ELECTRONIC DEVICES AND CIRCUIT THEORY

TENTH EDITION

Chapter 3: Bipolar Junction Transistors

Transistor Construction

Transistor Operation

With the external sources, \mathbf{V}_{EE} and \mathbf{V}_{CC} , connected as shown:

- The emitter-base junction is forward biased
- The base-collector junction is reverse biased

Electronic Devices and Circuit Theory, 10/e Robert L. Boylestad and Louis Nashelsky

Currents in a Transistor

Emitter current is the sum of the collector and base currents:

$$\mathbf{I}_{\mathbf{E}} = \mathbf{I}_{\mathbf{C}} + \mathbf{I}_{\mathbf{B}}$$

The collector current is comprised of two currents:

$$I_C = I_C_{majority} + I_{CO}_{minority}$$

Common-Base Configuration

The base is common to both input (emitter-base) and output (collector-base) of the transistor.

Common-Base Amplifier

Input Characteristics

This curve shows the relationship between of input current (I_E) to input voltage (V_{BE}) for three output voltage (V_{CB}) levels.

Common-Base Amplifier

Output Characteristics

This graph demonstrates the output current (I_C) to an output voltage (V_{CB}) for various levels of input current (I_E) .

Operating Regions

- Active Operating range of the amplifier.
- **Cutoff** The amplifier is basically off. There is voltage, but little current.
- **Saturation** The amplifier is full on. There is current, but little voltage.

Approximations

Emitter and collector currents:

$$I_C \cong I_E$$

Base-emitter voltage:

 $V_{BE} = 0.7 V$ (for Silicon)

Alpha (α)

Alpha (α) is the ratio of I_C to I_E :

$$\alpha_{\rm dc} = \frac{I_C}{I_E}$$

Ideally: $\alpha = 1$ In reality: α is between 0.9 and 0.998

Alpha (α) in the AC mode:

$$\alpha_{\rm ac} = \frac{\Delta I_C}{\Delta I_E}$$

Transistor Amplification

Currents and Voltages:

Voltage Gain:

_ _

$$I_E = I_i = \frac{V_i}{R_i} = \frac{200 \text{mV}}{20\Omega} = 10 \text{mA}$$
$$I_C \cong I_E$$
$$I_L \cong I_i = 10 \text{mA}$$
$$V_L = I_L R = (10 \text{ma})(5 \text{ k}\Omega) = 50 \text{ V}$$

$$A_{v} = rac{V_{L}}{V_{i}} = rac{50V}{200mV} = 250$$

Electronic Devices and Circuit Theory, 10/e Robert L. Boylestad and Louis Nashelsky

Common–Emitter Configuration

The emitter is common to both input (base-emitter) and output (collectoremitter).

The input is on the base and the output is on the collector.

Common-Emitter Characteristics

Common-Emitter Amplifier Currents

Ideal Currents

$$I_E = I_C + I_B \qquad I_C = \alpha I_E$$

Actual Currents

$$I_C = \alpha I_E + I_{CBO}$$
 where I_{CBO} = minority collector current

 I_{CBO} is usually so small that it can be ignored, except in high power transistors and in high temperature environments.

When $I_B = 0 \mu A$ the transistor is in cutoff, but there is some minority current flowing called I_{CEO} .

$$I_{CEO} = \frac{I_{CBO}}{1 - \alpha} \Big|_{I_B = 0 \,\mu A}$$

Beta (β)

 β represents the amplification factor of a transistor. (β is sometimes referred to as h_{fe} , a term used in transistor modeling calculations)

In DC mode:

$$\boldsymbol{\beta}_{\rm dc} = \frac{\boldsymbol{I}_C}{\boldsymbol{I}_B}$$

In AC mode:

$$\beta_{\rm ac} = \frac{\Delta Ic}{\Delta IB} \Big|_{V_{\rm CE} = \rm constant}$$

Beta (β)

Determining β from a Graph

Electronic Devices and Circuit Theory, 10/e Robert L. Boylestad and Louis Nashelsky

Beta (β)

Relationship between amplification factors β and α

$$\alpha = \frac{\beta}{\beta + 1} \qquad \qquad \beta = \frac{\alpha}{\alpha - 1}$$

Relationship Between Currents

$$I_{\rm C} = \beta I_{\rm B}$$
 $I_{\rm E} = (\beta + 1)I_{\rm B}$

Common–Collector Configuration

The input is on the base and the output is on the emitter.

Common–Collector Configuration

PEARSON Electronic Devic Robert L. Boyle

Operating Limits for Each Configuration

 V_{CE} is at maximum and I_{C} is at minimum ($I_{Cmax} {=} I_{CEO})$ in the cutoff region.

 $I_{\rm C}$ is at maximum and $V_{\rm CE}$ is at minimum ($V_{\rm CE\,max}$ = $V_{\rm CEsat}$ = $V_{\rm CEO}$) in the saturation region.

The transistor operates in the active region between saturation and cutoff.

Power Dissipation

Common-base:

 $P_{Cmax} = V_{CB}I_C$

Common-emitter:

$$\mathbf{P}_{\mathbf{Cmax}} = \mathbf{V}_{\mathbf{CE}}\mathbf{I}_{\mathbf{C}}$$

Common-collector:

$$\mathbf{P_{Cmax}} = \mathbf{V_{CE}}\mathbf{I_E}$$

Transistor Specification Sheet

MAXIMUM RATINGS

Rating	Symbol	2N4123	Unit
Collector-Emitter Voltage	VCED	30	Vdc
Collector-Base Voltage	Vcao	40	Vdc
Emitter-Base Voltage	Veno:	5.0	Vdc
Collector Current - Continuous	Ic.	200	mAde
Total Device Dissipation @ T _A = 25 ⁴ C Derate above 25 ⁴ C	PD	625 5.0	mW mW'C
Operating and Storage Junction Temperature Range	T _p T _{ng}	-55 to +150	°C

THERMAL CHARACTERISTICS

Characteristic	Symbol	Max	Unit	
Thermal Resistance, Junction to Case	$R_{\mu\nu C}$	83.3	'C W	
Thermal Resistance, Junction to Ambient	R _{µUA}	200	'C W	

Transistor Specification Sheet

ELECTRICAL CHARACTERISTICS (TA = 25°C unless otherwise noted)

Characteristic	Symbol	Min	Max	Unit
OFF CHARACTERISTICS				
Collector-Emilter Breakdown Voltage (1) (I _C = 1.0 mAdc, I _E = 0)	Vomero	30		Vde
Collector-Base Breakdown Voltage $(I_C = 10 \mu Auk; I_E = 0)$	Vdirecto	40		Vde
Emitter-Base Breakdown Voltage $(I_E = 10 \ \mu Adc, I_C = 0)$	V _{(BR)EBO}	5.0	5	Vde
Collector Cutoff Current ($V_{CB} = 20 \text{ Vdc}, I_E = 0$)	leas	-	50	nAde
Emitter Cutoff Current (V _{BE} = 3.0 Vdc, I _C = 0)	leno		50	nAde
ON CHARACTERISTICS				
DC Current Gain(1) $(I_C = 2.0 \text{ mAdc}, V_{CE} = 1.0 \text{ Vdc})$ $(I_C = 50 \text{ mAdc}, V_{CE} = 1.0 \text{ Vdc})$	her.	50 25	150	140
Collector-Emitter Saturation Voltage(1) (J _C = 50 mAde, I _B = 5.0 mAde)	Vctines		0.3	Vdc
Base-Emitter Saturation Voltage(1) $(I_C = 50 \text{ mAde}, I_B = 5.0 \text{ mAde})$	VREAD		0.95	Vdc
SMALL-SIGNAL CHARACTERISTICS				
Current-Gain – Bandwidth Product (Ic = 10 mAde, V _{CE} = 20 Vdc, f = 100 MHz)	fr	250		MHz
Output Capacitance ($V_{CB} = 5.0$ Vdc, $I_E = 0$, $f = 100$ MHz)	Cobo		4,0	pF
Input Capacitance $(V_{BE} = 0.5 \text{ Vdc}, I_C = 0, f = 100 \text{ kHz})$	C _{Bu}	5	8.0	pF
Collector-Base Capacitance (Ig = 0, V _{CB} = 5.0 V, f = 100 kHz)	C _{cb}		4.0	рF
Small-Signal Current Gain (J _C = 2.0 mAdc, V _{CE} = 10 Vdc, f = 1.0 kHz)	ha	50	200	
Carrent Gain – High Frequency ($I_C = 10 \text{ mAde}$, $V_{CE} = 20 \text{ Vde}$, $f = 100 \text{ MHz}$) ($I_C = 2.0 \text{ mAde}$, $V_{CE} = 10 \text{ V}$, $f = 1.0 \text{ kHz}$)	h _{ir}	2.5 50	200	-
Noise Figure ($I_C = 100 \ \mu Adc, V_{CE} = 5.0 \ Vdc, R_S = 1.0 \ k \ ohm, f = 1.0 \ kHz$)	NF	1.5	6.0	dB

(1) Pulse Test: Pulse Width = 300 µs. Duty Cycle = 2.0%

Transistor Testing

• Curve Tracer

Provides a graph of the characteristic curves.

• DMM

Some DMMs measure β_{DC} or h_{FE} .

• Ohmmeter

Electronic Devices and Circuit Theory, 10/e Robert L. Boylestad and Louis Nashelsky

Transistor Terminal Identification

