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11.1 Parametrizations of Plane Curves

Parametric Equations

Figure 11.1 shows the path of a moving particle in the xy-plane. Notice that the path fails 
the vertical line test, so it cannot be described as the graph of a function of the variable x. 
However, we can sometimes describe the path by a pair of equations, x = ƒ(t) and 
y = g(t), where ƒ and g are continuous functions. When studying motion, t usually 
denotes time. Equations like these can describe more general curves than those described 
by a single function, and they provide not only the graph of the path traced out but also the 
location of the particle (x, y) = (ƒ(t), g(t)) at any time t.

OVERVIEW In this chapter we study new ways to define curves in the plane. Instead of 
thinking of a curve as the graph of a function or equation, we think of it as the path of a mov-
ing particle whose position is changing over time. Then each of the x- and y-coordinates of 
the particle’s position becomes a function of a third variable t. We can also change the way in 
which points in the plane themselves are described by using polar coordinates rather than 
the rectangular or Cartesian system. Both of these new tools are useful for describing 
motion, like that of planets and satellites, or projectiles moving in the plane or space.

Parametric Equations 
and Polar Coordinates

11

DEFINITION If x and y are given as functions

x = ƒ(t),  y = g(t)

over an interval I of t-values, then the set of points (x, y) = (ƒ(t), g(t)) defined by 
these equations is a parametric curve. The equations are parametric equations 
for the curve.

The variable t is a parameter for the curve, and its domain I is the parameter 
 interval. If I is a closed interval, a … t … b, the point (ƒ(a), g(a)) is the initial point of 
the curve and (ƒ(b), g(b)) is the terminal point. When we give parametric equations and a 
parameter interval for a curve, we say that we have parametrized the curve. The equa-
tions and interval together constitute a parametrization of the curve. A given curve can 
be represented by different sets of parametric equations. (See Exercises 29 and 30.)

EXAMPLE 1  Sketch the curve defined by the parametric equations

x = sin pt>2,  y = t,  0 … t … 6.

( f (t), g(t))

Position of particle
at time t

FIGURE 11.1 The curve or path traced 
by a particle moving in the xy-plane is not 
always the graph of a function or single 
equation.
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650 Chapter 11 Parametric Equations and Polar Coordinates

Solution We make a table of values (Table 11.1), plot the points (x, y), and draw a 
smooth curve through them (Figure 11.2). If we think of the curve as the path of a moving 
particle, the particle starts at time t = 0 at the initial point (0, 0) and then moves upward 
in a wavy path until at time t = 6 it reaches the terminal point (0, 6). The direction of 
motion is shown by the arrows in Figure 11.2.

TABLE 11.1  Values of x = sin Pt ,2 

and y = t  for selected values of t.

t  x y

0  0 0

1  1 1

2  0 2

3 -1 3

4  0 4

5  1 5

6  0 6

x

y

0 1−1

1

2

5

6

4

3

(0, 0)
t = 0

(0, 6)
t = 6

(1, 1)
t = 1

(−1, 3)
t = 3

(1, 5)
t = 5

(0, 2)
t = 2

(0, 4)
t = 4

FIGURE 11.2 The curve given by the 
parametric equations x = sin pt>2 and 
y = t (Example 1). 

EXAMPLE 2  Sketch the curve defined by the parametric equations

x = t2,  y = t + 1,  -q 6 t 6 q.

Solution We make a table of values (Table 11.2), plot the points (x, y), and draw a 
smooth curve through them (Figure 11.3). We think of the curve as the path that a particle 
moves along the curve in the direction of the arrows. Although the time intervals in the 
table are equal, the consecutive points plotted along the curve are not at equal arc length 
distances. The reason for this is that the particle slows down as it gets nearer to the y-axis 
along the lower branch of the curve as t increases, and then speeds up after reaching the 
y-axis at (0, 1) and moving along the upper branch. Since the interval of values for t is all 
real numbers, there is no initial point and no terminal point for the curve.

TABLE 11.2  Values of x = t2  and 

y = t + 1  for selected values of t.

 t x  y

-3 9 -2

-2 4 -1

-1 1  0

 0 0  1

 1 1  2

 2 4  3

 3 9  4

(1, 2)
(4, 3)

(4, −1)

(9, 4)

(9, −2)

(0, 1)
(1, 0)

x

y

t = 0

t = −1

t = 1
t = 2

t = 3

t = −2

t = −3

FIGURE 11.3 The curve given by 
the parametric equations x = t2 and 
y = t + 1 (Example 2).
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 11.1  Parametrizations of Plane Curves 651

For this example we can use algebraic manipulation to eliminate the parameter t and 
obtain an algebraic equation for the curve in terms of x and y alone. We solve y = t + 1 
for t and substitute the resulting equation t = y - 1 into the equation for x, which yields

x = t2 = ( y - 1)2 = y2 - 2y + 1.

The equation x = y2 - 2y + 1 represents a parabola, as displayed in Figure 11.3. It is 
sometimes quite difficult, or even impossible, to eliminate the parameter from a pair of 
parametric equations, as we did here. 

EXAMPLE 3  Graph the parametric curves

(a) x = cos t,   y = sin t,   0 … t … 2p.

(b) x = a cos t,   y = a sin t,   0 … t … 2p.

Solution

(a) Since x2 + y2 = cos2 t + sin2 t = 1, the parametric curve lies along the unit circle 
x2 + y2 = 1. As t increases from 0 to 2p, the point (x, y) = (cos t, sin t) starts at 
(1, 0) and traces the entire circle once counterclockwise (Figure 11.4).

(b) For x = a cos t, y = a sin t, 0 … t … 2p, we have x2 + y2 = a2 cos2 t + a2 sin2 t = a2. 
The parametrization describes a motion that begins at the point (a, 0) and traverses 
the circle x2 + y2 = a2 once counterclockwise, returning to (a, 0) at t = 2p. The 
graph is a circle centered at the origin with radius r = 0 a 0  and coordinate points 
(a cos t, a sin t). 

EXAMPLE 4  The position P(x, y) of a particle moving in the xy-plane is given by the 
equations and parameter interval

x = 2t,  y = t,  t Ú 0.

Identify the path traced by the particle and describe the motion.

Solution We try to identify the path by eliminating t between the equations x = 2t and 
y = t, which might produce a re-cognizable algebraic relation between x and y. We find 
that

y = t = 12t22 = x2.

Thus, the particle’s position coordinates satisfy the equation y = x2, so the particle moves 
along the parabola y = x2.

It would be a mistake, however, to conclude that the particle’s path is the entire para-
bola y = x2; it is only half the parabola. The particle’s x-coordinate is never negative.  
The particle starts at (0, 0) when t = 0 and rises into the first quadrant as t increases  
(Figure 11.5). The parameter interval is 30, q) and there is no terminal point. 

The graph of any function y = ƒ(x) can always be given a natural parametrization 
x = t and y = ƒ(t). The domain of the parameter in this case is the same as the domain of 
the function ƒ.

EXAMPLE 5  A parametrization of the graph of the function ƒ(x) = x2 is given by

x = t,  y = ƒ(t) = t2,  -q 6 t 6 q.

When t Ú 0, this parametrization gives the same path in the xy-plane as we had in  
Example 4. However, since the parameter t here can now also be negative, we obtain the 
left-hand part of the parabola as well; that is, we have the entire parabolic curve. For this 
parametrization, there is no starting point and no terminal point (Figure 11.6). 

x
0

t

(1, 0)

y

x2 + y2 = 1

P(cos t, sin t)

t = 0t = p

 t = 3p
2

 t = p
2

FIGURE 11.4 The equations x = cos t 
and y = sin t describe motion on the circle 
x2 + y2 = 1. The arrow shows the direc-
tion of increasing t (Example 3).

x

y

0

(1, 1)

(2, 4)

  

Starts at
t = 0

t = 1

t = 4

y = x2, x ≥ 0

P("t, t)

FIGURE 11.5 The equations x = 2t 
and y = t and the interval t Ú 0 describe 
the path of a particle that traces the  
right-hand half of the parabola y = x2 
(Example 4).

x

y

0

y = x2

(−2, 4) (2, 4)

(1, 1)

t = −2 t = 2

t = 1

P(t, t 2)

FIGURE 11.6 The path defined by 
x = t, y = t2, -q 6 t 6 q is the entire 
parabola y = x2 (Example 5).
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652 Chapter 11 Parametric Equations and Polar Coordinates

Notice that a parametrization also specifies when a particle moving along the curve is 
located at a specific point along the curve. In Example 4, the point (2, 4) is reached when 
t = 4; in Example 5, it is reached “earlier” when t = 2. You can see the implications of 
this aspect of parametrizations when considering the possibility of two objects coming 
into collision: they have to be at the exact same location point P(x, y) for some (possibly 
different) values of their respective parameters. We will say more about this aspect of 
parametrizations when we study motion in Chapter 13.

EXAMPLE 6  Find a parametrization for the line through the point (a, b) having 
slope m.

Solution A Cartesian equation of the line is y - b = m(x - a). If we define the para-
meter t by t = x - a, we find that x = a + t and y - b = mt. That is,

x = a + t,  y = b + mt,  -q 6 t 6 q

parametrizes the line. This parametrization differs from the one we would obtain by the 
natural parametrization in Example 5 when t = x. However, both parametrizations 
describe the same line. 

EXAMPLE 7  Sketch and identify the path traced by the point P(x, y) if

x = t + 1
t ,    y = t - 1

t ,    t 7 0.

Solution We make a brief table of values in Table 11.3, plot the points, and draw a 
smooth curve through them, as we did in Example 1. Next we eliminate the parameter t 
from the equations. The procedure is more complicated than in Example 2. Taking the dif-
ference between x and y as given by the parametric equations, we find that

x - y = at + 1
t b - at - 1

t b = 2
t .

If we add the two parametric equations, we get

x + y = at + 1
t b + at - 1

t b = 2t.

We can then eliminate the parameter t by multiplying these last equations together:

(x - y)(x + y) = a2t b (2t) = 4.

Expanding the expression on the left-hand side, we obtain a standard equation for a hyper-
bola (reviewed in Section 11.6):

 x2 - y2 = 4. (1)

Thus the coordinates of all the points P(x, y) described by the parametric equations sat-
isfy Equation (1). However, Equation (1) does not require that the x-coordinate be posi-
tive. So there are points (x, y) on the hyperbola that do not satisfy the parametric equation 
x = t + (1>t), t 7 0. In fact, the parametric equations do not yield any points on the left 
branch of the hyperbola given by Equation (1), points where the x-coordinate would be 
negative. For small positive values of t, the path lies in the fourth quadrant and rises into 
the first quadrant as t increases, crossing the x-axis when t = 1 (see Figure 11.7).  
The parameter domain is (0, q) and there is no starting point and no terminal point for 
the path. 

TABLE 11.3  Values of x = t + (1 ,t ) 

and y = t − (1 ,t)  for selected 

values of t.

 t  1 , t  x  y

 0.1 10.0 10.1 -9.9

 0.2  5.0  5.2 -4.8

 0.4  2.5  2.9 -2.1

 1.0  1.0  2.0 0.0

 2.0  0.5  2.5 1.5

 5.0  0.2  5.2 4.8

10.0  0.1 10.1 9.9

t = 1
t = 2

t = 5

t = 10

t = 0.4

t = 0.2

t = 0.1

5 10

−5

−10

5

0

10

(10.1, −9.9)

(5.2, −4.8)

(2.9, −2.1)
(2, 0)

(2.5, 1.5)

(10.1, 9.9)

(5.2, 4.8)

x

y

FIGURE 11.7 The curve for 
x = t + (1>t), y = t - (1>t), t 7 0 
in Example 7. (The part shown is for 
0.1 … t … 10.)
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 11.1  Parametrizations of Plane Curves 653

Examples 4, 5, and 6 illustrate that a given curve, or portion of it, can be represented 
by different parametrizations. In the case of Example 7, we can also represent the right-
hand branch of the hyperbola by the parametrization

x = 24 + t2,  y = t,  -q 6 t 6 q,

which is obtained by solving Equation (1) for x Ú 0 and letting y be the parameter. Still 
another parametrization for the right-hand branch of the hyperbola given by Equation (1) is

x = 2 sec t,  y = 2 tan t,  -  

p
2 6 t 6 p

2 .

This parametrization follows from the trigonometric identity sec2 t - tan2 t = 1, because

x2 - y2 = 4 sec2 t - 4 tan2 t = 4 (sec2 t - tan2 t) = 4.

As t runs between -p>2 and p>2, x = sec t remains positive and y = tan t runs between 
-q and q, so P traverses the hyperbola’s right-hand branch. It comes in along the 
branch’s lower half as t S 0-, reaches (2, 0) at t = 0, and moves out into the first quad-
rant as t increases steadily toward p>2. This is the same branch of the hyperbola shown in 
Figure 11.7.

Cycloids

The problem with a pendulum clock whose bob swings in a circular arc is that the fre-
quency of the swing depends on the amplitude of the swing. The wider the swing, the lon-
ger it takes the bob to return to center (its lowest position).

This does not happen if the bob can be made to swing in a cycloid. In 1673, Christian 
Huygens designed a pendulum clock whose bob would swing in a cycloid, a curve we 
define in Example 8. He hung the bob from a fine wire constrained by guards that caused 
it to draw up as it swung away from center (Figure 11.8). We describe the path parametri-
cally in the next example.

EXAMPLE 8  A wheel of radius a rolls along a horizontal straight line. Find paramet-
ric equations for the path traced by a point P on the wheel’s circumference. The path is 
called a cycloid.

Solution We take the line to be the x-axis, mark a point P on the wheel, start the wheel 
with P at the origin, and roll the wheel to the right. As parameter, we use the angle t 
through which the wheel turns, measured in radians. Figure 11.9 shows the wheel a short 
while later when its base lies at units from the origin. The wheel’s center C lies at (at, a) 
and the coordinates of P are

x = at + a cos u,  y = a + a sin u.

To express u in terms of t, we observe that t + u = 3p>2 in the figure, so that

u = 3p
2 - t.

This makes

cos u = cos a3p2 - tb = -sin t,  sin u = sin a3p2 - tb = -cos t.

The equations we seek are

x = at - a sin t,  y = a - a cos t.

These are usually written with the a factored out:

 x = a(t - sin t),  y = a(1 - cos t). (2)

Figure 11.10 shows the first arch of the cycloid and part of the next. 

Cycloid

Guard
cycloid

Guard
cycloid

FIGURE 11.8 In Huygens’ pendulum 
clock, the bob swings in a cycloid, so the 
frequency is independent of the amplitude.

x

y

t
a
u

C(at, a)

M0 at

P(x, y) = (at + a cos u, a + a sin u)

FIGURE 11.9 The position of P(x, y) on 
the rolling wheel at angle t (Example 8).

HISTORICAL BIOGRAPHY

Christian Huygens
(1629–1695)
www.goo.gl/4QtZkD
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654 Chapter 11 Parametric Equations and Polar Coordinates

Brachistochrones and Tautochrones

If we turn Figure 11.10 upside down, Equations (2) still apply and the resulting curve  
(Figure 11.11) has two interesting physical properties. The first relates to the origin O and 
the point B at the bottom of the first arch. Among all smooth curves joining these points, 
the cycloid is the curve along which a frictionless bead, subject only to the force of 
 gravity, will slide from O to B the fastest. This makes the cycloid a brachistochrone 
(“brah-kiss-toe-krone”), or shortest-time curve for these points. The second property is 
that even if you start the bead partway down the curve toward B, it will still take the bead 
the same amount of time to reach B. This makes the cycloid a tautochrone (“taw-toe-krone”), 
or same-time curve for O and B.

Are there any other brachistochrones joining O and B, or is the cycloid the only one? 
We can formulate this as a mathematical question in the following way. At the start, the 
kinetic energy of the bead is zero, since its velocity (speed) is zero. The work done by 
gravity in moving the bead from (0, 0) to any other point (x, y) in the plane is mgy, and 
this must equal the change in kinetic energy. (See Exercise 25 in Section 6.5.) That is,

mgy = 1
2 my2 - 1

2 m(0)2.

Thus, the speed of the bead when it reaches (x, y) has to be y = 22gy. That is,

ds
dT

= 22gy  ds is the arc length differential along 
the bead’s path and T represents time.

 

or

 dT = ds22gy
=
21 + (dy>dx)2 dx22gy

. (3)

The time Tƒ it takes the bead to slide along a particular path y = ƒ(x) from O to B(ap, 2a) 
is

 Tf = L
x = ap

x = 0 B1 + (dy>dx)2

2gy  dx. (4)

What curves y = ƒ(x), if any, minimize the value of this integral?
At first sight, we might guess that the straight line joining O and B would give the 

shortest time, but perhaps not. There might be some advantage in having the bead fall ver-
tically at first to build up its speed faster. With a higher speed, the bead could travel a lon-
ger path and still reach B first. Indeed, this is the right idea. The solution, from a branch of 
mathematics known as the calculus of variations, is that the original cycloid from O to B is 
the one and only brachistochrone for O and B (Figure 11.12).

In the next section we show how to find the arc length differential ds for a parame-
trized curve. Once we know how to find ds, we can calculate the time given by the right-
hand side of Equation (4) for the cycloid. This calculation gives the amount of time it takes 
a frictionless bead to slide down the cycloid to B after it is released from rest at O. The 
time turns out to be equal to p2a>g, where a is the radius of the wheel defining the par-
ticular cycloid. Moreover, if we start the bead at some lower point on the cycloid, corre-
sponding to a parameter value t0 7 0, we can integrate the parametric form of ds>22gy 
in Equation (3) over the interval 3 t0, p4  to find the time it takes the bead to reach the point 
B. That calculation results in the same time T = p2a>g. It takes the bead the same 
amount of time to reach B no matter where it starts, which makes the cycloid a tauto-
chrone. Beads starting simultaneously from O, A, and C in Figure 11.13, for instance, will 
all reach B at exactly the same time. This is the reason why Huygens’ pendulum clock in 
Figure 11.8 is independent of the amplitude of the swing.

O
x

y

(x, y)

2pa

t
a

FIGURE 11.10 The cycloid curve 
x = a(t - sin t), y = a(1 - cos t), for 
t Ú 0.

x

y

O a

a

2a

2a

2papa

P(at − a sin t, a − a cos t)

B(ap, 2a)

FIGURE 11.11 Turning Figure 11.10 
upside down, the y-axis points downward, 
indicating the direction of the gravitational 
force. Equations (2) still describe the curve 
parametrically.

cycloid

O

B

FIGURE 11.12 The cycloid is the unique 
curve which minimizes the time it takes 
for a frictionless bead to slide from point 
O to B.

O
x

y

A

B
C

FIGURE 11.13 Beads released simulta-
neously on the upside-down cycloid at O, 
A, and C will reach B at the same time.
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Finding Cartesian from Parametric Equations
Exercises 1–18 give parametric equations and parameter intervals for 
the motion of a particle in the xy-plane. Identify the particle’s path by 
finding a Cartesian equation for it. Graph the Cartesian equation. (The 
graphs will vary with the equation used.) Indicate the portion of the 
graph traced by the particle and the direction of motion.

 1. x = 3t, y = 9t2, -q 6 t 6 q
 2. x = -2t, y = t, t Ú 0

 3. x = 2t - 5, y = 4t - 7, -q 6 t 6 q
 4. x = 3 - 3t, y = 2t, 0 … t … 1

 5. x = cos 2t, y = sin 2t, 0 … t … p

 6. x = cos (p - t), y = sin (p - t), 0 … t … p

 7. x = 4 cos t, y = 2 sin t, 0 … t … 2p

 8. x = 4 sin t, y = 5 cos t, 0 … t … 2p

 9. x = sin t, y = cos 2t, -  
p

2
… t … p

2

 10. x = 1 + sin t, y = cos t - 2, 0 … t … p

 11. x = t2, y = t6 - 2t4, -q 6 t 6 q

 12. x = t
t - 1

, y = t - 2
t + 1

, -1 6 t 6 1

 13. x = t, y = 21 - t2, -1 … t … 0

 14. x = 2t + 1, y = 2t, t Ú 0

 15. x = sec2 t - 1, y = tan t, -p>2 6 t 6 p>2
 16. x = -sec t, y = tan t, -p>2 6 t 6 p>2
 17. x = -cosh t, y = sinh t, -q 6 t 6 q
 18. x = 2 sinh t, y = 2 cosh t, -q 6 t 6 q

In Exercises 19–24, match the parametric equations with the paramet-
ric curves labeled A through F.

 19. x = 1 - sin t, y = 1 + cos t 

 20. x = cos t, y = 2 sin t

 21. x = 1
4

 t cos t, y = 1
4

 t sin t

 22. x = 2t, y = 2t cos t

 23. x = ln t, y = 3e-t>2

 24. x = cos t, y = sin 3t

A. 

(a)

x

y

21 3

−2

−3

−1

3

1

2

 B. 

x

y

1−1

−1

1

(b)

C. 

x
21−2 −1

(c)

y

1

2

3

 D. 

x

y

21

1

2

(d)
E. 

x

y

21 3−3 −2 −1

−2

−3

−1

3

1

2

(e)

 F. 

x

y

21−2 −1

−2

−1

1

2

(f)

In Exercises 25–28, use the given graphs of x = ƒ(t) and y = g(t) to 
sketch the corresponding parametric curve in the xy-plane.

 25. 

t
1−1

1

t

x

f g

1

1

−1

y

 26. 

t

x

1−1

−1

1
f

t

y

1−1

−1

1
g

EXERCISES 11.1
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656 Chapter 11 Parametric Equations and Polar Coordinates

 37. Find parametric equations and a parameter interval for the motion 
of a particle starting at the point (2, 0) and tracing the top half of 
the circle x2 + y2 = 4 four times.

 38. Find parametric equations and a parameter interval for the motion 
of a particle that moves along the graph of y = x2 in the following 
way: Beginning at (0, 0) it moves to (3, 9), and then travels back 
and forth from (3, 9) to (-3, 9) infinitely many times.

 39. Find parametric equations for the semicircle

x2 + y2 = a2, y 7 0,

  using as parameter the slope t = dy>dx of the tangent to the curve 
at (x, y).

 40. Find parametric equations for the circle

x2 + y2 = a2,

  using as parameter the arc length s measured counterclockwise 
from the point (a, 0) to the point (x, y).

 41. Find a parametrization for the line segment joining points (0, 2) 
and (4, 0) using the angle u in the accompanying figure as the 
parameter.

x

y

2

0 4

u

(x, y)

 42. Find a parametrization for the curve y = 2x with terminal 
point (0, 0) using the angle u in the accompanying figure as the 
parameter.

x

y

u

(x, y)

y = "x

0

 43. Find a parametrization for the circle (x - 2)2 + y2 = 1 starting 
at (1, 0) and moving clockwise once around the circle, using the 
central angle u in the accompanying figure as the parameter.

x

y

1

1

1 2 30

u

(x, y)

 27. 

t

y

f

2−1

1

t
21−2 −1

2

1

−1

g

x

−1

−2

1

 28. 

t

x

1 2−1−2

−4

−2

4

2
f

t

y

21−2 −1

−2

−1

2

1
g

Finding Parametric Equations
 29. Find parametric equations and a parameter interval for the motion 

of a particle that starts at (a, 0) and traces the circle x2 + y2 = a2

a. once clockwise.

b. once counterclockwise.

c. twice clockwise.

d. twice counterclockwise.

  (There are many ways to do these, so your answers may not be the 
same as the ones in the back of the book.)

 30. Find parametric equations and a parameter interval for the mo-
tion of a particle that starts at (a, 0) and traces the ellipse 
(x2>a2) + (y2>b2) = 1

a. once clockwise.

b. once counterclockwise.

c. twice clockwise.

d. twice counterclockwise.

  (As in Exercise 29, there are many correct answers.)

In Exercises 31–36, find a parametrization for the curve.

 31. the line segment with endpoints (-1, -3) and (4, 1)

 32. the line segment with endpoints (-1, 3) and (3, -2)

 33. the lower half of the parabola x - 1 = y2

 34. the left half of the parabola y = x2 + 2x

 35. the ray (half line) with initial point (2, 3) that passes through the 
point (-1, -1)

 36. the ray (half line) with initial point (-1, 2) that passes through the 
point (0, 0)
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 11.1  Parametrizations of Plane Curves 657

 47. As the point N moves along the line y = a in the accompanying 
figure, P moves in such a way that OP = MN. Find parametric 
equations for the coordinates of P as functions of the angle t that 
the line ON makes with the positive y-axis.

x

y

N

M

A(0, a)

t

P

O

 48. Trochoids A wheel of radius a rolls along a horizontal straight 
line without slipping. Find parametric equations for the curve 
traced out by a point P on a spoke of the wheel b units from its 
center. As parameter, use the angle u through which the wheel 
turns. The curve is called a trochoid, which is a cycloid when 
b = a.

 44. Find a parametrization for the circle x2 + y2 = 1 starting at (1, 0) 
and moving counterclockwise to the terminal point (0, 1), using 
the angle u in the accompanying figure as the parameter.

x

y

1

–2
u

(x, y)

(1, 0)

(0, 1)

 45. The witch of Maria Agnesi The bell-shaped witch of Maria 
Agnesi can be constructed in the following way. Start with a circle 
of radius 1, centered at the point (0, 1), as shown in the accompa-
nying figure. Choose a point A on the line y = 2 and connect it to 
the origin with a line segment. Call the point where the segment 
crosses the circle B. Let P be the point where the vertical line 
through A crosses the horizontal line through B. The witch is the 
curve traced by P as A moves along the line y = 2. Find paramet-
ric equations and a parameter interval for the witch by expressing 
the coordinates of P in terms of t, the radian measure of the angle 
that segment OA makes with the positive x-axis. The following 
equalities (which you may assume) will help.

a. x = AQ b. y = 2 - AB sin t

c. AB # OA = (AQ)2

x

y

O

Q A

B P(x, y)(0, 1)

y = 2

t

 46. Hypocycloid When a circle rolls on the inside of a fixed circle, 
any point P on the circumference of the rolling circle describes a 
hypocycloid. Let the fixed circle be x2 + y2 = a2, let the radius 
of the rolling circle be b, and let the initial position of the tracing 
point P be A(a, 0). Find parametric equations for the hypocycloid, 
using as the parameter the angle u from the positive x-axis to the 
line joining the circles’ centers. In particular, if b = a>4, as in the 
accompanying figure, show that the hypocycloid is the astroid

x = a cos3 u, y = a sin3 u.

x

y

O P

C
A(a, 0)b

u

Distance Using Parametric Equations
 49. Find the point on the parabola x = t, y = t2, -q 6 t 6 q, 

closest to the point (2, 1>2). (Hint: Minimize the square of the 
 distance as a function of t.)

 50. Find the point on the ellipse x = 2 cos t, y = sin t, 0 … t … 2p 
closest to the point (3>4, 0). (Hint: Minimize the square of the 
distance as a function of t.)

GRAPHER EXPLORATIONS
If you have a parametric equation grapher, graph the equations over 
the given intervals in Exercises 51–58.

 51. Ellipse x = 4 cos t, y = 2 sin t, over

a. 0 … t … 2p

b. 0 … t … p

c. -p>2 … t … p>2.

 52. Hyperbola branch x = sec t (enter as 1 >cos(t)), y = tan t 
(enter as sin(t) >cos(t)), over

a. -1.5 … t … 1.5

b. -0.5 … t … 0.5

c. -0.1 … t … 0.1.

 53. Parabola x = 2t + 3, y = t2 - 1, -2 … t … 2

 54. Cycloid x = t - sin t, y = 1 - cos t, over

a. 0 … t … 2p

b. 0 … t … 4p

c. p … t … 3p.

 55. Deltoid

x = 2 cos t + cos 2t, y = 2 sin t - sin 2t; 0 … t … 2p

  What happens if you replace 2 with -2 in the equations for x and 
y? Graph the new equations and find out.

T
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 56. A nice curve

x = 3 cos t + cos 3t, y = 3 sin t - sin 3t; 0 … t … 2p

  What happens if you replace 3 with -3 in the equations for x and 
y? Graph the new equations and find out.

 57. a. Epicycloid 

x = 9 cos t - cos 9t, y = 9 sin t - sin 9t; 0 … t … 2p

b. Hypocycloid 

x = 8 cos t + 2 cos 4t, y = 8 sin t - 2 sin 4t; 0 … t … 2p

c. Hypotrochoid 

x = cos t + 5 cos 3t, y = 6 cos t - 5 sin 3t; 0 … t … 2p

 58. a.  x = 6 cos t + 5 cos 3t, y = 6 sin t - 5 sin 3t;  
0 … t … 2p

b. x = 6 cos 2t + 5 cos 6t, y = 6 sin 2t - 5 sin 6t; 
0 … t … p

c. x = 6 cos t + 5 cos 3t, y = 6 sin 2t - 5 sin 3t; 
0 … t … 2p

d. x = 6 cos 2t + 5 cos 6t, y = 6 sin 4t - 5 sin 6t; 
0 … t … p

11.2 Calculus with Parametric Curves

In this section we apply calculus to parametric curves. Specifically, we find slopes, 
lengths, and areas associated with parametrized curves.

Tangents and Areas

A parametrized curve x = ƒ(t) and y = g(t) is differentiable at t if ƒ and g are differen-
tiable at t. At a point on a differentiable parametrized curve where y is also a differentiable 
function of x, the derivatives dy>dt, dx>dt, and dy>dx are related by the Chain Rule:

dy
dt

=
dy
dx

# dx
dt

.

If dx>dt ≠ 0, we may divide both sides of this equation by dx>dt to solve for dy>dx.

Parametric Formula for dy ,dx
If all three derivatives exist and dx>dt ≠ 0, then

 
dy
dx

=
dy>dt

dx>dt
. (1)

Parametric Formula for d2y ,dx2

If the equations x = ƒ(t), y = g(t) define y as a twice-differentiable function of 
x, then at any point where dx>dt ≠ 0 and y′ = dy>dx,

 
d2y

dx2 =
dy′>dt

dx>dt
. (2)

If parametric equations define y as a twice-differentiable function of x, we can apply 
Equation (1) to the function dy>dx = y′ to calculate d2y>dx2 as a function of t:

d2y

dx2 = d
dx

 ( y′) =
dy′>dt

dx>dt
.  Eq. (1) with y′ in place of y

x

y

0 1 2

1

2

("2, 1)

  

t = p
4

x = sec t, y = tan t,
p
2

p
2

– < t <

Figure 11.14 The curve in Example 1 
is the right-hand branch of the hyperbola 
x2 - y2 = 1.

ExAmPlE 1  Find the tangent to the curve

x = sec t,  y = tan t,  -  

p
2 6 t 6 p

2 ,

at the point 122, 12, where t = p>4 (Figure 11.14).
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