
Differential Geometry Fall 2020

Lecture 3

Lecturer:Dr. Muhammad Yaseen Topic:Arc Length

Recall that the arc length s of a curve γ starting at point γ(t) is given by

s(t) =

t∫
t0

‖γ̇(u)‖du

⇒
ds

dt
= ‖γ̇(t)‖ = Speed

This means that if we think of γ(t) as position of a moving particle at time t, then ds
dt

is the speed of the

particle. In view of this, we have the following definition.

Definition 3.1 If γ : I → R3 is a prametrized curve, then its speed at point γ(t) is ‖γ̇(t)‖ and γ is called

a unit speed curve (or curve parametrized by arc length) if ‖γ̇(t)‖ = 1 ∀ t ∈ I.

Result: Let−→n (t) be a unit vector that is a smooth function of the parameter t, then−→n (t).−̇→n (t) = 0 ∀t.

In particular if γ is a unit speed curve then γ̇.γ̈ = 0

Proof: Since −→n (t) is a unit vector, therefore,

−→n (t).−→n (t) = 1

⇒ −→n (t).−̇→n (t) + −̇→n (t).−→n (t) = 0

⇒ 2−→n (t).−̇→n (t) = 0

⇒ −→n (t).−̇→n (t) = 0

as required. If γ is a unit speed curve then γ̇ is a unit vector. Taking −→n (t) = γ̇ in above result, we see that

γ̇.γ̈ = 0.

Definition 3.2 A parametrized curve γ : I → Rn is said to be regular if its velocity vector γ̇ does not

vanish i.e. γ̇ 6= 0 ∀t.

Remark 3.3 The condition γ̇ 6= 0 ∀t ensures that the point γ(t) moves at t ∈ I.
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Question: Calculate the arc length of Catenary γ(t) = (t, cosh t) starting at the point (0, 1).

Answer: The point (0, 1) corresponds to t = 0. We have

γ̇(t) = (1, sinh t)

⇒ ‖γ̇(t)‖ =

√
1 + sinh2 t

= cosh t

⇒ s(t) =

∫ t

0

‖γ̇(u)‖du

=

∫ t

0

coshudu

= sinh |t0 = sinh t− sinh 0

= sinh t

Example 3.4 Show that the curve γ(t) = (1
3
(1 + t)

3
2 , 1

3
(1− t) 3

2 , t√
2
) is unit speed curve.

Solution: We have

γ̇(t) = (
1

2
(1 + t)

1
2 ,
−1

2
(1− t) 1

2 ,
1
√

2
)

⇒ ‖γ̇(t)‖ =

√
1

4
(1 + t) +

1

4
(1− t) +

1

2

= 1.

So γ is a unit speed curve.

Example 3.5 Show that the curve γ(t) = (4
5

cos t, 1− sin t,−3
5

cos t) is unit speed curve.

Solution: We have

γ̇(t) = (
4

5
sin t,− cos t,

3

5
sin t)

⇒ ‖γ̇(t)‖ =

√
16

25
sin2 t+ cos2 t+

9

25
sin2 t

=

√
sin2 t+ cos2 t

= 1

which proves that γ is a unit speed curve.
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Example 3.6 Parametrize the curve γ(t) = (et cos t, et sin t) by arc length and then show that the result-

ing curve is a unit speed curve.

Solution: Recall that for the given curve we found the arc length to be s =
√

2(et− 1). ⇒ et = s√
2

+ 1

⇒ t = ln( s√
2

+ 1). Using this value of t in the given curve we obtain

γ(s) = ((
s
√

2
+ 1) cos(ln(

s
√

2
+ 1)), (

s
√

2
+ 1) sin(ln(

s
√

2
+ 1)))

which is the required arc length parametrization of γ. Now we show that γ is a unit speed curve by showing

that ‖γ̇(s)‖ = 1. We have

γ̇(s) = (− 1√
2

sin(ln( s√
2

+ 1)) + 1√
2

cos(ln( s√
2

+ 1)), 1√
2

cos(ln( s√
2

+ 1)) + 1√
2

sin(ln( s√
2

+ 1)))

(Check it)

This implies that ‖γ̇(s)‖ = 1 (Check it).

Definition 3.7 A parametrized curve γ : I → Rn is called smooth if γ is differentiable up to all orders.

Definition 3.8 Let γ : I → Rn be a parametrized curve. Then γ̃ : J → Rn is called a reparametrization

of γ if there exists a smooth bijection φ : J → I (the reparametrization map) whose inverse φ−1 : I → J

is also smooth such that

γ̃ = γ ◦ φ i.e. γ̃(t̃) = γ(φ(t̃)) for all t̃ ∈ J.

Figure 1:
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Note 3.9 If γ̃ is reparametrization of γ, then γ is reparametrization of γ̃ (∵ φ has a smooth inverse ).

To see this consider

γ(t) = γ(φ(φ−1(t))) = γ̃(φ−1(t)) (∵ γ ◦ φ = γ̃) (1)

Definition 3.10 A reparametrization map φ is orientation preserving if φ̇(t) > 0 ∀ t and is orientation

reversing if φ̇(t) < 0 ∀ t.

Example 3.11 Show that γ1 : R → R2 given by γ(t) = (t, t) is reparametriztion of γ2 : (0,∞) → R2

given by γ(t) = (ln t, ln t).

Solution: We have to find a mapping φ : (0,∞)→ R such that

γ2(φ(t)) = (ln(φ(t)), ln(φ(t))) = (t, t) = γ1(t).

This suggests that φ(t) = et. Then

γ2(φ(t)) = γ2(et) = (ln(et), ln(et)) = (t, t) = γ1(t)

which shows that γ1 is reparametrization of γ2.

Example 3.12 Show that γ̃(t) = (sin t, cos t) is a reparametriztion of γ(t) = (cos t, sin t).

Solution: We have to find a mapping φ : R→ R such that

γ(φ(t)) = (cos(φ(t)), sin(φ(t))) = (sin t, cos t) = γ̃(t).

This suggests that φ(t) = π
2
− t. Then

γ(φ(t)) = γ(
π

2
− t) = (cos(

π

2
− t), sin(

π

2
− t)) = (sin t, cos t) = γ̃(t)

which shows that γ̃ is reparametrization of γ .

Curves parametrized by arc length are for many purposes convenient. But do they exist? The following

proposition answers this question.

Proposition 3.13 For every regular parametrized curve γ, there exists an orientation preserving reparametriza-

tion map φ such that the reparametrization γ ◦ φ is parametrized by arc length.

Proof: Let γ : I → Rn be regular parametrized curve. Choose s0 ∈ I and define

ψ(s) =

s∫
s0

‖γ̇(t)‖dt.
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⇒ ψ́(s) = ‖γ̇(s)‖ > 0 (by first fundamental theorem of calculus) so that ψ is increasing and hence

injective. Thus ψ : I → J := ψ(I) is an orientation preserving reparamentrization map. Define the inverse

map φ := ψ−1 : J → I. Then φ and ψ are smooth and we have

φ̇(t) = ˙ψ−1(t) =
1

ψ́(φ(t))
(∵ ´f−1 =

1

f́(f−1(t))
)

=
1

‖γ̇(φ(t))‖
> 0

so that φ is orientation preserving. Now by chain rule, we have

‖
d

dt
(γ ◦ φ)(t)‖ = ‖γ̇(φ(t)) · φ̇(t)‖

= ‖γ̇(φ(t)) ·
1

‖γ̇(φ(t))‖
‖ =
‖γ̇(φ(t))‖
‖γ̇(φ(t))‖

= 1

⇒ γ ◦ φ is a unit speed curve and hence is parametrized by arc length.


