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 56. A nice curve

x = 3 cos t + cos 3t, y = 3 sin t - sin 3t; 0 … t … 2p

  What happens if you replace 3 with -3 in the equations for x and 
y? Graph the new equations and find out.

 57. a. Epicycloid 

x = 9 cos t - cos 9t, y = 9 sin t - sin 9t; 0 … t … 2p

b. Hypocycloid 

x = 8 cos t + 2 cos 4t, y = 8 sin t - 2 sin 4t; 0 … t … 2p

c. Hypotrochoid 

x = cos t + 5 cos 3t, y = 6 cos t - 5 sin 3t; 0 … t … 2p

 58. a.  x = 6 cos t + 5 cos 3t, y = 6 sin t - 5 sin 3t;  
0 … t … 2p

b. x = 6 cos 2t + 5 cos 6t, y = 6 sin 2t - 5 sin 6t; 
0 … t … p

c. x = 6 cos t + 5 cos 3t, y = 6 sin 2t - 5 sin 3t; 
0 … t … 2p

d. x = 6 cos 2t + 5 cos 6t, y = 6 sin 4t - 5 sin 6t; 
0 … t … p

11.2 Calculus with Parametric Curves

In this section we apply calculus to parametric curves. Specifically, we find slopes, 
lengths, and areas associated with parametrized curves.

Tangents and Areas

A parametrized curve x = ƒ(t) and y = g(t) is differentiable at t if ƒ and g are differen-
tiable at t. At a point on a differentiable parametrized curve where y is also a differentiable 
function of x, the derivatives dy>dt, dx>dt, and dy>dx are related by the Chain Rule:

dy
dt

=
dy
dx

# dx
dt

.

If dx>dt ≠ 0, we may divide both sides of this equation by dx>dt to solve for dy>dx.

Parametric Formula for dy ,dx
If all three derivatives exist and dx>dt ≠ 0, then

 
dy
dx

=
dy>dt

dx>dt
. (1)

Parametric Formula for d2y ,dx2

If the equations x = ƒ(t), y = g(t) define y as a twice-differentiable function of 
x, then at any point where dx>dt ≠ 0 and y′ = dy>dx,

 
d2y

dx2 =
dy′>dt

dx>dt
. (2)

If parametric equations define y as a twice-differentiable function of x, we can apply 
Equation (1) to the function dy>dx = y′ to calculate d2y>dx2 as a function of t:

d2y

dx2 = d
dx

 ( y′) =
dy′>dt

dx>dt
.  Eq. (1) with y′ in place of y

x

y

0 1 2

1

2

("2, 1)

  

t = p
4

x = sec t, y = tan t,
p
2

p
2

– < t <

Figure 11.14 The curve in Example 1 
is the right-hand branch of the hyperbola 
x2 - y2 = 1.

ExAmPlE 1  Find the tangent to the curve

x = sec t,  y = tan t,  -  

p
2 6 t 6 p

2 ,

at the point 122, 12, where t = p>4 (Figure 11.14).
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 11.2  Calculus with Parametric Curves 659

EXAMPLE 3  Find the area enclosed by the astroid (Figure 11.15)

x = cos3 t,  y = sin3 t,  0 … t … 2p.

Solution By symmetry, the enclosed area is 4 times the area beneath the curve in the 
first quadrant where 0 … t … p>2. We can apply the definite integral formula for area 
studied in Chapter 5, using substitution to express the curve and differential dx in terms of 
the parameter t. Thus,

 A = 4 L
1

0
 y dx  

4 times area under y 
from x = 0 to x = 1  

 = 4 L
p>2

0
 (sin3

  t)(3 cos2 t sin t) dt  Substitution for y and dx

 = 12 L
p>2

0
 a1 - cos 2t

2 b
2

 a1 + cos 2t
2 b  dt sin4 t = a1 - cos 2t

2
b

2

 

 = 3
2 L

p>2

0
 (1 - 2 cos 2t + cos2 2t)(1 + cos 2t) dt Expand squared term.

 = 3
2 L

p>2

0
 (1 - cos 2t - cos2 2t + cos3 2t) dt Multiply terms.

EXAMPLE 2  Find d2y>dx2 as a function of t if x = t - t2 and y = t - t3.

Solution

1.  Express y′ = dy>dx in terms of t.

y′ =
dy
dx

=
dy>dt

dx>dt
= 1 - 3t2

1 - 2t

2.  Differentiate y′ with respect to t.

dy′
dt

= d
dt

 a1 - 3t2

1 - 2t b = 2 - 6t + 6t2

(1 - 2t)2   Derivative Quotient Rule

3.  Divide dy′>dt by dx>dt.

 
d2y

dx2 =
dy′>dt

dx>dt
=

(2 - 6t + 6t2) >(1 - 2t)2

1 - 2t = 2 - 6t + 6t2

(1 - 2t)3   Eq. (2) 

Solution The slope of the curve at t is

dy
dx

=
dy>dt

dx>dt
= sec2 t

sec t tan t = sec t
tan t .  Eq. (1)

Setting t equal to p>4 gives

 
dy
dx

2
t =p>4

=
sec (p>4)

tan (p>4)
 = 22

1 = 22.

The tangent line is

 y - 1 = 22 1x - 222
 y = 22 x - 2 + 1

  y = 22 x - 1.  

Finding d2y ,dx2 in Terms of t

1. Express y′ = dy>dx in terms of t.

2. Find dy′>dt.

3. Divide dy′>dt by dx>dt.

x

y

0

1

1−1

−1

x = cos3 t
y = sin3 t
0 ≤ t ≤ 2p

FIGURE 11.15 The astroid in  
Example 3.
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660 Chapter 11 Parametric Equations and Polar Coordinates

 = 3
2 c  L

p>2

0
(1 - cos 2t) dt - L

p>2

0
 cos2 2t dt + L

p>2

0
 cos3 2t dt d

 = 3
2 c at - 1

2 sin 2tb - 1
2 at + 1

4 sin 2tb + 1
2 asin 2t - 1

3 sin3 2tb d
p>2

0
 

Section 8.2, 
Example 3  

 = 3
2 cap2 - 0 - 0 - 0b - 1

2 ap2 + 0 - 0 - 0b + 1
2 (0 - 0 - 0 + 0)d   Evaluate.

 = 3p
8 .  

Length of a Parametrically Defined Curve

Let C be a curve given parametrically by the equations

x = ƒ(t)  and  y = g(t),  a … t … b.

We assume the functions ƒ and g are continuously differentiable (meaning they have 
continuous first derivatives) on the interval 3a, b4 . We also assume that the deriva-
tivesƒ′(t) and g′(t) are not simultaneously zero, which prevents the curve C from having 
any corners or cusps. Such a curve is called a smooth curve. We subdivide the path (or 
arc) AB into n pieces at points A = P0, P1, P2,c, Pn = B (Figure 11.16). These points 
correspond to a partition of the interval 3a, b4  by a = t0 6 t1 6 t2 6 g 6 tn = b, 
where Pk = (ƒ(tk), g(tk)). Join successive points of this subdivision by straight-line seg-
ments (Figure 11.16). A representative line segment has length

 Lk = 2(∆xk)2 + (∆yk)2

 = 23ƒ(tk) - ƒ(tk - 1)4 2 + 3g(tk) - g(tk - 1)4 2

(see Figure 11.17). If ∆tk is small, the length Lk is approximately the length of arc Pk - 1Pk. 
By the Mean Value Theorem there are numbers t*k  and t**k  in 3 tk - 1, tk4  such that

 ∆xk = ƒ(tk) - ƒ(tk - 1) = ƒ′(t*k) ∆tk ,

 ∆yk = g(tk) - g(tk - 1) = g′(t**k ) ∆tk .

Assuming the path from A to B is traversed exactly once as t increases from t = a to 
t = b, with no doubling back or retracing, an approximation to the (yet to be defined) 
“length” of the curve AB is the sum of all the lengths Lk:

 an

k = 1
Lk = an

k = 1
2(∆xk)2 + (∆yk)2

 = an

k = 1
23ƒ′(t*k ) 4 2 + 3g′(t**k ) 4 2 ∆tk .

Although this last sum on the right is not exactly a Riemann sum (because ƒ′ and g′ are 
evaluated at different points), it can be shown that its limit, as the norm of the partition 
tends to zero and the number of segments n S q, is the definite integral

lim
� �P� � S0

 an

k = 1
 23ƒ′(t*k ) 4 2 + 3g′(t**k ) 4 2 ∆tk = L

b

a
 23ƒ′(t)4 2 + 3g′(t)4 2 dt.

Therefore, it is reasonable to define the length of the curve from A to B to be this integral.

y

x
0

A = P0

B = Pn

P1

P2

C

Pk

Pk−1

FIGURE 11.16 The length of the smooth 
curve C from A to B is approximated by 
the sum of the lengths of the polygonal 
path (straight-line segments) starting at 
A = P0, then to P1, and so on, ending at 
B = Pn.

y

x
0

Lk

Δxk

Δyk

Pk–1 = ( f (tk–1), g(tk–1))

Pk = ( f (tk), g(tk))

FIGURE 11.17 The arc Pk - 1 Pk is  
approximated by the straight-line  
segment shown here, which has length 
Lk = 2(∆xk)2 + (∆yk)2.
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 11.2  Calculus with Parametric Curves 661

DEFINITION If a curve C is defined parametrically by x = ƒ(t) and y = g(t), 
a … t … b, where ƒ′ and g′ are continuous and not simultaneously zero on 
3a, b4 , and C is traversed exactly once as t increases from t = a to t = b, then 
the length of C is the definite integral

L = L
b

a
 23ƒ′(t)4 2 + 3g′(t)4 2 dt.

If x = ƒ(t) and y = g(t), then using the Leibniz notation we can write the formula for 
arc length this way:

 L = L
b

a
 B adx

dt
b

2

+ ady
dt
b

2

 dt. (3)

A smooth curve C does not double back or reverse the direction of motion over the 
time interval 3a, b4  since (ƒ′)2 + (g′)2 7 0 throughout the interval. At a point where a 
curve does start to double back on itself, either the curve fails to be differentiable or both 
derivatives must simultaneously equal zero. We will examine this phenomenon in Chapter 13, 
where we study tangent vectors to curves.

If there are two different parametrizations for a curve C whose length we want to 
find, it does not matter which one we use. However, the parametrization we choose must 
meet the conditions stated in the definition of the length of C (see Exercise 41 for an 
example).

EXAMPLE 4  Using the definition, find the length of the circle of radius r defined 
parametrically by

x = r cos t    and    y = r sin t,    0 … t … 2p.

Solution As t varies from 0 to 2p, the circle is traversed exactly once, so the circumfer-
ence is

L = L
2p

0
 B adx

dt
b

2

+ ady
dt
b

2

 dt.

We find

dx
dt

= -r sin t,    
dy
dt

= r cos t

and

adx
dt
b

2

+ ady
dt
b

2

 =  r2 (sin2 t + cos2 t) = r2.

Therefore, the total arc length is

 L = L
2p

0
2r2 dt = r  c t d

2p

0
= 2pr. 

EXAMPLE 5  Find the length of the astroid (Figure 11.15)

x = cos3 t,  y = sin3 t,  0 … t … 2p.
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662 Chapter 11 Parametric Equations and Polar Coordinates

Solution Because of the curve’s symmetry with respect to the coordinate axes, its length 
is four times the length of the first-quadrant portion. We have

x = cos3 t,       y = sin3 t

 adx
dt
b

2

= 33 cos2 t(-sin t)4 2 = 9 cos4 t sin2 t

 ady
dt
b

2

= 33 sin2 t(cos t)4 2 = 9 sin4 t cos2 t

 B adx
dt
b

2

+ ady
dt
b

2

= 29 cos2 t sin2 t (cos2 t + sin2 t)   (++)++*
 1

 = 29 cos2 t sin2 t

 = 3 � cos t sin t �   cos t sin t Ú 0 for 0 … t … p>2
 = 3 cos t sin t.

Therefore,

 Length of first@quadrant portion = L
p>2

0
3 cos t sin t dt

 = 3
2  L

p>2

0
 sin 2t dt   cos t sin t = (1>2) sin 2t  

 = -  34 cos 2t d
0

p>2
= 3

2.

The length of the astroid is four times this: 4(3>2) = 6. 

EXAMPLE 6  Find the perimeter of the ellipse x
2

a2 +
y2

b2 = 1.

Solution Parametrically, we represent the ellipse by the equations x = a sin t and 
y = b cos t, a 7 b and 0 … t … 2p. Then,

 adx
dt
b

2

+ ady
dt
b

2

= a2 cos2 t + b2 sin2 t

 = a2 - (a2 - b2) sin2 t

 = a231 - e2 sin2 t4   e = A1 - b2

a2
 (eccentricity, 

not the number 2.71828 . . .)
 

From Equation (3), the perimeter is given by

P = 4aL
p>2

0
21 - e2 sin2 t dt.

(We investigate the meaning of the eccentricity e in Section 11.7.) The integral for P is 
nonelementary and is known as the complete elliptic integral of the second kind. We can 
compute its value to within any degree of accuracy using infinite series in the following 
way. From the binomial expansion for 21 - x2 in Section 10.10, we have21 - e2 sin2 t = 1 - 1

2 e2 sin2 t - 1
2 # 4 e4 sin4 t - g,  0 e sin t 0 … e 6 1
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Then to each term in this last expression we apply the integral Formula 157 (at the back of 
the book) for 1p>2

0  sinn t dt when n is even, giving the perimeter

 P = 4a L
p>2

0

 21 - e2 sin2 t dt

 = 4a cp2 - a12 e2b a12 # p
2 b - a 1

2 # 4 e4b a1 # 3
2 # 4

# p
2 b - a 1 # 3

2 # 4 # 6
 e6b a1 # 3 # 5

2 # 4 # 6
# p

2 b - gd

 = 2pa c1 - a12b
2

 e2 - a1 # 3
2 # 4b

2

 e
4

3 - a1 # 3 # 5
2 # 4 # 6

b
2

 e
6

5
- gd .

Since e 6 1, the series on the right-hand side converges by comparison with the geometric 
series gq

n = 1 (e2)n. We do not have an explicit value for P, but we can estimate it as closely 
as we like by summing finitely many terms from the infinite series. 

Length of a Curve y = ƒ(x )

We will show that the length formula in Section 6.3 is a special case of Equation (3). 
Given a continuously differentiable function y = ƒ(x), a … x … b, we can assign x = t 
as a parameter. The graph of the function ƒ is then the curve C defined parametrically by

x = t  and  y = ƒ(t),  a … t … b,

which is a special case of what we have considered in this chapter. We have

dx
dt

= 1  and  
dy
dt

= ƒ′(t).

From Equation (1),

dy
dx

=
dy>dt

dx>dt
= ƒ′(t),

giving

 adx
dt
b

2

 +  ady
dt
b

2

= 1 + 3ƒ′(t)4 2

 = 1 + 3ƒ′(x)4 2.  t = x

Substitution into Equation (3) gives exactly the arc length formula for the graph of 
y = ƒ(x) that we found in Section 6.3.

The Arc Length Differential

As in Section 6.3, we define the arc length function for a parametrically defined curve 
x = ƒ(t) and y = g(t),  a … t … b, by

s(t) = L
t

a
 23ƒ′(z)4 2 + 3g′(z)4 2 dz.

Then, by the Fundamental Theorem of Calculus,

ds
dt

= 33ƒ′(t)4 2 + 3g′(t)4 2 = B adx
dt
b

2

+ ady
dt
b

2

.

The differential of arc length is

 ds = B adx
dt
b

2

+ ady
dt
b

2

 dt. (4)
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664 Chapter 11 Parametric Equations and Polar Coordinates

Equation (4) is often abbreviated as

ds = 2dx2 + dy2.

Just as in Section 6.3, we can integrate the differential ds between appropriate limits to 
find the total length of a curve.

Here’s an example where we use the arc length differential to find the centroid of an arc.

EXAMPLE 7  Find the centroid of the first-quadrant arc of the astroid in Example 5.

Solution We take the curve’s density to be d = 1 and calculate the curve’s mass and 
moments about the coordinate axes as we did in Section 6.6.

The distribution of mass is symmetric about the line y = x, so x = y. A typical seg-
ment of the curve (Figure 11.18) has mass

dm = 1 # ds = B adx
dt
b

2

+ ady
dt
b

2

 dt = 3 cos t sin t dt.  From Example 5

The curve’s mass is

M = L
p>2

0
 dm = L

p>2

0
 3 cos t sin t dt = 3

2.  Again from Example 5

The curve’s moment about the x-axis is

 Mx = L  y∼ dm = L
p>2

0
 sin3 t # 3 cos t sin t dt

 = 3 L
p>2

0
 sin4 t cos t dt = 3 # sin5 t

5
d
p>2

0
= 3

5
.

It follows that

y =
Mx

M =
3>5
3>2 = 2

5
.

The centroid is the point (2>5, 2>5). 

EXAMPLE 8  Find the time Tc it takes for a frictionless bead to slide along the cycloid 
x = a(t - sin t),  y = a(1 - cos t)  from t = 0  to  t = p (see Figure 11.13).

Solution From Equation (3) in Section 11.1, we want to find the time

Tc = L
t=p

t= 0
 ds22gy

.

We need to express ds parametrically in terms of the parameter t. For the cycloid, 
dx>dt = a(1 - cos t) and dy>dt = a sin t, so

 ds = B adx
dt
b

2

+ ady
dt
b

2

 dt

 = 2a2  (1 - 2 cos t + cos2 t + sin2 t)  dt

 = 2a2 (2 - 2 cos t)  dt.

Substituting for ds and y in the integrand, it follows that

Tc = L
p

0
 Ba2(2 - 2 cos t)

2ga (1 - cos t)
 dt  y = a(1 - cos t) 

= L
p

0
 Aa

g  dt = pAa
g .

This is the amount of time it takes the frictionless bead to slide down the cycloid to B after 
it is released from rest at O (see Figure 11.13). 

x

y

0

B(0, 1)

A(1, 0)

c.m.
ds

~ ~(x, y) = (cos3 t, sin3 t)
~x

~y

FIGURE 11.18 The centroid (c.m.)  
of the astroid arc in Example 7.
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Areas of Surfaces of Revolution

In Section 6.4 we found integral formulas for the area of a surface when a curve is 
revolved about a coordinate axis. Specifically, we found that the surface area is 
S = 12py ds for revolution about the x-axis, and S = 12px ds for revolution about 
the y-axis. If the curve is parametrized by the equations x = ƒ(t) and 
y = g(t), a … t … b, where ƒ and g are continuously differentiable and 
(ƒ′)2 + (g′)2 7 0 on 3a, b4 , then the arc length differential ds is given by Equation 
(4). This observation leads to the following formulas for area of surfaces of revolution 
for smooth parametrized curves.

Area of Surface of Revolution for Parametrized Curves
If a smooth curve x = ƒ(t), y = g(t), a … t … b, is traversed exactly once as t 
increases from a to b, then the areas of the surfaces generated by revolving the 
curve about the coordinate axes are as follows.

1. Revolution about the x-axis (  y # 0):

 S = L
b

a
 2py  B adx

dt
b

2

+ ady
dt
b

2

 dt (5)

2. Revolution about the y-axis (x # 0):

 S = L
b

a
 2px  B adx

dt
b

2

+ ady
dt
b

2

 dt (6)

As with length, we can calculate surface area from any convenient parametrization that 
meets the stated criteria.

EXAMPLE 9  The standard parametrization of the circle of radius 1 centered at the 
point (0, 1) in the xy-plane is

x = cos t,  y = 1 + sin t,  0 … t … 2p.

Use this parametrization to find the area of the surface swept out by revolving the circle 
about the x-axis (Figure 11.19).

Solution We evaluate the formula

 S = L
b

a
 2py B adx

dt
b

2

+ ady
dt
b

2

 dt   
Eq. (5) for revolution about the 
x-axis; y = 1 + sin t Ú 0  

 = L
2p

0
2p(1 + sin t) 2(-sin t)2 + (cos t)2 dt(++++)++++*

 1   

 = 2pL
2p

0
(1 + sin t) dt

 = 2p c t - cos t d
0

2p

= 4p2.  

Circle
x = cos t
y = 1 + sin t
0 ≤ t ≤ 2p

x

y

(0, 1)

FIGURE 11.19 In Example 9 we 
 calculate the area of the surface of 
 revolution swept out by this  
parametrized curve.
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666 Chapter 11 Parametric Equations and Polar Coordinates

Tangents to Parametrized Curves
In Exercises 1–14, find an equation for the line tangent to the curve at 
the point defined by the given value of t. Also, find the value of 
d2y>dx2 at this point.

 1. x = 2 cos t, y = 2 sin t, t = p>4
 2. x = sin 2pt, y = cos 2pt, t = -1>6
 3. x = 4 sin t, y = 2 cos t, t = p>4
 4. x = cos t, y = 23 cos t, t = 2p>3
 5. x = t, y = 2t, t = 1>4
 6. x = sec2 t - 1, y = tan t, t = -p>4
 7. x = sec t, y = tan t, t = p>6
 8. x = -2t + 1, y = 23t, t = 3

 9. x = 2t2 + 3, y = t4, t = -1

 10. x = 1>t, y = -2 + ln t, t = 1

 11. x = t - sin t, y = 1 - cos t, t = p>3
 12. x = cos t, y = 1 + sin t, t = p>2

 13. x = 1
t + 1

, y = t
t - 1

, t = 2

 14. x = t + et, y = 1 - et, t = 0

Implicitly Defined Parametrizations
Assuming that the equations in Exercises 15–20 define x and y implic-
itly as differentiable functions x = ƒ(t), y = g(t), find the slope of 
the curve x = ƒ(t), y = g(t) at the given value of t.

 15. x3 + 2t2 = 9, 2y3 - 3t2 = 4, t = 2

 16. x = 25 - 1t, y(t - 1) = 2t, t = 4

 17. x + 2x3>2 = t2 + t, y2t + 1 + 2t2y = 4, t = 0

 18. x sin t + 2x = t, t sin t - 2t = y, t = p

 19. x = t3 + t, y + 2t3 = 2x + t2, t = 1

 20. t = ln (x - t), y = tet, t = 0

Area
 21. Find the area under one arch of the cycloid

x = a(t - sin t), y = a(1 - cos t).

 22. Find the area enclosed by the y-axis and the curve

x = t - t2, y = 1 + e-t .

 23. Find the area enclosed by the ellipse

x = a cos t, y = b sin t, 0 … t … 2p .

 24. Find the area under y = x3 over 30, 14  using the following 
 parametrizations.

a. x = t2, y = t6 b. x = t3, y = t9

Lengths of Curves
Find the lengths of the curves in Exercises 25–30.

 25. x = cos t, y = t + sin t, 0 … t … p

 26. x = t3, y = 3t2>2, 0 … t … 23

 27. x = t2>2, y = (2t + 1)3>2>3, 0 … t … 4

 28. x = (2t + 3)3>2>3, y = t + t2>2, 0 … t … 3

EXERCISES 11.2

 29. x = 8 cos t + 8t sin t 
y = 8 sin t - 8t cos t, 
0 … t … p>2

 30. x = ln (sec t + tan t) - sin t 
y = cos t, 0 … t … p>3

Surface Area
Find the areas of the surfaces generated by revolving the curves in 
Exercises 31–34 about the indicated axes.

 31. x = cos t, y = 2 + sin t, 0 … t … 2p; x@axis

 32. x = (2>3)t3>2, y = 22t, 0 … t … 23; y@axis

 33. x = t + 22, y = (t2>2) + 22t,  -22 … t … 22; y@axis

 34. x = ln (sec t + tan t) - sin t, y = cos t, 0 … t … p>3; x-axis

 35. A cone frustum The line segment joining the points (0, 1) and 
(2, 2) is revolved about the x-axis to generate a frustum of a cone. 
Find the surface area of the frustum using the parametrization 
x = 2t, y = t + 1, 0 … t … 1. Check your result with the geom-
etry formula: Area = p(r1 + r2)(slant height).

 36. A cone The line segment joining the origin to the point (h, r) 
is revolved about the x-axis to generate a cone of height h and 
base radius r. Find the cone’s surface area with the parametric 
equations x = ht, y = rt, 0 … t … 1. Check your result with the 
geometry formula: Area = pr(slant height).

Centroids

 37. Find the coordinates of the centroid of the curve

x = cos t + t sin t, y = sin t - t cos t, 0 … t … p>2.

 38. Find the coordinates of the centroid of the curve

x = et cos t, y = et sin t, 0 … t … p.

 39. Find the coordinates of the centroid of the curve

x = cos t, y = t + sin t, 0 … t … p.

 40. Most centroid calculations for curves are done with a calculator 
or computer that has an integral evaluation program. As a case in 
point, find, to the nearest hundredth, the coordinates of the cen-
troid of the curve

x = t3, y = 3t2>2, 0 … t … 23.

Theory and Examples
 41. Length is independent of parametrization To illustrate the 

fact that the numbers we get for length do not depend on the way 
we parametrize our curves (except for the mild restrictions pre-
venting doubling back mentioned earlier), calculate the length of 
the semicircle y = 21 - x2 with these two different parametri-
zations:

a. x = cos 2t, y = sin 2t, 0 … t … p>2.

b. x = sin pt, y = cos pt, -1>2 … t … 1>2.

 42. a. Show that the Cartesian formula

L = L
d

c
 B1 + adx

dy
b

2

 dy

T
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 45.   46. 

x

y

1−1

x = sin t
y = sin 2t

 

x

y

1−1

1

−1

x = sin 2t
y = sin 3t

 47. Cycloid

a. Find the length of one arch of the cycloid

x = a(t - sin t), y = a(1 - cos t).

b. Find the area of the surface generated by revolving one arch 
of the cycloid in part (a) about the x-axis for a = 1.

 48. Volume Find the volume swept out by revolving the region 
bounded by the x-axis and one arch of the cycloid

x = t - sin t, y = 1 - cos t

  about the x-axis.

 49. Find the volume swept out by revolving the region bounded by the 
x-axis and the graph of

x = 2t, y = t (2 - t)

  about the x-axis.

 50. Find the volume swept out by revolving the region bounded by the 
y-axis and the graph of

x = t (1 - t), y = 1 + t2

  about the y-axis.

COMPUTER EXPLORATIONS
In Exercises 51–54, use a CAS to perform the following steps for the 
given curve over the closed interval.

a. Plot the curve together with the polygonal path approxima-
tions for n = 2, 4, 8 partition points over the interval. (See 
Figure 11.16.)

b. Find the corresponding approximation to the length of the 
curve by summing the lengths of the line segments.

c. Evaluate the length of the curve using an integral. Compare 
your approximations for n = 2, 4, 8 with the actual length 
given by the integral. How does the actual length compare 
with the approximations as n increases? Explain your answer.

 51. x = 1
3

 t3, y = 1
2

 t2, 0 … t … 1

 52. x = 2t3 - 16t2 + 25t + 5, y = t2 + t - 3, 0 … t … 6

 53. x = t - cos t, y = 1 + sin t, -p … t … p

 54. x = et cos t, y = et sin t, 0 … t … p

 for the length of the curve x = g(y), c … y … d (Section 6.3, 
Equation 4), is a special case of the parametric length formula

L = L
b

a
 B adx

dt
b

2

+ ady
dt
b

2

 dt.

Use this result to find the length of each curve.

b. x = y3>2, 0 … y … 4>3

c. x = 3
2

 y2>3, 0 … y … 1

 43. The curve with parametric equations

x = (1 + 2 sin u) cos u, y = (1 + 2 sin u) sin u

  is called a limaçon and is shown in the accompanying figure. Find 
the points (x, y) and the slopes of the tangent lines at these points 
for

a. u = 0.  b. u = p>2 .  c. u = 4p>3 .

x

y

1−1

3

2

1

 44. The curve with parametric equations

x = t, y = 1 - cos t, 0 … t … 2p

  is called a sinusoid and is shown in the accompanying figure. Find 
the point (x, y) where the slope of the tangent line is

a. largest.  b. smallest.

x

y

2

0 2p

The curves in Exercises 45 and 46 are called Bowditch curves or 
 Lissajous figures. In each case, find the point in the interior of the first 
quadrant where the tangent to the curve is horizontal, and find the 
equations of the two tangents at the origin.

T

11.3 Polar Coordinates

In this section we study polar coordinates and their relation to Cartesian coordinates. 
You will see that polar coordinates are very useful for calculating many multiple inte-
grals studied in Chapter 15. They are also useful in describing the paths of planets and 
satellites.
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