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                       Chapter 4 - Gas Flow and Pumping 

 
 

4.1- Introduction: Flow Regimes 
 

How does the flow of gas in vacuum systems compare with familiar examples of fluid flow in 

the world around us? At pressures sufficiently low that the molecular mean free path is 

comparable with or exceeds the size of the equipment, that is for Kn values > 1, it is totally 

different. But for vacua not so rarefied, in which mean free paths are such that gases still 

demonstrate fluid behavior (Kn < 0.01), the concepts and measures developed to describe  

fluid  flow at atmospheric pressure remain appropriate. 

 

To fix ideas we can imagine gas flow through a pipe of diameter D. This will be its 

characteristic dimension to be used in evaluating the Knudsen number as Kn =  λ /D  and will 

determine what is called the flow regime. As earlier introduced in previous chapter to describe 

the condition of static gas, flow regimes are de fined by 

 

Kn < 0.01 continuum flow regime 

 

Kn > 1 molecular flow regime 

 

Whereas for 0.01 < Kn < 1 the flow regime is described as transitional.  

 

These defining values are not as sharp as is implied, but their general correctness is founded 

in experimental results, particularly those involving viscous effects. Flow has distinct 

characteristics, to be discussed, in each regime. Flow in the transitional regime is difficult to 

analyse. 

 

When considering flow through pipes of diameter D, it is useful to be able to determine the  

flow regime directly in terms of the prevailing pressure. Because for air λ = 64 mm at  p =10
-3

 

mbar, so that  λ p = 0.064 mm mbar, the criteria for continuum flow and molecular flow 

become 

 

pD >  6.4 mbar mm.............. continuum  flow 

 

pD < 0.064 mbar mm........... molecular  flow  

 

Vacuum systems of typical ~ 0.5 m dimension frequently operate at pressures of 10
-5

 mbar 

and less so that conditions are molecular; even at 10
-4

 mbar, λ  has increased to be 0.64 m. 

 

 

4.2 Measures of Flow: Throughput and Pumping Speed 

 
Before considering details of flow in the different regimes, it is necessary to define measures 

of flow. Figure 4.1 shows a pipe that connects two large volumes and through which gas  

flows at a steady rate and at constant temperature. In the volume at the left, the pressure is 

taken to be higher with a value  pU, where the subscript U signifies upstream and flow is from 



26 
 

left to right. In the other volume, the downstream pressure is pD. In the pipe at a cross-

sectional plane 1 near the entrance, the pressure is p1; at plane 2 further downstream, it is  p2.  

     

 

                              
 

                            

                                 Figure 4.1: Flow of a gas through a pipe              

 

 

Throughput in terms of Volumetric Flow Rate 

 

The mass of gas flowing per second through plane 1 at pressure  p1 would have an associated 

volume V1 at that pressure. Downstream at plane 2 and the lower pressure  p2, the associated 

volume  V2 would be larger because, gases expand in  flowing from a higher to a lower 

pressure through a pipe. The magnitude of the effect (gas expansion) depends on pressure 

difference conditions and may be quite small. 

 

Under conditions of steady isothermal  flow, and assuming that the gas behaves ideally,  p1V1 

=p2V2. Denoting the volumes per second as volumetric flow rates at the associated pressures, 

this becomes    . Here, the product    of pressure at any cross-section 

multiplied by the volumetric flow rate is called the throughput  Q, gives a straightforward 

measure of the rate at which gas  flows. Thus, defining throughput, 

                                                                     

                                                                 
 

For steady  flow, Q is continuous, i.e., it has the same value at every position along the pipe, 

reflecting the conservation of mass. In particular,  Qin = Qout - as much gas leaves the pipe 

downstream as enters it upstream. 

 

The unit of Q depends on the base units used. In the SI system it is the Pascal meter
3
 per 

second  (Pa m
3
s

−1
). The more practical unit, widely accepted in Europe, and used henceforth 

in the text, is the millibar liter per second (mbar l s
−1

). Throughput is an easily assembled and 

manipulated measure of flow and is extensively used. 

 

Throughput in terms of Mass Flow Rate 

 

When mass flow rates need to be specified directly in units of kg per second, conversions are 

easily made. Let  be the mass flow rate of gas in kg s
−1

. The mass W of a gas may be 

expressed as  

                                                           W = nM ×  M 
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the product of the number of moles and the molar mass. Now  

     

                                                       nM= pV/R0T   

 

and the flow rate in moles may be denoted as moles per second. At a particular plane of 

measurement where the pressure is  p,  this will become  

                                                            

                                                       
 

Thus                                                     

                                                                   

And because    we have 

                                                              
                                                                

                                                          Q = R0T/M ˟   

 

Throughput in terms of Molecular Flow Rate 

 

It is sometimes useful to be able to relate throughput Q to ( dN/dt), the number of molecules  

flowing per second, also called the particle flow rate. Dividing both numerator and 

denominator in the right-hand side of above equation by Avogadro’s number NA , we get  

                                                                

                                                         
 

where m is the mass of a molecule  and k is Boltzmann’s constant. But also  

                                                             

                                                       
 

And therefor                                                                  

                                                            
 

The volumetric flow rate is frequently given the symbol S and called the pumping speed. This 

is particularly so when it refers to the intake port of a pump or the entrance to a pipe that has a 

pump connected to its other end. In pumping practice, typical units used are liters per second, 

liters per minute, and m
3
 per hour; m

3
 per second is rare! 

 

Remembering that S is a volumetric flow rate, the defining Equation of throughput now 

becomes 

                                                         Q = S  × p  

 

This is the usual form of the  first of two basic defining equations that describe gas flow in 

vacuum practice. It expresses the quantity of gas flowing as the product of the pressure and 

the volumetric flow rate at that pressure. Allied with the condition for continuity, it is an 

important tool for analysis. 
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4.3 Conductance 
 

The other fundamental equation of flow relates throughput Q to the difference between the 

upstream and downstream pressures  pU and  pD in the two volumes that the pipe connects and 

serves to define the quantity conductance.Thus, referring again to Figure 4.1, 

                                                              

                                                  Q = C (pU– pD)  

 

Evidently, C has the same dimensions as S, i.e., volume per second. A typical unit is liter per 

second. 

 

It may be helpful to note that although in dc electrical circuits the connection between current 

(analogue: Q) and potential differences (analogue: pU − pD) is expressed in Ohm’s law by a 

resistance, in vacuum practice the link is made by its inverse, the conductance. Thus, 

conductance is a measure of ease of  flow in response to a pressure difference, and the greater 

the conductance for a given pressure difference, the greater the throughput. 

 

Accordingly, and pursuing circuit analogies, one may expect that there are simple rules of 

combination for conducting elements in series and in parallel. 

 

It is easily shown, and intuitively reasonable, that for conductances  C1,  C2, etc., in parallel, 

the effective conductance of the combination is given by 

                                                          

                                                      
while for elements in series 

                                                           

                                                      
 

Effect of conductance on pumping speed 

 

Consider, as in Figure 4.2, a vessel within which the pressure is p connected via a pipe of 

conductance C to a pump of speed  S*. The pumping speed at the vessel is  S. Let the pressure 

at the pipe exit and the entrance to the pump be p*. The throughput from the vessel, through 

the pipe and into the pump, is Q given by.  

 

                                        
                                                  

                                      
 

                         Figure 4.2: Effect of conductance on pumping speed        



29 
 

This yields for  S, after a little algebra                                                                   

                                        

                                                          
 

 

                                                                                
                                   

    Figure 4.3: Variation of pumping speed at the vessel with connecting pipe conductance 

 

 

The significance of this formula is illustrated in Figure 4.3 in which S/ S*, the effective 

pumping speed at the vessel expressed as a fraction of the pump speed S*, is plotted against 

C/S*, the ratio of the connecting pipe conductance to S*. From this graph we can draw 

following conclusions. 

 

 Necessarily, therefore,  S is less than  S*. 

 

 Clearly, only when  C is appreciably greater than S* is the pumping speed at the vessel 

comparable with that of the pump.  

 

 It is halved if the conductance and the pump speed are equal.  

 

We may visualize this result in terms of the volumes pumped at the vessel and at the pump. 

Gas expands as it moves downstream through the pipe to the pump, and the volumetric  flow 

rate that is fixed at the pump end of the pipe by the pump’s speed must, therefore, be smaller 

at the vessel. 
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4.4 Continuum Flow 
 

In this regime, gas behaves as a fluid, and molecule–molecule collisions with mean free path 

much less than the equipment size determine gas behavior. 

 

The characteristic dynamic property of a gas is its viscosity. If a gas had zero viscosity, its 

steady flow through a pipe would be characterized by uniform parallel streamlines as shown 

in Figure 4.4(a), and the gas velocity u would be constant over any cross-section. In reality, 

however, viscosity causes the gas at the pipe wall to be stationary, so that the velocity profile 

is developed as shown in Figure 4.4(b), which has a maximum value at the center and some 

value u averaged over the section. 

               

                               

Fig. 4.4 Velocity profiles for streamline flow in a pipe (a) Zero viscosity (b) Finite visosity 

 

4.5  Dynamical Analysis of Continuum Flow through Long Pipe 

The formula of Poiseuille and Hagen, which describes, as initially formulated, the flow of 

liquids in long pipes, is adaptable to the gas flow but is unfortunately of limited value. This is 

because the usual requirement in vacuum technology is that pipes that connect work chambers 

to pumps shall offer as little impedance as possible to gas flow, and so they are made as short 

and wide-bored as possible, consistent with spatial constraints. Typical conditions do not, 

therefore, involve long pipes. Nevertheless, because it is the only pipe flow problem with a 

simple analytical solution and because its use illustrates methods of analysis, it is presented 

here.  

 

Consider, as in Figure 4.5, steady flow in a long pipe of diameter D in a section of  length dx 

between positions x and x + dx, in which the pressure falls from p to p to p- dp.  

 

                         
 

                                             Fig. 4.5  Poiseuilllle fluid flow 
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The volumetric flow rate of fluid through this section according to Poiseuille and Hagen law 

is 

                                                            
 

For a gas, multiplying above equation by p gives the throughput Q at the section x, which is 

constant along the pipe. Thus 

                                   

Integrating over the length L of the pipe from x = 0 (p = p1) to x = L (p = p2) gives 

                              

The middle term on the right-hand side is the mean pressure. 

Comparing above equation with fundamental equation of throughput below 

                                                        

we obtain 

                                                          

4.6 Molecular Flow  
 

Molecular flow is characterized by Knudsen numbers Kn greater than unity, which physically 

means that the mean free path associated with the prevailing number density of the contained 

gas molecules is greater than the size of the container, with the consequence that 

molecule/wall collisions dominate gas behavior.  

 

All semblance to fluid behavior is lost because there are no molecule–molecule collisions. 

These are the conditions in the work chambers of many vacuum systems because, as 

previously noted, the mean free path for nitrogen at 10
-4

 mbar is 0.64 m, so that for a chamber 

of typical size, conditions are molecular at pressures below this value. 

 

4.6.1 Dynamical analysis of molecular flow through Long Pipe 
 

In a pipe of length L and diameter D, consider a short section between coordinates x and x + 

dx, across which pressure changes from p to p - dp. There will be an associated change n to n 

- dn in the number density of molecules, but n may be taken as the density in the section for 

the purposes of the calculus. Molecular flow in the pipe may be considered to occur with a 

mean drift velocity, superposed on the thermal velocities, that is reduced to zero by the 

collisions that molecules have with the wall.  
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By Newton’s second law, equating the rate of change of momentum due to the loss of in wall 

collisions to the force across the element, gives 

 

                                          
 

in which the first two terms on the left-hand side give the number of wall impacts per second 

in the element dx. After cancellations,  

                                                               

                                                      
 

The number of molecules per second passing through the plane at x is 

 

                                             
 

Substituting value of mean velocity   and multiplying by kT to convert to a 

throughput, and integrating over the pipe leads to 

 

                                                 
 

The conductance is therefore 

 

                                         
 

 

Because this treatment is oversimplified in its assumptions about the drift velocity, the factor 

π/16 should be replaced by 1/6 (see Loeb, 1961) to give 

 

                                                       
 

This formula was first proposed by Knudsen and is correct for long pipes. The geometrical 

dependence on D
3
/L is its most important feature and again points towards making pipes as 

short and fat as possible to maximize conductance.  

 

The factor  indicates the dependence on the particular gas and its temperature and is 

directly related to the molecular velocity. Note that, as one would expect, the conductance 

does not depend on pressure. 
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4.6.2 Dynamical analysis of Molecular Flow through an Aperture 

 

Consider an aperture of area A in a very thin wall separating two regions maintained at 

different pressures p1 and p2, with p1 > p2 and the gas in both regions sufficiently rarefied that 

conditions are molecular, as shown in Figure 4.6. The molecular mean free path is greater 

than the diameter of the aperture, and there are no molecule–molecule collisions.  

 

                                           
 

  

                                   Fig. 4.6  Molecular flow through an Aperture 

 

From each side, molecules approach the opening from all directions within a 2π solid angle 

and with a range of speeds. The fluxes are represented by the arrows J. Corresponding to p1 

and p2 are number densities n1 and n2 and associated fluxes J1 and J2, where 

. Molecules heading towards the aperture opening from both sides will 

pass through it, and so with J1 > J2 as indicated, there will be a net flow of molecules from left 

to right. The number of molecules per unit time will be  

 

                                                            

Multiplying by kT to convert to a throughput and substituting for J gives 

                              

Comparing this with the basic defining equation for conductance,  

                                                          

                                                           
 

we obtain conductance of an aperture for molecular flow. Here, introducing the symbol CA for 

the molecular flow conductance for an aperture, 

 

                                                           
 

This is an important result, exploitable not only in its own right but also because the entrances 

into pipes and pumps can be regarded as apertures. The presence of the factor  that will 

also occur in other formulas for molecular flow conductance is noteworthy because it enables 

conductance values for other gases to be quickly computed once values for a particular gas of 

reference, usually nitrogen, are known. 
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4.7 The Concept of Transmission Probability and Molecular Flow 

Consider, as in Figure 4.7, a pipe of length L, diameter D, and cross-sectional area A 

connecting two regions of low pressure p1 and p2, such that  >> L, D, and conditions are 

molecular. The total number of molecules per second crossing the plane EN to enter the pipe 

is J1A. They approach it from all directions within a solid angle 2π in the left-hand volume.  

 

 

                             
 

 

                                      Fig. 4.7  Molecular flow through a pipe 

 

Relatively few molecules, like molecule (1), will be traveling in such a direction as to pass 

right through the pipe without touching the sides, but most will not. The majority, like 

molecule (2), will collide with the wall at a place such as X and return to the vacuum in a 

random direction as discussed earlier.  

 

There are now three possible outcomes (a), (b), or (c) as shown by the dashed trajectories.  

 

The molecule may (a) return to the left-hand volume, (b) go across the pipe to Y, and then 

another “three-outcome” event, or (c) leave the pipe through the exit plane EX into the right-

hand volume.  

 

These three outcomes occur with different probabilities. Furthermore, for a molecule which 

goes to Y at a different distance along the pipe, the balance of probabilities for where it next 

goes will have changed accordingly. A little reflection shows that this three-dimensional 

problem is quite complex to analyze. 

 

 

Dynamical analysis of Molecular Flow through Long Pipe using concept of 

Transmission Probability 

 

Considering the total number of molecules per second, J1A, which cross plane EN and enter 

the pipe, and the diverse possibilities for their subsequent trajectories, it is clear that some 

molecules will eventually be transmitted through the exit plane EX. The remainder will return 

through the plane EN as shown in Fig.4.7.  

 

The fraction that does pass through EX into the right-hand region may be defined as the 

transmission probability α of the pipe so that  

  

                                                Transmitted flux = α(J1A) 

 

We expect that will be large for short pipes, and that for L << D it will approach unity, 

corresponding to the flow through an aperture in a thin wall. Increase of L, because of the 
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increased number of randomizing collisions with the pipe wall, must cause α to decrease. For 

flow in the right-to-left direction, similar considerations must apply. 

 

The transmission probability of the pipe must be the same in both directions, but the flux J2 

corresponds to the lower pressure p2. The right-to-left flow (backward flux) is, therefore,  

 

                                              Backward flux = α(J2A) 

 

 and the net observable flow is the difference of the flows in each direction.  

 

                                  Net forward flow (flux) = α(J1 - J2)A 

 

Thus, multiplying this net flow rate α(J1 - J2)A by kT to get a throughput gives 

                                                                   

                                                       

Substituting for J gives 

                               
 

 

                                                     
 

and therefore comparing with fundamental equation of throughput  

                                                      

                                                     
 

We obtain conductance of long pipe for molecular flow 

                                                      

                                                        
 

For an aperture, clearly,α = 1  

 

 

For long circular pipes 

                                                      
 

Modern methods (Computer simulations) show, however, that even for L/D = 20, which 

would normally be regarded as a safe approximation to being long pipe, this formula gives 

values that are 10% too high. 
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4.8 The Pumping Process, Pump-Down Time, and Ultimate Pressure 

Having introduced the quantities throughput Q and pumping speed S earlier in this chapter, 

and the subject of vapor release and outgassing from surfaces in Chapter 3, we can now set up 

the basic equation of the pumping process. 

Figure 4.8 is a schematic representation of a pumping system. A vessel of volume  V is 

connected via pipe of conductance C to a pump of speed  S*. The pumping speed at the vessel 

will be S.  

                          

                          

                              Fig. 4.8  Schematic representation of a pumping system 

Various sources may contribute to the gas load that has to be pumped. In addition to gas 

originally in the volume, outgassing from the interior surfaces will commence as soon as the 

pressure is reduced, as discussed in Chapter 3. Its magnitude may be represented by a 

throughput QG. There may be gas entry into the volume with throughput QL by unintended 

leaks or, in some applications, the intentional steady inflow of a specific gas. At some stage, 

gas may be produced internally as a result of an operating process for which the system has 

been designed, and when activated, it will contribute a throughput, say, QP , to the load. These 

contributions are represented schematically in the figure 4.8.  

Let QT be the total of all such contributions and any others, such as vaporization, that cause 

the entry of gas into the volume, then   

                                                

In some cases, for example, for a system with no leaks in which there are no gas generating 

processes, QT will simply be due to outgassing. 

The pumping equation assumes the isothermal conditions normally encountered and expresses 

the fact that the change in the quantity of gas in the volume V, which is associated with a 

change dp in the pressure p in a small time-interval dt , must be the difference in the quantities 

entering the volume and leaving it. Thus in pressure–volume units: 
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In the context of pumping to evacuate the vessel, the rate of exit of gas exceeds that of entry, 

and pressure will be falling so that dp and therefore dp/dt are negative. The equation may be 

written to express the positive rate of reduction of gas in the volume, which is  − V(dp/dt), as 

                                                        

This differential equation is the fundamental pumping equation, expressing the fact that the 

rate of change of the amount of gas in the volume at any instant is the difference between the 

rate of its removal  S × p by the pump and the in flux rate QT . Although this is an exact 

equation true at all times  t, integrating it to get realistic information about how pressure falls 

with time is often complicated for a number of reasons.  

In many applications, pumping speed S at the vessel depends on pressure. This may be due to 

either the pressure dependence of the speed S* of the pump itself or, unless flow is in the 

molecular regime, of the conductance of the connection, or both. Secondly, the gas in flux rate 

due to outgassing varies significantly with time, and will depend on the previous conditions of 

use of a system, slowly diminishing as pumping proceeds to a small and sensibly constant 

value, but only being dramatically reduced in normal experimental times if special procedures 

such as baking are adopted.  

There are, nevertheless, two results of prime importance that may be obtained from above 

pumping equation. They relate to the lowest pressure achievable and the pump-down time 

when pumping speed can be considered constant. It is evident from pumping equation that 

when pressure eventually ceases to fall so that dp/dt becomes zero, the steady pressure 

achieved in the vessel, called the system’s  ultimate pressure or its base pressure, and denoted  

pu is given by 

                       

This confirms common-sense thinking that, for a given pumping speed, low pressures will be 

achieved for small gas loads. Equally, for a given gas load, the best vacuum is obtained for 

the largest pumping speed. When steady state is eventually attained, the gas load and the 

pump’s gas handling capacity are in balance. 

We may note that in the early stages of pumping, starting at atmospheric pressure, because the 

system will be free of large leaks and the contribution of outgassing negligibly small, the term  

S × p will be very much larger than the term QT, which can be ignored. Therefore, with 

rearrangement. 

Furthermore, many of the primary pumps used in these early stages of pumping, and 

particularly the rotary pump, have pumping speeds that are sensibly constant over several 

decades of pressure, from 1000 down to 10
-1 

mbar or less. Therefore, with S constant, the 

above equation may be straightforwardly integrated to give 
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where p is the pressure at time  t and  p0  its value at  t = 0 when pumping starts. Under these 

conditions, therefore, pressure falls exponentially with time,  p = p0 exp(− t/τ ), and with a 

time constant  τ  = V/S. 

Above equation may be restated as 

                                                      

So that the time taken for the pressure to fall from  p0 to  p may be determined 

Above equation may also be used to determine the pumping speed necessary to pump down a 

volume to a given pressure in a specified time. Thus 
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                                  Chaper 4 - Exercise Problems 

 

4.1 Below what pressure approximately will the  flow of air in a pipe 25 mm in diameter 

cease to be continuum and become transitional? Below what pressure will it become 

molecular? 

4.2 At a particular cross section in a pipe the volumetric flow rate of a gas is 30 l s
−1

 at a 

pressure 10
−4

 mbar; what is the throughput? 

4.3 Convert (a) a throughput of 1 mbar liter per second to Pa m
3
s

−1
 and (b) a volumetric flow 

rate of 1 l s
−1 

to m
3
/h. 

4.4 The throughput of oxygen in a certain process is 766 Pa m
3
 s

−1
. Find the mass flow rate in 

kg s
−1

 

4.5 In a controlled steady leak into a vacuum system, 1 cm
3
 of atmospheric air at 1000 mbar is 

sucked into the vacuum in a period of 5 seconds. What will be the volumetric  flow rate 

internally if the pressure there is held at 10
−1

 mbar by a pump? 

4.6 A pump of speed 300 l s
−1

 holds a vacuum of 2  × 10
−5

 mbar in a vessel to which it is 

connected. What is the throughput? What is the pumping speed at a downstream location in 

the pumping arrangement where the pressure is 10
−2

 mbar? 

4.7 A vacuum chamber may be connected to a pump of speed 100 l s
−1

 by pipes of 

conductance (a) 1000, (b) 400, or (c) 100 l s
−1

. Calculatethe pumping speed at the chamber in 

each case. 

4.8 Air flows from a region of steady upstream pressure (a) 10 mbar, (b) 1 mbar through an 

aperture 1 mm square into a region where the pressure is kept below 0.1 mbar by pumping. 

What will be the pumping speeds and throughputs in each case? 

4.9 Two conductances of value 100 l s
−1 

and 80 l s
−1

 are in parallel with each other, and the 

combination is in series with a conductance of 180 l s
−1

. What is the conductance overall?. 

4.10 A component has a molecular  flow conductance of 500 l s
−1

 for nitrogen. What will its 

conductance be for (a) hydrogen, (b) carbon dioxide? 

4.11 By what factor will the molecular  flow conductance of a long pipe be increased if its 

diameter is doubled? 

4.12 The molecular flow transmission probability for a pipe whose length is equal to its 

diameter is 0.51, so that only about one half of the molecules that enter it pass through. What 

fraction will get through for a pipe with L/D = 5? Use this value to compute the molecular  

flow conductance for nitrogen gas of a pipe with entrance diameter 15 cm and 75 cm long.  

4.13 The molecular flow transmission probability of a component with entrance area 4 cm
2
 is 

0.36. Calculate its conductance for nitrogen at (a) 295 K, (b) 600 K. 
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4.14 A vessel of volume 4 m
3
 has to be evacuated from 1000 mbar to 1 mbar in 20 min. What 

pumping speed (in m
3 

per hour) is required? 

4.15 How long will it take for a vessel of volume 80 l connected to a pump of speed 5 l s
−1

  to 

be pumped from 1000 to 10 mbar? What is the time per decade? 

4.16 What time constant is associated with the pumping of a vessel of volume 60 l with a 

pump of speed 300 l s
−1

? 

4.17 A pipe of conductance 250 l s
−1

 is attached to a pump of speed 50 l s
−1

. Calculate the 

ratio of the upstream to the downstream pressure and the upstream pumping speed at the pipe 

inlet. 

4.18 Evaluate and compare the molecular flow conductances for nitrogen of (a) a circular hole 

of diameter 5 cm in a thin plate, (b) a pipe 20 cm long and 5 cm in diameter that therefore has 

the same entry diameter as (a), and (c) a pipe of this bore 1 m long. 

4.19 A vacuum chamber of volume 0.03 m
3
 and internal area 0.6 m

2
 is connected by a pipe of 

conductance 1600 l s
−1

 to a pump of speed 400 l s
−1

. Calculate the pumping speed at the 

chamber. If the ultimate pressure achieved is 2×10
−8

 mbar, calculate the gas throughput 

andhence estimate a gassing rate per cm
2
 of internal surface. If the pumping action suddenly 

ceases due to the closure of a valve above the pump, how much time will elapse before the 

pressure rises to(a) 10
−6

 (b) 10
−5

 mbar? What time constant may be associated with the 

pumping when it is restored? 


