CHAPTER TWO

Mathematical Models

2.1 THE CLASSICAL EQUATIONS
The three basic types of sccond-order partial differential equations are:
a. The wave equation
Uy = (e + 1ty +10,,) =0 (2.1.1)
b. The heat equation .
= k(g +u,, +u,)=0 (2.1.2)
c. The Laplace equation
Uee Huty, +u, =0 (2.1.3)
In this section, we list a few more common lincar partial differential

equations of importance in appliecd mathematics, mathematical physics,
and engineering science. Such a list naturally cannot ever be complete.

Included are only equations of most common interest:

d. The Poisson equation

Viu=[(x,y,z) (2.1.4)
e. The Helmholtz equation
Vi +Au=0 (2.1.5)
f. The biharmonic equation
Viu = 9%(V2u) =0 (2.1.6)
g. The biharmonic wave cquation
Uy +c* Vi =0 (2.1.7)
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h. The telegraph equation

w, + au, + b= cliy, (2.1.8)
i. The Schrodinger equations in Quantum Physics
n\ -
i, = (————) V24 V(XY 2 ] : (2.1.9)
iy, [ - (x, y 2) [V
VA 2{’1’ [E-V(x,y 2)]¥=0 (2.1.10)
2
j. The Klein—-Gordon equation
Ou+ Au=0 (2.1.11)
where
2 2 2
Vi= d + 9 9 - (2.1.12)

-+
ax?  a9y* 98z°
is the Laplace operator in rectangular Cartesian coordinates

‘[’ ” z ’ ) 5
(.—-1-13)

is the D'Alembertian, and in all equations A, a, b, ¢, m, E are
constants and & = 2sh is the Planck constant.

Many problems in mathematical physics reduce to the solving of partial
differential equations, in particular, the partial differential equations
listed above. We will begin our study of these equations by first
examining in detail the mathematical models representing physical

problems.

2.2 THE VIBRATING STRING

One of the most important problems in mathematical physics is the
vibration of a stretched string. Simplicity and frequent occurrence in
many branches of mathematical physics make it a classic example in the
theory of partial differential equations.

Let us consider a stretched string of length / fixed at the end points.

The problem here is to determine the equation of motion which

position u(x, f) of the string at time ¢ after an initial
i

e equation we make the following

astic, that is, the string cannot resist
= tension in the string is always in the
isting profile of the string.
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There is no clongation of a single segment of the string and henge,

by Hooke's law, the tension is constant. :

3. The weight of the string is small compared with the tension in th, i
string.

4. The deflection is small compared with the length of the string.

5. The slope of the displaced string at any point is small compaured wity, §

"

39

unity.
6. There is only pure transverse vibration.

We consider a differential element of the string. Let T be the tension a
the end points as shown in Fig. 2.2.1. The forces acting on the element of ¥

the string in the vertical direction are
Tsinf—Tsina

s

. — —— — — — — —— — —

x+Ax X

Figure 2.2.1 ,
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By Newton’s second law of motion, the resultant force is cqual to the
mass times the acceleration. Hence.

Tsinf—-Tsina=pAsu, (2.2.1)
E where p is the line density and As is the small arc length of the string.
F
'
(

Since the slope of the displaced string is small, we have
As = Ax
Since the angles « and 8 are small

sina=tana  sinf=tanf
Thus Eq. (2.2.1) becomes

Ax
U, (2.2.2)

f

:

F

F‘ tanﬁ—tana=p

But, from calculus we know that

| ' tan a = (1),
and
tan :B = (”x).r+A,r

at time t. Equation (2.2.2) may thus be written as

1

'A_; [(ux).i+Ax - (u.r)x] = g-uu

In the limit as Ax approaches zero, we find
| B = GOl (2.2.3)
where ¢? = T/p. This is called the one-dimensional wave equation.

If there is an external force f per unit length acting on the string, Eq.
(2.2.3) assumes the form

u, =c u,, + f*, f*=fIp (2.2.4)

whcrefmay be pressure, gravntatlon resistance, and so on.

2.3 THE VIBRATING MEMBRANE

f-the vibrating membrane occurs in a great number of
N hcmatlcs dnd mathcmatncal physncs Before we

oment 'nd the tcnslon in thc membrane is always in
e tangent to the cxnstmg profile of th¢ membrane.
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t of the membrane and

1J

There is no elongation of a single elemen
hence, by Hooke's law, the tension is constant.
The weight of the membrane is small compared with the tension in

the membrane.
The deflection is small compare

membrane.
The slope of the displayed membrane at any point is small

compared with unity.

6. There is only pure transverse vibration.

We consider a small element of the membrane. Since the deflection
and slope are small, the area of the element is approximately equal to
AxAy. If T is the tensile force per unit length, then the forces acting on
the sides of the element are T Ax and T Ay, as shown in Fig. 2.3.1.

The forces acting on the element of the membrane in the vertical

direction are
TArsinﬁ—TAxsina«%TAysin

mall, sines of the angles are approximatel
he resultant force becomes

L)

d with the minimal diameter of the

I~

wn

§—TAysiny
Since the slopes are s y equal to
their tangents. Thus

T Ax(tan f —tan a)+ T Ay(tan 5 —tany)
vl

oD e — - —

Figure 2.3.1
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By Newton’s second |

aw of motion, the resultant force js cqual to the
mass times the acceler

ation. Hence
T Ax(tan B —tana)+ T Ay(tan & —tan y) = p AAu, (2.3.1)

where pois the mags per unit area, AA=AxAy is the area of this

clcm'cnt. fllld I, is computed at some point in the region under
consideration. But from calculus, we have

tan @ =, (x,, y)
tan B=u,(x,, y + Ay)
tan y = u,(x, y,)
tan 6 = u, (x + Ax, y,)

where x, and X3 are the values of x between x and x + Ax, and y; and y,

are the values of y between y and ¥y + Ay. Substituting these values in
(2.3.1), we obtain

T Ax[uy(x,, y + Ay) — uy(x1, )]+ T Ay[u (x + Ax, y,) — 1, (x, y1)]

=p Ax Ayu,
Division by p Ax Ay yields
I [u)'(xZ’ Yy + Ay) _ uy(xh }’) + le(x + Ax: yZ) — ux(x; yl)] =l (232)
p Ay Ax

In the limit as Ax approaches zero and Ay approaches zero, we obtain

Uy = (U + 1) (2.3.3)

where c¢?= T/p. This equation is called the rwo-dimensional wave
equation.

If there is an external force f per unit area acting on the membrane,
Eq. (2.3.3) takes the form

u, = cz(uM +u,)+f* (2.3.4)
where f*=f/p

2.4 WAVES IN AN ELASTIC MEDIUM

If a small disturbance is originated at a point in an elastic medium,
neighboring particles are set into motion, and the medium is put uqder a
state of strain. We consider such states of motion to extend in all

“*dxrectlons. We assume that the dlsplacements of the medlum are small
¢ '? £ 5

e ﬁ-"*% dﬁer investigation be homogeneous and isotropic. Let
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AV be a differential volume of the body, and let the stresscs acting on the
faces of the volume be Texr Tyys Tzzr Tayr Txoy Tyer Tyer Tzxr Taye The first
lled the normal stresses and the rest are called the &

three stresses are ca
shear stresses. (See Fig. 2.4.1)
is symmetric,” that is, i

We shall assume that the stress tensor Tj;
T"j-’:Tj,‘ i#] i,jf—'x, y,Z (2,4,1) :

Neglecting the body forces, the sum of all the forces acting on the
volume element in the x-direction is A8

[(rxx)x+Ax - (T.x.t)x] Ay Az + [(TX)’)y+Ay - (Tx)-)y] Az Ax g
+ [(sz)z+A: - (Tx;);] Ax Ay B
By Newton's law of motion this resultant force i
. ¢ IS eque ,
times the acceleration. Thus we obtain ) 4o the mmass

Jf
3
1
.1
§
i

[(Txx)x-PAx - (Txx)x] Ay Az =+ [(‘txy)y+Ay - (Txy)y] AZ Ax
+ [(Tez)zeaz: — (Txz):] Bx Ay = pAx Ay Azuy,
(2.4.2)
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where pis the density of (he body and w is the displacement component
i the x-direction, Hencee, in the limit as AV approaches zero, we obtain

—2 . B R -;-.-- (2.4.3)

Similarly, the following two equations corresponding to y and z directions
are obtained:

dr,, Ir,, I, 3’

— Ty Z S0 2.4.4

v dy o: o ( )
2 )

or,, o sy N or,,  dn (2.4.5)

=0
ax gy a8z Par
where v and w are the displacement components in the y and z directions
respectively,
We may now define linear strains [40] as

. u ow N v
= — £, = —— 4 —
oy 8y oz
v du Iw
S o = — 2.4.6
s Ay o dz Ox ( )
ow v Jdu
= — = -t

€. 3y Eyy -a? a_y'

in which ¢, Eyys € Tepresent unit elongations and €z €., €, Tepresent

unit shearing strains.
In the case of an isotropic body, generalized Hooke'’s law takes the

form TW=A0+2ue, T, =pe,
Ty = A0 + 2ue,, Too = JE., (2.4.7)
T.. = A0+ 2ue,, Toy = HE,,

where 0 = ¢,, + ¢,, + ¢.. is called the dilatation and A and p are Lame’s

constants. | ‘
Expressing stresses in terms of displacements we have

ou
w=A0 + 24—
k & ox
v Jdu
= =4+ = 2.4.8
To "(ax ay) ( )
t(aw+ au) . .
Te: S | — + —
St Er
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By difterentiating Eqs, (2.4.8), we obtain
ar,, a0 AT
ERETAR T
ar,, v o’
By Navay Mg
at,, w O’
or Mavar Mar?

(2.4.9)

Substitution of Eqgs. (2.4.9) into Eq. (2.4.3) yiclds
ou

o0 Fu v w u u B
(B2 2 or 2502002028 s

A— KR I o o —
ar T Maat g Ay " ox oz ox?  gy? " a9z’

We note that
Fu v Fw  Q (au v aw) 30

T — — afe w— ol m—— —

.*. .‘.
ox? oxdy oxdz aAv\ox 8y 0z

and introduce the notation

A=V=—4— 4 —
ox?  dy? 9z’

The symbol A or V* is called the Laplace operator. Hence, Eq. (2.4.10)

becomes

30 *u
(A +;¢)a+;tVzu=p5[7 (2.4.11)

In a similar manner, we obtain the other two equations which are

a0 k]

A ) — y=p—

(A+p) ay+/tV v=p o (2.4.12)
a0 A%

A+ p)— 2y = —o

(. 1) o+ nPh ey (2.4.13)

In vector form, the equations of motion aésumc the form
(A + ) grad div u + V2 = pu, (2.4.14)

where u = ui+ vj+ wk and 0 = divu.
(i) If div u=10, the general cquation becomes

(2.4.15)
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where the velocity ¢ of 4 propagated wave is
c=Vu/p

This is.thc case of an equivoluminal wave propagation, since the volume
expansion 0 is zero for waves moving with this velocity. Sometimes these
waves are called waqyes of distortion because the velocity of propagation
dCPC_nds On 4 and p; the shear modulus u characterizes the distortion and
rotation of the volume element.

(i) When curl u = 0, the identity
curl curl u = grad divu — V-u
gives
grad divu = V?y
Then the general €quation becomes

(A +2u)Vu=pu,
or

u, = c2Vu (2.4.16)

where the velocity of propagation is

This is the case of an irrorational or dilatational wave propagation, since
curl u = 0 describes irrotational motion. Equations (2.4.15) and (2.4.16)
are called the three-dimensional wave equations.

In general the wave equation may be written as

u, = c*Vuy (2.4.17)

where the Laplace operator may be one, two, or three dimensional. The
importance of the wave equation stems from the fact that this type of
equation arises in many physical problems; for example, sound waves in
space, electrical vibration in a conductor, torsional oscillation of a rod,
shallow water waves, linearized supersonic flow in a gas, waves in an
electric transmission line, waves in magnetohydrodynamics, and lon-

gitudinal vibrations of a bar.

2.5 CONDUCTION OF HEAT IN SOLIDS

We consider a domain D* bounded by a closed surface B*. Let

the temperature at a point (x, y, z)-at time r. If the
not constant, heat flows from places of higher temperature
er ter perature. Fourier’s law states that the rate of flow
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al hh)dt‘lx

is proportional to the gradient of the temperature. Thus the Vcl(lcity o
the heat flow in an isotropic body is
v=—Kgradu (2.5 I
where A is a constant, called the thermal conductivity of the body,
Let D be an arbitrary domain bounded by a closed surface B in »

Then the amount of heat leaving D per unit time is

ff v, ds
B

where v, = v - n is the component of v in the direction of the outer unijt
normal n of B. Thus by Gauss’ theorem (Divergence theorem)

ff U, ds=fff div (—K grad u) dx dy dz
B D

=~ —K]fj Viudx dy dz (2.5.2)
b .
But the amount of heat in D is given by
ffj opudxdy dz (2.5.3)
b

where p is the density of the material of the body and o is its specific
heat. Assuming that integration and differentiation are interchangeable,

the rate of decrease of heat in D is

3
—”f opa—':dx dy dz (2.5.4)
J |

Since the rate of decrease of heat in D must be equal to the amount of
heat leaving D per unit time, we have

—fff apu,dxdydz=—Kfffvzudxdydz
D D

or :
fff [opt, — KVu) dx dy dz = 0 (2.5.5)
D

a . ” » . .
:':ésnbnmr;‘.D 'mj Dt‘. We assume that the integrand is continuous. If
ont : gg‘gd 15 not zero at a point (xq, yy, ) in D, then

215 HICRIANG Is not zero in the small region surrounding

). Con nuing in this fashion we extend the region
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encompassing . Hence the integral must be nonzero. This contradicts
(2.5.5). Thus, the integrand is zero everywhere, that s,

, = kY (2.5.6)

where k = K/op. This is known as the heat equation. A
This type of equation appears in a great varicty ol pro
mathematical physics, for example the concentration of (.Ilftu.xn'u;Anun.c-
rial, the motion of a tidal wave in a long channcl, LraRsmIsSIon il
clectrical cables, and unstecady boundary layers in viscous fluid flows.

problems in



