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11-7 Angular Momentum
Recall that the concept of linear momentum and the principle of conservation
of linear momentum are extremely powerful tools. They allow us to predict
the outcome of, say, a collision of two cars without knowing the details of the col-
lision. Here we begin a discussion of the angular counterpart of , winding up in
Section 11-11 with the angular counterpart of the conservation principle.

Figure 11-12 shows a particle of mass m with linear momentum as
it passes through point A in an xy plane. The angular momentum of this parti-
cle with respect to the origin O is a vector quantity defined as

(angular momentum defined), (11-18)

where is the position vector of the particle with respect to O. As the particle
moves relative to O in the direction of its momentum , position vector

rotates around O. Note carefully that to have angular momentum about O, the
particle does not itself have to rotate around O. Comparison of Eqs. 11-14 and 11-18
shows that angular momentum bears the same relation to linear momentum that
torque does to force. The SI unit of angular momentum is the kilogram-
meter-squared per second (kg 
 m2/s), equivalent to the joule-second (J 
 s).

To find the direction of the angular momentum vector in Fig. 11-12, we
slide the vector until its tail is at the origin O. Then we use the right-hand rule
for vector products, sweeping the fingers from into . The outstretched thumb
then shows that the direction of is in the positive direction of the z axis in Fig.11-12.
This positive direction is consistent with the counterclockwise rotation of position
vector about the z axis, as the particle moves. (A negative direction of would be
consistent with a clockwise rotation of about the z axis.)

To find the magnitude of , we use the general result of Eq. 3-27 to write

(11-19)

where f is the smaller angle between and when these two vectors are tail
to tail. From Fig. 11-12a, we see that Eq. 11-19 can be rewritten as

(11-20)

where is the component of perpendicular to and is the component
of perpendicular to . From Fig. 11-12b, we see that Eq. 11-19 can also be
rewritten as

(11-21)

where is the perpendicular distance between O and the extension of .
Note two features here: (1) angular momentum has meaning only with re-

spect to a specified origin and (2) its direction is always perpendicular to the
plane formed by the position and linear momentum vectors and .p:r:
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Fig. 11-12 Defining angular momen-
tum.A particle passing through point A has
linear momentum , with the vec-
tor lying in an xy plane.The particle has
angular momentum with re-
spect to the origin O. By the right-hand
rule, the angular momentum vector points
in the positive direction of z. (a) The mag-
nitude of �

:
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CHECKPOINT 4

In part a of the figure, particles
1 and 2 move around point O
in circles with radii 2 m and 4
m. In part b, particles 3 and
4 travel along straight lines at
perpendicular distances of 4 m
and 2 m from point O. Particle
5 moves directly away from O.
All five particles have the same mass and the same constant speed. (a) Rank the parti-
cles according to the magnitudes of their angular momentum about point O, greatest
first. (b) Which particles have negative angular momentum about point O?

(b)

3

5

4

O

(a)

O

2

1
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Sample Problem

around O as particle 1 moves. Thus, the angular momen-
tum vector for particle 1 is

Similarly, the magnitude of is

and the vector product is into the page, which is the
negative direction, consistent with the clockwise rotation of

around O as particle 2 moves. Thus, the angular momen-
tum vector for particle 2 is

The net angular momentum for the two-particle system is

(Answer)

The plus sign means that the system’s net angular momen-
tum about point O is out of the page.

� �2.0 kg 
m2/s.

 L � �1 � �2 � �10 kg 
m2/s � (�8.0 kg 
m2/s)

�2 � �8.0 kg 
m2/s.

r:2

r2
: � p2

:

 � 8.0 kg 
m2/s,

 �2 � r�2p2 � (4.0 m)(2.0 kg 
m/s)

�
:

2

�1 � �10 kg 
m2/s.

r:1

Angular momentum of a two-particle system

Figure 11-13 shows an overhead view of two particles moving
at constant momentum along horizontal paths. Particle 1, with
momentum magnitude p1 � 5.0 kg 
m/s, has position vector 
and will pass 2.0 m from point O. Particle 2, with momentum
magnitude p2 � 2.0 kg 
m/s, has position vector and will pass
4.0 m from point O. What are the magnitude and direction of
the net angular momentum about point O of the two-
particle system?

To find , we can first find the individual angular momenta
and and then add them. To evaluate their magnitudes,

we can use any one of Eqs. 11-18 through 11-21. However,
Eq. 11-21 is easiest, because we are given the perpendicular
distances and and the momen-
tum magnitudes p1 and p2.

Calculations: For particle 1, Eq. 11-21 yields

To find the direction of vector , we use Eq. 11-18 and the
right-hand rule for vector products. For , the vector
product is out of the page, perpendicular to the plane of Fig.
11-13. This is the positive direction, consistent with the
counterclockwise rotation of the particle’s position vector

r1
: � p1

:
�1
:

 � 10 kg 
m2/s.

 �1 � r�1p1 � (2.0 m)(5.0 kg 
m/s)

r2� (� 4.0 m)r1� (� 2.0 m)

�
:

2�
:

1

L
:

L
:

r:2

r:1

KEY I DEA

Fig. 11-13 Two particles
pass near point O.

r⊥1r⊥2

r2

r1

O
p2

p1

Additional examples, video, and practice available at WileyPLUS

11-8 Newton’s Second Law in Angular Form
Newton’s second law written in the form

(single particle) (11-22)

expresses the close relation between force and linear momentum for a single par-
ticle. We have seen enough of the parallelism between linear and angular quanti-
ties to be pretty sure that there is also a close relation between torque and angu-
lar momentum. Guided by Eq. 11-22, we can even guess that it must be

(single particle). (11-23)

Equation 11-23 is indeed an angular form of Newton’s second law for a single
particle:

�:net �
d�

:

dt

 F
:

net �
dp:

dt

The (vector) sum of all the torques acting on a particle is equal to the time rate of
change of the angular momentum of that particle.
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Equation 11-23 has no meaning unless the torques and the angular momentum
are defined with respect to the same point, usually the origin of the coordinate

system being used.

Proof of Equation 11-23
We start with Eq. 11-18, the definition of the angular momentum of a particle:

where is the position vector of the particle and is the velocity of the particle.
Differentiating* each side with respect to time t yields

(11-24)

However, is the acceleration of the particle, and is its velocity .
Thus, we can rewrite Eq. 11-24 as

Now (the vector product of any vector with itself is zero because the
angle between the two vectors is necessarily zero). Thus, the last term of this ex-
pression is eliminated and we then have

We now use Newton’s second law to replace with its equal, the
vector sum of the forces that act on the particle, obtaining

(11-25)

Here the symbol indicates that we must sum the vector products for all
the forces. However, from Eq. 11-14, we know that each one of those vector prod-
ucts is the torque associated with one of the forces. Therefore, Eq. 11-25 tells us
that

This is Eq. 11-23, the relation that we set out to prove.

�:net �
d�

:

dt
.

r: � F
:

�

d�
:

dt
� r: � F

:

net � �( r: � F
:

).

ma:(F
:

net � ma:)

d�
:

dt
� m( r: � a:) � r: � ma:.

v: � v: � 0

d�
:

dt
� m( r: � a: � v: � v:).

v:d r:/dta:dv:/dt

d�
:

dt
� m � r: �

dv:

dt
�

d r:

dt
� v:�.

v:r:
�
:

� m( r: � v:),

�
:

�:

*In differentiating a vector product, be sure not to change the order of the two quantities (here and
) that form that product. (See Eq. 3-28.)v:

r:

CHECKPOINT 5

The figure shows the position vector of a particle at a certain instant, and four choices
for the direction of a force that is to accelerate the particle. All four choices lie in the xy
plane. (a) Rank the choices according to the magnitude of the time rate of change 
they produce in the angular momentum of the particle about point O, greatest first. (b)
Which choice results in a negative rate of change about O?

(d�
:

/dt)

r:

xF1 O

y
F2

F3

F4

r
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Sample Problem

Calculations: To find the magnitude of , we can use any
one of the scalar equations derived from Eq. 11-14—
namely, Eqs. 11-15 through 11-17. However, Eq. 11-17

is easiest because the perpendicular distance 
between O and the line of action of F

:

g is the given distance D.
So, substituting D and using mg for the magnitude of we
can write Eq. 11-17 as

t � DFg � Dmg. (Answer)

Using the right-hand rule for the vector product in
Eq. 11-14, we find that the direction of is the negative
direction of the z axis, the same as .

The results we obtained in parts (a) and (b) must be
consistent with Newton’s second law in the angular form of
Eq. 11-23 .To check the magnitudes we got, we
write Eq. 11-23 in component form for the z axis and then
substitute our result .We find

which is the magnitude we found for . To check the
directions, we note that Eq. 11-23 tells us that and 
must have the same direction. So and must also have
the same direction, which is what we found.

�
:

�:
d�

:
/dt�:

�:

� �
d�

dt
�

d(Dmgt)
dt

� Dmg,

� � Dmgt

( �:net � d�
:

/dt)

�
:

�:
r: � F

:

F
:

g,

r�(� � r�F )

�:

Torque, time derivative of angular momentum, penguin fall 

In Fig. 11-14, a penguin of mass m falls from rest at point A,
a horizontal distance D from the origin O of an xyz coordi-
nate system. (The positive direction of the z axis is directly
outward from the plane of the figure.)

(a) What is the angular momentum of the falling penguin
about O?

We can treat the penguin as a particle, and thus its angular
momentum is given by Eq. 11-18 where 
is the penguin’s position vector (extending from O to the
penguin) and is the penguin’s linear momentum. (The
penguin has angular momentum about O even though it
moves in a straight line, because vector rotates about O
as the penguin falls.)

Calculations: To find the magnitude of we can use any
one of the scalar equations derived from Eq. 11-18—
namely, Eqs. 11-19 through 11-21. However, Eq. 11-21

is easiest because the perpendicular distance 
between O and an extension of vector is the given dis-
tance D. The speed of an object that has fallen from rest for
a time t is v � gt. We can now write Eq. 11-21 in terms of
given quantities as

(Answer)

To find the direction of we use the right-hand rule
for the vector product in Eq. 11-18. Mentally shift

until its tail is at the origin, and then use the fingers of
your right hand to rotate into through the smaller an-
gle between the two vectors. Your outstretched thumb
then points into the plane of the figure, indicating that the
product and thus also are directed into that
plane, in the negative direction of the z axis. We represent

with an encircled cross � at O. The vector changes
with time in magnitude only; its direction remains un-
changed.

(b) About the origin O, what is the torque on the pen-
guin due to the gravitational force ?

(1) The torque is given by Eq. 11-14 , where
now the force is F

:

g. (2) Force F
:

g causes a torque on the pen-
guin, even though the penguin moves in a straight line,
because rotates about O as the penguin moves.r:

(�: � r: � F
:

)

F
:

g

�:

�
:

�
:

�
:

r: � p:

p:r:
p:

r: � p:
�
:

,

� � r�mv � Dmgt.

p:
r�(� �  r�mv)

�
:

,

r:

p:

r:(�
:

� r: � p: ),�
:

�
:

KEY I DEA

, �

y

xO
D

A

τ

Fg or p

r

Fig. 11-14 A penguin falls vertically from point A.The torque
and the angular momentum �

:
of the falling penguin with respect

to the origin O are directed into the plane of the figure at O.
�:

KEY I DEAS

Additional examples, video, and practice available at WileyPLUS
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11-9 The Angular Momentum of a System of Particles
Now we turn our attention to the angular momentum of a system of particles with
respect to an origin. The total angular momentum of the system is the (vector)
sum of the angular momenta of the individual particles (here with label i):

(11-26)

With time, the angular momenta of individual particles may change because
of interactions between the particles or with the outside.We can find the resulting
change in by taking the time derivative of Eq. 11-26.Thus,

(11-27)

From Eq. 11-23, we see that is equal to the net torque on the ith
particle.We can rewrite Eq. 11-27 as

(11-28)

That is, the rate of change of the system’s angular momentum is equal to the
vector sum of the torques on its individual particles. Those torques include inter-
nal torques (due to forces between the particles) and external torques (due to
forces on the particles from bodies external to the system). However, the forces
between the particles always come in third-law force pairs so their torques sum to
zero. Thus, the only torques that can change the total angular momentum of
the system are the external torques acting on the system.

Let represent the net external torque, the vector sum of all external
torques on all particles in the system.Then we can write Eq. 11-28 as

(system of particles), (11-29)

which is Newton’s second law in angular form. It says:

�:net �
dL

:

dt

�:net

L
:

L
:

dL
:

dt
� �

n

i�1
 �:net,i

.

�:net,id�
:

i /dt

dL
:

dt
� �

n

i�1
 
d�i

:

dt
.

L
:

L
:

� �
:

1 � �
:

2 � �
:

3 � 
 
 
 � �
:

n � �
n

i�1
 �
:

i.

�
:

L
:

The net external torque acting on a system of particles is equal to the time rate of
change of the system’s total angular momentum .L

:
�:net

Equation 11-29 is analogous to (Eq. 9-27) but requires extra
caution: Torques and the system’s angular momentum must be measured relative
to the same origin. If the center of mass of the system is not accelerating relative
to an inertial frame, that origin can be any point. However, if it is accelerating,
then it must be the origin. For example, consider a wheel as the system of parti-
cles. If it is rotating about an axis that is fixed relative to the ground, then the ori-
gin for applying Eq. 11-29 can be any point that is stationary relative to the
ground. However, if it is rotating about an axis that is accelerating (such as when
it rolls down a ramp), then the origin can be only at its center of mass.

11-10 The Angular Momentum of a Rigid Body 
Rotating About a Fixed Axis
We next evaluate the angular momentum of a system of particles that form a rigid
body that rotates about a fixed axis. Figure 11-15a shows such a body.The fixed axis
of rotation is a z axis, and the body rotates about it with constant angular speed v.
We wish to find the angular momentum of the body about that axis.

F
:

net � dP
:

/dt
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We can find the angular momentum by summing the z components of the an-
gular momenta of the mass elements in the body. In Fig. 11-15a, a typical mass el-
ement, of mass �mi, moves around the z axis in a circular path. The position of
the mass element is located relative to the origin O by position vector . The
radius of the mass element’s circular path is the perpendicular distance
between the element and the z axis.

The magnitude of the angular momentum of this mass element, with
respect to O, is given by Eq. 11-19:

where pi and vi are the linear momentum and linear speed of the mass element,
and 90° is the angle between and . The angular momentum vector for the
mass element in Fig. 11-15a is shown in Fig. 11-15b; its direction must be perpen-
dicular to those of and .

We are interested in the component of that is parallel to the rotation axis,
here the z axis.That z component is

The z component of the angular momentum for the rotating rigid body as a
whole is found by adding up the contributions of all the mass elements that make
up the body.Thus, because we may write

(11-30)

We can remove v from the summation here because it has the same value for all
points of the rotating rigid body.

The quantity in Eq. 11-30 is the rotational inertia I of the body 
about the fixed axis (see Eq. 10-33).Thus Eq. 11-30 reduces to

L � Iv (rigid body, fixed axis). (11-31)

We have dropped the subscript z, but you must remember that the angular
momentum defined by Eq. 11-31 is the angular momentum about the rotation
axis.Also, I in that equation is the rotational inertia about that same axis.

Table 11-1, which supplements Table 10-3, extends our list of corresponding
linear and angular relations.

�  �mi  r� i
2

 � � � �
n

i�1
 �mi r� i

2 �.

 Lz � �
n

i�1
 �iz � �

n

i�1
 �mi vir� i � �

n

i�1
 �mi(�r� i)r� i

v � �r�,

�iz � �i sin � � (r i sin �)(�mi vi) � r�i �mi vi.

�
:

i

p:ir:i

�
:

ip:ir:i

�i � (r i)( pi)(sin 90�) � (r i)(�mi vi),

�
:

i

r� i,
r:i

Fig. 11-15 (a) A rigid body rotates
about a z axis with angular speed v.A mass
element of mass �mi within the body
moves about the z axis in a circle with ra-
dius .The mass element has linear mo-
mentum and it is located relative to the
origin O by position vector . Here the
mass element is shown when is parallel to
the x axis. (b) The angular momentum 
with respect to O, of the mass element in (a).
The z component is also shown.�iz

�
:

i,
r� i

r:i

p: i,
r�  i

θ

z

x

y

∆mi

r i

ri

pi

O

z

x

y

�i

θ

θ

�iz

O

(a)

(b)

Table 11-1

More Corresponding Variables and Relations for Translational 
and Rotational Motiona

Translational Rotational

Force Torque
Linear momentum Angular momentum

Linear momentumb Angular momentumb

Linear momentumb Angular momentumc L � Iv

Newton’s second lawb Newton’s second lawb

Conservation lawd Conservation lawd

aSee also Table 10-3.
bFor systems of particles, including rigid bodies.
cFor a rigid body about a fixed axis, with L being the component along that axis.
dFor a closed, isolated system.

L
:

� a constantP
:

� a constant

�:net �
dL

:

dt
F
:

net �
dP

:

dt

P
:

� Mv:com

L
: 

(� � �
:

i)P
: 

(� �p: i)

�
:  

(� r: � p:)p:
�:

  
(� r: � F

:
)F

:
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11-11 Conservation of Angular Momentum
So far we have discussed two powerful conservation laws, the conservation of 
energy and the conservation of linear momentum. Now we meet a third law of
this type, involving the conservation of angular momentum. We start from 
Eq. 11-29 , which is Newton’s second law in angular form. If no 
net external torque acts on the system, this equation becomes or

(isolated system). (11-32)

This result, called the law of conservation of angular momentum, can also be
written as

,

or (isolated system). (11-33)

Equations 11-32 and 11-33 tell us:

L
:

i � L
:

f

�net angular momentum
at some initial time t i

� � �net angular momentum
at some later time t f

�

L
:

� a constant

dL
:

/dt � 0,
(�:net � dL

:
/dt)

If the net external torque acting on a system is zero, the angular momentum of the
system remains constant, no matter what changes take place within the system.

L
:

If the component of the net external torque on a system along a certain axis is zero,
then the component of the angular momentum of the system along that axis cannot
change, no matter what changes take place within the system.

Equations 11-32 and 11-33 are vector equations; as such, they are equivalent
to three component equations corresponding to the conservation of angular mo-
mentum in three mutually perpendicular directions. Depending on the torques
acting on a system, the angular momentum of the system might be conserved in
only one or two directions but not in all directions:

CHECKPOINT 6

In the figure, a disk, a
hoop, and a solid sphere
are made to spin about
fixed central axes (like a
top) by means of strings wrapped around them, with the strings producing the same
constant tangential force on all three objects. The three objects have the same mass
and radius, and they are initially stationary. Rank the objects according to (a) their an-
gular momentum about their central axes and (b) their angular speed, greatest first,
when the strings have been pulled for a certain time t.

F
:

Disk Hoop Sphere

F F F

We can apply this law to the isolated body in Fig. 11-15, which rotates around
the z axis. Suppose that the initially rigid body somehow redistributes its mass
relative to that rotation axis, changing its rotational inertia about that axis.
Equations 11-32 and 11-33 state that the angular momentum of the body cannot
change. Substituting Eq. 11-31 (for the angular momentum along the rotational
axis) into Eq. 11-33, we write this conservation law as

Iivi � If vf. (11-34)

Here the subscripts refer to the values of the rotational inertia I and angular
speed v before and after the redistribution of mass.

Like the other two conservation laws that we have discussed, Eqs. 11-32 and
11-33 hold beyond the limitations of Newtonian mechanics. They hold for parti-
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cles whose speeds approach that of light (where the theory of special relativity
reigns), and they remain true in the world of subatomic particles (where quantum
physics reigns). No exceptions to the law of conservation of angular momentum
have ever been found.

We now discuss four examples involving this law.

1. The spinning volunteer Figure 11-16 shows a student seated on a stool that
can rotate freely about a vertical axis. The student, who has been set into
rotation at a modest initial angular speed vi, holds two dumbbells in his
outstretched hands. His angular momentum vector lies along the vertical ro-
tation axis, pointing upward.

The instructor now asks the student to pull in his arms; this action reduces
his rotational inertia from its initial value Ii to a smaller value If because he
moves mass closer to the rotation axis. His rate of rotation increases markedly,
from vi to vf.The student can then slow down by extending his arms once more,
moving the dumbbells outward.

No net external torque acts on the system consisting of the student, stool,
and dumbbells.Thus, the angular momentum of that system about the rotation
axis must remain constant, no matter how the student maneuvers the dumb-
bells. In Fig. 11-16a, the student’s angular speed vi is relatively low and his ro-
tational inertia Ii is relatively high. According to Eq. 11-34, his angular speed
in Fig. 11-16b must be greater to compensate for the decreased If.

2. The springboard diver Figure 11-17 shows a diver doing a forward one-and-
a-half-somersault dive.As you should expect, her center of mass follows a par-
abolic path. She leaves the springboard with a definite angular momentum 
about an axis through her center of mass, represented by a vector pointing
into the plane of Fig. 11-17, perpendicular to the page. When she is in the air,
no net external torque acts on her about her center of mass, so her angular
momentum about her center of mass cannot change. By pulling her arms and
legs into the closed tuck position, she can considerably reduce her rotational
inertia about the same axis and thus, according to Eq. 11-34, considerably
increase her angular speed. Pulling out of the tuck position (into the open lay-
out position) at the end of the dive increases her rotational inertia and thus
slows her rotation rate so she can enter the water with little splash. Even in a
more complicated dive involving both twisting and somersaulting, the angular
momentum of the diver must be conserved, in both magnitude and direction,
throughout the dive.

3. Long jump When an athlete takes off from the ground in a running long
jump, the forces on the launching foot give the athlete an angular momentum
with a forward rotation around a horizontal axis. Such rotation would not allow

L
:

L
:

Fig. 11-16 (a) The student has a rela-
tively large rotational inertia about the ro-
tation axis and a relatively small angular
speed. (b) By decreasing his rotational in-
ertia, the student automatically increases
his angular speed.The angular momentum

of the rotating system remains un-
changed.
L
:

L

Ii 

If

Rotation axis 
(a) 

(b)

i ω 

fω

L 

Fig. 11-17 The diver’s angular 
momentum is constant throughout the dive,
being represented by the tail � of an arrow that
is perpendicular to the plane of the figure. Note
also that her center of mass (see the dots) fol-
lows a parabolic path.

L
:

L 

L 

Her angular momentum
is fixed but she can still
control her spin rate.
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the jumper to land properly: In the landing, the legs should be together and ex-
tended forward at an angle so that the heels mark the sand at the greatest dis-
tance. Once airborne, the angular momentum cannot change (it is conserved)
because no external torque acts to change it. However, the jumper can shift
most of the angular momentum to the arms by rotating them in windmill fash-
ion (Fig. 11-18). Then the body remains upright and in the proper orientation
for landing.

4. Tour jeté In a tour jeté, a ballet performer leaps with a small twisting motion
on the floor with one foot while holding the other leg perpendicular to the body
(Fig. 11-19a).The angular speed is so small that it may not be perceptible to the
audience. As the performer ascends, the outstretched leg is brought down and
the other leg is brought up, with both ending up at angle u to the body (Fig.
11-19b). The motion is graceful, but it also serves to increase the rotation be-
cause bringing in the initially outstretched leg decreases the performer’s rota-
tional inertia. Since no external torque acts on the airborne performer, the an-
gular momentum cannot change.Thus, with a decrease in rotational inertia, the
angular speed must increase. When the jump is well executed, the performer
seems to suddenly begin to spin and rotates 180° before the initial leg orienta-
tions are reversed in preparation for the landing. Once a leg is again out-
stretched, the rotation seems to vanish.

Fig. 11-18 Windmill motion of the arms during a long jump helps maintain body orien-
tation for a proper landing.

(a)

(b)

θ

Fig. 11-19 (a) Initial phase of a tour
jeté: large rotational inertia and small an-
gular speed. (b) Later phase: smaller rota-
tional inertia and larger angular speed.

CHECKPOINT 7

A rhinoceros beetle rides the rim of a small disk that rotates like a merry-go-round. If
the beetle crawls toward the center of the disk, do the following (each relative to the
central axis) increase, decrease, or remain the same for the beetle–disk system: (a) 
rotational inertia, (b) angular momentum, and (c) angular speed?

Sample Problem

Conservation of angular momentum, rotating wheel demo 

Figure 11-20a shows a student, again sitting on a stool that
can rotate freely about a vertical axis. The student, initially
at rest, is holding a bicycle wheel whose rim is loaded with
lead and whose rotational inertia Iwh about its central axis is
1.2 kg 
 m2. (The rim contains lead in order to make the
value of Iwh substantial.) The wheel is rotating at an angular
speed vwh of 3.9 rev/s; as seen from overhead, the rotation is
counterclockwise. The axis of the wheel is vertical, and the
angular momentum of the wheel points vertically up-
ward. The student now inverts the wheel (Fig. 11-20b) so

L
:

wh

that, as seen from overhead, it is rotating clockwise. Its angu-
lar momentum is now .The inversion results in the stu-
dent, the stool, and the wheel’s center rotating together as a
composite rigid body about the stool’s rotation axis, with ro-
tational inertia Ib � 6.8 kg 
 m2. (The fact that the wheel is
also rotating about its center does not affect the mass distrib-
ution of this composite body; thus, Ib has the same value
whether or not the wheel rotates.) With what angular speed
vb and in what direction does the composite body rotate af-
ter the inversion of the wheel?

�L
:

wh
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3. The vector addition of and gives the total angular
momentum of the system of the student, stool, and
wheel.

4. As the wheel is inverted, no net external torque acts on
that system to change about any vertical axis.
(Torques due to forces between the student and the
wheel as the student inverts the wheel are internal to the
system.) So, the system’s total angular momentum is con-
served about any vertical axis.

Calculations: The conservation of is represented with
vectors in Fig. 11-20c. We can also write this conservation in
terms of components along a vertical axis as

Lb,f � Lwh,f � Lb,i � Lwh,i, (11-35)

where i and f refer to the initial state (before inversion of
the wheel) and the final state (after inversion). Because
inversion of the wheel inverted the angular momentum 
vector of the wheel’s rotation, we substitute �Lwh,i for Lwh,f.
Then, if we set Lb,i � 0 (because the student, the stool, and
the wheel’s center were initially at rest), Eq. 11-35 yields

Lb,f � 2Lwh,i.

Using Eq. 11-31, we next substitute Ibvb for Lb,f and Iwhvwh

for Lwh,i and solve for vb, finding

(Answer)

This positive result tells us that the student rotates counter-
clockwise about the stool axis as seen from overhead. If the
student wishes to stop rotating, he has only to invert the
wheel once more.

 �
(2)(1.2 kg 
m2)(3.9 rev/s)

6.8 kg 
m2 � 1.4 rev/s.

 �b �
2Iwh

Ib
  �wh

L
:

tot

L
:

tot

L
:

tot

L
:

whL
:

b

KEY I DEAS

Fig. 11-20 (a) A student holds a bicycle wheel rotating around
a vertical axis. (b) The student inverts the wheel, setting himself
into rotation. (c) The net angular momentum of the system must
remain the same in spite of the inversion.

Lb 

wh 

(a) (b) 

Lwh 
–Lwh 

ω 
wh ω 

ω 

Lb Lwh –Lwh 

= + 

(c) 

Initial Final 

b 

The student now has
angular momentum,
and the net of these
two vectors equals
the initial vector.

1. The angular speed vb we seek is related to the final angu-
lar momentum of the composite body about the stool’s
rotation axis by Eq. 11-31 (L Iv).

2. The initial angular speed vwh of the wheel is related to the
angular momentum of the wheel’s rotation about its
center by the same equation.

L
:

wh

�
L
:

b

Sample Problem

Conservation of angular momentum, cockroach on disk

In Fig. 11-21, a cockroach with mass m rides on a disk of mass
6.00m and radius R. The disk rotates like a merry-go-round
around its central axis at angular speed The
cockroach is initially at radius , but then it crawls
out to the rim of the disk. Treat the cockroach as a particle.
What then is the angular speed?

(1) The cockroach’s crawl changes the mass distribution (and
thus the rotational inertia) of the cockroach–disk system.
(2) The angular momentum of the system does not change
because there is no external torque to change it. (The forces

r � 0.800R
�i � 1.50 rad/s.

KEY I DEAS Fig. 11-21 A cockroach rides at radius r on a disk rotating like
a merry-go-round.

Rotation axis

R
r

iω

and torques due to the cockroach’s crawl are internal to the
system.) (3) The magnitude of the angular momentum of a
rigid body or a particle is given by Eq. 11-31 ( ).L � I�
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11-12 Precession of a Gyroscope
A simple gyroscope consists of a wheel fixed to a shaft and free to spin about the
axis of the shaft. If one end of the shaft of a nonspinning gyroscope is placed on a
support as in Fig. 11-22a and the gyroscope is released, the gyroscope falls by ro-
tating downward about the tip of the support. Since the fall involves rotation, it is
governed by Newton’s second law in angular form, which is given by Eq. 11-29:

(11-41)

This equation tells us that the torque causing the downward rotation (the fall)
changes the angular momentum of the gyroscope from its initial value of zero.
The torque is due to the gravitational force acting at the gyroscope’s center
of mass, which we take to be at the center of the wheel.The moment arm relative to
the support tip, located at O in Fig. 11-22a, is .The magnitude of is

t � Mgr sin 90° � Mgr (11-42)

(because the angle between and is 90°), and its direction is as shown in Fig.
11-22a.

A rapidly spinning gyroscope behaves differently. Assume it is released with
the shaft angled slightly upward. It first rotates slightly downward but then, while
it is still spinning about its shaft, it begins to rotate horizontally about a vertical
axis through support point O in a motion called precession.

Why does the spinning gyroscope stay aloft instead of falling over like the non-
spinning gyroscope? The clue is that when the spinning gyroscope is released, the
torque due to must change not an initial angular momentum of zero but rather
some already existing nonzero angular momentum due to the spin.

To see how this nonzero initial angular momentum leads to precession, we
first consider the angular momentum of the gyroscope due to its spin. ToL

:

Mg:

r:Mg:

�:r:

Mg:�:
L
:

�: �
dL

:

dt
.
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Additional examples, video, and practice available at WileyPLUS

Calculations: We want to find the final angular speed. Our
key is to equate the final angular momentum Lf to the initial
angular momentum Li, because both involve angular speed.
They also involve rotational inertia I. So, let’s start by finding
the rotational inertia of the system of cockroach and disk
before and after the crawl.

The rotational inertia of a disk rotating about its central
axis is given by Table 10-2c as . Substituting 6.00m for
the mass M, our disk here has rotational inertia

. (11-36)

(We don’t have values for m and R, but we shall continue
with physics courage.)

From Eq. 10-33, we know that the rotational inertia of
the cockroach (a particle) is equal to mr2. Substituting the
cockroach’s initial radius ( ) and final radius
( ), we find that its initial rotational inertia about the
rotation axis is

(11-37)

and its final rotational inertia about the rotation axis is

Ici � 0.64mR2

r � R
r � 0.800R

Id � 3.00mR2

1
2MR2

. (11-38)

So, the cockroach–disk system initially has the rotational
inertia

, (11-39)

and finally has the rotational inertia

. (11-40)

Next, we use Eq. 11-31 ( ) to write the fact that
the system’s final angular momentum Lf is equal to the sys-
tem’s initial angular momentum Li:

or .

After canceling the unknowns m and R, we come to

. (Answer)

Note that the angular speed decreased because part of the
mass moved outward from the rotation axis, thus increasing
the rotational inertia of the system.

�f � 1.37 rad/s

4.00mR2�f � 3.64mR2(1.50 rad/s)

If�f � Ii�i

L � I�

If � Id � Icf � 4.00mR2

Ii � Id � Ici � 3.64mR2

Icf � mR2
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Fig. 11-22 (a) A nonspinning  gyro-
scope falls by rotating in an xz plane be-
cause of torque . (b) A rapidly spinning
gyroscope, with angular momentum pre-
cesses around the z axis. Its precessional
motion is in the xy plane. (c) The change

in angular momentum leads to a ro-
tation of about O.L

:
dL

:
/dt

L
:

,
�:

x

y

z

τ

O

x

y

z

O

L

ω

= dL___
dt

(a)

(b)

x

y

z

O
L(t)

dL___
dt

dφ L(t + dt)

Circular path
taken by head
of L vector

(c)

τ

r

r

Mg

Mg

Support

simplify the situation, we assume the spin rate is so rapid that the angular
momentum due to precession is negligible relative to .We also assume the shaft
is horizontal when precession begins, as in Fig. 11-22b. The magnitude of is
given by Eq. 11-31:

L � Iv, (11-43)

where I is the rotational moment of the gyroscope about its shaft and v is the an-
gular speed at which the wheel spins about the shaft. The vector points along
the shaft, as in Fig. 11-22b. Since is parallel to torque must be
perpendicular to .

According to Eq. 11-41, torque causes an incremental change in the an-
gular momentum of the gyroscope in an incremental time interval dt; that is,

(11-44)

However, for a rapidly spinning gyroscope, the magnitude of is fixed by Eq.
11-43.Thus the torque can change only the direction of not its magnitude.

From Eq. 11-44 we see that the direction of is in the direction of per-
pendicular to . The only way that can be changed in the direction of 
without the magnitude L being changed is for to rotate around the z axis as
shown in Fig. 11-22c. maintains its magnitude, the head of the vector follows
a circular path, and is always tangent to that path. Since must always 
point along the shaft, the shaft must rotate about the z axis in the direction of .
Thus we have precession. Because the spinning gyroscope must obey Newton’s
law in angular form in response to any change in its initial angular momentum, it
must precess instead of merely toppling over.

We can find the precession rate � by first using Eqs. 11-44 and 11-42 to get
the magnitude of :

dL � t dt � Mgr dt. (11-45)

As changes by an incremental amount in an incremental time interval dt, the
shaft and precess around the z axis through incremental angle df. (In Fig.
11-22c, angle df is exaggerated for clarity.) With the aid of Eqs. 11-43 and 11-45,
we find that df is given by

Dividing this expression by dt and setting the rate � � df/dt, we obtain

(precession rate). (11-46)

This result is valid under the assumption that the spin rate v is rapid. Note that �
decreases as v is increased. Note also that there would be no precession if the
gravitational force did not act on the gyroscope, but because I is a function of
M, mass cancels from Eq. 11-46; thus � is independent of the mass.

Equation 11-46 also applies if the shaft of a spinning gyroscope is at an angle
to the horizontal. It holds as well for a spinning top, which is essentially a spinning
gyroscope at an angle to the horizontal.

Mg:

� �
Mgr
I�

d	 �
dL
L

�
Mgr dt
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L
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dL
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:
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Rolling Bodies For a wheel of radius R rolling smoothly,

vcom � vR, (11-2)

where vcom is the linear speed of the wheel’s center of mass and v is
the angular speed of the wheel about its center. The wheel may
also be viewed as rotating instantaneously about the point P of the
“road” that is in contact with the wheel. The angular speed of the

wheel about this point is the same as the angular speed of the
wheel about its center.The rolling wheel has kinetic energy

(11-5)

where Icom is the rotational moment of the wheel about its center
of mass and M is the mass of the wheel. If the wheel is being accel-

K � 1
2Icom�2 � 1

2�v2
com,
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