ELECTRONIC DEVICES AND CIRCUIT THEORY

TENTH EDITION

Chapter 1: Semiconductor Diodes

BOYLESTAD

Semiconductor Materials: Ge, Si, and GaAs

Semiconductors are a special class of elements having a conductivity between that of a good conductor and that of an insulator.

- They fall into two classes : single crystal and compound
- Single crystal : Germanium (Ge) and silicon (Si).
- Compound : gallium arsenide (GaAs),

cadmium sulfide (CdS), gallium nitride (GaN), gallium arsenide phosphide (GaAsP)

The three semiconductors used most frequently in the construction of electronic devices are Ge, Si, and GaAs.

<u>1</u>	1 <u>H</u>																	2 <u>He</u>
<u>2</u>	3 <u>Li</u>	4 <u>Be</u>	<u>2</u>										5 <u>B</u>	6 <u>C</u>	7 <u>N</u>	8 <u>O</u>	9 <u>F</u>	10 <u>Ne</u>
<u>3</u>	11 <u>N</u> <u>a</u>	12 <u>M</u> g											13 <u>Al</u>	14 <u>Si</u>	15 <u>P</u>	16 <u>S</u>	17 <u>Cl</u>	18 <u>Ar</u>
<u>4</u>	19 <u>K</u>	20 <u>Ca</u>	21 <u>S</u> <u>c</u>	22 <u>Ti</u>	23 ⊻	24 <u>Cr</u>	25 <u>Mn</u>	26 <u>Fe</u>	27 <u>Co</u>	28 <u>Ni</u>	29 <u>Cu</u>	30 <u>Zn</u>	31 <u>Ga</u>	32 <u>Ge</u>	33 <u>As</u>	34 <u>Se</u>	35 <u>Br</u>	36 <u>Kr</u>
<u>5</u>	37 <u>R</u> <u>b</u>	38 <u>Sr</u>	39 <u>Y</u>	40 <u>Zr</u>	41 <u>Nb</u>	42 <u>Mo</u>	43 <u>Tc</u>	44 <u>Ru</u>	45 <u>Rh</u>	46 <u>Pd</u>	47 <u>Ag</u>	48 <u>Cd</u>	49 <u>In</u>	50 <u>Sn</u>	51 <u>Sb</u>	52 <u>Te</u>	53 <u>l</u>	54 <u>Xe</u>
<u>6</u>	55 <u>Cs</u>	56 <u>Ba</u>	*	72 <u>Hf</u>	73 <u>Ta</u>	74 <u>W</u>	75 <u>Re</u>	76 <u>Os</u>	77 <u>lr</u>	78 <u>Pt</u>	79 <u>Au</u>	80 <u>Hg</u>	81 <u>TI</u>	82 <u>Pb</u>	83 <u>Bi</u>	84 <u>Po</u>	85 <u>At</u>	86 <u>Rn</u>
<u>7</u>	87 <u>Fr</u>	88 <u>Ra</u>	**	104 <u>Rf</u>	105 <u>Db</u>	106 <u>Sg</u>	107 <u>Bh</u>	108 <u>Hs</u>	109 <u>Mt</u>	110 <u>Ds</u>	111 <u>Rg</u>	112 <u>Uub</u>	113 <u>Uut</u>	114 <u>Uuq</u>	115 <u>Uup</u>	116 <u>Uuh</u>	117 <u>Uus</u>	118 <u>Uuo</u>

<u>9</u>

<u>10</u>

<u>11</u>

<u>12</u>

<u>13</u>

<u>14</u>

<u>15</u>

<u>16</u>

<u>8</u>

<u>7</u>

* <u>Lanthanides</u>	57	58	59	60	61	62	63	64	65	66	67	68	69	70	71
	<u>La</u>	<u>Ce</u>	<u>Pr</u>	<u>Nd</u>	<u>Pm</u>	<u>Sm</u>	<u>Eu</u>	<u>Gd</u>	<u>Tb</u>	<u>Dy</u>	<u>Ho</u>	<u>Er</u>	<u>Tm</u>	<u>Yb</u>	<u>Lu</u>
** <u>Actinides</u>	89	90	91	92	93	94	95	96	97	98	99	100	101	102	103
	<u>Ac</u>	<u>Th</u>	<u>Pa</u>	<u>U</u>	<u>Np</u>	<u>Pu</u>	<u>Am</u>	<u>Cm</u>	<u>Bk</u>	<u>Cf</u>	<u>Es</u>	<u>Fm</u>	<u>Md</u>	<u>No</u>	<u>Lr</u>

PEARSON

<u>Group</u> \rightarrow

↓ <u>Period</u>

2

1

<u>3</u>

<u>4</u>

<u>5</u>

<u>6</u>

Electronic Devices and Circuit Theory, 10/e Robert L. Boylestad and Louis Nashelsky Copyright ©2009 by Pearson Education, Inc. Upper Saddle River, New Jersey 07458 • All rights reserved.

<u>18</u>

<u>17</u>

History

- Diode, in 1939 was using Ge
- Transistor, in 1947 was using Ge
- In1954 Si was used in Transistor because Si is less temperature sensitive and abundantly available.
- High speed transistor was using GaAs in 1970 (which is 5 times faster compared to Si)
- Si, Ge and GaAs are the semiconductor of choice

Atomic Structure

- Valence electrons: electrons in the outermost shell.
- Atoms with four valence electrons are called tetravalent.

Atomic Structure

• Atoms with three valence electrons are called trivalent, and those with five are called pentavalent.

Covalent bonding of Si crystal

This bonding of atoms, strengthened by the sharing of electrons, is called **covalent bonding**

Covalent Bonding

There is sharing of electrons, five electrons provided by As atom and three by the Ga atom.

Covalent bonding of GaAs crystal

Energy Levels

(a)

The farther an electron is from the nucleus, the higher is the energy state.

Energy Levels

An electron in the valence band of silicon must absorb more energy than one in the valence band of germanium to become a free carrier. [free carriers are free electrons due only to external causes such as applied electric fields established by voltage sources or potential difference.

n-Type and p-Type materials

n-Type Material

□n-Type materials are created by adding elements with **five** valence electrons such as antimony, arsenic, and phosphorous.

□There is a fifth electron due to the (Sb) atom that is relatively free to move in the n-Type material.

□The atoms (in this case is antimony (Sb)) are called **donor**

atoms.

n-Type and p-Type materials n-Type Material

The free electrons due to the added atoms have higher energy levels and require less energy to move to conduction band.

n-Type and p-Type materials

p-Type Material

□p-Type materials are created by adding atoms with three valence electrons such as boron, gallium, and indium.

□In this case, an insufficient number of electrons to complete the covalent bonds.

□The resulting vacancy is called a "hole" represented by small circle or plus sign indicating absence of a negative charge.

□The atoms (in this case boron(B)) are called **acceptor atoms**.

Majority and Minority carriers

Two currents through a diode:

Majority Carriers

- •The majority carriers in n-type materials are electrons.
- •The majority carriers in p-type materials are holes.

Minority Carriers

- •The minority carriers in n-type materials are holes.
- •The minority carriers in p-type materials are electrons.

p-n Junctions

One end of a silicon or germanium crystal can be doped as a *p*-type material and the other end as an *n*-type material.

The result is a *p-n* junction.

p-n Junctions

At the *p-n* junction, the excess conduction-band electrons on the *n*-type side are attracted to the valence-band holes on the *p*-type side.

The electrons in the *n*-type material migrate across the junction to the *p*-type material (electron flow).

The electron migration results in a **negative** charge on the p-type side of the junction and a **positive** charge on the n-type side of the junction.

The result is the formation of a **depletion region** around the junction.

The diode is a 2-terminal device.

PEARSON

Electronic Devices and Circuit Theory, 10/e Robert L. Boylestad and Louis Nashelsky Copyright ©2009 by Pearson Education, Inc. Upper Saddle River, New Jersey 07458 • All rights reserved.

Diode Operating Conditions

PEARSON

Diode Operating Conditions

Reverse Bias

External voltage is applied across the *p-n* junction in the opposite polarity of the *p*- and *n*-type materials.

- The reverse voltage causes the depletion region to widen.
- The electrons in the *n*-type material are attracted toward the positive terminal of the voltage source.
- The holes in the *p*-type material are attracted toward the negative terminal of the voltage source.

Diode Operating Conditions

Forward Bias

External voltage is applied across the *p-n* junction in the same polarity as the *p*- and *n*-type materials.

- The forward voltage causes the depletion region to narrow.
- The electrons and holes are pushed toward the *p-n* junction.
- The electrons and holes have sufficient energy to cross the *p-n* junction.

Actual Diode Characteristics

Note the regions for no bias, reverse bias, and forward bias conditions.

Carefully note the scale for each of these conditions.

The reverse saturation current is seldom more than a few microamperes.

$$I_D = I_S \left(e^{V_D / nV_T} - 1 \right)$$
$$V_T = \frac{kT}{q}$$

Diode equation

$$I_D = I_S \left(e^{V_D / nV_T} - 1 \right)$$
$$V_T = \frac{kT}{q}$$

where

- V_T : is called the thermal voltage.
- I_s : is the reverse saturation current.
- V_{D} : is the applied forward-bias voltage across the diode.
- \boldsymbol{n} : is a factor function of operation conditions and physical construction. It has range between 1 and 2. assume n=1 unless otherwise noted.
- **K**: is Boltzman's constant =1.38 x 10^{-23}
- *T*: is temperature in kelvins = 273+temperature in C.
- q: is the magnitude of electron charge = 1.6 x 10⁻¹⁹ C.

