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Lecture 6
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Exercise:

(i) Find unit speed reparametrization of γ(t) = (2 cos t, 2 sin t), 0 < t < π
2

.

(ii) Compute the arc length of γ(t) = (3 cosh(2t), 3 sinh(2t), 6t), 0 ≤ t ≤ π.

(iii) Find arc length parametrization of of γ(t) = (et cos t, et sin t, et).

Plane Curves

For a plane curve it is possible to refine the definition of curvature to give it an appealing geometric interpre-

tation. Suppose that γ(s) is a unit speed curve in R3. Denoting d
ds

by a dot, let
−→
t = γ̇ be a tangent vector

of γ. Note that
−→
t is a unit vector (because γ is unit speed curve). There are two vector perpendicular

to
−→
t . We make a choice by defining −→n s (signed unit normal) to be a unit vector obtained by rotating

−→
t

anticlockwise by π
2

. Then
−̇→
t ⊥ −→t (because

−→
t is a unit vector) and hence is parallel to −→n s. Then there

exists a scaler κs such that
−̇→
t = κs

−→n s i.e. −̈→γ = κs
−→n s. (1)
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Here κs is called the signed curvature of γ (it can be positive, negative or zero). Now

κ = ‖γ̈‖

= ‖κs−→n s‖

= |κs|‖−→n s‖

= |κs| (because ‖−→n s‖ = 1).

So the curvature of γ is the absolute value of its signed curvature.

Remark 6.1 For clockwise rotating curves, the signed curvature is negative and for anticlockwise rotating

curves the signed curvature is positive.

Geometric Interpretation of Signed Curvature

Proposition 6.2 Let γ(s) be a unit speed plane curve and let φ(s) be the angle through which a fixed unit

vector must be rotated anticlockwise to bring it into coincidence with unit vector
−→
t of γ, then κs = dφ

ds
.

Proof: Let −→a be a fixed unit vector let
−→
b be the unit vector obtained by rotating −→a anticlockwise by π

2
.

Then

−→
t = −→a cosφ+

−→
b sinφ

⇒
d
−→
t

ds
= −−→a sinφ.

dφ

ds
+
−→
b cosφ.

dφ

ds

⇒ −̇→t = (−−→a sinφ+
−→
b cosφ).

dφ

ds

⇒ −̇→t · −→a = − sinφ.
dφ

ds
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⇒ κs
−→n s · −→a = − sinφ.

dφ

ds

⇒ κs‖−→n s‖ · ‖−→a ‖ cos(
π

2
+ φ) = − sinφ.

dφ

ds

⇒ κs(− sinφ) = − sinφ.
dφ

ds
(because ‖−→n s‖ = 1&‖−→a ‖ = 1)

⇒ κs =
dφ

ds
.

This completes the proof.

Definition 6.3 A rigid motion in R2 is a map R2 → R2 is of the form M = T−→a ◦Rθ, where T−→a is the

translation by the vector −→a given by

T−→a (−→v ) = −→v +−→a

for −→v ∈ R2 and Rθ is the anticlockwise rotation by an angle θ given by

Rθ(x, y) = (x cos θ − y sin θ, x sin θ + y cos θ)

=

cos θ − sin θ

sin θ cos θ

 ·
x
y

 ,
x
y

 ∈ R2.

Theorem 6.4 Let κ : (α, β) → R2 be any smooth function. Then there exists a unit speed curve γ :

(α, β)→ R2 whose signed curvature is κ. Further if γ̃ : (α, β)→ R2 is any other unit speed curve whose

signed curvature is κ, then there exists a rigid motion M such that γ̃(s) = M(γ(s)) ∀s ∈ (α, β).

Proof: For first part, fix s0 ∈ (α, β) and define

φ(s) =

∫ s

s0

κ(u)du (2)

and

γ(s) =

(∫ s

s0

cos(φ(t))dt,

∫ s

s0

sin(φ(t))dt

)
so that

γ̇(s) = (cos(φ(s), sin(φ(s)))

which is a unit vector making angle φ(s) with positive x−axis. Thus γ is unit speed curve and by previous

proposition, its signed curvature is

κs =
dφ

ds
= κ by (2).

For the second part, suppose that φ̃(s) is the angle between x−axis and the tangent vector ˙̃γ of γ. Then

˙̃γ(s) =
(
cos(φ̃(s)), sin(φ̃(s))

)
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⇒ γ̃(s)|ss0 =

(∫ s

s0

cos(φ̃)(t)dt,

∫ s

s0

sin(φ̃(t))dt

)
⇒ γ̃(s) =

(∫ s

s0

cos(φ̃(t))dt,

∫ s

s0

sin(φ̃(t))dt

)
+ γ̃(s0). (3)

We have

κ(s) =
dφ̃(s)

ds

⇒ dφ̃ = κ(s)ds

⇒ φ̃(s) =

∫ s

s0

κ(u)du+ φ̃(s0)

⇒ φ̃(s) = φ(s) + φ̃(s0). (4)

Inserting (4) in (3) and writing −→a for γ̃(s0) and θ for φ̃(s0), we obtain

γ̃(s) =

(∫ s

s0

cos(φ(t)) + θ)dt,

∫ s

s0

sin(φ(t)) + θ)dt

)
+−→a

= T−→a

(∫ s

s0

(cos(φ(t)) cos(θ)− sin(φ(t)) sin(θ)) dt,

∫ s

s0

(sin(φ(t)) cos(θ) + cos(φ(t)) sin(θ)) dt

)
= T−→a

(
cos(θ)

∫ s

s0

cos(φ(t))dt− sin(θ)

∫ s

s0

sin(φ(t))dt, cos(θ)

∫ s

s0

(sin(φ(t)dt+ sin(θ)

∫ s

s0

cos(φ(t))dt

)
= T−→aRθ

(∫ s

s0

(cos(φ(t))dt,

∫ s

s0

(sin(φ(t))dt

)
= T−→aRθ

= M(γ(s))


