PREDICTING THE CHANGE IN PRICE OF COCONUT OIL WITH RESPECT OF TIME

Samra Rani¹, Karam Elahi Chohan²

Department of Statistics, University of Sargodha, Sargodha, PAKISTAN.

¹Samra.Rani04@gmail.com, ²karamelahichohan@gmail.com

ABSTRACT

Coconut oil is play a vital role in for our healthy life. The main purpose of this study is to calculate and predict the change in price of coconut oil with respect of time. This is achieved by taking time series data from **"Index Mundi"**. Our target data was monthly price of Coconut oil US dollar per Metric Ton (2008-2016). The main purpose of this project was, Is coconut really expensive? Has the prices increased or decreased with passage of Time?

Keywords: Coconut price, ARIMA, MAE, MAPE, RMSE.

INTODUCTION

Years ago Coconut oil was always used in cooking since 1950's and available on local super market. Globally it is grown in 93 countries and in 12.29 million hectare, producing 11.04 million MT (approximately copra). India, Indonesia, Philippines, Thailand, Sri Lanka are the five major players of producing 78 % of the world area and production. The productions of coconut in 2014 top three are Indonesia 35.8 %, Philippines 30.0% and India 23.3% of the total world. In beauty and utility, coconut oil may also used in cooking, for healthy life etc. Now a days, coconut has been a growing Success.

The objective is the study of coconut oil is to forecast its price by using *Time Series Model*. We forecast the price of coconut oil and apply forecasting check to find out the better and reliable results. In the section 2 comprehensive review on past studies have done ,in section 3 and 4 are about methodology and finding the results according to stated studied respectively, in section 5 comprises conclusion.

LITERATURE REVIEW

There are many debate and research work on price of coconut oil and its forecasting. Some recent studies are discussed as; The objective of this paper is coconuts and its products. Coconut is essential part of life in South Pacific. This project will provide pilot site at ICG in Papua New Guinea to test this approach. This would long term project that would require necessary commitment by the Host country. Bangkok Thailand (2002). The international trend of prices of coconut oil and others. The magnitude of price variation are so high so it is unpredictable change daily, weekly, monthly and yearly prices. Among all major oils the variation are more strong in respect of palm oil and coconut oil. Dr Gigi Elias (2003). In this theory Philip Journal Cardiology the coconut oil is protect us from different disease and make us healthy and strong. It work as an anti- atherogenic. Conrado S. Dayrit et al (2003). Economic Analysis of different processing method of coconut oil are dry and wet method. In all case the price of raw material major effect the cost of production. Matthias Kindermann, Kevin Weis at all (2007). The objective of the paper to check climate

variability, analysis is based on 31 years from 1971 to 2001. Due to shortage of coconut production the price of coconut products are high. The reduce variability in nut production that is cause by changing in climate. MT N Fernando et al(2007). The coconuts products has many uses in our life and also good for healthy life. If properly make its product it is benefit for us socially and also economically. The production of copra fell 30,800 Tonnes in 1977 to 11,500 Tonnes in 1997, and has remained at this level(Fiji Bureau of Statistic). ShashiKad and Tony Weir (2007). Agalenda has presently cover 20,000 standing coconut trees, which are distributed as 30% of total area. Every year ,approximately 15,000 L of coconut oil sent for sale to Mauritius. Coconut oil is used a alternative of Diesel in Agalenda. Mr Michely Chan & Mrs Poonam V. R. (2010). The coconut is necessary in the early days. Now a days coconut produced hundred thousand square kilometers covering 86 tropical countries. Coconut water sales reached almost half a billion dollars worldwide in 2013.there is one problem coconut oil is costly. Dr Karl's (2014).India stands on 3rd no of the world coconut production according to FAO 2013. The objective of study to analyze the price of coconut oil after and before liberalization. They use yearly average price of coconut oil in three major markets. Specially done for Kerala.Deepa Chandranand Dr. Philo Francis (2015). Coconut oil (CO) has positive effect on health and also cure from disease. It protect us from breast cancer. The effect of long term consumption of CO are unknown. Well-designed randomized objective case should be conducted to illuminate the possible benefits of coconut oil in Human health. Laura Boemeke et al (2015).

After a comprehensive literature review of different studied, we reached at the point coconut oil is play a important role in a society and also economically. Its play a major role for healthy life. Therefore, many techniques & tools used in research but there are mystery no one tells what a change in the price of coconut oil is increase or decrease. Now, we are not only forecast the monthly price of coconut oil we also discuss the accuracy of forecasting model by using MAE, MAPE, RMSE.

OBJECTIVE OF STUDY

The objective of this study to purpose a time series model for forecasting the monthly price of coconut oil. For this study data of Monthly price of coconut oil between April 2008 to March 2016 is taken from "Index Mundi" (monthly price in United State Dollar per metric tons) as in Table 5.

METHODOLOGY

To forecast the price of coconut oil we use time series model .There we use *Box Jenkins method*. The box Jenkins method is applicable if it fulfills some assumption. The procedure is defined as below:

Month	Price	Month	Price	Month	Price
Apr-08	1443.00	Dec-10	1715.00	Aug-13	894.00
May-08	1502.00	Jan-11	2063.00	Sep-13	982.00
Jun-08	1551.00	Feb-11	2260.00	Oct-13	985.00
Jul-08	1436.00	Mar-11	1925.00	Nov-13	1270.00
Aug-08	1193.00	Apr-11	2088.00	Dec-13	1269.00
Sep-08	1110.00	May-11	2097.00	Jan-14	1270.00
Oct-08	856.00	Jun-11	1803.00	Feb-14	1365.00
Nov-08	719.00	Jul-11	1663.00	Mar-14	1394.00
Dec-08	740.00	Aug-11	1454.00	Apr-14	1356.00
Jan-09	734.00	Sep-11	1310.00	May-14	1403.75
Feb-09	673.00	Oct-11	1208.80	Jun-14	1406.00
Mar-09	625.00	Nov-11	1479.00	Jul-14	1260.00
Apr-09	747.00	Dec-11	1439.00	Aug-14	1177.00
May-09	842.50	Jan-12	1451.00	Sep-14	1181.00
Jun-09	747.00	Feb-12	1411.00	Oct-14	1144.00
Jul-09	685.00	Mar-12	1338.00	Nov-14	1192.50
Aug-09	747.00	Apr-12	1352.50	Dec-14	1215.00
Sep-09	701.00	May-12	1155.00	Jan-15	1159.00
Oct-09	706.00	Jun-12	1056.00	Feb-15	1188.00
Nov-09	729.00	Jul-12	1070.00	Mar-15	1096.00
Dec-09	768.00	Aug-12	1000.00	Apr-15	1079.00
Jan-10	784.00	Sep-12	969.00	May-15	1133.00
Feb-10	798.00	Oct-12	898.00	Jun-15	1110.00
Mar-10	921.00	Nov-12	850.00	Jul-15	1101.00
Apr-10	939.00	Dec-12	785.00	Aug-15	1039.00
May-10	932.00	Jan-13	829.00	Sep-15	1063.00
Jun-10	993.00	Feb-13	861.00	Oct-15	1109.00
Jul-10	1031.00	Mar-13	821.00	Nov-15	1105.00
Aug-10	1170.00	Apr-13	793.00	Dec-15	1150.00
Sep-10	1275.00	May-13	826.00	Jan-16	1155.00
Oct-10	1412.00	Jun-13	896.00	Feb-16	1215.00
Nov-10	1521.30	Jul-13	861.00	Mar-16	1448.00

Table 5. Monthly price of coconut oil from April 2008 to March 2016

STATIONARY TEST

When the variable is no change in mean and variance for a long time, it said to be stationary. For applying Box Jenkins methodology, variable must be stationary. There are two methods to check stationary.

1. Graphical Method

In graphical method we use correlogram and line graph.

2. Empirical Method

Unit root Test

- I. Augmented Dickey Fuller Test (ADF Test)
- II. Phillips Perron Test (PP Test)

DATA ANALYSIS

In data analysis first of all we check data is stationary or not. If not then make it stationary and make its possible model. The procedure is given below:

General Procedure

Step 1

Hypothesis

Ho: Data is not stationary.

H1: Data is stationary.

Step 2

Level of significance

α=0.05

Step3

Test statistic

- 1. Unit root test
 - I. Augmented Dickey Fuller test (ADF Test)
 - II. Phillip Perron test (PP Test)
- 2. Correlogram

Step 4

Calculation

On E-views& Excel

Step 5

Critical region

On the basis of p-value. If the p-value less than level of significance reject Ho otherwise Don't reject Ho.

Step6

Decision

If reject we conclude series is stationary otherwise we say series is non-stationary.

STATIONARY TEST

When the variable is no change in mean and variance for a long time, it said to be stationary. For applying Box Jenkins methodology ,variable must be stationary. There Graphical Method and Empirical Method both are used. In graphical line diagram and correlogram have been utilized. Figure 1 is line diagram and figure 2 is correlogram of monthly price of coconut oil.

Figure1. Monthly price of coconut oil

Figure 1 shows monthly price on y-axis and time on x-axis. The pattern shows ups and downs in a graph and irregularity in monthly price of coconut oil indicate that it is non stationary.

Autocorrelation	Partial Correlation		AC	PAC	Q-Stat	Prob
·		1	0.940	0.940	87.468	0.000
		2	0.857	-0.226	160.94	0.000
	יםי	3	0.761	-0.120	219.59	0.000
	□ '	4	0.639	-0.271	261.36	0.000
	1 1	5	0.517	-0.001	288.98	0.000
· 🗖	111	6	0.401	-0.013	305.77	0.000
· 🗖 ·	יוםי	7	0.299	0.083	315.21	0.000
· 🖻	יםי	8	0.205	-0.064	319.71	0.000
יםי	111	9	0.128	0.023	321.47	0.000
יםי	י ב וי	10	0.054	-0.138	321.79	0.000
1 🛛 1		11	-0.027	-0.165	321.87	0.000
יםי	יםי	12	-0.110	-0.133	323.23	0.000
 	101	13	-0.192	-0.043	327.41	0.000
	111	14	-0.270	-0.021	335.80	0.000
	101	15	-0.347	-0.061	349.77	0.000
· ·	יםי	16	-0.420	-0.111	370.49	0.000
	111	17	-0.477	-0.014	397.53	0.000
	' '	18	-0.516	-0.015	429.71	0.000
	וןי	19	-0.542	-0.036	465.64	0.000
		20	-0.551	-0.023	503.27	0.000
		21	-0.555	-0.118	541.87	0.000
		22	-0.558	-0.139	581.47	0.000
		23	-0.547	0.015	620.10	0.000
	·	24	-0.521	0.078	655.52	0.000
		25	-0.494	-0.063	687.86	0.000
		26	-0.460	-0.019	/16.26	0.000
		27	-0.399	0.128	737.95	0.000
		28	-0.317	0.128	751.89	0.000
		29	-0.237	-0.110	759.79	0.000
·····	! <u>'</u> ₽'	30	-0.139	0.109	762.54	0.000
		31	-0.036	0.007	762.73	0.000
: <u> </u>		32	0.048	-0.089	765.00	0.000
: E '		33	0.127	-0.009	700.47	0.000
; E		34	0.18/	-0.099	777.05	0.000
; E		30	0.214	-0.183	706.00	0.000
	· • • •	30	0.231	0.007	780.23	0.000

Figure 2. Correlogram for Monthly price of coconut oil

In figure 2, correlogram of autocorrelation and partial autocorrelation shows that there is high correlation between the values, but with the passage of time decrease.

Table 1.						
	1	ADF	PP			
P - values	Level	1st difference	Level	1 st difference		
None	0.518	0.0000	0.4441	0.0000		
Trend	0.0378	0.0000	0.2008	0.0000		
Trend &Intercept	0.1045	0.0000	0.4471	0.0000		

In empirical methods ADF and PP test used. For ADF test on the basis of P value 0.518 we don't reject Ho at the 5% level of significance For PP test on the basis of P value 0.441 we don't reject Ho at the 5% level of significance and conclude that monthly price of coconut oil is non-stationary. After first difference p-value 0.000 we reject Ho and conclude that monthly price of coconut oil is stationary. Line diagram and correlogram after taking 1st difference.

Figure 3. Monthly price of coconut oil

Autocorrelation	Partial Correlation		AC	PAC	Q-Stat	Prob
· 🗖		1	0.260	0.260	6.6137	0.010
· Þ·	ווים	2	0.120	0.056	8.0415	0.018
· 🗖		3	0.285	0.259	16.190	0.001
· p ·	יםי	4	0.068	-0.074	16.662	0.002
· [] ·	יםי	5	-0.037	-0.077	16.804	0.005
יקי	· 🗐 ·	6	-0.063	-0.125	17.218	0.009
	1 1	7	-0.041	0.007	17.394	0.015
· 🖓 '	'= '	8	-0.169	-0.139	20.416	0.009
	· •	9	-0.039	0.102	20.581	0.015
' P '	' <u>P'</u>	10	0.078	0.106	21.241	0.019
יףי	'_P'	11	0.042	0.096	21.432	0.029
' <u>9</u> '	' = '	12	-0.043	-0.124	21.640	0.042
'¶'	'5 '	13	-0.077	-0.152	22.305	0.051
·] ·	' ! '	14	0.010	-0.019	22.317	0.072
'''	'_''	15	-0.033	0.023	22.444	0.097
' = '	'9'	16	-0.160	-0.109	25.431	0.063
' = '	' <u></u> '	17	-0.139	-0.064	27.700	0.049
'5 '	191	18	-0.144	-0.075	30.176	0.036
'9'	וייין	19	-0.165	-0.041	33.462	0.021
'9'		20	-0.082	-0.010	34.287	0.024
' " '	· · ·	21	-0.041	-0.011	34.501	0.032
' ! !	1 19 1	22	-0.136	-0.106	36.820	0.025
<u>'9 '</u>	!9 !	23	-0.172	-0.139	40.597	0.013
' ' '	']'	24	-0.011	0.003	40.613	0.018
<u> </u>		25	-0.065	-0.072	41.167	0.022
		26	-0.243	-0.216	49.081	0.004
		27	-0.204	-0.179	54.719	0.001
: :		28	-0.022	0.097	54.786	0.002
· · · · · · · · · · · · · · · · · · ·		29	-0.129	-0.067	57.096	0.001
<u>' "L.'</u>		30	-0.073	-0.021	57.845	0.002
: P!		31	0.175	0.103	62.278	0.001
: L :		32	0.003	-0.090	62.280	0.001
: <u>Ľ</u>		33	0.089	0.060	03.465	0.001
		34	0.283	0.097	75.544	0.000
		35	0.185	-0.010	80.794	0.000
· P·	· · · ·	36	0.108	0.019	82.619	0.000

Figure 4. Monthly price of coconut oil

In Figure 3 and 4 shows there is no change in mean and variance with respect to time. So, we conclude that series is stationary at 1st difference.

MODEL IDENTIFICATION AND PARAMETER ESTIMATION

Our data is stationary at first difference d=1 and the values of p, q are selected by using correlogram on the basis of ACF and PACF. We estimate the model of different p and q by using E-views and find the value of R square ,Adjusted R square, AIC and SBC given in table 1.by comparing these values we select ARIMA (1,1,3) as a best fitted model because the value of AIC and SBC are least from all other estimated model and the value of R square

Ν	Model (P,d,q))				
Р	d	q	R square	Adj. R square	AIC	SBC
0	1	1	0.068504	0.058488	12.25194	12.30571
1	1	0	0.07084	0.060741	12.25753	12.31164
1	1	1	0.087	0.06699	12.261	12.342
1	1	2	0.0664	0.0459	12.283	12.364
1	1	3	0.1847*	0.1667*	12.148*	12.229*
1	1	4	0.071	0.0505	12.278	12.359
2	1	1	0.0714	0.0508	12.287	12.369
2	1	2	0.0323	0.0108	12.328	12.41
2	1	3	0.1433**	0.1242**	12.206**	12.288**
2	1	4	0.024	0.0023	12.337	12.418
3	1	1	0.1366	0.11722	12.215	12.297
3	1	2	0.094	0.0737	12.263	12.345
3	1	3	0.1421	0.1229	12.208	12.29
3	1	4	0.0877	0.0672	12.27	12.352

,Adjusted R square are maximum from all other estimated models. And 2^{nd} best fitted selected model ARIMA (2,1,3).

Table 2

FORECASTING ACCURACY

For forecasting purposes ARIMA (1,1,3) and ARIMA (2,1,3) models are used.

 $D(CP) = c + aAR(p) + \beta MA(q) + u_i$

C is an intercept, α is coefficient of autoregressive lag values AR(p), β is coefficient of moving average lag values MA(q) and μ shows the residuals of model. In Box-Jenkins model residuals should be IID (independently identically normally distributed).

In ARIMA (1,1,3) we use AR (1) and MA(3) model so its estimated equation is

D(CP) = 1.3159 + .2233 AR(1) + .4248 MA(3)

In ARIMA (2,1,3) we use AR(2) MA (3) model so its estimated equation is

$$D(CP) = .1554 + .0134AR(2) + .4527MA(3)$$

For checking the accuracy of forecasting we apply forecasting checks.

- I. RMSE (Root Mean Square Error)
- II. MAE (Mean Absolute Error)
- III. MAPE (Mean Absolute Percentage Error)

We select the model which has minimum RMSE, MAE, MAPE.

	Table 3	
	ARIMA(1,1,3)	ARIMA(2,1,3)
RMSE	117.31	161.4107
MAE	142.6127	121.2254
MAPE	11.87828	9.982363

We select for the model for Forecast ARIMA (2,1,3) are better than ARIMA (1,1,3) due to less MAE, MAPE, and RMSE.

ANALYSIS OF FORECASTING VALUE RESULTS

The monthly price of coconut oil from April 2015 until March 2016 are used for forecasting the next 12 values of the monthly price of coconut oil by using both ARIMA (1,1,3) and ARIMA (2,1,3) models. The forecasted results are following:

Figure 5. Monthly price of coconut oil

Figure 6. Monthly price of coconut oil

Figure 5 and 6 shows the forecast of ARIMA (1,1,3) and ARIMA (2,1,3) with 2 S.E. In the above figures time are taken on x-axis and price of the Coconut oil on y axis. It clearly indicates that Forecast of ARIMA (2,1,3) are better than ARIMA (1,1,3) due to less MAE, MAPE, and RMSE.

Figure 7 shows the relation of actual and forecast values of ARIMA (2, 1, 3).

Academic Research International Vol. 9(4) December 2018

Table 4. Error comparison of ARIMA (1,1,3) and ARIMA(2,1,3)									
Year	Actual value	Forecast ARIMA(1,1,3)	Error	Forecast ARIMA(2,1,3)	Error				
Apr-15	1079	1047.34668	31.65332	1066.139152	12.86085				
May-15	1133	1077.328907	55.67109	1070.703341	62.29666				
Jun-15	1110	1104.452332	5.547668	1088.055767	21.94423				
Jul-15	1101	1119.331555	-18.3316	1116.701167	-15.7012				
Aug-15	1039	1123.662057	-84.6621	1129.051913	-90.0519				
Sep-15	1063	1028.529812	34.47019	1048.968702	14.0313				
Oct-15	1109	1061.595212	47.40479	1055.212224	53.78778				
Nov-15	1105	1084.3306	20.6694	1068.701076	36.29892				
Dec-15	1150	1119.772265	30.22774	1112.123791	37.87621				
Jan-16	1155	1181.212339	-26.2123	1174.454134	-19.4541				
Feb-16	1215	1165.919699	49.0803	1172.192866	42.80713				
Mar-16	1448	1242.265678	205.7343	1232.37034	215.6297				

TIL (D .

RESIDUAL ANALYSIS

In Box-Jenkins methodology residual of best fitted model must be IID (Independent Identically Normally Distributed). For justifying the assumption we make its histogram & correlogram.

Autocorrelation Partial Correlation			AC	PAC	Q-Stat	Prob
1 þ 1	ı þ ı	1	0.048	0.048	0.2195	
		2	0.184	0.182	3.5182	
ים י	ים י	3	0.143	0.132	5.5369	0.019
ין	111	4	0.027	-0.015	5.6084	0.061
יםי	ון ו	5	0.091	0.044	6.4480	0.092
1 1 1	1 1	6	0.021	-0.003	6.4914	0.165
111		7	0.011	-0.016	6.5031	0.260
· 🗖		8	0.272	0.266	14.199	0.027
1 🛛 1	101	9	-0.038	-0.056	14.347	0.045
יםי		10	0.074	-0.021	14.933	0.060
יוןי		11	0.047	-0.003	15.172	0.086
יםי	יםי	12	-0.057	-0.068	15.530	0.114
יןי	יםי	13	-0.049	-0.097	15.792	0.149
		14	-0.061	-0.032	16.203	0.182
		15	-0.080	-0.046	16.922	0.203
		16	-0.105	-0.161	18.178	0.199
		1/	-0.109	-0.044	19.553	0.190
		18	-0.115	-0.083	21.113	0.1/4
· · · · ·	<u>'</u> ¶ '	19	-0.101	-0.070	22.336	0.172
<u>'</u>		20	-0.067	0.026	22.885	0.195
<u>'</u>		21	-0.052	0.043	23.216	0.228
: <u>-</u> :		22	-0.075	-0.034	23.913	0.240
<u>'</u> ¶.'		23	-0.108	-0.003	25.390	0.231
iat:		24	0.003	0.177	23.734	0.202
		20	-0.117	-0.071	27.347	0.233
	····	20	-0.094	-0.004	20.704	0.231
;¶;		20	-0.025	0.032	20.790	0.273
i hi		20	0.002	0.045	20.790	0.321
i d'i		20	-0.047	-0.043	29.007	0.337
		31	0.008	-0.009	29,830	0.423
		32	0 173	0.080	34 168	0 274
, F i	1 1 1	33	-0.005	0.045	34 171	0.318
		34	0.053	-0.005	34 595	0.345
1		35	-0.037	-0.153	34,800	0.382
	101	36	-0.044	-0.095	35,103	0.416
1						

Figure 9.Correlogram of residuals ARIMA(2,1,3)

Correlogram of residuals that are stationary and there is no pattern. So, Histogram and Correlogram shows that ARIMA (2, 1, 3) is best for Forecasting of price Coconut oil.

Figure 8. Histogram of residuals ARIMA(2,1,3)

Figure 8 shows that residuals of ARIMA (2, 1, 3) are IID as the bar showing symmetric pattern.

CONCLUSION

In this study, a univariate time series model is selected by using the data of the monthly coconut price from Pakistan Web site. We apply Box-Jenkins methodology for forecasting the monthly coconut price. By using the Line Diagram, correlogram, ADF and PP Test we found that our data is stationary at the 1st difference. After the estimation of models, and by comparing the values of R square adjusted R square AIC and SBC we conclude that ARIMA (1,1,3) and (2,1,3) are very close to each other so we use both models for forecasting purposes. After forecasting the values, we check the accuracy by using MAE, MAPE, and RMSE. From the above study, it is found that ARIMA (2, 1, 3) is more efficient than ARIMA (1, 1, 3).

REFERENCES

- [1] COGNET. (2002). Coconut Research and Development in the South Pacific. *COGENT Steering Committee Meeting*.
- [2] Elias, D. (2003). Trends in the international prices of coconut oil and other. *IOS Journal*, 4 (4), 1-3.
- [3] Fernando, L. Z. (2007). *Economic value of climate variability*. USA: Author.
- [4] Matthias, K. K. W. (2007). *Economic analysis of different processing methods for small-scale coconut oil production*. USA: Tropentang.
- [5] Veer, P., & Ramjeawon, M. R. (2010). *Use of coconut oil as a substitute to diesel in Agalega*. Algeria: Calameo.
- [6] Karls, D. (2014). *Coconut claims don't hold water*. USA: ABC Net.
- [7] Laura, B. A. M. (2015). *Effects of coconut oil on human health*. USA: Script.