
Please Turn Over...

1 SOR Method
SOR was developed in 1950 by David Young and H. Frankel in 1950 and was devel-
oped to be used on digital computers. It was developed by modifying the Gauss-Seidel
iteration model. The SOR (Successive Over Relaxation) Method is similar to Jacobi
and Gauss Seidel Methods, but it uses a scaling factor to more rapidly reduce the ap-
proximation error as compare to Jacobi method and Gauss seidel method. The SOR
technique is one of a class of relaxation methods that compute approximation xk by the
formula

(1)(xi)
k = (1− w)(xi)

k−1 +
w
ai j

{
bi −

i−1

∑
j=1

ai jxk
j −

n

∑
j=i+1

ai jxk−1
j

}
Where w is a scaling factor which may have following effects

Case 1: When ω = 1, we have the the Gauss-Seidel method.

Case 2: When 0 < w < 1, then procedure is called underrelaxation method and can be
used to obtain convergence of some system that are not convergent by the Gauss-
seidel method.

Case 3: When w > 1, then procedures is called over-relaxation methods, which are used
to accelerate the convergence for system that are convergent by the Gauss-Seidel
methods techniques.

Case 4: When w = 0, thne there will be no iteration.

Case 5: When w > 2, then system will be divergent.

These methods are called SOR (Successive over relaxation) and are used for solving
linear systems that occur in the numerical solutions of certain partial differential equa-
tions.

Example 1.1. Consider a linear system AX = B where

A =

 3 −1 1
−1 3 −1
1 −1 3

 , B =

−1
7
7


values of the relaxation parameter w = 1.25.

Solution. Let us verify the sufficient conditions for using the SOR method .We have to
check if matrix A is symmetric, positive definite.

A1 = [3], det(A1) = 3 > 0

A2 =

[
3 −1
−1 3

]
, det(A2) = 8 > 0

det(A3) =

∣∣∣∣∣∣
3 −1 1
−1 3 −1
1 −1 3

∣∣∣∣∣∣= 20 > 0

1



Since determinants of leading principal sub matrices of matrix A, are positive. There-
fore, matrix A is positive definite. Thus, SOR method converges for values of the relax-
ation parameter w within the interval [0 < w < 2].

Step I

Write the system of equations

3x1− x2 + x3 =−1

−x1 +3x2− x3 = 7

x1− x2 +3x3 =−7

Step II

Write down the system of equations as for Gauss-seidel iterations

xk+1
1 =

1
3

(
−1+ xk

2− xk
3

)
xk+1

2 =
1
3

(
7+ xk+1

1 + xk
3

)
xk+1

3 =
1
3

(
−7− xk+1

1 + xk+1
2

)
Step III

Multiplying the right hand side by the parameter ’w’ and add to it the vector xk from
the previous iteration multiply by the factor (1−w).

xk+1
1 = (1− w)xk

1 + w
{

1
3

(
−1 + xk

2 − xk
3

)}
xk+1

2 = (1− w)xk
2 + w

{
1
3

(
7 + xk+1

1 + xk
3

)}
xk+1

3 = (1− w)xk
3 + w

{
1
3

(
−7− xk+1

1 + xk+1
2

)}
Step IV Computing First Iteration, set k = 0, then system will be written as

For, k = 0

x1
1 = (1− w)x0

1 + w
{

1
3
(
−1 + x0

2 − x0
3
)}

= (1− 1.25)(0) + 1.25
{

1
3
(−1 + 0− 0)

}
= −0.41667

x1
2 = (1− w)x0

2 + w
{

1
3
(
7 + x1

1 + x0
3
)}

= (−0.25)(0) + 1.25
{

1
3
(7− 0.41667 + 2.7131)

}
= −1.6001

2



Please Turn Over...

x1
3 = (1− w)x0

3 + w
{

1
3
(
−7− x1

1 + x1
2
)}

= (−0.25)(0) + 1.25
{

1
3
(−7 + 0.41667 + 2.7131)

}
= −1.6001

Solution after 1st iteration

x1 = (−0.41667,2.7431,−1.600)T

Computing Second Iteration, set k = 1, then system will be written as

x2
1 = (1− w)x1

1 + w
{

1
3
(
−1 + x1

2 − x1
3
)}

= (1− 1.25)(−0.41667) + 1.25
{

1
3
(−1 + 2.7431 + 1.6001)

}
= 0.10416 + 1.393 = 1.49716

x2
2 = (1− w)x1

2 + w
{

1
3
(
7 + x2

1 + x1
3
)}

= (1− 1.25)(2.7431) + 1.25
{

1
3
(7 + 1.49716− 1.6)

}
= 2.188075

x2
3 = (1− w)x1

3 + w
{

1
3
(
−7− x2

1 + x2
2
)}

= −2.2288

Third Iteration

x3
1 = (1− 1.25) ∗ 1.4972 + 1.25× 1

3
{−1 + (2.188)− (−2.2288)}

= (−0.25) ∗ 1.4972 + 1.25× 1
3
{3.4168} = −0.3743 + 1.4237 = 1.0494

x3
2 = (1− 1.25) ∗ 2.188 + 1.25× 1

3
{7 + (1.0494) + (−2.2288)}

= (−0.25) ∗ 2.188 + 1.25× 1
3
{5.8206} = −0.547 + 2.4252 = 1.8782

x3
3 = (1− 1.25) ∗ −2.2288 + 1.25× 1

3
{−7− (1.0494) + (1.8782)}

= (−0.25) ∗ −2.2288 + 1.25× 1
3
{−6.1711} = 0.5572 +−2.5713 = −2.0141

3



Fourth Iteration

x4
1 = (1− 1.25) ∗ 1.0494 + 1.25× 1

3
{−1 + (1.8782)− (−2.0141)}

= (−0.25) ∗ 1.0494 + 1.25× 1
3
{2.8924} = −0.2623 + 1.2051 = 0.9428

x4
2 = (1− 1.25) ∗ 1.8782 + 1.25× 1

3
{7 + (0.9428) + (−2.0141)}

= (−0.25) ∗ 1.8782 + 1.25× 1
3
{5.9287} = −0.4696 + 2.4703 = 2.0007

x4
3 = (1− 1.25) ∗ −2.0141 + 1.25× 1

3
{−7− (0.9428) + (2.0007)}

= (−0.25) ∗ −2.0141 + 1.25× 1
3
{−5.9421} = 0.5035 +−2.4759 = −1.9723

Fifth Iteration

x5
1 = (1− 1.25) ∗ 0.9428 + 1.25× 1

3
{−1 + (2.0007)− (−1.9723)}

= (−0.25) ∗ 0.9428 + 1.25× 1
3
{2.9731}

= −0.2357 + 1.2388 = 1.0031

x5
2 = (1− 1.25) ∗ 2.0007 + 1.25× 1

3
{7 + (1.0031) + (−1.9723)}

= (−0.25) ∗ 2.0007 + 1.25× 1
3
{6.0307}

= −0.5002 + 2.5128 = 2.0126

x5
3 = (1− 1.25) ∗ −1.9723 + 1.25× 1

3
{−7− (1.0031) + (2.0126)}

= (−0.25) ∗ −1.9723 + 1.25× 1
3
{−5.9905}

= 0.4931 +−2.496 = −2.0029

4



Please Turn Over...

Sixth Iteration

x6
1 = (1− 1.25) ∗ 1.0031 + 1.25× 1

3
{−1 + (2.0126)− (−2.0029)}

= (−0.25) ∗ 1.0031 + 1.25× 1
3
{3.0156}

= −0.2508 + 1.2565 = 1.0057

x6
2 = (1− 1.25) ∗ 2.0126 + 1.25× 1

3
{7 + (1.0057) + (−2.0029)}

= (−0.25) ∗ 2.0126 + 1.25× 1
3
{6.0028}

= −0.5032 + 2.5012 = 1.998

x6
3 = (1− 1.25) ∗ −2.0029 + 1.25× 1

3
{−7− (1.0057) + (1.998)}

= (−0.25) ∗ −2.0029 + 1.25× 1
3
{−6.0077}

= 0.5007 +−2.5032 = −2.0025

Seventh Iteration

x7
1 = (1− 1.25) ∗ 1.0057 + 1.25× 1

3
{−1 + (1.998)− (−2.0025)}

= (−0.25) ∗ 1.0057 + 1.25× 1
3
{3.0005}

= −0.2514 + 1.2502 = 0.9988

x7
2 = (1− 1.25) ∗ 1.998 + 1.25× 1

3
{7 + (0.9988) + (−2.0025)}

= (−0.25) ∗ 1.998 + 1.25× 1
3
{5.9963}

= −0.4995 + 2.4985 = 1.999

x7
3 = (1− 1.25) ∗ −2.0025 + 1.25× 1

3
{−7− (0.9988) + (1.999)}

= (−0.25) ∗ −2.0025 + 1.25× 1
3
{−5.9998}

= 0.5006 +−2.4999 = −1.9993

5



Eighth Iteration

x8
1 = (1− 1.25) ∗ 0.9988 + 1.25× 1

3
{−1 + (1.999)− (−1.9993)}

= (−0.25) ∗ 0.9988 + 1.25× 1
3
{2.9983}

= −0.2497 + 1.2493 = 0.9996

x8
2 = (1− 1.25) ∗ 1.999 + 1.25× 1

3
{7 + (0.9996) + (−1.9993)}

= (−0.25) ∗ 1.999 + 1.25× 1
3
{6.0003}

= −0.4997 + 2.5001 = 2.0004

x8
3 = (1− 1.25) ∗ −1.9993 + 1.25× 1

3
{−7− (0.9996) + (2.0004)}

= (−0.25) ∗ −1.9993 + 1.25× 1
3
{−5.9992}

= 0.4998 +−2.4997 = −1.9998

Ninth Iteration

x9
1 = (1− 1.25) ∗ 0.9996 + 1.25× 1

3
{−1 + (2.0004)− (−1.9998)}

= (−0.25) ∗ 0.9996 + 1.25× 1
3
{3.0002}

= −0.2499 + 1.2501 = 1.0002

x9
2 = (1− 1.25) ∗ 2.0004 + 1.25× 1

3
{7 + (1.0002) + (−1.9998)}

= (−0.25) ∗ 2.0004 + 1.25× 1
3
{6.0004}

= −0.5001 + 2.5001 = 2.0001

x9
3 = (1− 1.25) ∗ −1.9998 + 1.25× 1

3
{−7− (1.0002) + (2.0001)}

= (−0.25) ∗ −1.9998 + 1.25× 1
3
{−6.0001}

= 0.5 +−2.5001 = −2.0001

Example 1.2. The linear system AX = B of equations given by

4x1 + 3x2 = 24
3x1 + 4x2 − x3 = 30
−x2 + 4x3 = −24

has the solution (3,4,−5)t . Compare the iterations from the Gauss-seidel method and
the SOR method with w = 1.25 using x0 = (1,1,1)t for both methods

6



Solution. For each k = 1, 2, 3, 4, · · · the equations for the Gauss-Seidel methods are

xk
1 = −0.75xk−1

2 + 6

xk
2 = −0.75xk

1 + 0.25k−1
3 + 7.5

xk
3 = −0.25xk−1

2 − 6

and the equations for the SOR method with w = 1.25 are

xk
1 = −0.25xk−1

1 − 0.9375xk−1
2 + 7.5

xk
2 = −0.9375xk

1 − 0.25xk−1
2 + 0.3125xk−1

3 + 9.375

xk
3 = 0.3125xk

2 − 0.25xk−1
3 − 7.5

The first seven iteration for each method are listed below (see Table 1). For each
iteration to be accurate to seven decimal places, the Gauss-Seidel method requires 34
iterations, opposed to 14 iterations for the SOR method with ω = 1.25

k 0 1 2 3 4 5 6 7
xk

1 1 5.2500 3.1406250 3.0878906 3.0549316 3.0343323 3.0214577 3.013144
xk

2 1 3.812500 3.8828125 3.9267578 3.9542236 3.9713898 3.9821186 3.988824
xk

3 1 −5.046875 −5.0292969 −5.0183105 −5.0114441 −5.0071526 −5.0044703 −5.002794

k 0 1 2 3 4 5 6 7
xk

1 1 6.3125 2.6223145 3.1333027 2.9570512 3.3720011 2.9963276 3.000049
xk

2 1 3.5195313 3.9585266 4.0102646 4.0074838 4.002925 4.0009262 4.000258
xk

3 1 −6.6501465 −4.6004238 −5.0966863 −4.9734897 −5.0057135 −4.9982822 −5.000348

Table 1: Comparison

Theorem 1.1 (Kahan). A necessary condition for the SOR method to converge is |ω−
1|< 1 (For ω ∈ R this condition becomes ω ∈ (0,2))

1.1 Applications
Successive over-relaxation (SOR) is one of the most important method for solution
of large linear systems. It has applications in CFD (computational fluid dynamics),
mathematical programming, medical analysis and machine learning etc. The example
of applications of SOR in CFD include study of steady heat conduction, turbulent flows,
boundary layer flows or chemically reacting flows. For this reason, SOR method is
important for both researchers and business policymakers.

7


