Lecture 3

Recall that the arc length \boldsymbol{s} of a curve γ starting at point $\gamma(\boldsymbol{t})$ is given by

$$
\begin{array}{r}
s(t)=\int_{t_{0}}^{t}\|\dot{\gamma}(u)\| d u \\
\Rightarrow \frac{d s}{d t}=\|\dot{\gamma}(t)\|=\text { Speed }
\end{array}
$$

This means that if we think of $\gamma(\boldsymbol{t})$ as position of a moving particle at time \boldsymbol{t}, then $\frac{d s}{d t}$ is the speed of the particle. In view of this, we have the following definition.

Definition 3.1 If $\gamma: I \rightarrow \mathbb{R}^{\mathbf{3}}$ is a prametrized curve, then its speed at point $\gamma(\boldsymbol{t})$ is $\|\dot{\gamma}(\boldsymbol{t})\|$ and γ is called a unit speed curve (or curve parametrized by arc length) if $\|\dot{\gamma}(\boldsymbol{t})\|=\mathbf{1} \forall \boldsymbol{t} \in \boldsymbol{I}$.

Result: Let $\vec{n}(\boldsymbol{t})$ be a unit vector that is a smooth function of the parameter \boldsymbol{t}, then $\overrightarrow{\boldsymbol{n}}(\boldsymbol{t}) \cdot \dot{\vec{n}}(\boldsymbol{t})=\mathbf{0} \forall \boldsymbol{t}$. In particular if γ is a unit speed curve then $\dot{\gamma} \cdot \ddot{\gamma}=\mathbf{0}$
Proof: Since $\vec{n}(t)$ is a unit vector, therefore,

$$
\begin{aligned}
\vec{n}(t) \cdot \vec{n}(t) & =1 \\
\Rightarrow \vec{n}(t) \cdot \dot{\vec{n}}(t)+\dot{\vec{n}}(t) \cdot \vec{n}(t) & =0 \\
\Rightarrow 2 \vec{n}(t) \cdot \dot{\vec{n}}(t) & =0 \\
\Rightarrow \vec{n}(t) \cdot \dot{\vec{n}}(t) & =0
\end{aligned}
$$

as required. If γ is a unit speed curve then $\dot{\gamma}$ is a unit vector. Taking $\vec{n}(t)=\dot{\gamma}$ in above result, we see that

$$
\dot{\gamma} \cdot \ddot{\gamma}=0 .
$$

Definition 3.2 A parametrized curve $\gamma: \boldsymbol{I} \rightarrow \mathbb{R}^{\boldsymbol{n}}$ is said to be regular if its velocity vector $\dot{\gamma}$ does not vanish i.e. $\dot{\gamma} \neq \mathbf{0} \quad \forall \boldsymbol{t}$.

Remark 3.3 The condition $\dot{\gamma} \neq \mathbf{0} \quad \forall \boldsymbol{t}$ ensures that the point $\gamma(\boldsymbol{t})$ moves at $\boldsymbol{t} \in \boldsymbol{I}$.

Question: Calculate the arc length of Catenary $\gamma(\boldsymbol{t})=(\boldsymbol{t}, \boldsymbol{\operatorname { c o s h }} \boldsymbol{t})$ starting at the point $(\mathbf{0}, \mathbf{1})$.
Answer: The point $(\mathbf{0}, \mathbf{1})$ corresponds to $\boldsymbol{t}=\mathbf{0}$. We have

$$
\begin{aligned}
\dot{\gamma}(t) & =(1, \sinh t) \\
\Rightarrow\|\dot{\gamma}(t)\| & =\sqrt{1+\sinh ^{2} t} \\
& =\cosh t \\
\Rightarrow s(t) & =\int_{0}^{t}\|\dot{\gamma}(u)\| d u \\
& =\int_{0}^{t} \cosh u d u \\
& =\left.\sinh \right|_{0} ^{t}=\sinh t-\sinh 0 \\
& =\sinh t
\end{aligned}
$$

Example 3.4 Show that the curve $\gamma(\boldsymbol{t})=\left(\frac{1}{3}(\mathbf{1}+\boldsymbol{t})^{\frac{3}{2}}, \frac{1}{3}(\mathbf{1}-\boldsymbol{t})^{\frac{3}{2}}, \frac{\boldsymbol{t}}{\sqrt{2}}\right)$ is unit speed curve.

Solution: We have

$$
\begin{aligned}
\dot{\gamma}(t) & =\left(\frac{1}{2}(1+t)^{\frac{1}{2}}, \frac{-1}{2}(1-t)^{\frac{1}{2}}, \frac{1}{\sqrt{2}}\right) \\
\Rightarrow\|\dot{\gamma}(t)\| & =\sqrt{\frac{1}{4}(1+t)+\frac{1}{4}(1-t)+\frac{1}{2}} \\
& =1
\end{aligned}
$$

So γ is a unit speed curve.

Example 3.5 Show that the curve $\gamma(\boldsymbol{t})=\left(\frac{4}{5} \cos \boldsymbol{t}, 1-\sin t,-\frac{3}{5} \cos \boldsymbol{t}\right)$ is unit speed curve.

Solution: We have

$$
\begin{aligned}
\dot{\gamma}(t) & =\left(\frac{4}{5} \sin t,-\cos t, \frac{3}{5} \sin t\right) \\
\Rightarrow\|\dot{\gamma}(t)\| & =\sqrt{\frac{16}{25} \sin ^{2} t+\cos ^{2} t+\frac{9}{25} \sin ^{2} t} \\
& =\sqrt{\sin ^{2} t+\cos ^{2} t} \\
& =1
\end{aligned}
$$

which proves that γ is a unit speed curve.

Example 3.6 Parametrize the curve $\gamma(\boldsymbol{t})=\left(e^{\boldsymbol{t}} \boldsymbol{\operatorname { c o s }} \boldsymbol{t}, \boldsymbol{e}^{\boldsymbol{t}} \boldsymbol{\operatorname { s i n }} \boldsymbol{t}\right)$ by arc length and then show that the resulting curve is a unit speed curve.

Solution: Recall that for the given curve we found the arc length to be $s=\sqrt{\mathbf{2}}\left(e^{t}-\mathbf{1}\right) . \Rightarrow e^{t}=\frac{s}{\sqrt{2}}+\mathbf{1}$ $\Rightarrow t=\ln \left(\frac{s}{\sqrt{2}}+1\right)$. Using this value of t in the given curve we obtain

$$
\gamma(s)=\left(\left(\frac{s}{\sqrt{2}}+1\right) \cos \left(\ln \left(\frac{s}{\sqrt{2}}+1\right)\right),\left(\frac{s}{\sqrt{2}}+1\right) \sin \left(\ln \left(\frac{s}{\sqrt{2}}+1\right)\right)\right)
$$

which is the required arc length parametrization of γ. Now we show that γ is a unit speed curve by showing that $\|\dot{\gamma}(s)\|=1$. We have
$\dot{\gamma}(s)=\left(-\frac{1}{\sqrt{2}} \sin \left(\ln \left(\frac{s}{\sqrt{2}}+1\right)\right)+\frac{1}{\sqrt{2}} \cos \left(\ln \left(\frac{s}{\sqrt{2}}+1\right)\right), \frac{1}{\sqrt{2}} \cos \left(\ln \left(\frac{s}{\sqrt{2}}+1\right)\right)+\frac{1}{\sqrt{2}} \sin \left(\ln \left(\frac{s}{\sqrt{2}}+1\right)\right)\right)$ (Check it)
This implies that $\|\dot{\gamma}(s)\|=1$ (Check it).

Definition 3.7 A parametrized curve $\gamma: \boldsymbol{I} \rightarrow \mathbb{R}^{\boldsymbol{n}}$ is called smooth if γ is differentiable up to all orders.

Definition 3.8 Let $\gamma: \boldsymbol{I} \rightarrow \mathbb{R}^{\boldsymbol{n}}$ be a parametrized curve. Then $\tilde{\gamma}: \boldsymbol{J} \rightarrow \mathbb{R}^{\boldsymbol{n}}$ is called a reparametrization of γ if there exists a smooth bijection $\boldsymbol{\phi}: \boldsymbol{J} \rightarrow \boldsymbol{I}$ (the reparametrization map) whose inverse $\boldsymbol{\phi}^{-\mathbf{1}}: \boldsymbol{I} \rightarrow \boldsymbol{J}$ is also smooth such that

$$
\tilde{\gamma}=\gamma \circ \phi \quad \text { i.e. } \tilde{\gamma}(\tilde{t})=\gamma(\phi(\tilde{t})) \text { for all } \tilde{t} \in J
$$

Figure 1:

Note 3.9 If $\tilde{\gamma}$ is reparametrization of γ, then γ is reparametrization of $\tilde{\gamma}(\because \phi$ has a smooth inverse). To see this consider

$$
\begin{equation*}
\gamma(t)=\gamma\left(\phi\left(\phi^{-1}(t)\right)\right)=\tilde{\gamma}\left(\phi^{-1}(t)\right) \quad(\because \gamma \circ \phi=\tilde{\gamma}) \tag{1}
\end{equation*}
$$

Definition 3.10 A reparametrization $\operatorname{map} \boldsymbol{\phi}$ is orientation preserving if $\dot{\boldsymbol{\phi}}(\boldsymbol{t})>\mathbf{0} \forall \boldsymbol{t}$ and is orientation reversing if $\dot{\boldsymbol{\phi}}(\boldsymbol{t})<\mathbf{0} \forall \boldsymbol{t}$.

Example 3.11 Show that $\gamma_{1}: \mathbb{R} \rightarrow \mathbb{R}^{\mathbf{2}}$ given by $\gamma(\boldsymbol{t})=(\boldsymbol{t}, \boldsymbol{t})$ is reparametriztion of $\gamma_{\mathbf{2}}:(\mathbf{0}, \infty) \rightarrow \mathbb{R}^{\mathbf{2}}$ given by $\gamma(\boldsymbol{t})=(\ln \boldsymbol{t}, \ln \boldsymbol{t})$.

Solution: We have to find a mapping $\boldsymbol{\phi}:(\mathbf{0}, \infty) \rightarrow \mathbb{R}$ such that

$$
\gamma_{2}(\phi(t))=(\ln (\phi(t)), \ln (\phi(t)))=(t, t)=\gamma_{1}(t)
$$

This suggests that $\phi(t)=e^{t}$. Then

$$
\gamma_{2}(\phi(t))=\gamma_{2}\left(e^{t}\right)=\left(\ln \left(e^{t}\right), \ln \left(e^{t}\right)\right)=(t, t)=\gamma_{1}(t)
$$

which shows that $\gamma_{\mathbf{1}}$ is reparametrization of $\gamma_{\mathbf{2}}$.

Example 3.12 Show that $\tilde{\gamma}(\boldsymbol{t})=(\sin \boldsymbol{t}, \cos \boldsymbol{t})$ is a reparametriztion of $\gamma(\boldsymbol{t})=(\cos \boldsymbol{t}, \sin \boldsymbol{t})$.

Solution: We have to find a mapping $\boldsymbol{\phi}: \mathbb{R} \rightarrow \mathbb{R}$ such that

$$
\gamma(\phi(t))=(\cos (\phi(t)), \sin (\phi(t)))=(\sin t, \cos t)=\tilde{\gamma}(t)
$$

This suggests that $\phi(\boldsymbol{t})=\frac{\pi}{2}-\boldsymbol{t}$. Then

$$
\gamma(\phi(t))=\gamma\left(\frac{\pi}{2}-t\right)=\left(\cos \left(\frac{\pi}{2}-t\right), \sin \left(\frac{\pi}{2}-t\right)\right)=(\sin t, \cos t)=\tilde{\gamma}(t)
$$

which shows that $\tilde{\gamma}$ is reparametrization of γ.
Curves parametrized by arc length are for many purposes convenient. But do they exist? The following proposition answers this question.

Proposition 3.13 For every regular parametrized curve γ, there exists an orientation preserving reparametrization map ϕ such that the reparametrization $\gamma \circ \phi$ is parametrized by arc length.

Proof: Let $\gamma: \boldsymbol{I} \rightarrow \mathbb{R}^{\boldsymbol{n}}$ be regular parametrized curve. Choose $\boldsymbol{s}_{\mathbf{0}} \in \boldsymbol{I}$ and define

$$
\psi(s)=\int_{s_{0}}^{s}\|\dot{\gamma}(t)\| d t
$$

$\Rightarrow \quad \dot{\psi}(s)=\|\dot{\gamma}(s)\|>\mathbf{0}$ (by first fundamental theorem of calculus) so that ψ is increasing and hence injective. Thus $\boldsymbol{\psi}: \boldsymbol{I} \rightarrow \boldsymbol{J}:=\boldsymbol{\psi}(\boldsymbol{I})$ is an orientation preserving reparamentrization map. Define the inverse $\operatorname{map} \phi:=\boldsymbol{\psi}^{-\mathbf{1}}: \boldsymbol{J} \rightarrow \boldsymbol{I}$. Then $\boldsymbol{\phi}$ and $\boldsymbol{\psi}$ are smooth and we have

$$
\begin{aligned}
\dot{\phi}(t) & =\dot{\psi}^{-1}(t)=\frac{1}{\dot{\psi}(\phi(t))}\left(\because f^{-1}=\frac{1}{f^{\prime}\left(f^{-1}(t)\right)}\right) \\
& =\frac{1}{\|\dot{\gamma}(\phi(t))\|}>0
\end{aligned}
$$

so that ϕ is orientation preserving. Now by chain rule, we have

$$
\begin{aligned}
\left\|\frac{d}{d t}(\gamma \circ \phi)(t)\right\| & =\|\dot{\gamma}(\phi(t)) \cdot \dot{\phi}(t)\| \\
& =\left\|\dot{\gamma}(\phi(t)) \cdot \frac{1}{\|\dot{\gamma}(\phi(t))\|}\right\|=\frac{\|\dot{\gamma}(\phi(t))\|}{\|\dot{\gamma}(\phi(t))\|}=1
\end{aligned}
$$

$\Rightarrow \gamma \circ \phi$ is a unit speed curve and hence is parametrized by arc length.

