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Polynomial Interpolation

Definition: A polynomial of degree n in x is the function

Pn(x) =
n∑

i=0

aix
i = a0 + a1x + a2x

2 + · · · + anxn,

where ai are the coefficients of the polynomial (in our case, they are real numbers). Note
that there are n + 1 coefficients.

Calculating a polynomial involves additions, multiplications, and exponentiations,
but there are two methods that greatly simplify this calculation. They are the following:

1. Horner’s rule. A degree-3 polynomial can be written in the form

P (x) =
(
(a3x + a2)x + a1

)
x + a0,

thereby eliminating all exponentiations.
2. Forward differences. This is one of Newton’s many contributions to mathe-

matics and it is described in some detail in Section 1.5.1. Only the first step requires
multiplications. All other steps are performed with additions and assignments only.

Given a set of points, it is possible to construct a polynomial that when plotted
passes through the points. When fully computed and displayed, such a polynomial be-
comes a curve that’s referred to as a polynomial interpolation of the points. The first
part of this chapter discusses methods for polynomial interpolation and shows their lim-
itations. The second part extends the discussion to a two-dimensional grid of points,
and shows how to compute a two-parameter polynomial that passes through the points.
When fully computed and displayed, such a polynomial becomes a surface. The methods
described here apply the algebra of polynomials to the geometry of curves and surfaces,
but this application is limited, because high-degree polynomials tend to oscillate. Sec-
tion 1.5, and especially Exercise 1.20 show why this is so. Still, there are cases where
high-degree polynomials are useful.
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This chapter starts with a simple example where four points are given and a cubic
polynomial that passes through them is derived from first principles. Following this, the
Lagrange and Newton polynomial interpolation methods are introduced. The chapter
continues with a description of several simple surface algorithms based on polynomials.
It concludes with the Coons and Gordon surfaces, which also employ polynomials.

3.1 Four Points

Four points (two-dimensional or three-dimensional) P1, P2, P3, and P4 are given. We
are looking for a PC curve that passes through these points and has the form

P(t) = at3 + bt2 + ct + d = (t3, t2, t, 1)(a,b, c,d)T = T(t)A for 0 ≤ t ≤ 1, (3.1)

where each of the four coefficients a, b, c, and d is a pair (or a triplet), T(t) is the row
vector (t3, t2, t, 1), and A is the column vector (a,b, c,d)T . The only unknowns are a,
b, c, and d.

Since the four points can be located anywhere, we cannot assume anything about
their positions and we make the general assumption that P1 and P4 are the two end-
points P(0) and P(1) of the curve, and that P2 and P3 are the two interior points
P(1/3) and P(2/3). (Having no information about the locations of the points, the best
we can do is to use equi-distant values of the parameter t.) We therefore write the four
equations P(0) = P1, P(1/3) = P2, P(2/3) = P3, and P(1) = P4, or explicitly

a(0)3 + b(0)2 + c(0) + d = P1,

a(1/3)3 + b(1/3)2 + c(1/3) + d = P2,

a(2/3)3 + b(2/3)2 + c(2/3) + d = P3,
(3.2)

a(1)3 + b(1)2 + c(1) + d = P4.

The solutions of this system of equations are

a = −(9/2)P1 + (27/2)P2 − (27/2)P3 + (9/2)P4,

b = 9P1 − (45/2)P2 + 18P3 − (9/2)P4,

c = −(11/2)P1 + 9P2 − (9/2)P3 + P4,
(3.3)

d = P1.

Substituting these solutions into Equation (3.1) gives

P(t) =
(−(9/2)P1 + (27/2)P2 − (27/2)P3 + (9/2)P4

)
t3

+
(
9P1 − (45/2)P2 + 18P3 − (9/2)P4

)
t2

+
(−(11/2)P1 + 9P2 − (9/2)P3 + P4

)
t + P1.
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After rearranging, this becomes

P(t) =(−4.5t3 + 9t2 − 5.5t + 1)P1 + (13.5t3 − 22.5t2 + 9t)P2

+ (−13.5t3 + 18t2 − 4.5t)P3 + (4.5t3 − 4.5t2 + t)P4

=G1(t)P1 + G2(t)P2 + G3(t)P3 + G4(t)P4

=G(t)P,

(3.4)

where the four functions Gi(t) are cubic polynomials in t

G1(t) = (−4.5t3 + 9t2 − 5.5t + 1), G3(t) = (−13.5t3 + 18t2 − 4.5t),
G2(t) = (13.5t3 − 22.5t2 + 9t), G4(t) = (4.5t3 − 4.5t2 + t), (3.5)

P is the column (P1,P2,P3,P4)T and G(t) is the row (G1(t), G2(t), G3(t), G4(t)) (see
also Exercise 3.8 for a different approach to this polynomial).

The functions Gi(t) are called blending functions because they represent any point
on the curve as a blend of the four given points. Note that they are barycentric (they
should be, since they blend points, and this is shown in the next paragraph). We can
also write

G1(t) = (t3, t2, t, 1)(−4.5, 9,−5.5, 1)T

and similarly for G2(t), G3(t), and G4(t). The curve can now be expressed as

P(t) = G(t)P = (t3, t2, t, 1)

⎡
⎢⎣
−4.5 13.5 −13.5 4.5
9.0 −22.5 18 −4.5
−5.5 9.0 −4.5 1.0
1.0 0 0 0

⎤
⎥⎦
⎡
⎢⎣

P1

P2

P3

P4

⎤
⎥⎦ = T(t)NP. (3.6)

Matrix N is called the basis matrix and P is the geometry vector. Equation (3.1) tells
us that P(t) = T(t)A, so we conclude that A = NP.

The four functions Gi(t) are barycentric because of the nature of Equation (3.2),
not because of the special choice of the four t values. To see why this is so, we write
Equation (3.2) for four different, arbitrary values t1, t2, t3, and t4 (they have to be
different, otherwise two or more equations would be contradictory).

at31 + bt21 + ct1 + d = P1,

at32 + bt22 + ct2 + d = P2,

at33 + bt23 + ct3 + d = P3,
(3.7)

at34 + bt24 + ct4 + d = P4,

(where we treat the four values Pi as numbers, not points, and as a result, a, b, c, and
d are also numbers). The solutions are of the form

a = c11P1 + c12P2 + c13P3 + c14P4,

b = c21P1 + c22P2 + c23P3 + c24P4,

c = c31P1 + c32P2 + c33P3 + c34P4,
(3.8)

d = c41P1 + c42P2 + c43P3 + c44P4.
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Comparing Equation (3.8) to Equations (3.3) and (3.5) shows that the four functions
Gi(t) can be expressed in terms of the cij in the form

Gi(t) = (c1it
3 + c2it

2 + c3it + c4i). (3.9)

The point is that the 16 coefficients cij do not depend on the four values Pi. They are
the same for any choice of the Pi. As a special case, we now select P1 = P2 = P3 = P4 = 1
which reduces Equation (3.8) to

at31 + bt21 + ct1 + d = 1, at32 + bt22 + ct2 + d = 1,

at33 + bt23 + ct3 + d = 1, at34 + bt24 + ct4 + d = 1.

Because the four values ti are arbitrary, the four equations above can be written as the
single equation at3 + bt2 + ct + d = 1, that holds for any t. Its solutions must therefore
be a = b = c = 0 and d = 1.

Thus, we conclude that when all four values Pi are 1, a must be zero. In general,
a = c11P1 + c12P2 + c13P3 + c14P4, which implies that c11 + c12 + c13 + c14 must be zero.
Similar arguments show that c21 + c22 + c23 + c24 = 0, c31 + c32 + c33 + c34 = 0, and
c41 + c42 + c43 + c44 = 1. These relations, combined with Equation (3.9), show that the
four Gi(t) are barycentric.

To calculate the curve, we only need to calculate the four quantities a, b, c, and d
(that constitute vector A), and write Equation (3.1) using the numerical values of a, b,
c, and d.

Example: (This example is in two dimensions, each of the four points Pi along
with the four coefficients a,b, c,d form a pair. For three-dimensional curves the method
is the same except that triplets are used instead of pairs.) Given the four two-dimensional
points P1 = (0, 0), P2 = (1, 0), P3 = (1, 1), and P4 = (0, 1), we set up the equation⎛

⎜⎝
a
b
c
d

⎞
⎟⎠ = A = NP =

⎛
⎜⎝

−4.5 13.5 −13.5 4.5
9.0 −22.5 18 −4.5
−5.5 9.0 −4.5 1.0
1.0 0 0 0

⎞
⎟⎠
⎛
⎜⎝

(0, 0)
(1, 0)
(1, 1)
(0, 1)

⎞
⎟⎠ .

Its solutions are

a = −4.5(0, 0) + 13.5(1, 0) − 13.5(1, 1) + 4.5(0, 1) = (0,−9),
b = 19(0, 0) − 22.5(1, 0) + 18(1, 1) − 4.5(0, 1) = (−4.5, 13.5),
c = −5.5(0, 0) + 9(1, 0) − 4.5(1, 1) + 1(0, 1) = (4.5,−3.5),
d = 1(0, 0) − 0(1, 0) + 0(1, 1) − 0(0, 1) = (0, 0).

So the curve P(t) that passes through the given points is

P(t) = T(t)A = (0,−9)t3 + (−4.5, 13.5)t2 + (4.5,−3.5)t.

It is now easy to calculate and verify that P(0) = (0, 0) = P1, and

P(1/3) = (0,−9)(1/27) + (−4.5, 13.5)(1/9) + (4.5,−3.5)(1/3) = (1, 0) = P2,

P(1) = (0,−9)13 + (−4.5, 13.5)12 + (4.5,−3.5)1 = (0, 1) = P4.
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� Exercise 3.1: Calculate P(2/3) and verify that it equals P3.

� Exercise 3.2: Imagine the circular arc of radius 1 in the first quadrant (a quarter
circle). Write the coordinates of the four points that are equally spaced on this arc. Use
the coordinates to calculate a PC approximating this arc. Calculate point P(1/2). How
far does it deviate from the midpoint of the true quarter circle?

� Exercise 3.3: Calculate the PC that passes through the four points P1 through P4

assuming that only the three relative coordinates ∆1 = P2 − P1, ∆2 = P3 − P2, and
∆3 = P4 − P3 are given. Show a numeric example.

The main advantage of this method is its simplicity. Given the four points, it is
easy to calculate the PC that passes through them. This, however, is also the reason for
the downside of the method. It produces only one PC that passes through four given
points. If that PC does not have the required shape, there is nothing the user can do.
This simple curve method is not interactive.

Even though this method is not very useful for curve drawing, it may be useful for
interpolation. Given two points P1 and P2, we know that the point midway between
them is their average, (P1 +P2)/2. A natural question is: given four points P1 through
P4, what point is located midway between them? We can answer this question by
calculating the average, (P1 +P2 +P3 +P4)/4, but this weighted sum assigns the same
weight to each of the four points. If we want to assign more weight to the interior points
P2 and P3, we can calculate the PC that passes through the points and compute P(0.5)
from Equation (3.6). The result is

P(0.5) = −0.0625P1 + 0.5625P2 + 0.5625P3 − 0.0625P4.

This is a weighted sum that assigns more weight to the interior points. Notice that
the weights are barycentric. Exercise 3.13 provides a hint as to why the two extreme
weights are negative. This method can be extended to a two-dimensional grid of points
(Section 3.6.1).

A precisian professor had the habit of saying: “. . . quartic polynomial ax4 + bx3 +
cx2 + dx + e, where e need not be the base of the natural logarithms.”

—J. E. Littlewood, A Mathematician’s Miscellany

� Exercise 3.4: The preceding method makes sense if the four points are (approximately)
equally spaced along the curve. If they are not, the following approach may be taken.
Instead of using 1/3 and 2/3 as the intermediate values, the user may specify values α
and β, both in the interval (0, 1), such that P2 = P(α) and P3 = P(β). Generalize
Equation (3.6) such that it depends on α and β.
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3.2 The Lagrange Polynomial

The preceding section shows how a cubic interpolating polynomial can be derived for
a set of four given points. This section discusses the Lagrange polynomial, a general
approach to the problem of polynomial interpolation.

Given the n + 1 data points P0 = (x0, y0), P1 = (x1, y1), . . . ,Pn = (xn, yn), the
problem is to find a function y = f(x) that will pass through all of them. We first try
an expression of the form y =

∑n
i=0 yiL

n
i (x). This is a weighted sum of the individual yi

coordinates where the weights depend on the xi coordinates. This sum will pass through
the points if

Ln
i (x) =

{
1, x = xi,
0, otherwise.

A good mathematician can easily guess that such functions are given by

Ln
i (x) =

Πj �=i(x − xj)
Πj �=i(xi − xj)

=
(x − x0)(x − x1) · · · (x − xi−1)(x − xi+1)(x − xn)
(xi − x0) · · · (xi − xi−1)(xi − xi+1) · · · (xi − xn)

.

(Note that (x− xi) is missing from the numerator and (xi − xi) is missing from the de-
nominator.) The function y =

∑n
i=0 yiL

n
i (x) is called the Lagrange polynomial because

it was originally developed by Lagrange [Lagrange 77] and it is a polynomial of degree
n. It is denoted by LP.

Horner’s rule and the method of forward differences make polynomials very desirable
to use. In practice, however, polynomials are used in parametric form as illustrated in
Section 1.5, since any explicit function y = f(x) is limited in the shapes of curves it can
generate (note that the explicit form y =

∑n
i=0 yiL

n
i (x) of the LP cannot be calculated

if two of the n + 1 given data points have the same x coordinate).
The LP has two properties that make it impractical for interactive curve design, it

is of a high degree and it is unique.

1. Writing Pn(x) = 0 creates an equation of degree n in x. It has n solutions (some
may be complex numbers), so when plotted as a curve it intercepts the x axis n times.
For large n, such a curve may be loose because it tends to oscillate wildly. In practice,
we normally prefer tight curves.

2. It is easy to show that the LP is unique (see below). There are infinitely many
curves that pass through any given set of points and the one we are looking for may not be
the LP. Any useful, practical mathematical method for curve design should make it easy
for the designer to change the shape of the curve by varying the values of parameters.

It’s easy to show that there is only one polynomial of degree n that passes through
any given set of n + 1 points.

A root of the polynomial Pn(x) is a value xr such that Pn(xr) = 0. A polynomial
Pn(x) can have at most n distinct roots (unless it is the zero polynomial). Suppose that
there is another polynomial Qn(x) that passes through the same n + 1 data points. At
the points, we would have Pn(xi) = Qn(xi) = yi or (Pn − Qn) (xi) = 0. The difference
(Pn − Qn) is a polynomial whose degree must be ≤ n, so it cannot have more than n
distinct roots. On the other hand, this difference is 0 at the n + 1 data points, so it has
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n+1 roots. We conclude that it must be the zero polynomial, which implies that Pn(x)
and Qn(x) are identical.

This uniqueness theorem can also be employed to show that the Lagrange weights
Ln

i (x) are barycentric. Given a function f(x), select n+1 distinct values x0 through xn,
and consider the n + 1 support points (x0, f(x0)) through (xn, f(xn)). The uniqueness
theorem states that there is a unique polynomial p(x) of degree n or less that passes
through the points, i.e., p(xk) = f(xk) for k = 0, 1, . . . , n. We say that this polynomial
interpolates the points. Now consider the constant function f(x) ≡ 1. The Lagrange
polynomial that interpolates its points is

LP(x) =
n∑

i=0

yiL
n
i (x) =

n∑
i=0

1×Ln
i (x) =

n∑
i=0

Ln
i (x).

On the other hand, LP(x) must be identical to 1, because LP(xk) = f(xk) and f(xk) = 1
for any point xk. Thus, we conclude that

∑n
i=0 Ln

i (x) = 1 for any x.

Because of these two properties, we conclude that a practical curve design method
should be based on polynomials of low degree and should depend on parameters that
control the shape of the curve. Such methods are discussed in the chapters that follow.
Still, polynomial interpolation may be useful in special situations, which is why it is
discussed in the remainder of this chapter.

� Exercise 3.5: Calculate the LP between the two points P0 = (x0, y0) and P1 = (x1, y1).
What kind of a curve is it?

I have another method not yet communicated. . . a convenient, rapid and general so-
lution of this problem, To draw a geometrical curve which shall pass through any
number of given points. . .These things are done at once geometrically with no cal-
culation intervening. . .Though at first glance it looks unmanageable, yet the matter
turns out otherwise. For it ranks among the most beautiful of all that I could wish
to solve.
(Isaac Newton in a letter to Henry Oldenburg, October 24, 1676, quoted in [Turn-
bull 59], vol. II, p 188.)

—James Gleick, Isaac Newton (2003).

The LP can also be expressed in parametric form. Given the n + 1 data points
P0, P1, . . . ,Pn, we need to construct a polynomial P(t) that passes through all of
them, such that P(t0) = P0, P(t1) = P1, . . . , P(tn) = Pn, where t0 = 0, tn = 1, and
t1 through tn−1 are certain values between 0 and 1 (the ti are called knot values). The
LP has the form P(t) =

∑n
i=0 PiL

n
i (t). This is a weighted sum of the individual points

where the weights (or basis functions) are given by

Ln
i (t) =

Πn
j �=i(t − tj)

Πn
j �=i(ti − tj)

. (3.10)

Note that
∑n

i=0 Ln
i (t) = 1, so these weights are barycentric.
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� Exercise 3.6: Calculate the parametric LP between the two general points P0 and P1.

� Exercise 3.7: Calculate the parametric LP for the three points P0 = (0, 0), P1 = (0, 1),
and P2 = (1, 1).

� Exercise 3.8: Calculate the parametric LP for the four equally-spaced points P1, P2,
P3, and P4 and show that it is identical to the interpolating PC given by Equation (3.4).

The parametric LP is also mentioned on page 109, in connection with Gordon
surfaces.

The LP has another disadvantage. If the resulting curve is not satisfactory, the user
may want to fine-tune it by adding one more point. However, all the basis functions
Ln

i (t) will have to be recalculated in such a case, since they also depend on the points,
not only on the knot values. This disadvantage makes the LP slow to use in practice,
which is why the Newton polynomial (Section 3.3) is sometimes used instead.

3.2.1 The Quadratic Lagrange Polynomial

Equation (3.10) can easily be employed to obtain the Lagrange polynomial for three
points P0, P1, and P2. The weights in this case are

L2
0(t) =

∏2
j �=0(t − tj)∏2
j �=0(t0 − tj)

=
(t − t1)(t − t2)

(t0 − t1)(t0 − t2)
,

L2
1(t) =

∏2
j �=1(t − tj)∏2
j �=1(t1 − tj)

=
(t − t0)(t − t2)

(t1 − t0)(t1 − t2)
,

L2
2(t) =

∏2
j �=2(t − tj)∏2
j �=2(t2 − tj)

=
(t − t0)(t − t1)

(t2 − t0)(t2 − t1)
,

(3.11)

and the polynomial P2(t) =
∑2

i=0 PiL
2
i (t) is easy to calculate once the values of t0, t1,

and t2 have been determined.
The Uniform Quadratic Lagrange Polynomial is obtained when t0 = 0, t1 = 1, and

t2 = 2. (See discussion of uniform and nonuniform parametric curves in Section 1.4.1.)
Equation (3.11) yields

P2u(t) =
t2 − 3t + 2

2
P0 − (t2 − 2t)P1 +

t2 − t

2
P2

= (t2, t, 1)

⎛
⎝ 1/2 −1 1/2

−3/2 2 −1/2
1 0 0

⎞
⎠
⎛
⎝P0

P1

P2

⎞
⎠ . (3.12)

The sums of three rows of the matrix of Equation (3.12) are (from top to bottom) 0, 0,
and 1, showing that the three basis functions are barycentric, as they should be.

The Nonuniform Quadratic Lagrange Polynomial is obtained when t0 = 0, t1 =
t0+∆0 = ∆0, and t2 = t1+∆1 = ∆0+∆1 for some positive ∆0 and ∆1. Equation (3.11)
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gives

L2
0(t) =

(t − ∆0)(t − ∆0 − ∆1)
(−∆0)(−∆0 − ∆1)

, L2
1(t) =

(t − 0)(t − ∆0 − ∆1)
∆0(−∆1)

, L2
2(t) =

(t − 0)(t − ∆0)
(∆0 + ∆1)∆1

,

and the nonuniform polynomial is

P2nu(t) = (t2, t, 1)

⎡
⎢⎢⎢⎢⎣

1
∆0(∆0 + ∆1)

− 1
∆0∆1

1
(∆0 + ∆1)∆1

−1
∆0 + ∆1

− 1
∆0

1
∆0

+
1

∆1
− 1

∆1
+

1
∆0 + ∆1

1 0 0

⎤
⎥⎥⎥⎥⎦
⎡
⎣P0

P1

P2

⎤
⎦ . (3.13)

For ∆0 = ∆1 = 1, Equation (3.13) reduces to the uniform polynomial, Equation (3.12).
For ∆0 = ∆1 = 1/2, the parameter t varies in the “standard” range [0, 1] and Equa-
tion (3.13) becomes

P2std(t) = (t2, t, 1)

⎛
⎝ 2 −4 2

−3 4 −1
1 0 0

⎞
⎠
⎛
⎝P0

P1

P2

⎞
⎠ . (3.14)

(Notice that the three rows again sum to 0, 0, and 1, to produce three barycentric basis
functions.) In most cases, ∆0 and ∆1 should be set to the chord lengths |P1 −P0| and
|P2 − P1|, respectively.

� Exercise 3.9: Use Cartesian product to generalize Equation (3.14) to a surface patch
that passes through nine given points.

Example: The three points P0 = (1, 0), P1 = (1.3, .5), and P2 = (4, 0) are given.
The uniform LP is obtained when ∆0 = ∆1 = 1 and it equals

P2u(t) =
(
1 − 0.9t + 1.2t2, 0.5(2 − t)t

)
.

Many nonuniform polynomials are possible. We select the one that’s obtained when
the ∆ values are the chord lengths between the points. In our case, they are ∆0 =
|P1 − P0| ≈ 0.583 and ∆1 = |P2 − P1| ≈ 2.75. This polynomial is

P2nu(t) = (1 + 0.433t + 0.14t2, 1.04t − 0.312t2).

These uniform and nonuniform polynomials are shown in Figure 3.1. The figure il-
lustrates how the nonuniform curve based on the chord lengths between the points is
tighter (features smaller overall curvature). Such a curve is generally considered a better
interpolation of the three points.

Figure 3.2 shows three examples of nonuniform Lagrange polynomials that pass
through the three points P0 = (1, 1), P1 = (2, 2), and P2 = (4, 0). The value of ∆0 is
1.414, the chord length between P0 and P1. The chord length between P1 and P2 is 2.83
and ∆1 is first assigned this value, then half this value, and finally twice it. The three
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P1

P2

P0

Uniform Curve
Nonuniform Curve

(* 3-point Lagrange polynomial (uniform and nonunif) *)
Clear[T,H,B,d0,d1];
d0=1; d1=1;
T={t^2,t,1};
H={{1/(d0(d0+d1)),-1/(d0 d1),1/(d1(d0+d1))},
{-1/(d0+d1)-1/d0,1/d0+1/d1,-1/d1+1/(d0+d1)},{1,0,0}};
B={{1,0},{1.3,.5},{4,0}};
Simplify[T.H.B];
C1=ParametricPlot[T.H.B,{t,0,d0+d1},PlotRange->All, Compiled->False,
PlotStyle->AbsoluteDashing[{2,2}], DisplayFunction->Identity];
d0=.583; d1=2.75;
H={{1/(d0(d0+d1)),-1/(d0 d1),1/(d1(d0+d1))},
{-1/(d0+d1)-1/d0,1/d0+1/d1,-1/d1+1/(d0+d1)},{1,0,0}};
Simplify[T.H.B];
C2=ParametricPlot[T.H.B,{t,0,d0+d1},PlotRange->All, Compiled->False,
DisplayFunction->Identity];
Show[C1, C2, AspectRatio->Automatic, DefaultFont->{"cmr10", 10},
DisplayFunction->$DisplayFunction];

Figure 3.1: Three-Point Lagrange Polynomials.

resulting curves illustrate how the Lagrange polynomial can be reshaped by modifying
the ∆i parameters. The three polynomials in this case are

(1 + 0.354231t + 0.249634t2, 1 + 1.76716t − 0.749608t2),
(1 + 0.70738t − 0.000117766t2, 1 + 1.1783t − 0.333159t2),
(1 + 0.777945t − 0.0500221t2, 1 + 0.919208t − 0.149925t2).

3.2.2 The Cubic Lagrange Polynomial

Equation (3.10) is now applied to the cubic Lagrange polynomial that interpolates the
four points P0, P1, P2, and P3. The weights in this case are

L3
0(t) =

∏3
j �=0(t − tj)∏3
j �=0(t0 − tj)

=
(t − t1)(t − t2)(t − t3)

(t0 − t1)(t0 − t2)(t0 − t3)
,

L3
1(t) =

∏3
j �=1(t − tj)∏3
j �=1(t1 − tj)

=
(t − t0)(t − t2)(t − t3)

(t1 − t0)(t1 − t2)(t1 − t3)
,

L3
2(t) =

∏3
j �=2(t − tj)∏3
j �=2(t2 − tj)

=
(t − t0)(t − t1)(t − t3)

(t2 − t0)(t2 − t1)(t2 − t3)
,
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P1

P0

P2

P1P2∆1= | |−
P1P2∆1= | |−0.5

P1P2∆1= | |−2

(* 3-point Lagrange polynomial (3 examples of nonuniform) *)
Clear[T,H,B,d0,d1,C1,C2,C3];
d0=1.414; d1=1.415; (* d1=0.5|P2-P1| *)
T={t^2,t,1};
H={{1/(d0(d0+d1)),-1/(d0 d1),1/(d1(d0+d1))},
{-1/(d0+d1)-1/d0,1/d0+1/d1,-1/d1+1/(d0+d1)},{1,0,0}};
B={{1,1},{2,2},{4,0}};
Simplify[T.H.B]
C1=ParametricPlot[T.H.B,{t,0,d0+d1},PlotRange->All, Compiled->False,
DisplayFunction->Identity];
d1=2.83; (* d1=|P2-P1| *)
H={{1/(d0(d0+d1)),-1/(d0 d1),1/(d1(d0+d1))},
{-1/(d0+d1)-1/d0,1/d0+1/d1,-1/d1+1/(d0+d1)},{1,0,0}};
Simplify[T.H.B]
C2=ParametricPlot[T.H.B,{t,0,d0+d1},PlotRange->All, Compiled->False,
DisplayFunction->Identity];
d1=5.66; (* d1=2|P2-P1| *)
H={{1/(d0(d0+d1)),-1/(d0 d1),1/(d1(d0+d1))},
{-1/(d0+d1)-1/d0,1/d0+1/d1,-1/d1+1/(d0+d1)},{1,0,0}};
Simplify[T.H.B]
C3=ParametricPlot[T.H.B,{t,0,d0+d1},PlotRange->All, Compiled->False,
DisplayFunction->Identity];
Show[C1,C2,C3, AspectRatio->Automatic, DefaultFont->{"cmr10", 10},
DisplayFunction->$DisplayFunction];
(* (1/24,-1/8)t^3+(-1/3,3/4)t^2+(1,-1)t *)

Figure 3.2: Three-Point Nonuniform Lagrange Polynomials.
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L3
3(t) =

∏3
j �=3(t − tj)∏3
j �=3(t3 − tj)

=
(t − t0)(t − t1)(t − t2)

(t3 − t0)(t3 − t1)(t3 − t2)
, (3.15)

and the polynomial P3(t) =
∑3

i=0 PiL
3
i (t) is easy to calculate once the values of t0, t1,

t2, and t3 have been determined.
The Nonuniform Cubic Lagrange Polynomial is obtained when t0 = 0, t1 = t0 +

∆0 = ∆0, t2 = t1 + ∆1 = ∆0 + ∆1, and t3 = t2 + ∆2 = ∆0 + ∆1 + ∆2 for positive ∆i.
The expression for the polynomial is

P3nu(t) = (t3, t2, t, 1)Q

⎛
⎜⎝

P0

P1

P2

P3

⎞
⎟⎠ , (3.16)

where Q is the matrix

Q =

⎛
⎜⎜⎜⎜⎜⎜⎝

1
(−∆0)(−∆0−∆1)(−∆0−∆1−∆2)

1
∆0(−∆1)(−∆1−∆2)

− 3∆0+2∆1+∆2
(−∆0)(−∆0−∆1)(−∆0−∆1−∆2)

− 2∆0+2∆1+∆2
∆0(−∆1)(−∆1−∆2)

∆0(∆0+∆1)+(∆0+∆1)(∆0+∆1+∆2)+(∆0+∆1+∆2)∆0
(−∆0)(−∆0−∆1)(−∆0−∆1−∆2)

(∆0+∆1)(∆0+∆1+∆2)
∆0(−∆1)(−∆1−∆2)

− ∆0(∆0+∆1)(∆0+∆1+∆2)
(−∆0)(−∆0−∆1)(−∆0−∆1−∆2)

0

1
(∆0+∆1)∆1(−∆2)

1
(∆0+∆1+∆2)(∆1+∆2)∆2

− 2∆0+∆1+∆2
(∆0+∆1)∆1(−∆2)

− 2∆0+∆1
(∆0+∆1+∆2)(∆1+∆2)∆2

∆0(∆0+∆1+∆2)
(∆0+∆1)∆1(−∆2)

∆0(∆0+∆1)
(∆0+∆1+∆2)(∆1+∆2)∆2

0 0

⎞
⎟⎟⎟⎟⎟⎠ .

The Uniform Cubic Lagrange Polynomial . We construct the “standard” case, where
t varies from 0 to 1. This implies t0 = 0, t1 = 1/3, t2 = 2/3, and t3 = 1. Equation (3.16)
reduces to

P3u(t) = (t3, t2, t, 1)

⎛
⎜⎝

−9/2 27/2 −27/2 9/2
9 −45/2 18 −9/2

−11/2 9 −9/2 1
1 0 0 0

⎞
⎟⎠
⎛
⎜⎝

P0

P1

P2

P3

⎞
⎟⎠ . (3.17)

Figure 3.3 shows the quadratic and cubic Lagrange basis functions. It is easy to
see that there are values of t (indicated by arrows) for which one of the basis functions
is 1 and the others are zeros. This is how the curve (which is a weighted sum of the
functions) passes through a point. The functions add up to 1, but most climb above
1 and are negative in certain regions. In the nonuniform case, the particular choice of
the various ∆i reshapes the basis functions in such a way that a function still retains
its basic shape, but its areas above and below the t axis may increase or decrease
significantly. Those willing to experiment can copy Matrix Q of Equation (3.16) into
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(a) (b)

(* Plot quadratic and cubic Lagrange basis functions *)
lagq={t^2,t,1}.{{1/2,-1,1/2},{-3/2,2,-1/2},{1,0,0}};
Plot[{lagq[[1]],lagq[[2]],lagq[[3]]},{t,0,2},
PlotRange->All, AspectRatio->Automatic, DefaultFont->{"cmr10", 10}];
lagc={t^3,t^2,t,1}.{{-9/2,27/2,-27/2,9/2},{9,-45/2,18,-9/2},
2{-11/2,9,-9/2,1},{1,0,0,0}}
Plot[{lagc[[1]],lagc[[2]],lagc[[3]],lagc[[4]]},{t,0,1},
PlotRange->All, AspectRatio->Automatic, DefaultFont->{"cmr10", 10}];

Figure 3.3: (a) Quadratic and (b) Cubic Lagrange Basis Functions.

appropriate mathematical software and use code similar to that of Figure 3.3 to plot the
basis functions for various values of ∆i.

It should be noted that the basis functions of the Bézier curve (Section 6.2) are more
intuitive and provide easier control of the shape of the curve, which is why Lagrange
interpolation is not popular and is used in special cases only.

3.2.3 Barycentric Lagrange Interpolation

Given the n+1 data points P0 = (x0, y0) through Pn = (xn, yn), the explicit (nonpara-
metric) Lagrange polynomial that interpolates them is LP(x) =

∑n
i=0 yiL

n
i (x), where

Ln
i (x) =

Πn
j �=i(x − xj)

Πn
j �=i(xi − xj)

=
(x − x0)(x − x1) · · · (x − xi−1)(x − xi+1)(x − xn)
(xi − x0) · · · (xi − xi−1)(xi − xi+1) · · · (xi − xn)

.

This representation of the Lagrange polynomial has the following disadvantages:

1. The denominator of Ln
i (x) requires n subtractions and n−1 multiplications, for a

total of O(n) operations. The denominators of the n+1 weights therefore require O(n2)
operations. The numerators also require O(n2) operations, but have to be recomputed
for each value of x.

2. Adding a new point Pn+1 requires the computation of a new weight Ln+1
n+1(x)
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and a recomputation of all the original weights Ln
i (x), because

Ln+1
i (x) = Ln

i (x)
x − xn+1

xi − xn+1
, for i = 0, 1, . . . , n.

3. The computations are numerically unstable. A small change in any of the data
points may cause a large change in LP(x).

Numerical analysts have long believed that these reasons make the Newton poly-
nomial (Section 3.3) more attractive for practical work. However, recent research has
resulted in a new, barycentric form of the LP, that makes Lagrange interpolation more
attractive. This section is based on [Berrut and Trefethen 04].

The barycentric form of the LP is

LP(x) =
n∑

i=0

yiL
n
i (x) =

n∑
i=0

yi

Πn
j �=i(x − xj)

Πn
j �=i(xi − xj)

=
n∑

i=0

yi
wi

x − xi

[
Πn

j=0(x − xj)
]

= Πn
j=0(x − xj)

n∑
i=0

yi
wi

x − xi

= L(x)
n∑

i=0

yi
wi

x − xi
, (3.18)

where
wi =

1
Πn

j �=i(xi − xj)
, for i = 0, 1, . . . , n.

Each weight wi requires O(n) operations, for a total of O(n2), but these weights no
longer depend on x and consequently have to be computed just once! The only quantity
that depends on x is L(x) and it requires only O(n) operations. Also, when a new point
is added, the only operations required are (1) divide each wi by (xi − xn+1) and (2)
compute wn+1. These require O(n) steps.

A better form of Equation (3.18), one that’s more numerically stable, is obtained
when we consider the case yi = 1. If all the data points are of the form (xi, 1), then the
interpolating LP should satisfy LP(x) ≡ 1, which brings Equation (3.18) to the form

1 = L(x)
n∑

i=0

wi

x − xi
, (3.19)

We can now divide Equation (3.18) by Equation (3.19) to obtain

LP(x) =

[
n∑

i=0

yi
wi

x − xi

] / ⎡
⎣ n∑

j=0

wj

x − xj

⎤
⎦ . (3.20)

The weights of Equation (3.20) are

wi
x − xi∑n

j=0 wj/(x − xj)
, i = 0, 1, . . . , n,
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and it’s easy to see that they are barycentric. Also, any common factors in the weights
can now be cancelled out. For example, it can be shown that in the case of data points
that are uniformly distributed in the interval [−1,+1]

P0 = (−1, y0), P1 = (−1 + h, y1), P2 = (−1 + 2h, y2), . . . ,Pn = (+1, yn)

(where h = 2/n), the weights become wi = (−1)n−i
(
n
i

)
/(hnn!). The common factors

are those that do not depend on i. When they are cancelled out, the weights become
the simple expressions

wi = (−1)i

(
n

i

)
.

(This is also true for points that are equidistant in any interval [a, b]. Incidentally, it can
be shown that the case of equidistant data points is ill conditioned and the LP, in any
form, can change its value wildly in response to even small changes in the data points.)

3.3 The Newton Polynomial

The Newton polynomial offers an alternative approach to the problem of polynomial in-
terpolation. The final interpolating polynomial is identical to the LP, but the derivation
is different. It allows the user to easily add more points and thereby provide fine control
over the shape of the curve. We again assume that n + 1 data points P0, P1, . . . ,Pn

are given and are assigned knot values

t0 = 0 < t1 < · · · < tn−1 < tn = 1.

We are looking for a curve expressed by the degree-n parametric polynomial

P(t) =
n∑

i=0

Ni(t)Ai,

where the basis functions Ni(t) depend only on the knot values and not on the data
points. Only the (unknown) coefficients Ai depend on the points. This definition (orig-
inally proposed by Newton) is useful because each coefficient Ai depends only on points
P0 through Pi. If the user decides to add a point Pn+1, only one coefficient, An+1, and
one basis function, Nn+1(t), need be recomputed.

The definition of the basis functions is

N0(t) = 1 and Ni(t) = (t − t0)(t − t1) · · · (t − ti−1), for i = 1, . . . , n.

To calculate the unknown coefficients, we write the equations

P0 = P(t0) = A0,

P1 = P(t1) = A0 + A1(t1 − t0),
P2 = P(t2) = A0 + A1(t2 − t0) + A2(t2 − t0)(t2 − t1),

...
Pn = P(tn) = A0 + · · · .
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These equations don’t have to be solved simultaneously. Each can easily be solved after
all its predecessors have been solved. The solutions are

A0 = P0,

A1 =
P1 − P0

t1 − t0
,

A2 =
P2 − P0 − (P1 − P0)(t2 − t0)

t1 − t0
(t2 − t0)(t2 − t1)

=

P2 − P1

t2 − t1
− P1 − P0

t1 − t0
t2 − t0

.

This obviously gets very complicated quickly, so we use the method of divided differences
to express all the solutions in compact notation. The divided difference of the knots titk
is denoted [titk] and is defined as

[titk] def=
Pi − Pk

ti − tk
.

The solutions can now be expressed as

A0 = P0,

A1 =
P1 − P0

t1 − t0
= [t1t0],

A2 = [t2t1t0] =
[t2t1] − [t1t0]

t2 − t0
,

A3 = [t3t2t1t0] =
[t3t2t1] − [t2t1t0]

t3 − t0
,

...

An = [tn . . . t1t0] =
[tn . . . t1] − [tn−1 . . . t0]

tn − t0
.

� Exercise 3.10: Given the same points and knot values as in Exercise 3.7, calculate the
Newton polynomial that passes through the points.

� Exercise 3.11: The tangent vector to a curve P(t) is the derivative dP(t)
dt , which we

denote by Pt(t). Calculate the tangent vectors to the curve of Exercises 3.7 and 3.10 at
the three points. Also calculate the slopes of the curve at the points.
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3.4 Polynomial Surfaces

The polynomial y =
∑

aix
i is the explicit representation of a curve. Similarly, the

parametric polynomial P(t) =
∑

tiPi and also P(t) =
∑

ai(t)Pi (where ai(t) is a
polynomial in t) are parametric representations of curves. These expressions can be
extended to polynomials in two variables, which represent surfaces. Thus, the double
polynomial z =

∑
i

∑
j aijx

iyj is the explicit representation of a surface patch, because
it yields a z value for any pair of coordinates (x, y). Similarly, the double parametric
polynomial P(u, w) =

∑
i

∑
j uiwjPij is the parametric representation of a surface

patch. For the cubic case (polynomials of degree 3), such a double polynomial can be
expressed compactly in matrix notation

P(u, w) = [u3, u2, u, 1]N

⎡
⎢⎣

P33 P32 P31 P30

P23 P22 P21 P20

P13 P12 P11 P10

P03 P02 P01 P00

⎤
⎥⎦NT

⎡
⎢⎣

w3

w2

w
1

⎤
⎥⎦ . (3.21)

The corresponding surface patch is accordingly referred to as bicubic.

3.5 The Biquadratic Surface Patch

This section introduces the biquadratic surface patch and constructs this simple surface
as a Cartesian product. Given the two quadratic (degree 2) polynomials

Q(u) =
2∑

i=0

fi(u)Qi and R(w) =
2∑

j=0

gj(w)Rj

the biquadratic surface immediately follows from the principle of Cartesian product

P(u, w) =
2∑

i=0

2∑
j=0

fi(u)gj(w)Pij . (3.22)

Different constructions are possible depending on the geometric meaning of the nine
quantities Pij . The following section presents such a construction and Section 4.10
discusses another approach, based on points, tangent vectors, and twist vectors.

3.5.1 Nine Points

Equation (3.14), duplicated below, gives the quadratic standard Lagrange polynomial
that interpolates three given points:

P2std(t) = (t2, t, 1)

⎛
⎝ 2 −4 2

−3 4 −1
1 0 0

⎞
⎠
⎛
⎝P0

P1

P2

⎞
⎠ . (3.14)
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Cartesian product yields the corresponding biquadratic surface

P(u, w) = (u2, u, 1)

⎛
⎝ 2 −4 2

−3 4 −1
1 0 0

⎞
⎠
⎛
⎝P22 P21 P20

P12 P11 P10

P02 P01 P00

⎞
⎠

×
⎛
⎝ 2 −4 2

−3 4 −1
1 0 0

⎞
⎠T ⎛

⎝w2

w
1

⎞
⎠ ,

(3.23)

where the nine quantities Pij are points defining this surface patch. They should be
roughly equally spaced over the surface.

Example: Given the nine points of Figure 3.4a, we compute and draw the bi-
quadratic surface patch defined by them. The surface is shown in Figure 3.4b. The code
is also listed.

0 0.5 1 1.5 2

0
0.5

11.52
−0.5

0

0.5

1

x
x

yy
zz

(a) (b)

(0,0,−.5)

(2,2,0)

(1,1,1)(0,1,0)

(1,0,0)
(2,0,0)

(0,0,0)

(0,2,0) (1,2,0)

<<:Graphics:ParametricPlot3D.m; (* Biquadratic patch for 9 points *)
Clear[T,pnt,M,g1,g2];
T[t_]:={t^2,t,1};
pnt={{{0,0,0},{1,0,0},{2,0,0}}, {{0,1,0},{1,1,1},{2,1,-.5}},
{{0,2,0},{1,2,0},{2,2,0}}};
M={{2,-4,2},{-3,4,-1},{1,0,0}};
g2=Graphics3D[{AbsolutePointSize[4],
Table[Point[pnt[[i,j]]],{i,1,3},{j,1,3}] }];
comb[i_]:=(T[u].M.pnt)[[i]](Transpose[M].T[w])[[i]];
g1=ParametricPlot3D[comb[1]+comb[2]+comb[3], {u,0,1},{w,0,1},
Compiled->False, DisplayFunction->Identity];
Show[g1,g2, ViewPoint->{1.391, -2.776, 0.304}, DefaultFont->{"cmr10", 10},
DisplayFunction->$DisplayFunction]

Figure 3.4: A Biquadratic Surface Patch Example.

It is also possible to construct similar biquadratic surfaces from the expressions
for the uniform and nonuniform quadratic Lagrange polynomials, Equations (3.12)
and (3.13).
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� Exercise 3.12: The geometry vector of Equation (3.14) has point P0 at the top, but
the geometry matrix of Equation (3.23) has point P00 at its bottom-right instead of its
top-left corner. Why is that?

3.6 The Bicubic Surface Patch

The parametric cubic (PC) curve, Equation (3.1), is useful, since it can be used when
either four points, or two points and two tangent vectors, are known. The latter approach
is the topic of Chapter 4. The PC curve can easily be extended to a bicubic surface
patch by means of the Cartesian product.

A PC curve has the form P(t) =
∑3

i=0 ait
i. Two such curves, P(u) and P(w), can

be combined to form the Cartesian product surface patch

P(u, w)

=
3∑

i=0

3∑
j=0

aiju
iwj

= a33u
3w3 + a32u

3w2 + a31u
3w + a30u

3 + a23u
2w3 + a22u

2w2 + a21u
2w + a20u

2

+ a13uw3 + a12uw2 + a11uw + a10u + a03w
3 + a02w

2 + a01w + a00 (3.24)

= (u3, u2, u, 1)

⎛
⎜⎝

a33 a32 a31 a30

a23 a22 a21 a20

a13 a12 a11 a10

a03 a02 a01 a00

⎞
⎟⎠
⎛
⎜⎝

w3

w2

w
1

⎞
⎟⎠ , where 0 ≤ u, w ≤ 1. (3.25)

This is a double cubic polynomial (hence the name bicubic) with 16 terms, where each
of the 16 coefficients aij is a triplet [compare with Equation (3.21)]. When w is set to
a fixed value w0, Equation (3.25) becomes P(u, w0), which is a PC curve. The same is
true for P(u0, w). The conclusion is that curves that lie on this surface in the u or in
the w directions are parametric cubics. The four boundary curves are consequently also
PC curves.

Notice that the shape and location of the surface depend on all 16 coefficients.
Any change in any of them produces a different surface patch. Equation (3.25) is the
algebraic representation of the bicubic patch. In order to use it in practice, the 16
unknown coefficients have to be expressed in terms of known geometrical quantities,
such as points, tangent vectors, or second derivatives.

Two types of bicubic surfaces are discussed here. The first is based on 16 data points
and the second is constructed from four known curves. A third type—defined by four
data points, eight tangent vectors, and four twist vectors—is the topic of Section 4.9.
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Milo. . . glanced curiously at the strange circular room, where sixteen tiny arched
windows corresponded exactly to the sixteen points of the compass. Around the
entire circumference were numbers from zero to three hundred and sixty, marking
the degrees of the circle, and on the floor, walls, tables, chairs, desks, cabinets, and
ceiling were labels showing their heights, widths, depths, and distances to and from
each other.

—Norton Juster, The Phantom Tollbooth.

3.6.1 Sixteen Points

We start with the sixteen given points

P03 P13 P23 P33

P02 P12 P22 P32

P01 P11 P21 P31

P00 P10 P20 P30.

w=0

w=1/3

u=1/3

u

w=2/3
u=2/3

w=1

P20

P10P00

P01

P02

P03

P30

P33

(a) (b)

Figure 3.5: (a) Sixteen Points. (b) Four Curves.

We assume that the points are (roughly) equally spaced on the rectangular surface patch
as shown in Figure 3.5a. We know that the bicubic surface has the form

P(u, w) =
3∑

i=0

3∑
j=0

aiju
iwj , (3.26)

where each of the 16 coefficients aij is a triplet. To calculate the 16 unknown coefficients,
we write 16 equations, each based on one of the given points

P(0, 0) = P00, P(0, 1/3) = P01, P(0, 2/3) = P02, P(0, 1) = P03,
P(1/3, 0) = P10, P(1/3, 1/3) = P11, P(1/3, 2/3) = P12, P(1/3, 1) = P13,
P(2/3, 0) = P20, P(2/3, 1/3) = P21, P(2/3, 2/3) = P22, P(2/3, 1) = P23,
P(1, 0) = P30, P(1, 1/3) = P31, P(1, 2/3) = P32, P(1, 1) = P33.
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After solving, the final expression for the surface patch becomes

P(u, w) = (u3, u2, u, 1)N

⎛
⎜⎝

P00 P10 P20 P30

P01 P11 P21 P31

P02 P12 P22 P32

P03 P13 P23 P33

⎞
⎟⎠NT

⎛
⎜⎝

w3

w2

w
1

⎞
⎟⎠ , (3.27)

where

N =

⎛
⎜⎝

−4.5 13.5 −13.5 4.5
9.0 −22.5 18 −4.5

−5.5 9.0 −4.5 1.0
1.0 0 0 0

⎞
⎟⎠ .

is the basis matrix used to blend four points in a PC [Equation (3.6)]. As mentioned,
this type of surface patch has only limited use because it cannot have a very complex
shape. A larger surface, made up of a number of such patches, can be constructed, but
it is difficult to connect the individual patches smoothly.

(This type of surface is also derived in Section 1.9 as a Cartesian product.)

Example: Given the 16 points listed in Figure 3.6, we compute and plot the bicubic
surface patch defined by them. The figure shows two views of this surface.
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<<:Graphics:ParametricPlot3D.m; (* BiCubic patch for 16 points *)
Clear[T,pnt,M,g1,g2];
T[t_]:={t^3,t^2,t,1};
pnt={{{0,0,0},{1,0,0},{2,0,0},{3,0,0}}, {{0,1,0},{1,1,1},{2,1,-.5},{3,1,0}},
{{0,2,-.5},{1,2,0},{2,2,.5},{3,2,0}},{{0,3,0},{1,3,0},{2,3,0},{3,3,0}}};
M={{-4.5,13.5,-13.5,4.5},{9,-22.5,18,-4.5},{-5.5,9,-4.5,1},{1,0,0,0}};
g2=Graphics3D[{AbsolutePointSize[3],
Table[Point[pnt[[i,j]]],{i,1,4},{j,1,4}] }];
comb[i_]:=(T[u].M.pnt)[[i]](Transpose[M].T[w])[[i]];
g1=ParametricPlot3D[comb[1]+comb[2]+comb[3]+comb[4], {u,0,1},{w,0,1},
Compiled->False, DisplayFunction->Identity];
Show[g1,g2, ViewPoint->{2.752, -0.750, 1.265}, DefaultFont->{"cmr10", 10},
(* ViewPoint->{1.413, 2.605, 0.974} for alt view *)
DisplayFunction->$DisplayFunction]

Figure 3.6: A Bicubic Surface Patch Example.
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Even though this type of surface has limited use in graphics, it can be used for
two-dimensional bicubic polynomial interpolation of points and numbers. Given a set of
three-dimensional points arranged in a two-dimensional grid, the problem is to compute
a weighted sum of the points and employ it to predict the value of a new point at the
center of the grid. It makes sense to assign more weights to points that are closer to the
center, and a natural way to achieve this is to calculate the surface patch P(u, w) that
passes through all the points in the grid and use the value P(0.5, 0.5) as the interpolated
value at the center of the grid.

The MLP image compression method [Salomon 04] is an example of the use of this
approach. The problem is to interpolate the values of a group of 4×4 pixels in an image
in order to predict the value of a pixel at the center of this group. The simple solution
is to calculate the surface patch defined by the 16 pixels and to use the surface point
P(0.5, 0.5) as the interpolated value of the pixel at the center of the group. Substituting
u = 0.5 and w = 0.5 in Equation (3.27) produces

P(0.5, 0.5)
= 0.00390625P00 − 0.0351563P01 − 0.0351563P02 + 0.00390625P03

− 0.0351563P10 + 0.316406P11 + 0.316406P12 − 0.0351563P13

− 0.0351563P20 + 0.316406P21 + 0.316406P22 − 0.0351563P23

+ 0.00390625P30 − 0.0351563P31 − 0.0351563P32 + 0.00390625P33.

The 16 coefficients are the ones used by MLP.

� Exercise 3.13: The center point of the surface is calculated as a weighted sum of the 16
equally-spaced data points (this technique is known as bicubic interpolation). It makes
sense to assign small weights to points located away from the center, but our result
assigns negative weights to eight of the 16 points. Explain the meaning of negative
weights and show what role they play in interpolating the center of the surface.

Readers who find it tedious to follow the details above should compare the way two-
dimensional bicubic polynomial interpolation is presented here to the way it is discussed
by [Press and Flannery 88]; the following quotation is from their page 125: “. . . the for-
mulas that obtain the c’s from the function and derivative values are just a complicated
linear transformation, with coefficients which, having been determined once, in the mists
of numerical history, can be tabulated and forgotten.”

Seated at his disorderly desk, caressed by a counterpane of drifting tobacco haze,
he would pore over the manuscript, crossing out, interpolating, re-arguing, and then
referring to volumes on his shelves.

—Christopher Morley, The Haunted Bookshop (1919).

3.6.2 Four Curves

A variant of the previous method starts with four curves (any curves, not just PCs),
P0(u), P1(u), P2(u), and P3(u), roughly parallel, all going in the u direction (Fig-
ure 3.5b). It is possible to select four points Pi(0), Pi(1/3), Pi(2/3), and Pi(1) on each
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curve Pi(u), for a total of 16 points. The surface patch can then easily be constructed
from Equation (3.27).

Example: The surface of Figure 3.7 is defined by the following four curves (shown
in the diagram in an inset). All go along the x axis, at different y values, and are sine
curves (with different phases) along the z axis.

P0(u) = (u, 0, sin(πu)), P1(u) = (u, 1 + u/10, sin(π(u + 0.1))),
P2(u) = (u, 2, sin(π(u + 0.2))), P3(u) = (u, 3 + u/10, sin(π(u + 0.3))),

The Mathematica code of Figure 3.7 shows how matrix basis is created with the 16
points ⎛

⎜⎝
P0(0) P0(.33) P0(.67) P0(1)
P1(0) P1(.33) P1(.67) P1(1)
P2(0) P2(.33) P2(.67) P2(1)
P3(0) P3(.33) P3(.67) P3(1)

⎞
⎟⎠ .

3.7 Coons Surfaces

This type of surface is based on the pioneering work of Steven Anson Coons at MIT in
the 1960s. His efforts are summarized in [Coons 64] and [Coons 67].

We start with the linear Coons surface, which is a generalization of lofted surfaces.
This type of surface patch is defined by its four boundary curves. All four boundary
curves are given, and none has to be a straight line. Naturally, the boundary curves
have to meet at the corner points, so these points are implicitly known.

Coons decided to search for an expression P(u, w) of the surface that satisfies (1)
it is symmetric in u and w and (2) it is an interpolation of P(u, 0) and P(u, 1) in one
direction and of P(0, w) and P(1, w) in the other direction. He found a surprisingly
simple, two-step solution.

The first step is to construct two lofted surfaces from the two sets of opposite
boundary curves. They are Pa(u, w) = P(0, w)(1 − u) + P(1, w)u and Pb(u, w) =
P(u, 0)(1 − w) + P(u, 1)w.

The second step is to tentatively attempt to create the final surface P(u, w) as
the sum Pa(u, w) + Pb(u, w). It is clear that this is not the expression we are looking
for because it does not converge to the right curves at the boundaries. For u = 0,
for example, we want P(u, w) to converge to boundary curve P(0, w). The sum above,
however, converges to P(0, w)+P(0, 0)(1−w)+P(0, 1)w. We therefore have to subtract
P(0, 0)(1−w)+P(0, 1)w. Similarly, for u = 1, the sum converges to P(1, w)+P(1, 0)(1−
w) + P(1, 1)w, so we have to subtract P(1, 0)(1−w) + P(1, 1)w. For w = 0, we have to
subtract P(0, 0)(1 − u) + P(1, 0)u, and for w = 1, we should subtract P(0, 1)(1 − u) +
P(1, 1)u.

Note that the expressions P(0, 0), P(0, 1), P(1, 0), and P(1, 1) are simply the four
corner points. A better notation for them may be P00, P01, P10, and P11.
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Clear[p0,p1,p2,p3,basis,fourP,g0,g1,g2,g3,g4,g5];
p0[u_]:={u,0,Sin[Pi u]}; p1[u_]:={u,1+u/10,Sin[Pi(u+.1)]};
p2[u_]:={u,2,Sin[Pi(u+.2)]}; p3[u_]:={u,3+u/10,Sin[Pi(u+.3)]};
(* matrix ‘basis’ has dimensions 4x4x3 *)
basis:={{p0[0],p0[.33],p0[.67],p0[1]},{p1[0],p1[.33],p1[.67],p1[1]},
{p2[0],p2[.33],p2[.67],p2[1]},{p3[0],p3[.33],p3[.67],p3[1]}};
fourP:= (* basis matrix for a 4-point curve *)
{{-4.5,13.5,-13.5,4.5},{9,-22.5,18,-4.5},{-5.5,9,-4.5,1},{1,0,0,0}};
prt[i_]:= (* extracts component i from the 3rd dimen of ‘basis‘ *)
basis[[Range[1,4],Range[1,4],i]];
coord[i_]:= (* calc. the 3 parametric components of the surface *)
{u^3,u^2,u,1}.fourP.prt[i].Transpose[fourP].{w^3,w^2,w,1};
g0=ParametricPlot3D[p0[u], {u,0,1}]
g1=ParametricPlot3D[p1[u], {u,0,1}]
g2=ParametricPlot3D[p2[u], {u,0,1}]
g3=ParametricPlot3D[p3[u], {u,0,1}]
g4=Graphics3D[{AbsolutePointSize[4],
Table[Point[basis[[i,j]]],{i,1,4},{j,1,4}]}];
g5=ParametricPlot3D[{coord[1],coord[2],coord[3]},
{u,0,1,.05},{w,0,1,.05}, DisplayFunction->Identity];
Show[g0,g1,g2,g3, ViewPoint->{-2.576, -1.365, 1.718},
Ticks->False, DisplayFunction->$DisplayFunction]
Show[g4,g5, ViewPoint->{-2.576, -1.365, 1.718},
DisplayFunction->$DisplayFunction]

Figure 3.7: A Four-Curve Surface.
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Today, this type of surface is known as the linear Coons surface. Its expression is
P(u, w) = Pa(u, w) + Pb(u, w) − Pab(u, w), where

Pab(u, w) = P00(1 − u)(1 − w) + P01(1 − u)w + P10u(1 − w) + P11uw.

Note that Pa and Pb are lofted surfaces, whereas Pab is a bilinear surface. The final
expression is

P(u, w) = Pa(u, w) + Pb(u, w) − Pab(u, w)

= (1 − u, u)
(

P(0, w)
P(1, w)

)
+ (1 − w, w)

(
P(u, 0)
P(u, 1)

)

− (1 − u, u)
(

P00 P01

P10 P11

)(
1 − w

w

)
(3.28)

= (1 − u, u, 1)

⎛
⎝ −P00 −P01 P(0, w)

−P10 −P11 P(1, w)
P(u, 0) P(u, 1) (0, 0, 0)

⎞
⎠
⎛
⎝ 1 − w

w
1

⎞
⎠ . (3.29)

Equation (3.28) is more useful than Equation (3.29) since it shows how the surface
is defined in terms of the two barycentric pairs (1 − u, u) and (1 − w, w). They are
the blending functions of the linear Coons surface. It turns out that many pairs of
barycentric functions

(
f1(u), f2(u)

)
and

(
g1(w), g2(w)

)
can serve as blending functions,

out of which more general Coons surfaces can be constructed. All that the blending
functions have to satisfy is

f1(0) = 1, f1(1) = 0, f2(0) = 0, f2(1) = 1, f1(u) + f2(u) = 1,
g1(0) = 1, g1(1) = 0, g2(0) = 0, g2(1) = 1, g1(w) + g2(w) = 1.

(3.30)

Example: We select the four (nonpolynomial) boundary curves

Pu0 = (u, 0, sin(πu)), Pu1 = (u, 1, sin(πu)),
P0w = (0, w, sin(πw)), P1w = (1, w, sin(πw)).

Each is one-half of a sine wave. The first two proceed along the x axis, and the other two
go along the y axis. They meet at the four corner points P00 = (0, 0, 0), P01 = (0, 1, 0),
P10 = (1, 0, 0), and P11 = (1, 1, 0). The surface and the Mathematica code that produced
it are shown in Figure 3.8. Note the Simplify command, which displays the final,
simplified expression of the surface {u, w, Sin[Pi u] + Sin[Pi w]}.

Example: Given the four corner points P00 = (−1,−1, 0), P01 = (−1, 1, 0), P10 =
(1,−1, 0), and P11 = (1, 1, 0) (notice that they lie on the xy plane), we calculate the
four boundary curves of a linear Coons surface patch as follows:

1. We select boundary curve P(0, w) as the straight line from P00 to P01:

P(0, w) = P00(1 − w) + P01w = (−1, 2w − 1, 0).
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<<:Graphics:ParametricPlot3D.m;
Clear[p00,p01,p10,p11,pu0,pu1,p0w,p1w];
p00:={0,0,0}; p01:={0,1,0};
p10:={1,0,0}; p11:={1,1,0};
pu0:={u,0,Sin[Pi u]};
pu1:={u,1,Sin[Pi u]};
p0w:={0,w,Sin[Pi w]};
p1w:={1,w,Sin[Pi w]};
Simplify[
{1-u,u}.{p0w,p1w}+{1-w,w}.{pu0,pu1}
-p00(1-u)(1-w)-p01(1-u)w
-p10(1-w)u-p11 u w]
ParametricPlot3D[%,
{u,0,1,.2},{w,0,1,.2},
PlotRange->All,
AspectRatio->Automatic,
RenderAll->False,
Ticks->{{1},{0,1},{0,1}},
Prolog->AbsoluteThickness[.4]]

1

0

1

0

1

Figure 3.8: A Coons Surface.

2. We place the two points (1,−0.5, 0.5) and (1, 0.5,−0.5) between P10 and P11 and
calculate boundary curve P(1, w) as the cubic Lagrange polynomial [Equation (3.17)]
determined by these four points

P(1, w) =
1
2
(w3, w2, w, 1)

⎡
⎢⎣

−9 −27 27 9
18 −45 36 −9

−11 18 −9 2
2 0 0 0

⎤
⎥⎦
⎡
⎢⎣

(1,−1, 0)
(1,−0.5, 0.5)
(1, 0.5,−0.5)

(1, 1, 0)

⎤
⎥⎦

=
(
1, (−4 − w + 27w2 − 18w3)/4, 27(w − 3w2 + 2w3)/4

)
.

3. The single point (0,−1,−0.5) is placed between points P00 and P10 and bound-
ary curve P(u, 0) is calculated as the quadratic Lagrange polynomial [Equation (3.14)]
determined by these three points:

P(u, 0) = (u2, u, 1)

⎡
⎣ 2 −4 2
−3 4 −1

1 0 0

⎤
⎦
⎡
⎣ (−1,−1, 0)

(0,−1,−.5)
(1,−1, 0)

⎤
⎦ = (2u − 1,−1, 2u2 − 2u).

4. Similarly, a new point (0, 1, .5) is placed between points P01 and P11, and
boundary curve P(u, 1) is calculated as the quadratic Lagrange polynomial determined
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by these three points:

P(u, 1) = (u2, u, 1)

⎡
⎣ 2 −4 2
−3 4 −1

1 0 0

⎤
⎦
⎡
⎣ (−1, 1, 0)

(0, 1, .5)
(1, 1, 0)

⎤
⎦ = (2u − 1, 1,−2u2 + 2u).

The four boundary curves and the four corner points now become the linear Coons
surface patch given by Equation (3.28):

P(u, w) = (1 − u, u, 1)

⎡
⎣ −(−1,−1, 0) −(−1, 1, 0)

−(1,−1, 0) −(1, 1, 0)
(2u − 1,−1, 2u2 − 2u) (2u − 1, 1,−2u2 + 2u)

(−1, 2w − 1, 0)
(1, (−4 − w + 27w2 − 18w3)/4, 27(w − 3w2 + 2w3)/4)

0

⎤
⎦
⎡
⎣ 1 − w

w
1

⎤
⎦ .

This is simplified with the help of appropriate software and becomes

P(u, w) =
(−1 + 2u + (1 − u)(1 − w) − u(1 − w) + (−1 + 2u)(1 − w)

+ (1 − u)w − uw + (−1 + 2u)w,

− 1 + (1 − u)(1 − w) + u(1 − w) + 2w − (1 − u)w

− uw + (1 − u)(−1 + 2w) + u(−4 − w + 27w2 − 18w3)/4,

(−2u + 2u2)(1 − w) + (2u − 2u2)w + 27u(w − 3w2 + 2w3)/4
)
.

The surface patch and the eight points involved are shown in Figure 3.9.

3.7.1 Translational Surfaces

Given two curves P(u, 0) and P(0, w) that intersect at a point

P(u, 0)|u=0 = P(0, w)|w=0
def= P00,

it is easy to construct the surface patch created by sliding one of the curves, say, P(u, 0),
along the other one (Figure 3.10).

P00

P(0,w)

P(u,0)

P(u,w0)
x

Figure 3.10: A Translational Surface.
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x

y

z

p00={-1,-1,0}; p01={-1,1,0}; p10={1,-1,0}; p11={1,1,0};
pnts={p00,p01,p10,p11,{1,-1/2,1/2},{1,1/2,-1/2},
{0,-1,-1/2},{0,1,1/2}};
p0w[w_]:={-1,2w-1,0};
p1w[w_]:={1,(-4-w+27w^2-18w^3)/4,27(w-3w^2+2w^3)/4};
pu0[u_]:={2u-1,-1,2u^2-2u};
pu1[u_]:={2u-1,1,-2u^2+2u};
p[u_,w_]:=(1-u)p0w[w]+u p1w[w]+(1-w)pu0[u]+w pu1[u] \
-p00(1-u)(1-w)-p01(1-u)
w-p10 u(1-w)-p11 u w;
g1=Graphics3D[{AbsolutePointSize[5], Table[Point[pnts[[i]]],
{i,1,8}]}];
g2=ParametricPlot3D[p[u,w], {u,0,1},{w,0,1}, Compiled->False,
Ticks->{{-1,1},{-1,1},{-1,1}}, DisplayFunction->Identity];
Show[g1,g2]

Figure 3.9: A Coons Surface Patch and Code.



3.7 Coons Surfaces 99

We fix w at a certain value w0 and compute the vector from the intersection point
P00 to point P(0, w0) (marked with an x in the figure). This vector is the difference
P(0, w0)−P00, implying that any point on the curve P(u, w0) can be obtained by adding
this vector to the corresponding point on curve P(u, 0). The entire curve P(u, w0) is
therefore constructed as the sum P(u, 0)+ [P(0, w0)−P00] for 0 ≤ u ≤ 1. The resulting
translational surface P(u, w) is obtained when w is released and is varied in the interval
[0, 1]

P(u, w) = P(u, 0) + P(0, w) − P00.

There is an interesting relation between the linear Coons surface and translational
surfaces. The Coons patch is constructed from four intersecting curves. Consider a pair
of such curves that intersect at a corner Pij of the Coons patch. We can employ this
pair and the corner to construct a translational surface Pij(u, w). Once we construct
the four translational surfaces for the four corners of the Coons patch, they can be used
to express the entire Coons linear surface patch by a special version of Equation (3.29)

(1 − u, u)
[
P00(u, w) P01(u, w)
P10(u, w) P11(u, w)

] [
1 − w

w

]
.

This version expresses the Coons surface patch as a weighted combination of four trans-
lational surfaces

3.7.2 Higher-Degree Coons Surfaces

One possible pair of blending functions is the cubic Hermite polynomials, functions F1(t)
and F2(t) of Equation (4.6)

H3,0(t) = B3,0(t) + B3,1(t) = (1 − t)3 + 3t(1 − t)2 = 1 + 2t3 − 3t2,

H3,3(t) = B3,2(t) + B3,3(t) = 3t2(1 − t) + t3 = 3t2 − 2t3,
(3.31)

where Bn,i(t) are the Bernstein polynomials, Equation (6.5). The sum H3,0(t)+H3,3(t)
is identically 1 (because the Bernstein polynomials are barycentric), so these functions
can be used to construct the bicubic Coons surface. Its expression is

P(u, w) = (H3,0(u), H3,3(u), 1)

⎡
⎣ −P00 −P01 P(0, w)

−P10 −P11 P(1, w)
P(u, 0) P(u, 1) 0

⎤
⎦
⎡
⎣H3,0(w)

H3,3(w)
1

⎤
⎦ (3.32)

= (1 + 2u3 − 3u2, 3u2 − 2u3, 1)

⎡
⎣ −P00 −P01 P(0, w)

−P10 −P11 P(1, w)
P(u, 0) P(u, 1) (0, 0, 0)

⎤
⎦
⎡
⎣ 1 + 2w3 − 3w2

3w2 − 2w3

1

⎤
⎦ .

One advantage of the bicubic Coons surface patch is that it is especially easy to con-
nect smoothly to other patches of the same type. This is because its blending functions
satisfy

dH3,0(t)
dt

∣∣∣∣
t=0

= 0,
dH3,0(t)

dt

∣∣∣∣
t=1

= 0,
dH3,3(t)

dt

∣∣∣∣
t=0

= 0,
dH3,3(t)

dt

∣∣∣∣
t=1

= 0. (3.33)



100 3. Polynomial Interpolation

Figure 3.11 shows two bicubic Coons surface patches, P(u, w) and Q(u, w), connected
along their boundary curves P(u, 1) and Q(u, 0), respectively. The condition for patch
connection is, of course, P(u, 1) = Q(u, 0). The condition for smooth connection is

∂P(u, w)
∂w

∣∣∣∣
w=1

=
∂Q(u, w)

∂w

∣∣∣∣
w=o

(3.34)

(but see Section 1.10 for other, less restrictive conditions).

Q00

Q01

Q10

Q11

P11

P01

P00

P10
P(1,w

)

P(0,w)

Q(0,w)

Q(1,w)

u

u

Q(u,w)

P(u,w)

P
(u,1)

Q
(u,0)

Figure 3.11: Smooth Connection of Bicubic Coons Surface Patches.

The partial derivatives of P(u, w) are easy to calculate from Equation (3.32). They
are

∂P(u, w)
∂w

∣∣∣∣
w=1

= H3,0(u)
dP(0, w)

dw

∣∣∣∣
w=1

+ H3,3(u)
dP(1, w)

dw

∣∣∣∣
w=1

,

∂Q(u, w)
∂w

∣∣∣∣
w=0

= H3,0(u)
dQ(0, w)

dw

∣∣∣∣
w=0

+ H3,3(u)
dQ(1, w)

dw

∣∣∣∣
w=0

.

(3.35)

[All other terms vanish because the blending functions satisfy Equation (3.33).] The
condition for smooth connection, Equation (3.34), is therefore satisfied if

dP(0, w)
dw

∣∣∣∣
w=1

=
dQ(0, w)

dw

∣∣∣∣
w=0

and
dP(1, w)

dw

∣∣∣∣
w=1

=
dQ(1, w)

dw

∣∣∣∣
w=0

,

or, expressed in words, if the two boundary curves P(0, w) and Q(0, w) on the u = 0
side of the patch connect smoothly, and the same for the two boundary curves P(1, w)
and Q(1, w) on the u = 1 side of the patch.

The reader should now find it easy to appreciate the advantage of the degree-5
Hermite blending functions [functions F1(t) and F2(t) of Equation (4.17)]

H5,0(t) = B5,0(t) + B5,1(t) + B5,2(t) = 1 − 10t3 + 15t4 − 6t5,

H5,5(t) = B5,3(t) + B5,4(t) + B5,5(t) = 10t3 − 15t4 + 6t5.
(3.36)
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They are based on the Bernstein polynomials B5,i(t) hence they satisfy the conditions of
Equation (3.30). They further have the additional property that their first and second
derivatives are zero for t = 0 and for t = 1. The degree-5 Coons surface constructed by
them is

P5(u, w) =
(
H5,0(u), H5,5(u), 1

)⎡⎣ −P00 −P01 P(0, w)
−P10 −P11 P(1, w)
P(u, 0) P(u, 1) 0

⎤
⎦
⎡
⎣H5,0(w)

H5,5(w)
1

⎤
⎦ . (3.37)

Adjacent patches of this type of surface are easy to connect with G2 continuity. All
that’s necessary is to have two pairs of boundary curves P(0, w), Q(0, w) and P(1, w),
Q(1, w), where the two curves of each pair connect with G2 continuity.

3.7.3 The Tangent Matching Coons Surface

The original aim of Coons was to construct a surface patch where all four boundary
curves are specified by the user. Such patches are easy to compute and the conditions
for connecting them smoothly are simple. It is possible to extend the original ideas of
Coons to a surface patch where the user specifies the four boundary curves and also four
functions that describe how (in what direction) this surface approaches its boundaries.
Figure 3.12 illustrates the meaning of this statement. It shows a rectangular surface
patch with some curves of the form P(u, wi). Each of these curves goes from boundary
curve P(0, w) to the opposite boundary curve P(1, w) by varying its parameter u from
0 to 1. Each has a different value of wi. When such a curve reaches its end, it is moving
in a certain, well-defined direction shown in the diagram. The end tangent vectors of
these curves are different and we can imagine a function that yields these tangents as we
move along the boundary curve P(1, w), varying w from 0 to 1. A good name for such
a function is Pu(1, w), where the subscript u indicates that this tangent of the surface
is in the u direction, the index 1 indicates the tangent at the end (u = 1), and the w
indicates that this tangent vector is a function of w.

P00

P10

P11

P01P(0,w)

P(1,w)

P
(u,1)

P(u,0)

P(u,.25)

P
(u,.5)

P
(u,.75)

u=1

w=1

u=0

w=0

Figure 3.12: Tangent Matching in a Coons Surface.
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There are four such functions, namely Pu(0, w), Pu(1, w), Pw(u, 0), and Pw(u, 1).
Assuming that the user provides these functions, as well as the four boundary curves,
our task is to obtain an expression P(u, w) for the surface that will satisfy the following:

1. When we substitute 0 or 1 for u and w in P(u, w), we get the four given corner
points and the four given boundary curves. This condition can be expressed as the eight
constraints

P(0, 0) = P00, P(0, 1) = P01, P(1, 0) = P10, P(1, 1) = P11,

P(0, w), P(1, w), P(u, 0), and P(u, 1) are the given boundary curves.

2. When we substitute 0 or 1 for u and w in the partial first derivatives of P(u, w),
we get the four given tangent functions and their values at the four corner points. This
condition can be expressed as the 12 constraints

∂P(u, w)
∂u

∣∣∣∣
u=0

= Pu(0, w),
∂P(u, w)

∂u

∣∣∣∣
u=1

= Pu(1, w),

∂P(u, w)
∂w

∣∣∣∣
w=0

= Pw(u, 0),
∂P(u, w)

∂w

∣∣∣∣
w=1

= Pw(u, 1),

∂P(u, w)
∂u

∣∣∣∣
u=0,w=0

= Pu(0, 0),
∂P(u, w)

∂u

∣∣∣∣
u=0,w=1

= Pu(0, 1),

∂P(u, w)
∂u

∣∣∣∣
u=1,w=0

= Pu(1, 0),
∂P(u, w)

∂u

∣∣∣∣
u=1,w=1

= Pu(1, 1),

∂P(u, w)
∂w

∣∣∣∣
u=0,w=0

= Pw(0, 0),
∂P(u, w)

∂w

∣∣∣∣
u=0,w=1

= Pw(0, 1).

∂P(u, w)
∂w

∣∣∣∣
u=1,w=0

= Pw(1, 0),
∂P(u, w)

∂w

∣∣∣∣
u=1,w=1

= Pw(1, 1).

3. When we substitute 0 or 1 for u and w in the partial second derivatives of P(u, w),
we get the four first derivatives of the given tangent functions at the four corner points.
This condition can be expressed as the four constraints

∂2P(u, w)
∂u∂w

∣∣∣∣
u=0,w=0

=
dPu(0, w)

dw

∣∣∣∣
w=0

=
dPu(u, 0)

du

∣∣∣∣
u=0

def= Puw(0, 0),

∂2P(u, w)
∂u∂w

∣∣∣∣
u=0,w=1

=
dPu(0, w)

dw

∣∣∣∣
w=1

=
dPu(u, 1)

du

∣∣∣∣
u=0

def= Puw(0, 1),

∂2P(u, w)
∂u∂w

∣∣∣∣
u=1,w=0

=
dPu(1, w)

dw

∣∣∣∣
w=0

=
dPu(u, 0)

du

∣∣∣∣
u=1

def= Puw(1, 0),

∂2P(u, w)
∂u∂w

∣∣∣∣
u=1,w=1

=
dPu(1, w)

dw

∣∣∣∣
w=1

=
dPu(u, 1)

du

∣∣∣∣
u=1

def= Puw(1, 1).

This is a total of 24 constraints. A derivation of this type of surface can be found
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in [Beach 91]. Here, we only quote the final result

P(u, w) =
(
B0(u), B1(u), C0(u), C1(u), 1

)
M

⎡
⎢⎢⎢⎣

B0(w)
B1(w)
C0(w)
C1(w)

1

⎤
⎥⎥⎥⎦ , (3.38)

where M is the 5×5 matrix

M =

⎡
⎢⎢⎢⎣

−P00 −P01 −Pw(0, 0) −Pw(0, 1) P(0, w)
−P10 −P11 −Pw(1, 0) −Pw(1, 1) P(1, w)

−Pu(0, 0) −Pu(0, 1) −Puw(0, 0) −Puw(0, 1) Pu(0, w)
−Pu(1, 0) −Pu(1, 1) −Puw(1, 0) −Puw(1, 1) Pu(1, w)
P(u, 0) P(u, 1) Pw(u, 0) Pw(u, 1) (0, 0, 0)

⎤
⎥⎥⎥⎦ . (3.39)

The two blending functions B0(t) and B1(t) can be any functions satisfying condi-
tions (3.30) and (3.33). Examples are the pairs H3,0(t), H3,3(t) and H5,0(t), H5,5(t) of
Equations (3.31) and (3.36). The two blending functions C0(t) and C1(t) should satisfy

C0(0) = 0, C0(1) = 0, C ′
0(0) = 1, C ′

0(1) = 0,
C1(0) = 0, C1(1) = 0, C ′

1(0) = 0, C ′
1(1) = 1.

One choice is the pair C0(t) = t − 2t2 + t3 and C1(t) = −t2 + t3.
Such a surface patch is difficult to specify. The user has to input the four boundary

curves and four tangent functions, a total of eight functions. The user then has to
calculate the coordinates of the four corner points and the other 12 quantities required
by the matrix of Equation (3.39). The advantage of this type of surface is that once
fully specified, such a surface patch is easy to connect smoothly to other patches of the
same type since the tangents along the boundaries are fully specified by the user.

3.7.4 The Triangular Coons Surface

A triangular surface patch is bounded by three boundary curves and has three corner
points. Such surface patches are handy in situations like the one depicted in Figure 3.15,
where a triangular Coons patch is used to smoothly connect two perpendicular lofted
surface patches. Section 6.23 discusses the triangular Bézier surface patch which is
commonly used in practice. Our approach to constructing the triangular Coons surface
is to merge two of the four corner points and explore the behavior of the resulting surface
patch. We arbitrarily decide to set P01 = P11, which reduces the boundary curve P(u, 1)
to a single point (Figure 3.13). The expression of this triangular surface patch is

P(u, w) =
(
B0(u), B1(u), 1

)⎛⎝ −P00 −P11 P(0, w)
−P10 −P11 P(1, w)
P(u, 0) P11 (0, 0, 0)

⎞
⎠
⎛
⎝B0(w)

B1(w)
1

⎞
⎠ , (3.40)

where the blending functions B0(t), B1(t) can be the pair H3,0 and H3,3, or the pair H5,0

and H5,5, or any other pair of blending functions satisfying Equations (3.30) and (3.33).
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P10

P00

P11

P01

T0

T1

w=0

w=1

P(1,w)

P(0,w)

P(u,1)

P(u,0)

Figure 3.13: A Triangular Coons Surface Patch.

The tangent vector of the surface along the degenerate boundary curve P(u, 1) is
given by Equation (3.35):

∂P(u, w)
∂w

∣∣∣∣
w=1

= B0(u)
dP(0, w)

dw

∣∣∣∣
w=1

+ B1(u)
dP(1, w)

dw

∣∣∣∣
w=1

. (3.41)

Thus, this tangent vector is a linear combination of the two tangents

T0
def=

dP(0, w)
dw

∣∣∣∣
w=1

and T1
def=

dP(1, w)
dw

∣∣∣∣
w=1

,

and therefore lies in the plane defined by them. As u varies from 0 to 1, this tangent
vector swings from T0 to T1 while the curve P(u, 1) stays at the common point P01 =
P11. Once this behavior is grasped, the reader should be able to accept the following
statement: The triangular patch will be well behaved in the vicinity of the common
point if this tangent vector does not reverse its movement while swinging from T0 to
T1. If it starts moving toward T1, then reverses and goes back toward T0, then reverses
again, the surface may have a fold close to the common point. To guarantee this smooth
behavior of the tangent vector, the blending functions B0(t) and B1(t) must satisfy
one more condition, namely B0(t) should be monotonically decreasing in t and B1(t)
should be monotonically increasing in t. The two sets of blending functions H3,0, H3,3

and H5,0, H5,5 satisfy this condition and can therefore be used to construct triangular
Coons surface patches.

Example: Given the three corners P00 = (0, 0, 0), P10 = (2, 0, 0), and P01 =
P11 = (1, 1, 0), we compute and plot the triangular Coons surface patch defined by them.
The first step is to compute the three boundary curves. We assume that the “bottom”
boundary curve P(u, 0) goes from P00 through (1, 0,−1) to P10. We similarly require
that the “left” boundary curve P(0, w) goes from P00 through (0.5, 0.5, 1) to P01 and
the “right” boundary curve P(1, w) goes from P10 through (1.5, 0.5, 1) to P11. All three
curves are computed as standard quadratic Lagrange polynomials from Equation (3.14).
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They become

P(u, 0) = (2u, 0, 4u(u − 1)),
P(0, w) = (w, w, 4w(1 − w)),
P(1, w) = (2 − w, w, 4w(w − 1)).

Figure 3.14 shows two views of this surface and illustrates the downside of this type of
surface. The technique of drawing a surface patch as a wireframe with two families of
curves works well for rectangular surface patches but is unsuitable for triangular patches.
The figure shows how one family of curves converges to the double corner point, thereby
making the wireframe look unusually dense in the vicinity of the point. Section 6.23
presents a better approach to the display of a triangular surface patch as a wireframe.
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<<:Graphics:ParametricPlot3D.m; (* Triangular Coons patch *)
Clear[T,pnt,M,g1,g2];
T[t_]:={1+2t^3-3t^2,3t^2-2t^3,1};
p00={0,0,0}; p10={2,0,0}; p11={1,1,0};
M={{-p00,-p11,{w,w,4w(1-w)}},{-p10,-p11,{2-w,w,4w(1-w)}},
{{2u,0,4u(u-1)},p11,{0,0,0}}};
g2=Graphics3D[{AbsolutePointSize[3],Point[p00], Point[p10], Point[p11] }];
comb[i_]:=(T[u].M)[[i]] T[w][[i]];
g1=ParametricPlot3D[comb[1]+comb[2]+comb[3], {u,0,1},{w,0,1},
Compiled->False, DisplayFunction->Identity];
Show[g1,g2, ViewPoint->{2.933, 0.824, 0.673}, DefaultFont->{"cmr10", 10},
DisplayFunction->$DisplayFunction]
(*ViewPoint->{1.413, 2.605, 0.974} for alt view *)

Figure 3.14: A Triangular Coons Surface Patch Example.

� Exercise 3.14: What happens if the blending functions of the triangular Coons surface
patch do not satisfy the condition of Equation (3.33)?
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“Now, don’t worry, my pet,” Mrs. Whatsit said cheerfully. “We took care of that
before we left. Your mother has had enough to worry her with you and Charles to
cope with, and not knowing about your father, without our adding to her anxieties.
We took a time wrinkle as well as a space wrinkle. It’s very easy to do if you just
know how.”

—Madeleine L’Engle, A Wrinkle in Time (1962).

� Exercise 3.15: Given the four points P00 = (0, 0, 1), P10 = (1, 0, 0), P01 = (0.5, 1, 0),
and P11 = (1, 1, 0), calculate the Coons surface defined by them, assuming straight lines
as boundary curves. What type of a surface is this?

3.7.5 Summarizing Example

The surface shown in Figure 3.15 consists of four (intentionally separated) patches. A
flat bilinear patch B at the top, two lofted patches L and F on both sides, and a
triangular Coons patch C filling up the corner.

The bilinear patch is especially simple since it is defined by its four corner points.
Its expression is

B(u, w) = (0, 1/2, 1)(1 − u)(1 − w) + (1, 1/2, 1)(1 − u)w
+ (0, 3/2, 1)(1 − w)u + (1, 3/2, 1)uw

= (w, 1/2 + u, 1).

The calculation of lofted patch L starts with the two boundary curves L(u, 0) and L(u, 1).
Each is calculated using Hermite interpolation (Chapter 4) since its extreme tangents,
as well as its endpoints, are easy to figure out from the diagram. The boundary curves
are

L(u, 0) = (u3, u2, u, 1)H
(
(0, 0, 0), (0, 1/2, 1), (0, 0, 1), (0, 1, 0)

)T
,

L(u, 1) = (u3, u2, u, 1)H
(
(1, 0, 0), (1, 1/2, 1), (0, 0, 1), (0, 1, 0)

)T
,

where H is the Hermite basis matrix, Equation (4.7). Surface patch L is thus

L(u, w) = L(u, 0)(1 − w) + L(u, 1)w = (w, u2/2, u + u2 − u3).

Lofted patch F is calculated similarly. Its boundary curves are

F(u, 0) = (u3, u2, u, 1)H
(
(3/2, 1/2, 0), (1, 1/2, 1), (0, 0, 1), (−1, 0, 0)

)T
,

F(u, 1) = (u3, u2, u, 1)H
(
(3/2, 3/2, 0), (1, 3/2, 1), (0, 0, 1), (−1, 0, 0)

)T
,

and the patch itself is

F(u, w) = F(u, 0)(1 − w) + F(u, 1)w = ((3 − u2)/2, 1/2 + w, u + u2 − u3).

The triangular Coons surface C has corner points C00 = (1, 0, 0), C10 = (3/2, 1/2, 0),
and C01 = C11 = (1, 1/2, 1). Its bottom boundary curve is

C(u, 0) = (u3, u2, u, 1)H
(
(1, 0, 0), (3/2, 1/2, 0), (1, 0, 0), (0, 1, 0)

)T
,
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F

C

L

B
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w
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b[u_,w_]:={0,1/2,1}(1-u)(1-w)+{1,1/2,1}(1-u)w
+{0,3/2,1}(1-w)u+{1,3/2,1}u w;
H={{2,-2,1,1},{-3,3,-2,-1},{0,0,1,0},{1,0,0,0}};
lu0={u^3,u^2,u,1}.H.{{0,0,0},{0,1/2,1},{0,0,1},{0,1,0}};
lu1={u^3,u^2,u,1}.H.{{1,0,0},{1,1/2,1},{0,0,1},{0,1,0}};
l[u_,w_]:=lu0(1-w)+lu1 w;
fu0={u^3,u^2,u,1}.H.{{3/2,1/2,0},{1,1/2,1},{0,0,1},{-1,0,0}};
fu1={u^3,u^2,u,1}.H.{{3/2,3/2,0},{1,3/2,1},{0,0,1},{-1,0,0}};
f[u_,w_]:=fu0(1-w)+fu1 w;
cu0={u^3,u^2,u,1}.H.{{1,0,0},{3/2,1/2,0},{1,0,0},{0,1,0}};
cu1={1,1/2,1};
c0w={w^3,w^2,w,1}.H.{{1,0,0},{1,1/2,1},{0,0,1},{0,1,0}};
c1w={w^3,w^2,w,1}.H.{{3/2,1/2,0},{1,1/2,1},{0,0,1},{-1,0,0}};
c[u_,w_]:=(1-u)c0w+u c1w+(1-w)cu0+w cu1 \
-(1-u)(1-w){1,0,0}-u(1-w){3/2,1/2,0}-w(1-u)cu1- u w cu1;
g1=ParametricPlot3D[b[u,w], {u,0,1},{w,0,1}]
g2=ParametricPlot3D[l[u,w], {u,0,1},{w,0,1}]
g3=ParametricPlot3D[f[u,w], {u,0,1},{w,0,1}]
g4=ParametricPlot3D[c[u,w], {u,0,1},{w,0,1}]
Show[g1,g2,g3,g4]

Figure 3.15: Bilinear, Lofted, and Coons Surface Patches.
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and its top boundary curve C(u, 1) is the multiple point C01 = C11. The two boundary
curves in the w direction are

C(0, w) = (w3, w2, w, 1)H
(
(1, 0, 0), (3/1, 1/2, 1), (0, 0, 1), (0, 1, 0)

)T
,

C(1, w) = (w3, w2, w, 1)H
(
(3/1, 1/2, 0), (1, 1/2, 1), (0, 0, 1), (−1, 0, 0)

)T
,

and the surface patch itself equals

C(u, w) = (1 − u)C(0, w) + uC(1, w) + (1 − w)C(u, 0) + wC(u, 1)
− (1 − u)(1 − w)1, 0, 0 − u(1 − w)3/2, 1/2, 0 − w(1 − u)C11 − uwC11

= ((2 + u2(−1 + w) − u(−2 + w + w2))/2,

(−u2(−1 + w) − u(−1 + w)w + w2)/2, w + w2 − w3).

3.8 Gordon Surfaces

The Gordon surface is a generalization of Coons surfaces. A linear Coons surface is
fully defined by means of four boundary curves, so its shape cannot be too complex. A
Gordon surface (Figure 3.16) is defined by means of two families of curves, one in each
of the u and w directions. It can have very complex shapes and is a good candidate for
use in applications where realism is important.

P(u,wj)

P(ui,w)

u

w

Figure 3.16: A Gordon Surface.

We denote the curves by P(ui, w), where i = 0, . . . , m, and P(u, wj), j = 0, . . . , n.
The main idea is to find an expression for a surface Pa(u, w) that interpolates the first
family of curves, add it to a similar expression for a surface Pb(u, w) that interpolates
the second family of curves, and subtract a surface Pab(u, w) that represents multiple
contributions from Pa and Pb.

The first surface, Pa(u, w), should interpolate the family of m + 1 curves P(ui, w).
When moving on this surface in the u direction (fixed w), we want to intersect all
m + 1 curves. For a given, fixed w, we therefore need to find a curve that will pass
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through the m + 1 points P(ui, w). A natural (albeit not the only) candidate for such
a curve is our old acquaintance the Lagrange polynomial (Section 3.2). We write it as
Pa(u, w) =

∑m
i=o P(ui, w)Lm

i (u), and it is valid for any value of w. Similarly, we can
write the second surface as the Lagrange polynomial Pb(u, w) =

∑n
j=o P(u, wj)Ln

j (w).
The surface representing multiple contributions is similar to the bilinear part of

Equation (3.28). It is

Pab(u, w) =
m∑

i=o

n∑
j=o

P(ui, wj)Lm
i (u)Ln

j (w),

and the final expression of the Gordon surface is P(u, w) = Pa(u, w) + Pb(u, w) −
Pab(u, w). Note that the (m + 1) × (n + 1) points P(ui, wj) should be located on both
curves. For such a surface to make sense, the curves have to intersect.

A friend comes to you and asks if a particular polynomial p(x) of

degree 25 in F2[x] is irreducible. The friend explains that she

has tried dividing p(x) by every polynomial in F2[x] of degree

from 1 to 18 and has found that p(x) is not divisible by any

of them. She is getting tired of doing all these divisions and

wonders if there’s an easier way to check whether or not p(x) is

irreducible. You surprise your friend with the statement that

she need not do any more work: p(x) is indeed irreducible!

—John Palmieri, Introduction to Modern Algebra for Teachers


