
4
Hermite Interpolation

The curve and surface methods of the preceding chapters are based on points. Using
polynomials, it is easy to construct a parametric curve segment (or surface patch) that
passes through a given one-dimensional array or two-dimensional grid of points.

The downside of these methods is that they are not interactive. If the resulting
curve or surface isn’t the one the designer wants, the only way to modify it is to add
points. Moving the points is not an option because the curve has to pass through the
original data points. Adding points provides some control over the shape of the curve,
but slows down the computations.

A practical, useful curve/surface design algorithm should be interactive. It should
provide user-controlled parameters that modify the shape of the curve in a predictable,
intuitive way. The Hermite interpolation approach, the topic of this chapter, is such a
method.

Hermite interpolation is based on two points P1 and P2 and two tangent vectors
Pt

1 and Pt
2. It computes a curve segment that starts at P1, going in direction Pt

1 and
ends at P2 moving in direction Pt

2. Before delving into the details, the reader may find
it useful to peruse Figure 4.1 where several such curves are shown, with their endpoints
and extreme tangent vectors.

It is obvious that a single Hermite segment can take on many different shapes. It
can even have a cusp and can develop a loop. A complete curve, however, normally
requires several segments connected with C0, C1, or C2 continuities, as illustrated in
Section 1.4.2. Spline methods for constructing such a curve are discussed in Chapter 5.

The method is called Hermite interpolation after Charles Hermite who developed
it and derived its blending functions in the 1870s, as part of his work on approximation
and interpolation. He was not concerned with the computation of curves and surfaces
(and was actually known to hate geometry), and developed his method as a way to
interpolate any mathematical quantity from an initial value to a final value given the
rates of change of the quantity at the start and at the end.
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Figure 4.1: Various Hermite Curve Segments.

[Hermite] had a kind of positive hatred of geometry and once curiously reproached
me with having made a geometrical memoir.

—Jacques Hadamard.

4.1 Interactive Control

Hermite interpolation has an important advantage; it is interactive. If a Hermite curve
segment has a wrong shape, the user can edit it by modifying the tangent vectors.

� Exercise 4.1: In the case of a four-point PC, we can change the shape of the curve by
moving the points. Why then is the four-point method considered noninteractive?

Figure 4.1 illustrates how the shape of the curve depends on the directions of the
tangent vectors. Figure 4.2 shows how the curve can be edited by modifying the mag-
nitudes of those vectors. The figure shows three curves that start in a 45◦ direction and
end up going vertically down. The effect illustrated here is simple. As the magnitude
of the start tangent increases, the curve continues longer in the original direction. This
behavior implies that short tangents produce a curve that changes its direction early
and starts moving straight toward the final point. Such a curve is close to a straight
segment, so we conclude that a long tangent results in a loose curve and a short tangent
produces a tight curve (see also exercise 4.7).

The reason the magnitudes, and not just the directions, of the tangents affect the
shape of the curve is that the three-dimensional Hermite segment is a PC and calculating
a PC involves four coefficients, each a triplet, for a total of 12 unknown numbers. The two
endpoints supply six known quantities and the two tangents should supply the remaining
six. However, if we consider only the direction of a vector and not its magnitude, then
the vectors (1, 0.5, 0.3), (2, 1, 0.6), and (4, 2, 1.2) are all equal. In such a case, only
two of the three vector components are independent and two vectors supply only four
independent quantities.
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Figure 4.2: Effects of Varying the Tangent’s Magnitude.

� Exercise 4.2: Discuss this claim in detail.

A sketch tells as much in a glance as a dozen pages of print.
—Ivan Turgenev, Fathers and Sons (1862).

4.2 The Hermite Curve Segment

The Hermite curve segment is easy to derive. It is a PC curve (a degree-3 polynomial
in t) with four coefficients that depend on the two points and two tangents. The basic
equation of a PC curve is Equation (3.1) duplicated here

P(t) = at3 + bt2 + ct + d = (t3, t2, t, 1)(a,b, c,d)T = T(t)A. (3.1)

This is the algebraic representation of the curve, in which the four coefficients are still
unknown. Once these coefficients are expressed in terms of the known quantities, which
are geometric, the curve will be expressed geometrically.

The tangent vector to a curve P(t) is the derivative dP(t)/dt, which we denote by
Pt(t). The tangent vector of a PC curve is therefore

Pt(t) = 3at2 + 2bt + c. (4.1)

We denote the two given points by P1 and P2 and the two given tangents by Pt
1 and

Pt
2. The four quantities are now used to calculate the geometric representation of the

PC by writing equations that relate the four unknown coefficients a, b, c, and d to
the four known ones, P1, P2, Pt

1, and Pt
2. The equations are P(0) = P1, P(1) = P2,

Pt(0) = Pt
1, and Pt(1) = Pt

2 [compare with Equations (3.2)]. Their explicit forms are

a·03 + b·02 + c·0 + d = P1,

a·13 + b·12 + c·1 + d = P2,

3a·02 + 2b·0 + c = Pt
1,

3a·12 + 2b·1 + c = Pt
2.

(4.2)

They are easy to solve and the solutions are

a = 2P1 − 2P2 + Pt
1 + Pt

2, b = −3P1 + 3P2 − 2Pt
1 −Pt

2, c = Pt
1, d = P1. (4.3)
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Substituting these solutions into Equation (3.1) gives

P(t) = (2P1 − 2P2 + Pt
1 + Pt

2)t
3 + (−3P1 + 3P2 − 2Pt

1 − Pt
2)t

2 + Pt
1t + P1, (4.4)

which, after rearranging, becomes

P(t) = (2t3 − 3t2 + 1)P1 + (−2t3 + 3t2)P2 + (t3 − 2t2 + t)Pt
1 + (t3 − t2)Pt

2

= F1(t)P1 + F2(t)P2 + F3(t)Pt
1 + F4(t)Pt

2

= (F1(t), F2(t), F3(t), F4(t))(P1,P2,Pt
1,P

t
2)

T

= F(t)B, (4.5)

where

F1(t) = (2t3 − 3t2 + 1), F2(t) = (−2t3 + 3t2) = 1 − F1(t),
F3(t) = (t3 − 2t2 + t), F4(t) = (t3 − t2), (4.6)

B is the column (P1,P2,Pt
1,P

t
2)

T , and F(t) is the row (F1(t), F2(t), F3(t), F4(t)). Equa-
tions (4.4) and (4.5) are the geometric representation of the Hermite PC segment.

Functions Fi(t) are the Hermite blending functions. They create any point on the
curve as a blend of the four given quantities. They are shown in Figure 4.3. Note
that F1(t) + F2(t) ≡ 1. These two functions blend points, not tangent vectors, and
should therefore be barycentric. We can also write F1(t) = (t3, t2, t, 1)(2,−3, 0, 1)T and
similarly for F2(t), F3(t), and F4(t). In matrix notation this becomes

F(t) = (t3, t2, t, 1)

⎛
⎜⎝

2 −2 1 1
−3 3 −2 −1

0 0 1 0
1 0 0 0

⎞
⎟⎠ = T(t)H.

The curve can now be written

P(t) = F(t)B = T(t)HB = (t3, t2, t, 1)

⎛
⎜⎝

2 −2 1 1
−3 3 −2 −1

0 0 1 0
1 0 0 0

⎞
⎟⎠
⎛
⎜⎝

P1

P2

Pt
1

Pt
2

⎞
⎟⎠ . (4.7)

Equation (3.1) tells us that P(t) = T(t)A, which implies A = HB. Matrix H is called
the Hermite basis matrix.

The following is Mathematica code to display a single Hermite curve segment.

Clear[T,H,B]; (* Hermite Interpolation *)
T={t^3,t^2,t,1};
H={{2,-2,1,1},{-3,3,-2,-1},{0,0,1,0},{1,0,0,0}};
B={{0,0},{2,1},{1,1},{1,0}};
ParametricPlot[T.H.B,{t,0,1},PlotRange->All]
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� Exercise 4.3: Express the midpoint P(0.5) of a Hermite segment in terms of the two
endpoints and two tangent vectors. Draw a diagram to illustrate the geometric inter-
pretation of the result.

4.2.1 Hermite Blending Functions

The four Hermite blending functions of Equation (4.6) are illustrated graphically in
Figure 4.3. An analysis of these functions is essential for a thorough understanding of
the Hermite interpolation method.

t

F1

F3

F4

F2

f(t)
1

1

Figure 4.3: Hermite Weight Functions

Function F1(t) is the weight assigned to the start point P1. It goes down from
its maximum F1(0) = 1 to F1(1) = 0. This shows why for small values of t the curve
is close to P1 and why P1 has little or no influence on the curve for large values of t.
The opposite is true for F2(t), the weight of the endpoint P2. Function F3(t) is a bit
trickier. It starts at zero, has a maximum at t = 1/3, then drops slowly back to zero.
This behavior is interpreted as follows:

1. For small values of t, function F3(t) has almost no effect. The curve stays close
to P1 regardless of the extreme tangents or anything else.

2. For t values around 1/3, weight F3(t) exerts some influence on the curve. For
these t values, weight F4(t) is small, and the curve is (approximately) the sum of (1)
point F1(t)P1 (large contribution), (2) point F2(t)P2 (small contribution), and (3) vector
F3(t)Pt

1. The sum of a point P = (x, y) and a vector v = (vx, vy) is a point located at
(x + vx, y + vy), which is how weight F3(t) “pulls” the curve in the direction of tangent
vector Pt

1.
3. For large t values, function F3(t) again has almost no effect. The curve moves

closer to P2 because weight F2(t) becomes dominant.

Function F4(t) is interpreted in a similar way. It has almost no effect for small and
for large values of t. Its maximum (actually, minimum, because it is negative) occurs at
t = 2/3, so it affects the curve only in this region. For t values close to 2/3, the curve is
the sum of point F2(t)P2 (large contribution), point F1(t)P1 (small contribution), and
vector −|F4(t)|Pt

2. Because F4(t) is negative, this sum is equivalent to (x − vx, y − vy),
which is why the curve approaches endpoint P2 while moving in direction Pt

2.
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Another important feature of the Hermite weight functions is that F1(t) and F2(t)
are barycentric. They have to be, since they blend two points, and a detailed look at
the four equations (4.2) explains why they are. The first of these equations is simply
d = P1, which reduces the second one to a+b+c+d = P2 or a+b+c = P2−P1. The
third equation solves c, and the fourth equation, combined with the second equation,
is finally used to compute a and b. All this implies that a and b have the form a =
α(P2 − P1) + · · ·, b = β(P2 − P1) + · · ·. The final PC therefore has the form

P(t) = at3 + bt2 + ct + d = (αP2 − αP1 + · · ·)t3 + (βP2 − βP1 + · · ·)t2 + (· · ·)t + P1,

where the ellipsis represent parts that depend only on the tangent vectors, not on the
endpoints. When this is rearranged, the result is

P(t) = (−αt3 − βt2 + 1)P1 + (αt3 + βt2)P2 + (· · ·)Pt
1 + (· · ·)Pt

2,

which is why the coefficients of P1 and P2 add up to unity.

4.2.2 Hermite Derivatives

The concept of blending can be applied to the calculation of the derivatives of a curve, not
just to the curve itself. One way to calculate Pt(t) is to differentiate T(t) = (t3, t2, t, 1).
The result is

Pt(t) = Tt(t)HB = (3t2, 2t, 1, 0)HB.

A more general method is to use the relation P(t) = F(t)B, which implies

Pt(t) = Ft(t)B =
(
F t

1(t), F t
2(t), F t

3(t), F t
4(t)

)
B.

The individual derivatives F t
i (t) can be obtained from Equation (4.6). The results can

be expressed as

Pt(t) = (t3, t2, t, 1)

⎡
⎢⎣

0 0 0 0
6 −6 3 3

−6 6 −4 −2
0 0 1 0

⎤
⎥⎦
⎡
⎢⎣

P1

P2

Pt
1

Pt
2

⎤
⎥⎦ = T(t)HtB. (4.8)

Similarly, the second derivatives of the Hermite segment can be expressed as

Ptt(t) = (t3, t2, t, 1)

⎡
⎢⎣

0 0 0 0
0 0 0 0

12 −12 6 6
−6 6 −4 −2

⎤
⎥⎦
⎡
⎢⎣

P1

P2

Pt
1

Pt
2

⎤
⎥⎦ = T(t)HttB. (4.9)

These expressions make it easy to calculate the first and second derivatives at any point
on a Hermite segment. Similar expressions can be derived for any other curves that are
based on the blending of geometrical quantities.
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� Exercise 4.4: What is Httt?

Example: The two two-dimensional points P1 = (0, 0) and P2 = (1, 0) and the
two tangents Pt

1 = (1, 1) and Pt
2 = (0,−1) are given. The segment should therefore

start at the origin, going in a 45◦ direction, and end at point (1, 0), going straight down.
The calculation of P(t) is straightforward:

P(t) = T(t)A = T(t)HB

= (t3, t2, t, 1)

⎡
⎢⎣

2 −2 1 1
−3 3 −2 −1

0 0 1 0
1 0 0 0

⎤
⎥⎦
⎡
⎢⎣

(0, 0)
(1, 0)
(1, 1)

(0,−1)

⎤
⎥⎦

= (t3, t2, t, 1)

⎡
⎢⎢⎣

2(0, 0) − 2(1, 0) + 1(1, 1) + 1(0,−1)
−3(0, 0) + 3(1, 0) − 2(1, 1) − 1(0,−1)
0(0, 0) + 0(1, 0) + 1(1, 1) + 0(0,−1)
1(0, 0) + 0(1, 0) + 0(1, 1) + 0(0,−1)

⎤
⎥⎥⎦

= (t3, t2, t, 1)

⎡
⎢⎢⎣

(−1, 0)
(1,−1)
(1, 1)
(0, 0)

⎤
⎥⎥⎦

= (−1, 0)t3 + (1,−1)t2 + (1, 1)t. (4.10)

� Exercise 4.5: Use Equation (4.10) to show that the segment really passes through
points (0, 0) and (1, 0). Calculate the tangent vectors and use them to show that the
segment really starts and ends in the right directions.

� Exercise 4.6: Repeat the example above with Pt
1 = (2, 2). The new curve segment

should go through the same points, in the same directions. However, it should continue
longer in the original 45◦ direction, since the size of the new tangent is

√
22 + 22 = 2

√
2,

twice as long as the previous one, which is
√

12 + 12 =
√

2.

� Exercise 4.7: Calculate the Hermite curve for two given points P1 and P2 assuming
that the tangent vectors at the two points are zero (indeterminate). What kind of a
curve is this?

� Exercise 4.8: Use the Hermite method to calculate PC segments for the cases where
the known quantities are as follows:

1. The three tangent vectors at the start, middle, and end of the segment.
2. The two interior points P(1/3) and P(2/3), and the two extreme tangent vectors

Pt(0) and Pt(1).
3. The two extreme points P(0) and P(1), and the two interior tangent vectors

Pt(1/3) and Pt(2/3) (this is similar to case 2, so it’s easy).

Example: Given the two three-dimensional points P1 = (0, 0, 0) and P2 = (1, 1, 1)
and the two tangent vectors Pt

1 = (1, 0, 0) and Pt
2 = (0, 1, 0), the curve segment is the
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simple cubic polynomial shown in Figure 4.4

P(t) = (t3, t2, t, 1)

⎡
⎢⎣

2 −2 1 1
−3 3 −2 −1

0 0 1 0
1 0 0 0

⎤
⎥⎦
⎡
⎢⎣

(0, 0, 0)
(1, 1, 1)
(1, 0, 0)
(0, 1, 0)

⎤
⎥⎦

= (−t3 + t2 + t,−t3 + 2t2,−2t3 + 3t2). (4.11)
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<<:Graphics:ParametricPlot3D.m; (* Hermite 3D example *)
Clear[T,H,B];
T={t^3,t^2,t,1};
H={{2,-2,1,1},{-3,3,-2,-1},{0,0,1,0},{1,0,0,0}};
B={{0,0,0},{1,1,1},{1,0,0},{0,1,0}};
ParametricPlot3D[T.H.B,{t,0,1}, Compiled->False,
ViewPoint->{-0.846, -1.464, 3.997}, DefaultFont->{"cmr10", 10}];
(* ViewPoint->{3.119, -0.019, 0.054} alt view *)

Figure 4.4: A Hermite Curve Segment in Space.

I’m retired—goodbye tension, hello pension!
—Anonymous.

4.2.3 Hermite Segments With Tension

This section shows how to create a Hermite curve segment under tension by employing
a nonuniform Hermite segment. Such a segment is obtained when the parameter t varies
in the interval [0,∆], where ∆ can be any real positive number. The derivation of this
case is similar to the uniform case. Equation (4.2) becomes

a·03 + b·02 + c·0 + d = P1,

a∆3 + b∆2 + c∆ + d = P2,

3a·02 + 2b·0 + c = Pt
1,

3a∆2 + 2b∆ + c = Pt
2,
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with solutions

a =
2(P1 − P2)

∆3
+

Pt
1 + Pt

2

∆2
,

b =
3(P2 − P1)

∆2
− 2Pt

1

∆
− Pt

2

∆
,

c = Pt
1,

d = P1.

The curve segment can now be expressed, similar to Equation (4.7), in the form

Pnu(t) = (t3, t2, t, 1)

⎛
⎜⎜⎝

2
∆3

−2
∆3

1
∆2

1
∆2

−3
∆2

3
∆2

−2
∆

−1
∆

0 0 1 0
1 0 0 0

⎞
⎟⎟⎠
⎛
⎜⎝

P1

P2

Pt
1

Pt
2

⎞
⎟⎠ = T(t)HnuB. (4.12)

It is easy to verify that matrix Hnu reduces to H for ∆ = 1. Figure 4.5 shows a
typical nonuniform Hermite segment drawn three times for ∆ = 0.5, 1, and 2. Careful
examination of the three curves shows that increasing the value of ∆ causes the curve
segment to continue longer in its initial and final directions; it has the same effect as
increasing the magnitudes of the tangent vectors of the uniform Hermite segment. Once
this is grasped, the reader should not be surprised to learn that the nonuniform curve
of Equation (4.12) can also be expressed as

Pnu(t) = (t3, t2, t, 1)

⎛
⎜⎝

2 −2 1 1
−3 3 −2 −1

0 0 1 0
1 0 0 0

⎞
⎟⎠
⎛
⎜⎝

P1

P2

∆Pt
1

∆Pt
2

⎞
⎟⎠ . (4.13)

This shows that the nonuniform Hermite curve segment is a special case of the uni-
form curve. Any nonuniform Hermite curve can also be obtained as a uniform Hermite
curve by adjusting the magnitudes of the tangent vectors. However, varying the mag-
nitudes of both tangent vectors has an important geometric interpretation, it changes
the tension of the curve segment. Imagine that the two endpoints are nails driven into
the page and the curve segment is a rubber string. When the string is pulled at both
sides, its shape approaches a straight line. Figure 4.5 shows how decreasing ∆ results
in a curve with higher tension, so instead of working with nonuniform Hermite seg-
ments, we can consider ∆ a tension parameter. Practical curve methods that create
a spline curve out of individual Hermite segments can add a tension parameter to the
spline, thereby making the method more interactive. An example is the cardinal splines
method (Section 5.4).

4.2.4 PC Conic Approximations

Hermite interpolation can be applied to compute (approximate) conic sections (see Ap-
pendix A for more on conics). Given three points P0, P1, and P2 and a scalar α, we
construct the 4-tuple

(P0,P2, 4α(P1 − P0), 4α(P2 − P1)) , where 0 ≤ α ≤ 1, (4.14)
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Clear[T,H,B]; (* Nonuniform Hermite segments *)
T={t^3,t^2,t,1};
H={{2,-2,1,1},{-3,3,-2,-1},{0,0,1,0},{1,0,0,0}};
B[delta_]:={{0,0},{2,0},delta{2,1},delta{2,-1}};
g1=ParametricPlot[T.H.B[0.5],{t,0,1},Compiled->False,
DisplayFunction->Identity];
g2=ParametricPlot[T.H.B[1],{t,0,1},Compiled->False,
DisplayFunction->Identity];
g3=ParametricPlot[T.H.B[1.5],{t,0,1},Compiled->False,
DisplayFunction->Identity];
Show[g1,g2,g3, DisplayFunction->$DisplayFunction, DefaultFont->{"cmr10", 10}]

Figure 4.5: Three Nonuniform Hermite Segments.

to become our two points and two extreme tangent vectors and compute a segment that
approximates a conic section. We obtain an ellipse when 0 ≤ α < 0.5, a parabola when
α = 0.5, and a hyperbola when 0.5 < α ≤ 1 (see below for a circle).

The tangent vectors at the two ends are Pt(0) = 4α(P1−P0) and Pt(1) = 4α(P2−
P1) (note their directions). The tangent vector halfway is Pt(0.5) = (1.5−α)(P2−P0).
It is parallel to the vector P2 − P0.

The case of the parabola is especially useful and is explicitly shown here. Sub-
stituting α = 0.5 in Equation (4.14) and applying Equation (4.7) yields the Hermite
segment

P(t) = (t3, t2, t, 1)

⎡
⎢⎣

2 −2 1 1
−3 3 −2 −1

0 0 1 0
1 0 0 0

⎤
⎥⎦
⎡
⎢⎣

P0

P2

2(P1 − P0)
2(P2 − P1)

⎤
⎥⎦

= (1 − t)2P0 + 2t(1 − t)P1 + t2P2.

This is the parabola produced in Exercises 4.9 and 6.2.

� Exercise 4.9: We know that any three points P0, P1, and P2 define a unique parabola
(i.e., a triangle defines a parabola). Use Hermite interpolation to calculate the parabola
from P0 to P2 whose start and end tangents go in the directions from P0 to P1 and
from P1 to P2, respectively.
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Hermite interpolation provides a simple way to construct approximate circles and
circular arcs. Figure 4.6a shows how this method is employed to construct a circular arc
of unit radius about the origin. We assume that an arc spanning an angle 2θ is needed
and we place its two endpoints P1 and P2 at locations (cos θ,− sin θ) and (cos θ, sin θ),
respectively. This arc is symmetric about the x axis, but we later show how to rotate it
to have an arbitrary arc. Since a circle is always perpendicular to its radius, we select as
our start and end tangents two vectors that are perpendicular to P1 and P2. They are
Pt

1 = a(sin θ, cos θ) and Pt
2 = a(− sin θ, cos θ), where a is a parameter to be determined.

The Hermite curve segment defined by these points and vectors is, as usual,

P(t) = (t3, t2, t, 1)

⎡
⎢⎣

2 −2 1 1
−3 3 −2 −1

0 0 1 0
1 0 0 0

⎤
⎥⎦
⎡
⎢⎣

(cos θ,− sin θ)
(cos θ, sin θ)
a(sin θ, cos θ)

a(− sin θ, cos θ)

⎤
⎥⎦

= (2t3 − 3t2 + 1)(cos θ,− sin θ) + (−2t3 + 3t2)(cos θ, sin θ)

+ (t3 − 2t2 + t)a(sin θ, cos θ) + (t3 − t2)a(− sin θ, cos θ).

(4.15)

We need an equation in order to determine a and we obtain it by requiring that the
curve segment passes through the circular arc at its center, i.e., P(0.5) = (1, 0). This
produces the equation

(1, 0) = P(0.5) =
(

2
8
− 3

4
+ 1

)
(cos θ,− sin θ) +

(
−2

8
+

3
4

)
(cos θ, sin θ)

+
(

1
8
− 2

4
+

1
2

)
a(sin θ, cos θ) +

(
1
8
− 1

4

)
a(− sin θ, cos θ)

=
1
8
(8 cos θ + 2a sin θ, 0),

whose solution is

a =
4(1 − cos θ)

sin θ
.

The curve can now be written in the form

P(t) = (t3, t2, t, 1)

⎡
⎢⎣

2 −2 1 1
−3 3 −2 −1

0 0 1 0
1 0 0 0

⎤
⎥⎦
⎡
⎢⎢⎢⎣

(cos θ,− sin θ)
(cos θ, sin θ)(

4(1 − cos θ), 4(1−cos θ)
tan θ

)
(
−4(1 − cos θ), 4(1−cos θ)

tan θ

)
⎤
⎥⎥⎥⎦ .

This curve provides an excellent approximation to a circular arc, even for angles θ as
large as 90◦.

� Exercise 4.10: Write Equation (4.15) for θ = 90◦; calculate P(0.25) and the deviation
of the curve from a true circle at this point.

In general, an arc with a unit radius is not symmetric about the x axis but may
look as in Figure 4.6b, where P1 and P2 are any points at a distance of one unit from
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Figure 4.6: Hermite Segment and a Circular Arc.

the origin. All that’s necessary to calculate the arc from Equation (4.15) is the value
of θ (where 2θ is the angle between P1 and P2) and this can be calculated numerically
from the two points using the relations

θ = (θ1 − θ2)/2, cos θ1 = P1 • (1, 0), cos θ2 = P2 • (1, 0),
cos(2θ) = cos(θ1 − θ2) = cos θ1 cos θ2 + sin θ1 sin θ2,

cos θ = ±
√

[1 + cos(2θ)]/2, sin θ =
√

1 − cos2 θ.

4.3 Degree-5 Hermite Interpolation

It is possible to extend the basic idea of Hermite interpolation to polynomials of higher
degree. Naturally, more data is needed in order to calculate such a polynomial, and
this data is provided by the user, normally in the form of higher-order derivatives of the
curve. If the user specifies the two endpoints, the two extreme tangent vectors, and the
two extreme second derivatives, the software can use these six data items to calculate the
six coefficients of a fifth-degree polynomial that interpolates the two points. In general,
if the two endpoints and the first k pairs of derivatives at the extreme points are known
(a total of 2k + 2 items), they can be used to calculate an interpolating polynomial
of degree 2k + 1. These higher-degree polynomials are not as useful as the cubic, but
the fifth-degree polynomial is shown here, as a demonstration of the power of Hermite
interpolation (see also Section 5.3).

Given two endpoints P1 and P2, the values of two tangent vectors Pt
1 and Pt

2, and
of two second derivatives Ptt

1 and Ptt
2 , we can calculate the polynomial

P(t) = at5 + bt4 + ct3 + dt2 + et + f (4.16)
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by writing the six equations

P(0) = at5 + bt4 + ct3 + dt2 + et + f |0 = f = P1,

P(1) = at5 + bt4 + ct3 + dt2 + et + f |1 = a + b + c + d + e + f = P2,

Pt(0) = 5at4 + 4bt3 + 3ct2 + 2dt + e|0 = e = Pt
1,

Pt(1) = 5at4 + 4bt3 + 3ct2 + 2dt + e|1 = 5a + 4b + 3c + 2d + e = Pt
2,

Ptt(0) = 20at3 + 12bt2 + 6ct + 2d|0 = 2d = Ptt
1 ,

Ptt(1) = 20at3 + 12bt2 + 6ct + 2d|1 = 20a + 12b + 6c + 2d = Ptt
2 .

Solving for the six unknown coefficients yields the degree-5 Hermite interpolating poly-
nomial

P(t) = F1(t)P1 + F2(t)P2 + F3(t)Pt
1 + F4(t)Pt

2 + F5(t)Ptt
1 + F6(t)Ptt

2

= (−6t5 + 15t4 − 10t3 + 1)P1 + (6t5 − 15t4 + 10t3)P2

+ (−3t5 + 8t4 − 6t3 + t)Pt
1 + (−3t5 + 7t4 − 4t3)Pt

2

+
(−(1/2)t5 + (3/2)t4 − (3/2)t3 + (1/2)t2

)
Ptt

1 +
(
(1/2)t5 − t4 + (1/2)t3

)
Ptt

2

= (t5, t4, t3, t2, t, 1)

⎡
⎢⎢⎢⎢⎢⎣

−6 6 −3 −3 −1/2 1/2
15 −15 8 7 3/2 −1

−10 10 −6 −4 −3/2 1/2
0 0 0 0 1/2 0
0 0 1 0 0 0
1 0 0 0 0 0

⎤
⎥⎥⎥⎥⎥⎦

⎡
⎢⎢⎢⎢⎢⎢⎣

P1

P2

Pt
1

Pt
2

Ptt
1

Ptt
2

⎤
⎥⎥⎥⎥⎥⎥⎦ . (4.17)

4.4 Controlling the Hermite Segment

The Hermite method is interactive. In general, the points cannot be moved, but the
tangent vectors can be varied. Even if their directions cannot be changed, their magni-
tudes normally are not fixed by the user and can be modified to edit the shape of the
curve segment.

The simple experiment of this section illustrates the amount of editing and con-
trolling that can be achieved just by varying the magnitudes of the tangents. We start
with the Hermite segment defined by the two endpoints P1 = (0, 0) and P2 = (2, 1)
and by the two tangent vectors Pt(0) = (1, 1) and Pt(1) = (1, 0). The curve starts in
the 45◦ direction and ends in a horizontal direction. The curve is easy to calculate. Its
expression is

P(t) = (t3, t2, t, 1)

⎡
⎢⎣

2 −2 1 1
−3 3 −2 −1

0 0 1 0
1 0 0 0

⎤
⎥⎦
⎡
⎢⎣

(0, 0)
(2, 1)
(1, 1)
(1, 0)

⎤
⎥⎦ = −(2, 1)t3+(3, 1)t2+(1, 1)t. (4.18)
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Suppose that the user wants to raise the curve a bit, but also keep the same start
and end directions and endpoints. The only way to edit the curve is to change the
magnitudes of the tangents.

To keep the same directions, the new tangent vectors should have the form (a, a)
and (b, 0), where a and b are two new parameters that have to be computed. To raise
the curve, we go through the following steps:

1. Calculate the midpoint of the curve. This is P(0.5) = (1, 5/8).
2. Decide by how much to raise it. Let’s say we decide to raise the midpoint to

(1, 1).
3. Construct a new curve Q(t), based on the tangents (a, a) and (b, 0).
4. Require that the new curve pass through (1, 1) as its midpoint and determine a

and b from this requirement.
The general form of the new curve is

Q(t) = (t3, t2, t, 1)

⎡
⎢⎣

2 −2 1 1
−3 3 −2 −1

0 0 1 0
1 0 0 0

⎤
⎥⎦
⎡
⎢⎣

(0, 0)
(2, 1)
(a, a)
(b, 0)

⎤
⎥⎦

= (a + b − 4, a − 2)t3 + (−2a − b + 6, 3 − 2a)t2 + (a, a)t. (4.19)

The requirement Q(0.5) = (1, 1) can now be written

(a + b − 4, a − 2)/8 + (−2a − b + 6, 3 − 2a)/4 + (a, a)/2 = (1, 1),

which yields the two equations a+b−4+2(−2a−b+6)+4a = 8 and a−2+2(3−2a)+4a =
8. The solutions are a = b = 4, so the new curve has the form

Q(t) = (4, 2)t3 − (6, 5)t2 + (4, 4)t. (4.20)

A simple check verifies that this curve really starts at (0, 0), ends at (2, 1), has the
extreme tangents (4, 4) and (4, 0), and passes midway through (1, 1).

Raising the midpoint from (1, 5/8) to (1, 1) has completely changed the curve (Equa-
tions (4.18) and (4.20) are different). The new curve starts going in the same 45◦ direc-
tion, then starts going up, reaches point (1, 1), starts going down, and still has “time”
to arrive at point (2, 1) moving horizontally. An interesting question is: How much can
we raise the midpoint? If we raise it from (1, 5/8) to, say, (1, 100), would the curve be
able to change directions, climb up, pass through the new midpoint, dive down, and still
approach (2, 1) moving horizontally?

To check this, let’s assume that we raise the midpoint from (1, 5/8) to (1, 5/8 + α),
where α is a real number. The curve is constrained by Q(0.5) = (1, 5/8 + α), which
yields the equation

(a + b − 4, a − 2)/8 + (−2a − b + 6, 3 − 2a)/4 + (a, a)/2 = (1, 5/8 + α).

The solutions are a = b = 1 + 8α. This means that α can vary without limit. When
α is positive, the curve is pulled up. Negative values of α push the curve down. The
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value α = −1/8 is special. It implies a = b = 0 and results in the curve Q(t) =
(6t2 − 4t3, 3t2 − 2t3). The parameter substitution u = 3t2 − 2t3 yields Q(u) = (2u, u).
This curve is the straight line from (0, 0) to (2, 1). Its midpoint is (1, 1/2).

� Exercise 4.11: Values α < −1/8 result in negative a and b. Can they still be used in
Equation (4.19)?

� Exercise 4.12: How can we coerce the curve of Equation (4.19) to have point (1, 0) as
its midpoint?

Note: Raising the curve is done by increasing the size of the tangent vectors. This
forces the curve to continue longer in the initial and final directions. This is also the
reason why too much raising causes undesirable effects. Figure 4.7 shows the original
curve (α = 0) and the effects of increasing α. For α = 0.4, the curve is raised and still has
a reasonable shape. However, for larger values of α, the curve gets tight, develops a cusp
(a kink), then starts looping on itself. It is easy to see that when α = 5/8, the tangent
vector becomes indefinite at the midpoint (t = 0.5). To show this, we differentiate the
curve of Equation (4.19) to obtain the tangent

Qt(t) = 3(a + b − 4, a − 2)t2 + 2(−2a − b + 6, 3 − 2a)t + (a, a).

From a = b = 1 + 8α, we get

Qt(t) = (48α − 6, 24α − 3)t2 + (6 − 48α, 2 − 32α)t + (1 + 8α, 1 + 8α).

For α = 5/8, this reduces to Qt(t) = (24, 12)t2 − (24, 18)t + (6, 6), so Qt(0.5) = (0, 0).

21
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Figure 4.7: Effects of Changing α.
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� Exercise 4.13: Given the two endpoints P1 = (0, 0) and P2 = (1, 0) and the two
tangent vectors Pt

1 = α(cos θ, sin θ) and Pt
1 = α(cos θ,− sin θ) (Figure 4.8), calculate

the value of α for which the Hermite segment from P1 to P2 has a cusp.

1

x

0

y

θθ

Figure 4.8: Tangents for Exercise 4.13.

The following problem may sometimes occur in practice. Given two endpoints P1

and P2, two unit tangent vectors T1 and T2, and a third point P3, find scale factors α
and β such that the Hermite segment P(t) defined by points P1 and P2 and tangents
αT1 and βT2, respectively, will pass through P3. Also find the value t0 for which
P(t0) = P3.

We start with Equation (4.5), which in our case becomes

P3 = F1(t0)P1 + F2(t0)P2 + F3(t0)αT1 + F4(t0)βT2,

where the Fi(t) are given by Equation (4.6). Since F1(t) + F2(t) ≡ 1 we can write

P3 − P1 = F2(t0)(P2 − P1) + αF3(t0)T1 + βF4(t0)T2.

This can now be written as the three scalar equations

x3 − x1 = F2(t0)(x2 − x1) + αF3(t0)T1x + βF4(t0)T2x,

y3 − y1 = F2(t0)(y2 − y1) + αF3(t0)T1y + βF4(t0)T2y,

z3 − z1 = F2(t0)(z2 − z1) + αF3(t0)T1z + βF4(t0)T2z.

(4.21)

This is a system of three equations in the three unknowns α, β, and t0. In principle,
it should have a unique solution, but solving it is awkward since t0 is included in the
Fi(t0) functions, which are degree-3 polynomials in t0. The first step is to isolate the
two products αF3(t0) and βF4(t0) in the first two equations. This yields(

αF3(t0)
βF4(t0)

)
=
(

T1x T2x

T1y T2y

)−1 [(
x3 − x1

y3 − y1

)
−
(

x2 − x1

y2 − y1

)
F2(t0)

]
.

This result is used in step two to eliminate αF3(t0) and βF4(t0) from the third equation:

z3 − z1 = F2(t0)(z2 − z1) + (T1z, T2z)
(

αF3(t0)

βF4(t0)

)
= F2(t0)(z2 − z1)

+ (T1z, T2z)
(

T1x T2x

T1y T2y

)−1 [(
x3 − x1

y3 − y1

)
−
(

x2 − x1

y2 − y1

)
F2(t0)

]
.
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We now have an equation with the single unknown t0. Step three is to simplify the
result above by using the value F2(t0) = −2t30 + 3t20:∣∣∣∣∣∣

x2 − x1 y2 − y1 z2 − z1

T1x T1y T1z

T2x T2y T2z

∣∣∣∣∣∣ (−2t30 + 3t20) =

∣∣∣∣∣∣
x3 − x1 y3 − y1 z3 − z1

T1x T1y T1z

T2x T2y T2z

∣∣∣∣∣∣ . (4.22)

Step four is to solve Equation (4.22) for t0. Once t0 is known, α and β can be computed
from the other equations. Equation (4.22), however, is cubic in t0, so it may have to
be solved numerically and it may have between zero and three real solutions t0. Any
acceptable solution t0 must be a real number in the range [0, 1] and must result in
positive α and β.

This, of course, is a slow, tedious approach and should only be used as a last resort,
when nothing else works.

4.5 Truncating and Segmenting

Surfaces and solid objects are constructed of curves. When surfaces are joined, clipped,
or intersected, there is sometimes a need to truncate curves. In general, the problem of
truncating a curve starts with a parametric curve P(t) and the two values ti and tj . A
new curve Q(T ) needs be determined, that is identical to the segment P(ti) → P(tj)
(Figure 4.9a) when T varies from 0 to 1. The discussion in this section is limited to
Hermite segments. The endpoints of the new curve are Q(0) = P(ti) and Q(1) = P(tj).
To understand how the two extreme tangent vectors of Q(T ) are calculated, we first
need to discuss reparametrization of parametric curves.

Pi=Q1 Q(T)

Q1(T)

Q2(T)

Q3(T)

Q4(T)P(t)

P(t)

Pj=Q2

t=0

t=1

T=0

T=1

t1

t2

t3
t4=1

t0=0

(a) (b)

Figure 4.9: Truncating and Segmenting.

Reparametrization is the case where a new parameter T (t) is substituted for the
original parameter t. Notice that T (t) is a function of t. One example of reparametriza-
tion is reversing the direction of a curve. It is easy to see that when t varies from 0 to
1, the simple function T = 1 − t varies from 1 to 0. The two curves P(t) and P(1 − t)
have the same shape and location but move in opposite directions. Another example of
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reparametrization is a curve P(t) with a parameter 0 ≤ t ≤ 1 being transformed to a
curve Q(T ) with a parameter a ≤ T ≤ b (Section 5.1.6 has an example). The simplest
relation between T and t is linear, i.e., T = at+ b. We can make two observations about
this relation as follows:

1. At two different points i and j along the curve, the parameters are related by
Ti = ati + b and Tj = atj + b, respectively. Subtracting yields Tj − Ti = a(tj − ti), so
a = (Tj − Ti)/(tj − ti).

2. T = at + b gives dT = a dt.
These two observations can be combined to produce the expression

dt

dT
=

1
a

=
tj − ti
Tj − Ti

. (4.23)

Equation (4.23) is used to calculate the extreme tangent vectors of our new curve Q(T ).
Since it goes from point P(ti) (where T = 0) to point P(tj) (where T = 1), we have
Tj − Ti = 1. The tangent vectors of Q(T ) are therefore

QT (T ) =
dQ(T )

dT
=

dP(t)
dt

dt

dT
= Pt(t) · (tj − ti).

The two extreme tangents are QT (0) = (tj − ti)Pt(ti) and QT (1) = (tj − ti)Pt(tj). The
new curve can now be calculated by

Q(T ) = (T 3, T 2, T, 1)H

⎡
⎢⎣

P(ti)
P(tj)

(tj − ti)Pt(ti)
(tj − ti)Pt(tj)

⎤
⎥⎦ , (4.24)

where H is the Hermite matrix, Equation (4.7).

� Exercise 4.14: Compute the PC segment Q(T ) that results from truncating P(t) =
(−1, 0)t3 + (1,−1)t2 + (1, 1)t [Equation (4.10)] from ti = 0.25 to tj = 0.75.

Segmenting a curve is the problem of calculating several truncations. Assume that
we are given values 0 = t0 < t1 < t2 < · · · < tn = 1, and we want to break a given
curve P(t) into n segments such that segment i will go from point P(ti−1) to point P(ti)
(Figure 4.9b). Equation (4.24) gives segment i as

Qi(T ) = (T 3, T 2, T, 1)H

⎡
⎢⎣

P(ti−1)
P(ti)

(ti − ti−1)Pt(ti−1)
(ti − ti−1)Pt(ti)

⎤
⎥⎦ .

4.5.1 Special and Degenerate Hermite Segments

The following special cases result in Hermite curve segments that are either especially
simple (degenerate) or especially interesting

The case P1 = P2 and Pt
1 = Pt

2 = (0, 0). Equation (4.4) yields P(t) = P1; the
curve degenerates to a point.
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The case Pt
1 = Pt

2 = P2 −P1. The two tangents point in the same direction, from
P1 to P2. Equation (4.4) yields

P(t) =
(
2P1 − 2P2 + 2(P2 − P1)

)
t3 +

(− 3P1 + 3P2 − 3(P2 − P1)
)
t2

+ (P2 − P1)t + P1

= (P2 − P1)t + P1. (4.25)

The curve reduces to a straight segment.

The case P1 = P2. Equation (4.4) yields P(t) = (Pt
1 + Pt

2)t
3 + (−2Pt

1 − Pt
2)t

2 +
Pt

1t + P1. It is easy to see that this curve satisfies P(0) = P(1). It is closed (but is not
a circle).

The case Pt
1 = Pt

2 = (x2 − x1, y2 − y1, 0). Equation (4.4) yields

P(t) =
(
2P1 − 2P2 + 2(x2 − x1, y2 − y1, 0)

)
t3

+
(− 3P1 + 3P2 − 3(x2 − x1, y2 − y1, 0)

)
t2

+ (x2 − x1, y2 − y1, 0)t + (x1, y1, z1)

=
(
x1 + (x2 − x1)t, y1 + (y2 − y1)t, z1 + (z2 − z1)(3t2 − 2t3)

)
.

The x and y coordinates of this curve are linear functions of t, so its tangent vector has
the form (α, β, z(t)). Its x and y components are constants, so it always points in the
same plane. Thus, the curve is planar.

4.6 Hermite Straight Segments

Equation (4.25) shows that the Hermite segment can sometimes degenerate into a
straight segment. This section describes variations on Hermite straight segments. Specif-
ically, we look in detail at the case where the two extreme tangent vectors point in the
same direction, from P1 to P2, but have different magnitudes. We denote them by
Pt

1 = α(P2 − P1) and Pt
2 = β(P2 − P1), where α and β can be any real numbers.

Equation (4.25) is obtained in the special case α = β = 1.
The Hermite segment is expressed as P(t) = F(t)B, where the four Fi(t) functions

are given by Equation (4.6), and B is the geometry vector, which, in our case, has the
form

B =
(
P1,P2, α(P2 − P1), β(P2 − P1)

)T
.

This can be written (since F1(t) + F2(t) ≡ 1) in the form

P(t) = F1(t)P1 + F2(t)P2 + F3(t)α(P2 − P1) + F4(t)β(P2 − P1)
= P1 + (F2(t) + αF3(t) + βF4(t))(P2 − P1)
= P1 +

(
(1 − 2t3 + 3t2) + α(t3 − 2t2 + t) + β(t3 − t2)

)
(P2 − P1)

= P1 +
(
(α + β − 2)t3 − (2α + β − 3)t2 + αt

)
(P2 − P1). (4.26)
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This has the form P(t) = P1 +G(t)(P2−P1), which shows that all the points of P(t) lie
on the straight line that passes through P1 and has the tangent vector (P2 −P1). The
precise form of P(t) depends on the values and signs of α and β. The remainder of this
section analyzes several cases in detail. The remaining cases can be analyzed similarly.
See also Exercise 6.7.

Case 1 is when α = β = 1, which leads to Equation (4.25), a straight segment from
P1 to P2.

Case 2 is when α = β = 0. Equation (4.26) reduces in this case to

P(t) = P1 + (−2t3 + 3t2)(P2 − P1), (4.27)

or P(T ) = P1 + T (P2 − P1), where T = −2t3 + 3t2. This also is a straight segment
from P1 to P2 but moving at a variable speed. It accelerates up to point P(0.5), then
decelerates.

� Exercise 4.15: Explain why this is so.

Case 3 is when α = β = −1. Equation (4.26) becomes in this case

P(t) = P1 + (−4t3 + 6t2 − t)(P2 − P1), (4.28)

which is the curve shown in Figure 4.10a. It consists of three straight segments, but
we can also think of it as a straight line that goes from P1 backward to a certain point
P(i), then reverses direction, passes points P1 and P2, stops at point P(j), reverses
direction again, and ends at P2. We can calculate i and j by calculating the tangent
of Equation (4.28) and equating it to zero. The tangent vector is Pt(t) = (−12t2 +
12t − 1)(P2 − P1) and the roots of the quadratic equation −12t2 + 12t − 1 = 0 are
(approximately) 0.083 and 0.92.

t=0t=0t=0

t=.08 t=.92

t=1

t=1

t=1

t=1/3

t=1/2

t=.1 t=.8

(a) (b) (c)

Figure 4.10: Straight Hermite Segments.

Case 4 is when α > 0, β > 0. As an example, we try the values α = 2 and β = 4.
Equation (4.26) becomes in this case

P(t) = P1 + (4t3 − 5t2 + 2t)(P2 − P1). (4.29)

This curve also consists of three straight segments (Figure 4.10b), but it behaves dif-
ferently. It goes forward from P1 to a certain point P(i), then reverses direction, goes
to point P(j), reverses direction again, and continues to P2. We can calculate i and
j by calculating the tangent of Equation (4.29) and equating it to zero. The tangent
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vector is Pt(t) = (12t2 − 10t + 2)(P2 − P1) and the roots of the quadratic equation
12t2 − 10t + 2 = 0 are 1/3 and 1/2.

Case 5 is when α < 0, β < 0. As an example, we try the values α = −2 and β = −4.
Equation (4.26) becomes in this case

P(t) = P1 + (−8t3 + 11t2 − 2t)(P2 − P1). (4.30)

This curve again consists of three straight segments as in case 3, but points i and j are
different (Figure 4.10c). The tangent of Equation (4.30) is Pt(t) = (−24t2+22t−2)(P2−
P1), and the roots of the quadratic equation −24t2 + 22t − 2 = 0 are (approximately)
0.1 and 0.8.

Table 4.11 summarizes the nine possible cases of Equation (4.26).

Case 1 2 3 4 5 6 7 8 9
α 1 0 −1 > 0 < 0 > 0 < 0 ≤ 0 ≥ 0
β 1 0 −1 > 0 < 0 ≤ 0 ≥ 0 > 0 < 0

Table 4.11: Nine Cases of Straight Hermite Segments.

4.7 A Variant Hermite Segment

The Hermite method starts with four known quantities, two points and two tangents.
These are used to set and solve four equations, so four unknowns can be calculated.
A variation on this technique is the case where two points and just one tangent are
given. These constitute only three quantities, so only three equations can be set and
only three unknowns solved and determined. Thus, this variant curve can be only a
quadratic (degree-2) polynomial. As usual, we denote the points by P1 and P2 and
the tangent vector (which is assumed to be the start tangent, but can also be the end
tangent) by Pt

1. The quadratic polynomial is P(t) = at2 + bt + c, its tangent vector
is Pt(t) = 2at + b, and we can immediately set up the three equations P(0) = P1,
P(1) = P2, and Pt(0) = Pt

1 whose explicit forms are

a·02 + b·0 + c = P1,

a·12 + b·1 + c = P2,

2a·0 + b = Pt
1.

(4.31)

The solutions are c = P1, b = Pt
1, and a = P2 − b − c = P2 − P1 − Pt

1.
The quadratic polynomial is therefore

P(t) = (P2 − P1 − Pt
1)t

2 + Pt
1t + P1

= (−t2 + 1)P1 + t2P2 + (−t2 + t)Pt
1

= (t2, t, 1)

⎛
⎝−1 1 −1

0 0 1
1 0 0

⎞
⎠
⎛
⎝P1

P2

Pt
1

⎞
⎠ .

(4.32)
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Its tangent vector is Pt(t) = 2at + b = 2(P2 − P1 − Pt
1)t + Pt

1, which implies that the
end tangent is

Pt(1) = 2(P2 − P1) − Pt
1. (4.33)

Figure 4.12 shows the simple geometric interpretation of this.

P1

P2
Pt

1

Pt
2

P1
P2

−

P
t 1

−

P1
P2

−
2(

)

Figure 4.12: The Geometric Interpretation of the End Tangent.

� Exercise 4.16: Derive the nonuniform version of this quadratic polynomial assuming
that the parameter t varies from zero to some positive number ∆.

� Exercise 4.17: Calculate a quadratic parametric polynomial P(t) = at2 + bt + c as-
suming that only the two extreme tangent vectors Pt(0) and Pt(1) are given.

� Exercise 4.18: Use your curve design skills to obtain the cubic polynomial equation of
the curve segment P(t) defined by the following three conditions: (1) The two endpoints
P1 and P2 are given, (2) the end tangent Pt

2 is given, and (3) the start second derivative
Ptt(0) is zero.

4.8 Ferguson Surfaces

A Ferguson surface patch [Ferguson 64] is an extension of the Hermite curve segment.
The patch is specified by its four corner points Pij and by two tangent vectors Pu

ij and
Pw

ij in the u and w directions at each point; for a total of 12 three-dimensional quantities.
Figure 4.13a,b illustrates the notation used. We start by deriving the expressions of the
“bottom” and “top” boundary curves P(u, 0) and P(u, 1). Equation (4.5) yields

P(u, 0) = F1(u)P00 + F2(u)P10 + F3(u)Pu
00 + F4(u)Pu

10,

P(u, 1) = F1(u)P01 + F2(u)P11 + F3(u)Pu
01 + F4(u)Pu

11,

where functions Fi(u) are given by Equation (4.6).
We now concentrate on the two tangent vectors Pw

00 and Pw
10. The points at the

tips of those vectors are labeled Q00 and Q10, respectively and we derive the expression
of the Hermite segment Q(u, 0) connecting these points by assuming that its tangents in
the u direction are identical to those of boundary curve P(u, 0). Similarly, we denote the
two points at the tips of tangents Pw

01 and Pw
11 by Q01 and Q11, respectively and derive

the expression of the Hermite segment Q(u, 1) connecting them. The two segments are

Q(u, 0) = F1(u)Q00 + F2(u)Q10 + F3(u)Pu
00 + F4(u)Pu

10,

Q(u, 1) = F1(u)Q01 + F2(u)Q11 + F3(u)Pu
01 + F4(u)Pu

11.
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)
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Figure 4.13: Ferguson Surface Patches.

Once the two curves P(u, 0) and Q(u, 0) are known, we can express the tangent vector
Pw

u0 in the w direction for any u as the difference

Pw
u0 = Q(u, 0)−P(u, 0) = F1(u)[Q00−P00]+F2(u)[Q10−P10] = F1(u)Pw

00 +F2(u)Pw
10,

and similarly
Pw

u1 = Q(u, 1) − P(u, 1) = F1(u)Pw
01 + F2(u)Pw

11.

We now fix u at a certain value U and examine point P(U, 0) on boundary curve P(u, 0)
and point P(U, 1) on boundary curve P(u, 1). The tangent in the w direction at point
P(U, 0) is the difference of points Q(U, 0)−P(U, 0) and the tangent in the w direction at
point P(U, 1) is the difference of points Q(U, 1)−P(U, 1). Once the two points P(U, 0)
and P(U, 1) and the two tangents Q(U, 0) − P(U, 0) and Q(U, 1) − P(U, 1) are known,
we can easily construct the Hermite segment defined by them. When u is released, this
segment becomes the expression of the entire surface patch. The expression is

P(u, w) = F1(w)P(u, 0) + F2(w)P(u, 1) + F3(w)Pw(u, 0) + F4(w)Pw(u, 1)
= F1(w)P(u, 0) + F2(w)P(u, 1) + F3(w)

[
F1(u)Pw

00 + F2(u)Pw
10

]
+ F4(u)

[
F1(u)Pw

01 + F2(u)Pw
11

]
= F1(w)

[
F1(u)P00 + F2(u)P10 + F3(u)Pu

00 + F4(u)Pu
10

]
+ F2(w)

[
F1(u)P01 + F2(u)P11 + F3(u)Pu

01 + F4(u)Pu
11

]
+ F3(w)

[
F1(u)Pw

00 + F2(u)Pw
10

]
+ F4(w)

[
F1(u)Pw

01 + F2(u)Pw
11

]
=
(
F1(u), F2(u), F3(u), F4(u)

)⎡⎢⎣
P00 P01 Pw

00 Pw
01

P10 P11 Pw
10 Pw

11

Pu
00 Pu

01 0 0
Pu

10 Pu
11 0 0

⎤
⎥⎦
⎡
⎢⎣

F1(w)
F2(w)
F3(w)
F4(w)

⎤
⎥⎦ .(4.34)

Notice that even though we started with the two boundary curves P(u, 0) and
P(u, 1) the final expression, Equation (4.34), is symmetric in u and w. It can also be
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derived by starting with the two boundary curves P(0, w) and P(1, w) (Figure 4.13b)
and going through a similar process.

Notice that the Ferguson surface is very similar to the bicubic Hermite patch of
Section 4.9, but is less flexible because it has zeros instead of the more general twist
vectors.

The Ferguson surface patch is easy to connect smoothly with other patches of the
same type. Given a set of points arranged roughly in a two-dimensional grid, with two
tangent vectors for each point, as in Figure 4.14, Equation (4.34) can be applied to each
set of four points and eight tangents to construct a surface patch and the patches will
connect smoothly because the end tangents of a patch are the start tangents of the next
patch.

As an example, Figure 4.15 shows two patches, one based on corner points P00,
P01, P10, and P11, and the other based on P10, P11, P20, and P21. The 12 tangent
vectors (two per point) are shown in the code with the figure. It’s easy to see how the
two patches (intentionally slightly separated in the figure) are connected smoothly.

4.9 Bicubic Hermite Patch

The spline methods covered in Chapter 5 are based on Hermite curve segments, which
suggests that Hermite interpolation is useful. The Ferguson surface patch of Section 4.8
is an attempt to extend the technique of Hermite interpolation to surface patches. This
section describes a more general extension. A single Hermite segment is a cubic polyno-
mial, so we expect the Hermite surface patch, which is an extension of the Hermite curve
segment, to be a bicubic surface. Its expression should be given by Equation (3.27),
where matrix H [Equation (4.7)] should be substituted for N, and the 16 quantities
should be points and tangent vectors.

The basic idea is to ask the user to specify the four boundary curves as Hermite
segments. Thus, the user should specify two points and two tangent vectors for each
curve, for a total of eight points and eight tangents. For the four curves to form a surface,
they have to meet at the four corners, so the eight points are reduced to four points.
Four points and eight tangents provide 12 of the 16 quantities needed to construct the
surface. Four more quantities are needed in order to calculate the 16 unknowns of
Equation (3.26), and they are selected as the second derivatives of the surface at the
corner points. They are called twist vectors.

To calculate the surface, 16 equations are written, expressing the way we require
the surface to behave. For example, we want P(u, w) to approach the corner point P01

when u → 0 and w → 1. We also want P(0, w) to equal the PC between points P00 and
P01. The equations are obtained from the 16 terms of Equation (3.24)

P00 = a00,

P10 = a30 + a20 + a10 + a00,

P01 = a03 + a02 + a01 + a00,

P11 = a33 + a32 + a31 + a30 + a23 + a22 + a21 + a20

+ a13 + a12 + a11 + a10 + a03 + a02 + a01 + a00,
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Figure 4.14: A Grid for a Ferguson Surface.
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<<:Graphics:ParametricPlot3D.m; (* Two Ferguson patches *)
F1[t_]:=2t^3-3t^2+1; F2[t_]:=-2t^3+3t^2;
F3[t_]:=t^3-2t^2+t; F4[t_]:=t^3-t^2;
F[t_]:={F1[t],F2[t],F3[t],F4[t]};
p00={0,0,0}; p01={0,1,0}; pu00={1,0,1}; pw00={0,1,1}; pu01={1,0,1}; pw01={0,1,0};
p10={1,0,0}; p11={1,1,0}; pu10={1,0,-1}; pw10={0,1,0}; pu11={1,0,-1}; pw11={0,1,-1};
p20={2,0,0}; p21={2,1,0}; pu20={1,0,0}; pw20={0,1,0}; pu21={1,0,0}; pw21={0,1,0};
H={{p00,p01,pw00,pw01},{p10,p11,pw10,pw11},
{pu00,pu01,{0,0,0},{0,0,0}},{pu10,pu11,{0,0,0},{0,0,0}}};
prt[i_]:=H[[Range[1,4],Range[1,4],i]];
g1=ParametricPlot3D[{F[u].prt[1].F[w],F[u].prt[2].F[w],F[u].prt[3].F[w]},
{u,0,.98,.05},{w,0,1,.05}, DisplayFunction->Identity];

H={{p10,p11,pw10,pw11},{p20,p21,pw20,pw21},
{pu10,pu11,{0,0,0},{0,0,0}},{pu20,pu21,{0,0,0},{0,0,0}}};
g2=ParametricPlot3D[{F[u].prt[1].F[w],F[u].prt[2].F[w],F[u].prt[3].F[w]},
{u,0.05,1,.05},{w,0,1,.05}, DisplayFunction->Identity];

g3=Graphics3D[{AbsolutePointSize[4],
Point[p00],Point[p01],Point[p10],Point[p11],Point[p20],Point[p21]}];

Show[g1,g2,g3, ViewPoint->{0.322, 1.342, 0.506},
DefaultFont->{"cmr10", 10}, DisplayFunction->$DisplayFunction]

Figure 4.15: Two Ferguson Surface Patches.
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Pu
00 = a10,

Pw
00 = a01,

Pu
10 = 3a30 + 2a20 + a10,

Pw
10 = a31 + a21 + a11 + a01,

Pu
01 = a13 + a12 + a11 + a10,

Pw
01 = 3a03 + 2a02 + a01,

Pu
11 = 3a33 + 3a32 + 3a31 + 3a30 + 2a23 + 2a22 + 2a21

+ 2a20 + a13 + a12 + a11 + a10,

Pw
11 = 3a33 + 2a32 + a31 + 3a23 + 2a22 + a21 + 3a13

+ 2a12 + a11 + 3a03 + 2a02 + a01,

Puw
00 = a11,

Puw
10 = 3a31 + 2a21 + a11,

Puw
01 = 3a13 + 2a12 + a11,

Puw
11 = 9a33 + 6a32 + 3a31 + 6a23 + 4a22

+ 2a21 + 3a13 + 2a12 + a11.

The solutions express the 16 coefficients aij in terms of the four corner points, eight
tangent vectors, and four twist vectors:

a01 = Pw
00,

a02 = −2Pw
00 − Pw

01 − 3P00 + 3P01,

a03 = Pw
00 + Pw

01 + 2P00 − 2P01,

a10 = Pu
00,

a11 = Puw
00 ,

a12 = −2Puw
00 − Puw

01 − 3Pu
00 + 3Pu

01,

a13 = Puw
00 + Puw

01 + 2Pu
00 − 2Pu

01,

a20 = −2Pu
00 − Pu

10 − 3P00 + 3P10,

a21 = −2Puw
00 − Puw

10 − 3Pw
00 + 3Pw

10,

a22 = 4Puw
00 + 2Puw

01 + 2Puw
10 + Puw

11 + 6Pu
00 − 6Pu

01 + 3Pu
10 − 3Pu

11 + 6Pw
00

+ 3Pw
01 − 6Pw

10 − 3Pw
11 + 9P00 − 9P01 − 9P10 + 9P11,

a23 = −2Puw
00 − 2Puw

01 − Puw
10 − Puw

11 − 4Pu
00 + 4Pu

01 − 2Pu
10 + 2Pu

11 − 3Pw
00

− 3Pw
01 + 3Pw

10 + 3Pw
11 − 6P00 + 6P01 + 6P10 − 6P11,

a30 = Pu
00 + Pu

10 + 2P00 − 2P10,

a31 = Puw
00 + Puw

10 + 2Pw
00 − 2Pw

10,

a32 = −2Puw
00 − Puw

01 − 2Puw
10 − Puw

11 − 3Pu
00 + 3Pu

01 − 3Pu
10 + 3Pu

11 − 4Pw
00

− 2Pw
01 + 4Pw

10 + 2Pw
11 − 6P00 + 6P01 + 6P10 − 6P11,

a33 = Puw
00 + Puw

01 + Puw
10 + Puw

11 + 2Pu
00 − 2Pu

01 + 2Pu
10 − 2Pu

11 + 2Pw
00 + 2Pw

01

− 2Pw
10 − 2Pw

11 + 4P00 − 4P01 − 4P10 + 4P11.
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When Equation (3.26) is written in terms of these values, it becomes the compact
expression

P(u, w) = (u3, u2, u, 1)H

⎡
⎢⎣

P00 P01 Pw
00 Pw

01

P10 P11 Pw
10 Pw

11

Pu
00 Pu

01 Puw
00 Puw

01

Pu
10 Pu

11 Puw
10 Puw

11

⎤
⎥⎦HT

⎡
⎢⎣

w3

w2

w
1

⎤
⎥⎦

= UHBHT WT ,

(4.35)

where H is the Hermite matrix, Equation (4.7). The quantities Puw
ij are the twist

vectors. They are usually not known in advance but the next section describes a way to
estimate them.

4.10 Biquadratic Hermite Patch

Section 4.7 discusses a variation on the Hermite segment where two points P1 and P2 and
just one tangent vector Pt

1 are known. The curve segment is given by Equation (4.32),
duplicated here

P(t) = (P2 − P1 − Pt
1)t

2 + Pt
1t + P1

= (−t2 + 1)P1 + t2P2 + (−t2 + t)Pt
1

= (t2, t, 1)

⎛
⎝−1 1 −1

0 0 1
1 0 0

⎞
⎠
⎛
⎝P1

P2

Pt
1

⎞
⎠ .

(4.32)

If we denote the curve segment by P(t) = at2 + bt + c, then its tangent vector has the
form Pt(t) = 2at + b = 2(P2 − P1 − Pt

1)t + Pt
1, which implies that the end tangent is

Pt(1) = 2(P2−P1)−Pt
1. The biquadratic surface constructed as the Cartesian product

of two such curves is given by

P(u, w) = (u2, u, 1)

⎛
⎝−1 1 −1

0 0 1
1 0 0

⎞
⎠
⎛
⎝Q22 Q21 Q20

Q12 Q11 Q10

Q02 Q01 Q00

⎞
⎠
⎛
⎝−1 0 1

1 0 0
−1 1 0

⎞
⎠
⎛
⎝w2

w
1

⎞
⎠ ,

(4.36)
where the nine quantities Qij still have to be assigned geometric meaning. This is done
by computing P(u, w) and its partial derivatives for certain values of the parameters.
Simple experimentation yields

P(0, 0) = Q22, P(0, 1) = Q21, P(1, 0) = Q12, P(1, 1) = Q11,

Pu(0, 0) = Q02, Pu(0, 1) = Q01, Pw(0, 0) = Q20, Pw(1, 0) = Q10,

Puw(0, 0) = Q00.

This shows that the surface can be expressed as

P(u, w) = (u2, u, 1)

⎛
⎝−1 1 −1

0 0 1
1 0 0

⎞
⎠
⎛
⎝ P(0, 0) P(0, 1) Pw(0, 0)

P(1, 0) P(1, 1) Pw(1, 0)
Pu(0, 0) Pu(0, 1) Puw(0, 0)

⎞
⎠
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×
⎛
⎝−1 0 1

1 0 0
−1 1 0

⎞
⎠
⎛
⎝w2

w
1

⎞
⎠ (4.37)

= (u2, u, 1)

⎛
⎝−1 1 −1

0 0 1
1 0 0

⎞
⎠
⎛
⎝P00 P01 Pw

00

P10 P11 Pw
10

Pu
00 Pu

01 Puw
00

⎞
⎠
⎛
⎝−1 0 1

1 0 0
−1 1 0

⎞
⎠
⎛
⎝w2

w
1

⎞
⎠ .

Thus, this type of surface is defined by the following nine quantities:
The four corner points P00, P01, P10, and P11.
The two tangents in the u direction at points P00 and P01.
The two tangents in the w direction at points P00 and P10.
The second derivative at point P00.
The first eight quantities have simple geometric meaning, but the second derivative,

which is a twist vector, has no simple geometrical interpretation. It can simply be set
to zero or it can be estimated. Several methods exist to estimate the twist vectors of
biquadratic and bicubic surface patches. The simple method described here is useful
when a larger surface is constructed out of several such patches. We start by looking at
the twist vector of a bilinear surface. Differentiating Equation (2.8) twice, with respect
to u and w, produces the simple, constant expression

Puw(u, w) = P00 − P01 − P10 + P11 = (P00 − P01) + (P11 − P10), (4.38)

that’s a vector and is also independent of both parameters. This expression is now
employed to estimate the twist vectors of all the patches that constitute a biquadratic
or a bicubic surface. Figure 4.16a is an idealized diagram of such a surface, showing
some individual patches. The first step is to apply Equation (4.38) to calculate a vector
Ti for patch i from the four corner points of the patch. Vectors Ti are then averaged
to provide estimates for the four twist vectors of each patch.

The principle is as follows: A corner point Pi with one index i belongs to just one
patch (patch i) and is one of the four corner points of the entire surface (P1, P4, P9,
and Pc of Figure 4.16a). The twist vector estimated for such a point is Ti, the vector
previously calculated for patch i. A point Pij with two indexes ij is common to two
patches i and j and is located on the boundary of the entire surface (examples are P15

and P59). The twist vector estimated for such a point is the average (Ti + Tj)/2. A
point Pijkl with four indexes is common to four patches. The twist vector estimated for
such a point is the average (Ti + Tj + Tk + Tl)/4.

This method works well as a first estimate. After the surface is drawn, the twist
vectors determined by this method may have to be modified to bring the surface closer
to its required shape.

Example: Compute twist vectors for the four patches shown in Figure 4.16b. The
first step is to compute a second derivative vector Puw

i from Equation (4.38) for each
patch i.

Puw
1 = [(0, 0, 0) − (1, 1, 1)] + [(2, 1,−1) − (1, 0, 0)] = (0, 0,−2),

Puw
2 = [(1, 0, 0) − (2, 1,−1)] + [(3, 1, 1) − (2, 0, 2)] = (0, 0, 0),
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P1 P12 P23 P34 P4

P15 P1256 P2367 P3478 P48

P59 P569a P67ab P78bc P8c
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P1234= (2,1,−1)
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Figure 4.16: Estimating Twist Vectors.

Puw
3 = [(1, 1, 1) − (−1, 2, 0)] + [(1, 2, 1) − (2, 1,−1)] = (1, 0, 3),

Puw
4 = [(2, 1,−1) − (1, 2, 1)] + [(1, 2, 0) − (3, 1, 1)] = (−1, 0,−3).

The second step is to compute a twist vector Ti for each of the nine points

T1 = Puw
1 = (0, 0,−2),

T13 = [Puw
1 + Puw

3 ]/2 = [(0, 0,−2) + (1, 0, 3)]/2 = (.5, 0, .5),
T3 = Puw

3 = (1, 0, 3),
T12 = [Puw

1 + Puw
2 ]/2 = [(0, 0, 0) + (1, 0, 3)]/2 = (.5, 0, 1.5),

T1234 = [Puw
1 + Puw

2 + Puw
3 + Puw

4 ]/4
= [(0, 0,−2) + (0, 0, 0) + (1, 0, 3) + (−1, 0,−3)]/4 = (0, 0,−.5),

T34 = [Puw
3 + Puw

4 ]/2 = [(1, 0, 3) + (−1, 0,−3)]/2 = (0, 0, 0),
T2 = Puw

2 = (0, 0, 0),
T24 = [Puw

2 + Puw
4 ]/2 = [(0, 0, 0) + (−1, 0,−3)]/2 = (−.5, 0,−1.5),

T4 = Puw
4 = (−1, 0,−3).

The last step is to compute one twist vector for each patch by averaging the four twist
vectors of the four corners of the patch. For patch 1, the result is

[T1 + T13 + T1234 + T12]/4 = [(0,0,−2)+(.5,0,.5)+(0,0,−.5)+(.5,0,1.5)]/4 = (.25, 0,−.125),

and similarly for the other three surface patches.

She could afterward calmly discuss with him such

blameless technicalities as hidden line algorithms and

buffer refresh times, cabinet versus cavalier projections

and Hermite versus Bézier parametric cubic curve forms.

John Updike, Roger’s Version (1986)


