Differential Geometry

Lecture 1

Lecturer:Dr. Muhammad Yaseen

Course Title: Differential Geometry

Course Code: MATH-303 (For BS) \& MATH-601 (For MSc)

Question: What is a curve?
Answer: One can draw a variety of curves.

(i)

(ii)

(iii)

(iv)

Figure 1: Various Curves

The curve in (i) is a smooth (sufficiently differentiable) curve. The curve in (ii) is also of a smooth curve, but now without endpoints, since traveling along the curve will bring you back to where you started. This type of curve is called a closed curve. In (iii), we have self intersections and we still regard it as a smooth closed curve. The curve in (iv) is a closed curve, but as it has sharp angles at particular points, it is not smooth at those points.

There are two ways to think of a curve:
(a) The implicit function representation

In general, if we take a function $\boldsymbol{F}(\boldsymbol{x}, \boldsymbol{y})$ of two variables and collect together all points in the plane satisfying $\boldsymbol{F}(\boldsymbol{x}, \boldsymbol{y})=\mathbf{0}$ to produce a curve \boldsymbol{C}, we call this the implicit function representation for curve by $\boldsymbol{F}(\boldsymbol{x}, \boldsymbol{y})$. So

$$
C=\{(x, y) \mid F(x, y)=0\}
$$

Example 1.1 The following are examples of curves that are represented implicitly by the solution sets of the following four equations.

$$
\text { Ellipse: } \quad \frac{x^{2}}{a^{2}}+\frac{y^{2}}{b^{2}}-1=0
$$

$$
\begin{aligned}
\text { Hyperbola: } & \frac{x^{2}}{a^{2}}-\frac{y^{2}}{b^{2}}-\mathbf{1}=0 \\
\text { Lemniscate: } & \left(x^{2}+y^{2}\right)^{2}-a^{2}\left(x^{2}-y^{2}\right)=0 . \\
\text { Astroid: } & \left(a^{2}-x^{2}-y^{2}\right)^{3}-27 a^{2} x^{2} y^{2}=0
\end{aligned}
$$

Figure 2:

(b) As path of a moving particle

If a particle is moving through the plane with respect to time variable \boldsymbol{t}, then $(\boldsymbol{x}(\boldsymbol{t}), \boldsymbol{y}(\boldsymbol{t}))$ denotes the position of the particle at any time \boldsymbol{t}, where $\boldsymbol{x}(\boldsymbol{t}), \boldsymbol{y}(\boldsymbol{t})$ are smooth functions of \boldsymbol{t}. Then the trajectory of these points can be imagined as a curve. Here, \boldsymbol{t} is called a parameter of the curve. This way of representing a curve is called a parametrization. Pairing up the two functions $\boldsymbol{x}(\boldsymbol{t}), \boldsymbol{y}(\boldsymbol{t})$ and naming the pair $\gamma(\boldsymbol{t})$, we have the curve

$$
\gamma(t)=(x(t), y(t)) .
$$

Remark 1.2 We are mostly interested in geometric shape of a curve as in (a) but (b) is more useful because we can bring in tools from calculus to describe the geometric behavior. It is like giving a coordinate system along a curve which allows calculations to be done.

Definition 1.3 A parametrized curve in $\mathbb{R}^{\mathbf{3}}$ is a map $\gamma: \boldsymbol{I} \rightarrow \mathbb{R}^{\mathbf{3}}$ given by $\gamma(\boldsymbol{t})=(\boldsymbol{x}(\boldsymbol{t}), \boldsymbol{y}(\boldsymbol{t}), \boldsymbol{z}(\boldsymbol{t}))$, where \boldsymbol{I} is usually taken to be an open interval which is either bounded or unbounded.

Figure 3:

Definition 1.4 If γ is a parametrizeed curve in $\mathbb{R}^{\mathbf{3}}$ given by $\gamma(\boldsymbol{t})=(\boldsymbol{x}(\boldsymbol{t}), \boldsymbol{y}(\boldsymbol{t}), \boldsymbol{z}(\boldsymbol{t}))$, then $\dot{\gamma}(\boldsymbol{t})=$ $(\dot{x}(\boldsymbol{t}), \dot{\boldsymbol{y}}(\boldsymbol{t}), \dot{\boldsymbol{z}}(\boldsymbol{t}))$ is called the tangent vector of γ at the point $\gamma(\boldsymbol{t})$.

Figure 4:

Definition 1.5 The trace of γ is defined as

$$
\operatorname{Image}(\gamma)=\gamma(I) \subset \mathbb{R}^{3}
$$

Definition 1.6 We say that $\gamma: \boldsymbol{I} \rightarrow \mathbb{R}^{\mathbf{3}}$ is a plane curve if there exists a plane $\boldsymbol{P} \subset \mathbb{R}^{\mathbf{3}}$ such that $\gamma(I) \subset P$.

Remark 1.7 The parametrization of a curve is not unique in general e.g. consider the parabola $\boldsymbol{y}=\boldsymbol{x}^{\mathbf{2}}$. If we choose $\boldsymbol{x}=\boldsymbol{t}$, then $\boldsymbol{y}=\boldsymbol{t}^{\mathbf{2}}$ so that $\boldsymbol{\gamma}(\boldsymbol{t})=\left(\boldsymbol{t}, \boldsymbol{t}^{\mathbf{2}}\right)$ is a parametrization of $\boldsymbol{y}=\boldsymbol{x}^{\mathbf{2}}$. Another choice is $\gamma(\boldsymbol{t})=\left(\mathbf{2 t}, \mathbf{4 t}^{\mathbf{2}}\right)$. Yet another choice is $\gamma(\boldsymbol{t})=\left(\boldsymbol{t}^{\mathbf{3}}, \boldsymbol{t}^{\mathbf{6}}\right)$ and so on.

Question: Find parametrization of the circle $\boldsymbol{x}^{2}+\boldsymbol{y}^{2}=1$.
Answer: If we chose $\boldsymbol{x}=\boldsymbol{t}$, then $\boldsymbol{y}= \pm \sqrt{1-\boldsymbol{t}^{2}}$. So we have the following parametrizations:

$$
\begin{array}{lr}
\gamma(t)=\left(t, \sqrt{1-t^{2}}\right) & (\text { Upper semi-circle) } \\
\gamma(t)=\left(t,-\sqrt{1-t^{2}}\right) \quad(\text { Lower semi-circle })
\end{array}
$$

To find parametriztions that cover the whole circle, we must find functions $\boldsymbol{x}(\boldsymbol{t}), \boldsymbol{y}(\boldsymbol{t})$, such that $(\boldsymbol{x}(\boldsymbol{t}))^{\mathbf{2}}+$ $(y(t))^{2}=1$. One can obviously choose $\boldsymbol{x}(t)=\cos t, \quad y(t)=\sin t$ so that $\gamma(t)=(\cos t, \sin t)$ parmetrizes the whole circle if $\boldsymbol{t} \in \boldsymbol{I}$, where \boldsymbol{I} is an open interval whose length is greater than $2 \boldsymbol{\pi}$.

