
10-1  As we have discussed, one focus of physics is motion.
However, so far we have examined only the motion of translation, in
which an object moves along a straight or curved line, as in Fig. 10-1a.
We now turn to the motion of rotation, in which an object turns about an
axis, as in Fig. 10-1b.

You see rotation in nearly every machine, you use it every time you
open a beverage can with a pull tab, and you pay to experience it every
time you go to an amusement park. Rotation is the key to many fun ac-
tivities, such as hitting a long drive in golf (the ball needs to rotate in or-
der for the air to keep it aloft longer) and throwing a curveball in base-
ball (the ball needs to rotate in order for the air to push it left or right).
Rotation is also the key to more serious matters, such as metal failure in
aging airplanes.

We begin our discussion of rotation by defining the variables for the
motion, just as we did for translation in Chapter 2. As we shall see, the
variables for rotation are analogous to those for one-dimensional mo-
tion and, as in Chapter 2, an important special situation is where the ac-
celeration (here the rotational acceleration) is constant. We shall also
see that Newton’s second law can be written for rotational motion, but
we must use a new quantity called torque instead of just force. Work and
the work–kinetic energy theorem can also be applied to rotational mo-
tion, but we must use a new quantity called rotational inertia instead of
just mass. In short, much of what we have discussed so far can be applied
to rotational motion with, perhaps, a few changes.

10-2 The Rotational Variables
We wish to examine the rotation of a rigid body about a fixed axis. A
rigid body is a body that can rotate with all its parts locked together and
without any change in its shape. A fixed axis means that the rotation oc-
curs about an axis that does not move. Thus, we shall not examine an ob-
ject like the Sun, because the parts of the Sun (a ball of gas) are not locked
together. We also shall not examine an object like a bowling ball rolling
along a lane, because the ball rotates about a moving axis (the ball’s mo-
tion is a mixture of rotation and translation).
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(a)

(b)

Fig. 10-1 Figure skater Sasha Cohen in motion of (a) pure translation
in a fixed direction and (b) pure rotation about a vertical axis. (a: Mike
Segar/Reuters/Landov LLC; b: Elsa/Getty Images, Inc.)
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242 CHAPTE R 10 ROTATION

Fig. 10-2 A rigid body of arbitrary shape
in pure rotation about the z axis of a coordi-
nate system.The position of the reference
line with respect to the rigid body is arbitrary,
but it is perpendicular to the rotation axis. It
is fixed in the body and rotates with the body.
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Fig. 10-3 The rotating rigid body of Fig.
10-2 in cross section, viewed from above.
The plane of the cross section is perpendic-
ular to the rotation axis, which now extends
out of the page, toward you. In this position
of the body, the reference line makes an an-
gle u with the x axis.
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An angular displacement in the counterclockwise direction is positive, and one in the
clockwise direction is negative.

Figure 10-2 shows a rigid body of arbitrary shape in rotation about a fixed
axis, called the axis of rotation or the rotation axis. In pure rotation (angular 
motion), every point of the body moves in a circle whose center lies on the axis of
rotation, and every point moves through the same angle during a particular time
interval. In pure translation (linear motion), every point of the body moves in a
straight line, and every point moves through the same linear distance during a
particular time interval.

We deal now—one at a time—with the angular equivalents of the linear
quantities position, displacement, velocity, and acceleration.

Angular Position
Figure 10-2 shows a reference line, fixed in the body, perpendicular to the rotation
axis and rotating with the body. The angular position of this line is the angle of
the line relative to a fixed direction, which we take as the zero angular position.
In Fig. 10-3, the angular position u is measured relative to the positive direction of
the x axis. From geometry, we know that u is given by

(radian measure). (10-1)

Here s is the length of a circular arc that extends from the x axis (the zero angular
position) to the reference line, and r is the radius of the circle.

An angle defined in this way is measured in radians (rad) rather than in
revolutions (rev) or degrees. The radian, being the ratio of two lengths, is a
pure number and thus has no dimension. Because the circumference of a circle of
radius r is 2pr, there are 2p radians in a complete circle:

(10-2)

and thus 1 rad � 57.3° � 0.159 rev. (10-3)

We do not reset u to zero with each complete rotation of the reference line about
the rotation axis. If the reference line completes two revolutions from the zero
angular position, then the angular position u of the line is u � 4p rad.

For pure translation along an x axis, we can know all there is to know about a
moving body if we know x(t), its position as a function of time. Similarly, for pure
rotation, we can know all there is to know about a rotating body if we know u(t),
the angular position of the body’s reference line as a function of time.

Angular Displacement
If the body of Fig. 10-3 rotates about the rotation axis as in Fig. 10-4, changing the
angular position of the reference line from u1 to u2, the body undergoes an 
angular displacement �u given by

�u � u2 � u1. (10-4)

This definition of angular displacement holds not only for the rigid body as a
whole but also for every particle within that body.

If a body is in translational motion along an x axis, its displacement �x is
either positive or negative, depending on whether the body is moving in the
positive or negative direction of the axis. Similarly, the angular displacement �u
of a rotating body is either positive or negative, according to the following rule:

1 rev � 360� �
2�r

r
� 2� rad,

� �
s
r
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The phrase “clocks are negative” can help you remember this rule (they certainly
are negative when their alarms sound off early in the morning).

CHECKPOINT 1

A disk can rotate about its central axis like a merry-go-round. Which of the following
pairs of values for its initial and final angular positions, respectively, give a negative an-
gular displacement: (a) �3 rad, �5 rad, (b) �3 rad, �7 rad, (c) 7 rad, �3 rad?

Angular Velocity
Suppose that our rotating body is at angular position u1 at time t1 and at 
angular position u2 at time t2 as in Fig. 10-4. We define the average angular veloc-
ity of the body in the time interval �t from t1 to t2 to be

(10-5)

where �u is the angular displacement during �t (v is the lowercase  omega).
The (instantaneous) angular velocity v, with which we shall be most con-

cerned, is the limit of the ratio in Eq. 10-5 as �t approaches zero.Thus,

(10-6)

If we know u(t), we can find the angular velocity v by differentiation.
Equations 10-5 and 10-6 hold not only for the rotating rigid body as a whole

but also for every particle of that body because the particles are all locked
together. The unit of angular velocity is commonly the radian per second (rad/s)
or the revolution per second (rev/s). Another measure of angular velocity was
used during at least the first three decades of rock: Music was produced by vinyl
(phonograph) records that were played on turntables at “ ” or “45 rpm,”
meaning at or 45 rev/min.

If a particle moves in translation along an x axis, its linear velocity v is either posi-
tive or negative, depending on its direction along the axis. Similarly, the angular veloc-
ity v of a rotating rigid body is either positive or negative, depending on whether the
body is rotating counterclockwise (positive) or clockwise (negative).(“Clocks are neg-
ative” still works.) The magnitude of an angular velocity is called the angular speed,
which is also represented with v.

Angular Acceleration
If the angular velocity of a rotating body is not constant, then the body has an an-
gular acceleration. Let v2 and v1 be its angular velocities at times t2 and t1,
respectively.The average angular acceleration of the rotating body in the interval
from t1 to t2 is defined as

(10-7)

in which �v is the change in the angular velocity that occurs during the time
interval �t. The (instantaneous) angular acceleration a, with which we shall be
most concerned, is the limit of this quantity as �t approaches zero.Thus,

(10-8)

Equations 10-7 and 10-8 also hold for every particle of that body. The unit of
angular acceleration is commonly the radian per second-squared (rad/s2) or the
revolution per second-squared (rev/s2).

� � lim
�t:0

 
�	

�t
�

d	

dt
.

�avg �
	 2 � 	 1

t2 � t1
�

�	

�t
,

331
3 rev/min

331
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	 � lim
�t:0

 
��

�t
�

d�
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.

	avg �
�2 � �1

t2 � t1
�

��

�t
,

Fig. 10-4 The reference line of the rigid
body of Figs. 10-2 and 10-3 is at angular po-
sition u1 at time t1 and at angular position u2

at a later time t2.The quantity �u (� u2 � u1)
is the angular displacement that occurs dur-
ing the interval �t (� t2 � t1).The body it-
self is not shown.
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Fig. 10-5 (a) A rotating disk. (b) A plot of the disk’s angular position u(t). Five sketches indicate
the angular position of the reference line on the disk for five points on the curve. (c) A plot of the
disk’s angular velocity v(t). Positive values of v correspond to counterclockwise rotation, and nega-
tive values to clockwise rotation.

Sample Problem

Angular velocity derived from angular position

Calculations: To sketch the disk and its reference line at a
particular time, we need to determine u for that time. To do
so, we substitute the time into Eq. 10-9. For t � �2.0 s, we get

This means that at t � �2.0 s the reference line on the disk
is rotated counterclockwise from the zero position by
1.2 rad � 69° (counterclockwise because u is positive).
Sketch 1 in Fig. 10-5b shows this position of the reference
line.

Similarly, for t � 0, we find u � �1.00 rad � �57°, which
means that the reference line is rotated clockwise from the
zero angular position by 1.0 rad, or 57°, as shown in sketch 3.
For t � 4.0 s, we find u � 0.60 rad � 34° (sketch 5). Drawing
sketches for when the curve crosses the t axis is easy, because

 � 1.2 rad � 1.2 rad 
360�

2� rad
� 69�.

 � � �1.00 � (0.600)(�2.0) � (0.250)(�2.0)2

The disk in Fig. 10-5a is rotating about its central axis like a
merry-go-round. The angular position u(t) of a reference
line on the disk is given by

u � �1.00 � 0.600t � 0.250t2, (10-9)

with t in seconds, u in radians, and the zero angular position
as indicated in the figure.

(a) Graph the angular position of the disk versus time
from t � �3.0 s to t � 5.4 s. Sketch the disk and its angular
position reference line at t � �2.0 s, 0 s, and 4.0 s, and
when the curve crosses the t axis.

KEY I DEA

The angular position of the disk is the angular position 
u(t) of its reference line, which is given by Eq. 10-9 as a func-
tion of time t. So we graph Eq. 10-9; the result is shown in
Fig. 10-5b.

A
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Additional examples, video, and practice
available at WileyPLUS

then u � 0 and the reference line is momentarily aligned
with the zero angular position (sketches 2 and 4).

(b) At what time tmin does u(t) reach the minimum 
value shown in Fig. 10-5b? What is that minimum value?

KEY I DEA

To find the extreme value (here the minimum) of a function,
we take the first derivative of the function and set the result
to zero.

Calculations: The first derivative of u(t) is

(10-10)

Setting this to zero and solving for t give us the time at
which u(t) is minimum:

tmin � 1.20 s. (Answer)

d�

dt
� �0.600 � 0.500t.

To get the minimum value of u, we next substitute tmin into
Eq. 10-9, finding

u � �1.36 rad � �77.9°. (Answer)

This minimum of u(t) (the bottom of the curve in Fig. 10-5b)
corresponds to the maximum clockwise rotation of the disk
from the zero angular position, somewhat more than is
shown in sketch 3.

(c) Graph the angular velocity v of the disk versus time from 
t � �3.0 s to t � 6.0 s. Sketch the disk and indicate the direc-
tion of turning and the sign of v at t � �2.0 s,4.0 s,and tmin.

KEY I DEA

From Eq. 10-6, the angular velocity v is equal to du/dt as
given in Eq. 10-10. So, we have

v � �0.600 � 0.500t. (10-11)

The graph of this function v(t) is shown in Fig. 10-5c.

Calculations: To sketch the disk at t � �2.0 s, we substi-
tute that value into Eq. 10-11, obtaining

v � �1.6 rad/s. (Answer)

The minus sign here tells us that at t � �2.0 s, the disk is
turning clockwise (the left-hand  sketch in Fig. 10-5c).

Substituting t � 4.0 s into Eq. 10-11 gives us

v � 1.4 rad/s. (Answer)

The implied plus sign tells us that now the disk is turning
counterclockwise (the right-hand sketch in Fig. 10-5c).

For tmin, we already know that du/dt � 0. So, we must
also have v � 0. That is, the disk momentarily stops when
the reference line reaches the minimum value of u in Fig.
10-5b, as suggested by the center sketch in Fig. 10-5c. On the
graph, this momentary stop is the zero point where the plot
changes from the negative clockwise motion to the positive
counterclockwise motion.

(d) Use the results in parts (a) through (c) to describe the
motion of the disk from t � �3.0 s to t � 6.0 s.

Description: When we first observe the disk at t � �3.0 s, it
has a positive angular position and is turning clockwise but
slowing. It stops at angular position u � �1.36 rad and then
begins to turn counterclockwise, with its angular position
eventually becoming positive again.

(c)

2

0

–2
–2 0 2 4 6

(rad/s)ω

t (s)

negative ω zero ω positive ω

This is a plot of the angular
velocity of the disk versus time.

The angular velocity is
initially negative and slowing,
then momentarily zero during
reversal, and then positive and
increasing.
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Sample Problem

To evaluate the constant of integration C, we note that v � 5
rad/s at t � 0. Substituting these values in our expression for
v yields

,

so C � 5 rad/s.Then

. (Answer)

(b) Obtain an expression for the angular position u(t) of the
top.

By definition, v(t) is the derivative of u(t) with respect to
time. Therefore, we can find u(t) by integrating v(t) with 
respect to time.

Calculations: Since Eq. 10-6 tells us that

du � v dt,
we can write

(Answer)

where C
 has been evaluated by noting that u � 2 rad at t � 0.

 � 1
4 
t5 � 2

3 
t3 � 5t � 2,

 � 1
4 
t5 � 2

3 
t3 � 5t � C


 � � � 	  dt � � (5
4 
t4 � 2t2 � 5) dt

	 � 5
4 
t4 � 2t2 � 5

5 rad/s � 0 � 0 � C

Angular velocity derived from angular acceleration

A child’s top is spun with angular acceleration

,

with t in seconds and a in radians per second-squared. At
t � 0, the top has angular velocity 5 rad/s, and a reference
line on it is at angular position u � 2 rad.

(a) Obtain an expression for the angular velocity v(t) of the
top.That is, find an expression that explicitly indicates how the
angular velocity depends on time. (We can tell that there is
such a dependence because the top is undergoing an angular
acceleration,which means that its angular velocity is changing.)

By definition, a(t) is the derivative of v(t) with respect to
time. Thus, we can find v(t) by integrating a(t) with respect
to time.

Calculations: Equation 10-8 tells us

,

so .

From this we find

.	 � �(5t3 � 4t) dt � 5
4t

4 � 4
2t

2 � C

� d	 � ��  dt

d	 � � dt

� � 5t3 � 4t

KEY I DEA

KEY I DEA

Additional examples, video, and practice available at WileyPLUS
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10-3 Are Angular Quantities Vectors?
We can describe the position, velocity, and acceleration of a single particle by
means of vectors. If the particle is confined to a straight line, however, we do not
really need vector notation. Such a particle has only two directions available to it,
and we can indicate these directions with plus and minus signs.

In the same way, a rigid body rotating about a fixed axis can rotate only
clockwise or counterclockwise as seen along the axis, and again we can select
between the two directions by means of plus and minus signs.The question arises:
“Can we treat the angular displacement, velocity, and acceleration of
a rotating body as vectors?” The answer is a qualified “yes” (see the caution
below, in connection with angular displacements).

Consider the angular velocity. Figure 10-6a shows a vinyl record rotating on a
turntable. The record has a constant angular speed in the
clockwise direction. We can represent its angular velocity as a vector pointing
along the axis of rotation, as in Fig. 10-6b. Here’s how: We choose the length of
this vector according to some convenient scale, for example, with 1 cm corre-
sponding to 10 rev/min. Then we establish a direction for the vector by using a	:

	:
	 (� 331

3 rev/min)
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right-hand rule, as Fig. 10-6c shows: Curl your right hand about the rotating
record, your fingers pointing in the direction of rotation. Your extended thumb
will then point in the direction of the angular velocity vector. If the record were
to rotate in the opposite sense, the right-hand rule would tell you that the angular
velocity vector then points in the opposite direction.

It is not easy to get used to representing angular quantities as vectors. We in-
stinctively expect that something should be moving along the direction of a vec-
tor. That is not the case here. Instead, something (the rigid body) is rotating
around the direction of the vector. In the world of pure rotation, a vector defines
an axis of rotation, not a direction in which something moves. Nonetheless, the
vector also defines the motion. Furthermore, it obeys all the rules for vector
manipulation discussed in Chapter 3. The angular acceleration is another
vector, and it too obeys those rules.

In this chapter we consider only rotations that are about a fixed axis. For such
situations, we need not consider vectors—we can represent angular velocity with
v and angular acceleration with a, and we can indicate direction with an implied
plus sign for counterclockwise or an explicit minus sign for clockwise.

Now for the caution: Angular displacements (unless they are very small) can-
not be treated as vectors. Why not? We can certainly give them both magnitude
and direction, as we did for the angular velocity vector in Fig. 10-6. However, to
be represented as a vector, a quantity must also obey the rules of vector addition,
one of which says that if you add two vectors, the order in which you add them
does not matter.Angular displacements fail this test.

Figure 10-7 gives an example. An initially horizontal book is given two 90°
angular displacements, first in the order of Fig. 10-7a and then in the order of
Fig. 10-7b. Although the two angular displacements are identical, their order is
not, and the book ends up with different orientations. Here’s another example.
Hold your right arm downward, palm toward your thigh. Keeping your wrist
rigid, (1) lift the arm forward until it is horizontal, (2) move it horizontally until it
points toward the right, and (3) then bring it down to your side. Your palm faces
forward. If you start over, but reverse the steps, which way does your palm end up
facing? From either example, we must conclude that the addition of two angular
displacements depends on their order and they cannot be vectors.

�:

Fig. 10-6 (a) A record rotating about a vertical axis that coincides with the axis of the
spindle. (b) The angular velocity of the rotating record can be represented by the vector ,
lying along the axis and pointing down, as shown. (c) We establish the direction of the an-
gular velocity vector as downward by using a right-hand rule.When the fingers of the right
hand curl around the record and point the way it is moving, the extended thumb points in
the direction of .	:

	:

z z z 

(a) (b) (c) 

Axis Axis Axis 

ω 

Spindle 

ω 

This right-hand rule
establishes the
direction of the
angular velocity
vector.

Fig. 10-7 (a) From its initial position, at
the top, the book is given two successive
90° rotations, first about the (horizontal) x
axis and then about the (vertical) y axis. (b)
The book is given the same rotations, but in
the reverse order.
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z The order of the
rotations makes
a big difference
in the result.
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10-4 Rotation with Constant Angular Acceleration
In pure translation, motion with a constant linear acceleration (for example, that
of a falling body) is an important special case. In Table 2-1, we displayed a series
of equations that hold for such motion.

In pure rotation, the case of constant angular acceleration is also important,
and a parallel set of equations holds for this case also. We shall not derive them
here, but simply write them from the corresponding linear equations, substituting
equivalent angular quantities for the linear ones.This is done in Table 10-1, which
lists both sets of equations (Eqs. 2-11 and 2-15 to 2-18; 10-12 to 10-16).

Recall that Eqs. 2-11 and 2-15 are basic equations for constant linear accelera-
tion—the other equations in the Linear list can be derived from them. Similarly, Eqs.
10-12 and 10-13 are the basic equations for constant angular acceleration, and the
other equations in the Angular list can be derived from them.To solve a simple prob-
lem involving constant angular acceleration, you can usually use an equation from
the Angular list (if you have the list). Choose an equation for which the only un-
known variable will be the variable requested in the problem.A better plan is to re-
member only Eqs. 10-12 and 10-13, and then solve them as simultaneous equations
whenever needed.

Table 10-1

Equations of Motion for Constant Linear Acceleration and for Constant Angular Acceleration

Equation Linear Missing Angular Equation
Number Equation Variable Equation Number

(2-11) v � v0 � at x � x0 u � u0 v � v0 � at (10-12)
(2-15) v v (10-13)
(2-16) t t (10-14)
(2-17) a a (10-15)
(2-18) v0 v0 (10-16)� � �0 � �t � 1

2�t2x � x0 � vt � 1
2at2

� � �0 � 1
2(�0 � �)tx � x 0 � 1

2(v0 � v)t

�2 � �0
2 � 2�(� � �0)v2 � v0

2 � 2a(x � x0)
� � �0 � �0t � 1

2�t2x � x0 � v0 t � 1
2 at2

CHECKPOINT 2

In four situations, a rotating body has angular position u(t) given by (a) u � 3t � 4,
(b) u � �5t3 � 4t2 � 6, (c) u � 2/t2 � 4/t, and (d) u � 5t2 � 3. To which situations do
the angular equations of Table 10-1 apply?

Sample Problem

Constant angular acceleration, grindstone

A grindstone (Fig. 10-8) rotates at constant angular acceler-
ation a � 0.35 rad/s2. At time t � 0, it has an angular veloc-
ity of v0 � �4.6 rad/s and a reference line on it is horizon-
tal, at the angular position u0 � 0.

(a) At what time after t � 0 is the reference line at the an-
gular position u � 5.0 rev?

KEY I DEA

The angular acceleration is constant, so we can use the rota-

tion equations of Table 10-1.We choose Eq. 10-13,

,

because the only unknown variable it contains is the desired
time t.

Calculations: Substituting known values and setting 
u0 � 0 and u � 5.0 rev � 10p rad give us

.

(We converted 5.0 rev to 10p rad to keep the units consis-

10� rad � (�4.6 rad/s)t � 1
2 (0.35 rad/s2)t2

� � �0 � �0t � 1
2 �t2
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Sample Problem

To eliminate the unknown t, we use Eq. 10-12 to write

which we then substitute into Eq. 10-13 to write

Solving for a, substituting known data, and converting 20
rev to 125.7 rad, we find

(Answer)

(b) How much time did the speed decrease take?

Calculation: Now that we know a, we can use Eq. 10-12 to
solve for t:

(Answer) � 46.5 s.

 t �
	 � 	0

�
�

2.00 rad/s � 3.40 rad/s
�0.0301 rad/s2

 � �0.0301 rad/s2.

 � �
	2 � 	0

2

2(� � �0)
�

(2.00 rad/s)2 � (3.40 rad/s)2

2(125.7 rad)

� � �0 � 	0� 	 � 	0

� � � 1
2 �� 	 � 	0

�
 �

2

.

t �
	 � 	0

�
,

Additional examples, video, and practice available at WileyPLUS

Constant angular acceleration, riding a Rotor

While you are operating a Rotor (a large, vertical, rotating
cylinder found in amusement parks), you spot a passenger
in acute distress and decrease the angular velocity of the
cylinder from 3.40 rad/s to 2.00 rad/s in 20.0 rev, at constant
angular acceleration. (The passenger is obviously more of a
“translation person” than a “rotation person.”)

(a) What is the constant angular acceleration during this
decrease in angular speed?

KEY I DEA

Because the cylinder’s angular acceleration is constant, we
can relate it to the angular velocity and angular displace-
ment via the basic equations for constant angular accelera-
tion (Eqs. 10-12 and 10-13).

Calculations: The initial angular velocity is v0 � 3.40
rad/s, the angular displacement is u � u0 � 20.0 rev, and the
angular velocity at the end of that displacement is v � 2.00
rad/s. But we do not know the angular acceleration a and
time t, which are in both basic equations.

Fig. 10-8 A grindstone.At t � 0 the reference line (which we
imagine to be marked on the stone) is horizontal.

Axis

Reference
line

Zero angular
position

We measure rotation by using
this reference line.
Clockwise = negative
Counterclockwise = positive

tent.) Solving this quadratic equation for t, we find

t � 32 s. (Answer)

Now notice something a bit strange. We first see the wheel
when it is rotating in the negative diretion and through the
u � 0 orientation.Yet, we just found out that 32 s later it is at
the positive orientation of u � 5.0 rev. What happened in
that time interval so that it could be at a positive orientation?

(b) Describe the grindstone’s rotation between t � 0 and 
t � 32 s.

Description: The wheel is initially rotating in the negative
(clockwise) direction with angular velocity v0 � �4.6 rad/s,
but its angular acceleration a is positive. This initial opposi-
tion of the signs of angular velocity and angular accelera-
tion means that the wheel slows in its rotation in the nega-
tive direction, stops, and then reverses to rotate in the
positive direction. After the reference line comes back
through its initial orientation of u � 0, the wheel turns an
additional 5.0 rev by time t � 32 s.

(c) At what time t does the grindstone momentarily stop?

Calculation: We again go to the table of equations for con-
stant angular acceleration, and again we need an equation

that contains only the desired unknown variable t. However,
now the equation must also contain the variable v, so that we
can set it to 0 and then solve for the corresponding time t. We
choose Eq. 10-12, which yields

(Answer)t �
	 � 	0

�
�

0 � (�4.6 rad/s)
0.35 rad/s2 � 13 s.
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10-5 Relating the Linear and Angular Variables
In Section 4-7, we discussed uniform circular motion, in which a particle travels at
constant linear speed v along a circle and around an axis of rotation.When a rigid
body, such as a merry-go-round, rotates around an axis, each particle in the body
moves in its own circle around that axis. Since the body is rigid, all the particles
make one revolution in the same amount of time; that is, they all have the same
angular speed v.

However, the farther a particle is from the axis, the greater the circumference
of its circle is, and so the faster its linear speed v must be. You can notice this on a
merry-go-round. You turn with the same angular speed v regardless of your dis-
tance from the center, but your linear speed v increases noticeably if you move to
the outside edge of the merry-go-round.

We often need to relate the linear variables s, v, and a for a particular point in
a rotating body to the angular variables u, v, and a for that body. The two sets of
variables are related by r, the perpendicular distance of the point from the
rotation axis. This perpendicular distance is the distance between the point and
the rotation axis, measured along a perpendicular to the axis. It is also the radius r
of the circle traveled by the point around the axis of rotation.

The Position
If a reference line on a rigid body rotates through an angle u, a point within the
body at a position r from the rotation axis moves a distance s along a circular arc,
where s is given by Eq. 10-1:

s � ur (radian measure). (10-17)

This is the first of our linear–angular relations. Caution: The angle u here must be
measured in radians because Eq. 10-17 is itself the definition of angular measure
in radians.

The Speed
Differentiating Eq. 10-17 with respect to time—with r held constant—leads to

However, ds/dt is the linear speed (the magnitude of the linear velocity) of the
point in question, and du/dt is the angular speed v of the rotating body. So

v � vr (radian measure). (10-18)

Caution: The angular speed v must be expressed in radian measure.
Equation 10-18 tells us that since all points within the rigid body have the

same angular speed v, points with greater radius r have greater linear speed v.
Figure 10-9a reminds us that the linear velocity is always tangent to the circular
path of the point in question.

If the angular speed v of the rigid body is constant, then Eq. 10-18 tells us
that the linear speed v of any point within it is also constant. Thus, each point
within the body undergoes uniform circular motion. The period of revolution T
for the motion of each point and for the rigid body itself is given by Eq. 4-35:

. (10-19)

This equation tells us that the time for one revolution is the distance 2pr traveled
in one revolution divided by the speed at which that distance is traveled.

T �
2�r

v

ds
dt

�
d�

dt
 r.
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Fig. 10-9 The rotating rigid body
of Fig. 10-2, shown in cross section
viewed from above. Every point of
the body (such as P) moves in a cir-
cle around the rotation axis. (a) The
linear velocity of every point is
tangent to the circle in which the
point moves. (b) The linear acceler-
ation of the point has (in general)
two components: tangential at and
radial ar.

a:

v:

Substituting for v from Eq. 10-18 and canceling r, we find also that

(radian measure). (10-20)

This equivalent equation says that the time for one revolution is the angular dis-
tance 2p rad traveled in one revolution divided by the angular speed (or rate) at
which that angle is traveled.

The Acceleration
Differentiating Eq. 10-18 with respect to time—again with r held constant—
leads to

(10-21)

Here we run up against a complication. In Eq. 10-21, dv/dt represents only the
part of the linear acceleration that is responsible for changes in the magnitude v
of the linear velocity . Like , that part of the linear acceleration is tangent to
the path of the point in question. We call it the tangential component at of the lin-
ear acceleration of the point, and we write

at � ar (radian measure), (10-22)

where a � dv/dt. Caution: The angular acceleration a in Eq. 10-22 must be
expressed in radian measure.

In addition, as Eq. 4-34 tells us, a particle (or point) moving in a circular path
has a radial component of linear acceleration, ar � v2/r (directed radially inward),
that is responsible for changes in the direction of the linear velocity . By substi-
tuting for v from Eq. 10-18, we can write this component as

(radian measure). (10-23)

Thus, as Fig. 10-9b shows, the linear acceleration of a point on a rotating rigid
body has, in general, two components. The radially inward component ar (given
by Eq. 10-23) is present whenever the angular velocity of the body is not zero.
The tangential component at (given by Eq. 10-22) is present whenever the angu-
lar acceleration is not zero.

ar �
v2

r
� 	2r

v:

v:v:

dv
dt

�
d	

dt
 r.

T �
2�

	

x 

y 

r 

Rotation 
axis 

P 

Circle 
traveled by P 

(a) 

x

y

ar

P

(b)

at

Rotation
axis

v 

The velocity vector is
always tangent to this
circle around the
rotation axis.

The acceleration always
has a radial (centripetal)
component and may have
a tangential component.
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Sample Problem

Linear and angular variables, roller coaster speedup

In spite of the extreme care taken in engineering a roller
coaster, an unlucky few of the millions of people who ride
roller coasters each year end up with a medical condition
called roller-coaster headache. Symptoms, which might not
appear for several days, include vertigo and headache, both
severe enough to require medical treatment.

Let’s investigate the probable cause by designing the
track for our own induction roller coaster (which can be ac-
celerated by magnetic forces even on a horizontal track). To
create an initial thrill, we want each passenger to leave the
loading point with acceleration g along the horizontal track.
To increase the thrill, we also want that first section of track
to form a circular arc (Fig. 10-10), so that the passenger also
experiences a centripetal acceleration. As the passenger 
accelerates along the arc, the magnitude of this centripetal
acceleration increases alarmingly. When the magnitude a of
the net acceleration reaches 4g at some point P and angle uP

along the arc, we want the passenger then to move in a
straight line, along a tangent to the arc.

(a) What angle uP should the arc subtend so that a is 4g at
point P?

(1) At any given time, the passenger’s net acceleration is
the vector sum of the tangential acceleration along the
track and the radial acceleration toward the arc’s center
of curvature (as in Fig. 10-9b). (2) The value of at any
given time depends on the angular speed v according to Eq.
10-23 ( , where r is the radius of the circular arc). (3)
An angular acceleration a around the arc is associated with
the tangential acceleration along the track according to
Eq. 10-22 ( ). (4) Because and r are constant, so is
a and thus we can use the constant angular-acceleration
equations.

Calculations: Because we are trying to determine a value
for angular position u, let’s choose Eq. 10-14 from among
the constant angular-acceleration equations:

(10-24)

For the angular acceleration a, we substitute from Eq. 10-22:

(10-25)� �
at

r
.

	2 � 	2
0 � 2�(� � �0).

atat � �r
at

ar �  	2r

ar

a:r

a:t

a:

Fig. 10-10 An overhead view of a horizontal track for a roller
coaster.The track begins as a circular arc at the loading point and
then,at point P, continues along a tangent to the arc.

P 

P θ 

Loading 
point 

Along here, the
passenger has
both tangential
and radial
accelerations.

Along here, the
passenger has
only tangential
acceleration.

KEY I DEAS

We also substitute and , and we find

(10-26)

Substituting this result for into

(10-27)

gives a relation between the radial acceleration, the tangen-
tial acceleration, and the angular position u:

(10-28)

Because and are perpendicular vectors, their sum has
the magnitude

(10-29)

Substituting for from Eq.10-28 and solving for u lead to

. (10-30)

When a reaches the design value of 4g, angle u is the angle
uP we want. Substituting a � 4g, u � uP, and at � g into Eq.
10-30, we find

(Answer)

(b) What is the magnitude a of the passenger’s net accelera-
tion at point P and after point P?

�P � 1
2 A

(4g)2

g2 � 1 � 1.94 rad � 111�.

� � 1
2 A

a2

a2
t

� 1

ar

a � 2at
2 � ar

2.

a:ra:t

ar � 2at�.

ar � 	2r

	2

	2 �
2at�

r
.

�0 � 0	0 � 0

CHECKPOINT 3

A cockroach rides the rim of a rotating merry-go-round. If the angular speed of this
system (merry-go-round � cockroach) is constant, does the cockroach have (a) radial
acceleration and (b) tangential acceleration? If v is decreasing, does the cockroach
have (c) radial acceleration and (d) tangential acceleration?
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10-6 Kinetic Energy of Rotation
The rapidly rotating blade of a table saw certainly has kinetic energy due to that
rotation. How can we express the energy? We cannot apply the familiar formula

to the saw as a whole because that would give us the kinetic energy
only of the saw’s center of mass, which is zero.

Instead, we shall treat the table saw (and any other rotating rigid body) as a
collection of particles with different speeds. We can then add up the kinetic
energies of all the particles to find the kinetic energy of the body as a whole.
In this way we obtain, for the kinetic energy of a rotating body,

(10-31)

in which mi is the mass of the ith particle and vi is its speed.The sum is taken over
all the particles in the body.

The problem with Eq. 10-31 is that vi is not the same for all particles.We solve
this problem by substituting for v from Eq. 10-18 (v � vr), so that we have

(10-32)

in which v is the same for all particles.
The quantity in parentheses on the right side of Eq. 10-32 tells us how

the mass of the rotating body is distributed about its axis of rotation. We call that
quantity the rotational inertia (or moment of inertia) I of the body with respect to
the axis of rotation. It is a constant for a particular rigid body and a particular rota-
tion axis. (That axis must always be specified if the value of I is to be meaningful.)

We may now write

(rotational inertia) (10-33)

and substitute into Eq. 10-32, obtaining

(radian measure) (10-34)

as the expression we seek. Because we have used the relation v � vr in deriving
Eq. 10-34, v must be expressed in radian measure. The SI unit for I is the
kilogram–square meter (kg � m2).

Equation 10-34, which gives the kinetic energy of a rigid body in pure rotation,
is the angular equivalent of the formula , which gives the kinetic energy
of a rigid body in pure translation. In both formulas there is a factor of . Where
mass M appears in one equation, I (which involves both mass and its distribution)

1
2

K � 1
2 Mvcom

2

K � 1
2 I	2

I � � miri
2

K � � 12 mi(	ri)2 � 1
2 �� miri

2�	2,

 � � 12 mivi
2,

K � 1
2 m1v2

1 � 1
2 m2v2

2 � 1
2 m3v2

3 � � � �

K � 1
2 mv2

Reasoning: At P, a has the design value of 4g. Just after P is
reached, the passenger moves in a straight line and no longer
has centripetal acceleration. Thus, the passenger has only the
acceleration magnitude g along the track. Hence,

a � 4g at P and a � g after P. (Answer)

Roller-coaster headache can occur when a passenger’s
head undergoes an abrupt change in acceleration, with the

acceleration magnitude large before or after the change.
The reason is that the change can cause the brain to move
relative to the skull, tearing the veins that bridge the brain
and skull. Our design to increase the acceleration from g to
4g along the path to P might harm the passenger, but the
abrupt change in acceleration as the passenger passes
through point P is more likely to cause roller-coaster
headache.
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appears in the other. Finally, each equation contains as a factor the square of a
speed—translational or rotational as appropriate. The kinetic energies of transla-
tion and of rotation are not different kinds of energy. They are both kinetic energy,
expressed in ways that are appropriate to the motion at hand.

We noted previously that the rotational inertia of a rotating body involves
not only its mass but also how that mass is distributed. Here is an example that
you can literally feel. Rotate a long, fairly heavy rod (a pole, a length of lumber,
or something similar), first around its central (longitudinal) axis (Fig. 10-11a) and
then around an axis perpendicular to the rod and through the center (Fig. 10-
11b). Both rotations involve the very same mass, but the first rotation is much
easier than the second. The reason is that the mass is distributed much closer to
the rotation axis in the first rotation.As a result, the rotational inertia of the rod is
much smaller in Fig. 10-11a than in Fig. 10-11b. In general, smaller rotational iner-
tia means easier rotation.

CHECKPOINT 4

The figure shows three small spheres that rotate
about a vertical axis. The perpendicular distance be-
tween the axis and the center of each sphere is given.
Rank the three spheres according to their rotational
inertia about that axis, greatest first.

Rotation
axis

4 kg
3 m

2 m

1 m

9 kg

36 kg

Fig. 10-11 A long rod is much easier to
rotate about (a) its central (longitudinal)
axis than about (b) an axis through its 
center and perpendicular to its length.The
reason for the difference is that the mass is
distributed closer to the rotation axis in (a)
than in (b).

Rotation 
axis 

(a) 

(b) 

Rod is easy to rotate
this way.

Harder this way.

10-7 Calculating the Rotational Inertia
If a rigid body consists of a few particles, we can calculate its rotational inertia
about a given rotation axis with Eq. 10-33 ; that is, we can find the
product mr 2 for each particle and then sum the products. (Recall that r is the per-
pendicular distance a particle is from the given rotation axis.)

If a rigid body consists of a great many adjacent particles (it is continuous,
like a Frisbee), using Eq. 10-33 would require a computer. Thus, instead, we
replace the sum in Eq. 10-33 with an integral and define the rotational inertia of
the body as

(rotational inertia, continuous body). (10-35)

Table 10-2 gives the results of such integration for nine common body shapes and
the indicated axes of rotation.

Parallel-Axis Theorem
Suppose we want to find the rotational inertia I of a body of mass M about a
given axis. In principle, we can always find I with the integration of Eq. 10-35.
However, there is a shortcut if we happen to already know the rotational inertia
Icom of the body about a parallel axis that extends through the body’s center of
mass. Let h be the perpendicular distance between the given axis and the axis
through the center of mass (remember these two axes must be parallel).Then the
rotational inertia I about the given axis is

I � Icom � Mh2 (parallel-axis theorem). (10-36)

This equation is known as the parallel-axis theorem. We shall now prove it.

Proof of the Parallel-Axis Theorem
Let O be the center of mass of the arbitrarily shaped body shown in cross section
in Fig. 10-12. Place the origin of the coordinates at O. Consider an axis through O

I � � r2 dm

(I � � miri
2)
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Table 10-2

Some Rotational Inertias

Axis 

Hoop about 
central axis 

Axis 

Annular cylinder 
(or ring) about  

central axis 

R 

I = MR 2  (b) (a) I =   M(R 1
2  +  R 2

2)  

R 2 

R 1 

Thin rod about 
axis through center  

perpendicular to 
length 

(e) 
I =    ML 2  

L 

Axis 

Axis Axis 

Hoop about any  
diameter 

Slab about  
perpendicular  
axis through 

center  
 

(i) (h) 
I =   MR 2  I =    M(a 2  + b 2)  

R 

b  
a  

Axis 

Solid cylinder 
(or disk) about 

central axis 

(c) 
I =   MR 2  

R 
L  

Axis 

Solid cylinder 
(or disk) about 

central diameter 

(d)  
I =   MR 2  +    ML 2  

R 
L  

Axis 

Thin  
spherical shell 

about any  
diameter 

(g) 
I =   MR 2  

2R 

Solid sphere 
about any  
diameter 

(f) 
I =   MR 2  

2R 

Axis 

1 __
 2 1 __

 2 

2 __
 5 

1 __
 4 

2 __
 3 

1 __
 2 

1 __
 12 

1 __
 12 

1 __
 12 

perpendicular to the plane of the figure, and another axis through point P parallel
to the first axis. Let the x and y coordinates of P be a and b.

Let dm be a mass element with the general coordinates x and y. The rota-
tional inertia of the body about the axis through P is then, from Eq. 10-35,

which we can rearrange as

(10-37)

From the definition of the center of mass (Eq. 9-9), the middle two integrals of
Eq. 10-37 give the coordinates of the center of mass (multiplied by a constant)
and thus must each be zero. Because x2 � y2 is equal to R2, where R is the dis-
tance from O to dm, the first integral is simply Icom, the rotational inertia of the
body about an axis through its center of mass. Inspection of Fig. 10-12 shows that
the last term in Eq. 10-37 is Mh2, where M is the body’s total mass. Thus,
Eq. 10-37 reduces to Eq. 10-36, which is the relation that we set out to prove.

I � � (x2 � y2) dm � 2a � x dm � 2b � y dm � � (a2 � b2) dm.

I � � r2 dm � � [(x � a)2 � ( y � b)2] dm,

Fig. 10-12 A rigid body in cross section,
with its center of mass at O.The parallel-axis
theorem (Eq. 10-36) relates the rotational in-
ertia of the body about an axis through O to
that about a parallel axis through a point
such as P, a distance h from the body’s center
of mass. Both axes are perpendicular to the
plane of the figure.

dm 

r 

P 

h 

a 
b 

x – a 

y – b 

com 
O 

Rotation axis 
through 

center of mass 

Rotation axis 
through P 

y 

x 

We need to relate the
rotational inertia around
the axis at P to that around
the axis at the com.

CHECKPOINT 5

The figure shows a book-like object (one side is
longer than the other) and four choices of rotation
axes, all perpendicular to the face of the
object. Rank the choices according to the rotational
inertia of the object about the axis, greatest first.

(1) (2) (3) (4)
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KEY I DEAS

Sample Problem

nate x (not mass m as indicated in the integral), so we must
relate the mass dm of an element of the rod to its length dx
along the rod. (Such an element is shown in Fig. 10-14.)
Because the rod is uniform, the ratio of mass to length is the
same for all the elements and for the rod as a whole. Thus,
we can write

or

We can now substitute this result for dm and x for r in
Eq. 10-38. Then we integrate from end to end of the rod
(from x � �L/2 to x � L/2) to include all the elements.
We find

dm �
M
L

 dx.

element’s mass dm
element’s length dx

�
rod’s mass M
rod’s length L

Rotational inertia of a uniform rod, integration

Figure 10-14 shows a thin, uniform rod of mass M and length
L, on an x axis with the origin at the rod’s center.

(a) What is the rotational inertia of the rod about the
perpendicular rotation axis through the center?

(1) Because the rod is uniform, its center of mass is at its cen-
ter. Therefore, we are looking for Icom. (2) Because the rod is
a continuous object, we must use the integral of Eq. 10-35,

(10-38)

to find the rotational inertia.

Calculations: We want to integrate with respect to coordi-

I � � r 2 dm,

KEY I DEAS

Sample Problem

Rotational inertia of a two-particle system

Figure 10-13a shows a rigid body consisting of two particles of
mass m connected by a rod of length L and negligible mass.

(a) What is the rotational inertia Icom about an axis through the
center of mass,perpendicular to the rod as shown?

Because we have only two particles with mass, we can find
the body’s rotational inertia Icom by using Eq. 10-33 rather
than by integration.

Calculations: For the two particles, each at perpendicular
distance from the rotation axis, we have

(Answer)

(b) What is the rotational inertia I of the body about an axis
through the left end of the rod and parallel to the first axis
(Fig. 10-13b)?

This situation is simple enough that we can find I using 
either of two techniques.The first is similar to the one used in
part (a). The other, more powerful one is to apply the paral-
lel-axis theorem.

First technique: We calculate I as in part (a), except here the
perpendicular distance ri is zero for the particle on the left and

 � 1
2 mL2.

 I � � miri
2 � (m)(1

2 L)2 � (m)(1
2 L)2

1
2 L

L for the particle on the right. Now Eq. 10-33 gives us

I � m(0)2 � mL2 � mL2. (Answer)

Second technique: Because we already know Icom about
an axis through the center of mass and because the axis here
is parallel to that “com axis,” we can apply the parallel-axis
theorem (Eq. 10-36).We find

(Answer) � mL2.

 I � Icom � Mh2 � 1
2 mL2 � (2m)(1

2 L)2

KEY I DEA

m m 

(a) 

L L 

com 

Rotation axis 
through  

center of mass 

m m 

(b) 

L 

com 

Rotation axis through 
end of rod 

1 __
 2 

1 __
 2 

Here the rotation axis is through the com.

Here it has been shifted from the com 
without changing the orientation. We 
can use the parallel-axis theorem.

Fig. 10-13 A rigid body consisting of two particles of mass m
joined by a rod of negligible mass.
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A

Fig. 10-14 A uniform rod of length L and mass M.An element of
mass dm and length dx is represented.

x

Rotation
axis

x dm

dx

x

x = −

Rotation
axis

Leftmost Rightmost

L__
2

x = L__
2

x

Rotation
axis

L__
2

L__
2

com M

This is the full rod.
We want its rotational
inertia.

First, pick any tiny element
and write its rotational
inertia as x2 dm.

Then, using integration, add up
the rotational inertias for all of
the elements, from leftmost to
rightmost.

KEY I DEAS

(Answer)

This agrees with the result given in Table 10-2e.

(b) What is the rod’s rotational inertia I about a new
rotation axis that is perpendicular to the rod and through
the left end?

We can find I by shifting the origin of the x axis to the left end
of the rod and then integrating from to . However,x � Lx � 0

 � 1
12 ML2.

 �
M
3L

 �x3�
�L/2

�L/2

�
M
3L

 �� L
2

 �
3

� ��
L
2 �

3

 �

 I � �x��L/2

x��L/2
x2 � M

L � dx
here we shall use a more powerful (and easier) technique by
applying the parallel-axis theorem (Eq. 10-36), in which we
shift the rotation axis without changing its orientation.

Calculations: If we place the axis at the rod’s end so that it
is parallel to the axis through the center of mass, then we
can use the parallel-axis theorem (Eq. 10-36). We know
from part (a) that Icom is . From Fig. 10-14, the perpen-
dicular distance h between the new rotation axis and the
center of mass is . Equation 10-36 then gives us

(Answer)

Actually, this result holds for any axis through the left
or right end that is perpendicular to the rod, whether it is
parallel to the axis shown in Fig. 10-14 or not.

 � 1
3 ML2.

 I � Icom � Mh2 � 1
12 ML2 � (M)(1

2 L)2

1
2 L

1
12 ML2

Additional examples, video, and practice available at WileyPLUS
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Sample Problem

Calculations: We can find K with Eq. 10-34 , but
first we need an expression for the rotational inertia I.
Because the rotor was a disk that rotated like a merry-
go-round, I is given by the expression in Table 10-2c

.Thus, we have

The angular speed of the rotor was

Now we can use Eq. 10-34 to write

(Answer)

Being near this explosion was quite dangerous.

 � 2.1 � 107 J.

 K � 1
2 I	2 � 1

2(19.64 kg �m2)(1.466 � 103 rad/s)2

 � 1.466 � 103 rad/s.

 	 � (14 000 rev/min)(2� rad/rev)� 1 min
60 s �

I � 1
2 MR2 � 1

2 (272 kg)(0.38 m)2 � 19.64 kg �m2.

(I � 1
2 MR2)

(K � 1
2 I	2)

Rotational kinetic energy, spin test explosion

Large machine components that undergo prolonged, high-
speed rotation are first examined for the possibility of fail-
ure in a spin test system. In this system, a component is spun
up (brought up to high speed) while inside a cylindrical
arrangement of lead bricks and containment liner, all within
a steel shell that is closed by a lid clamped into place. If the
rotation causes the component to shatter, the soft lead
bricks are supposed to catch the pieces for later analysis.

In 1985,Test Devices, Inc. (www.testdevices.com) was spin
testing a sample of a solid steel rotor (a disk) of mass M � 272
kg and radius R � 38.0 cm. When the sample reached an an-
gular speed v of 14 000 rev/min, the test engineers heard a
dull thump from the test system, which was located one floor
down and one room over from them. Investigating, they found
that lead bricks had been thrown out in the hallway leading to
the test room, a door to the room had been hurled into the ad-
jacent parking lot, one lead brick had shot from the test site
through the wall of a neighbor’s kitchen, the structural beams
of the test building had been damaged, the concrete floor be-
neath the spin chamber had been shoved downward by about
0.5 cm, and the 900 kg lid had been blown upward through the
ceiling and had then crashed back onto the test equipment
(Fig. 10-15). The exploding pieces had not penetrated the
room of the test engineers only by luck.

How much energy was released in the explosion of the
rotor?

Fig. 10-15 Some of the destruction caused by the explosion of a
rapidly rotating steel disk. (Courtesy Test Devices, Inc.)

Additional examples, video, and practice available at WileyPLUS

10-8 Torque
A doorknob is located as far as possible from the door’s hinge line for a good rea-
son. If you want to open a heavy door, you must certainly apply a force; that
alone, however, is not enough. Where you apply that force and in what direction
you push are also important. If you apply your force nearer to the hinge line than
the knob, or at any angle other than 90° to the plane of the door, you must use
a greater force to move the door than if you apply the force at the knob and per-
pendicular to the door’s plane.

Figure 10-16a shows a cross section of a body that is free to rotate about an
axis passing through O and perpendicular to the cross section. A force is
applied at point P, whose position relative to O is defined by a position vector .
The directions of vectors and make an angle f with each other. (For simplic-
ity, we consider only forces that have no component parallel to the rotation axis;
thus, is in the plane of the page.)F

:

r:F
:

r:
F
:

KEY I DEA

The released energy was equal to the rotational kinetic en-
ergy K of the rotor just as it reached the angular speed of
14 000 rev/min.
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To determine how results in a rotation of the body around the rotation
axis, we resolve into two components (Fig. 10-16b). One component, called the
radial component Fr, points along . This component does not cause rotation,
because it acts along a line that extends through O. (If you pull on a door par-
allel to the plane of the door, you do not rotate the door.) The other compo-
nent of , called the tangential component Ft, is perpendicular to and has
magnitude Ft � F sin f. This component does cause rotation. (If you pull on a
door perpendicular to its plane, you can rotate the door.)

The ability of to rotate the body depends not only on the magnitude of its
tangential component Ft, but also on just how far from O the force is applied. To
include both these factors, we define a quantity called torque t as the product of
the two factors and write it as

t � (r)(F sin f). (10-39)

Two equivalent ways of computing the torque are

t � (r)(F sin f) � rFt (10-40)

and (10-41)

where is the perpendicular distance between the rotation axis at O and an
extended line running through the vector (Fig. 10-16c). This extended line is
called the line of action of , and is called the moment arm of . Figure 10-16b
shows that we can describe r, the magnitude of , as being the moment arm of the
force component Ft.

Torque, which comes from the Latin word meaning “to twist,” may be loosely
identified as the turning or twisting action of the force . When you apply a force
to an object—such as a screwdriver or torque wrench—with the purpose of turn-
ing that object, you are applying a torque. The SI unit of torque is the newton-
meter (N � m). Caution: The newton-meter is also the unit of work. Torque and
work, however, are quite different quantities and must not be confused. Work is
often expressed in joules (1 J � 1 N � m), but torque never is.

In the next chapter we shall discuss torque in a general way as being a vector
quantity. Here, however, because we consider only rotation around a single axis,
we do not need vector notation. Instead, a torque has either a positive or negative
value depending on the direction of rotation it would give a body initially at rest:
If the body would rotate counterclockwise, the torque is positive. If the object
would rotate clockwise, the torque is negative. (The phrase “clocks are negative”
from Section 10-2 still works.)

Torques obey the superposition principle that we discussed in Chapter 5 for
forces:When several torques act on a body, the net torque (or resultant torque) is
the sum of the individual torques.The symbol for net torque is tnet.

F
:

r:
F
:

r�F
:

F
:

r�


 � (r sin �)(F) � r�F,

F
:

r:F
:

r:
F
:

F
:

CHECKPOINT 6

The figure shows an overhead view of a meter stick that can pivot about the dot at the
position marked 20 (for 20 cm). All five forces on the stick are horizontal and have the
same magnitude. Rank the forces according to the magnitude of the torque they pro-
duce, greatest first.

0 20 40
Pivot point

100

F1
F2

F3

F4

F5

Fig. 10-16 (a) A force acts on a rigid
body, with a rotation axis perpendicular to
the page.The torque can be found with
(a) angle f, (b) tangential force compo-
nent Ft, or (c) moment arm .r�

F
:

O

P

φ

(a)

O

P

φ

(b)

FrFt

O

P

φ

Rotation
axis

(c)

φ
Line of
action of F

r
Moment arm
of F

Rotation
axis

Rotation
axis

F

F

F

r

r

r

The torque due to this force
causes rotation around this
axis (which extends out
toward you).

You calculate the same torque
by using this moment arm
distance and the full force
magnitude.

But actually only the tangential
component of the force causes
the rotation.
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10-9 Newton’s Second Law for Rotation
A torque can cause rotation of a rigid body, as when you use a torque to rotate
a door. Here we want to relate the net torque tnet on a rigid body to the angular
acceleration a that torque causes about a rotation axis. We do so by analogy with
Newton’s second law (Fnet � ma) for the acceleration a of a body of mass m due
to a net force Fnet along a coordinate axis.We replace Fnet with tnet, m with I, and a
with a in radian measure, writing

tnet � Ia (Newton’s second law for rotation). (10-42)

Proof of Equation 10-42
We prove Eq. 10-42 by first considering the simple situation shown in Fig. 10-17.
The rigid body there consists of a particle of mass m on one end of a massless rod
of length r. The rod can move only by rotating about its other end, around a rota-
tion axis (an axle) that is perpendicular to the plane of the page.Thus, the particle
can move only in a circular path that has the rotation axis at its center.

A force acts on the particle.However,because the particle can move only along
the circular path, only the tangential component Ft of the force (the component that is
tangent to the circular path) can accelerate the particle along the path.We can relate Ft

to the particle’s tangential acceleration at along the path with Newton’s second law,
writing

Ft � mat.

The torque acting on the particle is, from Eq. 10-40,

t � Ftr � matr.

From Eq. 10-22 (at � ar) we can write this as

t � m(ar)r � (mr 2)a. (10-43)

The quantity in parentheses on the right is the rotational inertia of the particle
about the rotation axis (see Eq. 10-33, but here we have only a single particle).
Thus, using I for the rotational inertia, Eq. 10-43 reduces to

t � Ia (radian measure). (10-44)

For the situation in which more than one force is applied to the particle, we
can generalize Eq. 10-44 as

tnet � Ia (radian measure), (10-45)

which we set out to prove. We can extend this equation to any rigid body rotating
about a fixed axis, because any such body can always be analyzed as an assembly
of single particles.

F
:Fig. 10-17 A simple rigid body, free to

rotate about an axis through O, consists of
a particle of mass m fastened to the end of
a rod of length r and negligible mass.An
applied force causes the body to rotate.F

:

O 
x 

y 

Rod 

θ 

Rotation axis 

r 

m 
Fr 

Ft 

φ 

F 

The torque due to the tangential
component of the force causes
an angular acceleration around
the rotation axis.

CHECKPOINT 7

The figure shows an overhead view of a meter stick that can pivot about the point indi-
cated, which is to the left of the stick’s midpoint. Two horizontal forces, and , are
applied to the stick. Only is shown. Force is perpendicular to the stick and is ap-
plied at the right end. If the stick is not to turn, (a) what should be the direction of ,
and (b) should F2 be greater than, less than, or equal to F1?

F
:

2

F
:

2F
:

1

F
:

2F
:

1

F1

Pivot point
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Sample Problem

Newton’s 2nd law, rotation, torque, disk

Figure 10-18a shows a uniform disk, with mass M � 2.5 kg
and radius R � 20 cm, mounted on a fixed horizontal axle.
A block with mass m � 1.2 kg hangs from a massless cord that
is wrapped around the rim of the disk. Find the acceleration of
the falling block, the angular acceleration of the disk, and the
tension in the cord.The cord does not slip, and there is no fric-
tion at the axle.

KEY I DEAS
m 

M 

M R 
O 

Fg 

(b) (a) 

(c) 

m 

T 

T 

The torque due to the 
cord's pull on the rim 
causes an angular 
acceleration of the disk.

These two forces 
determine the block's 
(linear) acceleration.

We need to relate 
those two
accelerations.

y

Fig. 10-18 (a) The falling block causes the disk to rotate. (b) A
free-body diagram for the block. (c) An incomplete free-body dia-
gram for the disk.

with this fact: Because the cord does not slip, the linear ac-
celeration a of the block and the (tangential) linear
acceleration at of the rim of the disk are equal. Then, by
Eq. 10-22 (at � ar) we see that here a � a /R. Substituting
this in Eq. 10-47 yields

(10-48)

Combining results: Combining Eqs. 10-46 and 10-48 leads
to

. (Answer)
We then use Eq. 10-48 to find T:

(Answer)

As we should expect, acceleration a of the falling block is less
than g, and tension T in the cord (� 6.0 N) is less than the
gravitational force on the hanging block (� mg � 11.8 N).
We see also that a and T depend on the mass of the disk but
not on its radius. As a check, we note that the formulas de-
rived above predict a � �g and T � 0 for the case of a
massless disk (M � 0). This is what we would expect; the
block simply falls as a free body. From Eq. 10-22, the angular
acceleration of the disk is

(Answer)� �
a
R

�
�4.8 m/s2

0.20 m
� �24 rad/s2.

 � 6.0 N.

 T � �1
2 Ma � �1

2(2.5 kg)(�4.8 m/s2)

� �4.8 m/s2

 a � �g 
2m

M � 2m
� �(9.8 m/s2) 

(2)(1.2 kg)
2.5 kg � (2)(1.2 kg)

T � �1
2 Ma.

(1) Taking the block as a system,we can relate its acceleration a
to the forces acting on it with Newton’s second law ( ).
(2) Taking the disk as a system, we can relate its angular accel-
eration a to the torque acting on it with Newton’s second
law for rotation (tnet � Ia). (3) To combine the motions of
block and disk, we use the fact that the linear acceleration a
of the block and the (tangential) linear acceleration of the
disk rim are equal.

Forces on block: The forces are shown in the block’s free-
body diagram in Fig. 10-18b: The force from the cord is ,
and the gravitational force is , of magnitude mg. We can
now write Newton’s second law for components along a ver-
tical y axis (Fnet,y � may) as

T � mg � ma. (10-46)

However, we cannot solve this equation for a because it also
contains the unknown T.

Torque on disk: Previously, when we got stuck on the y
axis, we switched to the x axis. Here, we switch to the rota-
tion of the disk. To calculate the torques and the rotational
inertia I, we take the rotation axis to be perpendicular to the
disk and through its center, at point O in Fig. 10-18c.

The torques are then given by Eq. 10-40 (t � rFt). The
gravitational force on the disk and the force on the disk
from the axle both act at the center of the disk and thus at
distance r � 0, so their torques are zero. The force on the
disk due to the cord acts at distance r � R and is tangent to
the rim of the disk. Therefore, its torque is �RT, negative
because the torque rotates the disk clockwise from rest.
From Table 10-2c, the rotational inertia I of the disk is .
Thus we can write tnet � Ia as

(10-47)

This equation seems useless because it has two
unknowns, a and T, neither of which is the desired a.
However, mustering physics courage, we can make it useful

�RT � 1
2 MR2�.

1
2MR2

T
:

F
:

g

T
:

at

F
:

net
� m:a

Additional examples, video, and practice available at WileyPLUS
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10-10 Work and Rotational Kinetic Energy
As we discussed in Chapter 7, when a force F causes a rigid body of mass m to ac-
celerate along a coordinate axis, the force does work W on the body. Thus, the
body’s kinetic energy can change. Suppose it is the only energy of the
body that changes.Then we relate the change �K in kinetic energy to the work W
with the work–kinetic energy theorem (Eq. 7-10), writing

(work–kinetic energy theorem). (10-49)

For motion confined to an x axis, we can calculate the work with Eq. 7-32,

(work, one-dimensional motion). (10-50)

This reduces to W � Fd when F is constant and the body’s displacement is d.
The rate at which the work is done is the power, which we can find with Eqs. 7-43
and 7-48,

(power, one-dimensional motion). (10-51)

Now let us consider a rotational situation that is similar. When a torque
accelerates a rigid body in rotation about a fixed axis, the torque does work W
on the body. Therefore, the body’s rotational kinetic energy can
change. Suppose that it is the only energy of the body that changes. Then we
can still relate the change �K in kinetic energy to the work W with the
work – kinetic energy theorem, except now the kinetic energy is a rotational ki-
netic energy:

(work–kinetic energy theorem). (10-52)

Here, I is the rotational inertia of the body about the fixed axis and vi and vf are
the angular speeds of the body before and after the work is done, respectively.

Also, we can calculate the work with a rotational equivalent of Eq. 10-50,

(work, rotation about fixed axis), (10-53)

where t is the torque doing the work W, and ui and uf are the body’s angular
positions before and after the work is done, respectively. When t is constant,
Eq. 10-53 reduces to

W � t(uf � ui) (work, constant torque). (10-54)

The rate at which the work is done is the power, which we can find with the rota-
tional equivalent of Eq. 10-51,

(power, rotation about fixed axis). (10-55)

Table 10-3 summarizes the equations that apply to the rotation of a rigid body
about a fixed axis and the corresponding equations for translational motion.

Proof of Eqs. 10-52 through 10-55
Let us again consider the situation of Fig. 10-17, in which force rotates a rigid
body consisting of a single particle of mass m fastened to the end of a massless
rod. During the rotation, force does work on the body. Let us assume that theF

:

F
:

P �
dW
dt

� 
	

W � ��f

�i

  
 d�

�K � Kf � Ki � 1
2 I	f

2 � 1
2�	i

2 � W

(K � 1
2 I	2)

P �
dW
dt

� Fv

W � �xf

xi

  F dx

�K � Kf � Ki � 1
2 mvf

2 � 1
2 mvi

2 � W

(K � 1
2 mv2)
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only energy of the body that is changed by is the kinetic energy. Then we can
apply the work–kinetic energy theorem of Eq. 10-49:

�K � Kf � Ki � W. (10-56)

Using and Eq. 10-18 (v � vr), we can rewrite Eq. 10-56 as

(10-57)

From Eq. 10-33, the rotational inertia for this one-particle body is I � mr2.
Substituting this into Eq. 10-57 yields

which is Eq. 10-52.We derived it for a rigid body with one particle, but it holds for
any rigid body rotated about a fixed axis.

We next relate the work W done on the body in Fig. 10-17 to the torque t
on the body due to force . When the particle moves a distance ds along its
circular path, only the tangential component Ft of the force accelerates the parti-
cle along the path. Therefore, only Ft does work on the particle. We write that
work dW as Ft ds. However, we can replace ds with r du, where du is the angle
through which the particle moves.Thus we have

dW � Ft r du. (10-58)

From Eq. 10-40, we see that the product Ft r is equal to the torque t, so we can
rewrite Eq. 10-58 as

dW � t du. (10-59)

The work done during a finite angular displacement from ui to uf is then

which is Eq. 10-53. It holds for any rigid body rotating about a fixed axis.
Equation 10-54 comes directly from Eq. 10-53.

We can find the power P for rotational motion from Eq. 10-59:

which is Eq. 10-55.

P �
dW
dt

� 	 
d�

dt
� 	�,

W � ��f

�i

 	 d�,

F
:

�K � 1
2 I�f

2 � 1
2 
�i

2 � W,

�K � 1
2 mr 2�f

2 � 1
2 mr 2�i

2 � W.

K � 1
2 mv2

F
:

Table 10-3

Some Corresponding Relations for Translational and Rotational Motion

Pure Translation (Fixed Direction) Pure Rotation (Fixed Axis)

Position x Angular position u

Velocity v � dx/dt Angular velocity v � du/dt

Acceleration a � dv/dt Angular acceleration a � dv/dt

Mass m Rotational inertia I

Newton’s second law Fnet � ma Newton’s second law tnet � Ia

Work W � � F dx Work W � � t du

Kinetic energy Kinetic energy

Power (constant force) P � Fv Power (constant torque) P � tv

Work–kinetic energy theorem W � �K Work–kinetic energy theorem W � �K

K � 1
2 I�2K � 1

2 mv2
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Sample Problem

Calculations: First, we relate the change in the kinetic 
energy of the disk to the net work W done on the disk, using
the work–kinetic energy theorem of Eq. 10-52 (Kf � Ki � W).
With K substituted for Kf and 0 for Ki,we get

K � Ki � W � 0 � W � W. (10-60)

Next we want to find the work W. We can relate W to
the torques acting on the disk with Eq. 10-53 or 10-54. The
only torque causing angular acceleration and doing work is
the torque due to force on the disk from the cord, which is
equal to �TR. Because a is constant, this torque also must
be constant.Thus, we can use Eq. 10-54 to write

W � t(uf � ui) � �TR(uf � ui). (10-61)

Because a is constant, we can use Eq. 10-13 to find
uf � ui.With vi � 0, we have

.

Now we substitute this into Eq. 10-61 and then substitute the
result into Eq. 10-60. Inserting the given values T � 6.0 N
and a � �24 rad/s2, we have

(Answer) � 90 J.

 � �1
2 (6.0 N)(0.20 m)(�24 rad/s2)(2.5 s)2

 K � W � �TR(�f � �i) � �TR(1
2�t2) � �1

2TR�t2

�f � �i � 	it � 1
2�t2 � 0 � 1

2�t2 � 1
2�t2

T
:

Work, rotational kinetic energy, torque, disk

Let the disk in Fig. 10-18 start from rest at time t � 0 and
also let the tension in the massless cord be 6.0 N and the an-
gular acceleration of the disk be –24 rad/s2. What is its rota-
tional kinetic energy K at t � 2.5 s?

We can find K with Eq. 10-34 We already know
that , but we do not yet know v at t � 2.5 s.
However, because the angular acceleration a has the con-
stant value of �24 rad/s2, we can apply the equations for
constant angular acceleration in Table 10-1.

Calculations: Because we want v and know a and v0 (� 0),
we use Eq. 10-12:

v � v0 � at � 0 � at � at.

Substituting v � at and into Eq.10-34,we find

(Answer)

We can also get this answer by finding the disk’s kinetic 
energy from the work done on the disk.

 � 90 J.

 � 1
4 (2.5 kg)[(0.20 m)(�24 rad/s2)(2.5 s)]2

 K � 1
2 I	2 � 1

2(
1
2MR2)(�t)2 � 1

4M(R�t)2

I � 1
2 MR2

I � 1
2 MR2

(K � 1
2 I	2).

KEY I DEA

KEY I DEA

Additional examples, video, and practice available at WileyPLUS

Angular Position To describe the rotation of a rigid body about
a fixed axis, called the rotation axis, we assume a reference line is
fixed in the body, perpendicular to that axis and rotating with the
body.We measure the angular position u of this line relative to a fixed
direction.When u is measured in radians,

(radian measure), (10-1)

where s is the arc length of a circular path of radius r and angle u.
Radian measure is related to angle measure in revolutions and de-
grees by

1 rev � 360° � 2p rad. (10-2)

Angular Displacement A body that rotates about a rotation
axis, changing its angular position from u1 to u2, undergoes an angu-
lar displacement

�u � u2 � u1, (10-4)

� �
s
r

where �u is positive for counterclockwise rotation and negative for
clockwise rotation.

Angular Velocity and Speed If a body rotates through an
angular displacement �u in a time interval �t, its average angular
velocity vavg is

(10-5)

The (instantaneous) angular velocity v of the body is

(10-6)

Both vavg and v are vectors, with directions given by the right-hand
rule of Fig. 10-6. They are positive for counterclockwise rotation
and negative for clockwise rotation. The magnitude of the body’s
angular velocity is the angular speed.

	 �
d�

dt
.

	avg �
��

�t
.
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Angular Acceleration If the angular velocity of a body
changes from v1 to v2 in a time interval �t � t2 � t1, the average
angular acceleration aavg of the body is

(10-7)

The (instantaneous) angular acceleration a of the body is

(10-8)

Both aavg and a are vectors.

The Kinematic Equations for Constant Angular Accel-
eration Constant angular acceleration (a � constant) is an im-
portant special case of rotational motion. The appropriate kine-
matic equations, given in Table 10-1, are

v � v0 � at, (10-12)

(10-13)

(10-14)

(10-15)

(10-16)

Linear and Angular Variables Related A point in a rigid
rotating body, at a perpendicular distance r from the rotation axis,
moves in a circle with radius r. If the body rotates through an angle u,
the point moves along an arc with length s given by

s � ur (radian measure), (10-17)

where u is in radians.
The linear velocity of the point is tangent to the circle; the

point’s linear speed v is given by

v � vr (radian measure), (10-18)

where v is the angular speed (in radians per second) of the body.
The linear acceleration of the point has both tangential and

radial components.The tangential component is

at � ar (radian measure), (10-22)

where a is the magnitude of the angular acceleration (in radians
per second-squared) of the body.The radial component of is

(radian measure). (10-23)

If the point moves in uniform circular motion, the period T of
the motion for the point and the body is

(radian measure). (10-19, 10-20)

Rotational Kinetic Energy and Rotational Inertia The
kinetic energy K of a rigid body rotating about a fixed axis is
given by

(radian measure), (10-34)

in which I is the rotational inertia of the body, defined as
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for a system of discrete particles and defined as

(10-35)

for a body with continuously distributed mass. The r and ri in these
expressions represent the perpendicular distance from the axis of
rotation to each mass element in the body, and the integration is car-
ried out over the entire body so as to include every mass element.

The Parallel-Axis Theorem The parallel-axis theorem relates
the rotational inertia I of a body about any axis to that of the same
body about a parallel axis through the center of mass:

I � Icom � Mh2. (10-36)

Here h is the perpendicular distance between the two axes, and
Icom is the rotational inertia of the body about the axis through the
com. We can describe h as being the distance the actual rotation
axis has been shifted from the rotation axis through the com.

Torque Torque is a turning or twisting action on a body about a
rotation axis due to a force . If is exerted at a point given by
the position vector relative to the axis, then the magnitude of the
torque is

(10-40, 10-41, 10-39)

where Ft is the component of perpendicular to and f is the
angle between and . The quantity is the perpendicular dis-
tance between the rotation axis and an extended line running
through the vector. This line is called the line of action of ,
and is called the moment arm of . Similarly, r is the moment
arm of Ft.

The SI unit of torque is the newton-meter (N � m). A torque t
is positive if it tends to rotate a body at rest counterclockwise and
negative if it tends to rotate the body clockwise.

Newton’s Second Law in Angular Form The rotational
analog of Newton’s second law is

tnet � Ia, (10-45)

where tnet is the net torque acting on a particle or rigid body, I is the ro-
tational inertia of the particle or body about the rotation axis, and a is
the resulting angular acceleration about that axis.

Work and Rotational Kinetic Energy The equations used
for calculating work and power in rotational motion correspond to
equations used for translational motion and are

(10-53)

and (10-55)

When t is constant, Eq. 10-53 reduces to

W � t(uf � ui). (10-54)

The form of the work–kinetic energy theorem used for rotating
bodies is

(10-52)�K � Kf � Ki � 1
2 I	f
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5 In Fig. 10-22, two forces and act on a disk that turns about
its center like a merry-go-round. The forces maintain the indicated
angles during the rotation, which is counterclockwise and at a con-
stant rate. However, we are to decrease the angle u of without
changing the magnitude of . (a) To keep the angular speed con-
stant, should we increase, decrease, or maintain the magnitude of

F
:

1

F
:

1

F
:

2F
:

1

266 CHAPTE R 10 ROTATION

1 Figure 10-19 is a graph of the an-
gular velocity versus time for a disk
rotating like a merry-go-round. For a
point on the disk rim, rank the in-
stants a, b, c, and d according to the
magnitude of the (a) tangential and
(b) radial acceleration, greatest first.

2 Figure 10-20 shows plots of an-
gular position u versus time t for
three cases in which a disk is rotated
like a merry-go-round. In each case,
the rotation direction changes at a
certain angular position uchange. (a)
For each case, determine whether
uchange is clockwise or counterclock-
wise from u � 0, or whether it is at
u � 0. For each case, determine
(b) whether v is zero before, after,
or at t � 0 and (c) whether a is positive, negative, or zero.

3 A force is applied to the rim of a disk that can rotate like a
merry-go-round, so as to change its angular velocity. Its initial and
final angular velocities, respectively, for four situations are: (a) �2
rad/s, 5 rad/s; (b) 2 rad/s, 5 rad/s; (c) �2 rad/s, �5 rad/s; and (d) 2
rad/s, �5 rad/s. Rank the situations according to the work done by
the torque due to the force, greatest first.

4 Figure 10-21b is a graph of the angular position of the rotating
disk of Fig. 10-21a. Is the angular velocity of the disk positive, nega-
tive, or zero at (a) t � 1 s, (b) t � 2 s, and (c) t � 3 s? (d) Is the an-
gular acceleration positive or negative?

? Do forces (b) and (c) tend
to rotate the disk clockwise or coun-
terclockwise?

6 In the overhead view of Fig.10-23,
five forces of the same magnitude act
on a strange merry-go-round; it is a
square that can rotate about point P,
at midlength along one of the edges.
Rank the forces according to the
magnitude of the torque they create
about point P, greatest first.

7 Figure 10-24a is an overhead view of a horizontal bar that can
pivot; two horizontal forces act on the bar, but it is stationary. If the
angle between the bar and is now decreased from 90° and the
bar is still not to turn, should F2 be made larger, made smaller, or
left the same?

F
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F
:

2F
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1F
:

2
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t

Fig. 10-20 Question 2.
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Fig. 10-21 Question 4.

F1

θ

F2

Fig. 10-22 Question 5.

Fig. 10-23 Question 6.

F5

F4

F3
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F1 P

Pivot point
F1 F2
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(a) (b)

φ

F1

F2

Fig. 10-24 Questions 7 and 8.

F

Denser

Disk 1

Denser

Disk 3

F F

Lighter

Disk 2

Fig. 10-26 Question 10.

8 Figure 10-24b shows an overhead view of a horizontal bar that
is rotated about the pivot point by two horizontal forces, and ,
with at angle f to the bar. Rank the following values of f accord-
ing to the magnitude of the angular acceleration of the bar, greatest
first: 90°, 70°, and 110°.

9 Figure 10-25 shows a uniform metal plate that
had been square before 25% of it was snipped off.
Three lettered points are indicated. Rank them
according to the rotational inertia of the plate
around a perpendicular axis through them, great-
est first.

10 Figure 10-26 shows three flat disks (of the same
radius) that can rotate about their centers like merry-go-rounds. Each
disk consists of the same two materials, one denser than the other
(density is mass per unit volume). In disks 1 and 3, the denser material
forms the outer half of the disk area. In disk 2, it forms the inner half
of the disk area. Forces with identical magnitudes are applied tangen-
tially to the disk, either at the outer edge or at the interface of the two
materials, as shown. Rank the disks according to (a) the torque about
the disk center, (b) the rotational inertia about the disk center, and (c)
the angular acceleration of the disk,greatest first.

F
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F
:

2F
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1

Fig. 10-19 Question 1.

a

b

c
Fig. 10-25
Question 9.
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sec. 10-2 The Rotational Variables
•1 A good baseball pitcher can throw a baseball toward home
plate at 85 mi/h with a spin of 1800 rev/min. How many revolutions
does the baseball make on its way to home plate? For simplicity,
assume that the 60 ft path is a straight line.

•2 What is the angular speed of (a) the second hand, (b) the
minute hand, and (c) the hour hand of a smoothly running analog
watch? Answer in radians per second.

••3 When a slice of buttered toast is accidentally pushed
over the edge of a counter, it rotates as it falls. If the distance to the
floor is 76 cm and for rotation less than 1 rev, what are the (a)
smallest and (b) largest angular speeds that cause the toast to hit
and then topple to be butter-side down?

••4 The angular position of a point on a rotating wheel is given by
u � 2.0 � 4.0t 2 � 2.0t 3, where u is in radians and t is in seconds. At 
t � 0, what are (a) the point’s angular position and (b) its angular
velocity? (c) What is its angular velocity at t � 4.0 s? (d) Calculate
its angular acceleration at t � 2.0 s. (e) Is its angular acceleration
constant?

••5 A diver makes 2.5 revolutions on the way from a 10-m-
high platform to the water. Assuming zero initial vertical velocity,
find the average angular velocity during the dive.

••6 The angular position of a point on the rim of a rotating wheel is
given by u � 4.0t � 3.0t2 � t3, where u is in radians and t is in seconds.
What are the angular velocities at (a) t � 2.0 s and (b) t � 4.0 s? (c)
What is the average angular acceleration for the time interval that
begins at t � 2.0 s and ends at t � 4.0 s? What are the instanta-
neous angular accelerations at (d) the beginning and (e) the end of
this time interval?

•••7 The wheel in Fig. 10-27 has
eight equally spaced spokes and a
radius of 30 cm. It is mounted on a
fixed axle and is spinning at 2.5
rev/s. You want to shoot a 20-cm-
long arrow parallel to this axle and
through the wheel without hitting
any of the spokes. Assume that the
arrow and the spokes are very thin.
(a) What minimum speed must the arrow have? (b) Does it matter
where between the axle and rim of the wheel you aim? If so, what
is the best location?

•••8 The angular acceleration of a wheel is a � 6.0t4 � 4.0t2, with
a in radians per second-squared and t in seconds.At time t � 0, the
wheel has an angular velocity of �2.0 rad/s and an angular posi-
tion of �1.0 rad. Write expressions for (a) the angular velocity
(rad/s) and (b) the angular position (rad) as functions of time (s).

sec. 10-4 Rotation with Constant Angular Acceleration
•9 A drum rotates around its central axis at an angular velocity of
12.60 rad/s. If the drum then slows at a constant rate of 4.20 rad/s2,
(a) how much time does it take and (b) through what angle does it
rotate in coming to rest?

ILW

Fig. 10-27 Problem 7.

•10 Starting from rest, a disk rotates about its central axis with
constant angular acceleration. In 5.0 s, it rotates 25 rad. During
that time, what are the magnitudes of (a) the angular acceleration
and (b) the average angular velocity? (c) What is the instantaneous
angular velocity of the disk at the end of the 5.0 s? (d) With the an-
gular acceleration unchanged, through what additional angle will
the disk turn during the next 5.0 s?

•11 A disk, initially rotating at 120 rad/s, is slowed down 
with a constant angular acceleration of magnitude 4.0 rad/s2. (a)
How much time does the disk take to stop? (b) Through what an-
gle does the disk rotate during that time?

•12 The angular speed of an automobile engine is increased at a
constant rate from 1200 rev/min to 3000 rev/min in 12 s. (a) What is
its angular acceleration in revolutions per minute-squared? (b) How
many revolutions does the engine make during this 12 s interval?

••13 A flywheel turns through 40 rev as it slows from an
angular speed of 1.5 rad/s to a stop. (a) Assuming a constant angu-
lar acceleration, find the time for it to come to rest. (b) What is its
angular acceleration? (c) How much time is required for it to com-
plete the first 20 of the 40 revolutions?

••14 A disk rotates about its central axis starting from rest and
accelerates with constant angular acceleration. At one time it is ro-
tating at 10 rev/s; 60 revolutions later, its angular speed is 15 rev/s.
Calculate (a) the angular acceleration, (b) the time required to
complete the 60 revolutions, (c) the time required to reach the 10
rev/s angular speed, and (d) the number of revolutions from rest
until the time the disk reaches the 10 rev/s angular speed.

••15 A wheel has a constant angular acceleration of
3.0 rad/s2. During a certain 4.0 s interval, it turns through an angle
of 120 rad. Assuming that the wheel started from rest, how long
has it been in motion at the start of this 4.0 s interval?

••16 A merry-go-round rotates from rest with an angular acceler-
ation of 1.50 rad/s2. How long does it take to rotate through (a) the
first 2.00 rev and (b) the next 2.00 rev?

••17 At t � 0, a flywheel has an angular velocity of 4.7 rad/s, a
constant angular acceleration of �0.25 rad/s2, and a reference line
at u0 � 0. (a) Through what maximum angle umax will the reference
line turn in the positive direction? What are the (b) first and (c)
second times the reference line will be at ? At what (d)
negative time and (e) positive time will the reference line be at

10.5 rad? (f) Graph u versus t, and indicate the answers to (a)
through (e) on the graph.

sec. 10-5 Relating the Linear and Angular Variables
•18 If an airplane propeller rotates at 2000 rev/min while the air-
plane flies at a speed of 480 km/h relative to the ground, what is the
linear speed of a point on the tip of the propeller, at radius 1.5 m,
as seen by (a) the pilot and (b) an observer on the ground? The
plane’s velocity is parallel to the propeller’s axis of rotation.

•19 What are the magnitudes of (a) the angular velocity, (b) the ra-
dial acceleration, and (c) the tangential acceleration of a spaceship
taking a circular turn of radius 3220 km at a speed of 29 000 km/h?

� �

� � 1
2�max

SSM

ILW

Tutoring problem available (at instructor’s discretion) in WileyPLUS and WebAssign

SSM Worked-out solution available in Student Solutions Manual      

• – ••• Number of dots indicates level of problem difficulty

Additional information available in The Flying Circus of Physics and at flyingcircusofphysics.com

WWW Worked-out solution is at

ILW Interactive solution is at 
http://www.wiley.com/college/halliday
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•20 An object rotates about a fixed axis, and the angular position
of a reference line on the object is given byu � 0.40e2t, where u is in
radians and t is in seconds. Consider a point on the object that is 4.0
cm from the axis of rotation. At t � 0, what are the magnitudes of
the point’s (a) tangential component of acceleration and (b) radial
component of acceleration?

•21 Between 1911 and 1990, the top of the leaning bell
tower at Pisa, Italy, moved toward the south at an average rate of
1.2 mm/y. The tower is 55 m tall. In radians per second, what is the
average angular speed of the tower’s top about its base?

•22 An astronaut is being tested in a centrifuge. The centrifuge
has a radius of 10 m and, in starting, rotates according to u � 0.30t2,
where t is in seconds and u is in radians. When t � 5.0 s, what are
the magnitudes of the astronaut’s (a) angular velocity, (b) linear
velocity, (c) tangential acceleration, and (d) radial acceleration?

•23 A flywheel with a diameter of 1.20 m is rotating
at an angular speed of 200 rev/min. (a) What is the angular speed
of the flywheel in radians per second? (b) What is the linear speed
of a point on the rim of the flywheel? (c) What constant angular ac-
celeration (in revolutions per minute-squared) will increase the
wheel’s angular speed to 1000 rev/min in 60.0 s? (d) How many
revolutions does the wheel make during that 60.0 s?

•24 A vinyl record is played by rotating the record so that an ap-
proximately circular groove in the vinyl slides under a stylus.
Bumps in the groove run into the stylus, causing it to oscillate. The
equipment converts those oscillations to electrical signals and then
to sound. Suppose that a record turns at the rate of , the
groove being played is at a radius of 10.0 cm, and the bumps in the
groove are uniformly separated by 1.75 mm. At what rate (hits per
second) do the bumps hit the stylus?

••25 (a) What is the angular speed v about the polar axis of
a point on Earth’s surface at latitude 40° N? (Earth rotates about
that axis.) (b) What is the linear speed v of the point? What are (c)
v and (d) v for a point at the equator?

••26 The flywheel of a steam engine runs with a constant angular
velocity of 150 rev/min. When steam is shut off, the friction of the
bearings and of the air stops the wheel in 2.2 h. (a) What is the con-
stant angular acceleration, in revolutions per minute-squared, of
the wheel during the slowdown? (b) How many revolutions does
the wheel make before stopping? (c) At the instant the flywheel is
turning at 75 rev/min, what is the tangential component of the lin-
ear acceleration of a flywheel particle that is 50 cm from the axis of
rotation? (d) What is the magnitude of the net linear acceleration of
the particle in (c)?

••27 A record turntable is rotating at . A watermelon
seed is on the turntable 6.0 cm from the axis of rotation. (a)
Calculate the acceleration of the seed, assuming that it does not
slip. (b) What is the minimum value of the coefficient of static fric-
tion between the seed and the turntable if the seed is not to slip?
(c) Suppose that the turntable achieves its angular speed by start-
ing from rest and undergoing a constant angular acceleration for
0.25 s. Calculate the minimum coefficient of static friction required
for the seed not to slip during the
acceleration period.

••28 In Fig. 10-28, wheel A of ra-
dius rA � 10 cm is coupled by belt
B to wheel C of radius rC � 25 cm.
The angular speed of wheel A is in-
creased from rest at a constant rate

331
3 rev/min

SSM

331
3 rev/min

WWWSSM

of 1.6 rad/s2. Find the time needed for wheel C to reach an angular
speed of 100 rev/min, assuming the belt does not slip. (Hint: If the
belt does not slip, the linear speeds at the two rims must be equal.)

••29 An early method of measuring the speed of light makes use
of a rotating slotted wheel. A beam of light passes through one of
the slots at the outside edge of the wheel, as in Fig. 10-29, travels to a
distant mirror, and returns to the wheel just in time to pass through
the next slot in the wheel. One such slotted wheel has a radius of 5.0
cm and 500 slots around its edge. Measurements taken when the
mirror is L � 500 m from the wheel indicate a speed of light of 
3.0 � 105 km/s. (a) What is the (constant) angular speed of the
wheel? (b) What is the linear speed of a point on the edge of the
wheel?

Light
beam

Light 
source

Rotating 
slotted wheel

Mirror 
perpendicular 
to light beam

L

Fig. 10-29 Problem 29.

Fig. 10-28 Problem 28.

B

C

rA

A
rC

••30 A gyroscope flywheel of radius 2.83 cm is accelerated from
rest at 14.2 rad/s2 until its angular speed is 2760 rev/min. (a) What
is the tangential acceleration of a point on the rim of the flywheel
during this spin-up process? (b) What is the radial acceleration of
this point when the flywheel is spinning at full speed? (c) Through
what distance does a point on the rim move during the spin-up?

••31 A disk, with a radius of 0.25 m, is to be rotated like a
merry-go-round through 800 rad, starting from rest, gaining angu-
lar speed at the constant rate a1 through the first 400 rad and
then losing angular speed at the constant rate �a1 until it is again
at rest. The magnitude of the centripetal acceleration of any por-
tion of the disk is not to exceed 400 m/s2. (a) What is the least
time required for the rotation? (b) What is the corresponding
value of a1?

•••32 A pulsar is a rapidly rotating neutron star that emits a radio
beam the way a lighthouse emits a light beam. We receive a radio
pulse for each rotation of the star.The period T of rotation is found
by measuring the time between pulses. The pulsar in the Crab neb-
ula has a period of rotation of T � 0.033 s that is increasing at the
rate of 1.26 � 10�5 s/y. (a) What is the pulsar’s angular acceleration
a? (b) If a is constant, how many years from now will the pulsar
stop rotating? (c) The pulsar originated in a supernova explosion
seen in the year 1054.Assuming constant a, find the initial T.

sec. 10-6 Kinetic Energy of Rotation
•33 Calculate the rotational inertia of a wheel that has a ki-
netic energy of 24 400 J when rotating at 602 rev/min.

SSM
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••41 In Fig. 10-34, two particles,
each with mass m 0.85 kg, are fas-
tened to each other, and to a rota-
tion axis at O, by two thin rods, each
with length d � 5.6 cm and mass
M � 1.2 kg. The combination ro-
tates around the rotation axis with
the angular speed v � 0.30 rad/s.
Measured about O, what are the
combination’s (a) rotational inertia
and (b) kinetic energy? 

••42 The masses and coordinates of four particles are as follows:
50 g, x � 2.0 cm, y � 2.0 cm; 25 g, x � 0, y � 4.0 cm; 25 g, x � �3.0
cm, y � �3.0 cm; 30 g, x � �2.0 cm, y � 4.0 cm.What are the rota-
tional inertias of this collection about the (a) x, (b) y, and (c) z
axes? (d) Suppose the answers to (a)
and (b) are A and B, respectively.
Then what is the answer to (c) in
terms of A and B?

••43 The uniform solid
block in Fig. 10-35 has mass 0.172 kg
and edge lengths a � 3.5 cm, b � 8.4
cm, and c � 1.4 cm. Calculate its ro-
tational inertia about an axis
through one corner and perpendicu-
lar to the large faces.

••44 Four identical particles of mass 0.50 kg each are placed at
the vertices of a 2.0 m � 2.0 m square and held there by four mass-
less rods, which form the sides of the square. What is the rotational
inertia of this rigid body about an axis that (a) passes through the
midpoints of opposite sides and lies in the plane of the square, (b)
passes through the midpoint of one of the sides and is perpendicu-
lar to the plane of the square, and (c) lies in the plane of the square
and passes through two diagonally opposite particles?

WWWSSM

�

269PROB LE M S
PART 1

•34 Figure 10-30 gives angular speed versus time for a thin rod
that rotates around one end. The scale on the v axis is set by

(a) What is the magnitude of the rod’s angular ac-
celeration? (b) At t 4.0 s, the rod has a rotational kinetic energy
of 1.60 J.What is its kinetic energy at t � 0?

�
	s � 6.0 rad/s.

around the rotation axis decrease when that removed particle is
(a) the innermost one and (b) the outermost one?

••39 Trucks can be run on energy stored in a rotating flywheel,
with an electric motor getting the flywheel up to its top speed of
200p rad/s. One such flywheel is a solid, uniform cylinder with a
mass of 500 kg and a radius of 1.0 m. (a) What is the kinetic energy
of the flywheel after charging? (b) If the truck uses an average
power of 8.0 kW, for how many minutes can it operate between
chargings?

••40 Figure 10-33 shows an arrangement of 15 identical disks that
have been glued together in a rod-like shape of length L � 1.0000 m
and (total) mass M � 100.0 mg. The disk arrangement can rotate
about a perpendicular axis through its central disk at point O. (a)
What is the rotational inertia of the arrangement about that axis?
(b) If we approximated the arrangement as being a uniform rod of
mass M and length L, what percentage error would we make in us-
ing the formula in Table 10-2e to calculate the rotational inertia?

0
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Fig. 10-30 Problem 34.
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Fig. 10-31 Problem 36.

Fig. 10-33 Problem 40.
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Fig. 10-34 Problem 41.

sec. 10-7 Calculating the Rotational Inertia
•35 Two uniform solid cylinders, each rotating about its cen-
tral (longitudinal) axis at 235 rad/s, have the same mass of 1.25 kg
but differ in radius. What is the rotational kinetic energy of (a) the
smaller cylinder, of radius 0.25 m, and (b) the larger cylinder, of 
radius 0.75 m?

•36 Figure 10-31a shows a disk that can rotate about an axis at a
radial distance h from the center of the disk. Figure 10-31b gives
the rotational inertia I of the disk about the axis as a function of
that distance h, from the center out to the edge of the disk. The
scale on the I axis is set by and 
What is the mass of the disk?

IB � 0.150 kg �m2.IA � 0.050 kg �m2

SSM

•37 Calculate the rotational inertia of a meter stick, with
mass 0.56 kg, about an axis perpendicular to the stick and located
at the 20 cm mark. (Treat the stick as a thin rod.)

•38 Figure 10-32 shows three 0.0100 kg particles that have been
glued to a rod of length L � 6.00 cm and negligible mass. The as-
sembly can rotate around a perpendicular axis through point O at
the left end. If we remove one particle (that is, 33% of the mass),
by what percentage does the rotational inertia of the assembly

SSM

Fig. 10-32 Problems 38 and 62.
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Fig. 10-35 Problem 43.
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sec. 10-8 Torque
•45 The body in Fig. 10-36 is pivoted at O, and two
forces act on it as shown. If
r1 � 1.30 m, r2 � 2.15 m, F1 �

4.20 N, F2 � 4.90 N, u1 � 75.0°,
and u2 � 60.0°, what is the net
torque about the pivot?

•46 The body in Fig. 10-37 is
pivoted at O. Three forces act on it: FA � 10 N at point A, 8.0 m
from O; FB � 16 N at B, 4.0 m from O; and FC � 19 N at C, 3.0 m
from O.What is the net torque about O?

ILWSSM

••53 Figure 10-40 shows a
uniform disk that can rotate
around its center like a merry-go-
round. The disk has a radius of
2.00 cm and a mass of 20.0 grams
and is initially at rest. Starting at
time t � 0, two forces are to be ap-
plied tangentially to the rim as indicated, so that at time t � 1.25 s
the disk has an angular velocity of 250 rad/s counterclockwise.
Force has a magnitude of 0.100 N.What is magnitude F2?

••54 In a judo foot-sweep
move, you sweep your opponent’s
left foot out from under him while
pulling on his gi (uniform) toward
that side. As a result, your oppo-
nent rotates around his right foot
and onto the mat. Figure 10-41
shows a simplified diagram of
your opponent as you face him,
with his left foot swept out. The
rotational axis is through point O.
The gravitational force on him
effectively acts at his center of
mass, which is a horizontal dis-
tance d � 28 cm from point O.
His mass is 70 kg, and his rota-
tional inertia about point O is 65
kg �m2.What is the magnitude of
his initial angular acceleration
about point O if your pull on his
gi is (a) negligible and (b) horizontal with a magnitude of 300 N and
applied at height h � 1.4 m?

••55 In Fig. 10-42a, an irregularly shaped
plastic plate with uniform thickness and den-
sity (mass per unit volume) is to be rotated
around an axle that is perpendicular to the
plate face and through point O. The rota-
tional inertia of the plate about that axle is
measured with the following method. A cir-
cular disk of mass 0.500 kg and radius 2.00
cm is glued to the plate, with its center
aligned with point O (Fig. 10-42b). A string is
wrapped around the edge of the disk the way
a string is wrapped around a top. Then the
string is pulled for 5.00 s. As a result, the disk
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•47 A small ball of mass 0.75 kg is attached to one end of a
1.25-m-long massless rod, and the other end of the rod is hung from a
pivot. When the resulting pendulum is 30° from the vertical, what is
the magnitude of the gravitational torque calculated about the pivot?

•48 The length of a bicycle pedal arm is 0.152 m, and a downward
force of 111 N is applied to the pedal by the rider.What is the mag-
nitude of the torque about the pedal arm’s pivot when the arm is at
angle (a) 30°, (b) 90°, and (c) 180° with the vertical?

sec. 10-9 Newton’s Second Law for Rotation
•49 During the launch from a board, a diver’s angular
speed about her center of mass changes from zero to 6.20 rad/s in
220 ms. Her rotational inertia about her center of mass is 12.0
kg � m2. During the launch, what are the magnitudes of (a) her aver-
age angular acceleration and (b) the average external torque on
her from the board?

•50 If a 32.0 N � m torque on a wheel causes angular acceleration
25.0 rad/s2, what is the wheel’s rotational inertia?

••51 In Fig. 10-38, block 1 has mass
, block 2 has mass ,

and the pulley, which is mounted on a
horizontal axle with negligible friction,
has radius . When released
from rest, block 2 falls 75.0 cm in 5.00 s
without the cord slipping on the pulley.
(a) What is the magnitude of the acceler-
ation of the blocks? What are (b) ten-
sion and (c) tension ? (d) What is
the magnitude of the pulley’s angular ac-
celeration? (e) What is its rotational inertia? 

••52 In Fig. 10-39, a cylinder having a mass of 2.0 kg can rotate
about its central axis through point O. Forces are applied as shown:
F1 � 6.0 N, F2 � 4.0 N, F3 � 2.0 N, and F4 � 5.0 N. Also, r � 5.0 cm
and R � 12 cm. Find the (a) magnitude and (b) direction of the an-
gular acceleration of the cylinder. (During the rotation, the forces
maintain their same angles relative to the cylinder.) 

T1T2

R � 5.00 cm

m2 � 500 gm1 � 460 g
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Fig. 10-38
Problems 51 and 83.
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and plate are rotated by a constant force of 0.400 N that is applied
by the string tangentially to the edge of the disk. The resulting an-
gular speed is 114 rad/s. What is the rotational inertia of the plate
about the axle?

••56 Figure 10-43 shows
particles 1 and 2, each of
mass m, attached to the ends
of a rigid massless rod of
length L1 � L2, with L1 � 20
cm and L2 � 80 cm. The rod is held horizontally on the fulcrum
and then released. What are the magnitudes of the initial accelera-
tions of (a) particle 1 and (b) particle 2?

•••57 A pulley, with a rotational inertia of 1.0 �10�3 kg �m2 about its
axle and a radius of 10 cm, is acted on by a force applied tangentially
at its rim. The force magnitude varies in time as F � 0.50t � 0.30t2,
with F in newtons and t in seconds.The pulley is initially at rest.At
t � 3.0 s what are its (a) angular acceleration and (b) angular speed?

sec. 10-10 Work and Rotational Kinetic Energy
•58 (a) If R � 12 cm, M � 400 g, and m � 50 g in Fig. 10-18, find
the speed of the block after it has descended 50 cm starting from
rest. Solve the problem using energy conservation principles. (b)
Repeat (a) with R � 5.0 cm.

•59 An automobile crankshaft transfers energy from the engine
to the axle at the rate of 100 hp (� 74.6 kW) when rotating at a
speed of 1800 rev/min. What torque (in newton-meters) does the
crankshaft deliver?

•60 A thin rod of length 0.75 m and mass 0.42 kg is suspended
freely from one end. It is pulled to one side and then allowed to swing
like a pendulum, passing through its lowest position with angular
speed 4.0 rad/s. Neglecting friction and air resistance, find (a) the
rod’s kinetic energy at its lowest position and (b) how far above that
position the center of mass rises.

•61 A 32.0 kg wheel, essentially a thin hoop with radius 1.20 m, is
rotating at 280 rev/min. It must be brought to a stop in 15.0 s. (a)
How much work must be done to stop it? (b) What is the required
average power?

••62 In Fig. 10-32, three 0.0100 kg particles have been glued to a
rod of length L � 6.00 cm and negligible mass and can rotate
around a perpendicular axis through point O at one end. How
much work is required to change the rotational rate (a) from 0 to
20.0 rad/s, (b) from 20.0 rad/s to 40.0 rad/s, and (c) from 40.0 rad/s to
60.0 rad/s? (d) What is the slope of a plot of the assembly’s kinetic
energy (in joules) versus the square of its rotation rate (in radians-
squared per second-squared)?

••63 A meter stick is held vertically with one end on
the floor and is then allowed to fall. Find the speed of the other end
just before it hits the floor, assuming that the end on the floor does
not slip. (Hint: Consider the stick to be a thin rod and use the con-
servation of energy principle.)

••64 A uniform cylinder of radius 10 cm and mass 20 kg is
mounted so as to rotate freely about a horizontal axis that is paral-
lel to and 5.0 cm from the central longitudinal axis of the cylinder.
(a) What is the rotational inertia of the cylinder about the axis of
rotation? (b) If the cylinder is released from rest with its central
longitudinal axis at the same height as the axis about which the
cylinder rotates, what is the angular speed of the cylinder as it
passes through its lowest position?

ILWSSM

•••65 A tall, cylindrical chimney falls over when its base is
ruptured.Treat the chimney as a thin rod of length 55.0 m.At the in-
stant it makes an angle of 35.0° with the vertical as it falls, what are
(a) the radial acceleration of the top, and (b) the tangential acceler-
ation of the top. (Hint: Use energy considerations, not a torque.) (c)
At what angle u is the tangential acceleration equal to g?  

•••66 A uniform spherical shell of mass M � 4.5 kg and radius 
R � 8.5 cm can rotate about a vertical axis on frictionless bearings
(Fig. 10-44). A massless cord passes around the equator of the shell,
over a pulley of rotational inertia I � 3.0 � 10�3 kg � m2 and radius
r � 5.0 cm, and is attached to a small object of mass m � 0.60 kg.
There is no friction on the pulley’s axle; the cord does not slip on
the pulley. What is the speed of the object when it has fallen 82 cm
after being released from rest? Use energy considerations.

1 2

L1 L2

Fig. 10-43 Problem 56.

M, R

I, r

m

•••67 Figure 10-45 shows a rigid
assembly of a thin hoop (of mass m
and radius R � 0.150 m) and a thin
radial rod (of mass m and length L �
2.00R). The assembly is upright, but if
we give it a slight nudge, it will rotate
around a horizontal axis in the plane
of the rod and hoop, through the
lower end of the rod. Assuming that
the energy given to the assembly in
such a nudge is negligible, what would be the assembly’s angular
speed about the rotation axis when it passes through the upside-
down (inverted) orientation?

Additional Problems
68 Two uniform solid spheres have the same mass of 1.65 kg, but
one has a radius of 0.226 m and the other has a radius of 0.854 m.
Each can rotate about an axis through its center. (a) What is the
magnitude t of the torque required to bring the smaller sphere
from rest to an angular speed of 317 rad/s in 15.5 s? (b) What is the
magnitude F of the force that must be applied tangentially at the
sphere’s equator to give that torque? What are the corresponding
values of (c) t and (d) F for the larger sphere?

69 In Fig. 10-46, a small disk of radius
r � 2.00 cm has been glued to the edge
of a larger disk of radius R � 4.00 cm so
that the disks lie in the same plane.The
disks can be rotated around a perpen-
dicular axis through point O at the cen-
ter of the larger disk. The disks both
have a uniform density (mass per unit

Fig. 10-44 Problem 66.

Fig. 10-45 Problem 67.
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volume) of 1.40 � 103 kg/m3 and a uniform thickness of 5.00 mm.
What is the rotational inertia of the two-disk assembly about the
rotation axis through O?

70 A wheel, starting from rest, rotates with a constant angular ac-
celeration of 2.00 rad/s2. During a certain 3.00 s interval, it turns
through 90.0 rad. (a) What is the angular velocity of the wheel at
the start of the 3.00 s interval? (b) How long has the wheel been
turning before the start of the 3.00 s interval?

71 In Fig. 10-47, two 6.20 kg
blocks are connected by a massless
string over a pulley of radius 2.40
cm and rotational inertia 7.40 �

10�4 kg � m2. The string does not slip
on the pulley; it is not known
whether there is friction between
the table and the sliding block; the
pulley’s axis is frictionless. When
this system is released from rest, the pulley turns through 0.650 rad
in 91.0 ms and the acceleration of the blocks is constant. What are
(a) the magnitude of the pulley’s angular acceleration, (b) the mag-
nitude of either block’s acceleration, (c) string tension T1, and (d)
string tension T2?

72 Attached to each end of a thin steel rod of length 1.20 m and
mass 6.40 kg is a small ball of mass 1.06 kg. The rod is constrained
to rotate in a horizontal plane about a vertical axis through its mid-
point. At a certain instant, it is rotating at 39.0 rev/s. Because of
friction, it slows to a stop in 32.0 s. Assuming a constant retarding
torque due to friction, compute (a) the angular acceleration, (b)
the retarding torque, (c) the total energy transferred from mechan-
ical energy to thermal energy by friction, and (d) the number of
revolutions rotated during the 32.0 s. (e) Now suppose that the re-
tarding torque is known not to be constant. If any of the quantities
(a), (b), (c), and (d) can still be computed without additional infor-
mation, give its value.

73 A uniform helicopter rotor blade is 7.80 m long, has a mass of
110 kg, and is attached to the rotor axle by a single bolt. (a) What is
the magnitude of the force on the bolt from the axle when the ro-
tor is turning at 320 rev/min? (Hint: For this calculation the blade
can be considered to be a point mass at its center of mass. Why?)
(b) Calculate the torque that must be applied to the rotor to bring
it to full speed from rest in 6.70 s. Ignore air resistance. (The blade
cannot be considered to be a point mass for this calculation. Why
not? Assume the mass distribution of a uniform thin rod.) (c) How
much work does the torque do on the blade in order for the blade
to reach a speed of 320 rev/min?

74 Racing disks. Figure 10-48
shows two disks that can rotate
about their centers like a merry-go-
round. At time t � 0, the reference
lines of the two disks have the same
orientation. Disk A is already rotat-
ing, with a constant angular velocity
of 9.5 rad/s. Disk B has been stationary but now begins to rotate at
a constant angular acceleration of 2.2 rad/s2. (a) At what time t will
the reference lines of the two disks momentarily have the same an-
gular displacement u? (b) Will that time t be the first time since t �
0 that the reference lines are momentarily aligned?

75 A high-wire walker always attempts to keep his center
of mass over the wire (or rope). He normally carries a long, heavy

SSM

pole to help: If he leans, say, to his right (his com moves to the
right) and is in danger of rotating around the wire, he moves the
pole to his left (its com moves to the left) to slow the rotation and
allow himself time to adjust his balance. Assume that the walker
has a mass of 70.0 kg and a rotational inertia of about
the wire. What is the magnitude of his angular acceleration about
the wire if his com is 5.0 cm to the right of the wire and (a) he car-
ries no pole and (b) the 14.0 kg pole he carries has its com 10 cm to
the left of the wire?  

76 Starting from rest at t � 0, a wheel undergoes a constant an-
gular acceleration. When t � 2.0 s, the angular velocity of the
wheel is 5.0 rad/s. The acceleration continues until t � 20 s, when it
abruptly ceases. Through what angle does the wheel rotate in the
interval t � 0 to t � 40 s?

77 A record turntable rotating at slows down
and stops in 30 s after the motor is turned off. (a) Find its (con-
stant) angular acceleration in revolutions per minute-squared. (b)
How many revolutions does it make in this time?

78 A rigid body is made of
three identical thin rods, each with
length L � 0.600 m, fastened to-
gether in the form of a letter H (Fig.
10-49). The body is free to rotate
about a horizontal axis that runs
along the length of one of the legs
of the H. The body is allowed to fall from rest from a position in
which the plane of the H is horizontal.What is the angular speed of
the body when the plane of the H is vertical? 

79 (a) Show that the rotational inertia of a solid cylinder of
mass M and radius R about its central axis is equal to the rotational
inertia of a thin hoop of mass M and radius about its central
axis. (b) Show that the rotational inertia I of any given body of
mass M about any given axis is equal to the rotational inertia of an
equivalent hoop about that axis, if the hoop has the same mass M
and a radius k given by

The radius k of the equivalent hoop is called the radius of gyration
of the given body.

80 A disk rotates at constant angular acceleration, from angular
position u1 � 10.0 rad to angular position u2 � 70.0 rad in 6.00 s. Its
angular velocity at u2 is 15.0 rad/s. (a) What was its angular velocity
at u1? (b) What is the angular acceleration? (c) At what angular po-
sition was the disk initially at rest? (d) Graph u versus time t and an-
gular speed v versus t for the disk, from the beginning of the motion
(let t � 0 then).

81 The thin uniform rod in Fig. 10-50 has
length 2.0 m and can pivot about a horizontal,
frictionless pin through one end. It is released
from rest at angle u � 40° above the horizon-
tal. Use the principle of conservation of energy
to determine the angular speed of the rod as it
passes through the horizontal position.

82 George Washington Gale Ferris, Jr.,
a civil engineering graduate from Rensselaer
Polytechnic Institute, built the original Ferris wheel for the 1893
World’s Columbian Exposition in Chicago. The wheel, an astound-
ing engineering construction at the time, carried 36 wooden cars,
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each holding up to 60 passengers, around a circle 76 m in diameter.
The cars were loaded 6 at a time, and once all 36 cars were full, the
wheel made a complete rotation at constant angular speed in
about 2 min. Estimate the amount of work that was required of the
machinery to rotate the passengers alone.

83 In Fig. 10-38, two blocks, of mass m1 � 400 g and m2 � 600 g,
are connected by a massless cord that is wrapped around a uniform
disk of mass M � 500 g and radius R � 12.0 cm. The disk can ro-
tate without friction about a fixed horizontal axis through its cen-
ter; the cord cannot slip on the disk. The system is released from
rest. Find (a) the magnitude of the acceleration of the blocks, (b)
the tension T1 in the cord at the left, and (c) the tension T2 in the
cord at the right.

84 At 7�14 A.M. on June 30, 1908, a huge explosion occurred
above remote central Siberia, at latitude 61° N and longitude 102°
E; the fireball thus created was the brightest flash seen by anyone
before nuclear weapons. The Tunguska Event, which according to
one chance witness “covered an enormous part of the sky,” was
probably the explosion of a stony asteroid about 140 m wide. (a)
Considering only Earth’s rotation, determine how much later the
asteroid would have had to arrive to put the explosion above
Helsinki at longitude 25° E. This would have obliterated the city.
(b) If the asteroid had, instead, been a metallic asteroid, it could
have reached Earth’s surface. How much later would such an
asteroid have had to arrive to put the impact in the Atlantic Ocean
at longitude 20° W? (The resulting tsunamis would have wiped out
coastal civilization on both sides of the Atlantic.)

85 A golf ball is launched at an angle of 20° to the horizontal,
with a speed of 60 m/s and a rotation rate of 90 rad/s. Neglecting
air drag, determine the number of revolutions the ball makes by
the time it reaches maximum height.

86 Figure 10-51 shows a flat construction of
two circular rings that have a common center and
are held together by three rods of negligible mass.
The construction, which is initially at rest, can ro-
tate around the common center (like a merry-go-
round), where another rod of negligible mass lies.
The mass, inner radius, and outer radius of the
rings are given in the following table. A tangential force of magni-
tude 12.0 N is applied to the outer edge of the outer ring for 0.300 s.
What is the change in the angular speed of the construction during
that time interval? 

Ring Mass (kg) Inner Radius (m) Outer Radius (m)

1 0.120 0.0160 0.0450
2 0.240 0.0900 0.1400

87 In Fig. 10-52, a wheel of radius 0.20 m is mounted on a fric-
tionless horizontal axle. A massless cord is wrapped around the
wheel and attached to a 2.0 kg box that slides on a frictionless sur-
face inclined at angle u � 20° with the horizontal. The box acceler-
ates down the surface at 2.0 m/s2. What is the rotational inertia of
the wheel about the axle?

88 A thin spherical shell has a radius of 1.90 m. An applied
torque of 960 N � m gives the shell an angular acceleration of 6.20
rad/s2 about an axis through the center of the shell. What are (a)
the rotational inertia of the shell about that axis and (b) the mass
of the shell?

89 A bicyclist of mass 70 kg puts all his mass on each downward-
moving pedal as he pedals up a steep road. Take the diameter of
the circle in which the pedals rotate to be 0.40 m, and determine
the magnitude of the maximum torque he exerts about the rota-
tion axis of the pedals.

90 The flywheel of an engine is rotating at 25.0 rad/s. When the
engine is turned off, the flywheel slows at a constant rate and stops
in 20.0 s. Calculate (a) the angular acceleration of the flywheel,
(b) the angle through which the flywheel rotates in stopping, and
(c) the number of revolutions made by the flywheel in stopping.

91 In Fig. 10-18a, a wheel of radius 0.20 m is mounted on a
frictionless horizontal axis. The rotational inertia of the wheel
about the axis is 0.40 kg � m2. A massless cord wrapped around the
wheel’s circumference is attached to a 6.0 kg box. The system is re-
leased from rest. When the box has a kinetic energy of 6.0 J, what
are (a) the wheel’s rotational kinetic energy and (b) the distance
the box has fallen?

92 Our Sun is 2.3 � 104 ly (light-years) from the center of our
Milky Way galaxy and is moving in a circle around that center at a
speed of 250 km/s. (a) How long does it take the Sun to make one
revolution about the galactic center? (b) How many revolutions has
the Sun completed since it was formed about 4.5 � 109 years ago?

93 A wheel of radius 0.20 m
is mounted on a frictionless horizon-
tal axis. The rotational inertia of the
wheel about the axis is 0.050 kg � m2.
A massless cord wrapped around
the wheel is attached to a 2.0 kg
block that slides on a horizontal frictionless surface. If a horizontal
force of magnitude P � 3.0 N is applied to the block as shown in
Fig. 10-53, what is the magnitude of the angular acceleration of the
wheel? Assume the cord does not slip on the wheel.

94 A car starts from rest and moves around a circular track of
radius 30.0 m. Its speed increases at the constant rate of 0.500
m/s2. (a) What is the magnitude of its net linear acceleration 15.0 s
later? (b) What angle does this net acceleration vector make with
the car’s velocity at this time?

95 The rigid body shown in Fig.
10-54 consists of three particles
connected by massless rods. It is to be
rotated about an axis perpendicular
to its plane through point P. If M �
0.40 kg, a � 30 cm, and b � 50 cm,
how much work is required to take
the body from rest to an angular
speed of 5.0 rad/s?

96 Beverage engineering. The pull
tab was a major advance in the engi-
neering design of beverage containers. The tab pivots on a central
bolt in the can’s top. When you pull upward on one end of the tab,
the other end presses downward on a portion of the can’s top that
has been scored. If you pull upward with a 10 N force, approxi-
mately what is the magnitude of the force applied to the scored
section? (You will need to examine a can with a pull tab.)
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103 In Fig. 10-60, a thin uniform rod (mass 3.0 kg, length 4.0 m)
rotates freely about a horizontal axis A that is perpendicular to the
rod and passes through a point at distance d � 1.0 m from the end
of the rod. The kinetic energy of the rod as it passes through the
vertical position is 20 J. (a) What is the rotational inertia of the rod
about axis A? (b) What is the (linear) speed of the end B of the rod
as the rod passes through the vertical position? (c) At what angle u
will the rod momentarily stop in its upward swing?

274 CHAPTE R 10 ROTATION

97 Figure 10-55 shows a propeller blade
that rotates at 2000 rev/min about a per-
pendicular axis at point B. Point A is at the
outer tip of the blade, at radial distance
1.50 m. (a) What is the difference in the
magnitudes a of the centripetal accelera-
tion of point A and of a point at radial distance 0.150 m? (b) Find
the slope of a plot of a versus radial distance along the blade.

98 A yo-yo-shaped device
mounted on a horizontal fric-
tionless axis is used to lift a 30
kg box as shown in Fig. 10-56.
The outer radius R of the de-
vice is 0.50 m, and the radius r
of the hub is 0.20 m. When a
constant horizontal force 
of magnitude 140 N is applied
to a rope wrapped around the
outside of the device, the box,
which is suspended from a
rope wrapped around the hub,
has an upward acceleration of
magnitude 0.80 m/s2. What is
the rotational inertia of the device about its axis of rotation?

99 A small ball with mass 1.30 kg is mounted on one end of a rod
0.780 m long and of negligible mass. The system rotates in a hori-
zontal circle about the other end of the rod at 5010 rev/min. (a)
Calculate the rotational inertia of the system about the axis of ro-
tation. (b) There is an air drag of 2.30 � 10�2 N on the ball, di-
rected opposite its motion.What torque must be applied to the sys-
tem to keep it rotating at constant speed?

100 Two thin rods (each of mass
0.20 kg) are joined together to form
a rigid body as shown in Fig. 10-57.
One of the rods has length L1 � 0.40
m, and the other has length L2 �
0.50 m. What is the rotational iner-
tia of this rigid body about (a) an
axis that is perpendicular to the
plane of the paper and passes
through the center of the shorter
rod and (b) an axis that is perpen-
dicular to the plane of the paper
and passes through the center of
the longer rod?

101 In Fig. 10-58, four pul-
leys are connected by two
belts. Pulley A (radius 15 cm)
is the drive pulley, and it ro-
tates at 10 rad/s. Pulley B (ra-
dius 10 cm) is connected by
belt 1 to pulley A. Pulley B

(radius 5 cm) is concentric with
pulley B and is rigidly attached
to it. Pulley C (radius 25 cm) is
connected by belt 2 to pulley B
.
Calculate (a) the linear speed
of a point on belt 1, (b) the an-
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gular speed of pulley B, (c) the angular speed of pulley B
, (d) the
linear speed of a point on belt 2, and (e) the angular speed of pulley
C. (Hint: If the belt between two pulleys does not slip, the linear
speeds at the rims of the two pulleys must be equal.)

102 The rigid object shown in Fig. 10-59 consists of three balls
and three connecting rods, with and

. The balls may be treated as particles, and the connecting
rods have negligible mass. Determine the rotational kinetic energy
of the object if it has an angular speed of 1.2 rad/s about (a) an axis
that passes through point P and is perpendicular to the plane of the
figure and (b) an axis that passes through point P, is perpendicular
to the rod of length 2L, and lies in the plane of the figure.
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104 Four particles, each of mass,
0.20 kg, are placed at the vertices of
a square with sides of length 0.50 m.
The particles are connected by rods
of negligible mass. This rigid body
can rotate in a vertical plane about
a horizontal axis A that passes
through one of the particles. The
body is released from rest with rod
AB horizontal (Fig. 10-61). (a) What
is the rotational inertia of the body
about axis A? (b) What is the angu-
lar speed of the body about axis A when rod AB swings through
the vertical position?

Fig. 10-61 Problem 104.
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