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Interpolation and
Polynomial Approximation

The computational procedures used in computer software fo_r the evaluzjlljon. of a li-
brary function, such as sin(x), cos(x), or ¢*, involve polynomial appproximation. Thf
state-of-the-art methods use rational functions (which are the quotients of polynomi-
als). However, the theory of polynomial approximation is su‘itable for a first course
in numerical analysis, and we will mainly consider them in this chapter. Suppose that

the function f(x) = &* is to be approximated by a polynomial of degree n = 2 over

the interval [—1, 1]. The Taylor polynomial is shown in Figure 4.1(a) and can be con-
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Figure 4.1 (a) The Taylor polynomial p(x) = 1.000000 + 1.000000x +
0.500000x2 which approximates f(x) = e over {—1, 1]. (b) The Chebyshev
approximation g(x) = 1.000000 + 1.129772x + 0.532042x2 for f(x) = e* over
[—1,1].
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Figure 4.2 The graph of the col-
location polynomial that passes
x through (1,2), (2, 1), (3.5), (4, 6),
1 2 3 4 5 and (5, ).

trasted with the Chebyshev approximation in Figure 4.1(b). The maximum error for
the Taylor approximation is 0.218282, whereas the maximum error for the Chebyshev
polynomial is 0.056468. In this chapter we develop the basic theory needed to investi-
gate these marters.

An associated problem involves the construction of the collocation polynomial.
Given n + 1 points in the plane (no two of which are aligned vertically), the colloca-
tion polynomial is the unique polynomial of degree < n that passes through the points.
In cases where data are known to a high degree of precision, the collocation polyno-
mial is sometimes used to find a polynomial that passes through the given data points.
A variety of methods can be used to construct the collocation polynomial: solving a
linear system for its coefficients, the use of Lagrange coefficient polynomials, and the
construction of a divided differences table and the coefficients of the Newton poly-
nomial. All three techniques are important for a practitioner of numerical analysis to
know. For example, the collocation polynomial of degree n = 4 that passes through
the five points (1, 2), (2, 1), (3, 5), (4, 6), and (5, l)is

5x% — 82x3 + 4274 — 806x + 504
24 ’
and a graph showing both the points and the polynomial is given in Figure 4.2,

P(x) =

Taylor Series and Calculation of Functions

Limit processes are the busis of calculus. For example, the derivative
» . flx—h)— fix)
= fim 222~ 2/
7 hl—?(l) h

is the limi1 of the difference quotient where both the numerator and the denominator
80 lo zero. A Taylor series illustrates another type of limit process. In this case an
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Table 4.1 Taylor Series Expansions for Some Common Functions

sin(x):x—§+x?f—%+--- for all x

cos(x)=1—§+§—%j+~n for all x

e"=l+x+§+§+;—:+-" forall x
ln(l+x)=x—£22—+x3—3—':’—4+-'- —l<x=<l
arctau(x):x—§+x?s-§+--- —-1=x=<1

AP =14prt BE D2 POZ DO D s, porpey <

2t

infinite number of terms is added together by taking the limit of certain partial sums.
An important application is their use to represent the elementary functions: sin{x),
cos(x), ¥, In(x), etc. Table 4.1 gives several of the common Taylor series expansions.
The partial sums can be accumulated until an approximation to the function is obtained
that has the accuracy specified. Series solutions are used in the areas of engineering
and physics.

We want to learn how a finite sum can be used to obtain a good approximation
to an infinite sum. For illustration we shall use the exponential series in Table 4.1 to
compute the number e = ¢!, which is the base of the natural logarithm and exponential
functions. Here we choose x = 1 and use the series

SEPENE AR GEND SR 1*
e = +E+a+§‘+z+"'+a+"'

The definition for the sum of an infinite series in Section 1.1 requires that the partial
sums Sy tend to a limit. The values of these sums are given in Table 4.2.

A natural way to think about the power series representation of a function is to
view the expansion as the limiting case of polynomials of increasing degree. If enough
terms are added, then an accurate approximation will be obtained. This needs to be
made precise. What degree should be chosen for the polynomial, and how do we
calculate the coefficients for the powers of x in the polynomial? Theorem 4.1 answers
these questions.
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Table 4.2 Partial Sums S, Used to

Determine e

n| Sa=t+l4l4esd

0 1.0

1 20

2 25

3 2.666666666666 . . .

4 2.708333333333 ...

5 2.716666666666 . .

6 2718055555555 . ..

7 2718253968254 ...

8 2.718278769841 ...

9 2718281525573 ...
10 2.718281801146 . ..
11 2.718281826199 . .
12 2.718281828286 . .
13 2.718281828447 ..
14 2.718281828458 . ..
15 2.718281828459 . ..

Theorem 4.1 (Taylor Polynomial Approximation). Assume that f ¢ C¥+![q, b}
and xg € [a, b] is a fixed valve. If ¥ € [a, b], then

) F(x) = Py(x) + En(x),

where Py (x) is a polynomial that can be used to approximate f(x):

N r(h)
@ 70~ pun) = 5 T ot
The error term E n(x) has the form
f(N+l)(C)
E = _ N+1
(3 N(x) I {x — xp)

for some value ¢ = c(x) that lies between x and xg.
Proof. The proof is left as an exercise. .

Relation (2) indicates how the coefficients of the Taylor polynomial are calculated.
Although the error term (3) involves a similar expression, notice that SP D (c)isto be
evaluated at an undetermined number c that depends on the value of x. For this reason
we do not try to evaluate Ex(x): it is used to determine a bound for the accuracy of
the approximation.
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Example 4.1, Show why 15 terms are all that are needed to obtain the 13-digit approx:
mation e = 2.718281828459 in Table 4.2.
Expand f(x) == ¢* in a Taylor polynomial of degree 15 using the fixed value xp = U

and involving the powers (x — 0)¥ = x*, The derivatives required are f'(x) = f"(x) =

.. = fU6} = &% The first 15 derivatives are used to calculate the coefficients a; = V7K
and are used to write

2 a3 x 15

4) Pis(x) = 1+x+ T + 3 + - 15!;
Setting x = 1 in (4) gives the partial sum §15 = Pi5(1). The remainder term is needed to
show the accuracy of the approximation:

f(lﬁ](c)xlﬁ

(5 Eis(x) = — 5

Since we chose xg = 0 and x = 1, the value ¢ lies between them (i.e., 0 < ¢ < 1), which
implies that e* < e!. Notice that the pa.mal sums in Table 4.2 are bounded above by 2.
Combining these two inequalities vields e < 3, which is used in the following calculation

1 £ 3 i3
[Eys(Dl = —ﬁ <16 < 1.433844 x 10
Therefore, all the digits in the approximation e = 2.718281828459 are correct, because the
actual error (whatever it is) must be less than 2 in the thirteenth decimal place. ]

Instead of giving a rigorous proof of Theorem 4.1, we shall discuss some of the
features of the approximation; the reader can look in any standard reference text on
calculus for more details. For illustration, we again use the function f(x) = ¢* and
the value xp = 0. From elementary calculus we know that the slope of the curve
y = e* at the point (x, e*) is f(x) = ¢*. Hence the slope at the point (0, 1) i~
f/(0) = 1. Therefore, the tangent line to the curve at the point (0, 1) is y = 1 + x
This is the same formula that would be obtained if we used N = 1 in Theorem 4.1}.
that is, P1(x) = F(0) + f'(0)x/1! = 1 + x. Therefore, Pi(x) is the equation of th.
tangent line to the curve. The graphs are shown in Figure 4.3.

Observe that the approximation ¢* = 1 4+ x is good near the center xp = 0 and that
the distance between the curves grows as x moves away from 0. Notice that the slope-
of the curves agree at (0, 1). In calculus we learned that the second derivative indicate-
whether a curve is concave up or down. The study of curvature! shows that if twi:
curves y = f(x)and y = g(x) have the property that f (xo) = g(x0), f'(x0) = g'(x0)
and f”{xq) = g"(xo) then they have the same curvature at xp. This property would b
desirable for a polynomial function that approximates f(x). Corollary 4.1 shows tha
the Taylor polynomial has this property for N > 2.

I'The curvature X of a graph v = £ (x} at (xg, o) is defined by K = | " (xp}t/ (1 +[ f' (x0)12)%/*
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y=¢e*

Figure 4.3 The graphs of y = ¢*
and y = Pi(x) =1+x.

Corollary 4.1. If Py (x) is the Taylor polynomial of degree N given in Theorem 4.1,

“then

6) PP o) = fP(xg) for k=0,1, ..., N.

Proof. Set x = xp in equations (2) and (3), and the result is Px(xg) = f(xo). Thus
statement (6) is true for k¥ = 0. Now differentiate the right-hand side of (2) and get

fPu0) _1_ A %D (xg)
M A= Z —ty —xo>“=k2:0—~,d—(x—xo)*.

Set x = xp in (7) to obtain Py (xp) = f'(x0). Thus statement (6) is true for k = 1.
Successive differentiations of (7) will establish the other identities in (6). The details
are left as an exercise, .

Applying Coroliary 4.1, we see that y = Pz(x) has the properties f(xg) = P2(x0),
f!(x0) = Pj(xg), and f” (x0) = P (x); hence the graphs have the same curvature
at xg. For example, consider f(x) = e" and P2(x) = 1 +x + x2/2. The graphs are
shown in Figure 4.4 and it is seen that they curve up in the same fashion at (0, 1).

In the theory of approximation, one seeks to find an accurate polynomial approx-
imation to the analytic function® f(x) over [a, &]. This is one technique used in de-
veloping computer software. The accuracy of a Taylor polynomial is increased when
we choose N large. The accuracy of any given polynomial will generally decrease as
the value of x moves away from the center xo. Hence we must choose N large enough
and restrict the maximum value of |x — xg| so that the error does not exceed a specified
bound. If we choose the interval width to be 2R and xg in the center (i.e., [x —xpl < R),

2The function f(x) is analytic at xp if it has continuous derivatives of all orders and can be
represented as a Taylor series in an interval about xg.



192 CHAP 4 INTERPOLATION AND POLYNOMIAL APPROXIMATION

Figure 44 The graphsof y = e and y = Po(x) = 1 +
x + x2/2.

Table 4.3  Values for the Error Bound |error| < e® R¥+1 /(¥ 4 1)! Using the
Approximation e* = Py(x)for x| < R

R=20, R=15, R=10, R =05,

|x} < 2.0 |x] = 1.5 x| = 1.0 x| =0.5
& 2 Ps(x) 0.65680499 0.07090172 0.00377539 0.00003578
et 2z Pg(x) 0.18765857 0.0£519323 0.00053934 6.00000256
& 2 Py(x) 0.04691464 0.00284873 6.00006742 0.00000016
& = Pg(x) 0.01042548 0.00047479 0.00000749 0.00000001

the absolute value of the error satisfies the relation
RN +1

(8) ferrorf = [En(x)| < U

where M < max{| f ¥+ (2)| : xo— R < z < xp+ R}. If N is fixed and the derivatives
are uniformly bounded, the error bound in (8} is proportional to RN+ /(N 4 1)! and
decreases if R goes to zero as N gets large. Table 4.3 shows how the choices of these
two parameters affect the accuracy of the approximation e* =2 Py (x) over the interval
{x| < R. The error is smallest when N is largest and R smatlest. Graphs for Py, P3,
and Py are given in Figure 4.5.

Example 4.2. Establish the error bounds for the approximation ¢* = Pg(x) on each of

the intervals |x| < 1.0 and |x| = 0.5.
If 1x| < 1.0, then letting R = 1.0 and | ¥ (c)| = |e¢] < &' = M in (8) implies that

6"0(1.0)9
9!

lerrori = [Eg(x)| < 22 ().00000749.
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Figure 4.5 The graphs of y = ¢*, y = Pa(x), y = P3(x),

and y = Py(x).

¥
3x1077L

¥ -'-Eg(x)
2% 10°7}
1x 1077}
- : * X Figure 4.6 The graph of the error
-0 05 0.0 05 1.0 3 = Eo(x) = ¥ — PoCx).

If (x| < 0.5, then letting R = 0.5 and { f @ (c)| = {e¢] < €% = M in (8) impiies that

e23(0.5)°
9
Example 4.3, If f(x) = ¢*, show that N = 9 is the smallest integer, so that the |error] =
|Ex{x)| = 0.0000005 for x in [—1, 1]. Hence Py(x) can be used to compute approximate
values of ¢* that will be accurate in the sixth decimal place.
We need to find the smallest integer N so that

(1 N+1
lerror] = [Ey(x)| < (I\E;-k])' < 0.0000005.

lerror] = |Eg(x)| < 22 0.00000001. ™

In Example 4.2 we saw that N = 8 was too small, so we try N = 9 and discover
that [Ex(0) < e'(1P*1/(9 4+ I} < 0.000000749. This value is slightly larger than
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desired; hence we would be likely to choose N = 10. But we used ¢ < e! as a crude
estimate in finding the error bound. Hence 0.000000749 is a little larger than the actual
error. Figure 4.6 shows a graph of Eg(x) = ¢* — Py(x). Notice that the maximum vertical
range is about 3 x 10~7 and occurs at the right end point (1, E9(1)). Indeed, the maximum
error on the interval is Eg(1) = 2.718281828 — 2.718281526 ~ 3.024 x 10~7. Therefore,
N = 9is justified. [

Methods for Evaluating a Polynomial

There are several mathematically equivalent ways to evaluate a polynomial. Consider,
for example the function

9 fx) =@ -1k

The evaluation of f will require the use of an exponential function. Or the binomial
formula can be used to expand f(x) in powers of x:

. /8
10 fex=Y. (k)x“"‘(-“"

k=0
= xB — 8x7 +28x% — 56x7 + 70x* - 56x% +28x% — 8x + 1.

Horner’s method (see Section 1.1), which is also called nested multiplication, can
now be used to evaluate the polynomial in (10). When applied to formula (10}, nested
muitiplication permits us to write

(D fx) = {((((((x — B)x + 28)x — 56)x + 70}x — 56)x + 28)x — 8)x + 1.

To evaluate f(x) now requires seven multiplications and eight additions or sub-
tractions. The necessity of using an exponential function to evaluate the polynomial

has now been eliminated.
We end this section with the theorem that relates the Taylor series in Table 4.1 and
the Taylor polynomials of Theorem 4.1.

Theorem 4.2 (Taylor Series). Assume that f(x) is analytic and has continuous

derivatives of all order N = 1,2, .. ., on an interval {a, b) containing x;. Suppose that
the Taylor polynomials (2) tend to a limit

N sk
(12) S(x)= lim Py(x)= lim Z -)ﬂ(x — xo)F,
N—oo N—so00 = k!
then f(x) has the Taylor series expansion

o0 o{k)
(13) fo=Y TG0 o)k,

!
k=0 k!
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Proof. ‘This follows directly from the definition of convergence of series in Sec-
tion 1.1. The limit condition is often stated by saying that the error term must go
to zero as N goes to infinity. Therefore, a necessary and sufficient condition for (13)
1o hold is that

S ) (x — xp)NH!

14 lim E = [i =
(14) am wn(x) Nljlﬂm N+ 1) 0,
where ¢ depends on N and x. .

Exercises for Taylor Series and Calculation of Functions

1. Let f(x) = sin(x) and apply Theorem 4.].
{8) Use xp =0and find Ps(x), P7(x), and Py(x).
{b) Show thatif |x| < I then the approximation

. x3 x5 ):7 xg
szn(x)~x—§+5—!—ﬁ+ﬁ
has the error bound | Eg(x)}| < 1/10! < 2.75574 x 10~7,

(¢) Usexp = n/4and find Ps(x), which involves powers of (x —~ 7 /4).
2. Let f(x) = cos(x) and apply Theorem 4.1.

(8) Use xg = 0and find Pyix), Ps(x), and Ps(x).

(b) Show thatif |x| = 1 then the approximation

2 gt 6 B
cos(x)%1~5+-4—!—a+§
has the error bound |Eg(x)| < 1/9! < 2.75574 x 107,
(e} Usexq = m/4and find P4(x), which involves powers of (x — 7 /4).
3. Does f(x) = x'/? have a Taylor series expansion about xg = 07 Justify your answer.
Does the function f(x) = x /2 have a Taylor series expansion about xg = 17 Justify

FOUI answer. _
4. (a) Find a Taylor polynomial of degree N = 5 for f(x) = 1/(l + x) expanded
about xg = 0.

(b) Find the error term Es(x) for the polynomial in part (a).
-]

Find the Taylor polynomial of degree N = 3 for f(x) = e~*/2 expanded about
x9 =0,

6. Find the Taylor polynomial of degree N = 3, P3(x), for f(x) = x> — 2x2 4 2x
expanded about xg = 1, Show that f(x) = P3(x).
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7. (2) Find the Taylor polynomial of degree N = 5 for f(x) = x'/? expanded about (¢) Show that the error term for Pa (x) is
x0 = 4.
(b) Find the Taylor polynomial of degree N = 5 for f(x) = x'/? expanded about En) = (—1)N xN+1
%0 =9. ‘ M= W I DA+ o
(¢} Determine which of the polynomials in parts (a) and (b) best approximates
(6.5)\/2, (d) Evaluate P3(0.5), P5(0.5), and Py(0.5). Compare with In(1.5).

8. Use £(x) = (2 + x)!/? and apply Theorem 4.1. (e) Show thatif 0.0 < x < 0.5 then the approximation

(a) Find the Taylor potynomial P3(x) expanded about xo = 2. ER o o8 o
X
(b) Use P3(x) to find an approximation to 3/2. In{x) = x — > + T + -3 + ¥
(¢) Find the maximum value of | f*(c)| on the interval | < ¢ < 3 and find a bound
for | E5(x)|. has the error bound | Eg| < 0.00009765. . ..
9. Determine the degree of the Taylor polynomial Py (x) expanded about xp = 0 that 14. Binomial series. Igt S(x) =1 +x)? and xo = 0.
should be used to approximate €% so that the error is less than 1076, (@ Showthat Ff®(x)=p(p-1)--- (p—k+ DA +x)Pk,

10. Determine the degree of the Taylor polynomial Py (x) expanded about xo = 7 that (b) Show that the Taylor polynomial of degree N is

i 32 is less than 1076
should be used to approximate cos(33x /32) so that the error is less ! an ) Pee) = 14 prt P . PP D) (p e N+ 1
11. (a) Find the Taylor polynomial of degree N = 4 for F(x) = fZ, cos(z?) dr ex- NiX) = p 5y t + o .
panded about xp = 0.
(b) Use the Taylor polynomial to approximate £(0.1).
(¢) Find a bound on the error to the approximation in part (b). En(x) = p(p ~ 1)~~(p—N)xN"'1/((1 +oNH-rN + Y.
12. (a) Use the geometric series

(¢) Show that

(d) Set p = 1/2 and compute P2(0.5), P4(0.5), and Pg(0.5). Compare with

—-l—§=l—x2+x"‘—x6+x3—--~ for x| <1, (L5172,
14x (e) Show thatif 0.0 < x < 0.5 then the approximation
and integrate both sides term by term to obtain 5 5 . S
(A4x) gt 2 5 3% 7
x3 5 X 2 8§ 16 128 256
arctan(x):x———lw—-—-,;--t—n- for [x] < 1.
35 has the esror bousd {Es| < (0.5)5(21/1024) = 0.0003204 . . ..

(b) Use x/6 = arctan(3~'/2) and the series in part (a) to show that (f) Show thatif p = N is a positive integer, then

o3l x2(1_§;+3?4_37‘3+§_“,). PN(x).—_1+Nx+iV(i2"!l_)"2+...+NxN~l XV
Notice that this is the familiar binomial expansion.
(¢) Use the series in part (b) to compute 7 accurate to eight digits. 15, Find c such that | E4] < 107 whenever |x — xg/ < ¢.
Fact. w == 3.141592653589793284 . . .. (@) Let f(x) = cos(x) and xg = 0.
13. Use f(x) = In(1 + x) and xg = 0, and apply Theorem 4.1. (b) Let f(x) =sin(x) and xo = 7 /2.
(a) Show that f®(x) = (=¥ ((k — DY/ + ). (©) Let f(x) =¢"andxp = 0.
(b} Show that the Taylor polynomial of degree N is 16. (a) Supposethaty = f(x)is an even function (i.e., f(—x) = S(x) for al) x in the
5 3 . NeloN domain of f). What can be said about Py {x)?
Py (x)zx_x_ +x__x_+...+ﬂ_i (b) Suppose that y = f(x) is an odd function (i.e., f(—x) = — f(x) for all x in the

273 4 N ' domain of f). What can be said about Py (x)?
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17. Lety = f(x) bea polynomial of degree N. If f(xg) > Oand f'(x0), ..., f™(x0) =
0, show that all the real roots of f are less than xo. Hint. Expand f in a Taylor
polynomial of degree N about xp.

18. Let f(x) = e*. Use Theorem 4.1 to find Py{x), for N = 1, 2, 3,..., expanded
about xg = 0. Show that every real root of Py (x) has multiplicity less than or equal
to one. Note. If p is a root of multiplicity M of the polynomial P{x), then p is a root
of multiplicity M — 1 of P'(x).

19. Finish the proof of Corollary 4.1 by writing down the expression for P‘,f,k)(x) and
showing that

PP o) = f®(xg) for k=23, ..., N.

Exercises 20 and 21 form a proof of Taylor’s theorem.

20. Let g(r) and its derivatives g*) (1), for k = 1,2...., N 4 1, be continuous on the
interval (a, &), which contains xo. Suppose that there exist two distinct points x and
xg such that g(x) = 0, and g(x0) = g'(xg) = ...g"¥'(x0) = 0. Prove that there
exists a value ¢ that lies between xg and x such that gt¥+)(¢) = 0.

Remark. Note that g(t) is a function of 7, and the values x and xq are to be treated

as constants with respect to the variable 7.
Hint. Use Rolle’s theorem (Theorem 1.5, Section 1.1) on the interval with end

points xo and x to find the number ¢, such that g'(c1) = 0. Then use Rolle’s theorem
applied to the function g'(t) on the interval with end points xp and ¢ to find the
number ¢; such that g7(cz) = 0. Inductively repeat the process until the number
cn+1 is found such that g™+ (enyq) = 0.

21. Use the result of Exercise 20 and the special function

(t — xO)N+I

gty = f(t) — Pn{t) — EN(X)(x——xo)ﬁ"'_”

where Py (x) is the Taylor polynomial of degree N, to prove that the error term
En{x) = f(x) — Py(x) has the form

(x —xg)V+!

= fINHY X
En(x)=1f (©) NF DO

Hint. Find g™+ (r) and evaluate it at # = c.

Algorithms and Programs

The matrix nature of MATLAB allows us to quickly evaluate functions at a large nurn-
ber of values. If X=[-1 0 1], then sin(X) will produce [sin{-1) sin(0) sin(1}1.
Similarly, if X=—1:0.1:1, then Y=sin(X) will produce a matrix Y of the same dimension
as X with the appropriate values of sine. These two row matrices can be displayed in the

4.2.
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form of a table by defining the matrix D = [X* Y’] (Note. The matrices X and Y must be
of the same length.)
1. (a) Use the plot comunand to plot sin(x), Ps(x), P7(x), and Po(x) from Exercise
1 on the same graph using the interval —1 < x < 1.
(b) Create a table with columns that consist of sin(x), Ps(x), Py(x), and Py(x)
evaluated at 10 equally spaced values of x from the interval [—1, 1].

2. (a) Use the plot command to plot cos(x), P4(x), Ps(x), and Py(x) from Exercise
2 on the same graph using the interval —1 < x < 1,
(b) Create a table with columns that consist of cos(x), Ps(x), Ps(x), and Pg(x)
evaluated at 19 equally spaced values of x from the interval [—1, 1].

Introduction to Interpolation

In Section 4.1 we saw how a Taylor polynomial can be used to approximate the func-
tion f(x). The information needed to construct the Taylor polynomial is the value
of f and its derivatives at xg. A shortcoming is that the higher-order derivatives must
be known, and often they are either not available or they are hard to compute.
Suppose that the function y = f(x) is known at the N + 1 points (xg, yo), - . -,
(xx. yn), where the values x; are spread out over the interval [a, b] and satisfy
a<xp<xy<-.-<axy<b and y= flx).
A polynomial P(x) of degree N will be constructed that passes through these N + 1
points. In the construction, only the numerical values x; and y; are needed. Hence
the higher-order derivatives are not necessary. The polynomial P(x) can be used to
approximate f (x) over the entire interval (a, b]. However, if the error function E(x) =
F(x) — P(x) is required, then we will need to know f¥*1}(x) and a bound for its
magnitude, that is

M =max{|fM*P(x) :a <x < b}

Situations in statistical and scientific analysis arise where the function y = f(x)
is available only at N + 1 tabulated points (xx, y:), and a method is needed to approx-
imate f(x) at nontabulated abscissas. If there is a significant amount of error in the
tabulated values, then the metheds of curve fitting in Chapter 5 should be considered.
On the other hand, if the points (xz, ;) are known to a high degree of accuracy, then
the polynomial curve y = P(x) that passes through them can be considered. When
X < x < xp, the approximation P(x)} is called an inferpolated value. 1f either
X < xgorxy < x,then P(x) is called an extrapolated value. Polynomials are used to
design software algorithms to approXimate functions, for numerical differentiation, for
numerical ‘ntegration, and for making computer-drawn curves that must pass through

tpecified points.
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The tangent line
y ¥ has slope P’(4).

20 )- (5.5, P(5.5)) 20}
(4, P(4))

4, P(4)

1.0 1.0
05+ 05
0.0 1 1 i ! I i x 0.0 1 i 1 ] 1 L x F'igure 4.8 'me approximating

1 2 3 4 5 6 1 2 3 4 5 6 polynomial P(x) is integrated and
its antiderivative is used to find the

Figure 4.7 (a) The approximating Figure 4.7 (b) The approximating area under the curve for i < x <4.

polynomial £ (x) can be used for inter- polynomial P(x) is differentiated and

polation at the point (4, P(4)) and ex- P’(x} is used to find the slope at the in-

trapolation at the point (5.5, P(5.5)). terpolation point (4, P(4)).

The interpolated value is P(4) = 1.60 (see Figure 4.7(a)).
. R ; (b} dz = 3:13 = -—0.06
Let us briefly mention how to evaluate the polynomial P(x): dy = 2ar + dox = 04 + (—0.06)(4) = 0.16
(1 P(x)=anx" +an_1xV o b x4 ayx + ag. dy = ay +dix = —0.4+ (0.16)(4) = 0.24.
Homer’s method of synthetic division is an efficient way to evaluate P(x). The deriva- The numerical derivative is P'(4) = 0.24 (see Figure 4.7(b)).
tive P'{x) is o
3
C is = — = —0.005
(v)) P'(x) = Nayx" "1 + (N = Day-1xV 2+ 4 2ax + a4 © A"
= 2 _ =
and the indefinite integral /(x) = [ P(x) dx, which satisfies I'(x) = P(z), is = 3 T iax = 0.06666667 + (~0.003)(4) = 0.04666667
,a .
3 1oy = aNxN+1 N a:vwlxN - a2x3 N a;x’ N ve ir = 5 +i3x = —0.2 + {0.04666667)(4) = —0.01333333
T ON+1 N 3 2 aox ' iy = agp+ 2x = 1.28 + (—0.01333333)(4) = 1.22666667

where C is the constant of integration. Algorithm 4.1 (end of Section 4.2) shows how ig =0+ i1x = 0+ (1.22666667){4) = 4.90666667.

to adapt Horner's method to P’(x) and 7 (x). 4
Hence [(4) = 4.90666667. Similarly, I (1) = 1.14166667. Therefore, [, P(x)dx =

Exampie 4.4. The polynomial P(x) = —0.02x7 + 0.2x% — 0.4x + 1.28 passes through 74y — (1) = 3.765 (see Figure 4.8).
the four points (1, 1.06), (2. 1.12), (3, 1.34), and (5, 1.78). Find () P(4), (b) P'(4). (d) Use Algorithm 4.1(i) with x = 5.5.
() ff P(x)dx, and (d) P(5.5). Finally, (¢) show how to find the coefficients of P(x).
Use Algorithm 4.1(i)~iii) (this is equivalent to the process in Table 1.2) with x = 4. by = a3 = —0.02
0 by = ay + bax = 0.2+ (—~0.02)(5.5) = 0.09
(a) by = a3 = -0.02 » - by = a; + bax = —0.4 + (0.09)(5.5) = 0.095
b2 =+ by =024 (2000 =0. bp = ag + bix = 1.28 4 (0.095)(5.5) = 1.8025.

by =a; + bax = —0.4 + (0.12)(4) = 0.08
bo =ag+ bix = 1.28 + (0.08)(4) = 1.60. The extrapolated value is £(5.5) = 1.8025 (see Figure 4.7(a)).
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Table 4.4  Values of the Taylor Polynomial T (x) of Degree 5, and the
Function In{1 + x) and the Error In(1 4+ x) — T(x) on [0, 1]

Taylor polynomial, Function, Error,

x T(x) In{1 + x) In(1+x)—T(x)
0.0 0.00000000 0.00000000 0.00000000
0.2 0.18233067 0.18232156 —0.00000911
0.4 0.33698133 0.33647224 —0.00050909
0.6 0.47515200 0.47000363 —0.00514837
0.8 0.61380267 0.58778666 —0.02601601
1.0 0.78333333 0.69314718 —0.09018615

{(e) The methods of Chapter 3 can be used to find the coefficients. Assume that P(x) =
A + Bx + Cx? 4+ Dx?; then at each value x = 1,2, 3, and 5 we get a linear equation
involving A, B, C, and D.

Atx=1:4+4+1B+ I1C+ 1D =106
Atx=2:A+2B+ 4C+ 8D =1.12

4
@ Atx =3:A+3B+ 9C+ 27D =134
Atx=35:A+5B+25C+ 125D =1.78
The solutionto (4)is A =1.28, B = —04,C = 0.2, and D = —-0.2. F

This method for finding the coefficients is mathematically sound, but sometimes
the matrix is difficult to solve accurately. In this chapter we design aigorithms specifi-
cally for polynomials.

Let us return to the topic of using a polynomial to calculate approximations to a
known function. In Section 4.1 we saw that the fifth-degree Taylor polynomial for
fxy=In(l+x)is

2 x3 1t x3

X

() Tx)=x 2+3 4+-5—.

If T(x) is used to approximate In(1 + x) on the interval [0, 1], then the error is O at
x = 0 and is largest when x = 1 (see Table 4.4). Indeed, the error between T (1) and
the correct value In{1) is 13%. We seek a polynomial of degree 5 that will approximate
In(1 + x) better over the interval [0, 1]. The polynomial P (x) in Example 4.5 is an
interpolating polynomial and will approximate In(1 4 x) with an error no bigger than
0.00002385 over the interval [0, 1].

Example 4.5. Consider the function f(x) = In(1 + x) and the polynomial

P(x) = 0.02957206x° — 0.12895295x* + (.28249626x3
— 0.48907554x2 + 0.99910735x
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Table 4.5 Values of the Approximating Polynomial P(x) of Example 4.5 and the Function
F(x} = In{1 + x) and the Emror £(x) on [—0.1, 1.1]

Approximating polynomial, Function, Error,

x P(x) fx} =n(l +x) E(x) = f(x) — P(x)

-0.1 —0.10509718 —0.10536052 —0.00026334
0.0 0.00000000 0.00000000 0.00000000
0.1 0.05528988 0.09531018 0.00002030
0.2 0.18232156 0.18232156 0.00000000
03 0.26237015 0.26236426 —0.00000589
04 0.33647224 0.33647224 0.00000000
0.5 0.40546139 0.40546511 0.00000372
0.6 0.47000363 0.47000363 0.00000000
0.7 0.53063292 0.53062825 —0.00000467
0.8 0.58778666 0.58778666 0.00000000
09 0.64184118 0.64185389 0.00001271
1.0 0.69314718 0.69314718 0.00000000
1.1 0.74206529 0.74193734 —0.00012795
¥y

0.6 - y=In(l+x)

04 |

0.2

Figure 4.9 The graph of y =
L L . L L x  P(x), which “lies on top” of the

0.0 0.2 04 0.6 08 1.0 graph y = In(1 + x).

based on the six nodes x;x = k/5fork = 0, 1, 2, 3, 4, and 5. The following are empirical
descriptions of the approximation P (x} = In(l + x).

1. P(xx) = f{xz) at each node (see Table 4.5).

2. The maximum error on the interval [—0.1, 1.1] occurs at x = -0.1 and |errorf <
0.00026334 for —0.1 < x < 1.1 (see Figure 4.10). Hence the graph of y = P(x}
would appear identical to that of y = In (1 + x) (see Figure 4.9).

3. The maximum error on the interval [0, 1] occurs at x = 0.06472456 and |error| <,
0.00002385 for 0 < x < 1 (see Figure 4.10).
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T

/)

¥y
0.00002 |- = E)
ox__04
-0.00002 |-
~0.00004|

X
0.6 08 1

Figure 4.10 The graphofthe error y = E{(x) =

In(1 + x) = P(x).

Remark. At a node x; we have f(x;) = P(x;). Hence E(x;) = 0 at a node. The graph ¢
E(x) = f(x)— P(x) looks like a vibrating string, with the nodes being the abscissa wher.

there is no displacement.

E:4

Algorithm 4.1 (Polynomial Calculus).

derivative P'(x), and its integral { P(x)dx by performing synthetic division.

To evaluate the polynomial P(x), its

INPUT N {Degree of P(x}}
INPUT A(0), A(1),..., A(N} {Coefficients of P{x)}
INPUT C {Constant of integration}
INPUT X {Independent variable}

(i) Algorithm to Evaluate P{x)

B(N) = A(N)

FOR K = N — 1 DOWNTO 0 DO
B(K):=A(KY+ B(K+ D)X

PRINT “The value P(x} is”, B(Q)

Space-saving version:

Poly := A(N)

FOR K = N — 1 DOWNTQ 0 DO
Poly := A(K) + Poly * X

PRINT "The value P(x) is", Poly

(i)  Algorithm to Evaluate P/(x)

DIN — 1) :=Nx A(N)

FOR K = N — | DOWNTO 1 DO
DIK—-1):=K~AK)+ D(K)x X

PRINT “The value P'(x) is”, D(0)

Space-saving version:

Deriv ;= N x A(N)

FOR K = N - 1 DOWNTOQ | DO
Deriv := K % A(K) + Detiv X

PRINT “The value P/(x) is”, Deriv

(iii) Algorithm to Evaluate f(x)
HN+ 1) = AN/IN+1)
FOR K = N DOWNTO 1 DO
Ky =AK-1D/K4+ K+ D)X
IOy =C+I1{)y=X
PRINT “The value ! (x) is”, 7(0)

Space-saving version:
Integ := A(NY/(N + 1)
FOR K = N DOWNTO 1 DO
Integ := A(K — 1}/K + Integ x X
Integ := C + Integ = X
PRINT “The value [ (x) is”, Integ
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Exercises for Introduction to Interpolation

1. Consider P(x) = —0.02x3 + 0.1x2 — 0.2x + 1.66, which passes through the four
points (1, 1.54), (2, 1.5), (3, 1.42), and (5, 0.66).
(a) Find P(4).
(h) Find P'(4).
(¢) Find the definite integral of P(x) taken over [1, 4}.
(d) Find the extrapolated value P(5.5),
(&) Show how to find the coefficients of P(x).

2. Consider P(x) = —0.04x% 4 0.14x% — 0.16x + 2.08, which passes through the four

points (0, 2.08), (1, 2.02), (2, 2.00), and (4, 1.12).

{(a) Fnd P(?).

(b) Find P'(3).

(c¢) Find the definite integral of P(x) taken over [0, 3].

(d) Find the extrapolated value P(4.5).

(¢) Show how to find the coefficients of P(x).

Consider P(x) = —0.0292166667x> + 0.275x% —0.570833333x — 1.375, which

passes through the four points (1, 1.05), (2, 1.10), (3, 1.35), and (5, 1.75).

(a} Show that the ordinates 1.05, 1.10, 1.35, and 1.75 differ from those of Exam-
ple 4.4 by less than 1.8%, yet the coefficients of x* and x differ by more than
42%.

(b) Find P(4) and compare with Example 4.4.

() Find P'{4) and compare with Example 4.4.

(d) Find the definite integrat of P(x) taken over [1, 4] and compare with Exam-
ple 4.4,

(e} Find the extrapolated value P(5.5) and compare with Example 4.4.

Remark. Part {a) shows that the computation of the coefficients of an interpolating

polynomial is an iil-conditioned problem.

bt

Algorithms and Programs

1. Write a program in MATLAB that will implement Algorithm 4.1. The program
should accept the coefficients of the polynomial P(x) = anx¥ tay_1x¥ T4 4
a3x® +aix +apasanl x N mawrix: P =f{ay ay-y -~ @ a5 ao).

2. For each of the given functions, the fifth-degree polynomial P(x) passes through
the six points (0, £(0)), (0.2, £(0.2)), (0.4, £(0.4)), (0.6, F£(0.6)), (0.8, £(0.8)),
(1, £(1)). The six coefficients of P(x) are aq, ay, .. ., as, where

P(x) = asx’ + agx® + a3x® + apx? + a1x + ap.



(i) Find the coefficients of P(x) by solving the 6 x 6 system of linear equations
ap +arx +axx” + a3x’ + asxt + asx® = filx;)

using xj = (j — 1)/Sand j = 1,2,3,4,5, 6 for the six unknowns {az}_,.

(ii) Use your MATLAB program from Problem 1 to compute the interpoiated va
ues P(0.3), P(0.4), and P(0.5) and compare with £(0.3), J(0.4), and f(0.5
respectively,

(iif) Use your MATLAB program to compute the extrapolated values P(—0.l)an*
P(1.1) and compare with f(—0.1) and f(1.1), respectively.

(iv) Use your MATLAB program to find the integral of P(x) taken over [0,1!
and compare with the integral of f(x) taken over [0, 1]. Plot f(x)} and P{x:
over [0, 1] on the same graph. }

(v) Make a table of values for P(x;), S(xx), and E{xy) = f(xg} — P(xy), whero
xe =k/100fork =0,1,...,100.

(@ fx)=¢"
{(b) f(x)=sin(x)}
(€ fl)=&x+DEHD

3. A portion of an amusement park ride is to be modeled using three polynomials. The
first section is to be a first-degree polynomial, Py (x), that covers a horizontal dis
tance of 100 feet, starts at a height of 110 feet, and ends at a height of 60 feet. The
third section is to also be a first-degree polynomial, () (x), that covers a horizontal
distance of 50 feet, starts at a height of 65 feet, and ends at a height of 70 feet. The
middle section is to be a polynomial, P{x) (of smallest possible degree), that covers
a horizontal distance of 150 feet.

(a) Find expressions for P(x), Pi(x), and Q;(x) such that P(100) = P(100).
P'(100) = P{(100), P(250) = Q(250), and P'(250) = Q1(250) and the
curvature of P(x) equals the curvature of Pi(x) at x = 100 and equals the
curvature of @) (x) at x = 250.

(b) Plot the graphs of Pi(x), P(x), and O (x) on the same coordinate system.

(¢) Use Algorithm 4.1(iii) to find the average height of the ride over the given hori-
zontal distance.

Lagrange Approximation

Interpolation means to estimate a missing function value by taking a weighted aver-
age of known function values at neighboring points. Linear interpolation uses a line
segment that passes through two points. The slope between (xg, yo) and (x], yi) is
m = (y1 — yp)/{x1 — x0), and the point-slope formula for the line y=m(x —x0)+ yo
can be rearranged as

(1 y= P(x}=yo+ (y1 — yo)

X —xp
x| —Xp

When formula (1) is expanded, the result is a polynomial of degree < 1. Evaluation of

P(x) at xg and x| produces yg and y|, respectively:
P(x0) = yo + (y1 — y0}(©) = yo,
@ P(x1) = yo + (y1 — yo)(1) = y1.

The French mathematician Joseph Louis Lagrange used a slightly different method to
find this polynomial. He noticed that it could be written as

P X — X + X — X0
&) y= l(JC)—yoxO_I1 N T xe

Each term on the right side of (3) involves a linear factor; hence the sum is a polynomial
of degree < 1. The quotients in (3) are denoted by
- X1 X — X0

and Lji(x)= .
Xp — X1 X1 —Xp

) Liolx) =

Computation reveals that Ll'o(xo) =1,Liolx)= 0, Ll,l (xg) = 0, ancl»Ll_] xp=1
so that the polynomial P;(x) in (3) also passes through the two given points:

(5) Pi(xo)=yo+y1(0) =y and Pi(xy) = yo(0) + y1 = n1.
The terms L1 o(x) and L;(x) in (4) are called Lagrange coefficient polynomials

based on the nodes x¢ and x;. Using this notation, (3) can be written in summation
form

1
(6) Pi(x) = ) yLialx).
k=0

Suppose that the ordinates y; are computed with the formula yx = f(xx). If Py (x.) is
used to approximate f(x) over the interval [xo, x1], we call the process interpolation.
If x < xp{or x; < x), then using P;(x) is called extrapolation. The next example

illustrates these concepts.

Example 4.6. Consider the graph y = f{x) = cos(x) over [0.0, 1.2].
(a) Use the nodes xo = 0.0 and x; = 1.2 to construct a linear interpolation polyno-
mial Pi{x).
(b) Use the nodes x¢ = 0.2 and x; = 1.0 to construct a linear approximating polyno-

mial Oy (x). .
Using (3) with the abscissas xg = 0.0 and x; = 1.2 and the ordinates yg = c0s(0.0) =

1.000000 and y; = cos(1.2) = 0.362358 produces

x—12 03623531—0'0
P1(x) = 100000055 —> + 0. 12-00

= —0.833333(x — 1.2) + 0.301965(x — 0.0).
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T ' | | L x 1 ] 1 . 1

00 02 04 06 08 10 1.2 00 02 04 06 08 10 12
(@) )]

Figure 4.11 (a) The linear approxitnation of y = Pj(x) where the nodes xp = 0.0
and x; = 1.2 are the end points of the interval [a, b]. (b) The linear approximation of
¥ = {h{x) where the nodes xp = 0.2 and x; = 1.0 lie inside the interval [a, b].

When the nodes xo = 0.2 and x; = 1.0 with yo = cos(0.2) = (.980067 and vi =
cos(1.0} = 0.540302 are used, the result is

x—~ 1.0 x—0.2
= 0.980067 2 4 0.540302F 02
Qe 031p " O oo

= —1.225083(x — 1.0) + 0.675378(x — 0.2).

Figure 4.11(a) and (b) show the graph of y = cos(x) and compares it with y = P;(x) and
¥y = Q1(x), respectively. Numerical computations are given in Table 4.6 and reveal that
Q1(x) has less error at the points x; that satisfy 0.1 < x; < 1.1. The largest tabulated
error, £{0.6) — P;(0.6) = 0.144157, is reduced to £ (0.6} — @1 (0.6) = 0.065151 by using
O1{x). =

The generalization of (6) is the construction of a polynomial Py (x) of degree at
most N that passes through the N + 1 points (xg, yo), {(x1, y1), ..., (xn. yn) and has
the form

N
(7 Pr(x) = wLyi(x),
=0

where Ly j is the Lagrange coefficient polynomial based on these nodes:

(x —x0) - (¥ = xp—1)(x — Xpg1) - - (X — xN)
(xk — x0) - (X — X 1Y%k — K1) - (xie =~ xp)

(8) Lyi(x)y=

It is understood that the terms (x — x¢) and (x; — x4) do not appear on the right side of

SeC. 4.3 LAGRANGE APPROXIMATION 209

Table 4.6 Comparison of f(x) = cos(x) and the Linear Approximations P;(x) and Q;(x)

X Sxg) = cos(xy) Py} FOa) = Pr{xg) Q1(x) Flxg) = 21{x0)
04 1.000000 1.000000 0.000000 1.090008 —0.090008
0.1 0.995004 0.946863 0.048141 1.035037 —0.040033
0.2 0.980067 0.893726 0.086340 0.980067 0.000000
0.3 0.955336 0.840589 0.114747 0.925096 0.030240
0.4 0.921061 0.787453 0.133608 0.870126 0.050935
0.5 0.877583 0.734316 0.143267 0.815155 0.062428
0.6 0.825336 0.681179 0.144157 0.760184 0.065151
0.7 0.764842 0.628042 0.136800 0.705214 0.059628
0.8 0.696707 0.574905 0.121802 0.650243 0.046463
0.9 0.621610 0.521768 (.099842 0.595273 0.026337
1.0 Q.540302 0.468631 Q071671 0,540302 0.000000
1.1 0.453596 0.415495 0.038102 0.485332 —0.031736
1.2 0.362358 0.362358 0.000000 0.430361 ~0.068003

equation {8). It is appropriate to introduce the product notation for (8), and we write

n?’=o (r—x5)
2k
9 Lyp(ry= 30—
H}Lo(xk — x5}
k
Here the notation in (9) indicates that in the numerator the product of the linear
factors (x — x;) is to be formed, but the factor (x — x;) is to be left out (or skipped).
A similar construction occurs in the denominator,
A straightforward calculation shows that, for each fixed &, the Lagrange coefficient

polynomial L y x (x) has the property
(10) Lyi(x;j)=1 when j=k and Lyg(x;)=0 when j#k%.

Then direct substitution of these values into (7) is used to show that the polynomial
curve y = Py (x) goes through (x;, ¥;):

(11 Py(xj)=yolwo(x;) +---+y;Ly j(x;) +-- -+ ynLy nix;)
=y0) +-- +y;(D)+---+yn0) =y;.

To show that Py(x) is unique, we invoke the fundamental theorem of algebra,
which states that a polynomial 7 (x) of degree < N has at most N roots. In other
words, if T(x) is zero at N + 1 distinct abscissas, it is identically zero. Suppose that
Px(x) is not unique and that there exists another polynomial Qx(x) of degree < N
that also passes through the N + 1 points. Form the difference polynomial T(x) =
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Figure 4.12 (a) The quadratic approximation polynomial y = P(x) based on the
nodes xp = 0.0, x; = 0.6, and x; = 1.2. (b) The cubic approximation polynomial
v = P3(x) based on the nodes xp = 0.0, xy =0.4,x; =08, and x3 = 1.2.

Py{x} — Qn(x). Observe that the polynomial 7{x) has degree < N and that T'(x;) =
Py(x;}) —On(x;) =y;—y; =0,for j =0,1,..., N. Therefore, T(x) = 0 and nt
follows that @y (x) = Pn(x).

When (7) is expanded, the resuit is similar to (3). The Lagrange quadratic interpo-
lating polynomial through the three points (xp, yo). (x1, ¥1), and (xz2, y2) is

(x —x1){x — x3) (x — xp)(x — x2) (x — x0){x — x1)
(o —x)m0 —x2) 7 —xe)r —x2) | Pl m — x0)az — x1)

(12) P(x) =y

The Lagrange cubic interpolating polynomial through the four points (xp, yo), (x1, ¥1).
(x2, ¥2), and (x3, y3) is

x — x)(x —x2)(x —x3) (x — x0){x — x2){x — x3)

(xo — x1)(xp — x2)(x0 — x3) ! (xy — xp)(xy — x2)(x; — x3)

" (x — xp)(x —x1Hx ~ x3) X (x — x0){x —x1)(x ~ x2) ‘
(x2 — xoHx2 — x1)(x2 — x3) (x3 — x0)(x3 — X3 }(x3 — x2)

(13) Py(x) = yo

+

Example 4.7. Consider y = f(x) = cos(x) over [0.0, 1.2].

(a) Use the three nodes xo = 0.0,x; = 0.6, and x; = 1.2 to construct a quadrati
interpolation polynomial P> (x).

{b) Use the four nodes xo = 0.0, x; = 0.4, x3 = 0.8, and x3 = 1.2 to construct a cubi
interpolation polynomial P3(x).
Using xg = 0.0, x1 = 0.6, xo = 1.2 and yg = ¢0s(0.0} = 1, y; = cos(0.6) = 0.82533¢
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and y2 = cos{1.2) = 0.362358 in equation (12) produces

x—0.0)(x —1.2)
0.6—-0.00006-1.2)

(x —0.6)(x - 1.2)
(0.0 —0.6)(0.0—1.2) +0825336
(x —0.0)(x — 0.6}
+0.362358 (1.2-00)(1.2-0.6)
= 1.388889(x — 0.6)(x — 1.2) — 2.292599(x — 0.0)}(x — 1.2)
+0.503275(x — 0.0)(x — 0.6).

Py(x)= 1.0

Using xp = 0.0, x; = 0.4, x3 = 0.8, x3 = 1.2 and yg = co0s(0.0) = 1.0, y; = cos(0.4) =
0.921061, y2 = cos(0.8) = 0.696707, and y3 = cos(1.2) = 0.362358 in equation (13)
produces

(x — 0.4)(x —0.8)(x ~ 1.2)
(0.0— 0.4)(0.0 — 0.8)(0.0 — 1.2)

(x — 0.0)(x — 0.8)(x ~ 1.2)
(0.4—0.0)(0.4 — 0.8)(0.4— 1.2)

(x — 0.0} x — 0.4)(x — 1.2)
(0.8=0.0)(0-8 — 0.4)(0.8 — 1.2)

(x — 0.0)(x — 0.4)(x — 0.8)
(1.2—0.0)(1.2—04)(1.2—038)
= —2.604167(x — 0.4)(x — 0.8)(x — 1.2)
+7.195789(x — 0.0)(x — 0.8)(x — 1.2)

~ 5.443021(x — 0.0)(x — 0.4)(x — 1.2)
+0.943641(x — 0.0)(x — 0.4)(x - 0.8).

P3(x) = 1.000000

+0.921061

+ 0.696707

+ 0.362358

The graphs of y = cos{x) and the polynomials y = P>(x) and y = P3(x) are shown in
Figure 4.12(a) and (b), respectively. n

Error Terms and Error Bounds

Itis important to understand the nature of the error term when the Lagrange polynomial
is used to approximate a continuous function f(x). It is similar to the error term for
the Taylor polynomial, except that the factor (x — xo)V*! is replaced with the product
{x - xo)(x — x1) - - - (x — x). This is expected because interpolation is exact at each
of the N + 1 nodes xg, where we have Enx(x;) = f(xe) — Pn(xx) = yx — yi = 0 for
k=0,1,2,..., N.

Theorem 4.3 (Lagrange Polynomial Approximation). Assume that f € C N+, b)
and that xp, x1, ..., X5 € [a, b]lare N + 1 nodes. If x € [a, b], then

(14) flx) = Py(x)+ En(x),
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where Py (x) is a polynomial that can be used to approximate f(x):
N
(15) fx) = Py(x) =) fx)Lya(x),
k=0

The error term £y (x} has the form

_x—x)x —x) - x = xm) V()
(16) En(x) = NT s

for some value ¢ = c(x) that lies in the interval [a, b].

Proof. As an example of the general method, we establish (16) when N = 1. The
general case is discussed in the exercises. Start by defining the special function g(1) as

follows

(¢ — xo)(t — x1)

Qan g0 = fty— Pi(r) — E; (ﬂm-

Notice that x, xg and x| are constants with respect to the variable 7 and that g(r) eval-
uates to be zero at these three values; that is,

() = £(x) = Pi(x) — Exn) S XE T3 ey By — Er(x) =0

(x — xp){x — x1)
{xo — x0)(x0 — x1)

0 = —-P =0,
o ——— S (x0) — Pi(xp)

g{xo) = f{x0) = Pi{xo) — E1(x)

(L —xo)(x1 —x1) _ _ -0
g(x:)=f(x1)—P1(xl)—E1(x)m—f(xl) Py (x)) =0.

Suppose that x lies in the open interval (xo, x1). Applying Rolle’s theorem to g(r)
on the interval [xg, x] produces a value dp, with xg < do < x, such that

(18) g'(dp) =0.

A second application of Rolle’s theorem to g(t) on [x, x;] will produce a value 4,
with x < d; < x, such that

{(19) g'(d) =0,

Equations (18) and (19) show that the function g'(t) is zero at t = dp and ¢ = d|.
A third use of Rolle’s theorem, but this time applied to g’(r) over {dy, d|], produces a
value ¢ for which

(20) g@e) =0
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Now go back to {17) and compute the derivatives g’(¢) and g” (¢):

b g pe (r —x0) + (t = x1)
21) g0 =70 = kA= By sr s,

2

" - _ 0 —E - - .
22) g0 = f'¢) L o e

In (22) we have used the fact the P;(¢) is a polynomial of degree N = I; hence its
second derivative is Py’() = 0. Evaluation of (22) at the point ¢ = ¢ and using (20)
yields

2
23 0= f"(c)- E1(x) m/————.
(23) 1) = i) e
Solving (23) for Ej(x) results in the desired form (16) for the remainder:
(x —x0)(x = x1) fP(c)
2! ’
and the proof is complete. .

(24} Ei(x) =

The next result addresses the special case when the nodes for the Lagrange poly-
nomial are equally spaced x; = xo + hk, fork = 0, 1, ..., N, and the polynomial
Pr(x) is used only for interpolation inside the interval [xg, xx1.

Theorem 4.4 (Error Bounds for Lagrange Interpolation, Equally Spaced Nodes).
Assume that f(x) is defined on [a, b], which contains equally spaced nodes x; =
xo + hk. Additionally, assume that f(x) and the derivatives of f(x), up to the order
N + 1, are continuous and bounded on the special subintervals [xg, x11, [xg, x2], and

[x0, x2], respectively; that is,
(25) LF @) < Myyr for x0 < x < xw,

for N = 1, 2, 3. The error terms (16) corresponding to the cases N = 1, 2, and 3 have
the following useful bounds on their magnitude:

M.

(26) [Ei(x)] = —=  valid for x € [xp, x1),
mM;

@n |Ea(x)| < valid for x € [xo, x2],
| 9./3
WM.

(28) |E3(x)] < valid for x € [xg, x3].

Proaf. We establish (26) and leave the others for the reader. Using the change of
variables x — x¢ = ¢ and x — x; =1 — h, the error term E; (x) can be written as

(2 —ht) fP(c)

(29) Ei(x) = Ey(xp+1) = =

for 0<r<h
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The bound for the derivative for this case is
(30) fP@) <My for xp<c<xy.

Now determine a bound for the expression (12 ~ ht) in the numerator of (29); ¢z’
this term @{1) = t? — k1, Since §'(t) = 2t — h, there is one critical point t = A,
that is the solution to ®’(r) = 0. The extreme values of ®(r) over [0, k] occur eith. :

at an end point ®(0) = 0, ®(h) = 0 or at the critical point ®(h/2) = —h%/4. Sinc.
the latter value is the largest, we have established the bound

(313 @) = 1e? —hil <

|-k A?
— forO0<t<h
4 g V==
Using (30) and (31) to estimate the magnitude of the product in the numerator n 2
results in

()] F? h2M,
32) lEs(IH:l (t)ll; (c)lS 3 2

and formula (26) is established.

Comparison of Accuracy and Q(hV+1)

The significance of Theorem 4.4 is to understand a simple relationship between the
size of the error terms for linear, quadratic, and cubic interpolation. In each case the
error bound | Ex(x)| depends on % in two ways. First, BN*! is explicitly present so
that | Ex (x)] is proportional to ¥ *!. Second, the values My ) generally depend o
h and tend to | F¥+D(xg)| as & goes to zero. Therefore, as h goes to zero, {En(x)
converges to zero with the same rapidity that A#V*! converges to zero. The notation
O (AN TYY is used when discussing this behavior. For example, the error bound (26}
can be expressed as

|Ej()l = O valid for x € [xp, x]).

The notation @ (k%) stands in place of h%M,/$ in relation {26) and is meant to convey
the idea that the bound for the error term is approximately a multiple of #?; that is,

|E1(x)] < Ch? = O(R?).
As a conseguence, if the derivatives of f(x) are uniformly bounded on the in-

terval |#| < 1, then choosing N large will make 2¥+1 small, and the higher-degree
approximating polynomial will have less error.
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Figure 4.13 (a) The error function E5(x) = cos(x) = Py(x). (b) The error function
E3(x) = cos{x)} — Pa(x).

Example 4.8. Consider y = f(x} = cos(x) over {0.0, 1.2]. Use formulas {26) through
(28) and determine the error bounds for the Lagrange polynomials P; (x), P2(x), and Pi(x)
that were constructed in Examples 4.6 and 4.7.

First, determine the bounds Mz, M3, and M, for the derivatives | f @ (x)}, 17 x)!,
and | £ (x}{, respectively, taken over the interval (0.0, 1.2];

I F D) = |- cos(x)| < |— cos(0.0)] = 1.000000 = Ma,
1@ = |sin(x)| < |sin(1.2)] = 0.932039 = M,
[Py = |cosx)| < [cos(0.0)] = 1.000000 = My.
For Py(x) the spacing of the nodes is & = 1.2, and its error bound is
KMy _ (1.2)2(1.000000)
g8 8
For P»(x) the spacing of the nodes is h = 0.6, and its error bound is

(33 1B = = 0.130000.

BMs (0.6)%(0.932039)
(34) Exx) = =< = 0.012915.
W 9v3

For P3(x) the spacing of the nodes is k = 0.4, and its error bound is

My < {0.4)*(1.000000)
24 — 24

From Example 4.6 we saw that [ E;(0.6)| = | cos(0.6) — P1(0.6)| = 0.144157, so

the bound 0.180000 in (33} is reasonable. The graphs of the error functions £3 (x) =

cos(x) — Pp(x) and E3(x) = cos(x) — P3(x) are shown in Figure 4.13(a) and (b),

= 0.001067. [

{35) [E3(x}| <
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Table 4.7 Comparison of f{(x) = cos(x) and the Quadratic and Cubic Pelynomial
Approximations P2(x) and P3(x)

i Fxk) = cos(xg) Po(xe) Es{xk) Py(xx} Ea{xy)
0.0 1.000000 1.000000 0.0 1.000000 0.0

0.1 0.995004 0.990911 0.004093 0.995835 —0.00083 |
0.2 0.980067 06.973813 0.006253 0.980921 —0.000853
0.3 0.955336 0.948707 0.006629 0.955812 —0.000470
0.4 0.921061 0.915592 0.005469 0.921061 0.0

0.5 0.877583 0.874468 0.003114 0.877221 0.00036!
0.6 0.825336 0.825336 0.0 0.824847 0.00089
0.7 0.764842 0.768194 —0.003352 0.764491 0.00035 .
0.8 0.696707 0.703044 —0.006338 0.696707 0.0

0.8 0.621610 0.629886 —~0.008276 0.622048 —0.000-43~
1.0 0.540302 0.548719 —0.008416 0.541068 —0.0007€¢
1.1 0.453596 0.459542 —0.005946 0.454320 —0 00072~
12 0.362358 0.362358 0.0 0.362358 0.0

respectively, and numerical computations are given in Table 4.7. Using values in the
table, we find that |E2(1.0)] = |cos(1.0) — P2(1.0)| = 0.008416 and |E3(0.2)] --
| c0s(0.2) — P3{0.2)| = 0.000855, which is in reasonable agreement with the bour
0.012915 and 0.001607 given in (34) and (35), respectively.

MATLAB

The following program finds the collocation polynomial through a given set of poir- -
by constructing a vector whose entries are the coefficients of the Lagrange interpo.
tory polynomial. The program uses the commands poly and conv. The poly co - -
mand creates a vector whose entries are the coefficients of a polynomial with specifi.
roots. The conv commands produces a vector whose entries are the coefficients o
polynomial that is the product of two other polynomials.

Example 4.9. Find the product of two first-degree polynomials, P(x) and Q(x), w
roots 2 and 3, respectively. :

>>P=poly(2)
P:

1 -2
>>Q=poly(3)
Q:

1 -3
>>conv(P,Q)
ans=

1-56

Thus the product of P(x) and Q(x)is x> — 5x + 6
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| Pro 4. i i
| > (g;imz’} (LaLgran(ge Approximation). .To evaluate the Lagrange polynomial
L k=0 YeLn & x)basedonN+1pomts(xk.yk)fork=0,I,...,N.

function [C,Ll=lagran(X,Y)

4#Input - X is a vector tha i i

% - Y is a vector tha: EEEEZi:: : i;:: ot abs?lssas
; of ordinates
U/.Dutput - C is a matrix that contains the coefficients of
UA the Lagrange interpolatory polynomial

n/° = L is a matrix that contains the Lagrange

A coefficient polynomials

w=length(X);

==l

L=zeros(w,w);

#Fcrm the Lagrange coefficient polynomials
for k=1:n+1
for j=l:n+1
1 k~=j
‘-.f=conv(V.-p01y(X(j)))/(X(k)-X(j));
=nd
end
L(k,:)=V;
end

“Datermine the coefficients of the Lagrange interpolating
4polynomial
C=YsL;

Exercises for Lagrange Approximation

L. Find Lagrange polynomials that approximate f{x) = x3,

(a) Find the linear interpolation polynomial Pj(x) using the nodes xp = —1 and
x)p =0,

(b) Find ke guadratic interpolation poiynomial P>(x) using the nodes xp = —I,
xt=0and x; = 1,

(¢} Findthe cubic interpolation polynomial P3(x) using thenodesxp = —1,x; =0,

x2= 1, andx; = 2.
(d) Find the lirear interpclation polynomial P)(x) using the nodes xg = | and
x =2

{¢) Find the quadratic interpolation polynomial Py(x) using the nodes xq = €,
x1=1,and xz = 2.
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2 Let f(x)=x+2/x.
(a) Use quadratic Lagrange interpolation based on the nodes xo = 1, x1 = 2, and
x2 = 2.5 to approximate f(1.5) and f(1.2).
{b) Use cubic Lagrange interpolation based onthenodes xg = 0.5, x) =1, x» =
and x3 = 2.5 to approximate f(1.5) and f(1.2).

3. Let f(x) = 2sin(wx/6), where x is in radians.

(a) Use quadratic Lagrange interpolation based on the nodes xg = 0,x; = 1,2l
x3 = 3 to approximate f(2) and f(2.4).

(b) Use cubic Lagrange interpolation based on thenodesxg =0, x1 =1, x2 = -
and x3 = 5 to approximate f(2) and f(2.4).

4. Let f(x) = 2sin(mx/6), where x is in radians.

(a) Use quadratic Lagrange interpolation based on the nodes xop = 0, x; = 1, a1d
" x; = 3 to approximate f(4) and f(3.5).
(b) Use cubic Lagrange interpolation based on the nodes xo = O xp=1x="
and x3 = 5 to approximate f(4) and f(3.5).

5. Write down the error term E3(x) for cubic Lagrange interpolation to f(x), where

interpolation is to be exact at the four nodes xo = —1,x; =0,x2 = 3,and x4 =

and f(x) is given by

(@ fx)=4x-3x+2

() fxy=x*-22°

© fx)= x5~ 5x%

Let f(x) = x*.

(a) Find the quadratic Lagrange polynomial P;(x) using the nodes xp = 1. x1 =

1.25,and xo = 1.5.
(b) Use the polynomial from part (a) to estimate the average value of f(x) over 1he
interval [1, 1.5].

(c) Use expression (27) of Theorem 4.4 to obtain a bound on the error in appro:-

mating f(x) with P2(x).

7. Consider the Lagrange coefficient polynomials L3 x(x) that are used for quadratic
interpolation at the nodes xo, x|, and x2. Define g(x) = Loo(x) + Lzi(x -
Lya(xy—1.

(a) Show that g is a polynomial of degree < 2.
(b) Show that g{xz) =0fork =0,1,2.
(c) Show that g(x) = 0 for all x. Hint. Use the fundamental theorem of algebra

6

8. Let Lyo(x), Ly 1{x), ..., and Ly v (x) be the Lagrange coefficient polynom .-
based on the N + 1 nodes xg, x1, .. ., and xy. Show that Zf:o Lyx(x)=1for.n.
real number x.

9. Let f(x) be a polynomial of degree < N. Let Py (x) be the Lagrange polynomia. I

degree < N based on the N + 1 nodes xq, X1, . .., XN- Show that f(x) = Py{(x) I:
all x. Hint. Show that the error term En(x) is identically zero.
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10. Consider the function f(x} = sin(x) on the interval {0, 1]. Use Theorem 4.4 to

determine the step size / so that

(a) linear Lagrange interpolation has an accuracy of 1076 (i.e., find # such that
[E1(x} <5 x 1077).

{(b) quadratic Lagrange interpolation has an accuracy of 10~9 (i.e., find 4 such that
|E2(x)| <5 x 1077).

(¢} cubic Lagrange interpolation has an accuracy of 1076 (i.e., find # such that
[E3(x)i < 5 x 1077).

1. Start with equation (16) and N = 2, and prove inequality (27). Let x; = xg + 4.

X2 = xg + 2h. Prove that if xg < x < x; then

3
Il —xollx — xy]lx — x2| < W
Hint. Use the substitutions t = x — x), ¢t + 2 = x — xg, and t —h = x — x; and the
function v{¢) = 1> — th? on the interval —h <t < h. Setv'(r) = 0 and solve for ¢ in
terms of A.

12, Linear interpolation in two dimensions. Consider the polynomialz = P(x, y) = A+

Bx+Cy that passes through the three points (xg. Yo. zo), (x1. ¥1, 21), and (x2, y2. z2).
Then A, B, and C are the solution vaiues for the linear system of equations

A+ Bxo+Cyvo=20
A+Bx1+Cy =27,
A+ Bxa+Cyvi=2.

(a) Find A, B, and C so that z = P(x,y) passes through the points (1,1, 5).
(2,1,3),and (1, 2,9).

(b} Find A, B, and C so that z = P(x, y) passes through the points (1, 1, 2.5),
(2,1,0),and (1,2, 4).

(c}) Find A, B, and C so that z = P(x,y) passes through the points (2, 1, 5),
(1,3,N,and (3, 2,4).

(d) Can values A, B, and C be found so that z = P(x, y) passes through the points
(L1,2,5),(3,2,7,and (1, 2, 0)? Why?

13. Use Theorem 1.7, the Generalized Rolle’s Theorem, and the special function

_ _ _ (£t = x0)(t —x1)- -t — xn)
&) = f(6) — Pn(1) — En(x) Ry s Sy —

where Py(x) is the Lagrange polynomial of degree N, to prove that the error term
En(x) = f(x) ~ Py(x) has the form

f(N‘H)(C)

En(x) = (x —x0)(x —x1) -+ (x — XN)W*

Hint. Find g™V (¢} and then evalnate itat r = c.
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Algorithms and Programs

1. Use Program 4.1 to find the coefficients of the interpolatory polynomials in Prob-
lem 2(i) a, b, and ¢ in the Algorithms and Programs in Section 4.2. Plot the graphs
of each function and the associated interpolatory polynomial on the same coordinate
system.

3. The measured temperatures during a 5-hour period in a suburb of Los Angeles on
November 8 are given in the following table.

(a) Use Program 4.1 to construct a Lagrange interpolatory polynomial for the data
in the table.

(b} Use Algorithm 4.1(iii} to estimate the average temperature during the given
5-hour period. i

(c) Graph the data in the table and the polynomial from part (a) on the same coordi-
nate system. Discuss the possible error that can result from using the polynomial
in part (a) to estimate the average temperature.

Time, PM. | Degrees Fahrenheit
66
66
65
64
63
63

;o W N

4.4 Newton Polynomials

It is sometimes useful to find several approximating polynomials Py (x), Po(x), ooy
Py(x) and then choose the one that suits our needs. If the Lagrange polynomials
are used, there is no constructive relationship between Py_1(x) and Py{(x). Each
polynomial has to be constructed individually, and the work required to compute the
higher-degree polynomials involves many computations, We take a new approach and
construct Newton polynomials that have the recursive pattern

(1) Pi(x) = ap + a1(x — X0),
(2) Pa(x) = ag + a1 (x — xg) + a2(x — x0)(x — x1),
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3 P3(x) = ag+ a1 (x — x0) + az(x — xp)(x — x1)
+ aa(x — xo)(x — x1){(x — x3),

@ Pn(x) = ag + ai(x — xg) + as(x — xp){x ~ x1)
+a3(x — x0)(x — x1){x — x2)
+ag(x —xo)(x —x)(x —x2)(x —x3) + - --
+anlx —x0)--- (x —xy_1).

Here the polynomial Py (x) is obtained from Py_i1(x) using the recursive relationship
)] Pr(x) = Py_1(x) + an(x — xo)(x —x1}(x = x2) - - (x — xn_1).

The poiypomja.l (4) is said to be a Newton polynomial with N centers x. x
... ¥N-1. It involves sums of products of linear factors up to oo

an(x —x0)(x —x1)(x —x3) - - (x —xpy_y),
80 Py (x) will simply to be an ordinary polynomial of degree < N,

Exaéll.ﬂe 4.10.  Given the centers xp = 1, x; = 3, x3 = 4, and x3 = 4.5 and the
coerficients ap = 5, ay = —2, a3 = 0.5, a3 = —0.1, and a4 = 0.003, find P, (:t) P(x)
P(x). and Py(x) and evaluate P¢(2.5) fork = 1,2, 3, 4. SR e
Using formulas (1) through (4), we have

Pix)=5-2(x-1),

P)=5-2r — 1)+ 0.5(x — D(x — 3),

P3(x) = Pa(x) — 0.1(x — 1}(x — 3)(x — &),

Py(x) = P3(x) +0.003(x — D{x — 3)x —4)(x — 4.5).
Evaluuiing the polynomials at x = 2.5 results in

PI(2.5)=5—2(1.5) =2,

Py(2.5) = P1(2.5) + 0.5(1.5)(—0.5) = 1.625,

P3(2.5) = P2(2.5) — 0.1(1.5)(—0.5)(—1.5) = 1.5125,

P4(2.5) = P3(2.5) + 0.003(1.5)(—0.5)(—1.5)(—2.0) = 1.50575. .

‘Nested Multiplication

if .N is fixed and the polynomial Py (x) is evaluated many times, then nested multi-
pl:catron.should be used. The process is similar to nested multiplication for ordin

polynomials, except that the centers x; must be subtracted from the independent ary
able x The nested multiplication form for P3(x) is P s

(3] Pi(x) = ((a3(x — x2) + a2)(x ~ x1) +a))(x — xp) + ag.
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To evaluate P3(x) for a given value of x, start with the innermost grouping and form
successively the quantities

S3 =as,

Sz = Sa(x — x3) + a2,
§1 = S(x —x1)+an,
So = S1(x — x0) + ao.

(€A]

The quantity Sp is now P3(x).

Example 4.11. Compute P3(2.5) in Example 4.10 using nested multiplication.
Using (6), we write

Ax)={(-01x-4H+05Hx-3H-D(x -1 +5.

The values in (7) are

S5 = —0.1,
52 = —0.1(2.5-4)+ 0.5 =0.65,
51 =065(2.5-3)—2=-2.325,

So=—2.325(2.5— 1) + 5 =1.5125.

Therefore, P3(2.5) = 1.5125. [ ]

Polynomial Approximation, Nodes, and Centers

Suppose that we want to find the coefficients a, for all the _polynomjals Py(x}), ...,
Px (x) that approximate a given function f (x). Then Pi(x) will be based on the centers
Xg, X1, ..., Xx and have the nodes xg, x|, ..., Xk+1- For the polynomial Py(x) the
coefficients ag and @1 have a familiar meaning. In this case

8 Pi(x0) = f(xo} and  Pi(x)) = flx1).
Using (1) and (8) to solve for ag, we find that
&) f(x0) = P1{x0) = ap + a1 (x0 — x0) = ao.
Hence ag = f (xp). Next, using (1), (8), and (9), we have
fix1) = Pi(x1) = ao + a1(x1 — xg) = fxo} +ar{x1 — xo),
which can be solved for ay, and we get

f(x1) = f(x)
q) = —————.

(10) %1 — %0
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Hence a) is the slope of the secant line passing through the two points (xp, f(x0))
and (xy, f(x1)).

The coefficients ag and a) are the same for both P (x) and Pa(x). Evaluating (2)
at the node x,, we find that

an f(x2) = Pa(x2) = ap + ay (x2 — x0) + a2(x2 — x)(x2 — x7).
The values for ap and ay in (9) and (10) can be used in (1 1) to obtain

ay = fx2) —ap —ar(xa — xp)
(x2 = xp)(x2 — x7)
_ ( fe) = fro)  f)— f <"°)) [ —x1)

X2 — X0 X1 — Xp

For computational purposes we prefer to write this last quantity as

(12) a = (f("”_f("') SEALLS f(XOJ)/(xz—xo).

X2 — X] X1 —Xp

The two formulas for a; can be shown to be equivalent by writing the quotients
over the common denominator (x; — x;)(x2 — X0}(xi — xp). The details are left for
the reader. The numerator in (12) is the difference between the first-order divided
differences. Tn order to proceed, we need to introduce the idea of divided differences.

Definition 4.1 (Divided Differences). The divided differences for a function f(x)
are defined as follows:

Flxe] = Fxg),

Floeo, ] = L2 = o]
Xp — Xjp—)
13 e
( ) f[xk"‘z'xk—l,Xk]z f[xk 1> Xk] f[xk 2, Xi—1] ’
Xk — Xg—2
Slxi—2, X1, %) — fXk—3, X2, xp—1]

SIxe—3, X2, X1, x%] =

Xk — Xk—3

The recursive rule for constructing higher-order divided differences is

Xpe—jtls s k) — FlXk—j, oo, X0
(14) FUrkmje Tk jls s 54] = flxe—j+ k] — flxe—; k—1]
X = Xk—j
and ig used to construct the divided differences in Table 4.8. A

The coefficients a; of Py(x) depend on the values flxp),forj=0,1,...,k The
next.theorem shows that a¢ can be computed using divided differences:

(t5 ar = fixo, x1, ..., x).
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Table 4.8 Divided-difference Table for y = f(x)

X Flxgl .1 T, .1 f. . . fo. . . .1
xg Slxol

xy Sfln] Sflxo, 1]

X2 Sflxal Sflxy. x2] Slxp, x1, %21

x3 Sx3l Flxa, x3] flxr, x2, x3] flxg, x1, x2, x3]

x4 Slxa] flxa, x4] Flxa, x3, x4} Sflx1.x2, %3, %4 Slxp. %1, x2, x3, x4]

Theorem 4.5 (Newton Polynomial). Suppose that xg, x1, ..., xx are N + | distinct
numbers in [a, b]. There exists a unique polynomial Py (x)} of degree at most N with
the property that

flxj)=Pyix;) forj=0,1,...,N.
The Newton form of this polynomial is
(16) Py(x)=ao+taix—xp)+ - +aylx —xp){x —x1) - (x —xn=1),
where ax = flxp, x1, ..., ;] fork=0,1,..., N.

Remark. If {(x;, y j)}j‘;{) is a set of points whose abscissas are distinct, the values
f(x;) = y; can be used to construct the unique polynomial of degree < N that passes
through the N + 1 points.

Corollary 4.2 (Newton Approximation). Assume that Py (x} is the Newton poly-
nomial given in Theorem 4.5 and is used to approximate the function f(x), that is,

a7 fx) = Py(x) + En(x).

If f € C¥*!a, b), then for each x € {a, b] there corresponds a number ¢ = ¢(x) in
(a, b}, so that the error term has the form

(I —xo)(.!: —_).’1) . e -(_x _xN)f(N+1)(C)
(N+1)! ’

(18) Ey(x) =

Remark. The error term E i (x) is the same as the one for Lagrange interpolation, which
was introduced in equation (16) of Section 4.3.

It is of interest to start with a known function f (x) that is a polynomial of degree N
and compute its divided-difference table. In this case we know that f¥+D(x) = ¢
for all x, and calculation will reveal that the (N + 1)st divided difference is zero.
This will happen because the divided difference (i4) is proportional to a numerical
approximation for the jth derivative.
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Table 4.9
First Second Third Fourth Fifth
divided divided divided divided divided
Xp Flxz] difference difference difference difference difference
xXp = -3
X = 0 3
=3 15 i5 6
x3=4 | 48 33 9 1
g = 105 57 12 H 0
=6 192 87 15 1 ) 0
Table 4 10 Divided-Difference Table Used for Constructing the Newton Polynomials
Py(x) in Example 4.13
Xi Flxe] fl, 1] .. P S B I |
x=0.0 1.0000000
x=10 0.5403023 —0.4596977
xp=20| —0.4161468 —0.9564491 —0.2483757
x3=3.0]| —0.9899925 —0.5738457 0.1913017 0.1465592
3 =4.0( -0.6536436 0.3363499 0.4550973 0.0879318 —0.0146568

Example 4.12. Let f(x) = x? — 4x. Construct the divided-difference table based on the
nodesxo = 1,x7 = 2,..., x5 = 6, and find the Newton pelynomial P;(x) based on xg, x;,
X2, and x3.

See Table 4.9. [ ]

. The coefficients ap = ~3, a; = 3, a; = 6, and az = 1 of P3(x) appear on the
diagonal of the divided-difference table. The centers xo=1,x =2, and x> = 3 are
the values in the first column. Using formula (3), we write

P3y(x) = =3+3(x — D+ 6(x — )(x —2) + (x — 1)(x — 2)(x — 3).

Example 4.13. Construct a divided-difference table for f(x) = cos(x) based on the five
points (k, cos(k)), for k = 0, 1, 2, 3, 4. Use it to find the coefficients a; and the four
Newton interpolating polynomials Py (x), fork == 1,2, 3, 4.

For simplicity we round off the values to seven decimal places, which are displayed
in Table 4.10. The nodes xq, x1, x2, x3 and the diagonal elements ag, aj, a3, a3, a in
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y y
1.0 1.0
0.5 05
!
-0.5 -0.5F
-1.0F -1.0F

Figure 4,14 (b} Graphs of y = cos(x)
and the quadratic Newton polynomial
y = P2(x) based on the nodes xgp =
0.0, x; = 1.0, and x; = 2.0.

Figure 4.14 (a) Graphs of y = cos(x)
and the linear Newton polynomial y =
P, (x) based on the nodes xo = 0.0 and
x = 1.0

Table 4.10 are used in formula (16), and we write down the first four Newton polynomials:

Py (x) = 1.0000000 — 0.4596977(x — 0.0},
Pa(x) = 1.0000000 — 0.4596977(x — 0.0) — 0.2483757(x — 0.0)(x — 1.0},
P5(x) = 1.0000000 — 0.4596977(x — 0.0) — 0.2483757(x — 0.0}(x — 1.0)
+ 0.1465592(x — 0.0)(x — 1.0)(x — 2.0),
Py(x) = 1.0000000 — 0.4596977(x ~ 0.0) — 0.2483757(x — 0.0)(x — 1.0}
+ 0.1465592(x — 0.0)(x — 1.0)(x = 2.0)
— 0.0146568(x — 0.0)(x — 1.0)(x — 2.0){x — 3.0).

The following sample calculation shows how to find the coefficient az.

Flxg,xy) = LK1= Flxol _ 05403023 — 10000000 _ ) ;506977
: Pag—— 10-00
flx2] — flx1]  —0.4161458 — 0.5403023 — —0.9564491
flx1,x2] = Y — 1 = 20—-1.0 ) '
flx1,x2) — flxg, x1]  —0.9564491 + (0.4596977 — _0.2483757.
az = flxo. x1,x2] = Y1 — % = 20-00

The graphs of y = cos(x) and y = Pi(x), y = Pa(x),and y = P3(x) are shown in

Figure 4.14(a), (b), and (c), respectively. . N
’ For computational purposes the divided differénces in Table 4.8 need to be stored in an

array which is chosen to be D(k, j). Thus (15) becomes

(19) D(kvj)=f[xk—jaxkfj+ll'~'1xk] forj Sk'

| 20 P(x) =do,o + di,1(x — x0) + da2(x ~ xg}(x — x7)
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¥y
1.0
0.5+
1 Figure 4.14 (c) Graphs of
05l ¥y = cos{x) and the cubic New-
ton polynomial y = Py(x) based
Lok on the nodes xy = 0.0, x; = 1.0,

x3 = 2.0, and x3 = 3.0.

Relation (14) is used to obtain the formula to recursively compute the entries in the array:

Dk, j—1)~Dtk—1,j—1)
Xp — Xg—j ‘

(20) Dk, j) =

Notice that the value ay in {15) is the diagonal element a;, = D(k, k). The algorithm for
computing the divided differences and evaluating Py (x) is now given. We remark that
Problem 2 in Algorithms and Programs investigates how to modify the algorithm so that
the values {a;} are computed using a one-dimensional array. [

Program 4.2 (Newton Interpolation Polynomial). To construct and evaluate the
Newton polynomial of degree < N that passes through (xz, yi) = (xy, f(xz)) for
k=0,1,...,N:

Feotdy v —xo)(x —x1) - (x — xN—p),

where

dk,O = Vi and dk,j =

function [C,D]=newpoly(X,Y)
%nput - X is a vector that contains a list of abscissas

% - Y is a vector that contains a list of ordinates
%0utput - C is a vector that contains the coefficients

% of the Newton intepolatory polynomial

% - D is the divided-difference table

n=length(X);
=zeros(n,n);

D(:,1)=y";
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¥ Use formula {20) to form the divided-difference table
for j=2:n
for k=j:n
D(k,j)=(D(k,j-1)-D(k—1,j-1))/(X(k)“X(k-j+1));
end
end
YDetermine the coefficients of the Newton interpolating
Ypolynomial
C=D{n,n);
for k=(n-1):-1:1
C=conv(C,poly(X{k}));
m=length(C);
C(m)=C(m)+D{k,k) ;
end

Exercises for Newton Polynomials

In Exercises 1 through 4, use the centers xo, X, X2, and x3 and the coefficients ag, a1, a2, a3,
and as to find the Newton polynomials Py (x)}, P2(x), P3{x), and P4 (x), and evaluate them
at the value x = ¢. Hint. Use equations (1) through (4) and the technigues of Example 4.9.

L. ap=14 a=-1 a=04 a3 =001 a4=-0.002
xp=1 x) = =4 x3 =45 c=25

2. ap =5 ag==-2 az=05 a3 =-01 a3 =10.003
xp=0 xp=1 x=2 x3=73 c=25

3 a="7 a =3 a =101 a3 =005 a4=-004
n=-1 x= =1 x3=4 c=3

4. gqo=—-2 a1= ay =—0.04 a3=006 a4=0.003
x=-3 xn=-1 x=1 x3=4 c=2

In Exercises 5 thorugh 8:

(a) Compute the divided-difference table for the tabulated function.
{b) Write down the Newton polynomials Pi{x), P2(x), P; {x), and Py(x).
(¢) Evaluate the Newton polynomials in part (b) at the given values of x.

(d) Compare the values in part (c) with the actual function value f(x).
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5. fix)y =x1? 6. f(x) =3.6/x
x=45,7.5 x=2535
E | x| fOw) k| xe [flxo
0 | 4.0 | 2.00000 0 | 1.0 | 3.60
1 | 50 | 223607 1 |20 | 1.8
2 6.0 | 2.44949 2 30 | 1.20
3 | 7.0 | 2.64575 3 |40 | 090
4 8.0 | 2.82843 4 50 | 0.72
7. f(x) = 3sin®(wx/6) 8. fx)=e™*
x=15,35 x=0515
k| oxp |flxe) k| x| fGw
0 {00 {000 0 | 0.0 | 1.00000
1 ;10 ;075 1 | 1.0 | 0.36788
2 |20 | 225 2 |20 | 0.13534
3 |30 | 300 3 | 3.0 | 0.04979
4 | 40 | 225 4 |40 | 001832

9. Consider the M -+ 1 points (xo, yo), ..., {(xp, Ym).

(a) Ifthe (N + 1)st divided differences are zero, then show that the (N + 2)nd up
to the Mth divided differences are zero.

(b) If the (N + 1)st divided differences are zero, then show that there exists a poly-
nomial Py (x) of degree N such that

Pvixp)=w fork=0,1, ..., M.

In Exercises 10 through 12, use the result of Exercise 9 to find the polynomial Py (x) that
goes through the M + 1 points (N < M),

0. — 17— 1, — 71— 12, ——
Xk | ¥k Xk | ¥r Xk | i
0 (-2 1] 8 0| s
1] 2 2|17 1] s
2| 4 324 21 3
3| 4 4 |29 3| 5
4{ 2 5132 4|17
5 -2 6|33 5 |45
- - 6 |95
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13. Use Corollary 4.2 to find a bound on the maximum error (|E2(x)|) on the inter-

val [0, 7}, when the Newton interpolatory polynomial P(x) is used to approximate
f(x) =cos(mx) at the centers xg = 0, x; = 7/2,and x3 = .

Algorithms and Programs

1. Use Program 4.2 and repeat Problem 2 in Programs and Algorithms from Section 1 3.

2. In Program 4.2 the matrix D is used to store the divided-difference table.
(a) Verify that the following modification of Program 4.2 is an equivalent wa: to
compute the Newton interpolatory polynomial.

for k=0:N
A(K)=Y(k);
end
for j=1:N
for k=N:-1:j
AR =(A(R)-A(k-1))/ (X (k) -X(k-3));
end
end

(b) Repeat Problem 1 using this modification of Program 4.2

Chebyshev Polynomials (Optional)

We now tumn our attention to polynomial interpolation for f(x) over [—1, 1] based
on the nodes —1 < x9p < x; < --- < xy < 1. Both the Lagrange and Newton

polynomials satisfy
F(x} = Pn{x) + En(x),
where
_ f(N+l)(C)
(1) Eyn{x) = Q(x)—_(N+ Y

and (J(x) is the polynomial of degree N + 1:
(2) Qx) = (x — xp)(x —~ x1)--- (x — xn).
Using the relationship

max_ <, <1{| f ¥V (x)})
(N + 1)

|En(x)| = |Q(x))
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Table4.11 Chebyshev Polynomials

To(x) through T7(x)
ity =1

Tl (x) =X .
Blx) =22 -1

T3(x) = 4x3 — 3x

Ty(x) = 8x% — 8x2 41

Ts(x) = 1627 - 20x3 + 5x

To(x) = 3205 —48x% 4+ 1822 — |
T7(x) = 64x7 — 112x5 £ 5623 — 7x

our task is to foilow Chebyshev’s derivation on how to select the set of nodes {xx} }(V_O
that minimizes max_j<,<1{}Q(x)|}. This leads us to a discussion of Chebyshev pol}-
nomials and some of their properties. To begin, the first eight Chebyshev polynomials
are Jisted in Table 4.11.

Properties of Chebyshev Polynomials

Property 1. Recurrence relation

Chehyshev polynomials can be generated in the following way. Set Tp(x) = 1 and
71141 = x and use the recurrence relation

(3 Te(x) =2 Ty () — Ti—a(x)  for k=2, 3, ....

Property 2. Leading Coefficient
The coefficient of xV in Ty(x)is 2V~! when N > 1.

Property 3. Symmetry

When N = 2M, Tap(x) is an even function, that is,

@ Tam(—x) = Tapy(x).
When N = 2M + 1, Topry1(x) is an odd fuaction, that is,

(s) Dop41(—x) = —Tapge1(x).
Pioperty 4. Trigonometric Representation on [~1, 1]

(3] Tn(x) =cos(Narccos(x)) for —1<x<].
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¥
1.0 y=Ty(x)
y= T] (x)
S
. . . — x
-1.0 -0.5 0.5 1.0
-0.5F
y=T,(x Figure 4.15 Graphs of the Che
- hev polynomials Tp(x), T;(x),
=T - shev poly 0 i
yeho 1 y=T® .., Ta(x) over [—1, 1].

Property 5. Distinct Zeros in [—1, 1]
Tyn(x) has N distinct zeros x; that lie in the interval [—1, 1] (see Figure 4.15):

2%+ 1
1 xk=cos(%¥—'—) for k=0, 1, ..., N—1.

These values are called the Chebyshev abscissas (nodes).

Property 6. Extreme Values

® [Twix} <1 for —-1=<x<1,

Property 1 is often used as the definition for higher-order Chebyshev polynomials.
Let us show that 7T3(x) = 2xT2(x) — T1(x). Using the expressions for 71 (x) and T>(x) '
in Table 4,11, we obtain

2 Ta(x) — Ti(x) = 2x(2x2 — 1) — x = 4x° — 3x = T3(x).

Property 2 is proved by observing that the recurrence relation doubles the leading -
coefficient of T,,_, (x) to get the leading coefficient of T (x).

Property 3 is established by showing that T>s (x) involves only even powers of x
and T3p41(x) involves only odd powers of x. The details are left for the reader.

The proof of property 4 uses the trigonometric identity

cos(kf) = cos{28) cos((k — 2)8) — sin(26) sin{(k — 2)8)
Substitute cos(28) = 2cos?(#) — 1 and sin(28) = 2 sin(8) cos(6) and get

cos(k9) = 2 cos(8){cos(8) cos((k — 2)8) — sin(B) sin((k -~ 2)8)) — cos{(k — 2)8)
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which is simplified as

cos(k8) = 2 cos(f) cos((k — 1)8) — cos{(k — 2)8).
Finally, substitute @ = arccos(x) an obtain

{9) 2xcos((k — 1) arccos{x)) — cos{{k — 2) arccos(x)}
= cos(karccos(x)) for —1 <x < L

The first two Chebyshev polynomials are Tp(x) = cos(Qarccos(x)) = | and
Fi(x) = cos(l arccos(x)} = x. Now assume that T {(x} = cos(k arccos{x)} fork = 2.
3,.... ¥ — 1. Formula (3} is used with (9) to establish the general case:

Tuilx) = 2xTy_1(x) — Ty-2(x)
= 2x cos{{N — I)arccos(x))} — cos((N — 2) arccos(x})
= cos(N arccos(x)} for —1 <x <1,

Properties 5 and 6 are consequences of Property 4.

Minimax

The Russian mathematician Chebyshev studied how to minimize the upper bound for
1En(x)|. One upper bound can be formed by taking the product of the maximum value
of |O(x)| over all x in {—1, 1] and the maximum value | f¥ P (x)/(N + 1)!| over
all x in [—1, 1]. To minimize the factor max{] @(x}|}, Chebyshev discovered that xg,
x|, ... xy should be chosen so that Q(x) = (1/2")Ty1(x).

Theorem 4.6. Assume that N is fixed. Among all possible choices for Q(x) in equa-
tion (2), and thus among all possible choices for the distinct nodes [xk},f;oin [—1, 1]

the polynomial T(x) = Ty 4+1(x) /2% is the unique choice that has the property

_max {IT0)} = _max {10}

Moreover,
(TN =
(i0) _{rgxsl O} = 55-
Proof  The proof can be found in Reference [29). .
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Table4.12 Lagrange Coefficient Polynomials Used to Form Ps(x)
Based on Equally Spaced Nodes x; = —~1 4 2k/3

L3 g(x) = —0.06250000 + 0.06250000x + 0.56250000x2 — 0.56250000x>
Ly (x) = 0.56250000 — 1.68750000x — 0.56250000x2 + 1,68750000x3
L3 2(x) = 0.56250000 + 1.68750000x — 0.56250000x2 — 1.68750000x>
L3 3(x) = —0.06250000 — 0.06250000x + 0.56250000x2 + 0.56250000x3

The consequence of this result can be stated by saying that, for Lagrange interpo-
fation f(x) = Py(x} + En(x) on [—1, 1], the minimum value of the error bound

(max{)Q (x)|})(max{] f ¥V x) /(N + D))

is achieved when the nodes {x;} are the Chebyshev abscissas of Tyy1(x). As anil-
lustration, we look at the Lagrange coefficient polynomials that are used in forming
P3(x). First we use equally spaced nodes and then the Chebyshev nodes. Recall that
the Lagrange polynomial of degree N = 3 has the form

(I1)  Pa(x) = f(x0)L3,0(x) + flx1)L31(x) + f(x2)L32(x) + Flxs)L33(x).

Equally Spaced Nodes

If f(x) is approximated by a polynomial of degree at most N = 3 on [—1, 1], the
equally spaced nodes xp = —1, x; = —1/3, %3 = 1/3, and x3 = 1 are easy to
use for calculations. Substitution of these values into formula (8) of Section 4.3 and
simplifying will produce the coefficient polynomials L3 4 (x} in Table 4.12.

Chebyshev Nodes

When f(x) is to be approximated by a polynomial of degree at most N = 3, using
the Chebyshev nodes xo = cos(7r/8), x| = cos(57/8), x2 = cos(3m/8), and x3 =
cos(r /8). the coefficient polynomials are tedious to find (but this can be done by a
computer). The results after simplification are shown in Table 4.13.

Exampie 4.14. Compare the Lagrange polynomials of degree N = 3 for f(x) = e* that
are obtained by using the coefficient polynomials in Tables 4.12 and 4.13, respectively.
Using equally spaced nodes, we get the polynomial

P(x) = 0.99519577 + 0.99904923x + 0.54788486x% + 0.17615196x>.
This is obtained by finding the function values

flxoy=e"D = 036787944,  f(xy) = 173 = 071653131,
flxa) = e/3 = 139561243,  f(x3) = eV = 2.71828183,
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Table .13 Coefficient Polynomials Used to Form P3;{x} Based on the
Chebyshev Nodes xx = cos((7 — 2k) /8)

Co(x) = —0.10355339 +0.11208538x + 0.70710678x2 — 0.765366861:;
Ci(x) = 0.60355339 — 1.57716102x — 0.70710678x + 1.8477590@.:3
Ca(x) = 0.60355339 + 1.57716102x — 0.70710678x> — 1.84775906x
C3(x) = —0.10355339 — 0.11208538x + 0.70710678x% + 0.76536686x

and using the coefficient polynomials L3 ¢ (x) in Table 4.12, and forming the linear combi-
nation
P(x) = 0.36787944L3 o(x) + 0.71653131L31(x) + 1.39561243L3 2(x)
+2.71828183L3 3(x).

Similarly, when the Chebyshev nodes are used, we obtain
3
V{x) = 0.99461532 4 0.99893323x + 0.54290072x2 + 0.17517569x°.
Notice that the coefficients are different from those of P (x). This is a consequence of using
different nodes and function values:
Flxp) = e~ 092387953 — 0,39697597,
f(xl) — 8—0.38268343 _ 0.68202877,
£xg) = 038268383 — 1 46621380,
Flxz) = 29B87953 = 2.51904417.

Then the alternative set of coefficient polynomials Cy(x} in Table 4.13 is used to form the
linear combination

V (x) = 0.39697597Co(x) + 0.68202877C1(x) + 1.46621380C2(x) + 2.51904417C3(x).

For a comparison of the accuracy of P{x) and V (x), the error functions are graphed
in Figure 4.16(a) and (b), respectively. The maximum error le* —~ P{(x}| occurs at x =

0.75490129, and

le* — P(x)} < 000998481 for —1<x < 1.
The maximum error |¢* — V(x)] occurs at x = 1, and we get

(¥ — V{x)| < 0.00665687 for —1<x =<1

Notice that the maximum error in V {x) is about two-thirds the maximum error in P(x).
i a
Also, the error is spread out more evenly over the interval.
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¥y hd
0.005] y=e"—Px) 0.00 Yez — V(o)
-1.0 -0.5 0.5 1.0 -1.0 -0.5, 0.5 1.0
-0.005F —0.005
~0.010*+ -0.010+
(a) (&)

Figure 4.16 (a) The error function y = e* — P(x) for Lagrange approximation over [—1, 1]
(b) The error function y = ¢* — V{(x) for Lagrange approximation over [—1, 1].

Runge Phenomenon

We now look deeper to see the advantage of using the Chebyshev interpolation nodes.
Consider Lagrange interpolating to f(x) over the interval [—1, 1] based on equally
spaced nodes. Does the error Ex(x) = f(x) — Py{x) tend to zero as & increases? For
functions like sin(x} or ¢*, where all the derivatives are bounded by the same constant
M, the answer is yes. In general, the answer to this question is no, and it is easy to find
functions for which the sequence { Py (x)} does not converge. If f{x) =1/(1+ 12x%),
the maximum of the error term En(x) grows when N — oc. This nonconvergence
is called the Runge phenomenon (see Reference [90], pp. 275-278). The Lagrange
polynomial of degree 10 based on 11 equally spaced nodes for this function is shown
in Figure 4.17(a). Wild oscillations occur near the end of the interval. If the number of
nodes is increased, then the oscillations become larger. This problem occurs because
the nodes are equally spaced!

If the Chebyshev nodes are used to construct an interpolating polynomial of de-
gree 10to f(x) = 1/(1 4+ 12x?), the error is much smaller, as seen in Figure 14.17(b).
Under the condition that Chebyshev nodes be used, the error Ey(x) will go to zero
as N — oo. In general, if f(x) and f'(x) are continuous on [—1, 1], then it can be
proved that Chebyshev interpolation will produce a sequence of polynomials { Py (x}}
that converges uniformly to f (x) over [—1, 1].

Transforming the Interval

Sometimes it is necessary to take a problem stated on an interval [a, b] and reformu-
late the problem on the interval [c, 4] where the solution is known. If the approxima-
tion Py (x) to f(x) is to be obtained on the interval [a, ], then we change the variable
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Figure 4.17 (a) The polynomial

approximation to y = 1/{1 + 12x%)
x  based on 11 equally spaced nodes
0.5 Lo over [-1,1].

Figure 4.17 (b) The polynomial
approximation to y = 1/(1 + 12x%)
. “—x  based on 11 Chebyshev nodes over

$o that the problem is reformulated on [—1, 1]:

{12} xz(b_a)t+a+b or r=2x"a-1.

2 2 b—~a

wherea <x <band -1 <t < 1.
The required Chebyshev nodes of Ty,1{(t) on{—1, 1] are

b3
1 = 2N +1-2k)—— =
(13 I = Cos (( + )2N+2) for k=0, 1, . N

and the interpolating nodes on [a, b} are obtained by using (12):
b—a a+b

+

> 5 for k=90,1, ..., N.

Xi = ¥
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Theorem 4.7 (Lagrange-Chebyshev Approximation Polynomial). Assume that
Py (x) is the Lagrange polynomial that is based on the Chebyshev nodes givenin (14).
If f e CNH[a, b], then

1 P 200 —a)¥*! (N+D)
(13) [f(x) = Py(x)| < 4N_+1-W+_1)'a< {1f (1)”

Example 4.15. For f(x} = sin(x) on [0, m/4), find the Chebyshev nodes and the crror
bound (15) for the Lagrange polynomial Ps{x).
Formulas (12) and (13) are used to find the nodes;

(1 =2\ 7m =w
Xk—COS(—"-T §+§ fOl'k—O, I...., 5.

Using the bound | f® (x)| < |—sin(/4)| = 272 = M in (15), we get

I (x) — PN(xJ|<( )( )2 112 < 0.00000720. .

Orthogonal Property

In Exampie 4.14, the Chebyshev nodes were used to find the Lagrange interpolating
polynomial. In general, this implies that the Chebyshev polynomial of degree N can be
obtained by Lagrange interpolation based on the N + 1 nodes that are the N + 1 zeros
of Tw.:(x). However, a direct approach to finding the approximation polynomial is
to express Py (x) as a linear combination of the polynomiais T, (x), which were given
in Table 4.11 Therefore, the Chebyshev interpolating polynomial can be written in the
form

N
(16) Py(x) =) aTi(x) = coTo(x) + e1Ti(x) + - -+ cn Tw (x).
k=0
The coefficients {c; } in (16} are easy to find. The technical proof requires the use
of the following orthogonality properties. Let

+1
1 = = ;
(1In Xj = COS (ﬂ2N+2) for k=0, 1, , N;
N
(18) D Tin)Ti0) =0 when i # j,
k=0
. N+1 .
(19) gmxk)rj(xk) =—— wheni=j#0,
N
(20) > Tox)Tolu) = N + 1.
k=0

Property 4 and the identities (18) and (20) can be vsed to prove the following
theorem.
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Theorem 4.8 (Chebyshev Approximation}. The Chebyshev approximation polyno-
mial Py (x) of degree < N for f(x) over [—1, 1] can be written as a sum of {T;(x)}:

(21) fx) = Py(x) = i;_chj(x).
The coefficients {c;} are computed with the for:nulas
@ o= 373;—1 Z P00 = 55 g}f{xk)
and
6= + 1 Zf(xk)rj(xk)
(23) =N—H1§f(xk)cos(%2) for j=1,2, ..., N

Example 4.16. Find the Chebyshev polynomial P3(x) that approximates the function

f(x) =¢€" over[-1,1].

The coefficients are calculated using formulas (22) and (23), and the nodes x; =
cos(mr(2k+1)/8) fork =0,1,2,3.

1 3 - 1_3 X
o = ZZ To(xk)-..zge‘ = 1.26606568,

3 3
Cl= 3 DTl = 3 Y e = 113031500,
k=0

3
ey = % 3 M Ty(x) = -;—Ze‘“cos (2::2";" l) = 0.27145036.
k==l

3 2
€3 = "Z IkT3(xk)‘-_Z - ( k+1) = 0.04379392,
k=0 k=0
Therefore, the Chebyshev polynomial Py(x) for e* is
24 P3(x) = 1.26606568To(x) + 1.13031500Ti(x)

+0.27145036T»(x) + 0.04379392T3(x).
If the Chebyshev polynomial (24) is expanded in powers of x, the result is
P3(x) = 0.99461532 + 0.99893324x + 0.54290072x2 + 0.17517568x>,

which is the same as the polynomial V(x}) in Example 4.14. If the goal is to find the
Chebyshev polynomial, formulas (22) and (23) are preferred. n
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MATLAB

The following program uses the eval command instead of the feval command use .

in earlier programs. The eval command interprets a MATLAB text string as an ex

pression or statement. For example, the following commands will quickly evaluat.

cosine at the values x = k/10fork=0,1,...,5:
>> x=0:.1:.5;
>> eval{’cos(x)’)

ans =
1.0000 0.9950 0.9801 0.9553 0.9211 0.8776

Program 4.3 (Chebyshev Approximation). To construct and evaluate the Cheby-
shev interpolating polynomial of degree N over the interval [—1, 1], where

N
P(x) =) c;Tj(x)
=0
is based on the nodes

_ (2k + 1)1’!’)
X == COS§ N +2 .

function [C,X,Y}=cheby(fun,n,a,b)

%Input - fun is the string function to be approximated
% - N is the degree of the Chebyshev interpolating
%4 polynomial

a is the left end point
b is the right end point
%0utput - C is the coefficient list for the polynomial
% - X contains the abscissas
% - Y contains the ordinates
if nargin==2, a=-1;b=1;end
d=pi/(2*n+2);
C=zeros(1i,n+1);
for k=1:n+1

X(k)=cos((2*k-1)*d);
end
X=(b-a)*X/2+(a+b)/2;
x=X;
Y=oval (fun);
for k =1:n+1

z=(2*k-1)*d;

for j=i:n+l
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C(3)=C{G)+¥Y (k) *cas((j-1)*z};
end
and

C=2%C/(n+1);

C(1)=C(1)/2;

Exercises for Chebyshev Polynomials (Optional)

1. Use property | and
(a) construct T4(x) from 73(x) and T (x).
(b) construct 75(x) from T4(x) and T3{x).
2. Use property 1 and
(a) construct Tg(x) from T5(x) and Ty{x).
(b) construct T5(x) from T4(x) and Ts(x).

. Use mathematical induction to prove property 2.

3

4. Use mathematical induction 1o prove property 3.
5. F:nd the maximum and micimum values of To(x).
6

. Find the maxirnum and minimum values of T3(x).
Hint. T,(1/2) = 0 and 7,(—1/2) = 0.

7. Find the maximum and minimum values of T3(x).
Hirt. 700 = 0, T;(271/%) = 0.and (-2 12 _ 0.

e

Let f(x} = sin(x)on[~1,1"

{a) Use the coefficient polynomials ir. Table 4.13 1o obtain the Lagrange-Chebyshev
polynomial approximation P3(x).

(b) Fird the error bound for | sin(x) — Pyix),.

L. let fixy=In(x+2)oni—1. 1.

(a) LUse the coefficient polynomials in Table 4.13 to obtain the Lagrange-Chebyshev
polynornial approximation P3(x).

{(b) Find the error bound for | In(x + 2) — P3(x)..

#1@. The Lagrange polynomial of degree N = 2 has the form
froy = fleo)lacla) + fle)Lla ()~ flxz)Laa(x).

If the Chebyshey nodes xp = cosi57/0), x| = U, and x» = cos{7/6) are used, show
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that the coefficient polynomials are

x 22
Lao(x) = --\/_5 + 3
4x?
Laax)=1- =3
x  2x?
Lasix)= — + —.
2,2(x) A3

11, Let f(x) =cos(x)on[-1,1].
(a) Use the coefficient polynomials in Exercise 10 to get the Lagrange-Chebyshe
polynomial approximation Pa(x).
(b) Find the error bound for | cos(x) — Py(x)|.

12. Let f(x) =e*on[-1,1].
(a) Use the coefficient polynomials in Exercise 10 to get the Lagrange-Chebyshet
polynomial approximation Pa(x).
{b) Find the error bound for |¢* — P2 (x)|.

In Exercises 13 through 15, compare the Taylor polynomial and the Lagrange-Chebyshev
approximates to f(x) on {—1, 1]. Find their error bounds.

13. f(x) = sin{x} and N = 7, the Lagrange-Chebyshev polynomial is
sin(x) & 0.99999998x — 0.16666599x% 4 0.00832995x° — 0.00019297".
14. f(x) =cos(x) and N = 6; the Lagrange-Chebyshev polynomial is
cos(x) 2 | — 0.49999734x% + 0.04164535x* — 0.00134608x5,
15. f(x) = ¢* and N = 7; the Lagrange-Chebyshev polynomial is
e* ~ 0.99999980 + 0.99999998x + 0.50000634x>
+ 0.16666737x> + 0.04163504x* + 0.00832984x°
+0.00143925x5 + 0.00020399x .

16. Prove equation (18).
17. Prove equation (19).

Algorithms and Programs

In Problems 1 through 6, use Program 4.3 to compute the coefficients {¢;} for the Cheby -
shev polynomial approximation Py (x) to f(x) over[—1,1), when{a) N =4, (b) N = 5.
(©) N = 6, and (@) N = 7. In each case, plot f(x) and Py (x) on the same coordinate
system.

1. f(x)=¢" 2. f(x) =sin(x)

4.6
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3. f(x) =cos(x) 4. f(x) =In(x +2)
5. fn)y=(x+2)'72 6. f(x) = (x+2)0+2
7. Use Program 4.3 (N = 5) to obtain an approximation for fj cos(x2) dx.

Padé Approximations

In this section we introduce the notion of rational approximations for functions. The
function f(x) will be approximated over a small portion of its domain, For example,
if f(x) = cos(x), it is sufficient to have a formula to generate approximations on the
interval [0, /2]. Then trigonometric identities can be used to compute cos(x) for any
value x that lies outside [0, 7 /2].

A rational approximation to f(x) on [a, b] is the quotient of two polynomials
Py(x) and Qp(x) of degrees N and M, respectively. We use the notation Ry mx)to
denote this quotient:

Prpix)
Opm(x)

Our goal is to make the maximum error as small as possible. For a given arnount
of computational effort, one can usually construct a rational approximation that has a
smaller overall error on [a, b} than a polynomial approximation. Our development is
an introduction and will be limited to Padé approximations.

The method of Padé¢ requires that f(x) and its derivative be continuous at x = 0.
There are two reasons for the arbitrary choice of x = 0. First, it makes the manipula-
tions simpler. Second, a change of variable can be used to shift the calculations overto
an interval that contains zero. The polynomials used in (1) are

(1) Ry m(x) = for a = x < b.

2 Pn(x) = po+pix + p2x® + -+ + pyxVN
and
3) Omx)=1+q1x +qx* + -+ gyxM.

The polynomials in (2) and (3) are constructed so that f(x) and Ry ps(x) agree at
x = 0 and their derivatives up to N 4 M agree at x = 0. In the case Colx) = 1, the
approximation is just the Maclaurin expansion for f(x). For a fixed value of N + M
the error is smallest when Py {(x) and Qs (x) have the same degree or when Py (x) has
degree one higher than Qs (x).

Notice that the constant coefficient of Qs is g = 1. This is permissible, because
it cannot be 0 and Ry s (x) is not changed when bath Pr(x) and Qp(x) are divided
by the same constant. Hence the rational function Ry 4 (x) has N + M + | unknown
coefficients. Assume that f(x) is analytic and has the Maclaurin expansion

(4) f@W =a+ax+ax®+ - apxt+--.,
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and form the difference f(x)}Qu(x) — Py(x) = Z(x):
®) (Z“fx’) (Z 411’) -2l 3 e
=0 =0 j=0 F=N+M+1

The lower index j = M + N + 1 in the summation on the right side of (5) is chosen
because the first N 4 M derivatives of f(x) and Ry m(x) are to agrec atx = Q.
When the left side of (5) is multiplied out and the coefficients of the powers of

are setequal tozero fork = 0, 1, ..., N + M, the resultis a system of N + M 4 |
linear equations:
ap—po=0
quag+a—p1 =0
(6) qa0+qa1+a2—p2=0

gsap+ g1 +qraz+az— p3 =0
gMaN-mM + am-1ay-m+1+ - +av—py =0

and
gMaN-—m+1 + gum—1an-m+2 + -+ q1an +any =0

gMaN-M2 +am—1aN-_M+3 + -+ qrany1 +anyg2 =0
)]

gMan +gu-_1any+1  +-o Fgrayem— +anem =0

Notice that in each equation the sum of the subscripts on the factors of each product
is the same, and this sum increases consecutively from 0 to N + M. The M equations
in (7) involve only the unknowns g1, g2, ..., gy and must be solved first. Then the
equations in (6) are used successively to find po, p1, - ... Pn.

Example 4.17.  Establish the Padé approximation

® cosx) & Roatry = 13120 = 6900x2 + 313x*
ST 715,120 + 660x% + 1334
See Figure 4.18 for the graphs of cos(x) and Ry 4(x) over [—35, 5].
If the Maclaurin expansion for cos(x) is used, we will obtain nine equations in nine
unknowns. Instead, notice that both cos{x} and R4 4(x) are even functions and involve
powers of x2. We can simplify the computations if we start with f (x} = cos(x'/?):

I T P R
9) foy=1-gx+ 2" = 556X + 26320”

In this case, equation (5) becomes

1 1., 1 4 1 4 2 2
(1 2I+24X 720x +40!320x (l+qxx+q2x) pPo—p1x — pax

=0+0x+0x2+0x3+0x4+csx5+05x6+---.
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y
1.0
y=R4‘4(x)
0.5+
x A Y 3 1 1 A L lx
-s\\-4 -3 -2/ 1 1 \2 3 4/[s
=cos
y=costn) 0.5}
-1.0F

Figure 418 The graph of y = cos(x) and its Padé
approximation R 4(x).

When the coefficients of the first five powers of x are compared, we get the following
system of linear equations:

1—-po=0

_%+QI‘P1=0

(10) L tp—m=

' 2472 2=p=0
Pl 1

70t g — 3902 =0
1 1 1

20320 7307 T2 =0

The last two equations in (10) must be solved first. They can be rewritten in a form that is
<asy te solve:

=L 30g, = =
q] Q2—30 an —Q1+ 0q2=§a'

Firstfind g3 by adding the equations; then find ¢;

1 1 1 13
it _ Ly 1y
ay =13 (30 se) 15,120°
1 156 11
Q1=+

30 © 15,120 252°

Now the first three equations of (10) are used. It is obvious that py = 1, and we can
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use g1 and ¢ in (11) to solve for p; and p2:

" 1,11 15
(12) P ="5T253 7 "2s52
11l 13 313

72347504 T 15020~ 15,120
Now use the coefficients in (11) and (12) to form the rational approximation to f (x):

3 ya L= 115x/252 4 313x%/15,120
a3 ™ T 252 + 135215120

Since cos(x) = f (xz), we can substitute x2 for x in equation (13) and the result is the
formula for Ra 4(x) in (8). ™

Continued Fraction Form

The Padé approximation R4 4(x) in Example 4.17 requires a minimum of 12 arithmetic
operations to perform an evaluation. It is possible to reduce this number to seven by
the use of continued fractions. This is accomplished by starting with (8) and findin;
the quotient and its polynomial remainder.

15,120/313 — (6900/313)x2 + x*
15,120/13 + (660/13)x2 4 x*

313 /296,280 12,600/823 + x?
13 169 15,120/13 + (600/13)x2 + x* |~

Ry 4(x) =

The process is carried out once more using the term in the previous remainder. The
result is

Reatx) = 313 296,280/169
' 13 15,120/13 + (660/13)x% + x*
12,600/823 + x2
313 296,280,169

13 379,380 i 420,078,960/677,329
10,699 12,600/823 + x2

The fractions are converted to decimal form for computational purposes and we obtair

(14)  Rya(x) = 24.07692308
1753.13609467
35.45938873 + x2 + 620.19928277/(15.30984204 + x2)
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(a) €)]

lf‘igure 4.19 (a) Graph of the error Eg(x) = cos(x) — Ry 4(x} for the Padé approxima-
tion Ry 4 (x). (b) Graph of the error Ep(x) = cos(x)~ Pg(x) for the Taylor approximation
Fg(x).

To evatuate (14), first compute and store x2, then proceed from the bottom right term
in the denominator and tally the operations: addition, division, addition, addition, divi-
sion, and subtraction. Hence it takes a total of seven arithmetic operations to evaluate
R4 4(x) in continued fraction form in (14).

We can compare R, 4(x) with the Taylor polynomial Ps(x) of degree N = 6,

‘which requires seven arithmetic operations to evaluate when it is written in the nested

form

_ af 1 of1 1 ,
(15)  Ps(x)=1+x ( S+ (24 55" ))

=1+ x%(—0.5 + x2(0.0416666667 — 0.0013888889x2)).

The graphs of Eg(x) = cos(x) — Ry 4(x) and Ep(x) = cos(x) — Ps(x) over [—1, 1]
are shown in Figure 4.19(a) and (b), respectively. The largest errors occur at the
end points and are Eg(1) = -0.0000003599 and Ep(l) = 0.0000245281, respec-
tively. The magnitude of the largest error for Ry 4(x) is about 1.467% of the error
for Pg(x). The Padé approximation outperforms the Taylor approximation better on
smaller intervals, and over [—0.1, 0.1] we find that Eg(0.1) = —0.0000000004 and
Ep(0.1) = 0.0000000966, so the magnitude of the ermror for Rz 4(x) is about 0.384%
of the magnitude of the error for Pg(x).
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Exercises for Padé Approximations

1. Establish the Padé approximation:

2. (a)

(b)

3 (a)

(b)

4. (a)

(b)

(c}
5. (a)

(b)

2+=x

x%R - .
4 L1(x) o

Find the Padé approximation R; 1(x) for f(x) = In(1 + x)/x. Hint. Start with
the Maclaurin expansion:

X X2
fE@=1-F+T -

Use the result in part (a) to establish the approximation

6x + x2
6+4x

In(l+x) = R, 1(x) =

Find Ry,1(x) for f(x) = tan(x'/?)/x1/2, Hint. Start with the Maclauri
sion:
2 2

X X
f(x)=1+§+—15—+-<-

Use the result in part (a) to establish the approximation
15x — 23

tan(x) = R32(x) = 562

Find Ry(x) for f(x) = arctan(x'/2)/x!/2. Hint. Start with the Maclaur .
expansion:
2

X X
f(x)=1—§+?—~.

Use the result in part (a) to establish the approximation

15x + 4x3

arctan(x) = Ras(x) = W

Express the rational function Rz 3(x) in part (b) in continued fraction form.
Establish the Padé approximation:

12+ 6x + x2

RO = Fe s

Express the rational function Rz 3(x) in part (a) in continued fraction form.
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6. (a)

(b)

(c}
(a)

)

(c}
8. (a)

()

(c)
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Find the Padé¢ approximation Ry 2(x) for £(x) = In(1 + x)/x. Hint, Start with
the Maclaurin expansion:

2 x3 X

X X
f(x)—l—E'F?—T-}'?—'--.

Use the result in part (a) to establish

30x + 21x2 4 »3

In(1 ~ R = )
mA+0 > Re2() = S350

Express the rational function R3 2(x) in part (b) in continued fraction form.
Find Ry (x) for f(x) = tan(x'/2)/x!/2, Hint. Start with the Maclaurin expan-

sion.

x 22 17x3 g2t
=1+ = - — gy
f&) 3t Y3 tams T

Use the result in part (a) to establish

945x — 105x3 + x5
945 — 420x2 4 15x%

tan(x) = Rs 4(x) =

Express the rational function Rs 4(x) in part (b) in continued fraction form.

Find Ry 2(x) for f(x) = arctan(x!/?)/x1/2. Hint. Start with the Maclaurin
expansion:

2 3 4
x x* x x
f(x)—l_i‘l‘?-?""?_“‘ R
Use the result in part (a) to establish A

945x + 735x° + 64x5
945 + 1050x2 + 2254

arctan(x) = Rsa(x) =

Express the rational functionRs, 4(x) in part (b) in continued fraction form.

9. Establish the Padé approximation:

120 + 60x + 12x2 + x3

* 2~ R = .
¢ N R = ey T 1 5 7

4 0. Establish the Padé approximation:

1680 + 840x + 180x2 + 20x3 + x4
1680 — 840x 4 180x2 — 20x3 4 x*~

€ = Ry4(x) =
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1. Compare the following approximations to f(x) = ¢*.

2 3 4

X P4 X

lor: = —_ — -_—

Taylor: Ts(x) 1+x+2+6+24
12+ 6x +x2

Padé: R = —""
¢ RAEnTrn e
(@) Plot f(x), Tg(x), and Rz,2(x) on the same coordinate system,
{b) Determine the maximum error that occurs when f(x) is approximate : - .
Te(x) and Ry 7(x), respectively, over the interval [—1, 1].
2. Compare the following approximationsto f(x) = In(1 + x).

2 x3 4 x5

x x
Taylor: Ts(x)—.x—?-}-?_-z—..’._sﬂ
30x + 21x% 4 x°

Padé:  Rs2() = 536 002

(a) Plot f(x), Ts(x), and R32(x) on the same coordinate system.
(b) Determine the maximum error that occurs when f(x) is approximate.. . 1}
T5(x}) and R3 2(x), respectively, over the interval [—1, 1].

3. Compare the following approximations to f(x) = tan(x).

3 5 T 9
X 2x 17x 62x
T l N T = —_— —_ e
aylor dW) =x+ 3+ 75+ o
945x — 105x3 4 %

945 — 420x2 + 15x4

Padé:  Rsa4(x) =

{a) Plot f{x), To(x), and Rs 4(x) on the same coordinate system.
(b) Determine the maximum error that occurs when f(x) is approximated with
Ty(x) and Rs 4{(x), respectively, over the interval [—1, 1].

4. Compare the following Padé approximations to f(x) = sin(x) over the interval

[-1.2,1.2].
166,320x — 22,260x3 + 551x°
Rs 4(x) = 3 2
15(11,088 4 364x2 + 5x%)
Ro 5() 11,511,339,840x — 1,640,635,920x% + 52,785,432x° — 479,249x7
7.6 =

7(1,644,477,120 + 39,702,960x2 + 453,960x4 + 2,623x6)

(a) Plot f(x}, Rs 4(x), and R7s(x)} on the same coordinate system.
(b} Determine the maximum error that occurs when f(x) is approximated with
Rs 4(x) and R7 6(x), respectively, over the interval [—1.2, 1.2].

SEC. 4.6
5. (@)

(b)
(c)
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Use equations (6) and (7) to derive Rg 6(x) and Rg g(x) for f(x) = cos(x) over
the interval [—1.2, 1.2].

Plot f(x}), R 6(x), and Rg g(x) on the same coordinate system.

Determine the maximum error that occurs when f(x) is approximated with
Re,6(x) and Ry g(x), respectively, over the interval [—1.2, 1.2].
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