Professional programmers needed!

* The impossible equation (Jean Bézivin)

1. Slow increase of professionals
. Same trend in next 25 years

2. Rapid increase of SW to be developed .
3. No way to cope with it

4. End User Programming
. Example: Visical, Excel
. By DSL, abstraction
. Custom languages 2000 2008 2010 2013

Abstraction Levels

The entire history of software engineering is
one of rising levels of abstraction (abstraction
is the primary way we as humans deal with
complexity).

i I Grady Booch
Models / Specs

Application
Domain

COBOL / C / Basic / Java

Semantic Gap

Assembler

-_— .

Abstraction level

Machine Code
1&"?:3 =

-y

What is a model?

A model

- is a simplification of a system

* abstraction, description, specification, information

- can answer questions in place of actual system

* analysis, inference, predictions

- is used for a purpose

* understanding, planing, risk analysis, ...

A model can be a UML diagram ...

.-"f \
¥ N
tnTTa—l Lu_u.hm | [um’l
[\
/o
;"I : III' . i
e | | e | ... but it can be any other representation ...

e=x|e+te|e-e]|f(e,..,e)

... that serves purpose of abstraction, analysis, etc.

MDD

Model Driven Development o

Definition:

The usage of Models as the main artefacts
to Drive the software Development.

e Model Driven Development is about making software
development more domain-related as opposed to
computing related. It is also about making software
development in a certain domain more efficient.

Domain Concepts Domain Concepts

of developers

Software Technology Software Technology
Concepts Concepts

How MDSD works

e Developer develops model(s) : S g
based On Certa|n Model ||} b Metamodel :
metamodel(s), expressed using R :

a DSL. i """""" g

e Using code generation [Tranefermer] «— | Pmlemition i
templates, the model is ;8
transformed to executable ; l § r
code. (R S b 2

e Alternative: Interpretation SRS > i Molemedel i

e Optionally, the generated LA l Ao :
code is merged with |
manua“Y ertten COde- [Transformer] A Go::r::lon

Templates

e One or more model-to-model
transformation steps may l rassne e ;
precede code generation. : Mamuny | ¢

Generated Code R r— Written
Code

Core Values

We prefer to validate software-under-construction over
validating software requirements

We work with domain-specific assets, which can be
anything from models, components, frameworks,
generators, to languages and techniques.

We strive to automate software construction from
domain models; therefore we consciously distinguish
between building software factories and building software
applications

We support the emergence of supply chains for
software development, which implies domain-specific
specialization and enables mass customization

Code Generation

o<l

The automated synthesis of SW assets like
source code, documentation or models using
models as input.

Definition:

MDSD (compared to "normal” Software Development)

>

“\;\\On

Goal

Information Gain

Level of Detaill
Start

Result of virtual or real
Analysis Implementation model

Implementation

MDSD Effort (stage 1)

4
no

s imple™®
© ration Goal
c Automation
o
=
E
—
-
E

Savings
because
of Generation

Effort

Savings based on
the use of a semantically

L]
- rich platform
- Level of Detail
S!!ﬂ -+ L
1 |
Results of virtual or real

Analysis implementation model implementation

MDSD Effort (stage 2)

s

c L

" A Automation 8

o Goal

: L)

o .

] :

£ : .

5 : :

= & : :
§ Savings .

because -

of generation

Effort

Savings based on
the use of a semantically
rich platform

Level of Detail

Start >

L L R

Results of virtual or real

Analysis implementation model Implementation

High-level languages reduce problem/solution gap

-

Problem
Domain

HLL

e

Machine

Next level of abstraction

Model-Driven Software Development

r -

— »| Model [| HLL | >»|Machine

— — —

models further reduce gap between problem domain and implementation

Model-Driven Architecture (MDA)

Vision from OMG

- Models at different level of abstraction

* Platform Independent Model (PIM)

* Platform Specific Model (PSM)
- Model transformation

* e.g.PIM to PSM to implementation

* transformations not necessarily automatic
- UML as standard modeling language

* models are ‘visual’ or ‘graphical’

Types of Models

* Platform-Independent Model (PIM)
— Describes the business concerns of an application in a technology-agnostic
way
— Bridges between problem and solution spaces
— Holds true regardless of what technology is used to implement the system

* Platform-Specific Model (PSM)

— Describes how the PIM will be realized using a specific set of implementation
technologies (e.g. Java, .NET, Ruby, Objective-C, etc.)

— Describes the implementation mechanisms of a system
— PIM can be implemented using any number of PSMs

