ROTATION

||I

WHAT IS PHYSICS?

As we have discussed, one focus of physics is motion. However, so far we have examined only the motion of translation, in which an object moves along a straight or curved line, as in Fig. 10-1a. We now turn to the motion of rotation, in which an object turns about an axis, as in Fig. 10-1b.

You see rotation in nearly every machine, you use it every time you open a beverage can with a pull tab, and you pay to experience it every time you go to an amusement park. Rotation is the key to many fun activities, such as hitting a long drive in golf (the ball needs to rotate in order for the air to keep it aloft longer) and throwing a curveball in baseball (the ball needs to rotate in order for the air to push it left or right). Rotation is also the key to more serious matters, such as metal failure in aging airplanes.

We begin our discussion of rotation by defining the variables for the motion, just as we did for translation in Chapter 2. As we shall see, the variables for rotation are analogous to those for one-dimensional motion and, as in Chapter 2, an important special situation is where the acceleration (here the rotational acceleration) is constant. We shall also see that Newton's second law can be written for rotational motion, but we must use a new quantity called torque instead of just force. Work and the work-kinetic energy theorem can also be applied to rotational motion, but we must use a new quantity called rotational inertia instead of just mass. In short, much of what we have discussed so far can be applied to rotational motion with, perhaps, a few changes.

10-2 The Rotational Variables

We wish to examine the rotation of a rigid body about a fixed axis. A rigid body is a body that can rotate with all its parts locked together and without any change in its shape. A fixed axis means that the rotation occurs about an axis that does not move. Thus, we shall not examine an object like the Sun, because the parts of the Sun (a ball of gas) are not locked together. We also shall not examine an object like a bowling ball rolling along a lane, because the ball rotates about a moving axis (the ball's motion is a mixture of rotation and translation).

Fig. 10-1 Figure skater Sasha Cohen in motion of (a) pure translation in a fixed direction and (b) pure rotation about a vertical axis. (a: Mike Segar/Reuters/Landov LLC; b: Elsa/Getty Images, Inc.)

Fig. 10-2 A rigid body of arbitrary shape in pure rotation about the z axis of a coordinate system. The position of the reference line with respect to the rigid body is arbitrary, but it is perpendicular to the rotation axis. It is fixed in the body and rotates with the body.

This dot means that the rotation axis is out toward you.

Fig. 10-3 The rotating rigid body of Fig. 10-2 in cross section, viewed from above. The plane of the cross section is perpendicular to the rotation axis, which now extends out of the page, toward you. In this position of the body, the reference line makes an angle θ with the x axis.

Figure 10-2 shows a rigid body of arbitrary shape in rotation about a fixed axis, called the axis of rotation or the rotation axis. In pure rotation (angular motion), every point of the body moves in a circle whose center lies on the axis of rotation, and every point moves through the same angle during a particular time interval. In pure translation (linear motion), every point of the body moves in a straight line, and every point moves through the same linear distance during a particular time interval.

We deal now - one at a time - with the angular equivalents of the linear quantities position, displacement, velocity, and acceleration.

Angular Position

Figure 10-2 shows a reference line, fixed in the body, perpendicular to the rotation axis and rotating with the body. The angular position of this line is the angle of the line relative to a fixed direction, which we take as the zero angular position. In Fig. 10-3, the angular position θ is measured relative to the positive direction of the x axis. From geometry, we know that θ is given by

$$
\begin{equation*}
\theta=\frac{s}{r} \quad \text { (radian measure) } \tag{10-1}
\end{equation*}
$$

Here s is the length of a circular arc that extends from the x axis (the zero angular position) to the reference line, and r is the radius of the circle.

An angle defined in this way is measured in radians (rad) rather than in revolutions (rev) or degrees. The radian, being the ratio of two lengths, is a pure number and thus has no dimension. Because the circumference of a circle of radius r is $2 \pi r$, there are 2π radians in a complete circle:

$$
\begin{equation*}
1 \mathrm{rev}=360^{\circ}=\frac{2 \pi r}{r}=2 \pi \mathrm{rad} \tag{10-2}
\end{equation*}
$$

and thus

$$
\begin{equation*}
1 \mathrm{rad}=57.3^{\circ}=0.159 \mathrm{rev} \tag{10-3}
\end{equation*}
$$

We do not reset θ to zero with each complete rotation of the reference line about the rotation axis. If the reference line completes two revolutions from the zero angular position, then the angular position θ of the line is $\theta=4 \pi \mathrm{rad}$.

For pure translation along an x axis, we can know all there is to know about a moving body if we know $x(t)$, its position as a function of time. Similarly, for pure rotation, we can know all there is to know about a rotating body if we know $\theta(t)$, the angular position of the body's reference line as a function of time.

Angular Displacement

If the body of Fig. 10-3 rotates about the rotation axis as in Fig. 10-4, changing the angular position of the reference line from θ_{1} to θ_{2}, the body undergoes an angular displacement $\Delta \theta$ given by

$$
\begin{equation*}
\Delta \theta=\theta_{2}-\theta_{1} \tag{10-4}
\end{equation*}
$$

This definition of angular displacement holds not only for the rigid body as a whole but also for every particle within that body.

If a body is in translational motion along an x axis, its displacement Δx is either positive or negative, depending on whether the body is moving in the positive or negative direction of the axis. Similarly, the angular displacement $\Delta \theta$ of a rotating body is either positive or negative, according to the following rule:

An angular displacement in the counterclockwise direction is positive, and one in the clockwise direction is negative.

The phrase "clocks are negative" can help you remember this rule (they certainly are negative when their alarms sound off early in the morning).

CHECKPOINT 1

A disk can rotate about its central axis like a merry-go-round. Which of the following pairs of values for its initial and final angular positions, respectively, give a negative angular displacement: (a) $-3 \mathrm{rad},+5 \mathrm{rad}$, (b) $-3 \mathrm{rad},-7 \mathrm{rad}$, (c) $7 \mathrm{rad},-3 \mathrm{rad}$?

Angular Velocity

Suppose that our rotating body is at angular position θ_{1} at time t_{1} and at angular position θ_{2} at time t_{2} as in Fig. 10-4. We define the average angular velocity of the body in the time interval Δt from t_{1} to t_{2} to be

$$
\begin{equation*}
\omega_{\mathrm{avg}}=\frac{\theta_{2}-\theta_{1}}{t_{2}-t_{1}}=\frac{\Delta \theta}{\Delta t} \tag{10-5}
\end{equation*}
$$

where $\Delta \theta$ is the angular displacement during Δt (ω is the lowercase omega).
The (instantaneous) angular velocity ω, with which we shall be most concerned, is the limit of the ratio in Eq. $10-5$ as Δt approaches zero. Thus,

$$
\begin{equation*}
\omega=\lim _{\Delta t \rightarrow 0} \frac{\Delta \theta}{\Delta t}=\frac{d \theta}{d t} . \tag{10-6}
\end{equation*}
$$

If we know $\theta(t)$, we can find the angular velocity ω by differentiation.
Equations $10-5$ and 10-6 hold not only for the rotating rigid body as a whole but also for every particle of that body because the particles are all locked together. The unit of angular velocity is commonly the radian per second ($\mathrm{rad} / \mathrm{s}$) or the revolution per second (rev/s). Another measure of angular velocity was used during at least the first three decades of rock: Music was produced by vinyl (phonograph) records that were played on turntables at " $33 \frac{1}{3} \mathrm{rpm}$ " or " 45 rpm ," meaning at $33 \frac{1}{3} \mathrm{rev} / \mathrm{min}$ or $45 \mathrm{rev} / \mathrm{min}$.

If a particle moves in translation along an x axis, its linear velocity v is either positive or negative, depending on its direction along the axis. Similarly, the angular velocity ω of a rotating rigid body is either positive or negative, depending on whether the body is rotating counterclockwise (positive) or clockwise (negative). ("Clocks are negative" still works.) The magnitude of an angular velocity is called the angular speed, which is also represented with ω.

Angular Acceleration

If the angular velocity of a rotating body is not constant, then the body has an angular acceleration. Let ω_{2} and ω_{1} be its angular velocities at times t_{2} and t_{1}, respectively. The average angular acceleration of the rotating body in the interval from t_{1} to t_{2} is defined as

$$
\begin{equation*}
\alpha_{\mathrm{avg}}=\frac{\omega_{2}-\omega_{1}}{t_{2}-t_{1}}=\frac{\Delta \omega}{\Delta t}, \tag{10-7}
\end{equation*}
$$

in which $\Delta \omega$ is the change in the angular velocity that occurs during the time interval Δt. The (instantaneous) angular acceleration α, with which we shall be most concerned, is the limit of this quantity as Δt approaches zero. Thus,

$$
\begin{equation*}
\alpha=\lim _{\Delta t \rightarrow 0} \frac{\Delta \omega}{\Delta t}=\frac{d \omega}{d t} . \tag{10-8}
\end{equation*}
$$

Equations 10-7 and 10-8 also hold for every particle of that body. The unit of angular acceleration is commonly the radian per second-squared ($\mathrm{rad} / \mathrm{s}^{2}$) or the revolution per second-squared (rev/s ${ }^{2}$).

Fig. 10-4 The reference line of the rigid body of Figs. 10-2 and 10-3 is at angular position θ_{1} at time t_{1} and at angular position θ_{2} at a later time t_{2}. The quantity $\Delta \theta\left(=\theta_{2}-\theta_{1}\right)$ is the angular displacement that occurs during the interval $\Delta t\left(=t_{2}-t_{1}\right)$. The body itself is not shown.

Sample Problem

Angular velocity derived from angular position

The disk in Fig. 10-5a is rotating about its central axis like a merry-go-round. The angular position $\theta(t)$ of a reference line on the disk is given by

$$
\begin{equation*}
\theta=-1.00-0.600 t+0.250 t^{2} \tag{10-9}
\end{equation*}
$$

with t in seconds, θ in radians, and the zero angular position as indicated in the figure.
(a) Graph the angular position of the disk versus time from $t=-3.0 \mathrm{~s}$ to $t=5.4 \mathrm{~s}$. Sketch the disk and its angular position reference line at $t=-2.0 \mathrm{~s}, 0 \mathrm{~s}$, and 4.0 s , and when the curve crosses the t axis.

KEY IDEA

The angular position of the disk is the angular position $\theta(t)$ of its reference line, which is given by Eq. 10-9 as a function of time t. So we graph Eq. 10-9; the result is shown in Fig. 10-5b.

Calculations: To sketch the disk and its reference line at a particular time, we need to determine θ for that time. To do so, we substitute the time into Eq. 10-9. For $t=-2.0 \mathrm{~s}$, we get

$$
\begin{aligned}
\theta & =-1.00-(0.600)(-2.0)+(0.250)(-2.0)^{2} \\
& =1.2 \mathrm{rad}=1.2 \mathrm{rad} \frac{360^{\circ}}{2 \pi \mathrm{rad}}=69^{\circ}
\end{aligned}
$$

This means that at $t=-2.0 \mathrm{~s}$ the reference line on the disk is rotated counterclockwise from the zero position by $1.2 \mathrm{rad}=69^{\circ}$ (counterclockwise because θ is positive). Sketch 1 in Fig. 10-5b shows this position of the reference line.

Similarly, for $t=0$, we find $\theta=-1.00 \mathrm{rad}=-57^{\circ}$, which means that the reference line is rotated clockwise from the zero angular position by 1.0 rad , or 57°, as shown in sketch 3 . For $t=4.0 \mathrm{~s}$, we find $\theta=0.60 \mathrm{rad}=34^{\circ}$ (sketch 5). Drawing sketches for when the curve crosses the t axis is easy, because

(a)

The angular position of the disk is the angle between these two lines.

(b)

Now, it is at a negative (clockwise) angle. So, a negative θ value is plotted.

Now, the disk is at a zero angle.

At $t=-2 \mathrm{~s}$, the disk is at a positive (counterclockwise) angle. So, a positive θ value is plotted.

(1)

Fig. 10-5 (a) A rotating disk. (b) A plot of the disk's angular position $\theta(t)$. Five sketches indicate the angular position of the reference line on the disk for five points on the curve. (c) A plot of the disk's angular velocity $\omega(t)$. Positive values of ω correspond to counterclockwise rotation, and negative values to clockwise rotation.
then $\theta=0$ and the reference line is momentarily aligned with the zero angular position (sketches 2 and 4).
(b) At what time $t_{\text {min }}$ does $\theta(t)$ reach the minimum value shown in Fig. 10-5b? What is that minimum value?

KEY IDEA

To find the extreme value (here the minimum) of a function, we take the first derivative of the function and set the result to zero.

Calculations: The first derivative of $\theta(t)$ is

$$
\begin{equation*}
\frac{d \theta}{d t}=-0.600+0.500 t \tag{10-10}
\end{equation*}
$$

Setting this to zero and solving for t give us the time at which $\theta(t)$ is minimum:

$$
t_{\min }=1.20 \mathrm{~s} .
$$

(Answer)

The angular velocity is initially negative and slowing, then momentarily zero during reversal, and then positive and increasing.

To get the minimum value of θ, we next substitute $t_{\text {min }}$ into Eq. 10-9, finding

$$
\theta=-1.36 \mathrm{rad} \approx-77.9^{\circ}
$$

(Answer)
This minimum of $\theta(t)$ (the bottom of the curve in Fig. 10-5b) corresponds to the maximum clockwise rotation of the disk from the zero angular position, somewhat more than is shown in sketch 3.
(c) Graph the angular velocity ω of the disk versus time from $t=-3.0 \mathrm{~s}$ to $t=6.0 \mathrm{~s}$. Sketch the disk and indicate the direction of turning and the sign of ω at $t=-2.0 \mathrm{~s}, 4.0 \mathrm{~s}$, and $t_{\text {min }}$.

KEY IDEA

From Eq. $10-6$, the angular velocity ω is equal to $d \theta / d t$ as given in Eq. 10-10. So, we have

$$
\begin{equation*}
\omega=-0.600+0.500 t \tag{10-11}
\end{equation*}
$$

The graph of this function $\omega(t)$ is shown in Fig. 10-5c.
Calculations: To sketch the disk at $t=-2.0 \mathrm{~s}$, we substitute that value into Eq. 10-11, obtaining

$$
\omega=-1.6 \mathrm{rad} / \mathrm{s}
$$

(Answer)
The minus sign here tells us that at $t=-2.0 \mathrm{~s}$, the disk is turning clockwise (the left-hand sketch in Fig. 10-5c).

Substituting $t=4.0 \mathrm{~s}$ into Eq. $10-11$ gives us

$$
\omega=1.4 \mathrm{rad} / \mathrm{s} .
$$

(Answer)
The implied plus sign tells us that now the disk is turning counterclockwise (the right-hand sketch in Fig. 10-5c).

For $t_{\text {min }}$, we already know that $d \theta / d t=0$. So, we must also have $\omega=0$. That is, the disk momentarily stops when the reference line reaches the minimum value of θ in Fig. $10-5 b$, as suggested by the center sketch in Fig. 10-5c. On the graph, this momentary stop is the zero point where the plot changes from the negative clockwise motion to the positive counterclockwise motion.
(d) Use the results in parts (a) through (c) to describe the motion of the disk from $t=-3.0 \mathrm{~s}$ to $t=6.0 \mathrm{~s}$.

Description: When we first observe the disk at $t=-3.0 \mathrm{~s}$, it has a positive angular position and is turning clockwise but slowing. It stops at angular position $\theta=-1.36 \mathrm{rad}$ and then begins to turn counterclockwise, with its angular position eventually becoming positive again.

Additional examples, video, and practice available at WileyPLUS

Sample Problem

Angular velocity derived from angular acceleration

A child's top is spun with angular acceleration

$$
\alpha=5 t^{3}-4 t,
$$

with t in seconds and α in radians per second-squared. At $t=0$, the top has angular velocity $5 \mathrm{rad} / \mathrm{s}$, and a reference line on it is at angular position $\theta=2 \mathrm{rad}$.
(a) Obtain an expression for the angular velocity $\omega(t)$ of the top. That is, find an expression that explicitly indicates how the angular velocity depends on time. (We can tell that there is such a dependence because the top is undergoing an angular acceleration, which means that its angular velocity is changing.)

KEY IDEA

By definition, $\alpha(t)$ is the derivative of $\omega(t)$ with respect to time. Thus, we can find $\omega(t)$ by integrating $\alpha(t)$ with respect to time.

Calculations: Equation 10-8 tells us

So

$$
\begin{array}{r}
d \omega=\alpha d t \\
\int d \omega=\int \alpha d t
\end{array}
$$

From this we find

$$
\omega=\int\left(5 t^{3}-4 t\right) d t=\frac{5}{4} t^{4}-\frac{4}{2} t^{2}+C .
$$

To evaluate the constant of integration C, we note that $\omega=5$ $\mathrm{rad} / \mathrm{s}$ at $t=0$. Substituting these values in our expression for ω yields

$$
5 \mathrm{rad} / \mathrm{s}=0-0+C
$$

so $C=5 \mathrm{rad} / \mathrm{s}$. Then

$$
\omega=\frac{5}{4} t^{4}-2 t^{2}+5 .
$$

(Answer)
(b) Obtain an expression for the angular position $\theta(t)$ of the top.

KEY IDEA

By definition, $\omega(t)$ is the derivative of $\theta(t)$ with respect to time. Therefore, we can find $\theta(t)$ by integrating $\omega(t)$ with respect to time.

Calculations: Since Eq. 10-6 tells us that
we can write

$$
d \theta=\omega d t
$$

$$
\begin{aligned}
\theta & =\int \omega d t=\int\left(\frac{5}{4} t^{4}-2 t^{2}+5\right) d t \\
& =\frac{1}{4} t^{5}-\frac{2}{3} t^{3}+5 t+C^{\prime} \\
& =\frac{1}{4} t^{5}-\frac{2}{3} t^{3}+5 t+2,
\end{aligned}
$$

(Answer)
where C^{\prime} has been evaluated by noting that $\theta=2 \operatorname{rad}$ at $t=0$.

10-3 Are Angular Quantities Vectors?

We can describe the position, velocity, and acceleration of a single particle by means of vectors. If the particle is confined to a straight line, however, we do not really need vector notation. Such a particle has only two directions available to it, and we can indicate these directions with plus and minus signs.

In the same way, a rigid body rotating about a fixed axis can rotate only clockwise or counterclockwise as seen along the axis, and again we can select between the two directions by means of plus and minus signs. The question arises: "Can we treat the angular displacement, velocity, and acceleration of a rotating body as vectors?" The answer is a qualified "yes" (see the caution below, in connection with angular displacements).

Consider the angular velocity. Figure $10-6 a$ shows a vinyl record rotating on a turntable. The record has a constant angular speed $\omega\left(=33 \frac{1}{3} \mathrm{rev} / \mathrm{min}\right)$ in the clockwise direction. We can represent its angular velocity as a vector $\vec{\omega}$ pointing along the axis of rotation, as in Fig. 10-6b. Here's how: We choose the length of this vector according to some convenient scale, for example, with 1 cm corresponding to $10 \mathrm{rev} / \mathrm{min}$. Then we establish a direction for the vector $\vec{\omega}$ by using a

Fig. 10-6 (a) A record rotating about a vertical axis that coincides with the axis of the spindle. (b) The angular velocity of the rotating record can be represented by the vector $\vec{\omega}$, lying along the axis and pointing down, as shown. (c) We establish the direction of the angular velocity vector as downward by using a right-hand rule. When the fingers of the right hand curl around the record and point the way it is moving, the extended thumb points in the direction of $\vec{\omega}$.
right-hand rule, as Fig. $10-6 c$ shows: Curl your right hand about the rotating record, your fingers pointing in the direction of rotation. Your extended thumb will then point in the direction of the angular velocity vector. If the record were to rotate in the opposite sense, the right-hand rule would tell you that the angular velocity vector then points in the opposite direction.

It is not easy to get used to representing angular quantities as vectors. We instinctively expect that something should be moving along the direction of a vector. That is not the case here. Instead, something (the rigid body) is rotating around the direction of the vector. In the world of pure rotation, a vector defines an axis of rotation, not a direction in which something moves. Nonetheless, the vector also defines the motion. Furthermore, it obeys all the rules for vector manipulation discussed in Chapter 3. The angular acceleration $\vec{\alpha}$ is another vector, and it too obeys those rules.

In this chapter we consider only rotations that are about a fixed axis. For such situations, we need not consider vectors - we can represent angular velocity with ω and angular acceleration with α, and we can indicate direction with an implied plus sign for counterclockwise or an explicit minus sign for clockwise.

Now for the caution: Angular displacements (unless they are very small) cannot be treated as vectors. Why not? We can certainly give them both magnitude and direction, as we did for the angular velocity vector in Fig. 10-6. However, to be represented as a vector, a quantity must also obey the rules of vector addition, one of which says that if you add two vectors, the order in which you add them does not matter. Angular displacements fail this test.

Figure 10-7 gives an example. An initially horizontal book is given two 90° angular displacements, first in the order of Fig. 10-7a and then in the order of Fig. 10-7b. Although the two angular displacements are identical, their order is not, and the book ends up with different orientations. Here's another example. Hold your right arm downward, palm toward your thigh. Keeping your wrist rigid, (1) lift the arm forward until it is horizontal, (2) move it horizontally until it points toward the right, and (3) then bring it down to your side. Your palm faces forward. If you start over, but reverse the steps, which way does your palm end up facing? From either example, we must conclude that the addition of two angular displacements depends on their order and they cannot be vectors.

Fig. 10-7 (a) From its initial position, at the top, the book is given two successive 90° rotations, first about the (horizontal) x axis and then about the (vertical) y axis. (b) The book is given the same rotations, but in the reverse order.

10-4 Rotation with Constant Angular Acceleration

In pure translation, motion with a constant linear acceleration (for example, that of a falling body) is an important special case. In Table 2-1, we displayed a series of equations that hold for such motion.

In pure rotation, the case of constant angular acceleration is also important, and a parallel set of equations holds for this case also. We shall not derive them here, but simply write them from the corresponding linear equations, substituting equivalent angular quantities for the linear ones. This is done in Table 10-1, which lists both sets of equations (Eqs. 2-11 and 2-15 to 2-18; 10-12 to 10-16).

Recall that Eqs. 2-11 and 2-15 are basic equations for constant linear acceleration - the other equations in the Linear list can be derived from them. Similarly, Eqs. 10-12 and 10-13 are the basic equations for constant angular acceleration, and the other equations in the Angular list can be derived from them. To solve a simple problem involving constant angular acceleration, you can usually use an equation from the Angular list (if you have the list). Choose an equation for which the only unknown variable will be the variable requested in the problem. A better plan is to remember only Eqs. 10-12 and 10-13, and then solve them as simultaneous equations whenever needed.

CHECKPOINT 2

In four situations, a rotating body has angular position $\theta(t)$ given by (a) $\theta=3 t-4$, (b) $\theta=-5 t^{3}+4 t^{2}+6$, (c) $\theta=2 / t^{2}-4 / t$, and (d) $\theta=5 t^{2}-3$. To which situations do the angular equations of Table 10-1 apply?

Table 10-1					
Equations of Motion for Constant Linear Acceleration and for Constant Angular Acceleration					
Equation	Linear	Missing Variable		Angular	Equation
Number	Equation			Equation	Number
(2-11)	$v=v_{0}+a t$	$x-x_{0}$	$\theta-\theta_{0}$	$\omega=\omega_{0}+\alpha t$	(10-12)
(2-15)	$x-x_{0}=v_{0} t+\frac{1}{2} a t^{2}$	v	ω	$\theta-\theta_{0}=\omega_{0} t+\frac{1}{2} \alpha t^{2}$	(10-13)
(2-16)	$v^{2}=v_{0}^{2}+2 a\left(x-x_{0}\right)$	t	t	$\omega^{2}=\omega_{0}^{2}+2 \alpha\left(\theta-\theta_{0}\right)$	(10-14)
(2-17)	$x-x_{0}=\frac{1}{2}\left(v_{0}+v\right) t$	a	α	$\theta-\theta_{0}=\frac{1}{2}\left(\omega_{0}+\omega\right) t$	(10-15)
(2-18)	$x-x_{0}=v t-\frac{1}{2} a t^{2}$	v_{0}	ω_{0}	$\theta-\theta_{0}=\omega t-\frac{1}{2} \alpha t^{2}$	(10-16)

Sample Problem

Constant angular acceleration, grindstone

A grindstone (Fig. 10-8) rotates at constant angular acceleration $\alpha=0.35 \mathrm{rad} / \mathrm{s}^{2}$. At time $t=0$, it has an angular velocity of $\omega_{0}=-4.6 \mathrm{rad} / \mathrm{s}$ and a reference line on it is horizontal, at the angular position $\theta_{0}=0$.
(a) At what time after $t=0$ is the reference line at the angular position $\theta=5.0 \mathrm{rev}$?

KEY IDEA

The angular acceleration is constant, so we can use the rota-
tion equations of Table 10-1. We choose Eq. 10-13,

$$
\theta-\theta_{0}=\omega_{0} t+\frac{1}{2} \alpha t^{2},
$$

because the only unknown variable it contains is the desired time t.
Calculations: Substituting known values and setting $\theta_{0}=0$ and $\theta=5.0 \mathrm{rev}=10 \pi \mathrm{rad}$ give us

$$
10 \pi \mathrm{rad}=(-4.6 \mathrm{rad} / \mathrm{s}) t+\frac{1}{2}\left(0.35 \mathrm{rad} / \mathrm{s}^{2}\right) t^{2}
$$

(We converted 5.0 rev to 10π rad to keep the units consis-
tent.) Solving this quadratic equation for t, we find

$$
t=32 \mathrm{~s} .
$$

(Answer)
Now notice something a bit strange. We first see the wheel when it is rotating in the negative diretion and through the $\theta=0$ orientation. Yet, we just found out that 32 s later it is at the positive orientation of $\theta=5.0 \mathrm{rev}$. What happened in that time interval so that it could be at a positive orientation?
(b) Describe the grindstone's rotation between $t=0$ and $t=32 \mathrm{~s}$.

Description: The wheel is initially rotating in the negative (clockwise) direction with angular velocity $\omega_{0}=-4.6 \mathrm{rad} / \mathrm{s}$, but its angular acceleration α is positive. This initial opposition of the signs of angular velocity and angular acceleration means that the wheel slows in its rotation in the negative direction, stops, and then reverses to rotate in the positive direction. After the reference line comes back through its initial orientation of $\theta=0$, the wheel turns an additional 5.0 rev by time $t=32 \mathrm{~s}$.
(c) At what time t does the grindstone momentarily stop?

Calculation: We again go to the table of equations for constant angular acceleration, and again we need an equation

Fig. 10-8 A grindstone. At $t=0$ the reference line (which we imagine to be marked on the stone) is horizontal.
that contains only the desired unknown variable t. However, now the equation must also contain the variable ω, so that we can set it to 0 and then solve for the corresponding time t. We choose Eq. 10-12, which yields

$$
t=\frac{\omega-\omega_{0}}{\alpha}=\frac{0-(-4.6 \mathrm{rad} / \mathrm{s})}{0.35 \mathrm{rad} / \mathrm{s}^{2}}=13 \mathrm{~s}
$$

(Answer)

Sample Problem

Constant angular acceleration, riding a Rotor

While you are operating a Rotor (a large, vertical, rotating cylinder found in amusement parks), you spot a passenger in acute distress and decrease the angular velocity of the cylinder from $3.40 \mathrm{rad} / \mathrm{s}$ to $2.00 \mathrm{rad} / \mathrm{s}$ in 20.0 rev , at constant angular acceleration. (The passenger is obviously more of a "translation person" than a "rotation person.")
(a) What is the constant angular acceleration during this decrease in angular speed?

KEY IDEA

Because the cylinder's angular acceleration is constant, we can relate it to the angular velocity and angular displacement via the basic equations for constant angular acceleration (Eqs. 10-12 and 10-13).

Calculations: The initial angular velocity is $\omega_{0}=3.40$ $\mathrm{rad} / \mathrm{s}$, the angular displacement is $\theta-\theta_{0}=20.0 \mathrm{rev}$, and the angular velocity at the end of that displacement is $\omega=2.00$ $\mathrm{rad} / \mathrm{s}$. But we do not know the angular acceleration α and time t, which are in both basic equations.

To eliminate the unknown t, we use Eq. 10-12 to write

$$
t=\frac{\omega-\omega_{0}}{\alpha}
$$

which we then substitute into Eq. 10-13 to write

$$
\theta-\theta_{0}=\omega_{0}\left(\frac{\omega-\omega_{0}}{\alpha}\right)+\frac{1}{2} \alpha\left(\frac{\omega-\omega_{0}}{\alpha}\right)^{2}
$$

Solving for α, substituting known data, and converting 20 rev to 125.7 rad , we find

$$
\begin{aligned}
\alpha & =\frac{\omega^{2}-\omega_{0}^{2}}{2\left(\theta-\theta_{0}\right)}=\frac{(2.00 \mathrm{rad} / \mathrm{s})^{2}-(3.40 \mathrm{rad} / \mathrm{s})^{2}}{2(125.7 \mathrm{rad})} \\
& =-0.0301 \mathrm{rad} / \mathrm{s}^{2}
\end{aligned}
$$

(Answer)
(b) How much time did the speed decrease take?

Calculation: Now that we know α, we can use Eq. 10-12 to solve for t :

$$
\begin{aligned}
t & =\frac{\omega-\omega_{0}}{\alpha}=\frac{2.00 \mathrm{rad} / \mathrm{s}-3.40 \mathrm{rad} / \mathrm{s}}{-0.0301 \mathrm{rad} / \mathrm{s}^{2}} \\
& =46.5 \mathrm{~s} .
\end{aligned}
$$

(Answer)

10-5 Relating the Linear and Angular Variables

In Section 4-7, we discussed uniform circular motion, in which a particle travels at constant linear speed v along a circle and around an axis of rotation. When a rigid body, such as a merry-go-round, rotates around an axis, each particle in the body moves in its own circle around that axis. Since the body is rigid, all the particles make one revolution in the same amount of time; that is, they all have the same angular speed ω.

However, the farther a particle is from the axis, the greater the circumference of its circle is, and so the faster its linear speed v must be. You can notice this on a merry-go-round. You turn with the same angular speed ω regardless of your distance from the center, but your linear speed v increases noticeably if you move to the outside edge of the merry-go-round.

We often need to relate the linear variables s, v, and a for a particular point in a rotating body to the angular variables θ, ω, and α for that body. The two sets of variables are related by r, the perpendicular distance of the point from the rotation axis. This perpendicular distance is the distance between the point and the rotation axis, measured along a perpendicular to the axis. It is also the radius r of the circle traveled by the point around the axis of rotation.

The Position

If a reference line on a rigid body rotates through an angle θ, a point within the body at a position r from the rotation axis moves a distance s along a circular arc, where s is given by Eq. 10-1:

$$
\begin{equation*}
s=\theta r \quad \text { (radian measure) } \tag{10-17}
\end{equation*}
$$

This is the first of our linear-angular relations. Caution: The angle θ here must be measured in radians because Eq. 10-17 is itself the definition of angular measure in radians.

The Speed

Differentiating Eq. 10-17 with respect to time - with r held constant — leads to

$$
\frac{d s}{d t}=\frac{d \theta}{d t} r .
$$

However, $d s / d t$ is the linear speed (the magnitude of the linear velocity) of the point in question, and $d \theta / d t$ is the angular speed ω of the rotating body. So

$$
\begin{equation*}
v=\omega r \quad \text { (radian measure) } \tag{10-18}
\end{equation*}
$$

Caution: The angular speed ω must be expressed in radian measure.
Equation 10-18 tells us that since all points within the rigid body have the same angular speed ω, points with greater radius r have greater linear speed v. Figure $10-9 a$ reminds us that the linear velocity is always tangent to the circular path of the point in question.

If the angular speed ω of the rigid body is constant, then Eq. 10-18 tells us that the linear speed v of any point within it is also constant. Thus, each point within the body undergoes uniform circular motion. The period of revolution T for the motion of each point and for the rigid body itself is given by Eq. 4-35:

$$
\begin{equation*}
T=\frac{2 \pi r}{v} \tag{10-19}
\end{equation*}
$$

This equation tells us that the time for one revolution is the distance $2 \pi r$ traveled in one revolution divided by the speed at which that distance is traveled.

Fig. 10-9 The rotating rigid body of Fig. 10-2, shown in cross section viewed from above. Every point of the body (such as P) moves in a circle around the rotation axis. (a) The linear velocity \vec{v} of every point is tangent to the circle in which the point moves. (b) The linear acceleration \vec{a} of the point has (in general) two components: tangential a_{t} and radial a_{r}.

(a)

(b)

Substituting for v from Eq. 10-18 and canceling r, we find also that

$$
\begin{equation*}
T=\frac{2 \pi}{\omega} \quad \text { (radian measure) } \tag{10-20}
\end{equation*}
$$

This equivalent equation says that the time for one revolution is the angular distance 2π rad traveled in one revolution divided by the angular speed (or rate) at which that angle is traveled.

The Acceleration

Differentiating Eq. 10-18 with respect to time - again with r held constant leads to

$$
\begin{equation*}
\frac{d v}{d t}=\frac{d \omega}{d t} r \tag{10-21}
\end{equation*}
$$

Here we run up against a complication. In Eq. 10-21, $d v / d t$ represents only the part of the linear acceleration that is responsible for changes in the magnitude v of the linear velocity \vec{v}. Like \vec{v}, that part of the linear acceleration is tangent to the path of the point in question. We call it the tangential component a_{t} of the linear acceleration of the point, and we write

$$
\begin{equation*}
a_{t}=\alpha r \quad(\text { radian measure }) \tag{10-22}
\end{equation*}
$$

where $\alpha=d \omega / d t$. Caution: The angular acceleration α in Eq. $10-22$ must be expressed in radian measure.

In addition, as Eq. 4-34 tells us, a particle (or point) moving in a circular path has a radial component of linear acceleration, $a_{r}=v^{2} / r$ (directed radially inward), that is responsible for changes in the direction of the linear velocity \vec{v}. By substituting for v from Eq. 10-18, we can write this component as

$$
\begin{equation*}
a_{r}=\frac{v^{2}}{r}=\omega^{2} r \quad \text { (radian measure). } \tag{10-23}
\end{equation*}
$$

Thus, as Fig. 10-9b shows, the linear acceleration of a point on a rotating rigid body has, in general, two components. The radially inward component a_{r} (given by Eq. 10-23) is present whenever the angular velocity of the body is not zero. The tangential component a_{t} (given by Eq. 10-22) is present whenever the angular acceleration is not zero.

CHECKPOINT 3

A cockroach rides the rim of a rotating merry-go-round. If the angular speed of this system (merry-go-round + cockroach) is constant, does the cockroach have (a) radial acceleration and (b) tangential acceleration? If ω is decreasing, does the cockroach have (c) radial acceleration and (d) tangential acceleration?

Sample Problem

Linear and angular variables, roller coaster speedup

In spite of the extreme care taken in engineering a roller coaster, an unlucky few of the millions of people who ride roller coasters each year end up with a medical condition called roller-coaster headache. Symptoms, which might not appear for several days, include vertigo and headache, both severe enough to require medical treatment.

Let's investigate the probable cause by designing the track for our own induction roller coaster (which can be accelerated by magnetic forces even on a horizontal track). To create an initial thrill, we want each passenger to leave the loading point with acceleration g along the horizontal track. To increase the thrill, we also want that first section of track to form a circular arc (Fig. 10-10), so that the passenger also experiences a centripetal acceleration. As the passenger accelerates along the arc, the magnitude of this centripetal acceleration increases alarmingly. When the magnitude a of the net acceleration reaches $4 g$ at some point P and angle θ_{P} along the arc, we want the passenger then to move in a straight line, along a tangent to the arc.
(a) What angle θ_{P} should the arc subtend so that a is $4 g$ at point P ?

KEY IDEAS

(1) At any given time, the passenger's net acceleration \vec{a} is the vector sum of the tangential acceleration \vec{a}_{t} along the track and the radial acceleration \vec{a}_{r} toward the arc's center of curvature (as in Fig. 10-9b). (2) The value of a_{r} at any given time depends on the angular speed ω according to Eq. 10-23 ($a_{r}=\omega^{2} r$, where r is the radius of the circular arc). (3) An angular acceleration α around the arc is associated with the tangential acceleration a_{t} along the track according to Eq. 10-22 $\left(a_{t}=\alpha r\right)$. (4) Because a_{t} and r are constant, so is α and thus we can use the constant angular-acceleration equations.

Calculations: Because we are trying to determine a value for angular position θ, let's choose Eq. 10-14 from among the constant angular-acceleration equations:

$$
\begin{equation*}
\omega^{2}=\omega_{0}^{2}+2 \alpha\left(\theta-\theta_{0}\right) . \tag{10-24}
\end{equation*}
$$

For the angular acceleration α, we substitute from Eq. 10-22:

$$
\begin{equation*}
\alpha=\frac{a_{t}}{r} . \tag{10-25}
\end{equation*}
$$

Fig. 10-10 An overhead view of a horizontal track for a roller coaster. The track begins as a circular arc at the loading point and then, at point P, continues along a tangent to the arc.

We also substitute $\omega_{0}=0$ and $\theta_{0}=0$, and we find

$$
\begin{equation*}
\omega^{2}=\frac{2 a_{t} \theta}{r} . \tag{10-26}
\end{equation*}
$$

Substituting this result for ω^{2} into

$$
\begin{equation*}
a_{r}=\omega^{2} r \tag{10-27}
\end{equation*}
$$

gives a relation between the radial acceleration, the tangential acceleration, and the angular position θ :

$$
\begin{equation*}
a_{r}=2 a_{t} \theta \tag{10-28}
\end{equation*}
$$

Because \vec{a}_{t} and \vec{a}_{r} are perpendicular vectors, their sum has the magnitude

$$
\begin{equation*}
a=\sqrt{a_{t}^{2}+a_{r}^{2}} \tag{10-29}
\end{equation*}
$$

Substituting for a_{r} from Eq. 10-28 and solving for θ lead to

$$
\begin{equation*}
\theta=\frac{1}{2} \sqrt{\frac{a^{2}}{a_{t}^{2}}-1} \tag{10-30}
\end{equation*}
$$

When a reaches the design value of $4 g$, angle θ is the angle θ_{P} we want. Substituting $a=4 g, \theta=\theta_{P}$, and $a_{t}=g$ into Eq. 10-30, we find

$$
\theta_{P}=\frac{1}{2} \sqrt{\frac{(4 g)^{2}}{g^{2}}-1}=1.94 \mathrm{rad}=111^{\circ}
$$

(Answer)
(b) What is the magnitude a of the passenger's net acceleration at point P and after point P ?

Reasoning: At P, a has the design value of $4 g$. Just after P is reached, the passenger moves in a straight line and no longer has centripetal acceleration. Thus, the passenger has only the acceleration magnitude g along the track. Hence,

$$
a=4 g \text { at } P \quad \text { and } \quad a=g \text { after } P .
$$

(Answer)
Roller-coaster headache can occur when a passenger's head undergoes an abrupt change in acceleration, with the
acceleration magnitude large before or after the change. The reason is that the change can cause the brain to move relative to the skull, tearing the veins that bridge the brain and skull. Our design to increase the acceleration from g to $4 g$ along the path to P might harm the passenger, but the abrupt change in acceleration as the passenger passes through point P is more likely to cause roller-coaster headache.

10-6 Kinetic Energy of Rotation

The rapidly rotating blade of a table saw certainly has kinetic energy due to that rotation. How can we express the energy? We cannot apply the familiar formula $K=\frac{1}{2} m v^{2}$ to the saw as a whole because that would give us the kinetic energy only of the saw's center of mass, which is zero.

Instead, we shall treat the table saw (and any other rotating rigid body) as a collection of particles with different speeds. We can then add up the kinetic energies of all the particles to find the kinetic energy of the body as a whole. In this way we obtain, for the kinetic energy of a rotating body,

$$
\begin{align*}
K & =\frac{1}{2} m_{1} v_{1}^{2}+\frac{1}{2} m_{2} v_{2}^{2}+\frac{1}{2} m_{3} v_{3}^{2}+\cdots \\
& =\sum \frac{1}{2} m_{i} v_{i}^{2} \tag{10-31}
\end{align*}
$$

in which m_{i} is the mass of the i th particle and v_{i} is its speed. The sum is taken over all the particles in the body.

The problem with Eq. 10-31 is that v_{i} is not the same for all particles. We solve this problem by substituting for v from Eq. 10-18 $(v=\omega r)$, so that we have

$$
\begin{equation*}
K=\sum \frac{1}{2} m_{i}\left(\omega r_{i}\right)^{2}=\frac{1}{2}\left(\sum m_{i} r_{i}^{2}\right) \omega^{2}, \tag{10-32}
\end{equation*}
$$

in which ω is the same for all particles.
The quantity in parentheses on the right side of Eq. 10-32 tells us how the mass of the rotating body is distributed about its axis of rotation. We call that quantity the rotational inertia (or moment of inertia) I of the body with respect to the axis of rotation. It is a constant for a particular rigid body and a particular rotation axis. (That axis must always be specified if the value of I is to be meaningful.)

We may now write

$$
\begin{equation*}
I=\sum m_{i} r_{i}^{2} \quad \text { (rotational inertia) } \tag{10-33}
\end{equation*}
$$

and substitute into Eq. 10-32, obtaining

$$
\begin{equation*}
K=\frac{1}{2} I \omega^{2} \quad \text { (radian measure) } \tag{10-34}
\end{equation*}
$$

as the expression we seek. Because we have used the relation $v=\omega r$ in deriving Eq. $10-34, \omega$ must be expressed in radian measure. The SI unit for I is the kilogram-square meter $\left(\mathrm{kg} \cdot \mathrm{m}^{2}\right)$.

Equation 10-34, which gives the kinetic energy of a rigid body in pure rotation, is the angular equivalent of the formula $K=\frac{1}{2} M v_{\text {com }}^{2}$, which gives the kinetic energy of a rigid body in pure translation. In both formulas there is a factor of $\frac{1}{2}$. Where mass M appears in one equation, I (which involves both mass and its distribution)

(b)

Fig. 10-11 A long rod is much easier to rotate about (a) its central (longitudinal) axis than about (b) an axis through its center and perpendicular to its length. The reason for the difference is that the mass is distributed closer to the rotation axis in (a) than in (b).
appears in the other. Finally, each equation contains as a factor the square of a speed - translational or rotational as appropriate. The kinetic energies of translation and of rotation are not different kinds of energy. They are both kinetic energy, expressed in ways that are appropriate to the motion at hand.

We noted previously that the rotational inertia of a rotating body involves not only its mass but also how that mass is distributed. Here is an example that you can literally feel. Rotate a long, fairly heavy rod (a pole, a length of lumber, or something similar), first around its central (longitudinal) axis (Fig. 10-11a) and then around an axis perpendicular to the rod and through the center (Fig. 10$11 b)$. Both rotations involve the very same mass, but the first rotation is much easier than the second. The reason is that the mass is distributed much closer to the rotation axis in the first rotation. As a result, the rotational inertia of the rod is much smaller in Fig. 10-11a than in Fig. 10-11b. In general, smaller rotational inertia means easier rotation.

CHECKPOINT 4

The figure shows three small spheres that rotate about a vertical axis. The perpendicular distance between the axis and the center of each sphere is given. Rank the three spheres according to their rotational inertia about that axis, greatest first.

10-7 Calculating the Rotational Inertia

If a rigid body consists of a few particles, we can calculate its rotational inertia about a given rotation axis with Eq. 10-33 ($I=\Sigma m_{i} r_{i}^{2}$); that is, we can find the product $m r^{2}$ for each particle and then sum the products. (Recall that r is the perpendicular distance a particle is from the given rotation axis.)

If a rigid body consists of a great many adjacent particles (it is continuous, like a Frisbee), using Eq. 10-33 would require a computer. Thus, instead, we replace the sum in Eq. 10-33 with an integral and define the rotational inertia of the body as

$$
\begin{equation*}
I=\int r^{2} d m \quad \text { (rotational inertia, continuous body). } \tag{10-35}
\end{equation*}
$$

Table 10-2 gives the results of such integration for nine common body shapes and the indicated axes of rotation.

Parallel-Axis Theorem

Suppose we want to find the rotational inertia I of a body of mass M about a given axis. In principle, we can always find I with the integration of Eq. 10-35. However, there is a shortcut if we happen to already know the rotational inertia $I_{\text {com }}$ of the body about a parallel axis that extends through the body's center of mass. Let h be the perpendicular distance between the given axis and the axis through the center of mass (remember these two axes must be parallel). Then the rotational inertia I about the given axis is

$$
\begin{equation*}
I=I_{\mathrm{com}}+M h^{2} \quad \text { (parallel-axis theorem) } \tag{10-36}
\end{equation*}
$$

This equation is known as the parallel-axis theorem. We shall now prove it.

Proof of the Parallel-Axis Theorem

Let O be the center of mass of the arbitrarily shaped body shown in cross section in Fig. 10-12. Place the origin of the coordinates at O. Consider an axis through O

Some Rotational Inertias

perpendicular to the plane of the figure, and another axis through point P parallel to the first axis. Let the x and y coordinates of P be a and b.

Let $d m$ be a mass element with the general coordinates x and y. The rotational inertia of the body about the axis through P is then, from Eq. 10-35,

$$
I=\int r^{2} d m=\int\left[(x-a)^{2}+(y-b)^{2}\right] d m
$$

which we can rearrange as

$$
I=\int\left(x^{2}+y^{2}\right) d m-2 a \int x d m-2 b \int y d m+\int\left(a^{2}+b^{2}\right) d m
$$

From the definition of the center of mass (Eq. 9-9), the middle two integrals of Eq. 10-37 give the coordinates of the center of mass (multiplied by a constant) and thus must each be zero. Because $x^{2}+y^{2}$ is equal to R^{2}, where R is the distance from O to $d m$, the first integral is simply $I_{\text {com }}$, the rotational inertia of the body about an axis through its center of mass. Inspection of Fig. 10-12 shows that the last term in Eq. $10-37$ is $M h^{2}$, where M is the body's total mass. Thus, Eq. 10-37 reduces to Eq. 10-36, which is the relation that we set out to prove.

CHECKPOINT 5

The figure shows a book-like object (one side is longer than the other) and four choices of rotation axes, all perpendicular to the face of the object. Rank the choices according to the rotational inertia of the object about the axis, greatest first.

(1) (2)
(3) (4)

We need to relate the rotational inertia around the axis at P to that around the axis at the com.

Fig. 10-12 A rigid body in cross section, with its center of mass at O. The parallel-axis theorem (Eq. 10-36) relates the rotational inertia of the body about an axis through O to that about a parallel axis through a point such as P, a distance h from the body's center of mass. Both axes are perpendicular to the plane of the figure.

Sample Problem

Rotational inertia of a two-particle system

Figure 10-13a shows a rigid body consisting of two particles of mass m connected by a rod of length L and negligible mass.
(a) What is the rotational inertia $I_{\text {com }}$ about an axis through the center of mass, perpendicular to the rod as shown?

KEY IDEA

Because we have only two particles with mass, we can find the body's rotational inertia $I_{\text {com }}$ by using Eq. 10-33 rather than by integration.

Calculations: For the two particles, each at perpendicular distance $\frac{1}{2} L$ from the rotation axis, we have

$$
\begin{aligned}
I & =\sum m_{i} r_{i}^{2}=(m)\left(\frac{1}{2} L\right)^{2}+(m)\left(\frac{1}{2} L\right)^{2} \\
& =\frac{1}{2} m L^{2} .
\end{aligned}
$$

(Answer)
(b) What is the rotational inertia I of the body about an axis through the left end of the rod and parallel to the first axis (Fig. 10-13b)?

KEY IDEAS

This situation is simple enough that we can find I using either of two techniques. The first is similar to the one used in part (a). The other, more powerful one is to apply the paral-lel-axis theorem.

First technique: We calculate I as in part (a), except here the perpendicular distance r_{i} is zero for the particle on the left and

(b) Here it has been shifted from the com without changing the orientation. We can use the parallel-axis theorem.
Fig. 10-13 A rigid body consisting of two particles of mass m joined by a rod of negligible mass.
L for the particle on the right. Now Eq. 10-33 gives us

$$
I=m(0)^{2}+m L^{2}=m L^{2} .
$$

(Answer)
Second technique: Because we already know $I_{\text {com }}$ about an axis through the center of mass and because the axis here is parallel to that "com axis," we can apply the parallel-axis theorem (Eq. 10-36). We find

$$
\begin{aligned}
I & =I_{\text {com }}+M h^{2}=\frac{1}{2} m L^{2}+(2 m)\left(\frac{1}{2} L\right)^{2} \\
& =m L^{2} .
\end{aligned}
$$

(Answer)

Sample Problem

Rotational inertia of a uniform rod, integration

Figure 10-14 shows a thin, uniform rod of mass M and length L,on an x axis with the origin at the rod's center.
(a) What is the rotational inertia of the rod about the perpendicular rotation axis through the center?

KEY IDEAS

(1) Because the rod is uniform, its center of mass is at its center. Therefore, we are looking for $I_{\text {com. }}$. (2) Because the rod is a continuous object, we must use the integral of Eq. 10-35,

$$
\begin{equation*}
I=\int r^{2} d m \tag{10-38}
\end{equation*}
$$

to find the rotational inertia.
Calculations: We want to integrate with respect to coordi-
nate x (not mass m as indicated in the integral), so we must relate the mass $d m$ of an element of the rod to its length $d x$ along the rod. (Such an element is shown in Fig. 10-14.) Because the rod is uniform, the ratio of mass to length is the same for all the elements and for the rod as a whole. Thus, we can write

$$
\frac{\text { element's mass } d m}{\text { element's length } d x}=\frac{\text { rod's mass } M}{\text { rod's length } L}
$$

or $\quad d m=\frac{M}{L} d x$.
We can now substitute this result for $d m$ and x for r in Eq. $10-38$. Then we integrate from end to end of the rod (from $x=-L / 2$ to $x=L / 2$) to include all the elements. We find

$$
\begin{aligned}
I & =\int_{x=-L / 2}^{x=+L / 2} x^{2}\left(\frac{M}{L}\right) d x \\
& =\frac{M}{3 L}\left[x^{3}\right]_{-L / 2}^{+L / 2}=\frac{M}{3 L}\left[\left(\frac{L}{2}\right)^{3}-\left(-\frac{L}{2}\right)^{3}\right] \\
& =\frac{1}{12} M L^{2}
\end{aligned}
$$

(Answer)
This agrees with the result given in Table 10-2e.
(b) What is the rod's rotational inertia I about a new rotation axis that is perpendicular to the rod and through the left end?

KEY IDEAS

We can find I by shifting the origin of the x axis to the left end of the rod and then integrating from $x=0$ to $x=L$. However,
here we shall use a more powerful (and easier) technique by applying the parallel-axis theorem (Eq. 10-36), in which we shift the rotation axis without changing its orientation.

Calculations: If we place the axis at the rod's end so that it is parallel to the axis through the center of mass, then we can use the parallel-axis theorem (Eq. 10-36). We know from part (a) that $I_{\text {com }}$ is $\frac{1}{12} M L^{2}$. From Fig. 10-14, the perpendicular distance h between the new rotation axis and the center of mass is $\frac{1}{2} L$. Equation 10-36 then gives us

$$
\begin{aligned}
I & =I_{\text {com }}+M h^{2}=\frac{1}{12} M L^{2}+(M)\left(\frac{1}{2} L\right)^{2} \\
& =\frac{1}{3} M L^{2} .
\end{aligned}
$$

(Answer)
Actually, this result holds for any axis through the left or right end that is perpendicular to the rod, whether it is parallel to the axis shown in Fig. 10-14 or not.

Fig. 10-14 A uniform rod of length L and mass M. An element of mass $d m$ and length $d x$ is represented.

Additional examples, video, and practice available at WileyPLUS

Rotational kinetic energy, spin test explosion

Large machine components that undergo prolonged, highspeed rotation are first examined for the possibility of failure in a spin test system. In this system, a component is spun $u p$ (brought up to high speed) while inside a cylindrical arrangement of lead bricks and containment liner, all within a steel shell that is closed by a lid clamped into place. If the rotation causes the component to shatter, the soft lead bricks are supposed to catch the pieces for later analysis.

In 1985, Test Devices, Inc. (www.testdevices.com) was spin testing a sample of a solid steel rotor (a disk) of mass $M=272$ kg and radius $R=38.0 \mathrm{~cm}$. When the sample reached an angular speed ω of $14000 \mathrm{rev} / \mathrm{min}$, the test engineers heard a dull thump from the test system, which was located one floor down and one room over from them. Investigating, they found that lead bricks had been thrown out in the hallway leading to the test room, a door to the room had been hurled into the adjacent parking lot, one lead brick had shot from the test site through the wall of a neighbor's kitchen, the structural beams of the test building had been damaged, the concrete floor beneath the spin chamber had been shoved downward by about 0.5 cm , and the 900 kg lid had been blown upward through the ceiling and had then crashed back onto the test equipment (Fig. 10-15). The exploding pieces had not penetrated the room of the test engineers only by luck.

How much energy was released in the explosion of the rotor?

KEY IDEA

The released energy was equal to the rotational kinetic energy K of the rotor just as it reached the angular speed of $14000 \mathrm{rev} / \mathrm{min}$.

Fig. 10-15 Some of the destruction caused by the explosion of a rapidly rotating steel disk. (Courtesy Test Devices, Inc.)

Calculations: We can find K with Eq. 10-34 $\left(K=\frac{1}{2} I \omega^{2}\right)$, but first we need an expression for the rotational inertia I. Because the rotor was a disk that rotated like a merry-go-round, I is given by the expression in Table 10-2c ($I=\frac{1}{2} M R^{2}$). Thus, we have

$$
I=\frac{1}{2} M R^{2}=\frac{1}{2}(272 \mathrm{~kg})(0.38 \mathrm{~m})^{2}=19.64 \mathrm{~kg} \cdot \mathrm{~m}^{2}
$$

The angular speed of the rotor was

$$
\begin{aligned}
\omega & =(14000 \mathrm{rev} / \mathrm{min})(2 \pi \mathrm{rad} / \mathrm{rev})\left(\frac{1 \mathrm{~min}}{60 \mathrm{~s}}\right) \\
& =1.466 \times 10^{3} \mathrm{rad} / \mathrm{s} .
\end{aligned}
$$

Now we can use Eq. 10-34 to write

$$
\begin{aligned}
K & =\frac{1}{2} I \omega^{2}=\frac{1}{2}\left(19.64 \mathrm{~kg} \cdot \mathrm{~m}^{2}\right)\left(1.466 \times 10^{3} \mathrm{rad} / \mathrm{s}\right)^{2} \\
& =2.1 \times 10^{7} \mathrm{~J} .
\end{aligned}
$$

(Answer)
Being near this explosion was quite dangerous.

10-8 Torque

A doorknob is located as far as possible from the door's hinge line for a good reason. If you want to open a heavy door, you must certainly apply a force; that alone, however, is not enough. Where you apply that force and in what direction you push are also important. If you apply your force nearer to the hinge line than the knob, or at any angle other than 90° to the plane of the door, you must use a greater force to move the door than if you apply the force at the knob and perpendicular to the door's plane.

Figure $10-16 a$ shows a cross section of a body that is free to rotate about an axis passing through O and perpendicular to the cross section. A force \vec{F} is applied at point P, whose position relative to O is defined by a position vector \vec{r}. The directions of vectors \vec{F} and \vec{r} make an angle ϕ with each other. (For simplicity, we consider only forces that have no component parallel to the rotation axis; thus, \vec{F} is in the plane of the page.)

To determine how \vec{F} results in a rotation of the body around the rotation axis, we resolve \vec{F} into two components (Fig. 10-16b). One component, called the radial component F_{r}, points along \vec{r}. This component does not cause rotation, because it acts along a line that extends through O. (If you pull on a door parallel to the plane of the door, you do not rotate the door.) The other component of \vec{F}, called the tangential component F_{t}, is perpendicular to \vec{r} and has magnitude $F_{t}=F \sin \phi$. This component does cause rotation. (If you pull on a door perpendicular to its plane, you can rotate the door.)

The ability of \vec{F} to rotate the body depends not only on the magnitude of its tangential component F_{t}, but also on just how far from O the force is applied. To include both these factors, we define a quantity called torque τ as the product of the two factors and write it as

$$
\begin{equation*}
\tau=(r)(F \sin \phi) . \tag{10-39}
\end{equation*}
$$

Two equivalent ways of computing the torque are

$$
\begin{gather*}
\tau=(r)(F \sin \phi)=r F_{t} \tag{10-40}\\
\tau=(r \sin \phi)(F)=r_{\perp} F, \tag{10-41}
\end{gather*}
$$

where r_{\perp} is the perpendicular distance between the rotation axis at O and an extended line running through the vector \vec{F} (Fig. 10-16c). This extended line is called the line of action of \vec{F}, and r_{\perp} is called the moment arm of \vec{F}. Figure 10-16b shows that we can describe r, the magnitude of \vec{r}, as being the moment arm of the force component F_{t}.

Torque, which comes from the Latin word meaning "to twist," may be loosely identified as the turning or twisting action of the force \vec{F}. When you apply a force to an object - such as a screwdriver or torque wrench - with the purpose of turning that object, you are applying a torque. The SI unit of torque is the newtonmeter $(\mathrm{N} \cdot \mathrm{m})$. Caution: The newton-meter is also the unit of work. Torque and work, however, are quite different quantities and must not be confused. Work is often expressed in joules $(1 \mathrm{~J}=1 \mathrm{~N} \cdot \mathrm{~m})$, but torque never is.

In the next chapter we shall discuss torque in a general way as being a vector quantity. Here, however, because we consider only rotation around a single axis, we do not need vector notation. Instead, a torque has either a positive or negative value depending on the direction of rotation it would give a body initially at rest: If the body would rotate counterclockwise, the torque is positive. If the object would rotate clockwise, the torque is negative. (The phrase "clocks are negative" from Section 10-2 still works.)

Torques obey the superposition principle that we discussed in Chapter 5 for forces: When several torques act on a body, the net torque (or resultant torque) is the sum of the individual torques. The symbol for net torque is $\tau_{\text {net }}$.

CHECKPOINT 6

The figure shows an overhead view of a meter stick that can pivot about the dot at the position marked 20 (for 20 cm). All five forces on the stick are horizontal and have the same magnitude. Rank the forces according to the magnitude of the torque they produce, greatest first.

The torque due to this force causes rotation around this axis (which extends out toward you).
(a)

But actually only the tangential component of the force causes the rotation.
(b)

You calculate the same torque by using this moment arm distance and the full force magnitude.
(c)

Fig. 10-16 (a) A force \vec{F} acts on a rigid body, with a rotation axis perpendicular to the page. The torque can be found with (a) angle ϕ, (b) tangential force component F_{t}, or (c) moment arm r_{\perp}.

The torque due to the tangential component of the force causes an angular acceleration around the rotation axis.

Fig. 10-17 A simple rigid body, free to rotate about an axis through O, consists of a particle of mass m fastened to the end of a rod of length r and negligible mass. An applied force \vec{F} causes the body to rotate.

10-9 Newton's Second Law for Rotation

A torque can cause rotation of a rigid body, as when you use a torque to rotate a door. Here we want to relate the net torque $\tau_{\text {net }}$ on a rigid body to the angular acceleration α that torque causes about a rotation axis. We do so by analogy with Newton's second law ($F_{\text {net }}=m a$) for the acceleration a of a body of mass m due to a net force $F_{\text {net }}$ along a coordinate axis. We replace $F_{\text {net }}$ with $\tau_{\text {net }}, m$ with I, and a with α in radian measure, writing

$$
\begin{equation*}
\tau_{\text {net }}=I \alpha \quad \text { (Newton's second law for rotation). } \tag{10-42}
\end{equation*}
$$

Proof of Equation 10-42

We prove Eq. 10-42 by first considering the simple situation shown in Fig. 10-17. The rigid body there consists of a particle of mass m on one end of a massless rod of length r. The rod can move only by rotating about its other end, around a rotation axis (an axle) that is perpendicular to the plane of the page. Thus, the particle can move only in a circular path that has the rotation axis at its center.

A force \vec{F} acts on the particle. However, because the particle can move only along the circular path, only the tangential component F_{t} of the force (the component that is tangent to the circular path) can accelerate the particle along the path. We can relate F_{t} to the particle's tangential acceleration a_{t} along the path with Newton's second law, writing

$$
F_{t}=m a_{t}
$$

The torque acting on the particle is, from Eq. 10-40,

$$
\tau=F_{t} r=m a_{t} r .
$$

From Eq. 10-22 $\left(a_{t}=\alpha r\right)$ we can write this as

$$
\begin{equation*}
\tau=m(\alpha r) r=\left(m r^{2}\right) \alpha \tag{10-43}
\end{equation*}
$$

The quantity in parentheses on the right is the rotational inertia of the particle about the rotation axis (see Eq. 10-33, but here we have only a single particle). Thus, using I for the rotational inertia, Eq. 10-43 reduces to

$$
\begin{equation*}
\tau=I \alpha \quad \text { (radian measure). } \tag{10-44}
\end{equation*}
$$

For the situation in which more than one force is applied to the particle, we can generalize Eq. 10-44 as

$$
\begin{equation*}
\tau_{\text {net }}=I \alpha \quad(\text { radian measure }) \tag{10-45}
\end{equation*}
$$

which we set out to prove. We can extend this equation to any rigid body rotating about a fixed axis, because any such body can always be analyzed as an assembly of single particles.

CHECKPOINT 7

The figure shows an overhead view of a meter stick that can pivot about the point indicated, which is to the left of the stick's midpoint. Two horizontal forces, \vec{F}_{1} and \vec{F}_{2}, are applied to the stick. Only \vec{F}_{1} is shown. Force \vec{F}_{2} is perpendicular to the stick and is applied at the right end. If the stick is not to turn, (a) what should be the direction of \vec{F}_{2}, and (b) should F_{2} be greater than, less than, or equal to F_{1} ?

Sample Problem

Newton's 2nd law, rotation, torque, disk

Figure 10-18a shows a uniform disk, with mass $M=2.5 \mathrm{~kg}$ and radius $R=20 \mathrm{~cm}$, mounted on a fixed horizontal axle. A block with mass $m=1.2 \mathrm{~kg}$ hangs from a massless cord that is wrapped around the rim of the disk. Find the acceleration of the falling block, the angular acceleration of the disk, and the tension in the cord. The cord does not slip, and there is no friction at the axle.

KEY IDEAS

(1) Taking the block as a system, we can relate its acceleration a to the forces acting on it with Newton's second law $\left(\vec{F}_{\text {net }}=m \vec{a}\right)$. (2) Taking the disk as a system, we can relate its angular acceleration α to the torque acting on it with Newton's second law for rotation $\left(\tau_{\text {net }}=I \alpha\right)$. (3) To combine the motions of block and disk, we use the fact that the linear acceleration a of the block and the (tangential) linear acceleration a_{t} of the disk rim are equal.

Forces on block: The forces are shown in the block's freebody diagram in Fig. 10-18b: The force from the cord is \vec{T}, and the gravitational force is \vec{F}_{g}, of magnitude $m g$. We can now write Newton's second law for components along a vertical y axis $\left(F_{\text {net }, y}=m a_{y}\right)$ as

$$
\begin{equation*}
T-m g=m a . \tag{10-46}
\end{equation*}
$$

However, we cannot solve this equation for a because it also contains the unknown T.

Torque on disk: Previously, when we got stuck on the y axis, we switched to the x axis. Here, we switch to the rotation of the disk. To calculate the torques and the rotational inertia I, we take the rotation axis to be perpendicular to the disk and through its center, at point O in Fig. 10-18c.

The torques are then given by Eq. 10-40 $\left(\tau=r F_{t}\right)$. The gravitational force on the disk and the force on the disk from the axle both act at the center of the disk and thus at distance $r=0$, so their torques are zero. The force \vec{T} on the disk due to the cord acts at distance $r=R$ and is tangent to the rim of the disk. Therefore, its torque is $-R T$, negative because the torque rotates the disk clockwise from rest. From Table $10-2 c$, the rotational inertia I of the disk is $\frac{1}{2} M R^{2}$. Thus we can write $\tau_{\text {net }}=I \alpha$ as

$$
\begin{equation*}
-R T=\frac{1}{2} M R^{2} \alpha \tag{10-47}
\end{equation*}
$$

This equation seems useless because it has two unknowns, α and T, neither of which is the desired a. However, mustering physics courage, we can make it useful

Fig. 10-18 (a) The falling block causes the disk to rotate. (b) A free-body diagram for the block. (c) An incomplete free-body diagram for the disk.
with this fact: Because the cord does not slip, the linear acceleration a of the block and the (tangential) linear acceleration a_{t} of the rim of the disk are equal. Then, by Eq. 10-22 $\left(a_{t}=\alpha r\right)$ we see that here $\alpha=a / R$. Substituting this in Eq. 10-47 yields

$$
\begin{equation*}
T=-\frac{1}{2} M a \tag{10-48}
\end{equation*}
$$

Combining results: Combining Eqs. 10-46 and 10-48 leads to

$$
\begin{aligned}
a & =-g \frac{2 m}{M+2 m}=-\left(9.8 \mathrm{~m} / \mathrm{s}^{2}\right) \frac{(2)(1.2 \mathrm{~kg})}{2.5 \mathrm{~kg}+(2)(1.2 \mathrm{~kg})} \\
& =-4.8 \mathrm{~m} / \mathrm{s}^{2} .
\end{aligned}
$$

We then use Eq. 10-48 to find T :

$$
\begin{aligned}
T & =-\frac{1}{2} M a=-\frac{1}{2}(2.5 \mathrm{~kg})\left(-4.8 \mathrm{~m} / \mathrm{s}^{2}\right) \\
& =6.0 \mathrm{~N} .
\end{aligned}
$$

(Answer)
As we should expect, acceleration a of the falling block is less than g, and tension T in the cord $(=6.0 \mathrm{~N})$ is less than the gravitational force on the hanging block $(=m g=11.8 \mathrm{~N})$. We see also that a and T depend on the mass of the disk but not on its radius. As a check, we note that the formulas derived above predict $a=-g$ and $T=0$ for the case of a massless disk $(M=0)$. This is what we would expect; the block simply falls as a free body. From Eq. 10-22, the angular acceleration of the disk is

$$
\alpha=\frac{a}{R}=\frac{-4.8 \mathrm{~m} / \mathrm{s}^{2}}{0.20 \mathrm{~m}}=-24 \mathrm{rad} / \mathrm{s}^{2} .
$$

(Answer)

10-10 Work and Rotational Kinetic Energy

As we discussed in Chapter 7, when a force F causes a rigid body of mass m to accelerate along a coordinate axis, the force does work W on the body. Thus, the body's kinetic energy ($K=\frac{1}{2} m v^{2}$) can change. Suppose it is the only energy of the body that changes. Then we relate the change ΔK in kinetic energy to the work W with the work-kinetic energy theorem (Eq. 7-10), writing

$$
\begin{equation*}
\Delta K=K_{f}-K_{i}=\frac{1}{2} m v_{f}^{2}-\frac{1}{2} m v_{i}^{2}=W \quad \text { (work-kinetic energy theorem). } \tag{10-49}
\end{equation*}
$$

For motion confined to an x axis, we can calculate the work with Eq. 7-32,

$$
\begin{equation*}
W=\int_{x_{i}}^{x_{f}} F d x \quad \text { (work, one-dimensional motion). } \tag{10-50}
\end{equation*}
$$

This reduces to $W=F d$ when F is constant and the body's displacement is d. The rate at which the work is done is the power, which we can find with Eqs. 7-43 and 7-48,

$$
\begin{equation*}
P=\frac{d W}{d t}=F v \quad \text { (power, one-dimensional motion). } \tag{10-51}
\end{equation*}
$$

Now let us consider a rotational situation that is similar. When a torque accelerates a rigid body in rotation about a fixed axis, the torque does work W on the body. Therefore, the body's rotational kinetic energy $\left(K=\frac{1}{2} I \omega^{2}\right)$ can change. Suppose that it is the only energy of the body that changes. Then we can still relate the change ΔK in kinetic energy to the work W with the work-kinetic energy theorem, except now the kinetic energy is a rotational kinetic energy:

$$
\begin{equation*}
\Delta K=K_{f}-K_{i}=\frac{1}{2} I \omega_{f}^{2}-\frac{1}{2} I \omega_{i}^{2}=W \quad \text { (work-kinetic energy theorem). } \tag{10-52}
\end{equation*}
$$

Here, I is the rotational inertia of the body about the fixed axis and ω_{i} and ω_{f} are the angular speeds of the body before and after the work is done, respectively.

Also, we can calculate the work with a rotational equivalent of Eq. 10-50,

$$
\begin{equation*}
W=\int_{\theta_{i}}^{\theta_{f}} \tau d \theta \quad \text { (work, rotation about fixed axis), } \tag{10-53}
\end{equation*}
$$

where τ is the torque doing the work W, and θ_{i} and θ_{f} are the body's angular positions before and after the work is done, respectively. When τ is constant, Eq. 10-53 reduces to

$$
\begin{equation*}
W=\tau\left(\theta_{f}-\theta_{i}\right) \quad \text { (work, constant torque). } \tag{10-54}
\end{equation*}
$$

The rate at which the work is done is the power, which we can find with the rotational equivalent of Eq. 10-51,

$$
\begin{equation*}
P=\frac{d W}{d t}=\tau \omega \quad \text { (power, rotation about fixed axis). } \tag{10-55}
\end{equation*}
$$

Table 10-3 summarizes the equations that apply to the rotation of a rigid body about a fixed axis and the corresponding equations for translational motion.

Proof of Eqs. 10-52 through 10-55

Let us again consider the situation of Fig. 10-17, in which force \vec{F} rotates a rigid body consisting of a single particle of mass m fastened to the end of a massless rod. During the rotation, force \vec{F} does work on the body. Let us assume that the

Table 10-3

Some Corresponding Relations for Translational and Rotational Motion

Pure Translation (Fixed Direction)	Pure Rotation (Fixed Axis)		
Position	x	Angular position	θ
Velocity	$v=d x / d t$	Angular velocity	$\omega=d \theta / d t$
Acceleration	$a=d v / d t$	Angular acceleration	$\alpha=d \omega / d t$
Mass	m	Rotational inertia	I
Newton's second law	$F_{\text {net }}=m a$	Newton's second law	$\tau_{\text {net }}=I \alpha$
Work	$W=\int F d x$	Work	$W=\int \tau d \theta$
Kinetic energy	$K=\frac{1}{2} m v^{2}$	Kinetic energy	$K=\frac{1}{2} I \omega^{2}$
Power (constant force)	$P=F v$	Power (constant torque)	$P=\tau \omega$
Work-kinetic energy theorem	$W=\Delta K$	Work-kinetic energy theorem	$W=\Delta K$

only energy of the body that is changed by \vec{F} is the kinetic energy. Then we can apply the work-kinetic energy theorem of Eq. 10-49:

$$
\begin{equation*}
\Delta K=K_{f}-K_{i}=W \tag{10-56}
\end{equation*}
$$

Using $K=\frac{1}{2} m v^{2}$ and Eq. 10-18 ($v=\omega r$), we can rewrite Eq. 10-56 as

$$
\begin{equation*}
\Delta K=\frac{1}{2} m r^{2} \omega_{f}^{2}-\frac{1}{2} m r^{2} \omega_{i}^{2}=W \tag{10-57}
\end{equation*}
$$

From Eq. 10-33, the rotational inertia for this one-particle body is $I=m r^{2}$. Substituting this into Eq. 10-57 yields

$$
\Delta K=\frac{1}{2} I \omega_{f}^{2}-\frac{1}{2} I \omega_{i}^{2}=W
$$

which is Eq. 10-52. We derived it for a rigid body with one particle, but it holds for any rigid body rotated about a fixed axis.

We next relate the work W done on the body in Fig. 10-17 to the torque τ on the body due to force \vec{F}. When the particle moves a distance $d s$ along its circular path, only the tangential component F_{t} of the force accelerates the particle along the path. Therefore, only F_{t} does work on the particle. We write that work $d W$ as $F_{t} d s$. However, we can replace $d s$ with $r d \theta$, where $d \theta$ is the angle through which the particle moves. Thus we have

$$
\begin{equation*}
d W=F_{t} r d \theta \tag{10-58}
\end{equation*}
$$

From Eq. $10-40$, we see that the product $F_{t} r$ is equal to the torque τ, so we can rewrite Eq. $10-58$ as

$$
\begin{equation*}
d W=\tau d \theta \tag{10-59}
\end{equation*}
$$

The work done during a finite angular displacement from θ_{i} to θ_{f} is then

$$
W=\int_{\theta_{i}}^{\theta_{f}} \tau d \theta
$$

which is Eq. 10-53. It holds for any rigid body rotating about a fixed axis. Equation 10-54 comes directly from Eq. 10-53.

We can find the power P for rotational motion from Eq. 10-59:
which is Eq. 10-55.

$$
P=\frac{d W}{d t}=\tau \frac{d \theta}{d t}=\tau \omega
$$

Sample Problem

Work, rotational kinetic energy, torque, disk

Let the disk in Fig. 10-18 start from rest at time $t=0$ and also let the tension in the massless cord be 6.0 N and the angular acceleration of the disk be $-24 \mathrm{rad} / \mathrm{s}^{2}$. What is its rotational kinetic energy K at $t=2.5 \mathrm{~s}$?

KEY IDEA

We can find K with Eq. 10-34 $\left(K=\frac{1}{2} I \omega^{2}\right)$. We already know that $I=\frac{1}{2} M R^{2}$, but we do not yet know ω at $t=2.5 \mathrm{~s}$. However, because the angular acceleration α has the constant value of $-24 \mathrm{rad} / \mathrm{s}^{2}$, we can apply the equations for constant angular acceleration in Table 10-1.

Calculations: Because we want ω and know α and $\omega_{0}(=0)$, we use Eq. 10-12:

$$
\omega=\omega_{0}+\alpha t=0+\alpha t=\alpha t .
$$

Substituting $\omega=\alpha t$ and $I=\frac{1}{2} M R^{2}$ into Eq. 10-34, we find

$$
\begin{aligned}
K & =\frac{1}{2} I \omega^{2}=\frac{1}{2}\left(\frac{1}{2} M R^{2}\right)(\alpha t)^{2}=\frac{1}{4} M(R \alpha t)^{2} \\
& =\frac{1}{4}(2.5 \mathrm{~kg})\left[(0.20 \mathrm{~m})\left(-24 \mathrm{rad} / \mathrm{s}^{2}\right)(2.5 \mathrm{~s})\right]^{2} \\
& =90 \mathrm{~J} .
\end{aligned}
$$

(Answer)

KEY IDEA

We can also get this answer by finding the disk's kinetic energy from the work done on the disk.

Calculations: First, we relate the change in the kinetic energy of the disk to the net work W done on the disk, using the work-kinetic energy theorem of Eq. 10-52 $\left(K_{f}-K_{i}=W\right)$. With K substituted for K_{f} and 0 for K_{i}, we get

$$
\begin{equation*}
K=K_{i}+W=0+W=W \tag{10-60}
\end{equation*}
$$

Next we want to find the work W. We can relate W to the torques acting on the disk with Eq. 10-53 or 10-54. The only torque causing angular acceleration and doing work is the torque due to force \vec{T} on the disk from the cord, which is equal to $-T R$. Because α is constant, this torque also must be constant. Thus, we can use Eq. 10-54 to write

$$
\begin{equation*}
W=\tau\left(\theta_{f}-\theta_{i}\right)=-T R\left(\theta_{f}-\theta_{i}\right) \tag{10-61}
\end{equation*}
$$

Because α is constant, we can use Eq. 10-13 to find $\theta_{f}-\theta_{i}$. With $\omega_{i}=0$, we have

$$
\theta_{f}-\theta_{i}=\omega_{i} t+\frac{1}{2} \alpha t^{2}=0+\frac{1}{2} \alpha t^{2}=\frac{1}{2} \alpha t^{2} .
$$

Now we substitute this into Eq. 10-61 and then substitute the result into Eq. 10-60. Inserting the given values $T=6.0 \mathrm{~N}$ and $\alpha=-24 \mathrm{rad} / \mathrm{s}^{2}$, we have

$$
\begin{aligned}
K & =W=-T R\left(\theta_{f}-\theta_{i}\right)=-T R\left(\frac{1}{2} \alpha t^{2}\right)=-\frac{1}{2} T R \alpha t^{2} \\
& =-\frac{1}{2}(6.0 \mathrm{~N})(0.20 \mathrm{~m})\left(-24 \mathrm{rad} / \mathrm{s}^{2}\right)(2.5 \mathrm{~s})^{2} \\
& =90 \mathrm{~J} .
\end{aligned}
$$

REVIEW \& SUMMARY

Angular Position To describe the rotation of a rigid body about a fixed axis, called the rotation axis, we assume a reference line is fixed in the body, perpendicular to that axis and rotating with the body. We measure the angular position θ of this line relative to a fixed direction. When θ is measured in radians,

$$
\begin{equation*}
\theta=\frac{s}{r} \quad \text { (radian measure) } \tag{10-1}
\end{equation*}
$$

where s is the arc length of a circular path of radius r and angle θ. Radian measure is related to angle measure in revolutions and degrees by

$$
\begin{equation*}
1 \mathrm{rev}=360^{\circ}=2 \pi \mathrm{rad} . \tag{10-2}
\end{equation*}
$$

Angular Displacement A body that rotates about a rotation axis, changing its angular position from θ_{1} to θ_{2}, undergoes an angular displacement

$$
\begin{equation*}
\Delta \theta=\theta_{2}-\theta_{1} \tag{10-4}
\end{equation*}
$$

where $\Delta \theta$ is positive for counterclockwise rotation and negative for clockwise rotation.

Angular Velocity and Speed If a body rotates through an angular displacement $\Delta \theta$ in a time interval Δt, its average angular velocity $\omega_{\text {avg }}$ is

$$
\begin{equation*}
\omega_{\mathrm{avg}}=\frac{\Delta \theta}{\Delta t} . \tag{10-5}
\end{equation*}
$$

The (instantaneous) angular velocity ω of the body is

$$
\begin{equation*}
\omega=\frac{d \theta}{d t} . \tag{10-6}
\end{equation*}
$$

Both $\omega_{\text {avg }}$ and ω are vectors, with directions given by the right-hand rule of Fig. 10-6. They are positive for counterclockwise rotation and negative for clockwise rotation. The magnitude of the body's angular velocity is the angular speed.

Angular Acceleration If the angular velocity of a body changes from ω_{1} to ω_{2} in a time interval $\Delta t=t_{2}-t_{1}$, the average angular acceleration $\alpha_{\text {avg }}$ of the body is

$$
\begin{equation*}
\alpha_{\mathrm{avg}}=\frac{\omega_{2}-\omega_{1}}{t_{2}-t_{1}}=\frac{\Delta \omega}{\Delta t} \tag{10-7}
\end{equation*}
$$

The (instantaneous) angular acceleration α of the body is

$$
\begin{equation*}
\alpha=\frac{d \omega}{d t} . \tag{10-8}
\end{equation*}
$$

Both $\alpha_{\text {avg }}$ and α are vectors.
The Kinematic Equations for Constant Angular Acceleration Constant angular acceleration ($\alpha=$ constant) is an important special case of rotational motion. The appropriate kinematic equations, given in Table 10-1, are

$$
\begin{align*}
\omega & =\omega_{0}+\alpha t, \tag{10-12}\\
\theta-\theta_{0} & =\omega_{0} t+\frac{1}{2} \alpha t^{2}, \tag{10-13}\\
\omega^{2} & =\omega_{0}^{2}+2 \alpha\left(\theta-\theta_{0}\right), \tag{10-14}\\
\theta-\theta_{0} & =\frac{1}{2}\left(\omega_{0}+\omega\right) t, \tag{10-15}\\
\theta-\theta_{0} & =\omega t-\frac{1}{2} \alpha t^{2} . \tag{10-16}
\end{align*}
$$

Linear and Angular Variables Related A point in a rigid rotating body, at a perpendicular distance r from the rotation axis, moves in a circle with radius r. If the body rotates through an angle θ, the point moves along an arc with length s given by

$$
\begin{equation*}
s=\theta r \quad \text { (radian measure) } \tag{10-17}
\end{equation*}
$$

where θ is in radians.
The linear velocity \vec{v} of the point is tangent to the circle; the point's linear speed v is given by

$$
\begin{equation*}
v=\omega r \quad(\text { radian measure }) \tag{10-18}
\end{equation*}
$$

where ω is the angular speed (in radians per second) of the body.
The linear acceleration \vec{a} of the point has both tangential and radial components. The tangential component is

$$
\begin{equation*}
a_{t}=\alpha r \quad(\text { radian measure }) \tag{10-22}
\end{equation*}
$$

where α is the magnitude of the angular acceleration (in radians per second-squared) of the body. The radial component of \vec{a} is

$$
\begin{equation*}
a_{r}=\frac{v^{2}}{r}=\omega^{2} r \quad(\text { radian measure }) \tag{10-23}
\end{equation*}
$$

If the point moves in uniform circular motion, the period T of the motion for the point and the body is

$$
\begin{equation*}
T=\frac{2 \pi r}{v}=\frac{2 \pi}{\omega} \quad \text { (radian measure) } \tag{10-19,10-20}
\end{equation*}
$$

Rotational Kinetic Energy and Rotational Inertia The kinetic energy K of a rigid body rotating about a fixed axis is given by

$$
\begin{equation*}
K=\frac{1}{2} I \omega^{2} \quad(\text { radian measure }) \tag{10-34}
\end{equation*}
$$

in which I is the rotational inertia of the body, defined as

$$
\begin{equation*}
I=\sum m_{i} r_{i}^{2} \tag{10-33}
\end{equation*}
$$

for a system of discrete particles and defined as

$$
\begin{equation*}
I=\int r^{2} d m \tag{10-35}
\end{equation*}
$$

for a body with continuously distributed mass. The r and r_{i} in these expressions represent the perpendicular distance from the axis of rotation to each mass element in the body, and the integration is carried out over the entire body so as to include every mass element.

The Parallel-Axis Theorem The parallel-axis theorem relates the rotational inertia I of a body about any axis to that of the same body about a parallel axis through the center of mass:

$$
\begin{equation*}
I=I_{\mathrm{com}}+M h^{2} . \tag{10-36}
\end{equation*}
$$

Here h is the perpendicular distance between the two axes, and $I_{\text {com }}$ is the rotational inertia of the body about the axis through the com. We can describe h as being the distance the actual rotation axis has been shifted from the rotation axis through the com.

Torque Torque is a turning or twisting action on a body about a rotation axis due to a force \vec{F}. If \vec{F} is exerted at a point given by the position vector \vec{r} relative to the axis, then the magnitude of the torque is

$$
\begin{equation*}
\tau=r F_{t}=r_{\perp} F=r F \sin \phi, \tag{10-40,10-41,10-39}
\end{equation*}
$$

where F_{t} is the component of \vec{F} perpendicular to \vec{r} and ϕ is the angle between \vec{r} and \vec{F}. The quantity r_{\perp} is the perpendicular distance between the rotation axis and an extended line running through the \vec{F} vector. This line is called the line of action of \vec{F}, and r_{\perp} is called the moment arm of \vec{F}. Similarly, r is the moment arm of F_{t}.

The SI unit of torque is the newton-meter $(\mathrm{N} \cdot \mathrm{m})$. A torque τ is positive if it tends to rotate a body at rest counterclockwise and negative if it tends to rotate the body clockwise.

Newton's Second Law in Angular Form The rotational analog of Newton's second law is

$$
\begin{equation*}
\tau_{\mathrm{net}}=I \alpha, \tag{10-45}
\end{equation*}
$$

where $\tau_{\text {net }}$ is the net torque acting on a particle or rigid body, I is the rotational inertia of the particle or body about the rotation axis, and α is the resulting angular acceleration about that axis.

Work and Rotational Kinetic Energy The equations used for calculating work and power in rotational motion correspond to equations used for translational motion and are

$$
\begin{equation*}
W=\int_{\theta_{i}}^{\theta_{j}} \tau d \theta \tag{10-53}
\end{equation*}
$$

and

$$
\begin{equation*}
P=\frac{d W}{d t}=\tau \omega . \tag{10-55}
\end{equation*}
$$

When τ is constant, Eq. $10-53$ reduces to

$$
\begin{equation*}
W=\tau\left(\theta_{f}-\theta_{i}\right) . \tag{10-54}
\end{equation*}
$$

The form of the work-kinetic energy theorem used for rotating bodies is

$$
\begin{equation*}
\Delta K=K_{f}-K_{i}=\frac{1}{2} I \omega_{f}^{2}-\frac{1}{2} I \omega_{i}^{2}=W . \tag{10-52}
\end{equation*}
$$

1 Figure 10-19 is a graph of the angular velocity versus time for a disk rotating like a merry-go-round. For a point on the disk rim, rank the instants a, b, c, and d according to the magnitude of the (a) tangential and (b) radial acceleration, greatest first.

2 Figure 10-20 shows plots of angular position θ versus time t for three cases in which a disk is rotated like a merry-go-round. In each case, the rotation direction changes at a certain angular position $\theta_{\text {change }}$. (a) For each case, determine whether $\theta_{\text {change }}$ is clockwise or counterclockwise from $\theta=0$, or whether it is at $\theta=0$. For each case, determine

Fig. 10-19 Question 1.

Fig. 10-20 Question 2. (b) whether ω is zero before, after, or at $t=0$ and (c) whether α is positive, negative, or zero.
3 A force is applied to the rim of a disk that can rotate like a merry-go-round, so as to change its angular velocity. Its initial and final angular velocities, respectively, for four situations are: (a) -2 $\mathrm{rad} / \mathrm{s}$, $5 \mathrm{rad} / \mathrm{s}$; (b) $2 \mathrm{rad} / \mathrm{s}, 5 \mathrm{rad} / \mathrm{s}$; (c) $-2 \mathrm{rad} / \mathrm{s},-5 \mathrm{rad} / \mathrm{s}$; and (d) 2 $\mathrm{rad} / \mathrm{s},-5 \mathrm{rad} / \mathrm{s}$. Rank the situations according to the work done by the torque due to the force, greatest first.
4 Figure $10-21 b$ is a graph of the angular position of the rotating disk of Fig. 10-21a. Is the angular velocity of the disk positive, negative, or zero at (a) $t=1 \mathrm{~s}$, (b) $t=2 \mathrm{~s}$, and (c) $t=3 \mathrm{~s}$? (d) Is the angular acceleration positive or negative?

Fig. 10-21 Question 4.
5 In Fig. 10-22, two forces \vec{F}_{1} and \vec{F}_{2} act on a disk that turns about its center like a merry-go-round. The forces maintain the indicated angles during the rotation, which is counterclockwise and at a constant rate. However, we are to decrease the angle θ of \vec{F}_{1} without changing the magnitude of \vec{F}_{1}. (a) To keep the angular speed constant, should we increase, decrease, or maintain the magnitude of

Fig. 10-22 Question 5.
\vec{F}_{2} ? Do forces (b) \vec{F}_{1} and (c) \vec{F}_{2} tend to rotate the disk clockwise or counterclockwise?
6 In the overhead view of Fig. 10-23, five forces of the same magnitude act on a strange merry-go-round; it is a square that can rotate about point P, at midlength along one of the edges. Rank the forces according to the magnitude of the torque they create

Fig. 10-23 Question 6. about point P, greatest first.
7 Figure $10-24 a$ is an overhead view of a horizontal bar that can pivot; two horizontal forces act on the bar, but it is stationary. If the angle between the bar and \vec{F}_{2} is now decreased from 90° and the bar is still not to turn, should F_{2} be made larger, made smaller, or left the same?

Fig. 10-24 Questions 7 and 8 .
8 Figure 10-24b shows an overhead view of a horizontal bar that is rotated about the pivot point by two horizontal forces, \vec{F}_{1} and \vec{F}_{2}, with \vec{F}_{2} at angle ϕ to the bar. Rank the following values of ϕ according to the magnitude of the angular acceleration of the bar, greatest first: $90^{\circ}, 70^{\circ}$, and 110°.
9 Figure 10-25 shows a uniform metal plate that had been square before 25% of it was snipped off. Three lettered points are indicated. Rank them according to the rotational inertia of the plate around a perpendicular axis through them, greatest first.

Fig. 10-25 Question 9.

10 Figure 10-26 shows three flat disks (of the same radius) that can rotate about their centers like merry-go-rounds. Each disk consists of the same two materials, one denser than the other (density is mass per unit volume). In disks 1 and 3, the denser material forms the outer half of the disk area. In disk 2, it forms the inner half of the disk area. Forces with identical magnitudes are applied tangentially to the disk, either at the outer edge or at the interface of the two materials, as shown. Rank the disks according to (a) the torque about the disk center, (b) the rotational inertia about the disk center, and (c) the angular acceleration of the disk, greatest first.

Fig. 10-26 Question 10 .

```
(s) Tutoring problem available (at instructor's discretion) in WileyPLUS and WebAssign
SSIM Worked-out solution available in Student Solutions Manual WWW Worked-out solution is at
-- Number of dots indicates level of problem difficulty ILW Interactive solution is at
#%F}\mathrm{ Additional information available in The Flying Circus of Physics and at flyingcircusofphysics.com
```


sec. 10-2 The Rotational Variables

-1 A good baseball pitcher can throw a baseball toward home plate at $85 \mathrm{mi} / \mathrm{h}$ with a spin of $1800 \mathrm{rev} / \mathrm{min}$. How many revolutions does the baseball make on its way to home plate? For simplicity, assume that the 60 ft path is a straight line.
-2 What is the angular speed of (a) the second hand, (b) the minute hand, and (c) the hour hand of a smoothly running analog watch? Answer in radians per second.
$\bullet 3$ When a slice of buttered toast is accidentally pushed over the edge of a counter, it rotates as it falls. If the distance to the floor is 76 cm and for rotation less than 1 rev , what are the (a) smallest and (b) largest angular speeds that cause the toast to hit and then topple to be butter-side down?
$\bullet 4$ The angular position of a point on a rotating wheel is given by $\theta=2.0+4.0 t^{2}+2.0 t^{3}$, where θ is in radians and t is in seconds. At $t=0$, what are (a) the point's angular position and (b) its angular velocity? (c) What is its angular velocity at $t=4.0 \mathrm{~s}$? (d) Calculate its angular acceleration at $t=2.0 \mathrm{~s}$. (e) Is its angular acceleration constant?
$\bullet 5$ ILW A diver makes 2.5 revolutions on the way from a $10-\mathrm{m}-$ high platform to the water. Assuming zero initial vertical velocity, find the average angular velocity during the dive.

- 6 The angular position of a point on the rim of a rotating wheel is given by $\theta=4.0 t-3.0 t^{2}+t^{3}$, where θ is in radians and t is in seconds. What are the angular velocities at (a) $t=2.0 \mathrm{~s}$ and (b) $t=4.0 \mathrm{~s}$? (c) What is the average angular acceleration for the time interval that begins at $t=2.0 \mathrm{~s}$ and ends at $t=4.0 \mathrm{~s}$? What are the instantaneous angular accelerations at (d) the beginning and (e) the end of this time interval?
$\bullet \bullet 07$ The wheel in Fig. 10-27 has eight equally spaced spokes and a radius of 30 cm . It is mounted on a fixed axle and is spinning at 2.5 $\mathrm{rev} / \mathrm{s}$. You want to shoot a $20-\mathrm{cm}$ long arrow parallel to this axle and through the wheel without hitting any of the spokes. Assume that the

Fig. 10-27 Problem 7. arrow and the spokes are very thin.
(a) What minimum speed must the arrow have? (b) Does it matter where between the axle and rim of the wheel you aim? If so, what is the best location?
$\bullet 8$ The angular acceleration of a wheel is $\alpha=6.0 t^{4}-4.0 t^{2}$, with α in radians per second-squared and t in seconds. At time $t=0$, the wheel has an angular velocity of $+2.0 \mathrm{rad} / \mathrm{s}$ and an angular position of +1.0 rad . Write expressions for (a) the angular velocity ($\mathrm{rad} / \mathrm{s}$) and (b) the angular position (rad) as functions of time (s).

sec. 10-4 Rotation with Constant Angular Acceleration

-9 A drum rotates around its central axis at an angular velocity of $12.60 \mathrm{rad} / \mathrm{s}$. If the drum then slows at a constant rate of $4.20 \mathrm{rad} / \mathrm{s}^{2}$, (a) how much time does it take and (b) through what angle does it rotate in coming to rest?
-10 Starting from rest, a disk rotates about its central axis with constant angular acceleration. In 5.0 s , it rotates 25 rad . During that time, what are the magnitudes of (a) the angular acceleration and (b) the average angular velocity? (c) What is the instantaneous angular velocity of the disk at the end of the 5.0 s ? (d) With the angular acceleration unchanged, through what additional angle will the disk turn during the next 5.0 s?
-11 A disk, initially rotating at $120 \mathrm{rad} / \mathrm{s}$, is slowed down with a constant angular acceleration of magnitude $4.0 \mathrm{rad} / \mathrm{s}^{2}$. (a) How much time does the disk take to stop? (b) Through what angle does the disk rotate during that time?
-12 The angular speed of an automobile engine is increased at a constant rate from $1200 \mathrm{rev} / \mathrm{min}$ to $3000 \mathrm{rev} / \mathrm{min}$ in 12 s . (a) What is its angular acceleration in revolutions per minute-squared? (b) How many revolutions does the engine make during this 12 s interval?

- 13 ILW A flywheel turns through 40 rev as it slows from an angular speed of $1.5 \mathrm{rad} / \mathrm{s}$ to a stop. (a) Assuming a constant angular acceleration, find the time for it to come to rest. (b) What is its angular acceleration? (c) How much time is required for it to complete the first 20 of the 40 revolutions?
$\bullet 14$ (60 A disk rotates about its central axis starting from rest and accelerates with constant angular acceleration. At one time it is rotating at $10 \mathrm{rev} / \mathrm{s} ; 60$ revolutions later, its angular speed is $15 \mathrm{rev} / \mathrm{s}$. Calculate (a) the angular acceleration, (b) the time required to complete the 60 revolutions, (c) the time required to reach the 10 rev/s angular speed, and (d) the number of revolutions from rest until the time the disk reaches the $10 \mathrm{rev} / \mathrm{s}$ angular speed.
$\bullet 15$ SSM A wheel has a constant angular acceleration of $3.0 \mathrm{rad} / \mathrm{s}^{2}$. During a certain 4.0 s interval, it turns through an angle of 120 rad . Assuming that the wheel started from rest, how long has it been in motion at the start of this 4.0 s interval?
-•16 A merry-go-round rotates from rest with an angular acceleration of $1.50 \mathrm{rad} / \mathrm{s}^{2}$. How long does it take to rotate through (a) the first 2.00 rev and (b) the next 2.00 rev ?
-•17 At $t=0$, a flywheel has an angular velocity of $4.7 \mathrm{rad} / \mathrm{s}$, a constant angular acceleration of $-0.25 \mathrm{rad} / \mathrm{s}^{2}$, and a reference line at $\theta_{0}=0$. (a) Through what maximum angle $\theta_{\max }$ will the reference line turn in the positive direction? What are the (b) first and (c) second times the reference line will be at $\theta=\frac{1}{2} \theta_{\max }$? At what (d) negative time and (e) positive time will the reference line be at $\theta=10.5 \mathrm{rad}$? (f) Graph θ versus t, and indicate the answers to (a) through (e) on the graph.

sec. 10-5 Relating the Linear and Angular Variables

-18 If an airplane propeller rotates at $2000 \mathrm{rev} / \mathrm{min}$ while the airplane flies at a speed of $480 \mathrm{~km} / \mathrm{h}$ relative to the ground, what is the linear speed of a point on the tip of the propeller, at radius 1.5 m , as seen by (a) the pilot and (b) an observer on the ground? The plane's velocity is parallel to the propeller's axis of rotation.
-19 What are the magnitudes of (a) the angular velocity, (b) the radial acceleration, and (c) the tangential acceleration of a spaceship taking a circular turn of radius 3220 km at a speed of $29000 \mathrm{~km} / \mathrm{h}$?
-20 An object rotates about a fixed axis, and the angular position of a reference line on the object is given by $\theta=0.40 e^{2 t}$, where θ is in radians and t is in seconds. Consider a point on the object that is 4.0 cm from the axis of rotation. At $t=0$, what are the magnitudes of the point's (a) tangential component of acceleration and (b) radial component of acceleration?
-21 Between 1911 and 1990, the top of the leaning bell tower at Pisa, Italy, moved toward the south at an average rate of $1.2 \mathrm{~mm} / \mathrm{y}$. The tower is 55 m tall. In radians per second, what is the average angular speed of the tower's top about its base?
-22 An astronaut is being tested in a centrifuge. The centrifuge has a radius of 10 m and, in starting, rotates according to $\theta=0.30 t^{2}$, where t is in seconds and θ is in radians. When $t=5.0 \mathrm{~s}$, what are the magnitudes of the astronaut's (a) angular velocity, (b) linear velocity, (c) tangential acceleration, and (d) radial acceleration?
-23 SSM www A flywheel with a diameter of 1.20 m is rotating at an angular speed of $200 \mathrm{rev} / \mathrm{min}$. (a) What is the angular speed of the flywheel in radians per second? (b) What is the linear speed of a point on the rim of the flywheel? (c) What constant angular acceleration (in revolutions per minute-squared) will increase the wheel's angular speed to $1000 \mathrm{rev} / \mathrm{min}$ in 60.0 s ? (d) How many revolutions does the wheel make during that 60.0 s ?
-24 A vinyl record is played by rotating the record so that an approximately circular groove in the vinyl slides under a stylus. Bumps in the groove run into the stylus, causing it to oscillate. The equipment converts those oscillations to electrical signals and then to sound. Suppose that a record turns at the rate of $33 \frac{1}{3} \mathrm{rev} / \mathrm{min}$, the groove being played is at a radius of 10.0 cm , and the bumps in the groove are uniformly separated by 1.75 mm . At what rate (hits per second) do the bumps hit the stylus?
$\bullet 25$ SSM (a) What is the angular speed ω about the polar axis of a point on Earth's surface at latitude $40^{\circ} \mathrm{N}$? (Earth rotates about that axis.) (b) What is the linear speed v of the point? What are (c) ω and (d) v for a point at the equator?
-•26 The flywheel of a steam engine runs with a constant angular velocity of $150 \mathrm{rev} / \mathrm{min}$. When steam is shut off, the friction of the bearings and of the air stops the wheel in 2.2 h . (a) What is the constant angular acceleration, in revolutions per minute-squared, of the wheel during the slowdown? (b) How many revolutions does the wheel make before stopping? (c) At the instant the flywheel is turning at $75 \mathrm{rev} / \mathrm{min}$, what is the tangential component of the linear acceleration of a flywheel particle that is 50 cm from the axis of rotation? (d) What is the magnitude of the net linear acceleration of the particle in (c)?
$\bullet 27$ A record turntable is rotating at $33 \frac{1}{3} \mathrm{rev} / \mathrm{min}$. A watermelon seed is on the turntable 6.0 cm from the axis of rotation. (a) Calculate the acceleration of the seed, assuming that it does not slip. (b) What is the minimum value of the coefficient of static friction between the seed and the turntable if the seed is not to slip? (c) Suppose that the turntable achieves its angular speed by starting from rest and undergoing a constant angular acceleration for 0.25 s . Calculate the minimum coefficient of static friction required for the seed not to slip during the acceleration period
-•28 In Fig. 10-28, wheel A of radius $r_{A}=10 \mathrm{~cm}$ is coupled by belt B to wheel C of radius $r_{C}=25 \mathrm{~cm}$. The angular speed of wheel A is increased from rest at a constant rate

Fig. 10-28 Problem 28.
of $1.6 \mathrm{rad} / \mathrm{s}^{2}$. Find the time needed for wheel C to reach an angular speed of $100 \mathrm{rev} / \mathrm{min}$, assuming the belt does not slip. (Hint: If the belt does not slip, the linear speeds at the two rims must be equal.)
-•29 An early method of measuring the speed of light makes use of a rotating slotted wheel. A beam of light passes through one of the slots at the outside edge of the wheel, as in Fig. 10-29, travels to a distant mirror, and returns to the wheel just in time to pass through the next slot in the wheel. One such slotted wheel has a radius of 5.0 cm and 500 slots around its edge. Measurements taken when the mirror is $L=500 \mathrm{~m}$ from the wheel indicate a speed of light of $3.0 \times 10^{5} \mathrm{~km} / \mathrm{s}$. (a) What is the (constant) angular speed of the wheel? (b) What is the linear speed of a point on the edge of the wheel?

Fig. 10-29 Problem 29.
-•30 A gyroscope flywheel of radius 2.83 cm is accelerated from rest at $14.2 \mathrm{rad} / \mathrm{s}^{2}$ until its angular speed is $2760 \mathrm{rev} / \mathrm{min}$. (a) What is the tangential acceleration of a point on the rim of the flywheel during this spin-up process? (b) What is the radial acceleration of this point when the flywheel is spinning at full speed? (c) Through what distance does a point on the rim move during the spin-up?
$\bullet 31$ ©o A disk, with a radius of 0.25 m , is to be rotated like a merry-go-round through 800 rad , starting from rest, gaining angular speed at the constant rate α_{1} through the first 400 rad and then losing angular speed at the constant rate $-\alpha_{1}$ until it is again at rest. The magnitude of the centripetal acceleration of any portion of the disk is not to exceed $400 \mathrm{~m} / \mathrm{s}^{2}$. (a) What is the least time required for the rotation? (b) What is the corresponding value of α_{1} ?
$\bullet \bullet 32$ A pulsar is a rapidly rotating neutron star that emits a radio beam the way a lighthouse emits a light beam. We receive a radio pulse for each rotation of the star. The period T of rotation is found by measuring the time between pulses. The pulsar in the Crab nebula has a period of rotation of $T=0.033 \mathrm{~s}$ that is increasing at the rate of $1.26 \times 10^{-5} \mathrm{~s} / \mathrm{y}$. (a) What is the pulsar's angular acceleration α ? (b) If α is constant, how many years from now will the pulsar stop rotating? (c) The pulsar originated in a supernova explosion seen in the year 1054. Assuming constant α, find the initial T.

sec. 10-6 Kinetic Energy of Rotation

-33 SSM Calculate the rotational inertia of a wheel that has a kinetic energy of 24400 J when rotating at $602 \mathrm{rev} / \mathrm{min}$.
-34 Figure 10-30 gives angular speed versus time for a thin rod that rotates around one end. The scale on the ω axis is set by $\omega_{s}=6.0 \mathrm{rad} / \mathrm{s}$. (a) What is the magnitude of the rod's angular acceleration? (b) At $t=4.0 \mathrm{~s}$, the rod has a rotational kinetic energy of 1.60 J . What is its kinetic energy at $t=0$?

Fig. 10-30 Problem 34.
sec. 10-7 Calculating the Rotational Inertia
-35 SSM Two uniform solid cylinders, each rotating about its central (longitudinal) axis at $235 \mathrm{rad} / \mathrm{s}$, have the same mass of 1.25 kg but differ in radius. What is the rotational kinetic energy of (a) the smaller cylinder, of radius 0.25 m , and (b) the larger cylinder, of radius 0.75 m ?
-36 Figure 10-31 a shows a disk that can rotate about an axis at a radial distance h from the center of the disk. Figure 10-31 b gives the rotational inertia I of the disk about the axis as a function of that distance h, from the center out to the edge of the disk. The scale on the I axis is set by $I_{A}=0.050 \mathrm{~kg} \cdot \mathrm{~m}^{2}$ and $I_{B}=0.150 \mathrm{~kg} \cdot \mathrm{~m}^{2}$. What is the mass of the disk?

Fig. 10-31 Problem 36.
-37 SSM Calculate the rotational inertia of a meter stick, with mass 0.56 kg , about an axis perpendicular to the stick and located at the 20 cm mark. (Treat the stick as a thin rod.)
-38 Figure $10-32$ shows three 0.0100 kg particles that have been glued to a rod of length $L=6.00 \mathrm{~cm}$ and negligible mass. The assembly can rotate around a perpendicular axis through point O at the left end. If we remove one particle (that is, 33% of the mass), by what percentage does the rotational inertia of the assembly

Fig. 10-32 Problems 38 and 62.
around the rotation axis decrease when that removed particle is (a) the innermost one and (b) the outermost one?
-•39 Trucks can be run on energy stored in a rotating flywheel, with an electric motor getting the flywheel up to its top speed of $200 \pi \mathrm{rad} / \mathrm{s}$. One such flywheel is a solid, uniform cylinder with a mass of 500 kg and a radius of 1.0 m . (a) What is the kinetic energy of the flywheel after charging? (b) If the truck uses an average power of 8.0 kW , for how many minutes can it operate between chargings?
$\bullet 40$ Figure 10-33 shows an arrangement of 15 identical disks that have been glued together in a rod-like shape of length $L=1.0000 \mathrm{~m}$ and (total) mass $M=100.0 \mathrm{mg}$. The disk arrangement can rotate about a perpendicular axis through its central disk at point O. (a) What is the rotational inertia of the arrangement about that axis? (b) If we approximated the arrangement as being a uniform rod of mass M and length L, what percentage error would we make in using the formula in Table 10-2e to calculate the rotational inertia?

Fig. 10-33 Problem 40.
-•41 In Fig. 10-34, two particles, each with mass $m=0.85 \mathrm{~kg}$, are fastened to each other, and to a rotation axis at O, by two thin rods, each with length $d=5.6 \mathrm{~cm}$ and mass $M=1.2 \mathrm{~kg}$. The combination rotates around the rotation axis with the angular speed $\omega=0.30 \mathrm{rad} / \mathrm{s}$. Measured about O, what are the

Fig. 10-34 Problem 41. combination's (a) rotational inertia and (b) kinetic energy?
$\bullet 42$ The masses and coordinates of four particles are as follows: $50 \mathrm{~g}, x=2.0 \mathrm{~cm}, y=2.0 \mathrm{~cm} ; 25 \mathrm{~g}, x=0, y=4.0 \mathrm{~cm} ; 25 \mathrm{~g}, x=-3.0$ $\mathrm{cm}, y=-3.0 \mathrm{~cm} ; 30 \mathrm{~g}, x=-2.0 \mathrm{~cm}, y=4.0 \mathrm{~cm}$. What are the rotational inertias of this collection about the (a) x, (b) y, and (c) z axes? (d) Suppose the answers to (a) and (b) are A and B, respectively. Then what is the answer to (c) in terms of A and B ?
$\bullet 43$ SSM www The uniform solid block in Fig. 10-35 has mass 0.172 kg and edge lengths $a=3.5 \mathrm{~cm}, b=8.4$ cm , and $c=1.4 \mathrm{~cm}$. Calculate its rotational inertia about an axis through one corner and perpendicu-

Fig. 10-35 Problem 43. lar to the large faces.
$\bullet 44$ Four identical particles of mass 0.50 kg each are placed at the vertices of a $2.0 \mathrm{~m} \times 2.0 \mathrm{~m}$ square and held there by four massless rods, which form the sides of the square. What is the rotational inertia of this rigid body about an axis that (a) passes through the midpoints of opposite sides and lies in the plane of the square, (b) passes through the midpoint of one of the sides and is perpendicular to the plane of the square, and (c) lies in the plane of the square and passes through two diagonally opposite particles?

sec. 10-8 Torque

$\cdot 45$ ssm ilw The body in Fig. $10-36$ is pivoted at O, and two forces act on it as shown. If $r_{1}=1.30 \mathrm{~m}, r_{2}=2.15 \mathrm{~m}, F_{1}=$ $4.20 \mathrm{~N}, F_{2}=4.90 \mathrm{~N}, \theta_{1}=75.0^{\circ}$, and $\theta_{2}=60.0^{\circ}$, what is the net torque about the pivot?
-46 The body in Fig. 10-37 is

Fig. 10-36 Problem 45. pivoted at O. Three forces act on it: $F_{A}=10 \mathrm{~N}$ at point $A, 8.0 \mathrm{~m}$ from $O ; F_{B}=16 \mathrm{~N}$ at $B, 4.0 \mathrm{~m}$ from $O ;$ and $F_{C}=19 \mathrm{~N}$ at $C, 3.0 \mathrm{~m}$ from O. What is the net torque about O ?

Fig. 10-37 Problem 46.
$\bullet 47$ SSM A small ball of mass 0.75 kg is attached to one end of a $1.25-\mathrm{m}$-long massless rod, and the other end of the rod is hung from a pivot. When the resulting pendulum is 30° from the vertical, what is the magnitude of the gravitational torque calculated about the pivot?
-48 The length of a bicycle pedal arm is 0.152 m , and a downward force of 111 N is applied to the pedal by the rider. What is the magnitude of the torque about the pedal arm's pivot when the arm is at angle (a) 30°, (b) 90°, and (c) 180° with the vertical?

sec. 10-9 Newton's Second Law for Rotation

-49 SSM ILW During the launch from a board, a diver's angular speed about her center of mass changes from zero to $6.20 \mathrm{rad} / \mathrm{s}$ in 220 ms . Her rotational inertia about her center of mass is 12.0 $\mathrm{kg} \cdot \mathrm{m}^{2}$. During the launch, what are the magnitudes of (a) her average angular acceleration and (b) the average external torque on her from the board?
.50 If a $32.0 \mathrm{~N} \cdot \mathrm{~m}$ torque on a wheel causes angular acceleration $25.0 \mathrm{rad} / \mathrm{s}^{2}$, what is the wheel's rotational inertia?
-051 ©0 In Fig. 10-38, block 1 has mass $m_{1}=460 \mathrm{~g}$, block 2 has mass $m_{2}=500 \mathrm{~g}$, and the pulley, which is mounted on a horizontal axle with negligible friction, has radius $R=5.00 \mathrm{~cm}$. When released from rest, block 2 falls 75.0 cm in 5.00 s without the cord slipping on the pulley. (a) What is the magnitude of the acceleration of the blocks? What are (b) tension T_{2} and (c) tension T_{1} ? (d) What is the magnitude of the pulley's angular ac-

Fig. 10-38
Problems 51 and 83 celeration? (e) What is its rotational inertia?
-052 © In Fig. 10-39, a cylinder having a mass of 2.0 kg can rotate about its central axis through point O. Forces are applied as shown: $F_{1}=6.0 \mathrm{~N}, F_{2}=4.0 \mathrm{~N}, F_{3}=2.0 \mathrm{~N}$, and $F_{4}=5.0 \mathrm{~N}$. Also, $r=5.0 \mathrm{~cm}$ and $R=12 \mathrm{~cm}$. Find the (a) magnitude and (b) direction of the angular acceleration of the cylinder. (During the rotation, the forces maintain their same angles relative to the cylinder.)

Fig. 10-39 Problem 52.
$\bullet 53$ © 0 Figure $10-40$ shows a uniform disk that can rotate around its center like a merry-goround. The disk has a radius of 2.00 cm and a mass of 20.0 grams and is initially at rest. Starting at

Fig. 10-40 Problem 53. time $t=0$, two forces are to be applied tangentially to the rim as indicated, so that at time $t=1.25 \mathrm{~s}$ the disk has an angular velocity of $250 \mathrm{rad} / \mathrm{s}$ counterclockwise. Force \vec{F}_{1} has a magnitude of 0.100 N . What is magnitude F_{2} ?
$\because 54=$ In a judo foot-sweep move, you sweep your opponent's left foot out from under him while pulling on his gi (uniform) toward that side. As a result, your opponent rotates around his right foot and onto the mat. Figure 10-41 shows a simplified diagram of your opponent as you face him, with his left foot swept out. The rotational axis is through point O. The gravitational force \vec{F}_{g} on him effectively acts at his center of mass, which is a horizontal distance $d=28 \mathrm{~cm}$ from point O. His mass is 70 kg , and his rotational inertia about point O is 65 $\mathrm{kg} \cdot \mathrm{m}^{2}$. What is the magnitude of his initial angular acceleration

Fig. 10-41 Problem 54. about point O if your pull \vec{F}_{a} on his gi is (a) negligible and (b) horizontal with a magnitude of 300 N and applied at height $h=1.4 \mathrm{~m}$?
-055 60 In Fig. 10-42a, an irregularly shaped plastic plate with uniform thickness and density (mass per unit volume) is to be rotated around an axle that is perpendicular to the plate face and through point O. The rotational inertia of the plate about that axle is measured with the following method. A circular disk of mass 0.500 kg and radius 2.00 cm is glued to the plate, with its center aligned with point O (Fig. 10-42b). A string is wrapped around the edge of the disk the way a string is wrapped around a top. Then the string is pulled for 5.00 s . As a result, the disk

Fig. 10-42 Problem 55.
and plate are rotated by a constant force of 0.400 N that is applied by the string tangentially to the edge of the disk. The resulting angular speed is $114 \mathrm{rad} / \mathrm{s}$. What is the rotational inertia of the plate about the axle?
-056 Figure 10-43 shows particles 1 and 2 , each of mass m, attached to the ends of a rigid massless rod of

Fig. 10-43 Problem 56. length $L_{1}+L_{2}$, with $L_{1}=20$ cm and $L_{2}=80 \mathrm{~cm}$. The rod is held horizontally on the fulcrum and then released. What are the magnitudes of the initial accelerations of (a) particle 1 and (b) particle 2?
©o057 A pulley, with a rotational inertia of $1.0 \times 10^{-3} \mathrm{~kg} \cdot \mathrm{~m}^{2}$ about its axle and a radius of 10 cm , is acted on by a force applied tangentially at its rim. The force magnitude varies in time as $F=0.50 t+0.30 t^{2}$, with F in newtons and t in seconds. The pulley is initially at rest. At $t=3.0 \mathrm{~s}$ what are its (a) angular acceleration and (b) angular speed?

sec. 10-10 Work and Rotational Kinetic Energy

$\cdot 58$ (a) If $R=12 \mathrm{~cm}, M=400 \mathrm{~g}$, and $m=50 \mathrm{~g}$ in Fig. $10-18$, find the speed of the block after it has descended 50 cm starting from rest. Solve the problem using energy conservation principles. (b) Repeat (a) with $R=5.0 \mathrm{~cm}$.
-59 An automobile crankshaft transfers energy from the engine to the axle at the rate of $100 \mathrm{hp}(=74.6 \mathrm{~kW})$ when rotating at a speed of $1800 \mathrm{rev} / \mathrm{min}$. What torque (in newton-meters) does the crankshaft deliver?
${ }^{\circ} 60$ A thin rod of length 0.75 m and mass 0.42 kg is suspended freely from one end. It is pulled to one side and then allowed to swing like a pendulum, passing through its lowest position with angular speed $4.0 \mathrm{rad} / \mathrm{s}$. Neglecting friction and air resistance, find (a) the rod's kinetic energy at its lowest position and (b) how far above that position the center of mass rises.
-61 A 32.0 kg wheel, essentially a thin hoop with radius 1.20 m , is rotating at $280 \mathrm{rev} / \mathrm{min}$. It must be brought to a stop in 15.0 s . (a) How much work must be done to stop it? (b) What is the required average power?
-•62 In Fig. 10-32, three 0.0100 kg particles have been glued to a rod of length $L=6.00 \mathrm{~cm}$ and negligible mass and can rotate around a perpendicular axis through point O at one end. How much work is required to change the rotational rate (a) from 0 to $20.0 \mathrm{rad} / \mathrm{s}$, (b) from $20.0 \mathrm{rad} / \mathrm{s}$ to $40.0 \mathrm{rad} / \mathrm{s}$, and (c) from $40.0 \mathrm{rad} / \mathrm{s}$ to $60.0 \mathrm{rad} / \mathrm{s}$? (d) What is the slope of a plot of the assembly's kinetic energy (in joules) versus the square of its rotation rate (in radianssquared per second-squared)?
$\bullet 63$ SSM ILW A meter stick is held vertically with one end on the floor and is then allowed to fall. Find the speed of the other end just before it hits the floor, assuming that the end on the floor does not slip. (Hint: Consider the stick to be a thin rod and use the conservation of energy principle.)
$\bullet 64$ A uniform cylinder of radius 10 cm and mass 20 kg is mounted so as to rotate freely about a horizontal axis that is parallel to and 5.0 cm from the central longitudinal axis of the cylinder. (a) What is the rotational inertia of the cylinder about the axis of rotation? (b) If the cylinder is released from rest with its central longitudinal axis at the same height as the axis about which the cylinder rotates, what is the angular speed of the cylinder as it passes through its lowest position?

0065 A tall, cylindrical chimney falls over when its base is ruptured. Treat the chimney as a thin rod of length 55.0 m . At the instant it makes an angle of 35.0° with the vertical as it falls, what are (a) the radial acceleration of the top, and (b) the tangential acceleration of the top. (Hint: Use energy considerations, not a torque.) (c) At what angle θ is the tangential acceleration equal to g ?
©0066 A uniform spherical shell of mass $M=4.5 \mathrm{~kg}$ and radius $R=8.5 \mathrm{~cm}$ can rotate about a vertical axis on frictionless bearings (Fig. 10-44). A massless cord passes around the equator of the shell, over a pulley of rotational inertia $I=3.0 \times 10^{-3} \mathrm{~kg} \cdot \mathrm{~m}^{2}$ and radius $r=5.0 \mathrm{~cm}$, and is attached to a small object of mass $m=0.60 \mathrm{~kg}$. There is no friction on the pulley's axle; the cord does not slip on the pulley. What is the speed of the object when it has fallen 82 cm after being released from rest? Use energy considerations.

Fig. 10-44 Problem 66.
©0067 © Figure $10-45$ shows a rigid assembly of a thin hoop (of mass m and radius $R=0.150 \mathrm{~m}$) and a thin radial rod (of mass m and length $L=$ $2.00 R$). The assembly is upright, but if we give it a slight nudge, it will rotate around a horizontal axis in the plane of the rod and hoop, through the lower end of the rod. Assuming that

Fig. 10-45 Problem 67. the energy given to the assembly in such a nudge is negligible, what would be the assembly's angular speed about the rotation axis when it passes through the upsidedown (inverted) orientation?

Additional Problems

68 Two uniform solid spheres have the same mass of 1.65 kg , but one has a radius of 0.226 m and the other has a radius of 0.854 m . Each can rotate about an axis through its center. (a) What is the magnitude τ of the torque required to bring the smaller sphere from rest to an angular speed of $317 \mathrm{rad} / \mathrm{s}$ in 15.5 s ? (b) What is the magnitude F of the force that must be applied tangentially at the sphere's equator to give that torque? What are the corresponding values of (c) τ and (d) F for the larger sphere?
69 In Fig. 10-46, a small disk of radius $r=2.00 \mathrm{~cm}$ has been glued to the edge of a larger disk of radius $R=4.00 \mathrm{~cm}$ so that the disks lie in the same plane. The disks can be rotated around a perpendicular axis through point O at the center of the larger disk. The disks both have a uniform density (mass per unit

Fig. 10-46 Problem 69.
volume) of $1.40 \times 10^{3} \mathrm{~kg} / \mathrm{m}^{3}$ and a uniform thickness of 5.00 mm . What is the rotational inertia of the two-disk assembly about the rotation axis through O ?
70 A wheel, starting from rest, rotates with a constant angular acceleration of $2.00 \mathrm{rad} / \mathrm{s}^{2}$. During a certain 3.00 s interval, it turns through 90.0 rad. (a) What is the angular velocity of the wheel at the start of the 3.00 s interval? (b) How long has the wheel been turning before the start of the 3.00 s interval?
71 ssm In Fig. 10-47, two 6.20 kg blocks are connected by a massless string over a pulley of radius 2.40 cm and rotational inertia $7.40 \times$ $10^{-4} \mathrm{~kg} \cdot \mathrm{~m}^{2}$. The string does not slip on the pulley; it is not known whether there is friction between the table and the sliding block; the pulley's axis is frictionless. When

Fig. 10-47 Problem 71. this system is released from rest, the pulley turns through 0.650 rad in 91.0 ms and the acceleration of the blocks is constant. What are (a) the magnitude of the pulley's angular acceleration, (b) the magnitude of either block's acceleration, (c) string tension T_{1}, and (d) string tension T_{2} ?
72 Attached to each end of a thin steel rod of length 1.20 m and mass 6.40 kg is a small ball of mass 1.06 kg . The rod is constrained to rotate in a horizontal plane about a vertical axis through its midpoint. At a certain instant, it is rotating at $39.0 \mathrm{rev} / \mathrm{s}$. Because of friction, it slows to a stop in 32.0 s . Assuming a constant retarding torque due to friction, compute (a) the angular acceleration, (b) the retarding torque, (c) the total energy transferred from mechanical energy to thermal energy by friction, and (d) the number of revolutions rotated during the 32.0 s. (e) Now suppose that the retarding torque is known not to be constant. If any of the quantities (a), (b), (c), and (d) can still be computed without additional information, give its value.

73 A uniform helicopter rotor blade is 7.80 m long, has a mass of 110 kg , and is attached to the rotor axle by a single bolt. (a) What is the magnitude of the force on the bolt from the axle when the rotor is turning at $320 \mathrm{rev} / \mathrm{min}$? (Hint: For this calculation the blade can be considered to be a point mass at its center of mass. Why?) (b) Calculate the torque that must be applied to the rotor to bring it to full speed from rest in 6.70 s. Ignore air resistance. (The blade cannot be considered to be a point mass for this calculation. Why not? Assume the mass distribution of a uniform thin rod.) (c) How much work does the torque do on the blade in order for the blade to reach a speed of $320 \mathrm{rev} / \mathrm{min}$?
74 Racing disks. Figure 10-48 shows two disks that can rotate about their centers like a merry-goround. At time $t=0$, the reference lines of the two disks have the same orientation. Disk A is already rotat-

Fig. 10-48 Problem 74. ing, with a constant angular velocity of $9.5 \mathrm{rad} / \mathrm{s}$. Disk B has been stationary but now begins to rotate at a constant angular acceleration of $2.2 \mathrm{rad} / \mathrm{s}^{2}$. (a) At what time t will the reference lines of the two disks momentarily have the same angular displacement θ ? (b) Will that time t be the first time since $t=$ 0 that the reference lines are momentarily aligned?
75 A high-wire walker always attempts to keep his center of mass over the wire (or rope). He normally carries a long, heavy
pole to help: If he leans, say, to his right (his com moves to the right) and is in danger of rotating around the wire, he moves the pole to his left (its com moves to the left) to slow the rotation and allow himself time to adjust his balance. Assume that the walker has a mass of 70.0 kg and a rotational inertia of $15.0 \mathrm{~kg} \cdot \mathrm{~m}^{2}$ about the wire. What is the magnitude of his angular acceleration about the wire if his com is 5.0 cm to the right of the wire and (a) he carries no pole and (b) the 14.0 kg pole he carries has its com 10 cm to the left of the wire?

76 Starting from rest at $t=0$, a wheel undergoes a constant angular acceleration. When $t=2.0 \mathrm{~s}$, the angular velocity of the wheel is $5.0 \mathrm{rad} / \mathrm{s}$. The acceleration continues until $t=20 \mathrm{~s}$, when it abruptly ceases. Through what angle does the wheel rotate in the interval $t=0$ to $t=40 \mathrm{~s}$?

77 SSM A record turntable rotating at $33 \frac{1}{3} \mathrm{rev} / \mathrm{min}$ slows down and stops in 30 s after the motor is turned off. (a) Find its (constant) angular acceleration in revolutions per minute-squared. (b) How many revolutions does it make in this time?
78 A rigid body is made of three identical thin rods, each with length $L=0.600 \mathrm{~m}$, fastened together in the form of a letter \mathbf{H} (Fig. $10-49)$. The body is free to rotate about a horizontal axis that runs along the length of one of the legs

Fig. 10-49 Problem 78. of the \mathbf{H}. The body is allowed to fall from rest from a position in which the plane of the \mathbf{H} is horizontal. What is the angular speed of the body when the plane of the \mathbf{H} is vertical?
79 SSM (a) Show that the rotational inertia of a solid cylinder of mass M and radius R about its central axis is equal to the rotational inertia of a thin hoop of mass M and radius $R / \sqrt{2}$ about its central axis. (b) Show that the rotational inertia I of any given body of mass M about any given axis is equal to the rotational inertia of an equivalent hoop about that axis, if the hoop has the same mass M and a radius k given by

$$
k=\sqrt{\frac{I}{M}}
$$

The radius k of the equivalent hoop is called the radius of gyration of the given body.
80 A disk rotates at constant angular acceleration, from angular position $\theta_{1}=10.0 \mathrm{rad}$ to angular position $\theta_{2}=70.0 \mathrm{rad}$ in 6.00 s . Its angular velocity at θ_{2} is $15.0 \mathrm{rad} / \mathrm{s}$. (a) What was its angular velocity at θ_{1} ? (b) What is the angular acceleration? (c) At what angular position was the disk initially at rest? (d) Graph θ versus time t and angular speed ω versus t for the disk, from the beginning of the motion (let $t=0$ then).
81 The thin uniform rod in Fig. 10-50 has length 2.0 m and can pivot about a horizontal, frictionless pin through one end. It is released from rest at angle $\theta=40^{\circ}$ above the horizontal. Use the principle of conservation of energy to determine the angular speed of the rod as it passes through the horizontal position.
$82=$ George Washington Gale Ferris, Jr., a civil engineering graduate from Rensselaer

Fig. 10-50 Problem 81. Polytechnic Institute, built the original Ferris wheel for the 1893 World's Columbian Exposition in Chicago. The wheel, an astounding engineering construction at the time, carried 36 wooden cars,
each holding up to 60 passengers, around a circle 76 m in diameter. The cars were loaded 6 at a time, and once all 36 cars were full, the wheel made a complete rotation at constant angular speed in about 2 min . Estimate the amount of work that was required of the machinery to rotate the passengers alone.
83 In Fig. 10-38, two blocks, of mass $m_{1}=400 \mathrm{~g}$ and $m_{2}=600 \mathrm{~g}$, are connected by a massless cord that is wrapped around a uniform disk of mass $M=500 \mathrm{~g}$ and radius $R=12.0 \mathrm{~cm}$. The disk can rotate without friction about a fixed horizontal axis through its center; the cord cannot slip on the disk. The system is released from rest. Find (a) the magnitude of the acceleration of the blocks, (b) the tension T_{1} in the cord at the left, and (c) the tension T_{2} in the cord at the right.
84 At 7:14 A.M. on June 30,1908, a huge explosion occurred above remote central Siberia, at latitude $61^{\circ} \mathrm{N}$ and longitude 102° E ; the fireball thus created was the brightest flash seen by anyone before nuclear weapons. The Tunguska Event, which according to one chance witness "covered an enormous part of the sky," was probably the explosion of a stony asteroid about 140 m wide. (a) Considering only Earth's rotation, determine how much later the asteroid would have had to arrive to put the explosion above Helsinki at longitude $25^{\circ} \mathrm{E}$. This would have obliterated the city. (b) If the asteroid had, instead, been a metallic asteroid, it could have reached Earth's surface. How much later would such an asteroid have had to arrive to put the impact in the Atlantic Ocean at longitude $20^{\circ} \mathrm{W}$? (The resulting tsunamis would have wiped out coastal civilization on both sides of the Atlantic.)
85 A golf ball is launched at an angle of 20° to the horizontal, with a speed of $60 \mathrm{~m} / \mathrm{s}$ and a rotation rate of $90 \mathrm{rad} / \mathrm{s}$. Neglecting air drag, determine the number of revolutions the ball makes by the time it reaches maximum height.
86 ©o Figure 10-51 shows a flat construction of two circular rings that have a common center and are held together by three rods of negligible mass. The construction, which is initially at rest, can rotate around the common center (like a merry-goround), where another rod of negligible mass lies. The mass, inner radius, and outer radius of the

Fig. 10-51 Problem 86. rings are given in the following table. A tangential force of magnitude 12.0 N is applied to the outer edge of the outer ring for 0.300 s . What is the change in the angular speed of the construction during that time interval?

Ring	Mass (kg)	Inner Radius (m)	Outer Radius (m)
1	0.120	0.0160	0.0450
2	0.240	0.0900	0.1400

87 In Fig. 10-52, a wheel of radius 0.20 m is mounted on a frictionless horizontal axle. A massless cord is wrapped around the wheel and attached to a 2.0 kg box that slides on a frictionless surface inclined at angle $\theta=20^{\circ}$ with the horizontal. The box accelerates down the surface at $2.0 \mathrm{~m} / \mathrm{s}^{2}$. What is the rotational inertia of the wheel about the axle?

Fig. 10-52 Problem 87.

88 A thin spherical shell has a radius of 1.90 m . An applied torque of $960 \mathrm{~N} \cdot \mathrm{~m}$ gives the shell an angular acceleration of 6.20 $\mathrm{rad} / \mathrm{s}^{2}$ about an axis through the center of the shell. What are (a) the rotational inertia of the shell about that axis and (b) the mass of the shell?
89 A bicyclist of mass 70 kg puts all his mass on each downwardmoving pedal as he pedals up a steep road. Take the diameter of the circle in which the pedals rotate to be 0.40 m , and determine the magnitude of the maximum torque he exerts about the rotation axis of the pedals.
90 The flywheel of an engine is rotating at $25.0 \mathrm{rad} / \mathrm{s}$. When the engine is turned off, the flywheel slows at a constant rate and stops in 20.0 s . Calculate (a) the angular acceleration of the flywheel,
(b) the angle through which the flywheel rotates in stopping, and (c) the number of revolutions made by the flywheel in stopping.

91 SSM In Fig. 10-18a, a wheel of radius 0.20 m is mounted on a frictionless horizontal axis. The rotational inertia of the wheel about the axis is $0.40 \mathrm{~kg} \cdot \mathrm{~m}^{2}$. A massless cord wrapped around the wheel's circumference is attached to a 6.0 kg box. The system is released from rest. When the box has a kinetic energy of 6.0 J , what are (a) the wheel's rotational kinetic energy and (b) the distance the box has fallen?

92 Our Sun is 2.3×10^{4} ly (light-years) from the center of our Milky Way galaxy and is moving in a circle around that center at a speed of $250 \mathrm{~km} / \mathrm{s}$. (a) How long does it take the Sun to make one revolution about the galactic center? (b) How many revolutions has the Sun completed since it was formed about 4.5×10^{9} years ago?
93 SSM A wheel of radius 0.20 m is mounted on a frictionless horizontal axis. The rotational inertia of the wheel about the axis is $0.050 \mathrm{~kg} \cdot \mathrm{~m}^{2}$. A massless cord wrapped around the wheel is attached to a 2.0 kg

Fig. 10-53 Problem 93. block that slides on a horizontal frictionless surface. If a horizontal force of magnitude $P=3.0 \mathrm{~N}$ is applied to the block as shown in Fig. 10-53, what is the magnitude of the angular acceleration of the wheel? Assume the cord does not slip on the wheel.
94 A car starts from rest and moves around a circular track of radius 30.0 m . Its speed increases at the constant rate of 0.500 $\mathrm{m} / \mathrm{s}^{2}$. (a) What is the magnitude of its net linear acceleration 15.0 s later? (b) What angle does this net acceleration vector make with the car's velocity at this time?

95 The rigid body shown in Fig. 10-54 consists of three particles connected by massless rods. It is to be rotated about an axis perpendicular to its plane through point P. If $M=$ $0.40 \mathrm{~kg}, a=30 \mathrm{~cm}$, and $b=50 \mathrm{~cm}$, how much work is required to take the body from rest to an angular speed of $5.0 \mathrm{rad} / \mathrm{s}$?
96 Beverage engineering. The pull

Fig. 10-54 Problem 95. tab was a major advance in the engineering design of beverage containers. The tab pivots on a central bolt in the can's top. When you pull upward on one end of the tab, the other end presses downward on a portion of the can's top that has been scored. If you pull upward with a 10 N force, approximately what is the magnitude of the force applied to the scored section? (You will need to examine a can with a pull tab.)

97 Figure 10-55 shows a propeller blade that rotates at $2000 \mathrm{rev} / \mathrm{min}$ about a perpendicular axis at point B. Point A is at the outer tip of the blade, at radial distance 1.50 m . (a) What is the difference in the magnitudes a of the centripetal accelera-

Fig. 10-55 Problem 97. tion of point A and of a point at radial distance 0.150 m ? (b) Find the slope of a plot of a versus radial distance along the blade.
98 A yo-yo-shaped device mounted on a horizontal frictionless axis is used to lift a 30 kg box as shown in Fig. 10-56. The outer radius R of the device is 0.50 m , and the radius r of the hub is 0.20 m . When a constant horizontal force $\vec{F}_{\text {app }}$ of magnitude 140 N is applied to a rope wrapped around the outside of the device, the box, which is suspended from a rope wrapped around the hub, has an upward acceleration of magnitude $0.80 \mathrm{~m} / \mathrm{s}^{2}$. What is

Fig. 10-56 Problem 98. the rotational inertia of the device about its axis of rotation?
99 A small ball with mass 1.30 kg is mounted on one end of a rod 0.780 m long and of negligible mass. The system rotates in a horizontal circle about the other end of the rod at $5010 \mathrm{rev} / \mathrm{min}$. (a) Calculate the rotational inertia of the system about the axis of rotation. (b) There is an air drag of $2.30 \times 10^{-2} \mathrm{~N}$ on the ball, directed opposite its motion. What torque must be applied to the system to keep it rotating at constant speed?
100 Two thin rods (each of mass 0.20 kg) are joined together to form a rigid body as shown in Fig. 10-57. One of the rods has length $L_{1}=0.40$ m , and the other has length $L_{2}=$ 0.50 m . What is the rotational inertia of this rigid body about (a) an axis that is perpendicular to the plane of the paper and passes through the center of the shorter rod and (b) an axis that is perpendicular to the plane of the paper and passes through the center of the longer rod?
101 In Fig. 10-58, four pulleys are connected by two belts. Pulley A (radius 15 cm) is the drive pulley, and it rotates at $10 \mathrm{rad} / \mathrm{s}$. Pulley B (radius 10 cm) is connected by belt 1 to pulley A. Pulley B^{\prime} (radius 5 cm) is concentric with pulley B and is rigidly attached to it. Pulley C (radius 25 cm) is connected by belt 2 to pulley B^{\prime}. Calculate (a) the linear speed of a point on belt 1, (b) the an-

Fig. 10-58 Problem 101.
gular speed of pulley B, (c) the angular speed of pulley B^{\prime}, (d) the linear speed of a point on belt 2 , and (e) the angular speed of pulley C. (Hint: If the belt between two pulleys does not slip, the linear speeds at the rims of the two pulleys must be equal.)
102 The rigid object shown in Fig. 10-59 consists of three balls and three connecting rods, with $M=1.6 \mathrm{~kg}, L=0.60 \mathrm{~m}$, and $\theta=30^{\circ}$. The balls may be treated as particles, and the connecting rods have negligible mass. Determine the rotational kinetic energy of the object if it has an angular speed of $1.2 \mathrm{rad} / \mathrm{s}$ about (a) an axis that passes through point P and is perpendicular to the plane of the figure and (b) an axis that passes through point P, is perpendicular to the rod of length $2 L$, and lies in the plane of the figure.

Fig. 10-59 Problem 102.
103 In Fig. 10-60, a thin uniform rod (mass 3.0 kg , length 4.0 m) rotates freely about a horizontal axis A that is perpendicular to the rod and passes through a point at distance $d=1.0 \mathrm{~m}$ from the end of the rod. The kinetic energy of the rod as it passes through the vertical position is 20 J . (a) What is the rotational inertia of the rod about axis A ? (b) What is the (linear) speed of the end B of the rod as the rod passes through the vertical position? (c) At what angle θ will the rod momentarily stop in its upward swing?

Fig. 10-60 Problem 103.
104 Four particles, each of mass, 0.20 kg , are placed at the vertices of a square with sides of length 0.50 m . The particles are connected by rods of negligible mass. This rigid body can rotate in a vertical plane about a horizontal axis A that passes through one of the particles. The body is released from rest with rod $A B$ horizontal (Fig. 10-61). (a) What is the rotational inertia of the body about axis A ? (b) What is the angular speed of the body about axis A when $\operatorname{rod} A B$ swings through the vertical position?

