

Fig. 11-12 Defining angular momentum. A particle passing through point A has linear momentum $\vec{p}(=m \vec{v})$, with the vector \vec{p} lying in an $x y$ plane. The particle has angular momentum $\vec{\ell}(=\vec{r} \times \vec{p})$ with respect to the origin O. By the right-hand rule, the angular momentum vector points in the positive direction of z. (a) The magnitude of $\vec{\ell}$ is given by $\ell=r p_{\perp}=r m v_{\perp}$. (b) The magnitude of $\vec{\ell}$ is also given by $\ell=r_{\perp} p=r_{\perp} m v$.

11-7 Angular Momentum

Recall that the concept of linear momentum \vec{p} and the principle of conservation of linear momentum are extremely powerful tools. They allow us to predict the outcome of, say, a collision of two cars without knowing the details of the collision. Here we begin a discussion of the angular counterpart of \vec{p}, winding up in Section 11-11 with the angular counterpart of the conservation principle.

Figure 11-12 shows a particle of mass m with linear momentum $\vec{p}(=m \vec{v})$ as it passes through point A in an $x y$ plane. The angular momentum $\vec{\ell}$ of this particle with respect to the origin O is a vector quantity defined as

$$
\begin{equation*}
\vec{\ell}=\vec{r} \times \vec{p}=m(\vec{r} \times \vec{v}) \quad \text { (angular momentum defined) } \tag{11-18}
\end{equation*}
$$

where \vec{r} is the position vector of the particle with respect to O. As the particle moves relative to O in the direction of its momentum $\vec{p}(=m \vec{v})$, position vector \vec{r} rotates around O. Note carefully that to have angular momentum about O, the particle does not itself have to rotate around O. Comparison of Eqs. 11-14 and 11-18 shows that angular momentum bears the same relation to linear momentum that torque does to force. The SI unit of angular momentum is the kilogram-meter-squared per second $\left(\mathrm{kg} \cdot \mathrm{m}^{2} / \mathrm{s}\right)$, equivalent to the joule-second $(\mathrm{J} \cdot \mathrm{s})$.

To find the direction of the angular momentum vector $\vec{\ell}$ in Fig. 11-12, we slide the vector \vec{p} until its tail is at the origin O. Then we use the right-hand rule for vector products, sweeping the fingers from \vec{r} into \vec{p}. The outstretched thumb then shows that the direction of $\vec{\ell}$ is in the positive direction of the z axis in Fig. 11-12. This positive direction is consistent with the counterclockwise rotation of position vector \vec{r} about the z axis, as the particle moves. (A negative direction of $\vec{\ell}$ would be consistent with a clockwise rotation of \vec{r} about the z axis.)

To find the magnitude of $\vec{\ell}$, we use the general result of Eq. 3-27 to write

$$
\begin{equation*}
\ell=r m v \sin \phi, \tag{11-19}
\end{equation*}
$$

where ϕ is the smaller angle between \vec{r} and \vec{p} when these two vectors are tail to tail. From Fig. 11-12a, we see that Eq. 11-19 can be rewritten as

$$
\begin{equation*}
\ell=r p_{\perp}=r m v_{\perp} \tag{11-20}
\end{equation*}
$$

where p_{\perp} is the component of \vec{p} perpendicular to \vec{r} and ν_{\perp} is the component of \vec{v} perpendicular to \vec{r}. From Fig. 11-12b, we see that Eq. 11-19 can also be rewritten as

$$
\begin{equation*}
\ell=r_{\perp} p=r_{\perp} m v \tag{11-21}
\end{equation*}
$$

where r_{\perp} is the perpendicular distance between O and the extension of \vec{p}.
Note two features here: (1) angular momentum has meaning only with respect to a specified origin and (2) its direction is always perpendicular to the plane formed by the position and linear momentum vectors \vec{r} and \vec{p}.

CHECKPOINT 4

In part a of the figure, particles 1 and 2 move around point O in circles with radii 2 m and 4 m . In part b, particles 3 and 4 travel along straight lines at perpendicular distances of 4 m and 2 m from point O. Particle 5 moves directly away from O.

(a)

(b) All five particles have the same mass and the same constant speed. (a) Rank the particles according to the magnitudes of their angular momentum about point O, greatest first. (b) Which particles have negative angular momentum about point O ?

Sample Problem

Angular momentum of a two-particle system

Figure 11-13 shows an overhead view of two particles moving at constant momentum along horizontal paths. Particle 1 , with momentum magnitude $p_{1}=5.0 \mathrm{~kg} \cdot \mathrm{~m} / \mathrm{s}$, has position vector \vec{r}_{1} and will pass 2.0 m from point O. Particle 2, with momentum magnitude $p_{2}=2.0 \mathrm{~kg} \cdot \mathrm{~m} / \mathrm{s}$, has position vector \vec{r}_{2} and will pass 4.0 m from point O. What are the magnitude and direction of the net angular momentum \vec{L} about point O of the twoparticle system?

KEY IDEA

To find \vec{L}, we can first find the individual angular momenta $\vec{\ell}_{1}$ and $\vec{\ell}_{2}$ and then add them. To evaluate their magnitudes, we can use any one of Eqs. 11-18 through 11-21. However, Eq. 11-21 is easiest, because we are given the perpendicular distances $r_{1 \perp}(=2.0 \mathrm{~m})$ and $r_{2 \perp}(=4.0 \mathrm{~m})$ and the momentum magnitudes p_{1} and p_{2}.

Calculations: For particle 1, Eq. 11-21 yields

$$
\begin{aligned}
\ell_{1} & =r_{\perp 1} p_{1}=(2.0 \mathrm{~m})(5.0 \mathrm{~kg} \cdot \mathrm{~m} / \mathrm{s}) \\
& =10 \mathrm{~kg} \cdot \mathrm{~m}^{2} / \mathrm{s} .
\end{aligned}
$$

To find the direction of vector $\overrightarrow{\ell_{1}}$, we use Eq. 11-18 and the right-hand rule for vector products. For $\vec{r}_{1} \times \vec{p}_{1}$, the vector product is out of the page, perpendicular to the plane of Fig. $11-13$. This is the positive direction, consistent with the counterclockwise rotation of the particle's position vector

Fig. 11-13 Two particles pass near point O.

\vec{r}_{1} around O as particle 1 moves. Thus, the angular momentum vector for particle 1 is

$$
\ell_{1}=+10 \mathrm{~kg} \cdot \mathrm{~m}^{2} / \mathrm{s} .
$$

Similarly, the magnitude of $\vec{\ell}_{2}$ is

$$
\begin{aligned}
\ell_{2} & =r_{\perp 2} p_{2}=(4.0 \mathrm{~m})(2.0 \mathrm{~kg} \cdot \mathrm{~m} / \mathrm{s}) \\
& =8.0 \mathrm{~kg} \cdot \mathrm{~m}^{2} / \mathrm{s},
\end{aligned}
$$

and the vector product $\vec{r}_{2} \times \vec{p}_{2}$ is into the page, which is the negative direction, consistent with the clockwise rotation of \vec{r}_{2} around O as particle 2 moves. Thus, the angular momentum vector for particle 2 is

$$
\ell_{2}=-8.0 \mathrm{~kg} \cdot \mathrm{~m}^{2} / \mathrm{s} .
$$

The net angular momentum for the two-particle system is

$$
\begin{aligned}
L & =\ell_{1}+\ell_{2}=+10 \mathrm{~kg} \cdot \mathrm{~m}^{2} / \mathrm{s}+\left(-8.0 \mathrm{~kg} \cdot \mathrm{~m}^{2} / \mathrm{s}\right) \\
& =+2.0 \mathrm{~kg} \cdot \mathrm{~m}^{2} / \mathrm{s} .
\end{aligned}
$$

(Answer)
The plus sign means that the system's net angular momentum about point O is out of the page.

11-8 Newton's Second Law in Angular Form

Newton's second law written in the form

$$
\begin{equation*}
\vec{F}_{\mathrm{net}}=\frac{d \vec{p}}{d t} \quad \text { (single particle) } \tag{11-22}
\end{equation*}
$$

expresses the close relation between force and linear momentum for a single particle. We have seen enough of the parallelism between linear and angular quantities to be pretty sure that there is also a close relation between torque and angular momentum. Guided by Eq. 11-22, we can even guess that it must be

$$
\begin{equation*}
\vec{\tau}_{\text {net }}=\frac{d \vec{\ell}}{d t} \quad \text { (single particle) } \tag{11-23}
\end{equation*}
$$

Equation 11-23 is indeed an angular form of Newton's second law for a single particle:

The (vector) sum of all the torques acting on a particle is equal to the time rate of change of the angular momentum of that particle.

Equation 11-23 has no meaning unless the torques $\vec{\tau}$ and the angular momentum $\vec{\ell}$ are defined with respect to the same point, usually the origin of the coordinate system being used.

Proof of Equation 11-23

We start with Eq. 11-18, the definition of the angular momentum of a particle:

$$
\vec{\ell}=m(\vec{r} \times \vec{v})
$$

where \vec{r} is the position vector of the particle and \vec{v} is the velocity of the particle. Differentiating* each side with respect to time t yields

$$
\begin{equation*}
\frac{d \vec{\ell}}{d t}=m\left(\vec{r} \times \frac{d \vec{v}}{d t}+\frac{d \vec{r}}{d t} \times \vec{v}\right) \tag{11-24}
\end{equation*}
$$

However, $d \vec{v} / d t$ is the acceleration \vec{a} of the particle, and $d \vec{r} / d t$ is its velocity \vec{v}. Thus, we can rewrite Eq. 11-24 as

$$
\frac{d \vec{\ell}}{d t}=m(\vec{r} \times \vec{a}+\vec{v} \times \vec{v})
$$

Now $\vec{v} \times \vec{v}=0$ (the vector product of any vector with itself is zero because the angle between the two vectors is necessarily zero). Thus, the last term of this expression is eliminated and we then have

$$
\frac{d \vec{\ell}}{d t}=m(\vec{r} \times \vec{a})=\vec{r} \times m \vec{a} .
$$

We now use Newton's second law ($\vec{F}_{\text {net }}=m \vec{a}$) to replace $m \vec{a}$ with its equal, the vector sum of the forces that act on the particle, obtaining

$$
\begin{equation*}
\frac{d \vec{\ell}}{d t}=\vec{r} \times \vec{F}_{\mathrm{net}}=\sum(\vec{r} \times \vec{F}) \tag{11-25}
\end{equation*}
$$

Here the symbol Σ indicates that we must sum the vector products $\vec{r} \times \vec{F}$ for all the forces. However, from Eq. 11-14, we know that each one of those vector products is the torque associated with one of the forces. Therefore, Eq. 11-25 tells us that

$$
\vec{\tau}_{\text {net }}=\frac{d \vec{\ell}}{d t}
$$

This is Eq. 11-23, the relation that we set out to prove.

CHECKPOINT 5

The figure shows the position vector \vec{r} of a particle at a certain instant, and four choices for the direction of a force that is to accelerate the particle. All four choices lie in the $x y$ plane. (a) Rank the choices according to the magnitude of the time rate of change ($d \vec{\ell} / d t$) they produce in the angular momentum of the particle about point O, greatest first. (b) Which choice results in a negative rate of change about O ?

[^0]
Sample Problem

Torque, time derivative of angular momentum, penguin fall

In Fig. 11-14, a penguin of mass m falls from rest at point A, a horizontal distance D from the origin O of an $x y z$ coordinate system. (The positive direction of the z axis is directly outward from the plane of the figure.)
(a) What is the angular momentum $\vec{\ell}$ of the falling penguin about O ?

KEY IDEA

We can treat the penguin as a particle, and thus its angular momentum $\vec{\ell}$ is given by Eq. 11-18 $(\vec{\ell}=\vec{r} \times \vec{p})$, where \vec{r} is the penguin's position vector (extending from O to the penguin) and \vec{p} is the penguin's linear momentum. (The penguin has angular momentum about O even though it moves in a straight line, because vector \vec{r} rotates about O as the penguin falls.)
Calculations: To find the magnitude of $\vec{\ell}$, we can use any one of the scalar equations derived from Eq. 11-18namely, Eqs. 11-19 through 11-21. However, Eq. 11-21 $\left(\ell=r_{\perp} m v\right)$ is easiest because the perpendicular distance r_{\perp} between O and an extension of vector \vec{p} is the given distance D. The speed of an object that has fallen from rest for a time t is $v=g t$. We can now write Eq. 11-21 in terms of given quantities as

$$
\ell=r_{\perp} m v=\text { Dmgt. }
$$

(Answer)
To find the direction of $\vec{\ell}$, we use the right-hand rule for the vector product $\vec{r} \times \vec{p}$ in Eq. 11-18. Mentally shift \vec{p} until its tail is at the origin, and then use the fingers of your right hand to rotate \vec{r} into \vec{p} through the smaller angle between the two vectors. Your outstretched thumb then points into the plane of the figure, indicating that the product $\vec{r} \times \vec{p}$ and thus also $\vec{\ell}$ are directed into that plane, in the negative direction of the z axis. We represent $\vec{\ell}$ with an encircled cross \otimes at O. The vector $\vec{\ell}$ changes with time in magnitude only; its direction remains unchanged.
(b) About the origin O, what is the torque $\vec{\tau}$ on the penguin due to the gravitational force \vec{F}_{g} ?

KEY IDEAS

(1) The torque is given by Eq. $11-14(\vec{\tau}=\vec{r} \times \vec{F})$, where now the force is \vec{F}_{g}. (2) Force \vec{F}_{g} causes a torque on the penguin, even though the penguin moves in a straight line, because \vec{r} rotates about O as the penguin moves.

Fig. 11-14 A penguin falls vertically from point A. The torque $\vec{\tau}$ and the angular momentum $\vec{\ell}$ of the falling penguin with respect to the origin O are directed into the plane of the figure at O.

Calculations: To find the magnitude of $\vec{\tau}$, we can use any one of the scalar equations derived from Eq. 11-14namely, Eqs. 11-15 through 11-17. However, Eq. 11-17 ($\tau=r_{\perp} F$) is easiest because the perpendicular distance r_{\perp} between O and the line of action of \vec{F}_{g} is the given distance D. So, substituting D and using $m g$ for the magnitude of \vec{F}_{g}, we can write Eq. 11-17 as

$$
\tau=D F_{g}=D m g .
$$

(Answer)
Using the right-hand rule for the vector product $\vec{r} \times \vec{F}$ in Eq. 11-14, we find that the direction of $\vec{\tau}$ is the negative direction of the z axis, the same as $\vec{\ell}$.

The results we obtained in parts (a) and (b) must be consistent with Newton's second law in the angular form of Eq. 11-23 ($\left.\vec{\tau}_{\text {net }}=d \vec{\ell} / d t\right)$. To check the magnitudes we got, we write Eq. 11-23 in component form for the z axis and then substitute our result $\ell=$ Dmgt. We find

$$
\tau=\frac{d \ell}{d t}=\frac{d(D m g t)}{d t}=D m g
$$

which is the magnitude we found for $\vec{\tau}$. To check the directions, we note that Eq. 11-23 tells us that $\vec{\tau}$ and $d \vec{\ell} / d t$ must have the same direction. So $\vec{\tau}$ and $\vec{\ell}$ must also have the same direction, which is what we found.

11-9 The Angular Momentum of a System of Particles

Now we turn our attention to the angular momentum of a system of particles with respect to an origin. The total angular momentum \vec{L} of the system is the (vector) sum of the angular momenta $\vec{\ell}$ of the individual particles (here with label i):

$$
\begin{equation*}
\vec{L}=\vec{\ell}_{1}+\vec{\ell}_{2}+\vec{\ell}_{3}+\cdots+\vec{\ell}_{n}=\sum_{i=1}^{n} \vec{\ell}_{i} \tag{11-26}
\end{equation*}
$$

With time, the angular momenta of individual particles may change because of interactions between the particles or with the outside. We can find the resulting change in \vec{L} by taking the time derivative of Eq. 11-26. Thus,

$$
\begin{equation*}
\frac{d \vec{L}}{d t}=\sum_{i=1}^{n} \frac{d \vec{\ell}_{i}}{d t} \tag{11-27}
\end{equation*}
$$

From Eq. 11-23, we see that $d \vec{\ell}_{i} / d t$ is equal to the net torque $\vec{\tau}_{\text {net }, i}$ on the i th particle. We can rewrite Eq. 11-27 as

$$
\begin{equation*}
\frac{d \vec{L}}{d t}=\sum_{i=1}^{n} \vec{\tau}_{\text {net }, i} \tag{11-28}
\end{equation*}
$$

That is, the rate of change of the system's angular momentum \vec{L} is equal to the vector sum of the torques on its individual particles. Those torques include internal torques (due to forces between the particles) and external torques (due to forces on the particles from bodies external to the system). However, the forces between the particles always come in third-law force pairs so their torques sum to zero. Thus, the only torques that can change the total angular momentum \vec{L} of the system are the external torques acting on the system.

Let $\vec{\tau}_{\text {net }}$ represent the net external torque, the vector sum of all external torques on all particles in the system. Then we can write Eq. 11-28 as

$$
\begin{equation*}
\vec{\tau}_{\mathrm{net}}=\frac{d \vec{L}}{d t} \quad \text { (system of particles), } \tag{11-29}
\end{equation*}
$$

which is Newton's second law in angular form. It says:
The net external torque $\vec{\tau}_{\text {net }}$ acting on a system of particles is equal to the time rate of change of the system's total angular momentum \vec{L}.

Equation 11-29 is analogous to $\vec{F}_{\text {net }}=d \vec{P} / d t$ (Eq. 9-27) but requires extra caution: Torques and the system's angular momentum must be measured relative to the same origin. If the center of mass of the system is not accelerating relative to an inertial frame, that origin can be any point. However, if it is accelerating, then it must be the origin. For example, consider a wheel as the system of particles. If it is rotating about an axis that is fixed relative to the ground, then the origin for applying Eq. 11-29 can be any point that is stationary relative to the ground. However, if it is rotating about an axis that is accelerating (such as when it rolls down a ramp), then the origin can be only at its center of mass.

11-10 The Angular Momentum of a Rigid Body Rotating About a Fixed Axis

We next evaluate the angular momentum of a system of particles that form a rigid body that rotates about a fixed axis. Figure 11-15a shows such a body. The fixed axis of rotation is a z axis, and the body rotates about it with constant angular speed ω. We wish to find the angular momentum of the body about that axis.

We can find the angular momentum by summing the z components of the angular momenta of the mass elements in the body. In Fig. 11-15a, a typical mass element, of mass Δm_{i}, moves around the z axis in a circular path. The position of the mass element is located relative to the origin O by position vector \vec{r}_{i}. The radius of the mass element's circular path is $r_{\perp i}$, the perpendicular distance between the element and the z axis.

The magnitude of the angular momentum $\vec{\ell}_{i}$ of this mass element, with respect to O, is given by Eq. 11-19:

$$
\ell_{i}=\left(r_{i}\right)\left(p_{i}\right)\left(\sin 90^{\circ}\right)=\left(r_{i}\right)\left(\Delta m_{i} v_{i}\right)
$$

where p_{i} and v_{i} are the linear momentum and linear speed of the mass element, and 90° is the angle between \vec{r}_{i} and \vec{p}_{i}. The angular momentum vector $\vec{\ell}_{i}$ for the mass element in Fig. 11-15a is shown in Fig. 11-15b; its direction must be perpendicular to those of \vec{r}_{i} and \vec{p}_{i}.

We are interested in the component of $\vec{\ell}_{i}$ that is parallel to the rotation axis, here the z axis. That z component is

$$
\ell_{i z}=\ell_{i} \sin \theta=\left(r_{i} \sin \theta\right)\left(\Delta m_{i} v_{i}\right)=r_{\perp i} \Delta m_{i} v_{i} .
$$

The z component of the angular momentum for the rotating rigid body as a whole is found by adding up the contributions of all the mass elements that make up the body. Thus, because $v=\omega r_{\perp}$, we may write

$$
\begin{align*}
L_{z} & =\sum_{i=1}^{n} \ell_{i z}=\sum_{i=1}^{n} \Delta m_{i} v_{i} r_{\perp i}=\sum_{i=1}^{n} \Delta m_{i}\left(\omega r_{\perp i}\right) r_{\perp i} \\
& =\omega\left(\sum_{i=1}^{n} \Delta m_{i} r_{\perp i}^{2}\right) . \tag{11-30}
\end{align*}
$$

We can remove ω from the summation here because it has the same value for all points of the rotating rigid body.

The quantity $\Sigma \Delta m_{i} r_{\perp i}^{2}$ in Eq. 11-30 is the rotational inertia I of the body about the fixed axis (see Eq. 10-33). Thus Eq. 11-30 reduces to

$$
\begin{equation*}
L=I \omega \quad \text { (rigid body, fixed axis). } \tag{11-31}
\end{equation*}
$$

We have dropped the subscript z, but you must remember that the angular momentum defined by Eq. 11-31 is the angular momentum about the rotation axis. Also, I in that equation is the rotational inertia about that same axis.

Table 11-1, which supplements Table 10-3, extends our list of corresponding linear and angular relations.

Table 11-1

More Corresponding Variables and Relations for Translational and Rotational Motion ${ }^{a}$

Translational		Rotational	
Force	\vec{F}	Torque	$\vec{\tau}(=\vec{r} \times \vec{F})$
Linear momentum	\vec{p}	Angular momentum	$\vec{\ell}(=\vec{r} \times \vec{p})$
Linear momentum ${ }^{\text {b }}$	$\vec{P}\left(=\Sigma \vec{p}_{i}\right)$	Angular momentum ${ }^{b}$	$\vec{L}\left(=\Sigma \vec{\ell}_{i}\right)$
Linear momentum ${ }^{\text {b }}$	$\vec{P}=M \vec{v}_{\text {com }}$	Angular momentum ${ }^{c}$	$L=I \omega$
Newton's second law ${ }^{\text {b }}$	$\vec{F}_{\text {net }}=\frac{d \vec{P}}{d t}$	Newton's second law ${ }^{\text {b }}$	$\vec{\tau}_{\mathrm{net}}=\frac{d \vec{L}}{d t}$
Conservation law ${ }^{\text {d }}$	$\vec{P}=$ a constant	Conservation law ${ }^{\text {d }}$	$\vec{L}=$ a constant

${ }^{a}$ See also Table 10-3.

${ }^{b}$ For systems of particles, including rigid bodies.
${ }^{c}$ For a rigid body about a fixed axis, with L being the component along that axis.
${ }^{d}$ For a closed, isolated system.

Fig. 11-15 (a) A rigid body rotates about a z axis with angular speed ω. A mass element of mass Δm_{i} within the body moves about the z axis in a circle with radius $r_{\perp i}$. The mass element has linear momentum \vec{p}_{i}, and it is located relative to the origin O by position vector \vec{r}_{i}. Here the mass element is shown when $r_{\perp i}$ is parallel to the x axis. (b) The angular momentum $\vec{\ell}_{i}$, with respect to O, of the mass element in (a). The z component $\ell_{i z}$ is also shown.

CHECKPOINT 6
In the figure, a disk, a hoop, and a solid sphere are made to spin about fixed central axes (like a

 top) by means of strings wrapped around them, with the strings producing the same constant tangential force \vec{F} on all three objects. The three objects have the same mass and radius, and they are initially stationary. Rank the objects according to (a) their angular momentum about their central axes and (b) their angular speed, greatest first, when the strings have been pulled for a certain time t.

11-11 Conservation of Angular Momentum

So far we have discussed two powerful conservation laws, the conservation of energy and the conservation of linear momentum. Now we meet a third law of this type, involving the conservation of angular momentum. We start from Eq. 11-29 $\left(\vec{\tau}_{\text {net }}=d \vec{L} / d t\right)$, which is Newton's second law in angular form. If no net external torque acts on the system, this equation becomes $d \vec{L} / d t=0$, or

$$
\begin{equation*}
\vec{L}=\text { a constant } \quad \text { (isolated system). } \tag{11-32}
\end{equation*}
$$

This result, called the law of conservation of angular momentum, can also be written as

$$
\binom{\text { net angular momentum }}{\text { at some initial time } t_{i}}=\binom{\text { net angular momentum }}{\text { at some later time } t_{f}},
$$

$$
\begin{equation*}
\text { or } \quad \vec{L}_{i}=\vec{L}_{f} \quad \text { (isolated system). } \tag{11-33}
\end{equation*}
$$

Equations 11-32 and 11-33 tell us:
If the net external torque acting on a system is zero, the angular momentum \vec{L} of the system remains constant, no matter what changes take place within the system.

Equations 11-32 and 11-33 are vector equations; as such, they are equivalent to three component equations corresponding to the conservation of angular momentum in three mutually perpendicular directions. Depending on the torques acting on a system, the angular momentum of the system might be conserved in only one or two directions but not in all directions:

If the component of the net external torque on a system along a certain axis is zero, then the component of the angular momentum of the system along that axis cannot change, no matter what changes take place within the system.

We can apply this law to the isolated body in Fig. 11-15, which rotates around the z axis. Suppose that the initially rigid body somehow redistributes its mass relative to that rotation axis, changing its rotational inertia about that axis. Equations 11-32 and 11-33 state that the angular momentum of the body cannot change. Substituting Eq. 11-31 (for the angular momentum along the rotational axis) into Eq. 11-33, we write this conservation law as

$$
\begin{equation*}
I_{i} \omega_{i}=I_{f} \omega_{f} \tag{11-34}
\end{equation*}
$$

Here the subscripts refer to the values of the rotational inertia I and angular speed ω before and after the redistribution of mass.

Like the other two conservation laws that we have discussed, Eqs. 11-32 and 11-33 hold beyond the limitations of Newtonian mechanics. They hold for parti-
cles whose speeds approach that of light (where the theory of special relativity reigns), and they remain true in the world of subatomic particles (where quantum physics reigns). No exceptions to the law of conservation of angular momentum have ever been found.

We now discuss four examples involving this law.

1. The spinning volunteer Figure $11-16$ shows a student seated on a stool that can rotate freely about a vertical axis. The student, who has been set into rotation at a modest initial angular speed ω_{i}, holds two dumbbells in his outstretched hands. His angular momentum vector \vec{L} lies along the vertical rotation axis, pointing upward.

The instructor now asks the student to pull in his arms; this action reduces his rotational inertia from its initial value I_{i} to a smaller value I_{f} because he moves mass closer to the rotation axis. His rate of rotation increases markedly, from ω_{i} to ω_{f}. The student can then slow down by extending his arms once more, moving the dumbbells outward.

No net external torque acts on the system consisting of the student, stool, and dumbbells. Thus, the angular momentum of that system about the rotation axis must remain constant, no matter how the student maneuvers the dumbbells. In Fig. 11-16 a, the student's angular speed ω_{i} is relatively low and his rotational inertia I_{i} is relatively high. According to Eq. 11-34, his angular speed in Fig. 11-16 b must be greater to compensate for the decreased I_{f}.
2. The springboard diver Figure 11-17 shows a diver doing a forward one-and-a-half-somersault dive. As you should expect, her center of mass follows a parabolic path. She leaves the springboard with a definite angular momentum \vec{L} about an axis through her center of mass, represented by a vector pointing into the plane of Fig. 11-17, perpendicular to the page. When she is in the air, no net external torque acts on her about her center of mass, so her angular momentum about her center of mass cannot change. By pulling her arms and legs into the closed tuck position, she can considerably reduce her rotational inertia about the same axis and thus, according to Eq. 11-34, considerably increase her angular speed. Pulling out of the tuck position (into the open layout position) at the end of the dive increases her rotational inertia and thus slows her rotation rate so she can enter the water with little splash. Even in a more complicated dive involving both twisting and somersaulting, the angular momentum of the diver must be conserved, in both magnitude and direction, throughout the dive.
3. Long jump When an athlete takes off from the ground in a running long jump, the forces on the launching foot give the athlete an angular momentum with a forward rotation around a horizontal axis. Such rotation would not allow

Fig. 11-16 (a) The student has a relatively large rotational inertia about the rotation axis and a relatively small angular speed. (b) By decreasing his rotational inertia, the student automatically increases his angular speed. The angular momentum \vec{L} of the rotating system remains unchanged.

Fig.11-17 The diver's angular momentum \vec{L} is constant throughout the dive, being represented by the tail \otimes of an arrow that is perpendicular to the plane of the figure. Note also that her center of mass (see the dots) follows a parabolic path.

Fig. 11-19 (a) Initial phase of a tour jeté: large rotational inertia and small angular speed. (b) Later phase: smaller rotational inertia and larger angular speed.

Fig. 11-18 Windmill motion of the arms during a long jump helps maintain body orientation for a proper landing.
the jumper to land properly: In the landing, the legs should be together and extended forward at an angle so that the heels mark the sand at the greatest distance. Once airborne, the angular momentum cannot change (it is conserved) because no external torque acts to change it. However, the jumper can shift most of the angular momentum to the arms by rotating them in windmill fashion (Fig. 11-18). Then the body remains upright and in the proper orientation for landing.
4. Tour jeté In a tour jeté, a ballet performer leaps with a small twisting motion on the floor with one foot while holding the other leg perpendicular to the body (Fig. 11-19a). The angular speed is so small that it may not be perceptible to the audience. As the performer ascends, the outstretched leg is brought down and the other leg is brought up, with both ending up at angle θ to the body (Fig. $11-19 b$). The motion is graceful, but it also serves to increase the rotation because bringing in the initially outstretched leg decreases the performer's rotational inertia. Since no external torque acts on the airborne performer, the angular momentum cannot change. Thus, with a decrease in rotational inertia, the angular speed must increase. When the jump is well executed, the performer seems to suddenly begin to spin and rotates 180° before the initial leg orientations are reversed in preparation for the landing. Once a leg is again outstretched, the rotation seems to vanish.

CHECKPOINT 7

A rhinoceros beetle rides the rim of a small disk that rotates like a merry-go-round. If the beetle crawls toward the center of the disk, do the following (each relative to the central axis) increase, decrease, or remain the same for the beetle-disk system: (a) rotational inertia, (b) angular momentum, and (c) angular speed?

Sample Problem

Conservation of angular momentum, rotating wheel demo

Figure 11-20a shows a student, again sitting on a stool that can rotate freely about a vertical axis. The student, initially at rest, is holding a bicycle wheel whose rim is loaded with lead and whose rotational inertia $I_{w h}$ about its central axis is $1.2 \mathrm{~kg} \cdot \mathrm{~m}^{2}$. (The rim contains lead in order to make the value of $I_{w h}$ substantial.) The wheel is rotating at an angular speed $\omega_{w h}$ of $3.9 \mathrm{rev} / \mathrm{s}$; as seen from overhead, the rotation is counterclockwise. The axis of the wheel is vertical, and the angular momentum $\vec{L}_{w h}$ of the wheel points vertically upward. The student now inverts the wheel (Fig. 11-20b) so
that, as seen from overhead, it is rotating clockwise. Its angular momentum is now $-\vec{L}_{w h}$. The inversion results in the student, the stool, and the wheel's center rotating together as a composite rigid body about the stool's rotation axis, with rotational inertia $I_{b}=6.8 \mathrm{~kg} \cdot \mathrm{~m}^{2}$. (The fact that the wheel is also rotating about its center does not affect the mass distribution of this composite body; thus, I_{b} has the same value whether or not the wheel rotates.) With what angular speed ω_{b} and in what direction does the composite body rotate after the inversion of the wheel?

Fig. 11-20 (a) A student holds a bicycle wheel rotating around a vertical axis. (b) The student inverts the wheel, setting himself into rotation. (c) The net angular momentum of the system must remain the same in spite of the inversion.

KEY IDEAS

1. The angular speed ω_{b} we seek is related to the final angular momentum \vec{L}_{b} of the composite body about the stool's rotation axis by Eq. 11-31 $(L=I \omega)$.
2. The initial angular speed $\omega_{w h}$ of the wheel is related to the angular momentum $\vec{L}_{w h}$ of the wheel's rotation about its center by the same equation.
3. The vector addition of \vec{L}_{b} and $\vec{L}_{w h}$ gives the total angular momentum $\vec{L}_{\text {tot }}$ of the system of the student, stool, and wheel.
4. As the wheel is inverted, no net external torque acts on that system to change $\vec{L}_{\text {tot }}$ about any vertical axis. (Torques due to forces between the student and the wheel as the student inverts the wheel are internal to the system.) So, the system's total angular momentum is conserved about any vertical axis.

Calculations: The conservation of $\vec{L}_{\text {tot }}$ is represented with vectors in Fig. 11-20c. We can also write this conservation in terms of components along a vertical axis as

$$
\begin{equation*}
L_{b, f}+L_{w h, f}=L_{b, i}+L_{w h, i}, \tag{11-35}
\end{equation*}
$$

where i and f refer to the initial state (before inversion of the wheel) and the final state (after inversion). Because inversion of the wheel inverted the angular momentum vector of the wheel's rotation, we substitute $-L_{w h, i}$ for $L_{w h, f}$. Then, if we set $L_{b, i}=0$ (because the student, the stool, and the wheel's center were initially at rest), Eq. 11-35 yields

$$
L_{b, f}=2 L_{w h, i} .
$$

Using Eq. 11-31, we next substitute $I_{b} \omega_{b}$ for $L_{b, f}$ and $I_{w h} \omega_{w h}$ for $L_{w h, i}$ and solve for ω_{b}, finding

$$
\begin{aligned}
\omega_{b} & =\frac{2 I_{w h}}{I_{b}} \omega_{w h} \\
& =\frac{(2)\left(1.2 \mathrm{~kg} \cdot \mathrm{~m}^{2}\right)(3.9 \mathrm{rev} / \mathrm{s})}{6.8 \mathrm{~kg} \cdot \mathrm{~m}^{2}}=1.4 \mathrm{rev} / \mathrm{s}
\end{aligned}
$$

(Answer)

This positive result tells us that the student rotates counterclockwise about the stool axis as seen from overhead. If the student wishes to stop rotating, he has only to invert the wheel once more.

Sample Problem

Conservation of angular momentum, cockroach on disk

In Fig. 11-21, a cockroach with mass m rides on a disk of mass 6.00 m and radius R. The disk rotates like a merry-go-round around its central axis at angular speed $\omega_{i}=1.50 \mathrm{rad} / \mathrm{s}$. The cockroach is initially at radius $r=0.800 R$, but then it crawls out to the rim of the disk. Treat the cockroach as a particle. What then is the angular speed?

KEY IDEAS

(1) The cockroach's crawl changes the mass distribution (and thus the rotational inertia) of the cockroach-disk system. (2) The angular momentum of the system does not change because there is no external torque to change it. (The forces

Fig. 11-21 A cockroach rides at radius r on a disk rotating like a merry-go-round.
and torques due to the cockroach's crawl are internal to the system.) (3) The magnitude of the angular momentum of a rigid body or a particle is given by Eq. 11-31 $(L=I \omega)$.

Calculations: We want to find the final angular speed. Our key is to equate the final angular momentum L_{f} to the initial angular momentum L_{i}, because both involve angular speed. They also involve rotational inertia I. So, let's start by finding the rotational inertia of the system of cockroach and disk before and after the crawl.

The rotational inertia of a disk rotating about its central axis is given by Table $10-2 c$ as $\frac{1}{2} M R^{2}$. Substituting $6.00 m$ for the mass M, our disk here has rotational inertia

$$
\begin{equation*}
I_{d}=3.00 m R^{2} \tag{11-36}
\end{equation*}
$$

(We don't have values for m and R, but we shall continue with physics courage.)

From Eq. 10-33, we know that the rotational inertia of the cockroach (a particle) is equal to $m r^{2}$. Substituting the cockroach's initial radius ($r=0.800 R$) and final radius ($r=R$), we find that its initial rotational inertia about the rotation axis is

$$
\begin{equation*}
I_{c i}=0.64 m R^{2} \tag{11-37}
\end{equation*}
$$

and its final rotational inertia about the rotation axis is

$$
\begin{equation*}
I_{c f}=m R^{2} \tag{11-38}
\end{equation*}
$$

So, the cockroach-disk system initially has the rotational inertia

$$
\begin{equation*}
I_{i}=I_{d}+I_{c i}=3.64 m R^{2} \tag{11-39}
\end{equation*}
$$

and finally has the rotational inertia

$$
\begin{equation*}
I_{f}=I_{d}+I_{c f}=4.00 m R^{2} \tag{11-40}
\end{equation*}
$$

Next, we use Eq. 11-31 $(L=I \omega)$ to write the fact that the system's final angular momentum L_{f} is equal to the system's initial angular momentum L_{i} :

$$
I_{f} \omega_{f}=I_{i} \omega_{i}
$$

or $\quad 4.00 m R^{2} \omega_{f}=3.64 m R^{2}(1.50 \mathrm{rad} / \mathrm{s})$.
After canceling the unknowns m and R, we come to

$$
\omega_{f}=1.37 \mathrm{rad} / \mathrm{s}
$$

(Answer)
Note that the angular speed decreased because part of the mass moved outward from the rotation axis, thus increasing the rotational inertia of the system.

Additional examples, video, and practice available at WileyPLUS

11-12 Precession of a Gyroscope

A simple gyroscope consists of a wheel fixed to a shaft and free to spin about the axis of the shaft. If one end of the shaft of a nonspinning gyroscope is placed on a support as in Fig. 11-22a and the gyroscope is released, the gyroscope falls by rotating downward about the tip of the support. Since the fall involves rotation, it is governed by Newton's second law in angular form, which is given by Eq. 11-29:

$$
\begin{equation*}
\vec{\tau}=\frac{d \vec{L}}{d t} \tag{11-41}
\end{equation*}
$$

This equation tells us that the torque causing the downward rotation (the fall) changes the angular momentum \vec{L} of the gyroscope from its initial value of zero. The torque $\vec{\tau}$ is due to the gravitational force $M \vec{g}$ acting at the gyroscope's center of mass, which we take to be at the center of the wheel. The moment arm relative to the support tip, located at O in Fig. 11-22a, is \vec{r}. The magnitude of $\vec{\tau}$ is

$$
\begin{equation*}
\tau=M g r \sin 90^{\circ}=M g r \tag{11-42}
\end{equation*}
$$

(because the angle between $M \vec{g}$ and \vec{r} is 90°), and its direction is as shown in Fig. 11-22a.

A rapidly spinning gyroscope behaves differently. Assume it is released with the shaft angled slightly upward. It first rotates slightly downward but then, while it is still spinning about its shaft, it begins to rotate horizontally about a vertical axis through support point O in a motion called precession.

Why does the spinning gyroscope stay aloft instead of falling over like the nonspinning gyroscope? The clue is that when the spinning gyroscope is released, the torque due to $M \vec{g}$ must change not an initial angular momentum of zero but rather some already existing nonzero angular momentum due to the spin.

To see how this nonzero initial angular momentum leads to precession, we first consider the angular momentum \vec{L} of the gyroscope due to its spin. To
simplify the situation, we assume the spin rate is so rapid that the angular momentum due to precession is negligible relative to \vec{L}. We also assume the shaft is horizontal when precession begins, as in Fig. 11-22b. The magnitude of \vec{L} is given by Eq. 11-31:

$$
\begin{equation*}
L=I \omega, \tag{11-43}
\end{equation*}
$$

where I is the rotational moment of the gyroscope about its shaft and ω is the angular speed at which the wheel spins about the shaft. The vector \vec{L} points along the shaft, as in Fig. 11-22b. Since \vec{L} is parallel to \vec{r}, torque $\vec{\tau}$ must be perpendicular to \vec{L}.

According to Eq. 11-41, torque $\vec{\tau}$ causes an incremental change $d \vec{L}$ in the angular momentum of the gyroscope in an incremental time interval $d t$; that is,

$$
\begin{equation*}
d \vec{L}=\vec{\tau} d t \tag{11-44}
\end{equation*}
$$

However, for a rapidly spinning gyroscope, the magnitude of \vec{L} is fixed by Eq. 11-43. Thus the torque can change only the direction of \vec{L}, not its magnitude.

From Eq. $11-44$ we see that the direction of $d \vec{L}$ is in the direction of $\vec{\tau}$, perpendicular to \vec{L}. The only way that \vec{L} can be changed in the direction of $\vec{\tau}$ without the magnitude L being changed is for \vec{L} to rotate around the z axis as shown in Fig. 11-22c. \vec{L} maintains its magnitude, the head of the \vec{L} vector follows a circular path, and $\vec{\tau}$ is always tangent to that path. Since \vec{L} must always point along the shaft, the shaft must rotate about the z axis in the direction of $\vec{\tau}$. Thus we have precession. Because the spinning gyroscope must obey Newton's law in angular form in response to any change in its initial angular momentum, it must precess instead of merely toppling over.

We can find the precession rate Ω by first using Eqs. 11-44 and 11-42 to get the magnitude of $d \vec{L}$:

$$
\begin{equation*}
d L=\tau d t=M g r d t \tag{11-45}
\end{equation*}
$$

As \vec{L} changes by an incremental amount in an incremental time interval $d t$, the shaft and \vec{L} precess around the z axis through incremental angle $d \phi$. (In Fig. 11-22c, angle $d \phi$ is exaggerated for clarity.) With the aid of Eqs. 11-43 and 11-45, we find that $d \phi$ is given by

$$
d \phi=\frac{d L}{L}=\frac{M g r d t}{I \omega}
$$

Dividing this expression by $d t$ and setting the rate $\Omega=d \phi / d t$, we obtain

$$
\begin{equation*}
\Omega=\frac{M g r}{I \omega} \quad \text { (precession rate). } \tag{11-46}
\end{equation*}
$$

This result is valid under the assumption that the spin rate ω is rapid. Note that Ω decreases as ω is increased. Note also that there would be no precession if the gravitational force $M \vec{g}$ did not act on the gyroscope, but because I is a function of M, mass cancels from Eq. 11-46; thus Ω is independent of the mass.

Equation 11-46 also applies if the shaft of a spinning gyroscope is at an angle to the horizontal. It holds as well for a spinning top, which is essentially a spinning gyroscope at an angle to the horizontal.

(a)

(b)

(c)

Fig. 11-22 (a) A nonspinning gyroscope falls by rotating in an $x z$ plane because of torque $\vec{\tau}$. (b) A rapidly spinning gyroscope, with angular momentum \vec{L}, precesses around the z axis. Its precessional motion is in the $x y$ plane. (c) The change $d \vec{L} / d t$ in angular momentum leads to a rotation of \vec{L} about O.

REVIEW \& SUMMARY

Rolling Bodies For a wheel of radius R rolling smoothly,

$$
\begin{equation*}
v_{\mathrm{com}}=\omega R \tag{11-2}
\end{equation*}
$$

where $v_{\text {com }}$ is the linear speed of the wheel's center of mass and ω is the angular speed of the wheel about its center. The wheel may also be viewed as rotating instantaneously about the point P of the "road" that is in contact with the wheel. The angular speed of the
wheel about this point is the same as the angular speed of the wheel about its center. The rolling wheel has kinetic energy

$$
\begin{equation*}
K=\frac{1}{2} I_{\mathrm{com}} \omega^{2}+\frac{1}{2} M v_{\mathrm{com}}^{2}, \tag{11-5}
\end{equation*}
$$

where $I_{\text {com }}$ is the rotational moment of the wheel about its center of mass and M is the mass of the wheel. If the wheel is being accel-

[^0]: *In differentiating a vector product, be sure not to change the order of the two quantities (here \vec{r} and \vec{v}) that form that product. (See Eq. 3-28.)

