

cij = a
n

k=1
 aikbkj

[C] = [cij],m * p[C] = [A][B]
n * p,m * n

dij = aij - bij[D] = [A] - [B]

cij = aij + bij[C] = [A] + [B] = [B] + [A],

aij = bij

[A]-1
=

adjoint [A]

det[A]
=

1

-3
 C

-3 6 -3

6 -3 0

-3 -2 2

S = C

1 -2 1

-2 1 0

1 2/3 -2/3

S

b11 = 1-122
`

5 6

8 9
` = -3

a11det[A] = -3.

[A] = C

2 2 3

4 5 6

7 8 9

S
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(C.26)

then

(C.27)

If the matrices are conformable, the matrix multiplication process is associative

(C.28)

and is distributive

(C.29)

The product [A][B] denotes the premultiplication of [B] by [A] or the postmultiplication of

[A] by [B]. It is to be noted that the product [A][B] is not necessarily equal to [B][A].

The transpose of a matrix product can be found to be the product of the transposes of

the separate matrices in reverse order. Thus, if 

(C.30)

The inverse of a matrix product can be determined from the product of the inverse of

the separate matrices in reverse order. Thus if 

(C.31)

REFERENCE

C.1 Barnett, Matrix Methods for Engineers and Scientists, McGraw-Hill, New York, 1982.

[C]-1
= 1[A][B]2-1

= [B]-1[A]-1

[C] = [A][B],

[C]T
= 1[A][B]2T

= [B]T[A]T

[C] = [A][B],

1[A] + [B]2[C] = [A][C] + [B][C]

1[A][B]2[C] = [A]1[B][C]2

 = c

18 37

-8 -11
d

 = c

2 * 8 + 3 * 2 + 4 * 1-12 2 * 0 + 3 * 7 + 4 * 4

1 * 8 + 1-52 * 2 + 6 * 1-12 1 * 0 + 1-52 * 7 + 6 * 4
d

 [C] = [A][B] = c

2 3 4

1 -5 6
d   C

8 0

2 7

-1 4

S

[A] = c

2 3 4

1 -5 6
d and [B] = C

8 0

2 7

-1 4

S
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1048

Pierre Simon Laplace (1749 1827) was a French mathematician remembered for
his fundamental contributions to probability theory, mathematical physics, and
celestial mechanics; the name Laplace occurs in both mechanical and electrical
engineering. Much use is made of Laplace transforms in vibrations and applied
mechanics, and the Laplace equation is applied extensively in the study of electric
and magnetic fields. (Courtesy of Dirk J. Struik, A Concise History of Mathematics,
2nd ed., Dover Publications, New York, 1948.)

A P P E N D I X  D

Laplace Transform

The Laplace transform method is a powerful method for solving linear ordinary differen-

tial equations with constant coefficients, particularly when the forcing function is in the

form of discontinuous functions (which cannot be solved easily by other methods). This

appendix gives a brief outline of the Laplace transform method. The basic idea is to transform

a differential equation into a polynomial type of equation and then use the inverse Laplace

transform to find the solution of the original problem.

D.1 Definition
If a function f(t) is defined for all positive values of time, the Laplace transform of

f(t), denoted, l[f(t)], is defined as

(D.1)

where is known as the kernel of the transform and s is a subsidiary variable, called the

Laplace variable, that is in general a complex quantity.

e-st

l3f1t24 = F1s2 =
3

 q

0 
e-st f1t2 dt

t Ú 0,

Z04_RAO08193_5_SE_APPD.QXD  8/22/10  1:48 PM  Page 1048



D.2 TRANSFORM OF DERIVATIVES 1049

Notation: The original functions depend on t and their Laplace transforms depend on s.

The original functions are denoted by lower-case letters while their Laplace transforms are

denoted by the same letters in capitals. For example, the Laplace transforms of f(t) and y(t)

are denoted as F(s) and Y(s), respectively. The Laplace transform of f(t) where is a

constant is given by F(s). Similarly, the Laplace transform of a linear sum of two func-

tions and is given by

(D.2)

Inverse Laplace Transform:

To find the original function f(t) from the transformed function F(s), we need to use the

inverse Laplace transform defined as

(D.3)

where u(t) is the unit step function defined as

(D.4)

and is a value selected to the right of all the singularities of F(s) in the s-plane. In practice,

Eq. (D.3) is rarely used. Instead, Laplace transforms of complex expressions are broken

down into simpler ones for which the inverse Laplace transforms can be found from Laplace

transform tables.

D.2 Transform of Derivatives

While applying Laplace transforms to solve differential equations, we need to use the

Laplace transforms of various order derivatives of a function. The Laplace transform of the

first derivative of f(t) is defined as

(D.5)

By using integration by parts, Eq. (D.5) can be expressed as

(D.6)lB
df1t2

dt
R = e-stf1t2 0

q -
3

 q

0 
1-se-st

2f1t2 dt = -f102 + sF1s2

lB
df1t2

dt
R =

3

 q

0 
e-st

 

df1t2

dt
 dt

s

u1t2 = b
1 for t 7 0

0 for t 6 0

l
-1
3F1s24 =

1

2pi 3

 s+ iq

s=s- iq 
F1s2est ds = f1t2u1t2

l3a1f11t2 + a2f21t24 = a1F11s2 + a2F21s2

f21t2, a1 f11t2 + a2 f21t2,f11t2

a

aa
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where f(0) is the initial value of f(t) namely, the value of Using a similar approach,

the Laplace transform of the second derivative of f(t) is defined as

(D.7)

Equation (D.7) can be simplified to obtain

(D.8)

where is the value of at By using a similar approach, the Laplace transform

of the nth derivative of f(t) can be found as

(D.9)

where is used to denote the nth derivative of f, 

D.3 Shifting Theorems
In some applications, the function f(t) appears together with the term as f(t) , where

a is a real or complex number. The Laplace transform of this product, is given by

(D.10)

Thus we have

(D.11)

This shows that the effect of multiplying the function f(t) by is to shift the Laplace

transform of f(t) by the amount a in the s-domain. The result indicated by Eq. (D.11) is

known as the shifting theorem.

D.4 Method of Partial Fractions
In some problems, the function F(s) is of the form

(D.12)F1s2 =

B1s2

A1s2

eat

l3f1t2eat
4 = F1s - a2

F11s2 = l3f1t2eat
4 =

3

 q

0 
5f1t2eat

6e-st dt =
3

 q

0 
f1t2e-1s-a2 dt K F1s - a2

F11s2,

eateat

dnf

dtn .f1n2

lB
dnf1t2

dtn R K l3f1n2
4 = snF1s2 - sn-1f102 - sn-2f112

102 -  Á  - sf1n-12
102

t = 0.
df

dt
f
#

102

lB
d2f1t2

dt2
R = -f

#

102 - sf102 + s2F1s2

lB
d2f1t2

dt2
R =

3

 q

0 
e-st

 

d2f1t2

dt2
 dt

f1t = 02.
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where B(s) and A(s) are polynomials in s and the degree of A(s) is usually higher than that

of B(s). The inverse transform of F(s) can be simplified if the right-hand side of Eq. (D.12)

is expanded into partial fractions. In order to apply the partial fraction expansion tech-

nique, we need to know the roots of the denominator polynomial, A(s), first.

When all the roots of A(s) are distinct: Let p
1
, p

2
, p

n
be the roots, also called

the poles, of A(s). Then Eq. (D.12) can be expressed as

(D.13)

where is an unknown constant, called the residue, at the pole 

The value of can be determined by multiplying both sides of Eq. (D.13) by and

letting so that

(D.14)

Note that f(t) is a real function of time t; if the roots and of A(s) are complex conjugates,

then the corresponding residues or constants and will also be complex conjugates. Once

the partial fraction expansion of F(s), Eq. (D.13), is known, the inverse Laplace transform of

F(s) can be determined using relations of the type

(D.15)

Thus f(t) can be found as

(D.16)

When A(s) involves multiple roots: Let the polynomial A(s) have a multiple root of order k

at which implies that F(s) has a pole of order k at in addition to the simple

roots (or poles) at considered above. Thus A(s) can be expressed as

(D.17)

The partial fraction expansion of F(s) is written in the form

(D.18)+
a1k

1s + p12
+

a2

s + p2

+
a3

s + p3

+ Á +
an

s + pn

F1s2 =
B1s2

A1s2
=

a11

1s + p12
k
+

a12

1s + p12
k-1

+ Á

A1s2 = 1s + p12
k
1s + p221s + p32Á 1s + pn2

-p2, -p3, Á , -pn

-p1s = -p1

f1t2 = l-1
3F1s24 = a1e

-p1t + a2e-p2 
t
+ Á + ane-pn t

l
-1
B

ak

s + pk

R = ake-pk t

a2a1

p2p1

ak = e 1s + pk2 

B1s2

A1s2
f

s=-pk

s = -pk

1s + pk2ak

s = -pk, k = 1, 2, Á , n.ak

F1s2 =
B1s2

A1s2
=

a1

s + p1

+
a2

s + p2

+ Á +
an

s + pn

-Á ,--
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It can be verified that the constants can be determined as

(D.19)

Noting that

(D.20)

the inverse Laplace transform of the terms due to the higher-order pole can be obtained,

using the shifting theorem, as

(D.21)

Thus the inverse Laplace transform of F(s) given by Eq. (D.18) becomes

(D.22)

D.5 Convolution Integral
Let two functions and defined for possess the Laplace transforms 

and respectively. Then consider the function f(t) defined in several ways as

(D.23)

This function f(t) is called the convolution of the functions and over the interval

Note that the upper limits of the integrals in Eq. (D.23) are interchangeable

because for which is same as The Laplace transform of

Eq. (D.23) can be expressed as

(D.24)F1s2 = l3f11t2*f21t24 = F11s2F21s2

t - t 6 0.t 7 t,f21t - t2 = 0

0 6 t 6 q .

f21t2f11t2

f1t2 = f11t2*f21t2 =
3

 t

0 
f11t2f21t - t2 dt =

3

 q

0 
f11t2f21t - t2 dt

F21s2,

F11s2t 7 0,f21t2,f11t2

+ a2e-p2 t
+ Á + ane-pn t

f1t2 = l-1
3F1s24 = Ba11 

tk-1

1k - 12!
+ a12 

tk-2

1k - 22!
+ Á + a1kRe-p1t

l
-1
B

1

1s + p12
rR =

tr-1

1r - 12!
 e-p1t

l3tr-1
4 =

1r - 12!

sr

a1r =
1

11 - r2
! 

dr-1

dsr-1
 31s + p12

kF1s24s=-p1
;  r = 1, 2, Á , k

a11, a12, Á , a1k
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where

(D.25)

The inverse Laplace transform of Eq. (D.24) is given by

(D.26)

 =
3

 t

0 
f11t2f21t - t2 dt =

3

 t

0 
f11t - t2f21t2 dt

 f1t2 = l
-1

3F1s24 = l
-1

3F11s2F21s24

F11s2 =
3

 q

0 
e-stf11t2 dt, F21s2 =

3

 q

0 
e-ssf21s2 ds

E X A M P L E  D . 1
Expand the function using partial fractions.

Solution The partial fraction expansion of the function F(s) can be expressed as

(E.1)

where the constants can be evaluated as

(E.2)

(E.3)

(E.4)

Thus the partial fraction expansion of F(s) is given by

(E.5)

The partial fraction expansion can also be carried out using MATLAB s residue function as follows:

% coefficients of polynomial in the numerator

% coefficients of the two polynomials in the denominator

% compute residue and print the result

and 

This result can be seen to be same as the one computed above.

A short table of Laplace transform pairs is given below.

*

k = [].R = 3-5 5 94¿, p = 3-3 - 4 - 44,

3r, p, k4 = residue1num, den2

den = conv131 34, 31 8 842;

num = 34   74;

F1s2 =
4s + 7

1s + 321s + 42
4
= -

5

1s + 32
+

5

1s + 42

-
9

1s + 42
2

C3 = 31s + 42
2F1s24 2

s=-4

= c

4s + 7

s + 3
d 2

s=-4

= 9

C2 =
d

dx
 31s + 42

2F1s24 2

s=-4

=
d

dx
 c

4s + 7

s + 3
d 2

s=-4

=
1s + 324 - 14s + 721

1s + 32
`

s=-4

= 5

C1 = 1s + 32F1s2 2

s=-3

=
4s + 7

1s + 42
2

2

s=-3

= -5

Ci, i = 1, 2, 3,

F1s2 =
4s + 7

1s + 321s + 42
2
=

C1

1s + 32
+

C2

1s + 42

+
C3

1s + 42
2

F1s2 =
4s + 7

1s + 321s + 42
2
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Laplace Transform Pairs

Laplace Domain

F1s2 *
3

 

0 
f1t2e+st dt

Time Domain

f(t)

1. c1F1s2 + c2G1s2 c1f1t2 + c2g1t2

2. Fa
s

a
b f1a # t2a

3. F(s)G(s)

3

 
t

0 f1t - t2g1t2 dt =

3

 
t

 0

f1t2g1t - t2 dt

4. snF1s2 - a
n

j=1

 sn-j
 

dj-1f

dtj-1
 102

dnf

dtn  1t2

5. 
1

sn  F1s2

3

 
t

0 
Á

3

 
t

0 
f(t) dtÁ dt

(')'*

n

6. F1s + a2 e-atf(t)

7.
1

sn+1

tn; n = 1, 2, Á , t

8.
1

s + a

e-at

9.
1

1s + a22

te-at

10. 
a

s1s + a2
1 - e-at

11.
s + a

s2

1 + at

12.
a2

s2
1s + a2

at - 11 - e-at
2

13.
s + b

s1s + a2

b

a
 e 1 - a1 -

a

b
be-at

f

14.
a

s2
+ a2

sin at

15.
s

s2
+ a2

cos at

16.
a2

s1s2
+ a2

2

1 - cos at

17.
s

s2
- a2

cosh at

18.
a

s2
- a2

sinh at

19. 

a1s2
- a2

2

1s2
+ a2

2
2

at cos at
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Laplace Transform Pairs

Laplace Domain

F1s2 *
3

 

0 
f1t2e+st dt

Time Domain

f(t)

20. 
2sa2

1s2
+ a2

2
2

at sin at

21. 
s + a

1s + a22
+ b2

e-at cos bt

22. 
b

1s + a22
+ b2

e-at sin bt

23. 
1

1s + a21s + b2

e-at
- e-bt

1b - a2

24. 
s + w

1s + a21s + b2
51w - a2e-at

- 1w - b2e-bt

1b - a2

25. 
1

1s + a21s + b21s + c2

e-at

1b - a21c - a2
+

e-bt

1a - b21c - b2
+

e-ct

1a - c21b - c2

26. 
s + w

1s + a21s + b21s + c2

1w - a2e-at

1b - a21c - a2
+

1w - b2e-bt

1a - b21c - b2
+

1w - c2e-ct

1a - c21b - c2

27.* 
1

s2
+ 2zvns + vn

2

1

vd

 e- 
zvnt sin vd 

t

28. 
s

s2
+ 2zvns + vn

2 -
vn

vd

 e- 

zvnt sin1vd 
t - f12

29.*
s + 2zvns

s2
+ 2zvns + vn

2

vn

vd

 e- 

zvnt sin1vd 
t + f12

30.* 
vn

2

s1s2
+ 2zvns + vn

2
2

1 -
vn

vd

 e- 

zvnt sin1vd 
t + f12

31.*
s + zvn

s1s2
+ 2zvns + vn

2
2

e- 

zvnt sin1vd 
t + f12

32. 1

33. 
e-as

s

f1 = cos
-1z;  z 6 1

*vd = vn41 - z2;  z 6 1

t

1

O

Unit impulse at t * 0

+

+

t

1

O a

Unit step function at t * a
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Heinrich Rudolf Hertz (1857 1894), a German physicist and a professor of
physics at the Polytechnic Institute in Karlsruhe and later at the University of
Bonn, gained fame through his experiments on radio waves. His investigations in
the field of elasticity formed a relatively small part of his achievements but are of
vital importance to engineers. His work on the analysis of elastic bodies in contact
is referred to as Hertzian stresses,  and is very important in the design of ball and
roller bearings. The unit of frequency of periodic phenomena, measured in cycles
per second, is named hertz in SI units. (Photo courtesy of Applied Mechanics

Reviews.)

1056

A P P E N D I X  E

Units

The English system of units is now being replaced by the International System of units

(SI). The SI system is the modernized version of the metric system of units. Its name in

French is Système International; hence the abbreviation SI. The SI system has seven

basic units. All other units can be derived from these seven [E.1 E.2]. The three basic

units of concern in the study of vibrations are meter for length, kilogram for mass, and

second for time.

The common prefixes for multiples and submultiples of SI units are given in Table E.1.

In the SI system, the combined units must be abbreviated with care. For example, a torque

of must be stated as 8 N m or with either a space or a dot between N and

m. It should not be written as Nm. Another example is or or

40 meter-seconds. If it is written as 40 ms, it means 40 milliseconds.

Conversion of Units

To convert the units of any given quantity from one system to another, we use the equiva-

lence of units given in Table E.2. The following examples illustrate the procedure.

40 m # s8 m * 5 s = 40 m s

8 N # m4 N * 2 m
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TABLE E.1 Prefixes for multiples and submultiples of SI units

Multiple Prefix Symbol Submultiple Prefix Symbol

10 deka da 10
-1 deci d

10
2 hecto h 10

-2 centi c

10
3 kilo k 10

-3 milli m

10
6 mega M 10

-6 micro m

10
9 giga G 10

-9 nano n

10
12 tera T 10

-12 pico p

TABLE E.2 Conversion of units

Quantity SI Equivalence English Equivalence

Mass  1 lbf-sec2
/ft 1slug2 = 14.5939 kg 1 kg = 2.204623 lbm

 = 32.174 lbm

1 lbm = 0.45359237 kg = 0.06852178 slug

1lbf-sec2
/ft2

Length 1 in. = 0.0254 m  1 m = 39.37008 in.

1 ft = 0.3048 m  = 3.28084 ft

1 mile = 5280 ft = 1.609344 km 1 km = 3280.84 ft = 0.621371 mile

Area 1 in.2 = 0.00064516 m2
 1 m2

= 1550.0031 in.2

1 ft2
= 0.0929030 m2

 = 10.76391 ft2

Volume 1 in.3 = 16.3871 * 10
-6

 m3
 1 m3

= 61.0237 * 10
3
 in.3

 1 ft3
= 28.3168 * 10

-3
 m3

 = 35.3147 ft3

 1 US gallon = 3.7853 litres  = 10
3
 litres = 0.26418 US gallon

 = 3.7853 * 10
-3

 m3

Force or weight 1 lbf = 4.448222 N 1 N = 0.2248089 lbf

Torque or moment 1 lbf-in. = 0.1129848 N # m  1 N # m = 8.850744 lbf-in.

1 lbf-ft = 1.355818 N # m  = 0.737562 lbf-ft

Stress, pressure, or 1 lbf  
/in.2 1psi2 = 6894.757 Pa  1 Pa = 1.450377 * 10

-4
 lbf  

/in.2 1psi2

elastic modulus 1 lbf  
/ft2

= 47.88026 Pa  = 208.8543 * 10
-4

 lbf 
/ft2

Mass density 1 lbm/in.3 = 27.6799 * 10
3
 kg/m3

 1 kg/m3
= 36.127 * 10

-6
 lbm/in.3

1 lbm/ft3
= 16.0185 kg/m3

 = 62.428 * 10
-3

 lbm/ft3
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Stress:

*

 = 6894.757 1lbf 
/in.22

 =

14.4482222

10.02542
2

 1lbf 
/in.22

 =

1N per 1 lbf2

1m per 1 in.22
 1lbf  

/in.22

 1Pa2 K 1N/m2
2 = a

N

lbf

 
# lbfb  

1

a
m

in.
 
# in.b

2
=

N

lb f

 

1

a
m

in.
b

2
 1lb f 

/in.22

 1Stress in SI units2 = 1Stress in English units2 * a
Multiplication

factor
b

REFERENCES

E.1 E. A. Mechtly, The International System of Units  (2nd rev. ed.), NASA SP-7012, 1973.

E.2 C. Wandmacher, Metric Units in Engineering Going SI, Industrial Press, New York, 1978.

E X A M P L E  E . 1
Mass moment of inertia:

*

 = 0.1129848 1lbf 
-in.-sec2

2

 = 14.448222210.025421lbf 
-in.-sec2

2

 = 1N per 1 lbf21m per 1 in.21lbf 
-in.-sec2

2

 1kg # m2
2 K 1N # m # s2

2 = a
N

lbf

 
# lbfb a

m

in.
 
# in.b1sec2

2

 a
Mass moment of

inertia in SI units
b = a

Mass moment of inertia

in English units
b * a

Multiplication

factor
b

E X A M P L E  E . 2
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Thomas Young (1773 1829) was a British physicist and physician who intro-
duced Young s modulus and principle of interference of light. He studied medi-
cine and received his M.D. in 1796. He was appointed Professor of Natural
Philosophy at the Royal Institution in 1801, but he resigned in 1803 as his lectures
were disappointing to popular audiences. He joined St. George s hospital in Lon-
don as a physician in 1811 and continued there until his death. Young made many
contributions to mechanics. He was the first to use the terms energy  and labor
expended  (i.e., work done) for the quantities and Fx, respectively, where m
is the mass of the body, v is its velocity, F is a force, and x is the distance by
which F is moved, and to state that the two terms are proportional to one another.
He defined the term modulus (which has become known as Young s modulus) as
the weight which would double the length of a rod of unit cross section.

mv2

1059

MATLAB, derived from MATrix LABoratory, is a software package that can be used for

the solution of a variety of scientific and engineering problems including linear algebraic

equations, nonlinear equations, numerical differentiation and integration, curve fitting,

ordinary and partial differential equations, optimization, and graphics. It uses matrix nota-

tion extensively; in fact, the only data type in MATLAB is a complex-valued matrix. Thus

it handles scalars, vectors, and real- and integer-valued matrices as special cases of complex

matrices. The software can be used to execute a single statement or a list of statements,

called a script file. MATLAB provides excellent graphing and programming capabilities. It

can also be used to solve many types of problems symbolically. Simple computations can

be done by entering an instruction, similar to what we do on a calculator, at the prompt.

The symbols to be used for the basic arithmetic operations of addition, subtraction, multi-

plication, division, and exponentiation are and respectively. In any expression,

the computations are performed from left to right, with exponentiation having the highest

priority, followed by multiplication and division (with equal priority) and then addition

and subtraction (with equal priority). It uses the symbol log to denote the natural logarithm

(ln). MATLAB uses double precision during computations but prints results on the screen

using a shorter format. This default can be changed by using the format command.

N
,+ , - , *, >

A P P E N D I X  F

Introduction to

MATLAB
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F.1 Variables
Variable names in MATLAB should start with a letter and can have a length of up to 31

characters in any combination of letters, digits, and underscores. Upper- and lowercase let-

ters are treated separately. As stated earlier, MATLAB treats all variables as matrices,

although scalar quantities need not be given as arrays.

F.2 Arrays and Matrices
The name of a matrix must start with a letter and may be followed by any combination of

letters or digits. The letters may be upper- or lowercase. Before performing arithmetic

operations such as addition, subtraction, multiplication, and division on matrices, the

matrices must be created using statements such as the following:

Row vector

A row vector is treated as a 1-by-n matrix; its elements are enclosed in brackets and are

separated by either spaces or commas. Note that the command-line prompt in the profes-

sional version of MATLAB is while it is in the student edition of MAT-

LAB. If a semicolon is not put at the end of the line, MATLAB displays the results of the

line on the screen.

Column vector

A column vector is treated as an n-by-1 matrix. Its elements can be entered in different

lines or in a single line using a semicolon to separate them or in a single line using a row

vector with a prime on the right bracket (to denote the transpose).

Matrix

To define the matrix

the following specification can be used:

W A =

[1 2 3

4 5 6

7 6 9]

 or A = [1 2 3; 4 5 6; 7 8 9];

[A] = C

1 2 3

4 5 6

7 8 6

S

W A =

[1

2

3]

 or A = [1; 2 ; 3] or A = [1 2 3]¿;

EDU WW

W A = [1 2 3];

1060 APPENDIX F INTRODUCTION TO MATLAB
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F.3 Arrays with Special Structure
In some cases, the special structure of an array is used to specify the array in a simpler

manner. For example, denotes a row vector

and represents the row vector

F.4 Special Matrices
Some of the special matrices are identified as follows:

implies an identity matrix of order 3,

implies a square matrix of order 3 with all elements equal to one,

implies a matrix with all elements equal to zero,

F.5 Matrix Operations
To add the matrices [A] and [B] to get [C], we use the statement

To solve a system of linear equations we define the matrix A and the vector B

and use the following statement:

W X = A OB

[A] X
!
= B

!
,

W C = A + B;

A = c
0 0 0

0 0 0
d

2 * 3W A = zeros 12, 32;

A = C

1 1 1

1 1 1

1 1 1

S

W A = ones 132;

A = C

1 0 0

0 1 0

0 0 1

S

W A = eye 132;

A = [2.5 3.0 3.5 4.0]

A = 2:0.5:4

A = [1 2 3 4 5 6 7 8 9 10]

A = 1:10

F.5 MATRIX OPERATIONS 1061
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F.6 Functions in MATLAB
MATLAB has a large number of built-in functions, such as the following:

Square root of x: sqrt(x)

Sine of x: sin(x)

Logarithm of x to base 10: log10(x)

Gamma function of x: gamma(x)

To generate a new vector y having 11 values given by the function with

we type the following:

F.7 Complex Numbers
MATLAB considers complex-number algebra automatically. The symbol i or j can be used

to represent the imaginary part with no need of an asterisk between i or j and a number. For

example, is a complex number with real and imaginary parts equal to 1 and

respectively. The magnitude and angle of a complex number can be found using the

statements

>> a = 1  3i;

>> abs (a)

ans =

...

>> angle (a)

ans =

... (in radians)

F.8 M-files
MATLAB can be used in an interactive mode by typing each command from the keyboard.

In this mode, MATLAB performs the operations much like an extended calculator. How-

ever, there are situations in which this mode of operation is inefficient. For example, if the

same set of commands is to be repeated a number of times with different values of the

input parameters, developing a MATLAB program will be quicker and more efficient.

A MATLAB program consists of a sequence of MATLAB instructions written outside

MATLAB and then executed in MATLAB as a single block of commands. Such a program

is called a script file or M-file. It is necessary to give a name to the script file. The name

should end with .m (a dot (.) followed by the letter m). A typical M-file (called fibo.m) is

given below:

file "fibo.m"

% m-file to compute Fibonacci numbers

-3,

a = 1 - 3i

 W y = exp 1-2*x2.*cos1x2.;

 W x = [0: 0.1: 1];

x = 0.0, 0.1, Á , 1.0,

y = e
-2x

 cos x

1062 APPENDIX F INTRODUCTION TO MATLAB
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f=[1 1];

i=1;

while f(i)+f(i+1)<1000

f(i+2)=f(i)+f(i+1);

i=i+1;

end

An M-file can also be used to write function subroutines. For example, the solution of a

quadratic equation

can be determined using the following program:

% roots_quadra.m (Note: Line starting with % denotes a 

comment line)

function [x1, x2] = roots_quadra(A, B, C)

% det = determinant

det = ^2  4 * A * C;

if (det < 0.0);

x1 = ( B + j * sqrt( det))/(2 * A);

x2 = ( B  j * sqrt( det))/(2 * A);

disp( Roots are complex conjugates );

elseif (abs(det) < 1e 8); % det = 0.0

x1 = B / (2 * A);

x2 = B / (2 * A);

disp('Roots are identical');

else (det > 0);

x1 = ( B + sqrt(det))/(2 * A);

x2 = ( B  sqrt(det))/(2 * A);

disp( Roots are real and distinct );

end

The program roots_quadra.m can be used to find the roots of a quadratic with

and for example, as follows:

>> [x1,x2]=roots_quadra(2, 2, 1)

Roots are complex conjugates

x1 =

0.5000 + 0.5000i

x2 =

0.5000  0.5000i

F.9 Plotting of Graphs
To plot a graph in MATLAB, we define a vector of values of the independent variable x

(array x) and a vector of values of the dependent variable y corresponding to the values of

x (array y). Then the x-y graph can be plotted using the command:

plot (x,y)

C = 1A = 2, B = 2,

Ax2
+ Bx + C = 0
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As an example, the following commands can be used to plot the function in

the range 

x = 0 : 0.2 : 3;

y = x2 + 1;

plot (x,y);

hold on

x1 = [0 3];

y1 = [0 0];

plot (x1,y1);

grid on

hold off

Note that the first two lines are used to generate the arrays x and y (using increments of 0.2

for x); the third line plots the graph (using straight lines between the indicated points); the

next six lines permit the plotting of x- and y-axes along with the setting up of the grid (using

the grid on command).

F.10 Roots of Nonlinear Equations
To find the roots of a nonlinear equation, the MATLAB function fzero(y,x1) can be

used. Here y defines the nonlinear function and x1 denotes the initial estimate (starting

value) of the root. The roots of polynomials can be determined using the function

roots(p), where p is a row vector of coefficients of the polynomial in descending order of

the power of the variable.

>> f='tan (x) tanh (x)'

f =

tan (x) tanh (x)

>> root=fzero(f,1.0)

root =

1.5708

>> roots([1 0 0 0 0 0 2])

ans =

1.1225

0.5612 +0.9721i

0.5612 0.9721i

0.5612 +0.9721i

0.5612 0.9721i

1.1225

>>

0 x 3:

y = x
2
+ 1
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F.11 Solution of Linear Algebraic Equations
A set of simultaneous linear algebraic equations can be solved using MATLAB 

in two different ways: Find as or find directly as indicated by the following

examples:

>> A=[4 3 2; 2 3 1; 5 4 7]

A =

4 3   2

2    3   1

5    4   7

>> b=[16; 1; 18]

b =

16

1

18

>> C=inv(A)

C =

0.2099    0.3580    0.1111

0.1111    0.2222     0.0000

0.0864   0.3827     0.2222

>> x=C*b

x =

1.0000

2.0000

3.0000

>> x=A\b

x =

1.0000

2.0000

3.0000

>>

F.12 Solution of Eigenvalue Problem
An algebraic eigenvalue problem is defined by where [A] is a square matrix 

of size is a column vector of size n, and is a scalar. For any given matrix [A],

the solution can be found using two types of commands. The use of the command b =

eig(A) gives the eigenvalues of the matrix [A] as elements of the vector d. The use of the

command [V,D] = eig(A) gives the eigenvalues as diagonal elements of the matrix [D]

ln * n, X
!

[A]X
!

= lX
!

,

x
!

[A]-1b
!

x
!

[A] x
!
= b

!

F.12 SOLUTION OF EIGENVALUE PROBLEM 1065

Z06_RAO08193_5_SE_APPF.QXD  8/22/10  1:56 PM  Page 1065



and the eigenvectors as corresponding columns of the matrix [V]. The following example

illustrates the procedure:

>> A=[2 1 3 4; 1 3 1 5; 3 1 6 2; 4 5 2 1]

A =

2    1    3    4

1   3    1    5

3    1    6   2

4    5   2   1

>> b=eig(A)

b=

7.9329

5.6689

1.5732

8.0286

>> [V, d] = eig(A)

V =

0.5601    0.3787    0.6880    0.2635

0.2116    0.3624   0.6241    0.6590

0.7767   0.5379   0.2598   0.1996

0.1954    0.6602   0.2638   0.6756

d =

7.9329        0         0         0

0   5.6689         0         0

0        0   1.5732         0

0        0         0   8.0286

>>

F.13 Solution of Differential Equations
MATLAB has several functions or solvers, based on the use of Runge-Kutta methods, that

can be used for the solution of a system of first-order ordinary differential equations. Note

that an nth-order ordinary differential equation is to be converted into a system of n first-

order ordinary differential equations before using MATLAB functions. The MATLAB func-

tion ode23 implements a combination of second- and third-order Runge-Kutta methods,

while the function ode45 is based on a combination of fourth- and fifth-order Runge-Kutta

methods. To solve a system of first-order differential equations using the

MATLAB function ode23, the following command can be used:

>>[t,y] = ode('dfunc',tspan,y0)

where dfunc is the name of the function m-file whose input must be t and y and

whose output must be a column vector denoting that is, f(t,y). The number ofdy/dt

y
#

= f1t, y2
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rows in the column vector must be equal to the number of first-order equations. The vector

tspan should contain the initial and final values of the independent variable t and,

optionally, any intermediate values of t at which the solution is desired. The vector y0

should contain the initial values of y(t). Note that the function m-file should have two

input arguments t and y even if the function f(t,y) does not involve t. A similar proce-

dure can be used with the MATLAB function ode45.

As an example, consider the solution of the differential equation with and

This equation can be written as a set of two first-order differential equations by introducing

and

as

with

The following MATLAB program finds the solution of the above differential equations:

% ProbappendixF.m

tspan = [0: 0.05: 3];

y0 = [1; 0];

[t,y] = ode23 ( dfunc , tspan, y0);

[t y]

plot (t, y(:,1));

xlabel ( t );

ylabel ( y(1) and y(2) )

gtext ( y(1) );

hold on

plot (t,y (:,2));

gtext ( y(2) );

%dfunc.m

function f = dfunc(t,y)

f = zeros (2,1);

f(1) = y(2);

f(2) = 0.1 * y(2)  10.0 * y(1);

y
!
102 = e

1

0
f

dy
!

dt
= f

!

= e
f11t, y

!
2

f21t, y
!
2
f = e

y2

-cy2 - ky1

f

y2 =
dy

dt
=

dy1

dt

y1 = y

d
2
y

dt
2
+ c  

dy

dt
+ ky = 0;  y102 = 0,   

dy

dt
 102 = 0

k = 10.0:

c = 0.1
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>> ProbappendixF

ans =

0    1.0000    0

0.0500    0.9875   0.4967

0.1000    0.9505   0.9785

0.1500    0.8901   1.4335

0.2000    0.8077   1.8505

0.2500    0.7056   2.2191

0.3000    0.5866   2.5308

0.3500    0.4534  2.7775

0.4000    0.3098   2.9540

0.4500    0.1592   3.0561

0.5000    0.0054 3.0818

0.5500   0.1477   3.0308

.  

.  

.  

2.7500   0.6380   1.8279

2.8000   0.7207   1.4788

2.8500   0.7851   1.0949

2.9000   0.8296   0.6858

2.9500   0.8533   0.2617

3.0000   0.8556    0.1667
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Answers to Selected
Problems

1069

Chapter 1

1.7

1.11 (a) (b) (c)

1.15 1.17 1.21

1.24 1.29 1.32    1.36

1.39 1.43 (a) (b)

1.45 (a) (b) 1.47

1.49 1.52

1.55 (a) (c) 

(b) (d) 

1.59 1.64 1.71

1.76 1.78 1.81

1.85 1.87 Not harmonic

1.90 1.92

1.104 1.108 1.110

1.114 where 

1.117

Chapter 2

2.2 (a) 0.1715 sec, (b) 0.2970 sec 2.4 0.0993 sec

2.6 (a) (c) 

(b) (d) f0 = 51.0724°x
#

0 = 0.07779 m/s,

x
$

max = 0.31415 m/s2,A = 0.03183 m,

 b1 = 23.52, b2 = 12.26, b3 = -
 
0.41 a0 = 19.92, a1 = -

 
20.16, a2 = 3.31, a3 = 3.77;

b1 = 31.8309, b2 = 31.8309, b3 = 10.6103

a3 = -10.6103,a0 = 50, a1 = 31.8309, a2 = 0,p1t2 =

a0

2
+ a

q

m=1
 [am cos mvt + bm sin mvt] lb/in2

x1t2 =
8A

p2 a

q

n=1,3,5, Á

1-12
n- 1

2  

sin nvt

n2
x1t2 =

A

p
+

A

2
 sin vt -

2A

p
 a

q

n=2,4,6, Á

 
cos nvt

1n2
- 12

xrms = X/12

A = 0.5522 mm, x
#

max = 52.04 mm/secX = 2.5 mm, v = 5.9092 rad/sec, v + dv = 6.6572 rad/sec

x21t2 = 6.1966 sin1vt + 83.7938°2

X = 9.8082 mm, Y = 9.4918 mm, f = 39.2072°z = 11.1803 e0.1798 iA = 4.4721, u = -26.5651°

c = 4205.64 N-s/mc = 3,225.8 N-s/mct =
pmD2

1l - h2

2d
+

pmD3

32h

cteq = ct1 + ct2+
n1

n2
*

2

+ ct3
+

n1

n3
*

21

ceq

=
1

c1
+

1

c2
+

1

c3
,

ceq = c1 + c2+
l2

l1
*

2

+ c3+
l3

l1
*

2

,ceq = c1 + c2 + c3,

meq = mh +

Jb

l3
2
+ Jc c

l2

l3 rc
d

2

meq = m1 a
a

b
b

2

+ m2 + J0+
1

b2
*

kaxial = 16,681.896 lb/in; ktorsion = 139.1652 lb-in/radkeq = 3.0124 lb/inkeq = 89.931 lb/in,

kteq
= 5.59597 * 106 N-m/radkteq

= 5.54811 * 106 N-m/rad,keq =
1

l
 1Es As + Ea Aa2

F1x2 = 132000x - 802 Nk = 77.4414 N/mk =

pgA2

v
leq =

4t 1d + t2

Dd

keq = 2gAkeq = 3 k cos2 akeq = 253.75 lb/in

k = 4.12 * 107 N/mk = 12.36 * 107 N/m,k = 37.08 * 107 N/m,

keq =

k2 k3 k4 k5 + 2 k1 k3 k4 k5 + k1 k2 k4 k5 + 2 k1 k2 k3 k5

1k2 k3 k4 + k2 k3 k5 + 2 k1 k3 k4 + 2 k1 k3 k5 + k1 k2 k4 + k1 k2 k5 + 2 k1 k2 k32
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2.8 2.10 2.13

2.15 (a) (b) 2.17

2.19 2.21 (a) (b) 

2.23 (a) (b) 2.26 (a) (b)

2.28 2.30 (a) (b) 2.32

2.34 2.37 Torsion about z-axis 2.39

2.42 2.44 2.47

2.49 2.51

2.53 2.55 2.57

2.64 2.66 2.68

2.70 2.72 2.74

2.76 2.86 2.88

2.91 45.1547 rad/sec 2.93 2.95 2.98 (a) 14265.362,

(b) 3.8296

2.100 2.103 (a) (b) (c) 

2.105 2.107 2.109

2.112 2.116 2.118

2.120 (a) (c) 

(b) (d)

2.121 (a) (b) (c) 

2.123 (a) 60.8368 J, (b) 124.6784 J 2.139 Coulomb, 5N, 14.1421 rad/sec 2.141 5.8 mm

2.143 (a) 5 (b) 0.7025 sec (c) 1.9620 cm 2.145 2.148 1.40497 s

2.150 1.7022 sec, 0.004 m 2.152 2.154

Chapter 3

3.2 5 sec

3.4 (a) (b) (c) 

3.6 (a) (b) 

(c) 

3.8 9.1189 kg 3.16 3.18 3.22 0.676 secv = 743.7442 HzX = `
mrl3 N2

22.7973 Eba3
- 0.2357 rabl4 N2

`

x1t2 = 0.18 cos 20t + 0.5 sin 20t - 0.08 cos 30t

x1t2 = 0.08 cos 20t + 0.5 sin 20t - 0.08 cos 30t,x1t2 = 0.18 cos 20t - 0.08 cos 30t,

x1t2 = 0.1 cos 20t + 10.5 + t2 sin 20tx1t2 = 10.5 + t2 sin 20tx1t2 = 0.1 cos 20t + t sin 20t

h = 0.583327 N/mb = 0.03032, ceq = 0.04288 N-s/m, ¢W = 19.05 * 10- 
6 N-m

ceq =
4 mN

pvX

z = 1.25z = 1.0, vd = 0,z = 0.75, vd = 6.6144 rad/s,

kt = 2.2917 * 10-3 N-m/radt
n
= 1.8297 sec,

ct = 5.3887 * 10- 
4 N-m-s/rad,J0 = 1.9436 * 10- 

4 N-m-s2,

r0 = 2682.8816 kg/m33

2
 mx
$
+ cx

#
+ 2kx = 0vn =

A
2k

3m

m = 500 kg, k = 27066.403 N/mz = 0.013847u = 0.09541°

d = 3.6276vd = 8.6603 rad/sec,cc = 1000 N-s/m,xmax = +x0 +
x
#
0

vn
*  e-1x

#
0 /1x

#
0 + vn  x022

vn =
B

16kr2

mr2
+ J0

vn =
B
r0g

rwh

vn =
A

k

4m
meff =

17

35
 m1

3 ml2 u
$
+ 1kt + k1a

2
+ k2l2

2u = 0

vn = e

1k1 + k22 1R + a22

1.5mR2
f

1/2

vn = 17.7902 rad/sectn = 0.04693 sec

vn = 13.4841 rad/sectn = 1.4185 secvn = 2 rad/s, l = 2.4525 m

d = 0.1291 in, N = 29.58x
#
0 = 4 m/sx0 = 0.007864 m; x

#
0 = -

 
0.013933 m/s

x1t2 = 0.1 cos 15.8114t + 0.3162 sin 15.8114t mvn = 359.6872 rad/sec

+m +
J0

r2
*  x
$
+ 16kx = 0mx

$
+ 1k1 + k22 x = 0m =

B
+

v2Wc - 2kgc

Wg + Wav2
- 2kga

*

vn = 2578.9157 rad/secA = 0.9536 * 10- 
4 m2

vn =
A

2g

L
vn = 37.5851 rad/secN = 81.914 rpm,T = 1656.3147 lb

vn =
B

T1a + b2

mab
mx
$
+ a

1

a
+

1

b
b  Tx = 0,vn =

B
8m

b2
 c l2

-
b2

4
dvn =

A
k

2m
 ,

vn =
A

kg

W
vn =

B
kg cosec2 u

W
 ,k = 52.6381 N/m, m = 1/3 kg

vn =
B

g

W
 +

3E1I1

l1
3

+
48E2I2

l2
3

*vn =
A

4k

m + M
vn =

A
4k

M
 ,

vn = [k/14m2]1/2vn = 4.8148 rad/secvn = 22.1472 rad/sec
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3.24

3.26

3.28

3.30 3.32 3.34

3.41 (a) 64.16 rad/sec, (b) 967.2 N-m

3.43 (a) (b) 3.45

3.47 3.53 0.3339 sin 25 t mm 3.55

3.57 3.59 3.63

3.66 3.68 1.4195 N-m 3.70 3.74

3.82 3.85 (a) 10.2027 lb/in, (b) 40.8108 lb-in 3.88

3.91 (a) 1.0623 Hz, (b) 1.2646 m/s, (c) 

Chapter 4

4.2

4.6

4.13

4.16

4.19

4.25

4.29 4.32

4.35 4.37

4.50 4.53 4.56

4.60 x1t2 = e

F0

mvn
2

 11 - cos vnt2; 0 t t0

F0

mvn
2

 [cos vn1t - t02 - cos vnt]; t Ú t0

k = 12771.2870 lb/ind = 0.6 inxm =
F0

kvnt0
 [11 - cos vnt02

2
+ 1vnt0 - sin vnt02

2]1/2;  for t 7 t0

x1t2 = 0.5164e- 
t sin 3.8729t mx1t2 = 0.04048e- 

t
+ 0.01266 sin 3.198t - 0.04048 cos 3.198t m

u1t2 = 0.3094e- 
t
+ 0.05717 sin 5.4127t - 0.3094 cos 5.4127t radxp1t2 = 0.002667 m

 - 0.8845 sin 6.2832 1t - 0.0362m;  for t 7 0.036 sec

 x1t2 = 1.7689 sin 6.2832 1t - 0.0182 - 0.8845 sin 6.2832t

x1t2 =
F0

2k¢1 -
v2

vn
2

 c2 -
v2

vn
2

 ¢1 - cos 

vnp

v
 d +

F0

k
 c1 - cos vna t -

p

v
b d  for t 7 p/v.

x1t2 =
F0

k
 e 1 +

sin vn1t - t02 - sin vnt

vnt0
f ; for t Ú t0

 + 15.7965 * 10- 
4sin 110.472t - 0.01722 + Á  m

 xp1t2 = 6.6389 * 10- 
4
- 13.7821 * 10-  

4cos 110.472t - 0.01722

u1t2 = 0.0023873 + a

q

n=1
e

318.3091 sin 5.8905n cos nvt + 318.3091 11 - cos 5.8905n2 sin nvt

n1392700.0 - 1096.6278n2
2

f  rad

with r = v/vn and fn = tan-1 ¢
2znr

1 - n2r2

x1t2 =
F0

2k
-

4F0

p2k
 a

q

n=1,3, Á

 
1

n2
 

1

411 - r2n2
2

2
+ 12znr22

 cos 1nvt - fn2

5.557 * 10- 
4 m

1

e

4 mN

pXk
+

3

4k
 cv3 X2

f

m = 0.1

Maximum force = 26.68 lbz = 0.13640.4145 * 10-3 m, 1.0400 * 10-3 m

xp1t2 = 110.9960 * 10- 
6 sin 1314.16t + 0.070722 mu1t2 = 0.01311 sin 110t - 0.57792 radc = 1k - mv2

2/v

X = 0.106 m, s = 246.73 km/hrk = 1.0070 * 105 N/m, c = 633.4038 N-s/m

169.5294 * 10- 
6 mv1 = 22.2145 rad/sec, v2 = 38.4766 rad/secz = 0.25,

z = 0.1180r = 41 - 2z2, Xmax =
dst

2z 41 - z2
k = 6.6673 * 104 lb/in, c = 2.3983 lb-sec/in

 xtotal1t2 = 0.2611e-2t cos 119.8997t + 1.17782 + 0.25 cos a20t -
p

2
b  m

 xp1t2 = 0.25 cos a20t -
p

2
b  m

 xtotal1t2 = 0.0345e-2t cos 119.8997t + 0.02672 + 0.0661 cos 110t - 0.13252 m

 xp1t2 = 0.06610 cos 110t - 0.13252 m

up1t2 =  sin vt with = -  8.5718 * 10- 
4 rad and v = 104.72 rad/sec
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Chapter 5

5.5 5.7 5.9

5.10 5.11

5.13 5.16

5.19

5.21 5.23

5.25

5.29

5.36 5.39

5.41 Frequency equation:

5.43

5.46

5.49 (a) where and 

(b) Static coupling

5.53 (a) 

5.56

5.57 5.58

5.60

5.62 5.64

5.66 5.67

5.69 where 

5.71

5.77 k Ú
mg

2l

v1 = 0, v2 = B
6k 1m + M2

mM

a = u1 - u2a
$

+ ¢
kt

J1
+

kt

J2
 a = 0

b1c2 - c1b2 = 0v1 = 0, v2 = A
4k

3m

x21t2 = 1
1

60 -
1

40 cos 10t +
1

120 cos 1013t2u1t2x11t2 = 0.009773 sin 4pt m, x21t2 = 0.016148 sin 4pt m

 x21t2 = 117.3165 F0 cos vt + 6.9684 F0 sin vt210-
 
4

 x11t2 = 117.2915 F0 cos vt + 6.9444 F0 sin vt210-
 
4

x21t2 = e
k2F0

1-m1 v
2
+ k1 + k22 1-m2 v2

+ k22 - k2
2
f  sin vtk2 = m2v

2

 X2 = 10.9221 + 0.2948i2 * 10-
 
4 in

 with X1 = 1-
 
40.0042 - 0.01919i2 * 10-

 
4 in, 

 xj1t2 = Xje
ivt

v1 = 12.2474 rad/sec, v2 = 38.7298 rad/sec

F1t2 = F0 sin vt,J0 = ml2/12c
m 0

0 J0
d e

x
$

u
$ f + c

3k kl/6

kl/6 17kl2/36
d e

x

u
f = e

F1t2

l F1t2/3
f

 810 u
$
+ 15000x + 67500 u = 1650 sin 18.7267t - 1.57082 - 900 sin 8.7267t

 + 1100 sin 18.7267t - 1.57082

 1000x
$
+ 40000x + 15000 u = 900 sin 8.7267t

v1,2
2

= c
1J0k + mkt2 *41J0k + mkt2

2
- 41J0 - me2

2mkkt

2m1J0 - me2
2

s

 + 1W1 l1 W2 l2 + W2 l2 k l1
2
+ W1 l1 k l2

2
2 = 0

 v4 1m1 m2 l1
2 l2

2
2 - v

2 em2 l2
2 1W1 l1 + kl1

2
2 + m1 l1

2 1W2 l2 + k l2
2
2 f

v1 = 0.381972kt/J0, v2 = 2.618032kt/J0v1 = 0.51762kt/J0, v2 = 1.93192kt/J0

x11t2 = 0.5 cos 2t + 0.5 cos 112t; x21t2 = 0.5 cos 2t - 0.5 cos 112t

x2102 = r1 x1102 =
x1102

13 - 1
, x
#
2102 = r1 x

#
1102 =

x
#
1102

13 - 1

X
!
112

= e
1.0

2.3029
f , X

!
122

= e
  1.0

-1.3028
fv1 = 3.7495 B

EI

mh3
, v2 = 9.0524 B

EI

mh3

 x21t2 = 0.1429 sin 40.4225t - 0.09952 sin 58.0175t

 x11t2 = 0.1046 sin 40.4225t + 0.2719 sin 58.0175t,

v1 = 12.8817 rad/sec, v2 = 30.5624 rad/secv1 = 0.7654 A
g

l
, v2 = 1.8478 A

g

l

v1,2
2

=
48

7
 

EI

m1m2
 c1m1 + 8m22 +41m1 - 8m22

2
+ 25m1m2 dv1 = 7.3892 rad/s, v2 = 58.2701 rad/s

1.1 in2
v1 = A

k

m
, v2 = A

2k

m
v1 = 3.6603 rad/sec, v2 = 13.6603 rad/sec
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Chapter 6

6.1

6.3

6.5

6.12 6.14

6.16 6.18 6.20

6.22 6.24 6.26 6.30 2k

6.32 6.34 6.36 

6.39

6.41

6.44

6.47 ¢M +

J0

9r2
 x
$

1 -

J0

9r2
 x
$

2 +
41

9
  kx1 -

8

9
  kx2 -

8

3
  kx3 = F11t2

 m3x
$

3 - 5kx1 - kx2 + 7kx3 = F31t2

 m2x
$

2 - kx1 + 2kx2 - kx3 = F21t2

 m1x
$

1 + 7kx1 - kx2 - 5kx3 = F11t2

 m3x
$

3 - k3x2 + 1k3 + k42 x3 = 0

 m2x
$

2 - k2x1 + 1k2 + k32 x2 - k3x3 = 0

 m1x
$

1 + 1k1 + k22x1 - k2x2 = 0

2 mx
$

+ kx = 0, l u
$

+ g u = 0

H

I1 0 0 0

0 I2 + I3 ¢
n2

n3

2

0 0

0 0 I4 + I5 ¢
n4

n5

2

0

0 0 0 I6

X
m

3
  C

2 0 1

0 15 0

1 0 2

SC

m1 0 0

0 m2 0

0 0 m3

S

[a] =
l3

EI
 C

9/64 1/6 13/192

1/6 1/3 1/6

13/192 1/6 9/64

S[k] = C

1k1 + k22 -k2 0

-k2 1k2 + k32 -k3

0 -k3 1k3 + k42

Sc

m 0

0 4ml2
d

D

2

3k
-  

1

3kl

-  

1

3kl

2

3kl2

TD

k1 + k2

k1 k2

1

k1 r

1

k1 r

1

k1 r
2

TG

kt1
-kt1

0 0

-kt1
kt1

+ kt2
 ¢

n2

n3

2

-kt2
 ¢

n2

n3
0

0 -kt2
 ¢

n2

n3
kt2

+ kt3
 ¢

n4

n5

2

-kt3
 ¢

n4

n5

0 0 -kt3
 ¢

n4

n5
kt3

W

k

25
 C

34 -15 6

-15 25 -10

6 -10 29

Sk C

7 -1 -5

-1 2 -1

-5 -1 7

S

 I6 u
$

4 + kt3
 ¢u4 - u3 

n4

n5
= 0

 ¢I4 + I5  

n4
2

n5
2

 u
$

3 + kt2
 ¢u3 - u2  

n2

n3
+ kt3

 

n4

n5
  ¢u3  

n4

n5
- u4 = 0

 ¢I2 + I3  

n2
2

n3
2

 u
$

2 + kt1
 1u2 - u12 + kt2

  

n2

n3
  ¢u2  

n2

n3
- u3 = 0

 I1  u
$

1 + kt1
 1u1 - u22 = M1 cos vt

+
k

25
 C

6 -10 29

34 -15 6  

-15 25 -10

S c

x1

x2

x3

s = c

F31t2

F11t2

F21t2

s

m

3
 C

1 0 2

2 0 1

0 15 0

S  c

x
$

1

x
$

2

x
$

3

s +
c

25
 C

6 -10 4

9 -15 6

-15 25 -10

S  c

x
#

1

x
#

2

x
#

3

s

C

m1 0 0

0 m2 0

0 0 m3

S  c

x
$

1

x
$

2

x
$

3

s + k C

7 -1 -5

-1 2 -1

-5 -1 7

S  c

x1

x2

x3

s = c

F11t2

F21t2

F31t2

s
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6.49

6.52

6.55 6.58

6.61 6.64

6.67

6.75

6.77 

6.79

6.82

6.84 ; 

6.90 (a) (b) 

6.92 6.95    

6.99

Chapter 7

7.1 (a) (b) 7.3 7.5

7.10 7.12 7.19 7.22

7.27 where 

7.30 with 

7.37 7.41

Chapter 8

8.1 28.2843 m/sec 8.3 both increased by 9.54%

8.6 (a) (b) 8.8

8.11  -   

13 9h

32p2
 sin 

4px

l
+
13 9h

50p2
 sin 

5px

l
 wax, 

l

c
b = -  

13 9h

2p2
 sin 

px

l
+
13 9h

8p2
 sin 

2 px

l

w1x, t2 =
8 al

p
3c

 a
n=1,3,5,Á

1-12
n- 1

2  

1

n3
 sin 

npx

l
 sin 

npct

l
3.12 * 106 N0.1248 * 106 N,

v3 = 9000 Hz,

[U]-1
= C

0.44721359 0.083045475 -  0.12379687

0 0.41522738  1.1760702

0 0  1.7950547

Sv1 = 0.2583, v2 = 3.0, v3 = 7.7417

vi = v
'

i A
GJ

lJ0
v1
'

= 0.765366, v2
'

= 1.414213, v3
'

= 1.847759

vi = 1/2liv1 = 0.3104, v2 = 0.4472, v3 = 0.6869

v1 = 1k/mv1 = 0, v2 M 6.2220 rad/s, v3 M 25.7156 rad/s1.0954A
T

lm
0.40821k/m

0.30151k/m3.5987 B
EI

ml3
v1 M 2.7994 B

EI

ml3
v1 M 2.6917 B

EI

ml3
 ,

x31t2 = 0.0256357 cos1vt + 0.58740
2 m

x
!
1t2 = e

0.03944 11 - cos 18.3013t2 + 0.01057 11 - cos 68.3015t2

0.05387 11 - cos 18.3013t2 - 0.00387 11 - cos 68.3015t2
fx

!
1t2 = c

5.93225

10.28431

12.58863

s  
F0

k
 cos vt

u

!

1t2 = c

-  0.0000025

0.0005190

-  0.0505115

s  cos 100t radiansv1 = 0.44497 2kt/J0, v2 = 1.24700 2kt/J0, v3 = 1.80194 2kt/J0

 x21t2 =
1

2
 ccos 2t +

1

2
 sin 2t - cos 112t +

1

112
 sin 112t d x11t2 =

1

2
 ccos 2t +

1

2
 sin 2t + cos 112t -

1

112
 sin 112t d

x11t2 = x
#
0e

t

3
+ A

m

4k
 sin A

k

m
  t + A

m

108k
  sin A

3k

m
  t f

 - 0.1372 cos 1.5848A
P

lm
  t f x31t2 = x20e0.1987 cos 0.5626 A

P

lm
  t - 0.06157 cos 0.9158 A

P

lm
  t

 + 0.8838 cos 1.1976A
k

m
  t f x31t2 = x10 e0.5 cos 0.4821 A

k

m
  t - 0.3838 cos A

k

m
  t

v1 = 0, v2 = 0.7521581k/m, v3 = 1.3295081k/m

v1 = 0.7653 A
k

m
 , v2 = 1.8478 A

k

m
 , v3 = 3.4641 A

k

m

[X] =
1

2
 c

1 1 0 
-1 1 12/3

1 1 18/3

Sv1 = 0.562587A
P

ml
 , v2 = 0.915797A

P

ml
 , v3 = 1.584767A

P

ml

v1 = 0.6447981g/l, v2 = 1.5146981g/l, v3 = 2.5079771g/ll1 = 2.21398, l2 = 4.16929, l3 = 10.6168

v1 = 0.5333991k/m, v2 = 1.1227331k/m, v3 = 1.6698171k/m

v1 = 0.445041k/m, v2 = 1.24711k/m, v3 = 1.80251k/m

mx
$

3 -
8

3
  kx1 +

2

3
  kx2 + 5kx3 = F31t2

-  

J0

9r2
 x
$

1 + ¢3m +
J0

9r2
 x
$

2 -
8

9
 kx1 +

2

9
 kx2 +

2

3
 kx3 = F21t2

1074 ANSWERS TO SELECTED PROBLEMS

Z07_RAO08193_5_SE_ANS.QXD  8/22/10  2:01 PM  Page 1074



8.17 8.20 8.23

8.25 8.28 5030.59 rad/sec 8.31

8.34 8.36    20.2328 N-m 8.39 and 

8.41 8.46

8.49 where 

8.60 8.62    where 

8.63 8.65  8.67  8.70  8.72  

8.74 (a) (b) 8.77    

Chapter 9

9.1 Around 46.78 km/hour 9.3 9.5

9.8

9.11 Remove 0.1336 lb at in plane B and 0.2063 lb at in plane C at radii 4 in.

9.14 (a) (b) 

9.17 (a) 0.005124 m, (b)    0.06074 m, (c)    0.008457 m

9.20 (a) (b) (c) 

9.22 9.25    The engine is completely force and moment balanced.

9.27 0.2385 mm 9.30    (a) (b) 9.32    

9.35 9.37    9.40    

9.43 (a) (b) 9.45    98.996% 9.47    (a) 2,775.66 lb, (b)    40,145.81 lb

9.49 49,752.86 N/m 9.64    

9.66 (a) 487.379 lb (b) 9.68    For 

9.71 9.73    9.75    165.6315 lb/in

Chapter 10

10.2 18.3777 Hz 10.4    3.6935 Hz 10.6    0.53% 10.9    35.2635 Hz 10.12    73.16%

10.14 10.16    10.19    

10.21 10.23    10.26   Cage (51.93 Hz), Inner race (1078.97 Hz), Outer race (830.88 Hz), Ball (193.31 Hz)

10.29 1.8 10.30 2.9630 10.32

Chapter 11

11.2 11.4    with and with 

11.6 11.9  

11.14 With and 

x11t = 1.57082 = 1.040726, x2 = 1t = 1.57082 = -  0.378066
x21t = 0.23562 = 0.401132,x2 = x

#
, x11t = 0.23562 = 0.100111,¢t = 0.07854, x1 = x

 x1t = 0.12 = 0.131173, x1t = 0.42 = -  0.0215287, x1t = 0.82 = -0.0676142x10 = -  0.0843078, x15 = 0.00849639

¢t = 0.5-  0.9733¢t = 1x1t = 52 = -1
d4x

dt4
`

i
=

xi - 4xi-1 + 6xi-2 - 4xi-3 + xi-4

1¢t24

z = 0.2

z = 0.1111r L 1

111.20 rad/sec - 2780.02 rad/secm = 19.41 g, k = 7622.8 N/mk = 33623.85 N/m, c = 50.55 N-sec/m

m2 = 10 kg, k2 = 0.19986 MN/m0.9764
v

v2
1.05125

D/d = 4/3, d = 0.5732 in, D = 0.7643 inÆ1 = 469.65 rpm, Æ2 = 766.47 rpm

m = 0.3403; m2 = 102.09 kg, k2 = 2.519 MN/m; X2 = -
  
0.1959 mm

FT = 44.8069 NX = 11.4188 * 10-3 m

k = 1332.6646 lb/ftdst = 0.02733 m79.7808 rad/sec - 1419.8481 rad/sec

k = 152243.1865 N/mv 7 276.7803 rpmv 6 95.4927 rpm

Fxp = 0, Fxs = 3269.4495 lb, Mzp = Mzs = 0

0.9012 * 108 N/m26.4698 * 108 N/m20.5497 * 108 N/m2

mL = 10.44 g, uL = 7.11410R
!

A = -28.4021j
!
- 3.5436 k

!
, R
!

B = 13.7552 j
!
+ 4.7749 k

!
 ,

1.3957° CCW10.8377° CCW

1.6762 oz, a = 75.6261° CW

m4 = 0.99 oz, u4 = -35°mcrc = 3354.6361 g-mm, uc = -25.5525°

v1 = 3.142 
B

P

rl2
 , v2 = 10.12 

B
P

rl2
1.57669 

B
E

rl2
 , 5.67280 

B
E

rl2
1.73205

B
E

rl2
 ,

v L 13867.3328 rad/sec2.4146 
B

EA0

m0 l
2

7.7460 
B

EI0

rA0l4
v = 15.4510 

B
EI

rAl4
22.4499 

B
EI

rAl4

Jm1gnR2 = 0; m = 0, 1, 2, Á ; n = 1, 2, Ávmn
2 =

gnP

r
,w1x, y, t2 =

w
#

0

v12
 sin 

px

a
 sin 

2py

b
 sin v12t

qn1t2 =
M0

rAlvn
2

 

dWn

dx
`

x= l
 11 - cos vnt2w1x, t2 = a

q

n=1
Wn1x2 qn1t2

 e cos bx + cosh bx + tan  

bl

2
 sin bx - tanh  

bl

2
 sinh bx - 2 f  sin vt w1x, t2 =

F0

2rAc2
v L 1120 +

EI0

rA0 l4
*

1/2

tan bl - tanh bl = 0cos bl cosh bl = 1,tan bl - tanh bl = 0

cos bl cosh bl = -1vn =
12n + 12p

2
 
B

G

rl2
 ; n = 0, 1, 2, Á

vn =
np

l
 
A

G

r
 ; n = 1, 2, 3, Átan 

vl1

c1
 tan 

vl2

c2
=

A1E1c2

A2E2c1
tan 

vl

c
=

AEvc1k - Mv2
2

A2E2v2 - Mv2kc2
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11.23

11.26

11.38 With ¢t = 0.24216267,

v1 = 17.9274 
B

EI

rAl4
 , v2 = 39.1918 

B
EI

rAl4
 , v3 = 57.1193 

B
EI

rAl4

v1 = 3.06147 
B

E

rl2
 , v2 = 5.65685 

B
E

rl2
 , v3 = 7.39103 

B
E

rl2

11.20

1076 ANSWERS TO SELECTED PROBLEMS

t x1 x2

0.25 0.07813 1.1860
1.25 2.3360 - 0.2832

3.25 - 0.6363 2.3370

t x1 x2

0.2422 0.01776 0.1335
2.4216 0.7330 1.8020
4.1168 0.1059 0.8573

Chapter 12

12.2

12.3

12.15 0.05165 in. under load

12.18

12.19

12.21 Maximum bending stresses: (in both connecting rod and crank), maximum axial stresses: (in connecting

rod), (in crank)

12.26

12.29

12.32

12.40 v1 = 6445 rad/sec, v2 = 12451 rad/sec

v1 = 20.4939 
B

EI

rAl4

v1 = 15.1357 
B

EI

rAl4
 , v2 = 28.9828 

B
EI

rAl4

v1 = 0.8587 
B

EI

rAl4
 , v2 = 4.0965 

B
EI

rAl4
 , v3 = 34.9210 

B
EI

rAl4

-5649 psi

-  6411 psi-37218 psi

s
112

= -2.5056 psi, s122
= 2.6936 psi

Deflection = 0.002197  

Pl3

EI
,  slope = 0.008789  

Pl3

EI

3.3392 * 107 N/m2

[k] =
EA0

l
 10.63212c

1 -1

-1 1
d
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A

Accelerographs, 399 400
Accelerometer, 882 886
Acoustics , 6

Active vibration control, 827 832
Addition of harmonic motions, 60 61
Adjoint matrix, 1045
Advance, 873
Airfoil, dynamic instability of, 309 310
Amplitude, 62, 584, 806
Analysis, vibration, 18 22

equations, 20
mathematical modeling, 18
motorcycle, mathematical model of, 20
results, interpretation, 20

Aristotle, 4
Aristoxenus, 4
Arrays with special structure, 1061
Attractor, 13-43 13-44

Asymptotically stable system, 198
Autocorrelation function, 14-9, 14-11, 14-32

Axial compressive force, beam subjected to,
733 737

Axial force effect, 732 734

B

Band-limited white noise, 14-25

Bandpass filter, 897 898
Bandwidth, 276 278
Bar element, 991 994
Base excitation

response spectrum for, 396 399
system response under, 328 330

Basic concepts of vibration, 13 16
Bathtub curve, 915
Beam deflections, 571
Beam element, 995 998
Beams, deflection of, 1039 1040

cantilever beam, 1039
fixed-fixed beam with end displacement,

1039
fixed-fixed beam, 1039
simply supported beam, 1039 1040

Beams, fundamental frequency of, 663 665
Beating phenomenon, 63, 267 271
Belt friction system, 13-5

Bernoulli, Daniel, 7
Bifurcations, 13-46

Bivariate distributions, 14-8

Blast load on building frame, 392 393
Bode diagrams, 323 324
Bonaparte, Napoléon, 7

Boundary conditions, incorporation of,
1003 1012

Boundary curves, 13-28

Building frame response to an earthquake, 402

C

Cam-follower mechanism, 44 45, 73
spring mass system for, 126

Cannon analysis, 173
Cantilever beam, 1039

spring constants of, 28
center, 13-30, 13-40

Center of percussion, 150 151
Central difference method for multidegree of

freedom systems, 947 951
Centrifugal pump with rotating unbalance,

812 816
rattle space, 812 816

Cepstrum, 922
Chaos, 13-43 13-52

attractor, 13-43 13-44

bifurcations, 13-46

of Duffing s equation, 13-47 13-52

functions with stable orbits, 13-45

functions with unstable orbits, 13-45 13-47

Poincaré section, 13-43 13-44

strange attractors, 13-46

Characteristic (polynomial) equation solu-
tion, 585 590

Characteristic roots, graphical representa-
tion, 174 176

Chimney, flow-induced vibration of, 311
Choleski decomposition, 681 683
Classification of vibration, 16 18
Clebsch, R. F. A., 8
Coefficients, numerical computation of,

72 76
Coherence function, 907
Column matrix, 1042
Column vector, 1060
Compacting machine, 387 388, 416 418
Complex algebra, 58
Complex damping, 300
Complex Fourier series, 66 67, 14-17 14-18

Complex frequency response, 279, 14-30

Complex numbers, 1062
harmonic motion representation, 57 58

Complex stiffness, 194
Complex vector representation of harmonic

motion, 280
Compound pendulum, 148 150, 561

natural frequency of, 148 151
Consistent mass matrices, 1012 1015

Constant bandwidth analyzers, 898 899
Constant damping, 186
Constant percent bandwidth, 898 899
Continuous systems, 16, 699 768, See also

Lateral vibration of beams; Longitu-
dinal vibration of bar or rod; Tor-
sional vibration of a shaft or rod

dynamic response of plucked string,
707 712

modeling as multidegree of freedom sys-
tems, 555 556

transverse vibration of a string or cable,
701 710

Continuous systems, finite difference
method for, 951 959

longitudinal vibration of bars, 951 955
pinned-fixed beam, 959
transverse vibration of beams, 955 959

Control, vibration, 769 869
criteria, 771 775
natural frequencies, control of, 798 799
nomograph, 771 775
ranges of vibration, 773
whirling of rotating shafts, 785 791

Conversion of units, 1056 1058
Convolution integral, 365, 381 393,

1052 1055
blast load on building frame, 392 393
compacting machine under linear force,

391 392
rectangular pulse load, 389 390
response of a structure under double

impact, 385
response of a structure under impact, 384
response to a general forcing condition,

385 386
response to an impulse, 382 385
response to base excitation, 386 393
step force on a compacting machine,

387 388
time-delayed step force, 388 389

Coordinate coupling, 488 493
Correlation functions of random process, 

14-9 14-10

Coulomb damping, 46
forced response of, using MATLAB,

327 328
forced vibration with, 293 297
free vibration response of a system with,

205
free vibration with, 185 192
pulley subjected to, 191

Coulomb, Charles, 7

Please note that references to pages in chapters 13 and 14 appear in the form 13-1, 13-2, etc., and these chapters are provided on the companion Website.
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1078 INDEX

Coupled differential equations, 470
Crane, equivalent k of, 35
Critical damping constant, 159
Critical speeds, 787
Critically damped system, 162
Cycle, 62

D

D Alembert, Jean, 7
D Alembert s principle, 130
Damped dynamic vibration absorber,

840 843
Damped equation, 13-14

Damped response using numerical methods,
434 436

Damped single degree of freedom system
Bode diagrams of, 324
transfer function, 315

Damped system, 127
forced vibration response of, MATLAB,

623 624
free vibration response of, Laplace trans-

form, 507 511
Damped system response under F(t) = F

0
ei*t,

278 281
Damped system response under harmonic

force, 271 278, See also under Har-
monically excited vibration

under F(t) = F
0
ei*t, 278 281

graphical representation, 272
under harmonic motion of base, 281 287
under rotating unbalance, 287 293
total response, 274 276
vectorial representation, 272

Damped system response using Laplace
transform, 317 318

Damped vibration, 17
Damping, 799 800

damping matrix, 611
damping ratio, 159, 179
viscoelastic materials use, 799

Damping elements, 45 54
clearance in a bearing, 47 48
combination of dampers, 52 54
Coulomb or dry friction damping, 46
damping constant of journal bearing,

48 50
damping constant of parallel plates, 47
linearization of nonlinear damper, 52
material or solid or hysteretic damping, 46
piston-cylinder dashpot, 50 52
viscous damping, 45
viscous dampers construction, 46 52

De Laval, C. G. P., 9
Decibel, 63
Degree of Freedom, 14 16
Delay time (t

d
), transient response, 425

Design chart of isolation, 809 810
Determinant, 1043
Deterministic vibration, 17 18, 14-2

Diagonal matrix, 1042
Diesel engine, vibration absorber for,

837 838

Differential equations, 313, 1066 1068
Digital signal processing, 903 904
Dirac delta function, 381
Discrete systems, 16
Displacement method, 1003
Displacement transmissibility, 282 283, 806
Dry friction damping, 46
Duffing s equation, 13-13, 13-47 13-50

Duhamel integral, See Convolution integral
Dunkerley s formula, 654 658
Dynamic coupling, 490
Dynamic instability caused by fluid flow,

305 313
of an airfoil, 309 310
flow-induced vibration of a chimney,

311
flow-induced vibration reduction, 307
Helical spoilers, 308
Stockbridge damper, 308

Dynamic response of plucked string, 707 712
Dynamic stability analysis, 301 305
Dynamic system, equations of motion of,

613 615
Dynamic testing of machines and structures,

900
Dynamical matrix, 585

E

Earthquake response spectra, 399 403
Eccentricity of rotor, probabilistic character-

istics of, 14-6

Eigenvalues/Eigenvalue problem, 583 584,
594 596

Eigenvectors, orthonormalization of,
592 594

Equilibrium states, stability, 13-37 13-40

Elastic coupling, 490
Elastic potential energy, 574 576
Electric motor deflection due to rotating

unbalance, 290
Electrodynamic Shaker, 893 895
Electrodynamic transducers, 877 878
Element matrices and vectors, transforma-

tion, 998 1001
Elementary parts of vibrating systems,

13 14
Energy dissipated in viscous damping,

166 168
Equation of motion, 147 148, 158, 186 187,

261 262
derivation, 577 581
of dynamic system, 613 615
of an element, 989 991
of finite elements, 1001 1003
for forced vibration, 472 473
of three degree of freedom system, 586
of undamped systems in matrix form,

581 582
whirling of rotating shafts, 785 787

Equivalent linearized spring constant, 26
Equivalent mass of a system, 42 44
Equivalent rotational mass, 42
Equivalent translational mass, 42

Ergodic process, 14-13

Euler, Leonard, 7
Euler-Bernoulli theory, 722, 995
Even functions, 69 71
Exciters, vibration, 892 895, 901

due to unbalanced force, 893
electrodynamic shaker, 893 895
mechanical exciters, 892 893

Expansion theorem, 596
Experimental modal analysis, 900 915

basic idea, 900
coherence function, 907
digital signal processing, 903 904
modal data determination from observed

peaks, 907 912
mode shapes measurement, 912 915
necessary equipment, 900 903
random signals analysis, 905 907

Explicit integration method, 943

F

Fast Fourier Transform (FFT) method, 896,
902, 924

Finishing process, vibratory, 12
Finite difference method, 941 942

for continuous systems, 951 959
Finite element idealization, 10
Finite element method, 987 1035

bar element, 991 994
beam element, 995 998
boundary conditions, incorporation of,

1003 1012
element matrices and vectors, transfor-

mation, 998 1001
equations of motion of, 989 991,

1001 1003
Euler-Bernoulli theory, 995
force vector, 991 998
mass matrix, 991 998
stiffness matrix, 991 998
torsion element, 994 995

First order systems, 151 153, 366 372
response of, 407 408
response under periodic force, 367 372

Fixed-free bar, free vibrations of, 714
Fixed-pinned beam, natural frequencies of,

728 731
Flexibility influence coefficients, 567 571

determination, 569
Flexibility matrix of a beam, 571
Flow-induced vibration

of a chimney, 311
reduction, 307

Flutter, 305
Focus, 13-40

Force transmissibility, 283 284
Force vector, 991 998
Forced system, steady-state response of,

615 619
Forced vibration, 17, 494 497, 730 731

steady-state response of spring-mass 
system, 495 497

of viscously damped systems, 610 616
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Forging hammer
forced vibration response of, 608 613
response of anvil of, 169

Fourier analysis, 14-16 14-23

complex Fourier series expansion, 
14-17 14-18

Fourier integral, 14-19 14-23

of triangular pulse, 14-22

Fourier integral, 14-19 14-23

Fourier series expansion, 64 66, 73
Cam-follower system, 73
complex Fourier series, 66 67
Gibbs phenomenon, 66
graphical representation using 

MATLAB, 76 78
numerical Fourier analysis, 74 76
periodic function, 65

Fourth-order Runge-Kutta method, 974 975
Frahm tachometer, 9, 890
Francis water turbine, 291
Free vibration, 17

response of two degree of freedom 
system, 481 482

response using modal analysis, 606 608
Frequency domain representations, 68 69
Frequency-measuring instruments, 890 891

frequency-measuring instruments, 891
multireed-instrument, 890
single-reed instrument, 890
stroboscope, 891

Frequency of damped vibration, 161
Frequency of oscillation, 62
Frequency or characteristic equation, 475
Frequency response approach, 14-30, 

14-33 14-39

mean square response, 14-34

power spectral density, 14-33

Frequency spectrum, 67 68
Frequency transfer functions, 320 325

frequency response characteristics repre-
sentation, 323 325

general transfer function and, 322 323
physical system, 321
solutions using, 512 515

Fullarton tachometer, 890

G

Galileo Galilei, 6 9
Galloping, 305 306
Gaussian random process, 14-14 14-16

General forcing conditions, vibration under,
363 466, See also General periodic
force, response under; Nonperiodic
force, response under; Periodic force;
Response spectrum

General periodic force, response under,
365 378

first-order systems, 366 372
second-order systems, 367, 372 374
total response under harmonic base exci-

tation, 377 378
General transfer function and frequency

transfer function, 322 323

Generalized coordinates, 472, 488, 576 577
Generalized forces, 576 577
Generalized mass matrix, 575
Germain, Sophie, 8
Gibbs phenomenon, 66
Grid points, 941

H

Half power points, 276
Half-range expansions, 71 72
Harmonic analysis, 64 76, See also Fourier

series expansion
even functions, 69 71
frequency domain representations, 68 69
half-range expansions, 71 72
odd functions, 69 71
time domain representations, 68 69

Harmonic base excitation, total response
under, 377 378

Harmonic motion, 54 64, 134 146
addition of harmonic motions, 60
complex algebra, 58
complex number representation of,

57 58
impact, free vibration response due to,

141 142
motion of, graphical representation, 136
natural frequency, 142 146
operations on harmonic functions, 59 61
Scotch yoke mechanism, 55
simple harmonic motion, 56
undamped system, phase plane represen-

tation, 138
vectorial representation of, 56 57
water tank, harmonic response of,

139 141
Harmonically excited vibration, 259 362

damped system response under F(t) =
F

0
ei*t, 278 281

damped system response under harmonic
force, 271 278, See also individ-

ual entry

equation of motion, 261 262
forced vibration with Coulomb damping,

293 297, See also Coulomb
damping

hysteresis damping, forced vibration
with, 298 310

quadratic damping, 300
quality factor and bandwidth, 276 278
undamped system response under,

263 271
Helical spoilers, 308
Helicopter seat vibration reduction, 774 783

vibration at source, reduction, 775 776
Heterodyne analyzer, 899
History of vibration, 3 10

finite element idealization, 10
from Galileo to Rayleigh, 6 9
origin, 3 5
recent contributions, 9 10
theory of vibration of plates, 7
torsional vibration tests, 8

Hoisting drum, equivalent k of, 34 35
Holzer s method, 666 670

resultant torque versus frequency, 667
spring-mass systems, 669 670
torsional systems, 666 669

Hooke, Robert, 6
Horizontal position, spring-mass system in,

126
Houbolt method, 962 965

for a two degree of freedom system, 964
Hydraulic valve, periodic vibration of,

374 376
Hysteretic damping, 46

forced vibration with, 298 310
free vibration with, 192 198

I

Ideal white noise, 14-25

Identity matrix, 1042
Implicit integration methods, 963
Impulse response function, 382 385, 

14-28 14-29

Inelastic collision, response to, 411 412
Inertia influence coefficients, 572 573
Influence coefficients, 562 573

flexibility influence coefficients,
567 571

flexibility matrix of a beam, 571
inertia influence coefficients, 572 573
stiffness influence coefficient, 562 567
stiffness matrix of a frame, 566

Introduction to Harmonics, 5
Inverse Laplace transform, 1049
Inverse matrix, 1045
Inverse of the Matrix, 682
Irregular forcing conditions, response to,

431 436
Irregular forcing function, 378 380
Isolation, vibration, 801 802

with base motion, 814 820
damped spring mount, 801
pneumatic rubber mount, 801
system with flexible foundation,

821 822
system with partially flexible foundation,

822 824
types, 802 803
undamped spring mount, 801
with rigid foundation, 804 813, See also

Rigid foundation
Iteration method, 670 677, 13-13 13-16,

See also Matrices: matrix iteration
method

J

Jacobi s method, 678 680
eigenvalue solution using, 679 682, 684
standard eigenvalue problem, 680 683

joint probability distribution of random vari-
ables, 14-7 14-9

bivariate distributions, 14-8

multivariate distribution, 14-8

univariate distributions, 14-8
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Journal bearing, damping constant of, 48 50
Jump phenomenon, 13-16

K

Karman vortices, 305
Kinetic energy expressions in matrix form,

574 576
Kirchhoff, G. R., 8
Kronecker delta, 581

L

L Hospital s rule, 266
Lagrange, Joseph, 7
Lagrange s equations, 577 581
Laplace transform, 313, 317 320, 365,

406 427, 504 512, 1048 1055
damped system response using, 317
definition, 1048 1049
first-order systems, response of, 407 409
inverse Laplace transform, 1049
partial fractions method, 1050 1052
second order systems, response of,

409 414
shifting theorems, 1050
steady state response using, 319 320
step force, response to, 414 420
transform of derivatives, 1049 1050
transient and steady-state responses, 406
transient response, 421 427, See also

individual entry

two degree of freedom systems solutions
using, 504 512

Laplacian operator, 741
Lateral vibration of beams, 721 736

axial compressive force, beam subjected
to, 733 737

boundary conditions, 724 726
equation of motion, 721
fixed-pinned beam, natural frequencies

of, 728 731
forced vibration, 730 731
free vibration, 723 724
initial conditions, 723
orthogonality of normal functions,

726 729
simply supported beam, forced vibration,

731 734
Lathe, 469, 488 489
Left half-plane (LHP) yield, 198
Limit cycles, 13-41 13-43

Lindstedt s perturbation method, 13-10 13-12

Linear algebraic equations, solution of, 1065
Linear coordinates, 555
Linear force, compacting machine under,

391 392
Linear springs, 23 25
Linear variable differential transformer

(LVDT) transducer, 878 879
Linear vibration, 17
Linearization of nonlinear spring, 25 27
Literature, vibration, 80 81
Local coordinate axis, 998

Logarithmic decrement, 164 166
Longitudinal vibration of bar or rod,

710 718
bar carrying a mass, natural frequencies

of, 715 716
bar subjected to initial force, vibrations

of, 716 720
boundary conditions, 712 713
equation of motion and solution,

710 712
free vibrations of a fixed-free bar, 714
orthogonality of normal functions,

713 718
Longitudinal vibration of bars, 951 955
Loops, 6
Lumped mass matrices, 1012 1015
Lumped-mass model, 555

M

Machine condition monitoring techniques,
916 918

Machine maintenance techniques, 915 916
breakdown maintenance, 915
condition-based maintenance, 916
preventive maintenance, 915

Machine tool support, equivalent spring and
damping constants of, 52 53

Machine vibration monitoring techniques,
918 923

Magnification factor, 264, 273
Marine engine propeller system, 485 488
Mass matrix, 991 998
Mass or inertia elements, 40 45
Material damping, 46
Mathematical modeling, 18
Mathieu equation, 13-24 13-29

MATLAB, 326 332, 436 440, 515 522,
619 627, 683 686, 748 751,
843 850, 925 928, 972 978,
1015 1019, 1041 1047, 1059 1068

accelerometer equation plotting,
927 929

arrays and matrices, 1060
arrays with special structure, 1061
autocorrelation function plotting, 

14-46 14-48

column vector, 1060
complex numbers, 1062
Coulomb damping, free vibration

response of a system with, 205
damped system, forced vibration

response of, 623 624
differential equations solution,

1066 1068
eigenvalue problem solution, 515 516,

619, 683 684
finite element analysis of stepped bar,

1015
forced response of a system with

Coulomb damping, 327 328
forced vibration response of simply sup-

ported beam, plotting, 748 751

Fourier series graphical representation
using, 76 78

free vibration response
frequency response, plotting, 519 520
functions in, 1062
Gaussian probability distribution func-

tion evaluation, 14-48 14-49

general eigenvalue proble, 685 686
impulse response of a structure, 437 438
matrix, 1060
matrix operations, 1061
M-files, 1062 1063
multidegree of freedom system, 619 626
nonlinear differential equation solution,

13-61

nonlinearly damped system solution, 
13-57 13-59

nonlinear system under pulse loading
solution, 13-59

numerical Fourier analysis using, 79
Nyquist circle plotting, 925 926
pendulum equation solution, 13-53 13-57

plotting of graphs, 1063 1064
program to generate characteristic poly-

nomial, 625
quartic equation roots, 522
railway cars, time response of, 518 519
response under a periodic force, 438 439
response under arbitrary forcing 

function, 439
roots of a polynomial equation, 622
roots of a quartic equation, 516
roots of transcendental and nonlinear

equations, 750 751
row vector, 1062
solution of a single degree of freedom

system, 972
solution of multidegree of freedom 

system, 973 974
special matrices, 1061
spring-mass system, free vibration

response of, 203
static deflection, variations of natural

frequency and period with, 202
steady-state response of viscously

damped system, 330 331
system response under base excitation,

328 330
total response of an undamped system

using, 326 327
total response of system under base 

excitation, 436 437
transmissibility, plotting, 843
undamped system response, 204
variables, 1060
vibration amplitudes of vibration

absorber masses, 845 846
Matrices, 1041 1047, 1060, See also indi-

vidual entries

basic operations, 1046 1047, 1061
trace, 1043
transpose of, 1043
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Maximum overshoot (M
p
), 423

Mean square response, 14-34

Mean value, 14-6 14-7, 14-32

Measurement and applications, vibration,
870 938

machine condition monitoring and 
diagnosis, 915 925

measurement scheme, 872
Mechanical chatter, 13-5

Mechanical exciters, 892 893
Method of isoclines, 13-34 13-35

trajectories using, 13-36

Membranes, vibration of, 739 742
equation of motion, 739 741
free vibrations of rectangular membrane,

742 744
initial and boundary conditions, 741 742
membrane under uniform tension, 740

Mersenne, Marin, 6 7
M-files, 1062 1063
Milling cutter, natural frequencies of, 720
Mindlin, R. D., 9
Modal analysis, 596

forced vibration of undamped systems
using, 603 610

free vibration response using, 606 608
Modal damping ratio, 612
Modal matrix, 592
Modal testing, 900 915, See also Experi-

mental modal analysis
Modal vectors, 475
Mode shapes, 583

determination, 654 698
measurement, 912 915
of three degree of freedom system, 590

Monochord, 4 5
Motor-generator set, absorber for, 838 843
Multidegree of freedom systems, 553 653,

14-39 14-46, See also Influence
coefficients; Three degree of freedom
system

central difference method for, 947 951
continuous systems modeling as,

555 556
equations of motion of undamped sys-

tems in matrix form, 581 582
expansion theorem, 596
free vibration of undamped systems,

601 603
generalized coordinates, 576 577
generalized forces, 576 577
Lagrange s equations to derive equations

of motion, 577 581
modal analysis, 603 610, See also indi-

vidual entry

natural frequencies of free system,
598 601

Newton s second law to derive equations
of motion, 557 562

potential and kinetic energy expressions
in matrix form, 574 576

repeated Eigenvalues, 594 596

self-excitation, 617 619
spring-mass-damper system, equations

of motion of, 557 560
stability analysis, 617 619
steady-state response of forced system,

615 619
trailer compound pendulum system,

equations of motion of, 560
unrestrained systems, 596 599

Multivariate distribution, 14-8

N

Narrow-band process, 14-25 14-27

Natural frequencies, 62, 475
determination, 654 698, See also

Dunkerley s formula; Holzer s
method; Jacobi s method;
Rayleigh s method

of free system, 598 601
of torsional system, 484, 668 673

Natural mode, two degree of freedom sys-
tems, 471

Newmark method, 968 971
Newton, Isaac, 6
Newton s second law, 129 130, 261,

557 562
Nodes, 6, 706, 13-40 13-41

Nomograph, vibration, 771 775
Nondeterministic vibration, 17 18
Nonlinear damper, linearization of, 52
Nonlinear differential equation solution, 13-61

Nonlinear equations, roots of, 1064
Nonlinear springs, 23 25
Nonlinear system under pulse loading solu-

tion, 13-59

Nonlinear vibration, 17, 13-1 13-76

approximate analytical methods, 
13-7 13-19

equilibrium states, stability, 13-37 13-40

exact methods for, 13-6 13-7

graphical methods, 13-29 13-37

iterative method, 13-13 13-16

Jump phenomenon, 13-16

limit cycles, 13-41 13-43

Lindstedt s perturbation method, 
13-10 13-12, 13-25

nonlinear spring characteristics, 13-4

numerical methods, 13-52 13-53

Ritz-Galerkin method, 13-17 13-19

subharmonic oscillations, 13-20 13-22

superharmonic oscillations, 13-23 13-24

time-dependent coefficients, systems
with, 13-24 13-29

variable mass system, 13-5 13-6

Nonperiodic force, response under, 365,
380 381, See also Convolution inte-
gral; Laplace transform; Numerical
methods

Normal modes, 470, 591 593
Number-decibel conversion line, 323
Numerical Fourier analysis, 74 76
Numerical integration methods, 939 986

finite difference method, 941 942
single degree of freedom systems,

942 946
Numerical methods, for response under non-

periodic force, 365, 428 431
Nyquist circle plotting, 925 926
Nyquist plot, modal data determination

from, 910 912

O

Octave band analyzer, 896, 899
Octave, 63
Odd functions, 69 71
Operational deflection shape 

measurements, 900
Optimally tuned vibration absorber, 842
Orthogonality of normal functions, 591 593,

713 718, 726 729
Orthonormalization of Eigenvectors,

592 594
Overdamped system, 163, 418 420

P

Parameter variations, 176 185, See also

under Root locus representations
Parseval s formula, 14-17, 14-21

Partial fractions method, 1050 1052
Peak time (t

p
), 421

Perfectly elastic collision, response to,
412 414

Periodic solutions using Lindstedt s pertur-
bation method, 13-25

Period of beating , 269
Period of oscillation, 62
Periodic force, 365 378, See also General

periodic force, response under
Periodic vibration of a hydraulic valve,

374 376
Phase angle, 62, 584
Phase distortion, 888 890
Phase plane representation, nonlinear vibra-

tion, 13-29 13-34

phase velocity, 13-34

undamped nonlinear system, 13-32

undamped pendulum, 13-31

Phase plane trajectories, time solution from,
13-36 13-37

Phase velocity, 13-34

Philosophiae Naturalis Principia Mathemat-

ica, 6
Piezoelectric transducers, 876 877
Pinned-fixed beam, 959
Piston-cylinder dashpot, 50 52
Plane milling cutter, 721
Plano-milling machine structure, 989
Plates, deflection of, 1039 1040
Poincaré section, 13-43 13-44

Poisson, Simeon, 8
Positive definite matrix, 576
Positive definite quadratic forms, 576
Potential energy expressions in matrix form,

574 576
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Power spectral density, 14-23 14-25, 14-33

Precision electronic system, vibration con-
trol of, 829 830

Precision machine with base motion, design
of isolation for, 816 818

Principal coordinates, 472, 488 493
Principal mode, two degree of freedom sys-

tems, 470
Principle of conservation of energy, 131 132
Principle of virtual displacements, 130
Probability density curve, 919
Probability distribution, 14-4 14-5

Propeller shaft, 33
Proportional damping, 611
Pseudo spectrum, 397
Pseudo velocity, 397
Pulley subjected to Coulomb damping, 191
Pulley system, 145 146
Pulse load, 389 390

response due to, 390
Pythagoras, 3 4

Q

Q factor/Quality factor, 276 278
Quadratic damping, 300
Quefrency domain analysis, 922

R

Ramp function, first-order system response
due to, 408 409

Random signals analysis, 905 907
Random vibration, 17, 14-1 14-61, See also

Stationary random process
band-limited white noise, 14-25

correlation functions of, 14-9 14-10

eccentricity of rotor, probabilistic char-
acteristics of, 14-6

Gaussian random process, 14-14 14-16

ideal white noise, 14-25

joint probability distribution, 14-7 14-9

mean value, 14-6 14-7

multidegree of freedom system response,
14-39 14-46

narrow-band process, 14-25 14-27

power spectral density, 14-23 14-25
probability distribution, 14-4 14-5

random processes, 14-3 14-4

random variables, 14-3 14-4

single degree of freedom system
response, 14-28 14-31

standard deviation, 14-6 14-7

stationary process, 14-26

stationary random excitations, response
due to, 14-31 14-39

wide-band process, 14-25 14-27

Rayleigh, Baron, 8
Rayleigh s method, 153 158, 658 665, 700,

742 745
beams, fundamental frequency of,

663 665
effect of mass, 155, 157
manometer for diesel engine, 153

Rayleigh s quotient, properties of,
659 661

shafts, fundamental frequency of,
663 668

U-tube manometer, 154
Rayleigh-Ritz method, 700, 745 748
Reciprocating engines, balancing, 792 798

reciprocating engines, balancing,
796 798

unbalanced forces due to fluctuations in
gas pressure, 792 793

unbalanced forces due to inertia of the
moving parts, 793 796

Recoil mechanism, 173
Rectangular pulse load, 389 390

response due to, 390
Recurrence formula, 943
Reference marks, 777 778
Relative motion, 284 287
Repeated Eigenvalues, 594 596
Resonance, 11
Resonant frequencies of vibration absorber,

847 848
Response spectrum, 394 406

for base excitation, 396 399
building frame response to an earth-

quake, 402 403
design under shock environment,

403 406
earthquake response spectra, 399 403
of sinusoidal pulse, 394 397
water tank subjected to base accelera-

tion, 398 399
Rigid bar

connected by springs, equivalent k of, 37
stability of, 201

Rigid foundation, vibration isolation system
with, 804 813

design chart of isolation, 809 810
isolator for stereo turntable, 810 813
machine member on, 804
resilient member on, 804
spring support for exhaust fan, 

807 808
undamped isolator design, 808 810
vibratory motion of mass, reduction, 806

Rise time (t
r
), 422 423

Ritz-Galerkin method, 13-17 13-19

Rod, spring constants of, 27
Root locus representations, 176 185

and parameter variations, 179 185
roots study with variation of c, 181

+ in s-plane, 176 179

, in s-plane, 176 179

*
d

in s-plane, 176 179

*
n

in s-plane, 176 179

variation of mass, 183

variation of spring constant, 183
Rotary inertia effects, 734 739
Rotating machines, balancing, 776 785

single-plane balancing, 776 779
two-plane balancing, 779 785

Rotating unbalance, 287 293, 830 837, See

also under Damped system response
under harmonic force

Routh-Hurwitz criteria, 502, 790
Row matrix, 1042
Row vector, 1060
Runge-Kutta methods, 429 431

S

+ in s-plane, interpretation, 176 179
, in s-plane, interpretation, 176 179
*

d
in s-plane, interpretation, 176 179

*
n

in s-plane, interpretation, 176 179
Saddle point, 13-40 13-41

Sample point, 14-3

Sample space, 14-3

Sauveur, Joseph, 6
Scotch yoke mechanism, 55
Second-order systems, 367, 372 374,

409 414
Seismograph, 5
Self-excitation, 301 313, 500 502, 617 619
Semidefinite systems, 497 500, 598
Settling time, transient response, 424
Shafts, fundamental frequency of, 663 668
Shear deformation effects, 734 739
Shearing stress (,), 49
Shock absorber for a motorcycle, 171 172
Shock environment, design under, 403 406
Shock isolation, 824 827
Shock loads, 403 406
Signal analysis, 895 899
Signum function, 187
Simple harmonic motion, 56
Simple pendulum, 14, 39, 13-3

Simply supported beam, 1039
forced vibration, 731 733
natural frequencies of, 737 742

Singing of transmission lines, 305
Single degree of freedom systems, 14, 

14-28 14-31

central difference method for, 942 945
characteristics of, 14-30 14-31

free vibration of, 124 258, See also

Undamped translational system,
free vibration of

frequency response approach, 14-30

impulse response approach, 14-28 14-29

Single-plane balancing, 776 779
Singular point, 13-34

Sinusoidal pulse, response spectrum of,
394 397

Solid damping, 46
Space shuttle, vibration testing, 12
Special matrices, 1061
Spectrum analyzers, 896 897
Spring constants of elastic elements, 27 30
Spring elements, 22 39

deformation of spring, 22
equivalent linearized spring constant, 26
linear springs, 23 25
nonlinear springs, 23 25
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spring constant associated with restoring
force due to gravity, 39

spring constants of elastic elements,
27 30

Spring-mass-damper system, 262, 557 560
Spring-mass systems, 126 128, 669 670
Springs, combination of, 30 38

equivalent k, 32, 34 35, 37
in parallel, 30
in series, 31
torsional spring constant of a propeller

shaft, 33
Spring-supported mass instability on moving

belt, 302
Square matrix, 1042
Stability analysis, 301 313, See also

Dynamic instability caused by fluid
flow

two degree of freedom systems, 500 502
dynamic, 301 305
multidegree of freedom systems,

617 619
whirling of rotating shafts, 790 791

Stability of systems, 198 202
asymptotically stable, 198 200
rigid bar, 201
stable, 198 200
unstable, 198 200

Stable focus, 13-40

Stable orbits, functions with, 13-45

Standard deviation, 14-6 14-7

Standard eigenvalue problem, 585
Static deflection, 263
Static equilibrium position, 132
Static unbalance, 776
Stationary random excitations, response due

to, 14-31 14-39

Stationary random process, 14-10 14-14

Strange attractors, 13-46

Steady state response, 406
of forced system, 615 619
using Laplace transform, 319 320

Step force, response to, 414 420, See also

under Laplace transform
Stepped bar, 1015, 1018
Stiffness influence coefficient, 562 567
Stiffness matrix, 566, 991 998
Stockbridge damper, 308
Stodola, Aurel, 9
Stroboscope, 891
Study of vibration, importance, 10 13
Subharmonic oscillations, 13-20 13-22

Superharmonic oscillations, 13-23 13-24

Suspension system, equivalent k of, 32
Symmetric matrix, 682 683, 1043
System response under base excitation,

328 330

T

Tapered beam, fundamental frequency of,
744 750

Taylor, Brook, 7

Taylor s series expansion, 25, 310
Temporal averages, 14-14

Thick beam theory, 734
Thin beam theory, 722
Three degree of freedom system, 15

equations of motion of, 586
fundamental frequency of, 661 663
mode shapes of, 590
natural frequencies of, 587 589
natural frequencies of, 673 679

Time constant, 151 153
Time-delayed step force, 388 389
Time-dependent coefficients, systems with,

13-24 13-29

Time domain analysis, 918
Time domain representations, 68 69
Timoshenko beam theory, 734 735
Timoshenko, Stephen, 9
Torsion element, 994 995
Torsional pendulum, 148
Torsional spring constant of a propeller

shaft, 33
Torsional system, 483 488, 666 669

with Coulomb damping, 190 192
with discs mounted on a shaft, 483
equations of motion of, 578 579
natural frequencies of, 484 488,

668 673
with viscous damping, 168 174

Torsional vibration of a shaft or rod,
718 721

Torsional vibration, 8, 146
Trace, 1043
Trajectories of simple harmonic oscillator,

13-29 13-30

Trailer compound pendulum system, equa-
tions of motion of, 560

Transducers, 873 879, 901
electric resistance strain gage, 873
electrodynamic transducers, 877 878
linear variable differential transformer

(LVDT) transducer, 878 879
piezoelectric transducers, 876 877
variable resistance transducers, 873 876

Transfer function approach, 313 316,
425 426, 502 504

Transient response, 261 262, 406, 421 427
Transition curves, 13-28

Transverse vibration of beams, 955 959
Transverse vibration of string or cable,

701 710, See also under Continuous
systems

Traveling-wave solution, 709 710
Triangular pulse, Fourier transform of, 14-22

Triple pendulum, 576
Tuned vibration absorber, 842
Two degree of freedom systems, 15,

467 552, See also Forced vibration;
Laplace transform; Semidefinite sys-
tems; Torsional system

automobile, frequencies and modes of,
492 495

coordinate coupling and principal coor-
dinates, 488 493

coupled differential equations, 470
equations of motion for forced vibration,

472 473
forced response of, 520 522
free vibration response of, 481 482
Lathe, 469, 488 489
natural mode, 471
normal mode, 470
packaging of an instrument, 471
principal mode, 470
spring-mass-damper system, 472
transfer function approach, 502 504

Two-plane balancing, 779 785, 848 850

U

Undamped dynamic vibration absorber,
833 839

effect on the response of machine, 835
for diesel engine, 837 838
for motor-generator set, 838 843

Undamped equation, 13-13, 13-31

Undamped isolator design, 808 810
Undamped system, 127

free vibration analysis, 474 482
free vibration of, 601 606
free vibration response of, 504 507
in matrix form, 581 582
response under harmonic force,

263 271, See also under Har-
monically excited vibration

total response of, using MATLAB,
326 327

Undamped torsional system, free vibration
of, 146 151

Undamped translational system, free vibra-
tion of, 129 146

auxiliary or characteristic equation, 134
D Alembert s principle, 130
eigenvalues or characteristic values, 134
mass under virtual displacement, 131
principle of conservation of energy, 130
principle of virtual displacements, 130
using Newton s second law of motion,

129 130
Undamped vibration, 17
Underdamped system, 160, 414 416
Uniform string, free vibration of, 704 705
Unit impulse response of second-order 

system, 409
Units, 1056 1058
Univariate distributions, 14-8

Unrestrained systems, 499 502, 596 599
Unstable focus, 13-40

Unstable orbits, functions with, 13-45 13-47

Unstable system, 198

V

Variable mass system, 13-5 13-6

Variable resistance transducers, 873 876
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Vectorial representation of harmonic motion,
56 57

Velometer, 886 887
Vertical position, spring-mass system in,

132 133
Vibrating string, 702
Vibration absorbers, 832 843, 847 848, See

also Damped dynamic vibration
absorber; Undamped dynamic vibra-
tion absorber

Vibration pickups, 879 890
Vibration severity of machinery, 773
Vibrometer, 881 882
Viscoelastic materials use, 799
Viscous damping, 45

Cannon analysis, 173
energy dissipated in, 166 168
forced vibration of, 610 616
free vibration with, 158 174
steady-state response of, 330 331
torsional systems with viscous damping,

168 174
torsional systems with, 168 174

W

Wallis, John, 6
Whirling of rotating shafts, 785 791

critical speeds, 787
equations of motion, 785 787
shaft carrying an unbalanced rotor, 791

stability analysis, 790 791
system response, 788 790

Wide-band process, 14-25 14-27

Wiener-Khintchine formula, 
14-23

Wilson method, 965 968
Wind-induced vibration, 11

Y

Young s modulus, 142 143

Z

Zero matrix, 1042
Zhang Heng, 5  
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