system by some means is called a thermo

('.'lmph'r 3

3.1 INTRODUCTION

Thermodynamics
conversion of heat energy into useful work

various forms of energy hag . , ,
thermodynamics Befotg }:)"’ J)Qen.dmmlsscd in this chapter in the light of Jaws of
e L e e fun{(jl-mb to discuss mathematical formulation of these laws, we
§ amental aspects of thermodynamics. The understanding of

system, surroundin ary g ‘
i, e Or‘g and boundary Separating system from surrounding is very
imp a person who wants to know about thermodynamics.

s the brane S ,
ranch of science which deals with study of

and vice versa, The inter-conversion of

System is a par
purpose. For example,
particular propertie
surrounding as

t of universe on which we focus our attention for a particular
@ BAas present in a container is a system which has some
8. EVQI‘_Vthmg outside system is called surrounding. System and
' a whole is known as universe. System is a part of universe. The
imaginary or real layer separating system from surrounding is called boundary. The
system can be classified into three types. The open system can exchange energy and
matter from surrounding. The closed system can exchange energy with surrounding
but cannot exchange matter with surrounding. The isolated system cannot exchange
energy and matter, both with surrounding. A system has both intensive and
extensive properties. The properties which depend upon quantity of matter are called
extensive properties. Volume and mass are examples of extensive properties. The
properties of system which are independent of quantity of matter are called intensive
properties. The ratio of two extensive properties is an intensive property. For
example, the ratio of volume to mass of the system i.s cull(?d density which is an
intensive property. Refractive index of the system 1s an intensive property.

3.2 STATE OF SYSTEM AND THERMODYNAMIC VARIABLES

A system has a particular state which _is described i'n term of dif:ferent
variables. At a particular state, system has partwu]ar and d(‘:t‘"lnecll values ?f Fh(;ls-e
e have an ideal gas in a closed vessel. The s't‘ata of this
as, temperature and volume ofa gas. [he concept
, ables can be explained in a following

variables. For example, w
system is described by amount of gas, te ,
of state of a system and thermodynamic varl
diagram (Fig. 3.1).
i - ner.
We have n moles of an ideal gas in a conta

/8 - ans stem
stem l) some means, sys
. ' ol is V1. When we heat the syst y
I, pressure 1s P, and volume 18 )

. The chanege in state of a
.1 Fig. 3.1. The change
es fr c ther state, as shown in Fig b and T in the above
moves from one state to ano dynamic process. P, V an

The temperature of the gas 1s

165
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Wity !} Sty
e R v state obavetem asd thermody namie variables

i

CHCONUREP T OR RQUILTIRETUM AND ZEROTH LAWOF
PHERMODYN MR

Phe variatdes whieh gpecity the state of
WiEh e of e When vatue of state funetions does not change with time, then
At e At egnbbem BN example, when two - bodies at- two different
emperature of hot body decreases with
coi with passage of time until the
gnid to be in

4 mvatom may ot may not change

Pemiterabiniee ares Breught tegeiher then the t
paeatge ol e and that of sold bady merea
femperainne of Boeth elyects Bevemes egqual, Noth these bodies arve
theramal aguihisenn

N and Y oare i thermal equilibrium, 16 a third body Z is n
are also in thermal equilibrium. This 18
asure the temperature of a

When fwe oleects
el wigh elect N0 then Y oand &
called sereth faw of thermaedy namics which ig used to wme

By
S04 FIRNT LAWOR THERMODYNAMICS (CONCEPT OF HEAT, WORK AND
INTERNAL ENERGY)
Miret law of thermodynamics ig fact law of conservation of energy.
Weording o thig law, energy caanot be created or destroved although it can be
me form e another form, This i the qualitative aspect of first law
of thermody name, bat here we sre also interested in mathematical formulation of
thee law. Mecause wathematical tormulation this law can be used to measure change
e anternal energy of the system. Fov example, we have an ideal gas in a container
which has wternal energy By at state 1 When heat Q 1s added into the system. The
avatem gets o tew state which s state 2. At state 2, system has internal energy Ee.
By and K are not measureable quantities but the change in internal energy AE =
B KL will be equal to heat supplied o the system at constant volume, Hence

converted o ¢

,\H L “\ (3-1}

the svetem The internal energy of the system can be increased by doing work on the
svstem bn such case ierease i mternal energy of the system will be equal to work
\‘.\'Hi‘ o the svafem Lo n

Bauation (3 D holds for the case when no work has done on the system or by
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Equation (3.2) ie apphicable when no heat ia added inta the system

The internal energy of n ayetem ean be increased by doing work on the
gvstem and adding heat into the avetem together In this case inerease 0 irterpinl
CNerEY of the AVALOM W 1 b M]\ltl] to aum of work done on the avetem and heat added
to the svetem ag given below

AE=Q+ W (3.4)
Equation (3.3) is mathematical form of first law of thermodynamics
According to International Union of Pure and Apphed Chemistey (IUPAL), work
done on the system and heat added into the system are taken as positive because

both increage the internal energy of the system. Equation (3.3} 1n differential form
can be written as

¥

dE = dQ + dW (3.4)

In the above equation dE is exact differential while dQ and dW are inexact
differential. The quantity which is a state function has exact differential and can be
written as

J'dx =X, - X, = AX
1
Therefore dE can be written as
2
[dE=E, -E, = AE
]

While t he quantity y which is not a state function has inexact differential
and can be written as

%y¢h—m
I

The quantity E in equation (3.3) is independent of path and depends upon
initial and final state of the system but Q and W are path dependent quantities.

3.5 PRESSURE-VOLUME WORK
Suppose our system is an ideal gas enclosed in a container having moveable
frictionless piston of cross-sectional area equal to A. The piston moves upward under
pressure exerted by the gas due to its expansion. An equal but opposite opposing
force acts on the piston which is equal to PA as shown in Fig. 3.2. The force F 13
opposite to displacement dx, therefore work done can be written as
W= [Fdx

»

W = Il"dx cos 180

wz~pr
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T N
%;\\ P - ;I
\\____/ - o * ]
d\Io"'“—’.. o.‘. R :/.'o.o‘:
o N . " . * . . .
S V2 o« . * | o W :
e, ¢ - * N ®
y K DR I . .
e® o %e o 8 200 X N > * |
5 R,
Vi \Y V
Iig. 3.2 Pressure-volume work ig. 3.3 PV diagram of work done
Force per unit area is pressure. So, P=F/A and PA=F. By putting the value of
F in the above equation, we get
W = - [PAdx

Where, Adx is equal to change in volume of gas. So
- [PV

When system moves form initial volume V; to final volume V2, then work in
the form of definite integral can be written as

v,
W=- deV (3.5)
-

So work is equal to area under a curve of PV diagram as shown in Fig. 3.3.

Mathematical expression (3.5) is very important in thermodynamics. When
system does work on surroundings then volume of system increases and dV becomes
positive. Therefore work will be negative. But when work is done on the system then
dV will be negative and work will be a positive quantity as given in expression.

Equation (3.5) can be usec to prove that work is not a state function as given
in example 3.1.

Example 3.1
L]

Using Fig. 3.4 prove that work done ol b ¢ (P2p2)
depends upon the path and it is not a state N o
function. T (P1Py)

P == d
Solution p :
|

There are two paths for a system to | ;
mo\}'le it from state a to state d. One is ahd Vi Va
Path and other 1 path as st ! 2
Fig 5.4 is acd path as shown n il 5

4 P it N i
Fig. 3.0 Py diagram of work done
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Y,

Wa BV, =V)

Waork done along aod paih
W Wi W,

avsl m

NI [ RTANAT

@i

\
W, = iy

aml
\l
V.
W =P, [AV
v,
W, =-P(V,=V)

Sinee, W“l,_, # W...u oo work done llupmuln fpon path Ho ot e not aostate

funcnon,

3.6 WORK DONE IFOR AN IDEAL GASIN DIFFERENT PROCE

Various mathemationl velationn can ho derved for worl done by the gas or
dtom under going virious processes. A

work done on the gan using ideal gae an aony
thermodynamic process may  he mochorde, wobarie, inothermal and ndiabatic,
Equation (3.6) can ho  wsed  to derive o mnthematieal  oxprossion  for ench
thermodynamie procens an dincuniod helow,

SSES

3.6.1 Work Done in an lsochorie Procons
o volume of the sy

Ho change in volume w

The thermodynamice procoun i whi plom rununlnn mnenuml,
: ' ' , Py i1l be zoro and
during the process s called tochorie procens, Ul bo

work done will be zero nluo, Le,
V.,
W a - jmv

Vi

we dVoin gero or Vi Vi, therelore

W= 0
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" B4 Waork Do b an Baohae b Peaconn e e
i The thevmodyianie provoss o wlileh |nwm!’|wl ”1'...:..‘:.].|:l'nu this Drocess
f commtant dvrtoge Chae peoeesi i ol taohiie peocios. Wende s

I e e given s

{ "

: W [y

Vi

Hineo s conatant, Ho
\r
W1 [y

!
\i

WV, - V,)

$0.8 Work Done In an nothermnl Procesns

That  thermodynnmie Process i
which temperature remning constant, whon
system moves from one state 1o another slate
i called isothermal PrOCERH, /I\

Durving fsothermal preocen, product of
presaure and volume for given man of o o I
always remaing conntiani, aceording to Boyle'n ~
law. The plot an n function of Voin enllod o ——
otherm and in shown in i, 0.6, e

g

The work done during inothermal V e
wocess can be caleuwlatod by uping o 10 . A .
- -an be oaleulal Yy uning equation i, .6 Plot of 1 vorsun V
of ntate for an idenl gan nystem nn

vV,
W - jmv
Vi

We know that
PV = nR'T
p . hRT
\Y

By putting the value of P in above equation WO got
\l
nit'T
W JuRTy
\%

vV,

Since nRT ju o constant torm. So

\'
W ary L
\j y dVv

Scanned with CamScanner



N Cilassical Thormodynamics 171
o e SR o Aok o BB Db LA 2} Alho bl SR

By integrating we get

W = - nRT|In V|

“W_-__.._...h.._...,Y
!
*

W o= -~nR'l‘(lu V, —=InV,)

W = -nRTIn L‘-‘,
\’.l /

When work is done on the gas then V2 is smaller than Vi and the ratio Va/V,
will be less than 1. The logarithem of a number which is less than 1 is negative
pumber, S0 work will be positive and vice versa. The above equation can also be
written as

W= —(2.303)1111'1‘111[—1’71}

P and V, both are variable in an isothermal process but the product PV is a
constant quantity. Work can be measured from initial and final values of volume
using above equation. The work done can also be calculated from initial and final
values of pressure at constant temperature as

AV,
P, V

1
By putting the value of V2/V) in equation (3.5), we get
W= —(2.303)nRT1n[§)
2

3.6.4 Work Done in Adiabatic Process

Adiabatic process is that thermodynamic process in which no heat is added
into the system and no heat is removed from the system. The system is totally
thermodynamically isolated. We have an ideal gas in a cylinder having insulating

P
|
|
|
! PV=constant
P I
|
I | ¥
I I pv' = constant
: 1
V| v —— \,2

Fig. 3.6 PV diagram for isothermal and adiabatic processes
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wall, base and piston. Work ie done on the ayvstem nl‘"“.‘; ”t"' ”.V“".'('.’: "J":;f'i{ 'v“;'hirh
temperature changes. Another mmportant pr(m!"rl.\' ot m‘m ”1' . prt”, . '.,4  ”.”' f And
\'are vamables but PV 1s constant. y 1s the ratio of F*Pl»“‘;l'ﬁ‘-' 1eat a C'.’”‘""”” Preas e,
to the specific heat at constant volume for an ideal gas. ’l}:'() value of / varies f'rpm [
to 1.8, Smvee y s greater than 1. so PV dingrnm for PV'=conatant in an nrh‘:ah;’_”‘,,:
process s steeper than PV=constant curve in an isothermal proceas as shown ip Fig.

3.6

The work done during adiabatic process can be written as
v.'
W= [pPav
\Y]

Since PV ig constant. So
P, V"= constant

P,V =PV

P = P VY
A%
By putting mathematical value of P in pressure-volume work equation, we get
V-.‘ 14
W=-— J‘P_.V,_dv
G
Since PV is a constant, so
V. Y
W=— J‘Pl#dv
Y
Y
W=-PV [—aV
A
v,
W=-RV; [Vrav
Vi
v,
V-1+1 2
W= -P,V}
-y+1 v,
W b ,:V_M]v2
-y +1 Vi
- I)l\,ly -1+l =Y+l
o]
w-_BWyr Vit
=Yl | Y1l
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W Lol | B 1
4 | H \_.,N i ‘
{ % . i
v v
4 1 { 1 l i
[\ Ve |
; ', \¥- !
W - PV ‘1 11
-1V, |
[\ V,) |
On expansion of gas, V2>V, and (Vi/Va) <1 So work will be negative
R l
PV
Pg - \7;
PV,
W = 1 P)VIVI )_ PV
7_1_\ Vz
(o
W= 1 B‘\v»l"’]’})xan
-1
Y [\ Y2
[(pv
w=_L{|B% | py
Y—l \\7.-, \’.,
W=—1[PV,-PV 3.6)
[~ FT[P", 0 —Pl\l] (.}b)

Example 3.2

PV diagram  for
expansion of a gas present in
a container 1s shown in a Fig.
3.7. This system moves from
state 1 to a state 2 by two
different paths ac and abc. T

Pt fesimann a

Statel

Path ac represents an

1sothermal reversible

procegss. Show that work P
done along ac is greater than

work done along path abe. P2 f-

Vi V V2

Fig. 3.7 PV diagram for expansion of gas from state
1 to 2 by different paths
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Solution

Work done along ac

A v
N 1 \/
W, == |PdV = -nRT [=dV = -nRTIn| 2
\:‘[ \’.[V nRTIn v

1

Work done along abe
\anc = \an + vac {
i

Since volume change is zero along ab. So dV=0
V,
\Vabc =0~ IP2dV
Vi
Since P: is constant along b to ¢c. So

Vy
Ware = - [P,dV
Vi

Wbc =-F, (Vz —Vl)

a

Note: Area under curve ac is sum of abc and bede while area under curve abc is only
equal to r.ectangle bede. Hence work done along ac is greater than work done along
abe. This idea is the basis of examples 3.3 and 3.4.

Example 3.3
One mole of nitrogen is expanded isothermally from 20 to 60 liters against a
constant pressure of 1 atm at 20 °C. Calculate the work done by the gas.

Solution
Initial volume=V1=20L

Final volume =V; =20 L
Pressure = P =1 atm
Work done=W="2?

We know that
v,
W = - [PdV
Vi
Since pressure is constant, So

v,
W=—PJ'dV=-P(V2-V1)
\

W =-1(60-20) = ~40 atm L = 4053 J

m-

s
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One mole ol o gan jy wpnded Trom 20 a4 1, isothesmally nnd rovarsibily a
peet CalenTnte worledone by the g
-9‘

“,"‘““cll\
Initinl volume « v, 201,

Final volime =V, - o 1,
No. of mole 4y - 1 mol
Tomperature < ' - og

Work done -~ W !

For anisothermal and voveruihle oxpansion of o gne, we hinve

V,

KW
W = Il'(lV = -ni' dVv
'V

Vi

W e ~=H”.'|'|Il( V’J
Y

W e _(1)(8..'1lrl)(Z!).‘l)ln[ggJ

W =2676x10" )

3.6.4.1 Work Done in Adinbatjc Procoess in Torms of Temperature

We know that in adiabatic process the value of PV is constant but, pressure,
volume and temperature are variables. In the previous section, we have expressed
work done in adiabatic process in terms of pressure and volume in equation (3.6).
Work done in such process can also be expressed in terms of temperature. We can
write for adiabatic process

(PV*) = constant

Taking differential on both sides, we get
d(PV')=0
Pd(V")+V'd(P) =0
PyVdv 4+ vidp = 0
YPV'VIAV 4+ VAP = 0
V'(yPVaV +dP) = o

(YPV-'av 4 dP)=0
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BRI O shake Tar wleal an ayatai 18

ALY R
O R R we jed

(AR RUL AT R () )

By paiiing e vatige of Vi Ivam oauatinn GE7) i tE#), e ol
ERLARERY A AR (R R )
Taking BV common s ot hand aide of above aipation

(1 VBV = Rt
\-i y b

v - Y
\ YA

: R . m
W= ‘“_\\U\: n)

s AR s o

W = B \(L., n)

Wheve, W s wark done in adiabatio process whon system moves from stte |

abanically. noas namber af molea of gas prosont in a container, ) ™
ﬂ ale Ty and T ave tewmperatuves of atate 1 and 2 vaspactively, v s ratig of
Coto O\ for wdaal gases.

Lras clear from final equation that work done inan adinhatio procoss depends
upon temperature difference. When work s done on the aystem then temperature of
the system anereases such that Ty>Ty then work done will ba positive hecanse yalue
25y as greater than 1L When wark s done \\‘\\ the ayatom on ﬂ\l)‘l'tnmlllllgd gueh that

}

o< then work done wall be negative,
3.7 APPLICATIONS OF FIRST LAW OF THERMODYNAMICH

3.7.1 Molar Heat Capaoitios of ldeal Qases
The heat absorbed by a aystem of ideal gaa ia divectly pvc)pnrtimml fa
IDCIeases 1N amparaiure of the avatem and number of Bos molooules ["'"m.”l \f
container. Mathemancally it can be written as
QuAT
Qan
QanAT

Q = nCAT (3)”)
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i mole of ideal gae s AT The

AL ' 4 g .

v nolay heat eapacity and it ean be
perature of ¥ male of 4 gas through |

W
nAl
| e ol U ave maole VI

1he hent energy added into ileal fns svatem 1a used to inerease the

et of the avstom at constant volume bhut heat v-nvrr:\- fulvl-wl‘i:n.«“,i‘t)n\"‘;--li]c'-“rnii
astant PIORENTE 1R veed o merense the internal energy \uf lhxl u\‘utr-ﬁ\ as v.‘.'r'!i{:j'nrh‘L
heat 18 \\aw‘\l W W “‘.“ (‘“n“ by ”“‘ “.\'“'l’th at constant hl‘(‘:s‘ﬂ\ll‘l\ .(‘;:.l')-l!‘\nt‘r‘ :\H'i’ twn.vv:ll‘\lc:z

efic heat for gas phase aystem

W

-\ :\ oS . . . . . ;
L speciin heat at constant volume (Cy)

) Speaitic heat at conetant pressure (Cp)
Wipet law of thermodynamic can be applied to derive an expression hetween

Ly for anadeal gae system. Firat law of thermodynamics s

AR = Qe W

\-{ am

A constant volume, pressure-volume work 18 zero.

AE = Q, (3.10)

Where Q 18 heat gupplied to the system at constant volume which is being
seed to rmee the imternal energy of the system. In other words increase in internal
cnergy wall be equal to heat supplied to the system in the form of heat energy.

Prom expression (3.9), we have
Al ny
(Q\. = l‘(‘\tl,\l

alue in equation (3.10), we get

(3.11)

By putting this v

A L ()
n\l‘d = |1(.1\-|\'1‘ (tj-lu)
the increase in internal energy of
wo states of system and specific

cs at constant pressure can be

Using equation (3.12), we can determine
the system by knowing the values of temperature at t
heat at constant volume. First law of thermodynam

wrilten as

AE = Q, ¢ W
\stant pressure, Qr 1s used to increase

d to the system at col | ‘
doing work. This heat energy will be equal to nCeAT and

i1l be -PAV. So

Since heat supplie
the internal energy and in
work done by the system W

AL = u(?’,«‘\"‘ Pav (\ ) d ’E ) C i d H
v I ’) N —
AT \P {7
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178 Modern Physical Chemistry

Since pressure is constant, 8o
AE = nC,AT - A(PV) (3.13)
According to equation of state of ideal gas, we have
PV = nRT (3.14)
By putting the values of PV from equation (3.14) into equation (3.13), we get
AE = nC,AT - A(nRT)
AE = nCpAT - nR(AT)

When increase in temperature in both cases (at constant volume and at
constant pressure) is same then AE will be same, so

AEy =nC,AT - nR(AT)

nCyAT = nC,AT - nRAT

nC, =nC, -nR

R=C,-C, (3.15)

Hence heat capacity of an ideal gas at constant pressure 'iS‘, greater than that
heat capacity which is at constant volume because R is a positive number whose
value is always greater than 1.

3.7.2 Relation between Pressure and Volume in Adiabatic Process

In adiabatic process, either system does work on cost of internal energy or
surrounding does work on the system and internal energy of the system increases.
Thus pressure, volume and temperature of system change as a result of this work
done. First law of thermodynamics for such process is

dE =dQ+dW
dE = 0-PdV
dE =-PdV . (3.16)
dE can be expressed in terms of Cv according to equation (3.12), so
dE = nC,dT (3.17)
By putting the value of dE from equation (3.17) into (3.16), we get
-PdV =nC,dT ' (3.18)
The temperature (dT) can be obtained from equation of state for ideal gases
as
PV =nRT
7=V
nR
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Taldng differontinl, we gol,

ar < L pav i var (3.19)
nit,
By putting the vielue of 1" from oquation (3.19) into (3.18), we get
nCy
Pdv - |I'(IV | V(ll'|
nlt

(
PdV = "| PdV Vcll’]
it " ‘
Multiplying by R/Cy on both sides, we get,

f~(-(l't~<Jl'dV ; |;l,’dV n V(ll’i|

§

PAV 1 VAP 45 PAV =0 (3.20)

‘y

By putting the value of R from equation (3.15) into (3.20), we get

PAV + VdP + fﬂ'—,l(iv- PAV =0
C,
Cn
PdV + VdP .4-(—}- - ,]l’dv =)
‘y

PAV + VdP +(y-1)PdV =0
PAV + VAP +yPdV - PdV =0
VdP +yPdV =0

Separating variables and integrating, we get

VdP = ~yPdV

L v g
. | - PN
l!PdI YV'!VdV

[InP] i" =-y[InV] zl‘
InP, -InP, =-y(InV, -1nV,)

P,
ln-[—f—- = —y]n—Y—z—

1 1

)

I
In—-= ln—% =
Pl Ko Vl 9
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. Wik Ak
! In Tyl 0
' LAY

n. : . '
Paking antilog on both sides

P, (v]
N 1 =]
PV

P, V; =PV}

-

W e i

- .

Hence

PVY = constant

in adinbatic expanmon,

This expression can be used to work done

3.7.3 Isochoric Process
In isochoric process, volume is constant, thus worlk done is zero and first law

of thermodynamics for such process can be written

dE = dQ,

H )

m is used to increase the internal energy of

Hence heat supplied to the syste
the system. The above equation can be written as

dE = nC,dT

[3) 0
nCv = (:—-)
:I \Y%

o
n\dT )y
For one mole of gas, Cv i8
oE
Cv ==
(5

Hence Cv is the rate of ch
t constant volume.

ange of internal energy with respect to temperature

per mole of gas a

ss (Concept of Enthalpy)

3.7.4 Isobaric Proce
mics for an isobaric process, in which pressure is

First law of thermodyna
kept constant, can be written as

AE =Q, +W
AE = Q, - PAV
Q, = AE + PAV
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Warking ponciple of heat engine Iy oaned o

hgh temperature  feservolr at temparatuee
mechanical work W Heat s i tojected by the
at temperature 79 The efficiency of heat engine £
done o mput energy. Mathematy nlly

tein o low temperature reservoir
Ay #is

¢ be defined an the mtio of work
Al

taken as negative, therelore we write
atenm 12 o '

Rinoss \ st b an he &y ' ' _
hee heat i jected by ¢ el ney of heat engine ”t‘lh o

3 .
absolute values of heat energies to expross

:‘llr ‘\I)

" f‘i

1‘\5i
RRCCY
Q)

Q.

0] l«l J

The percentage efficiency of heat engine can be written as
f (2
“oage n -tl : I.»il]xl(m

Q]
When [ Q] 1s equal to zero, then  will be 100 % which 1s not possible.
Example 3.5
A heat engine takes 60 kd of heat energy from a hot body and rejects 40 kJ to

cold body in a cycle. Caleulate its efficiency and work done by the engine during the
cvele.

Solution
Heat input = Q1 = 60 KdJ
Heat rejected = Qe = 140 Kd
Work done =W =?
Efficiency =n =7

10
Yage n = (l - (—%)x 100 = 33.33%

)

W - ]Q,[.«—‘Q._.] - 6010 - 20 kd
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" CARNOT HEAT ENGINE
hB .
i 121 Sodi Carnot proposed a heat engine free from all imperfections of

il engines Thin heat engine hae masimum possible efficiency but less than 100

el
E [aimed that no heat engine ean beat my proposed heat engine

4, ”l"
a0l Construction of Heat Engine

Carnot heat engine conmats of n eylinder with perfect inaulating walla, idenl
satructing base, frictionless movenble piaton and ideal gas as a working substance
UL
N B 8
s shown in Figg. 3.9

10,2 Working
The Carnot engine works in following four different thermodynamie processes

i neyele reversibly.

leothermal expansion

(1)

(if) Adinbatic expansion

Giy leothermal compression
vy Adinbatic compression

The cycle is known as Carnot eycle. The above all processes are shown m PV
dipgram m Fg 3,10,

(i) Isothermal Process

The eylinder is placed on a high temperature reservoir. System absorbs heat
Qi from high temperature reservoir at temperature Ty and gas works on surrounding
cansing expansion. The work done by the gas will be equal to heat absorbed by the
gystem according to first law of thermodynamic as given below

4
AL = Q+ Wy,
Since change in temperature is zero, so AE=0. Thus above equation will be

Qu =-W

Al
]

The work done in isothermal reversible expansion is

Vi

Wy == [PdV
Va

VH

Hence, |Q,|f- Il’dV
Vi

Since working substance is an ideal gas, so
PV = nR',
"m
p . RT,

\
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By putting value of P in above equation, we get

Y nRT,
Q= [V
\'A

|Q|=nRT,[InV] L

|Q,| =nRT, h{%} (3.22)

A
(ii) Adiabatic Expansion

The second ideal process is shown in Fig. 3.10 by.curve .BC is tad}a{)a;}g
expansion of gas. In thig process, cylinder is placed on an insulating material.

heat is added to or removed from the system. Therefore Q is zero and system does
W

rork on surrounding on consumption of internal energy. We know that during this
process PV" is constant. Hence

PV” = constant

(PV) V™! = constant
(nRT) V'™ = constant
TV™ = constant

Therefore for process BC, we can write as

T, V3™ = constant

And  T,V{"' =constant

So,  TVI'=T V- (3.23)

Piston

|_—~Non-conducting
walls

Pressure (P)

. e

I =g
..____?_._...._
|
|
I
|
[
I
|
|

Volume (V)
Fig. 3.9: Pictorial diagram of Carnot

Fig. 3.10: PV diagram of Carnot cycle
heat engine .
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—————————

—

(iii) Isothermal Compression

The third process in a cycle shown by CD in PV diagram is isothermal
mpression. In this process heat Qa2 is rejected to cold body by the system and work
0 = " . oo
- done on the system. Henee first law of thermodynamices is
18 - '

AlS =Q, +W
0=Q, +W,
Q, =-Wy

But heat is rejected by the system, so it should be negative. Hence

4
Q, = nRT, h{%;_‘) (3.24)

D

(iv) Adiabatic Compression

The fourth process shown by DA curve in PV diagram of Fig. 3.10 is an
adiabatic compression. In this process no heat is added or removed from the system.

PV' = constant

TV = constant

So TV =T,V (3.25)
From equation (3.22) and (3.24) we get

-Q, =-Wgp

Q, = Wep

Q- -\f PaV
Ve . 1
Q, =-nRT, v{ vV

Q, =-nRT,[In v]‘v':

.
V.
Q, =-nRT,1n —D—)
\Vc

w

(]

RT In| -2
|Q1|_n 1n\VA)

2. nRT, In (&)

Va
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i N 'V" %
@ " | 7

Q.| 'ln [\\;‘ J

A

(3.26)

From equation (3.23) and (3.25), we get
Tyry-|} A0l 1
TV TV
m vyl m 1
lz\ A 12\7,’)

y-1 71
fﬂq :(XJ
\ \/y.\ Vl)
[ﬂquﬂq
VA V[J
By putting this value in equation (3.26), we get

T lnf%J

n=1-7 (3.27)

3.10 CARNOT THEOREM

The efficiency of heat engine is independent of nature of working substance.
It depends upon temperature of hot body and cold body only. This theorem is called
Carnot theorem as shown in equation (3.27).

_ According to equation (3.27), 1 depends on the ratio of Ts to T;. The efficiency
will be hundred percent when T2 is equal to zero which is not possible. So Carnot
heat engine has maximum efficiency but less than 100%.

Example 3.6

Calculate heat efficienc

y of Carnot h i i :
temperature reservoir at 150 °C eat engine working between high

and low temperature reservoir at 60 °C.
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111 CONCEPT OF ENTROPY

An important thermodynamae function called entr
Clausiaz in 1850 on the basis of :
iollowing relation

‘ By was introdaved |
arnot cvcie. Aeoy rding to Carnut evel

\f& here Qi 18 heat added into the system and & i Jant sneved fomm. the
system. So 1t 18 taken as negative. Hence above expression can be written as
m
- T
(Qz 71\2
Q _q

L 9
Q . Q 0
T, T,

T3=0
T
In integral form, 1t can be written as

g =0
]

The new variable dQ/T is called entropy.

function and it is independent of path. Therefore

Entropy 18 also a state ’
entropy change of a cyclic process as given above 18 zero.

312 CALCULATION OF ENTROPY CHANGE IN AN IDEAL GAS SYSTEM

According to first law of thermodynamics, we know that
di = dQ+ dW
nCodT = -PdV dQ

dQ = nC dT + PdV

Scanned with CamScanner



L p— '-"r'v

188  Modem Physical Chemistry

Dividing by T on both sides, we get

d PV a0 AT

T T I
Sinee y Hl\ '

v

dQ  nRTAV nC, dT
/r \rnr r-lw
dQ nRAV  nC.dT
: § Vv T
Integrating the above equation within hmits

“dQ 1dV %dT
F-T— = nli‘!%irn(“.!—f

1

AS =nRIn /] +nC, In T, (3.28)
v T

1
ature and volume of initial and final states of
ession is for entropy change for

Since AS depends upon temper
s entropy change of an ideal

system. So entropy is a state function. The above expr
an ideal gas with temperature and volume. This show

gas system with change in temperature and volume.

3.13 ENTROPY CHANGE FOR AN ISOTHERMAL REVERSIBLE PROCESS

For an isothermal process, Ti=Tz. So, above expression can be written as

7
AS =nRlIn A +nCy In e
V, i

1

AS = nR1nl 2 |+ nC, Inf 2
=nRln| T [+nCyln

1

\Y
AS =nR ln[—g-J
V

1

7
AS = 2.303xnmog(-:,—'~‘]

1
When V2>V), then ASwill be positive and when V:<V) then AS will be

negative,
In terms of pressure, above equation can be written as

AS = 2.303 xnR lo;,(—gi]

1
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Recause PiVii= PeVa The increase in entropy of an ideal system in an
ahermal rev ersible expansion s equal to decrease in entropy of surroundings. Thus
.
Q»
Jqal change 11 entropy of universe 18 zero.

. 14 ENTROPY CHANGE IN AN IDEAL GAS FOR ISOCHORIC PROCESS

For isochoric process, V=V, s0 above equation becomes

)

AS = M\lni — 1+nC, In t?w

AS = nl\\n‘ —= !H\( k

AS = nhln +nC, lnLT }

~ ~ T
AS =n(C, lnt;—rﬂ

)
:

|

AS = 2303 xnCy \ug{

When T:>T., then AS is positive while AS is negative for To<Th.
315 ENTROPY CHANGE IN AN IDEAL GAS FOR ISOBARIC PROCESS
From equation (3.28), we have

A k:
AS =nR ln‘k—\—‘?}r nC, lnL—f"'-)

1

For an ideal gas, we have

BY, RV,
T T
VvV, BT,
?! P: Tl
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' T, 3.29
AS = nRIn| =+ [+nC, In| = (3.29)

P, T,

For isobaric process P1=P2=P, g0

AS =2.303xnC, log[%’J

1

Example 3.7
ansion of 3 moles of an ideal

Calculate entropy change in an isothermal exp
gas from 2 to 5 liter.

Solution

No. of moles =n = 3 mol
Initial volume =Vi=2L
Final volume =V2=5 L
Change in entropy = AS=7?

We know that,

AS = ann(—Yg—)
Vl

AS =3x8.314 xln(g) -2285dJ K

Example 3.8
Calculate the change in entropy when 2 moles of an ideal gas are heated from

95 to 75 °C at constant pressure. The value of molar heat capacity of the gas is 25 kd

mol-!l.

Solution
No. of moles =n = 2 mol

Initial temperature = T1 = 25 °C
Final temperature =T; = 75 °C
Change in entropy = AS = ?
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216 ENTROPY Op MIXNING

When two Rases arSe
we shall establish 4 Mmathe
gases A and B.

Mmixed loge

ther. eNntropy
Matiea) relat

change
onship f,

® 0cour. In this swetie n
r entropy

of mixing of 1w, 1deal
Suppose n, mole

s of gas A at
its bl pressure p,

its Mitial prese X i
. Al pressyre Pt oo . i ] s
- When these l 're Pi" and n, moles of gas B g¢

i EA=%es gre mixe¢
and B becomes Py and p, respectively In ¢ “\: ari- Partial pressure of gas A
) i ) ) ' -1 ase of jenthe DER88 éhana
entropy for gas A by USINg equation (3.29) can };e wrntténth( T p— B
. -
g P
A.S\ =n Rln| v
1)] | {330

The next term

_ N equation
Smularly entropy ch

(3.29) is zero be
ange for gas B g

Cause process s isothermal

2

ks
AS, = anln(F‘-J (3.31)

By adding equation (3.30) and (3.31), total entropy change can be calculated

ASmmmz =AS, +AS,

P B
Spme =0, R1In| —L +n.,Rln(—i] (3.32)
* l b, ’ P, ’

According to Dalton's law of partial pressure, gas is
related 3to total pressure of the gas after mixing. Hence

Plxxl

P =Px, (3.33)

Where P, is partial pressure of gas A and P, is total pressure of mixing of

£ases and x) is mole fraction of gas A.
Similarly for gas B, we can write as

P, =Px, (3.34)

’ » ¢ ) iaq b, S8 { 1X 1
Where P, i partial pressure of gas B and Pu is total pressure of wixing of

Bases and x» ig mole fraction of gas B.
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190 Modwn Physical Chemistry

(1. and  CLID

Wy putting the values of 1 and P from equationd
respectively into equation ), we get
I ( l\ i
AS e Rin| e pen Rin| .7 |
AN AY ] ]\ ? || " i
R Ny
P !
N L i L i
A uu.l: 1 1, 1N ”..,, .\rlﬂ(m JALI i
. . e . * . . L .
. . - . . . . . .
. . o . . N . . 0 .
. . . . . . d\ . . * . .
. - 'Y K . . . » . * ° )
. . . . . D - ’ * ¢ '
. . N E . . . . ¢ * o °
. . . . 0 - . " N
. . K . . . . . -0'__”__..-——-—"‘

Fig. 3,11 Mixing of two pases
- 'l casure botl
ase shown 1 Fig. n which temperature and pressur ‘t1

above equation |

For Spvcinl ¢
P, = P = p. Hence

remains constant during  mixing, then I =

becomes

'\Smnm; h “‘R llltn—lﬂ] 4 n‘:R l“[ l_)
X ¥

AS = -n,Rlnx, =n,RInx,

AS

minng

R W q . -

wising = I\[_n, Inx, +n, ln.\2]

calculation of entropy of mixing of
of the system remains

ralues

This is the mathematical expression for
two of two ideal gases when pressure and temperature
ccified conditions is positive because

ant. The value of ASmiing for the sp
fore the term in bracket will give a negative
|

const
of x1 and xg are less than umty. There
entropy INCreases during mixing.

E IN UNIVERSE DURING REVERSIBLE PROCESS |

ntropy of the universe (system + surrounding)
rsible process should

answer. Hence

3.17 ENTROPY CHANG
During the reversible process, ¢

remains constant. It means entropy change of universe in a reve

be zero. It can be verified as
When a system absorbs Qmv heat at temperature T, then heat lost by

surrounding will be equal to Qrev. So we can write
Entropy change of the system = ASyystem = Qrev/T
Entropy change of the surr ing =
P g the .surmuudmg - L\Ssurmunding = "QN\‘/T

Entropy change of universe = ASsystem +ASsurrounding

L\S 3 Q”" Y gl‘l"_

-

Total & T T

ASTNA‘ - O

] E Chan i

4
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4 Y

Inl, - Ink, = "-ﬁ“l Thy
K, aH°(1 1 }

l - - s I my - m

LKy el L) (8.60)
l_{_‘_ T R T-J_ Tl

o}
i ation of value of AH.
Equation (3.60) can be used for deter mination 0

Example 3.10 i
Die actionA+B— C + D for which valyeq of
re given below.

Calculate the enthalpy change for re tures a
equilibrium constant at two different temperattl

Temperature (K)

Equilibrium constant

Solution
Initial temperature = T1 = 1900 K

Final temperature = T2 = 2200 K

Equilibrium constant at T, =K =3 x 104

Equilibrium constant at T, = Ko = 8.6 x 10

Enthalpy change = AH°=?
We know that

K, R (T T
Ho i RT1T2 K2
T,-T,) K,

-4
8.314 "1900"2200)1n 8.6x10°" _ 199 kJ/mol

A=
( 2200-1900 3x10™

3.24 NERNST HEAT THEOREM
According to Gibbs — Helmholtz equation, we know that

F=H+T(@J
aT P
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S ] |\“\‘\”c A B T ——" S
o We AN w Fite
W= AN ] C(AF))
o
vl '
¥
| RN .
AF- AN . pf AAF))
Lo ]
\EO K. the righy )
: A n
nd Bl (\f!hu abaos ® Cquatic
AF <Al . 0 *auation will become 2OrD, |o
So, when femperatype

an Tone
the provess become PProache

s equal to the o

l\\“r Y (.\1-‘) = “‘“T ” (L\”) : neeas, | p

A\ Nernst found m:p(‘rimonmlh‘ th
JOCTease I temperature gq :

This statement is called N

£2e 1in (hhha energy of

antity [L’(AF)PTIP decreases with the

becomes e
: _ ‘8 equal to zero gt absolute zers
rnst Heat Theorem y Mathema '

’ tically, it can he written aa
lim, [@] «Jim 2(AH)
3 - — = 9 o
or p . aT . 0 (3.61)

*Nernst Heat theorem ¢
the system when the

Process occyrg n
can be proved using e

Quation (3.38), i.e.
dF = Vdp - g4

At constant pressure, w
oF) N
aT ),

For a process, F and S can be replaced by AF and AS respectively, he

nce
3(AF)

Ll ] w-AS
8’1‘ P

“There is no change in

entropy of
of absolute zero’} This

gtatement

e have

According to equa

tion (3.61), the left hand side of the above equation will
become zero at 0 K, hence

lim,  AS=0
lim; (S, -8,)=0
This implies that, when T—0, then 8= Ss.

Nernst Heat theorem can be used for the stud
€at at constant

%r10. The molar

y of variation in molar specific
pressure for the process occurring in the neighbourhood of absolute

heat capacity at constant pressure can be defined as

S
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, ((_:H\s
‘L’rf

For the change in H and Cs, the above equaticn c2n

(E(AH)]
AC, =| ——
: ( eT |

4P

In the vicinity of absolute zero, the above expres

lim, , (ACF) =lim, (4 (_l

. - he richt hand side of the above equation
According to Nernst Heat theorem, the right hand 5142 &2 ) -
18 equal to zero. Therefore
lim,_,(AC;)=0

lim; ,(Cp, -C; )=0
lim;_,(Cy, ) = lim,_,(C; )

According to the above equation. the molar heat capacity 2t consiani pressure
during any transformation at absolute zero remains unchanged.

3.25 THIRD LAW OF THERMODYNAMICS

The value of entropy decreases with the decrease in temp ure and io
and perfectxcryctalhne substance. It becomes zero a2t 2bsol : 1
<alled the third law of thermodynamics. Mathematically, it can be stated as

im, ,S=0 (For perfect crystalline solid)

decrease in temperature and ulumagalv E:»—cs es zero at absoch
statement is also called third law of thermodynamics. The zbove stat
proved easily using the definition of molar heat capacity, ic.

_(da
*=lar J (3.62)
According to the second law of thermodvnzmicrs =

dq
— =dS
T

dq =TdS
Putting this value of dg in equation (3.62), we
( TdS)

)
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Rearranging the above equation, we get

dm

1S = C, —
¢ 1 vl\
Integrating the above equation, we get
$ T \
1
s = [c, S
s, o T
T
ST-SO=ICP%£ (3.63)
0

According to equation (3.63), for finite value of St — S,, Cp must be zero at

-peolute zero. Hence 3 law can be stated as

LimT—»OCP =0
3.26 DETERMINATION OF ABSOLUTE ENTROPY OF A SUBSTANCE

The physical significance of 3r law of thermodynamics is that this l’aw can be
used for determination of absolute entropy of a substance. Equation (3.57) 1s used for

this purpose.

. | G (3.64)
Sp -8, = deT .
(]

According to 3 law of thermodynamics, entropy of pure crystalline solid is
zero at 0 K. So equation (3.64) becomes

Tc
Sp = j-i’}d'r (3.65)

Where St is absolute entropy of a substance at temperature T. The value of
St can be determined using equation (3.65). We know that

d 1
—(UnT)==
dT(n) T

dInT = %"F— (3.66)

Putting value of dT/T from equation (3.61) into (3.60) -

T - T
Sy = [C,(dIn) —2.303 [C, (dlogD

The value of above definite integral can be obtained by measuring the area
under a curve of C, versus logT as shown in Fig. 3.12.
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