Lecture 2

Lecturer:Dr. Muhammad Yaseen
Topic:Curves in Plane

There are three important curves that we will keep mentioning time to time:
(I) Straight Line: The curve $\gamma: \boldsymbol{I} \rightarrow \mathbb{R}^{2}$ given by $\gamma(\boldsymbol{t})=\overrightarrow{\boldsymbol{a}} \boldsymbol{t}+\overrightarrow{\boldsymbol{b}}$ is the straight line parallel to $\overrightarrow{\boldsymbol{a}}$ and through $\overrightarrow{\boldsymbol{b}}$.
(II) Circle: The curve $\gamma: I \rightarrow \mathbb{R}^{2}$ given by $\gamma(t)=\vec{C}+(\boldsymbol{r} \boldsymbol{\operatorname { c o s }} \boldsymbol{t}, \boldsymbol{r} \sin t)$ is the circle of radius \boldsymbol{r} with center $\overrightarrow{\boldsymbol{C}}$.
(III) Helix: The curve $\gamma: I \rightarrow \mathbb{R}^{2}$ given by $\gamma(t)=(r \cos t, r \sin t, t)$ is the Helix.

Figure 1: The Helix

Lemma 2.1 If tangent vector of a parametrized curve γ is constant, then it is (part of) a straight line.

Proof: Let $\dot{\gamma}(\boldsymbol{t})=\overrightarrow{\boldsymbol{a}}$, where $\overrightarrow{\boldsymbol{a}}$ is a constant vector. Then

$$
\int \dot{\gamma}(t) d t=\vec{a} \int d t
$$

$$
\Rightarrow \gamma(t)=\vec{a} t+\vec{b}
$$

which is equation of a straight line parallel to $\overrightarrow{\boldsymbol{a}}$ and through $\overrightarrow{\boldsymbol{b}}$.
Question: Find parametrization of the following curves
(i) $y^{2}-x^{2}=1$
(ii) $\frac{x^{2}}{4}+\frac{y^{2}}{9}=1$

Answer:

(i) $\gamma(t)=(\tan t, \sec t)$ because $\sec ^{2} t-\tan ^{2} t=1$.
(ii) $\gamma(t)=(2 \cos t, 3 \sin t)$ because for the ellipse, we have $\boldsymbol{x}=\boldsymbol{a} \cos t, \boldsymbol{y}=\boldsymbol{b} \sin t$.

Question: Find Cartesian equation of the following parametrized curves.
(i) $\gamma(t)=\left(\cos ^{2} t, \sin ^{2} t\right)$
(ii) $\gamma(t)=\left(e^{t}, t^{2}\right)$

Answer:

(i) We have $\boldsymbol{x}=\cos ^{2} \boldsymbol{t}, \boldsymbol{y}=\sin ^{2} \boldsymbol{t}$ so that $\boldsymbol{x}+\boldsymbol{y}=\mathbf{1}$, which is the required Cartesian form.
(ii) We have
$x=e^{t}$
and

$$
\begin{equation*}
y=t^{2} \tag{2}
\end{equation*}
$$

(1) implies that $t=\ln x$. Using this value of t in (2), we get $y=(\ln x)^{2}$ which is the required Cartesian form.

Arc Length (Length of Curves): Consider the parametrized curve $\gamma(t)=(x(t), y(t)), a \leq t \leq$ \boldsymbol{b}. Corresponding to two values \boldsymbol{t} and $\boldsymbol{t}+\boldsymbol{\Delta} \boldsymbol{t}$, with $\boldsymbol{\Delta} \boldsymbol{t}$ close to zero, we get two points $\gamma(\boldsymbol{t})$ and $\gamma(\boldsymbol{t}+\boldsymbol{\Delta} \boldsymbol{t})$ on the curve.

Figure 2:

Then the distance between $\gamma(\boldsymbol{t})$ and $\gamma(\boldsymbol{t}+\boldsymbol{\Delta} \boldsymbol{t})$ is given by

$$
\begin{aligned}
|\gamma(t+\Delta t)-\gamma(t)| & =|(x(t+\Delta t), y(t+\Delta t))-(x(t), y(t))| \\
& =|(x(t+\Delta t)-x(t), y(t+\Delta t)-y(t))| \\
& =|(\Delta x, \Delta y)|, \text { where } \Delta x=x(t+\Delta t)-x(t) \text { and } \Delta y=y(t+\Delta t)-y(t) \\
& =\sqrt{(\Delta x)^{2}+(\Delta y)^{2}} \\
& =\sqrt{\left(\frac{\Delta x}{\Delta t}\right)^{2}+\left(\frac{\Delta y}{\Delta t}\right)^{2}} \Delta t .
\end{aligned}
$$

Adding up many such short distances and taking the limit as $\boldsymbol{\Delta} \boldsymbol{t} \boldsymbol{\rightarrow} \mathbf{0}$, we arrive at the arc length

$$
\begin{equation*}
s(t)=\int_{a}^{t} \sqrt{\left(\frac{d x}{d t}\right)^{2}+\left(\frac{d y}{d t}\right)^{2}} d t=\int_{a}^{t} \sqrt{\dot{x}^{2}+\dot{y}^{2}} d t \tag{1}
\end{equation*}
$$

of the curve γ starting at $\boldsymbol{t}=\boldsymbol{a}$. The integrand in (1) is the norm $\|\dot{\gamma}(\boldsymbol{t})\|:=\sqrt{\dot{\boldsymbol{x}}^{2}+\dot{\boldsymbol{y}}^{2}}$ of the velocity vector $\dot{\gamma}$, so we can write

$$
s(t)=\int_{a}^{t}\|\dot{\gamma}(u)\| d u
$$

Note $2.2 \boldsymbol{s}(\boldsymbol{a})=\mathbf{0}$ and $\boldsymbol{s}(\boldsymbol{t})$ is positive or negative depending upon whether \boldsymbol{t} is larger or smaller than \boldsymbol{a}.

Example 2.3 Consider the logarithmic spiral $\gamma(\boldsymbol{t})=\left(e^{\boldsymbol{t}} \boldsymbol{\operatorname { c o s }} \boldsymbol{t}, \boldsymbol{e}^{\boldsymbol{t}} \boldsymbol{\operatorname { s i n }} \boldsymbol{t}\right)$. Find the arc length of γ starting at $\gamma(\mathbf{0})$.

Figure 3: The logarithmic Spiral

Solution: We have $\gamma(t)=\left(e^{t} \cos t, e^{t} \sin t\right)$. Then

$$
\dot{\gamma}(t)=\left(-e^{t} \sin t+e^{t} \cos t, e^{t} \sin t+e^{t} \cos t\right)
$$

$$
\begin{aligned}
\dot{\gamma}(t) & =\left(-e^{t} \sin t+e^{t} \cos t, e^{t} \sin t+e^{t} \cos t\right) \\
\Rightarrow\|\dot{\gamma}(t)\| & =\sqrt{\left(e^{2 t} \sin ^{2} t+e^{2 t} \cos ^{2} t-2 e^{2 t} \sin t \cos t\right)+\left(e^{2 t} \sin ^{2} t+e^{2 t} \cos ^{2} t+2 e^{2 t} \sin t \cos t\right)} \\
& =\sqrt{\left(2 e^{2 t} \sin ^{2} t+2 e^{2 t} \cos ^{2} t\right.} \\
& =\sqrt{2} e^{t}
\end{aligned}
$$

So,

$$
\begin{aligned}
s(t) & =\int_{0}^{t}\|\dot{\gamma}(u)\| d u \\
& =\sqrt{2} \int_{0}^{t} e^{u} d u=\sqrt{2}\left(e^{t}-1\right)
\end{aligned}
$$

